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ASSESSING THE EFFECTS OF NEW PUBLIC TRANS-
PORTATION ROUTES: AN EQUITY ANALYSIS ON THE
CHANGING ACCESSIBILITY OF ALBUQUERQUE,

NEW MEXICO
by
Calvin Tribby
B.S., Applied Mathematics, University of New Mexico, 2007
M.S., Geography, University of New Mexico, 2009
ABSTRACT

This research details the application of a public transportation accessibility model
using travel time as the accessibility measure. The primary objective was to develop a
multi-modal network model for detecting change in travel time at the household level as
the result of the implementation of new rapid bus routes. This method is situated in the
accessibility measures of transportation equity, a focus of research in the broader field of
transportation geography. The level of detail that current accessibility studies use to
evaluate public transit are not detailed enough to capture travel time changes at the
household level and through varying time periods throughout the day. The result of this
research is the successful application of this network to highlight the travel time changes
at the household level of new transit investments.

The multi-model network was developed in ArcGIS and accounts for the walking
time from home to the bus stop, the waiting time at a bus stop, the travel time on the bus,
and any necessary transfers. Both peak and off-peak time periods were modeled. The

application of this network to a case-study of the Westside of Albuquerque, NM



demonstrates how household-level effects of new transit investments can be modeled,
with implications for a finer level of detail for social justice studies. Specifically, the
Northwest quadrant of Albuquerque benefits through greater time savings compared to
the Southwest quadrant, though both sections are in the service area of two new
significant public transportation investments. This is despite the greater need in the

Southwest quadrant for public transportation based on socio-economic characteristics.
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Chapter One: Introduction
1.1. Background

The focus of this paper is public transportation equity, measured through the
spatial-temporal accessibility it affords, and how recent changes to the public
transportation system in the City of Albuquerque have affected it. It is important to the
field of transportation geography and its inherent study of equity, because as transit
becomes more acceptable and experiences greater utilization by a wider socio-economic
range of people in Albuquerque, due to higher personal transport costs, environmental
concerns, and increasing congestion in the region, the influences on the design and
planning of the transit system are changing. The traditional transit users in Albuquerque,
the vehicle-less, low income, and elderly and young people, are affected by this increased
attention in the public transit system in numerous ways. If they are fortunate, the routes
they use will be improved with expanded service hours, frequency, and capacity. If not,
they are plagued by continued neglect through poor service times and bad route choices,
which can affect a population’s well being and quality of life (Apparicio, Abdelmajid,
Riva, and Shearmur 2008; Kwan, Murray, O’Kelly, and Tiefelsdorf 2002).

The research question that [ seek to address is how the recent additions to the
transit system in Albuquerque, specifically the Rapid Ride lines, increase the temporal
accessibility that the transit network provides for the traditional transit users to the city.
The important distinction here is the provision of travel time, and if and how it has
changed for transit users. The spatial accessibility and catchment areas for the system in

general are not necessarily improved when these new routes are aligned on roads with



existing bus routes, hence a measure of temporal accessibility is more appropriate to

measure changes.

1.2. Goal

The goal of this paper is to map the effect that recent changes to the public transit
system have had on the accessibility that the system provides in Albuquerque, NM and to
quantify this change in accessibility of the city to traditional transit users, the vehicle-

less, low income, and elderly and young people.

1.3. Objectives

The first objective is to model the temporal accessibility that the transit system
provides to the city, to account for the A.M., P.M., and off-peak variability, in both bus
frequency and travel time, and include spatial accessibility to the system through
walking.

The second objective is to quantify the change in accessibility of traditional transit
users caused by the additional routes, using accessibility to downtown as the
representative destination to measure the change in time. My hypothesis is that the South
Valley, in the southern portion of the study area, which is not directly served by the new
routes, will see a negligible impact in their temporal accessibility, despite the socio-
economic need of the area.

The expectation of this research is that the increase in temporal accessibility of
the city afforded by the addition of the recent Rapid Ride bus routes does not improve the

temporally underserved areas of the city and where traditional transit users are clustered,



but caters to “choice commuters”, those who have access to a vehicle and commute to the
major employment centers in the city, but could decide to take public transit if they view
it as feasible.

This prediction is based on observation of the distribution of current routes which
are concentrated in certain parts of the city and the priority in new resources given to the
Rapid Ride over other bus routes. While, as previously mentioned, this does not increase
the spatial accessibility necessarily for those without access to an automobile; the
provision of free parking lots at the ends of the Rapid Ride lines does provide increased
accessibility for those with cars and therefore incentivizes the service for those with
access to an automobile. While the shifting of transportation modes from private car to
public transit is an admirable goal and helps reduce congestion and pollution, this has
created a biased focus for the expansion of the transit system and neglects commuters
who do not have this choice and are outside of these selected corridors. The City of
Albuquerque Mayor Martin Chavez has acknowledged this as an influence on the system:
“We are starting to see more and more people use our bus system as a choice rather than
a necessity” (City of Albuquerque 2008a).

A more distributed network of transit with comparable service times for all, while
maintaining a few high capacity corridors with a balance between “choice commuters”
and traditional transit users is the best way to expand public transportation in
Albuquerque, as argued in the Public Transportation Equity literature (e.g., Sanchez

2008; Martin, Jordan, Roderick 2008; Lucas 2006) and reviewed later.



1.4. General Area of Study

The study area is located in Albuquerque, New Mexico, which had an estimated
population of 504,949 and a metropolitan statistical area population of 816,811 in 2006
(BBER June 2007; April 2007). The urban spatial structure of Albuquerque is similar to
the completely motorized network that Rodrigue, et al. defines as:

[A]n automobile-dependent city with limited centrality. Characterized by low to

average land use densities, this automobile oriented city assumes free movements

between all locations. Public transit has a residual function while a significant
share of the city is occupied by structures servicing the automobile, notably

highways and large parking lots (2006).

These characteristics predominately describe Albuquerque, compared to the other urban
spatial structure representations Rodrigue, et al. propose: weak centers, strong centers, or
traffic limitation urban areas (2006). These urban structures are generally defined by
higher land use densities, greater accessibility to urban transit, and have less land
allocated to highways and parking in the central city. Albuquerque’s spatial structure
does not reflect these elements, which is an inhibitor of the commuting mode share of
transit in the city, but does not diminish its necessity.

Through a visual survey of the transportation infrastructure and land use
distribution, the conclusion that the spatial structure of Albuquerque as a completely
motorized network is plausible, but there is also quantitative evidence to support this
observation. The residual function of public transit in Albuquerque is revealed by the
transportation mode split in the city. In the 2000 Census, 77.7% of commuting in
Albuquerque was done by driving alone and only 1.7% was achieved by public

transportation (MRCOG 2007). The dismal mode share of transit in Albuquerque

confirms the minor, and hence residual role transit contributes to commuting, though



there has been a recent increasing trend. An all-time high in bus ridership was reached in
September 2008, representing a 9% gain in riders over August 2008, and a 17% increase
over September 2007 (City of Albuquerque 2008a). These statistics could signify that the
current mode share of transit could be a higher percentage of commuting trips than the
2000 Census, but this cannot be confirmed.

The sections of the population dependent on public transit appear cogent to
Albuquerque, as 12 percent of households earning under $20,000 a year use transit in a
typical week, significantly more than middle-income groups and more affluent residents
(City of Albuquerque 2001). But the survey did not include the handicapped, young, or
vehicle-less, the latter of which constituted 7.2% of Albuquerque’s population in 2000
(MRCOG 2004). Support for improving the public transportation system is also favored
more by the under $20,000 income a year, with 90.9% of citizens within this category
reporting this as a middle, high, or extremely high community priority (City of
Albuquerque 2006). This is compared to 83.6% and 83.4% of Albuquerqueans reporting
this as a similar priority in the next two higher income categories (City of Albuquerque
2006). Therefore, the socioeconomic indicators used here to judge accessibility to transit
dependent populations will be income under $20,000 a year, residents under 18 or 65 and
over, and the vehicle-less.

Another indicator of the completely motorized network in Albuquerque is its high
automobile dependency. Rodrigue, et al. (2006) defines high automobile dependency
when more than three quarters of commuting trips are made with the automobile. By this
definition, Albuquerque has a high automobile dependency, with 77% of commuting trips

by automobile in 2000, which supports the classification of the structure of the city as a



completely motorized network. A final validation of motor vehicle dominance in the city
is a significant share of land being occupied by parking lots. A recent article in Salon
News confirms that “Downtown Albuquerque, N.M., now devotes more land to parking
than all other land uses combined” (Mieszkowski 2007). The spatial structure of
Albuquerque is congruent with the definition of a completely motorized network, as
reflected in the limited viability and acceptance of public transit in the city, and
highlights the necessity of the system to provide primarily for transit-dependent users, not
automobile owners.

The study area is suited to this analysis because the recent addition of new transit
investments allows the comparison of the system before and after to assess the effects on
the transit-dependent population. Specifically, the study is constrained to a portion of
Albuquerque, the Westside, defined as west of the Rio Grande and emphasized in Figure
1.1. This area contains both of the Rapid Ride Routes, and also some high proportions of
transit-dependent populations. The presence of these two factors makes the Westside
ideally suited to measure the change in accessibility of the public transit system. The
Rapid Ride routes extend east, beyond Downtown, but are considered to end Downtown
for this study. Downtown is defined for this study to be the Alvarado Transportation
Center, at the corner of First Street and Central Avenue Southwest. This choice of
Downtown as the origin and destination of trips represents it as an actual ending point of
a trip, say for employment, or as a transfer for other city buses, intercity buses or rail, or
continuing on the Rapid Rides eastward. The time savings would still be representative

though, whatever the ending destination is, once Downtown.
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Figure 1.1. Study Area within Bernalillo County with the Westside of Albuquerque
indicated and the extent of the Rapid Ride Lines considered

Albuquerque’s status as a completely motorized network is not necessarily a bad
classification, as Lucas details some positive aspects, like the role it has played in the
increased participation of women in the workforce, or the increased activities and
distances able to be traveled due to cars (2006). This network provides the city with
excellent accessibility by automobile, though during peak travel times the average annual
delay travelers are facing is higher compared to other medium sized cities. The city as a
whole only has average congestion among the same group (Schrank and Lomax 2007).
This congestion is tolerable for new residents from larger cities with worse congestion,

but the focus on this type of accessibility in the city ignores those who do not have access



to an automobile. A consequence of Albuquerque’s completely motorized network is
that transit is forced into a subservient mode of transportation. Therefore, the mandate of
public transit in Albuquerque, to offset this spatial inequity, is to provide equitable
mobility for those most dependent on it (Sanchez, Stolz and Ma 2003). This is achieved
by increasing the accessibility for those without access to automobiles when planning and
implementing additional improvements to the transit system (Wu and Hine 2003).

The use and distribution of Information and Communication Technologies (ICT)
within the study area are numerous. First, with regards to temporal accessibility
influences, the city has recently unveiled a trip planner for the bus system available on its
web site (City of Albuquerque 2008b). The user inputs the starting location, ending
location, day and time of arrival or departure for the trip. This query returns possible
route choices and transfers, if necessary, based on the input criteria, as well as trip
duration, walking distance, and total fare. Whether this has a positive influence upon
traditional transit users is uncertain. This trip planner requires a computer to access the
internet, which if one is not available at home, could be temporally and spatially
restricted by the hours and location of the public library. Other ICTs for consideration in
the transit system are the LED time boards on most of the Rapid Ride Red Line stops,
which display the expected arrival of the next bus. While this does not substitute for the
knowledge of the actual schedule, it does provide an added sense of convenience, if not
practical utility. Also, on the Rapid Ride Red Line is the provision of wireless internet
access on the bus. While this might not directly aid the accessibility of the system, it is
an amenity to lure a segment of the population with access to wirelessly enabled devices

to increase utilization of the buses, and possibly the system as a whole.



1.5. Bus stop and Pedestrian Environment Amenities

Another consideration of the physical environment of the transit system is the
provision of bus stop and pedestrian amenities. The effects of amenities, or lack thereof,
can have a potential impact on the desirability and usage of the system. For example,
stops that lack sidewalks provide additional impedance to patronage, as stops without a
bench would provide further disincentive to use and reflect the neglect of ABQ Ride.
This effect is implicitly acknowledged by the city, as the Rapid Ride stops are uniform in
their amenities, designed to elicit a positive and salient perception in users. These stops
include permanent shelter and bench structures, as well as a trash can, lighting and most
with an LED display with the time until the next bus comes. Such service improvements,
or perceived higher quality of service, help to define the Rapid Ride routes as premium

transit.

1.6. Premium Transit

Premium transit in the City of Albuquerque is the Rapid Ride bus routes
(Appendix A) which includes the Red Line and the Blue Line and are modeled after Bus
Rapid Transit (BRT). BRT includes many attributes of a light rail line, but in the much
more economical form of a bus, such as separate rights of way, permanent stops spaced
farther apart and at major destinations, frequent service, and the implementation of
Information Technology Systems (Zimmerman and Levinson 2006). The City defines
the Rapid Ride as a “[S]ystem, [that] when combined with fewer stops and quicker
loading, will translate into faster, more efficient, comfortable service” (City of

Albuquerque 2007). While the Rapid Ride contains some aspects of a BRT system and



the Red Line follows a route recommended as a high capacity transit corridor in the
Rapid Transit Project, the absence of a dedicated bus way prevents its classification as a
true BRT (City of Albuquerque 2003). The determination of the route locations and their
relation to transit dependent users for this new transit service is crucial to the accessibility

of the network and the equitable distribution of transit services in Albuquerque.

1.7. Bus Specifications

The Rapid Ride buses have a capacity of 86 passengers and three bicycles,
compared to the capacity of 45 passengers and two bicycles typical to other buses in the
ABQ Ride fleet (City of Albuquerque 2007). The increase in volume of passengers and
bicycles that these vehicles can carry increases the accessibility on the routes they serve.
Whether the accessibility of the locations of individual stops is increased by the Rapid
Ride is uncertain. Since the stops are spaced farther apart, it at first appears that this
would decrease accessibility, but there might be an offset to this. There could be a
perception of increased quality of service and buses, which could increase the catchment
area, or distance people are willing to travel to stops (Swope 2007). Since there is not a
light rail system in Albuquerque to compare the Rapid Ride to, but only the normal buses
in the ABQ Ride fleet, Rapid Ride is seen as a significant improvement over regular
buses, not a step down from rail, and might increase the appeal of transit. Also, the
further spacing of stops allows a greater distance to be traveled in less time, increasing
the accessibility of the route once a rider is on board (Murray 2003). Since the Rapid
Ride nearly doubles the capacity and increases the frequency of the routes they run on,

the location of these routes and their stops have major implications for increasing the

10



accessibility to the city that the transit system as a whole provides and is a suitable

measure for the change in equity of the system.
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Chapter Two: Literature Review

The pertinent literature to the assessment of the changing accessibility of the city
of Albuquerque, afforded by the public transportation system, resides within the field of
transportation geography. Included in this field are the study of transportation equity and
its associated measures of temporal accessibility, Information and Communication
Technology accessibility, and spatial accessibility. These three accessibility metrics are
by no means the only ones, but are most relevant to this study and are not usually
considered exclusive of each other. Also reviewed are the network approach to
accessibility analysis and its implementation in a Geographic Information System,
designed for transportation analysis. A brief discussion is also provided for Space-Time
Accessibility Measures, of which influences my method of determining accessibility.
These areas are all interrelated to the field of transportation geography and its various

measures of accessibility and their implementations.

2.1. Transportation Geography

Transportation geography has undergone significant transformations in
methodologies and theories in the last twenty years. This has been instigated by the
increasing sophistication of spatial analytical technologies, as well as the increasing
importance of globalization on philosophy and process in transportation research
(Keeling 2007). Also, the increasing importance of environmentally sustainable
transportation alternatives is driving interest in public transportation research (Kawabata
2004; Polzin 1999; Handy and Niemeier 1997). Important philosophical and

methodological shifts are also the result of the increasing adoption of information and

12



communication technologies and their impact on travel, plus the recognition of the
limitations of aggregate data and the necessary improvements to using it for
transportation research. As these shifts are occurring, the relevance of research to
planning and policy are now recognized as crucial applications for transportation
geography and also to elucidate the land-use/transportation relationship (Polzin 1999), as
with geography in general, for “the specter of such a world simply underlines and
magnifies the importance of achieving deeper understanding of accessibility and mobility
processes’” (Hanson 2006).

A new conceptualization of urban travel, created by the increasing adoption of
information and communication technologies (ICT) within developed countries, has led
to both philosophical and methodological shifts in transportation geography. Mei-Po
Kwan (2007) introduces a new metaphor for urban spatial interaction, which is
influenced by the “new mobilities paradigm”. This view transcends the separation of
transportation research and social sciences, recognizing each as important factors in
studying the other (Sheller and Urry 2006). This paradigm states that the traditional
focus of transportation geography, specifically pertaining to personal transport and
accessibility, on the importance of the spatial characteristics of distance and proximity
has been diminished and further complicated than simple past models of transportation
flows based on land use can explain (Kwan and Weber 2003). For personal travel, travel
time is not regarded as dead time anymore, but can be filled with activities due to the
enabling technologies of mobile and wireless devices, and therefore it is not always

sought to be minimized (Kwan 2007). This technological innovation complicates

13



transportation research models and may explain individuals’ complacency with
increasing congestion and delay in travel, among many other things.

ICT has implications on both space-time coordination and activity-travel
behavior, which both influence the utilization of public space and affect the mobility and
amount of travel of urban residents. The increase in mobility and increase in ICT
adoption are mutually reinforcing (Kwan 2007). Increased mobility leads to an increased
need to stay in contact, and increased contact with social networks provides for an
increase in opportunities for mobility. ICT, most importantly, may lead to significant
changes in the function and role of existing nodes, places of importance, in urban and
transportation systems, through the increase in personal mobility and spatial freedom they
provide (Kwan 2007).

The methodological implications of the wide spread adoption of ICT are the
increased automation, accuracy, and ease of tracking individual travel over traditional
written travel diaries (Kwan 2007). This will lead to a greater perception of personal
mobility, but is not without privacy concerns and conversely, accuracy considerations
(e.g. Gruteser and Grunwald 2003; Kwan, Casas, and Schmitz 2004). But, without an
understanding of the individual’s social networks, explanation of personal travel will still
not be known. With ICT, our social networks now move with us and affect our travel
decisions in real-time, and need to be included in individual-focused analysis, rather than
place-to-place analyses, to reveal the reasons why we travel (Wellman 2001).

The recognition of the limitations that spatially-aggregated data impose is also
fostering new methodologies. For instance, remote sensing can be used to increase the

resolution of socioeconomic indicators relevant to public transit demand. Wu (2006)
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uses remotely-sensed data to measure impervious surface and vegetation cover to
estimate socio-economic levels and derive demand for public transit at a finer resolution
than transit analysis zones. Casas (2007) highlights the limitations of traditional
transportation-equity studies that are based on local indices of deprivation, and often use
data analysis zones. Local clusters are normal in these studies, for example, with low-
income housing. But this is not suitable for measuring the lack of access to transport
systems for the disabled, who are not easily represented by aggregated and spatially
autocorrelated data. She instead uses individual travel diaries to measure transportation
equity and hence social exclusion in her study area. Casas’ (2007) choice of data
collection provides a much more detailed level of analysis, not available from aggregated
data, but which is required by her research question. These two examples show that the
adaptation of methodology to a specific study area has allowed the development of
methods for data collection that are conscious of the scale necessary for meaningful
results.

The reevaluation of spatial urban transportation models and methods of data
collection, based on the new information and communication technology paradigm, as
well as advances in remotely sensed data and GIS systems, is necessary for transportation
geography to continue with the relevance of its research and to have a deliberate impact

on policy and planning.

2.2. Public transportation equity
Transportation equity ultimately seeks to “provide equal access to social and

economic opportunities by providing equitable access to all places” (Sanchez, Stolz and
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Ma 2003). For public transit, this would manifest itself as equitable access for users
dependent on its service to the opportunities of the city, and is one of the fundamental
goals of urban transportation planning (Lui and Zhu 2004). It has been recognized that
the transportation policies adopted after World War II emphasized highway development
over public transportation, and these have had an inequitable effect on minority and low-
income populations, including restricted accessibility to the city (Sanchez, et al. 2003).
In automobile-dependent cities in the United States, the justification for subsidizing
public transit is to provide a travel option for those that would otherwise not have one:
the elderly, the poor, the handicapped, and the young (Murray and Davis 2001; Black
2003; Séanchez, et al. 2003). The United States Government also recognizes this and the
relevant necessity of equity as one of the nine critical issues facing transportation in the
first decade of the new century: “A transportation system dominated by the automobile
generates challenges for those with limited incomes, physical disabilities, or those who
do not drive” (Transportation Research Board 2005). Furthermore, the most
disadvantaged rely on transit, taxis, and walking and therefore have the most limited
accessibility and mobility, due to lack of automobile access (Transportation Research
Board 2005; Kawabata 2004). Public transit is seen as a social service and not as a
means to “stimulate additional growth and development because the overall increase in
accessibility is insignificant to current accessibility” (Black 2003). Therefore, the
principal importance of public transportation in automobile-dependent American cities is
to help improve the accessibility to jobs and services for those marginalized by society
and the spatial structure of the city because they lack access to an automobile (Litman

2007).
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The relevance of the maximal spatial coverage of the transit system as an
expectation for the system within this particular study area, Albuquerque, NM, must be
questioned as a method to examine the accessibility the system provides. Such
techniques (e.g. Laporte, Mesa, Ortega, and Sevillano 2005) focus on maximizing
coverage based on population density, regardless of the actual transit need of the
populations. This is problematic in a city like Albuquerque, due to the low density,
distributed nature, and transit needs that many neighborhoods exhibit, but not uniformly.
That is, basing demand on the highest-density neighborhoods would not capture the
transit need of all parts of the city. Also, the measure of spatial coverage does not
account for differences in frequency of bus routes, congestion levels that vary with the
time of day, and the distance that is reachable in a fixed amount of time. Such
shortcomings of maximizing the spatial coverage of the transit system highlight the two
prevailing views of accessibility. The first is the reliance on the traditional view of
proximity for providing the potential for interaction, using aggregated geographical
space, and the other view, which focuses on individuals and activities accessible to them.
This latter view takes into consideration personal constraints associated with daily
schedules (Horner 2004). The simplification of ignoring time is no longer necessary,
and the inclusion of temporal considerations to individual accessibility is now

computationally feasible and common (Weber and Kwan 2003; Kwan, et al. 2003).

2.2.1. Temporal Accessibility
With time being a resource that transit users also pay, there appears to be a gap in

the literature dedicated to the equity analysis of passenger costs that includes travel time.
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Time is an essential measure of individual accessibility (Kwan and Weber 2003; Kwan,
et al. 2003). The significance of including locally specific travel times within a street
network is that it does, in fact, allow for a significant increase in the ability to realistically
assess individual accessibility within cities (Kwan and Weber 2003; O'Sullivan,
Morrison, and Shearer 2000). The addition of the provision of time within the study of
accessibility comes about by the increasing realization of the diminishing explanatory
power of distance, due to variations in individual travel behavior, mobility offered by the
street network, and location and size of activity opportunities in traditional urban
accessibility models (Weber and Kwan 2003). This provision highlights the acceptance
of using the street network to measure accessibility. At scales smaller than a
metropolitan level, straight line and Manhattan distances may introduce substantial
errors, and network based time/distance measures are more appropriate (Apparicio, et al.
2008; O'Sullivan, et al. 1999). A gap in the implementation of temporal metrics with
regard to public transportation is the simplification of bus routes into lines, without
regard for their actual stops (e.g. O'Sullivan, et al. 1999), or using straight-line distances
to measure accessibility (e.g. Lui and Zhu 2004; Shen 2002). Time is but one
consideration in accessibility analyses though, and without careful consideration of other
simplifications, it may not lead to a clearer understanding of accessibility. And, with a
wide variance of location-based accessibility indices available, they should be diligently

implemented, though specifics are rarely justified (Horner 2004).
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2.2.2. ICT Accessibility

A recent consideration of accessibility, with potential implications to affect
temporal accessibility, is that of the increase in accessibility that ICTs can provide
(Hanson 1998). Important is not only the possibility of the increased accessibility these
technologies can provide, but also who has access to such devices. While ICTs can
facilitate the relaxation of space-time constraints that limit human spatial mobility and
activity space, for example by e-shopping or e-banking, such luxuries are not equally
accessible to all segments of the population (Kwan and Weber 2003). So, ICTs can allow
more flexible spatial and temporal arrangements of human activities to become possible,
but the relation between ICTs and individual accessibility and human behavior are highly
complex, with substitution for physical travel being only one of many possibilities (Kwan
and Weber 2003).

Another possibility is the social and physical exclusion that can become implicitly
enacted by increasing reliance on such technologies. For example, financial exclusion,
defined as the physical inaccessibility of bank branches in poorer neighborhoods in the
Greater London area is, in part, justified by the evolving technologies that are said to
render face-to-face interactions redundant (French, et al. 2008). Such virtual mobility,
enacted by ICTs, could help increase accessibility as an alternative and possible
augmentation to physical mobility (Kenyon, Lyons, and Rafferty 2002). But as French,
et al. (2008) emphasize, such technologies do not necessarily erase inequalities caused by
low physical accessibility, highlighting the continued salience of spatial accessibility,

despite the rising adoption of ICTs.

19



2.2.3. Spatial Accessibility

The notion of spatial accessibility is a key element to transport geography and is
the conventional measurement of accessibility (Black 2003). This accessibility is the
measure of the capacity of a location to be reached within a network (Black 2003;
Rodrigue, et al. 2006). This definition might lead one to believe that accessibility is static
and part of the built environment, influenced more by the physical structure of an urban
area than by the characteristics of the citizens who are dependent upon it. But this is not
the case, as it can be thought of as the situation of a location and its ease of being reached
(Kwan, et al. 2003). Therefore it is not an intrinsic quality of a location, but subject to
change (Harris 2001). This highlights a key difference between accessibility of, and
access to, a transportation network. Access to a transit network is measured by proximity
to stops, and each stop is regarded as providing uniform admission to the network
(Murray and Davis 2001). This approach is less data intensive than the determination of
accessibility, and provides a useful approach for analysis of transportation networks.

The methods of measuring accessibility, by contrast, are structured around the
relationships between the location of places or people dependent on transit and the
transport infrastructure, capacity of the network, and the network connectivity (Rodrigue,
et al. 2006). Here, the location may be represented as an aggregation of people
represented by a certain distance to a stop on the transit network (Harris 2001). The
characteristics of connectivity, capacity, and location are important to the determination
of the accessibility of the transit network, and each can be a measure of equity in public

transportation.
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2.3. Connectivity, Capacity, and Location

The essential elements of accessibility are location of probable transit users
relative to the transit network, capacity of the transit network, and the connectivity of the
network. Each one of these characteristics of a given network can be analyzed to assess
its contribution to the degree of accessibility of the entire network. In a low transit
environment, accessibility of a transit stop is a mere matter of convenience to a marginal
segment of the population (Rodrigue, et al. 2006). Therefore, the location of stops in a
transit network should be amenable to transit dependent users, and the number of such
users within a given distance of a stop is one measure of the accessibility of that
particular stop. This could be compared with other potential stops in the area to identify
locations that are accessible to the greatest number of potential riders and can be used for
planning new stops or realigning existing stops. The location of stops should be
determined to be accessible to the greatest number of potential users, and this is one way
to increase the demand and justify the capacity of the system.

The capacity of the system can be measured by the frequency of service and the
capacity of the individual transit vehicles. Capacity of a transit route is one measure of
the level of service, and the desirable level of service is dependent on the urban structure
and density of the area served (Sanchez 1999). More dense areas would necessitate a
higher level of service than less dense areas and this presents a problem for equity. In a
low-density city like Albuquerque, this means a low level of service for the majority of
the city, which affects transit-dependent users who are spatially distributed throughout

the city, not just concentrated along high level of service corridors. This results in longer
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wait times for service and limited service hours, both major hindrances to the
accessibility of the network, and consequently the city and its services (Sanchez 1999).

The connectivity of the transit network is one measure of the accessibility of the
overall transit system from a particular stop or route. There are formal mathematical
measures of the degree of connectivity in a network, which analyze distances between
nodes and the current connections to the total possible connections (e.g., Hanson 1986).
In general though, when network connectivity increases, network accessibility increases
(Black 2003). The importance of studying network connectivity, capacity, and location
are essential to measuring the accessibility and, thereby, the equity of a public

transportation system.

2.4. Network Approach

The network approach to transportation geography was developed during
geography’s quantitative revolution in the 1950’s and goes beyond just the description of
transportation systems, by providing a framework for systematic examination. The
importance of this method to the acceptance of geographical analysis approach cannot be
overstated: “The network approach was the first major paradigm to emphasize a rigorous
scientific approach to research in transportation geography” (Black 2003).

The methodology for analyzing transportation using the network approach starts
with the fundamental notion of defining nodes, links, and the topological relationship
between the two (Longley, Goodchild, Maguire, and Rhind 2005). Nodes are defined
based on the research question asked, and vary depending on the type of network studied

and the geographic scale being considered (Black 2003). For example, nodes could be
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considered cities, for an analysis of air traffic, or employment centers within a city for a
study on commuting. Complementary to nodes are links, which can be implicitly
defined, such as the flight path between cities, or physically defined infrastructure, like
streets between employment centers. The spatial relationship between nodes and links
needs to be defined for each specific study of transportation networks, so the necessary
assumptions about contiguity can be explained (Black 2003). For a study on air traffic, a
large city’s airport may be assumed to be a node in the network, even though the physical
location of the airport is located a significant distance out of the city. For local public
transit networks, the assumption is clearer, with stops or stations acting as nodes in the
network. These assumptions are fine for simple representations of transportation
networks, but many researchers are interested in more complex models.

The simple definitions of links and nodes in a network of course do not model
reality very accurately and are not without criticism. Some difficulties in the creation of
a street network arise in the dependence on the precise definition of a nodal
representation of an intersection, street center lines with technically zero width
representing actual streets with a width, the possibility of extensive modification to the
network model for the addition of new nodes, and the redundancy of street names for
multiple segments on the same route (Goodchild 2000). These problems are less of a
concern when modeling a transit network, where nodes are precisely defined as stops, but
remain for the modification of the network through the addition of nodes. The simple
“nodes and links” representation of a network has led to the creation of an entire subfield
in Geographic Information Systems (GIS) which is focused on modeling transportation

systems.
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2.5.GIS-T

As equally momentous as the network approach is to transportation geography is
the importance of Geographic Information Systems devoted to transportation (GIS-T)
(Black 2003). Once nodes and links are identified and defined for a particular study, the
best environment for analysis is in a GIS-T, using an integrated and comprehensive
approach, as outlined by Lui and Zhu (2004). The three main perspectives that GIS-T
offers for transportation networks are the map view, the navigation view, and the
behavior view (Goodchild 2000). The map view implies an essentially static perspective,
and its success lies in inverse proportion to the tendency of the network to change
(Goodchild 2000). This simple linear model provides a one-dimensional referencing
system for location determination, but provides no information regarding flows and hence
has limited application for models that demand increased accuracy and realism. The
navigation view assumes that information of a dynamic nature, including attributes such
as levels of congestion and travel speeds, generally knows as impedances, should be
represented on the static geometry of the network (Goodchild 2000; Longley, et al. 2005).
Another attribute of interest that can be represented in the navigation view is demand, for
the movement of people, freight and information, and is related to nodes by locations and
to links by flows (Rodrigue, et al. 2006). Demand is an estimate, usually a derived
function of socio-economic factors in the region of study. The third view, in GIS-T,
deals explicitly with dynamic geometry, which is the behavior of discrete objects,
vehicles, people, or buses, on and off the linear network (Goodchild 2000). This
perspective models complex behavior and must deal with diverse sources of data, but still

needs much development (Goodchild 2000).
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All of these views treat representations of features in an object-based data model.
This data model regards geographic features as discrete and identifiable objects, often
represented as points, lines, and/or polygons (Rodrigue, et al. 2006). While this eases
network analysis, the aggregation of people into polygons to determine potential demand
for transit is not without problems. Wu (2003) identifies the problems associated with
the modifiable areal unit problem that results from the aggregation of data into Census
Blocks, and other analysis units and the influence this has on transit planning. Wu (2003)
argues for a finer resolution data set, using impervious surface and vegetation cover as
measures of socioeconomic status, derived from remote sensing. The less vegetative
cover and greater impervious surface fraction in the classifications developed are related
to housing development, and higher population density, the indicator that holds the
greatest explanatory power for transit demand (Wu 2003; Johnson 2003). This is used as
a demand potential, at a much finer resolution than Census Blocks can provide. The
object-based network data models and related data used for analysis in transportation
research have limitations, but there are alternatives given the amount of time and data

available for study.

2.6. Space-time Accessibility Measures

Space-time Accessibility Measures (STAMs) are an index that attempts to capture
the access of individual people to places such as employment, shopping and recreation
(Miller 1999). This broad category of analysis highlights the difference between
proximity-based measures and space-time accessibility measures, namely that proximity

measures capture the accessibility of individual locations, whereas individual STAMs
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quantify the accessibility of individuals to those places (Miller 1999; Weber 2003).
Another benefit of the space-time accessibility approach is the readiness of the
understanding of its results using isochrone maps (O’Sullivan, et al. 1999). These maps
depict lines joining a set of points at equal travel time from a specific location, and can be
aggregated into areas where all the points within the area can be reached in less time than
the bounding isochrone (O’Sullivan, et al. 1999).

For example, the use of a STAM to compare commuting times between public
transit and private automobile in urban and suburban areas in San Francisco and Boston
has successfully quantified disparities between these groups and captured how they
changed between 1990 and 2000 (Kawabata 2007). The main purpose of using STAMs
is to include time, and these metrics are useful for assessing temporal accessibility, along

with spatial accessibility, as opposed to measures that only consider the latter.

2.7. Contribution

The aim of this study is to investigate public transportation equity in
Albuquerque. The study area is suited to this analysis because the recent addition of
premium transit allows the comparison of the system before and after to assess the effects
on the transit dependent population. Although the Environmental Justice Atlas and Data
Book for the Albuquerque Metropolitan Planning Area (MRCOG 2004) admirably
explores the relationships between access to a bus stop and transit dependent populations,
a more detailed model of the transit system is desired. For example, it states that a
greater percentage of these populations live within a 20-minute walk to a bus stop than

the total population, but the frequency of the buses is not taken into consideration
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(MRCOG 2004). The assumption that the provision of a bus stop within a 20-minute
walk distance to transit dependent populations is sufficient needs to be challenged, as
there is a significant difference between a 10-minute frequency bus and a 65-minute
frequency bus, as are present on the Westside of Albuquerque. Further analysis of that
started by the Mid-Region Council of Governments is needed and should include the
specifics of bus frequency, as well as walking time and bus travel time, as part of the
accessibility analysis for the Albuquerque public transportation system.

As noted by Murray and Davis (2001), there is a need for evaluating equity
issues with current and proposed public transportation projects to see if they are meeting
their objectives. In the planning profession, the concept of accessibility has rarely been
translated into performance measures by which policies are evaluated and thus has had
little practical impact on policy (Handy and Niemeier 1997). There is a current omission
regarding the contribution and centrality of transportation systems to many geographical
problems (Hanson 2006), even, “transportation is treated as so obviously fundamental to
society that there is no need to explain how or why” (Keeling 2007). This study attempts
to add insight to the current need of evaluating public transit equity by way of
performance measures developed through accessibility research (e.g., Sanchez 2008;
Martin, Jordan, and Roderick 2007) and its relation to policy and planning, as well as the

significance of transportation studies to geography.
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Chapter Three: Methodology

The goal of this paper is to map the effect that recent changes to the public transit
system have had on the accessibility that the system provides in Albuquerque and to
quantify this change in accessibility of the city to traditional transit users, the vehicle-
less, low income, and elderly and young people. The change in accessibility of these
groups will be used to assess the change in equity, caused by the implementation of the
Rapid Rides. This will be achieved through the construction of a public transportation
accessibility model, with a focus on the necessity of using travel time as the accessibility
measure. This model will specifically be a multi-modal network, that is, one consisting
of both a walking network and a transit network to account for the differing travel times
on both. This construction will use the street network of the city, the transit system, as
well as the published schedules for the selected routes, for the analysis environment. The
analysis of total travel times and differences in time between before and after the Rapid
Ride route additions will encompass three time periods of the day, from address points,
which are points representative of houses, to model household level accessibility to the
transit system. This will assume walking on the street network to access the bus stops,
and will also measure the accessibility that the transit system provides to the

representative destination, Downtown.

3.1. Data
The data required for construction of the network are the city street network,
arroyos, and bike paths, as well as the bus routes and stops. The arroyos, seasonal water

channels, have walking paths alongside, which are not represented in the city street
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network. This is similar for the bike paths that do not run along city streets.
Additionally, address points and land use polygons for Bernalillo County, in which
Albuquerque resides, were obtained. All of these are available on the City of
Albuquerque’s website (http://www.cabqg.gov/gis/download.html) and are in the form of
shapefiles. These were imported into a feature dataset in a personal geodatabase in
ArcGIS 9.3. The native coordinate system of the data were used, New Mexico State
Plane Central, NAD 1983 HARN. The Census Block Groups and associated socio-
demographic data for Bernalillo County were downloaded from the Resource Geographic
Information Systems website (http://www.rgis.unm.edu). The time information for
routes was collected from the City of Albuquerque’s published bus schedules
(http://www.cabq.gov/transit/routes-and-schedules), and only weekday, all-day routes
were included in the time calculations. These schedules and route maps are located in

Appendices B-H.

3.2. Methods

The overall design of the network built falls into two components and necessitates
a multi-modal network to be built to integrate the walking network with the transit
network. This model used the walking network to model travel time to and from the bus
stops and destinations/origins. This employed an assumed walking speed on the streets,
and utilized the address points and Downtown Albuquerque as origins/destinations. The
transit network is used to model travel time by bus, with the two networks linked through
boarding lines, which estimate the average waiting time for a bus. The network was

constructed with a fine level of detail and accounts for variations in both travel time
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between published wait times for the A.M. peak travel period, Twa, the P.M. peak travel
period, Twp, and the off-peak period, Two, and the travel times on the route for the same
periods, Tracx-y), Ttx-v), of Trox-y) (Figure 3.1). Detail of the individual time
accumulations on the network, the contributing elements are underlined in Figure 3.1,
follows, but the total travel time is calculated by summing the walking time on the street
network from the origin, the waiting time on the boarding line, the travel time on the
route, and finally exiting the route and continuing on the walking network to the

destination.

Address Point (AP)

O

Street Network
Tw= Tep.ap

Boarding Point (BP)

O
Exit Line Boarding Line (BL)
Tg =0 T =Ty Twe o OF Tyyo
Bus Stop Y
O > O-
Bus Stop X Bus Route (BR)

Ter= Trawag» Trervag  OF Tropa

Figure 3.1. Conceptual diagram of the accumulation of travel time, starting from the
Address Point and proceeding onto the Bus Route
The street network, used to represent the walking mode, was modified to include
bike paths and arroyo trails, to more accurately reflect the accessibility these provide for

walking in the study area. These three shapefiles were merged and inspected to remove
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redundancies and the Interstate highways, which are unsuitable for walking. A field was
added to this network to hold the average walking time in minutes, which is calculated by
an assumed walking speed of 3 kilometers per hour, a common estimation for walking
speed, multiplied by the length of the individual street segments.

The City’s bus network was the basis of the transit network built. First, the routes
that served the Westside were identified from the feature class containing all of the
routes. These were exported individually to feature classes and inspected visually to
ensure connectivity. The routes were then copied, to create a route for each direction and
isolate them topologically, and edited where they diverged (for example, on one-way
streets). Five fields were added to the routes to hold the A.M. peak travel time, P.M.
peak travel time, off-peak travel time, a one-way attribute, and a proportion field. The

A.M. peak travel time was calculated by averaging
Route 51 - Weekdays Northbound
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8:53 A.M, which results in an average A.M. peak Table 3.1. Published time schedule
travel time of 7 minutes for the segment between for Route 51 by ABQ Ride
stops A and B (Table 3.1). The P.M. duration was calculated similarly, except it was

based on the 4 to 6 P.M. time window. The off-peak time was calculated from the rest of

the times not included in the previous two categories. The one-way attribute corresponds
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to the direction of digitization of the route segments and is necessary for the correct
analysis of the bus route directions. The proportion attribute is necessary to estimate the
times to stops not on the published time schedules. This first required the routes to be
merged into one continuous polyline, since the segmented route geometry did not
correspond to the locations of the stops originally. The routes were then split into
segments by the stop points, and the length of the routes between stops was then divided
by total length between the scheduled stops. For example, if between scheduled time
stop A and stop B there are three bus stops, the lengths of each of the segments between
each of the stops is divided by the total length between stop A and stop B. This estimates
the amount of time between two scheduled time stops that it takes the bus to travel to a
non-scheduled stop, when multiplied by one of the time fields. The route travel times
described above were then attributed to the correct route segments, between the
corresponding scheduled stops. These were calculated for both directions, for all of the
routes in this study, as some variability in travel times were noticed for direction of the
route and time of day.

Integral for the interaction between the bus network and the walking network are
the stops, boarding points, boarding lines, and exit lines. The stops were selected by
route number from the bus stop shapefile from the city and whether they were outbound
or inbound, and exported to separate feature classes. Visual inspection was used to
include stops that were not attributed correctly and actually served multiple routes. These
individual route direction stop points were copied to create boarding points, again two
separate feature classes for the two directions, for each route. The stops were then

snapped, or made topologically coincident, with the appropriate route line to provide for
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network connectivity. The boarding points were snapped to the walking network, to act
as nodes to connect the bus network to the walking network. Boarding lines were created
between each boarding point and stop, to hold the average wait time, similar to the
average travel time for the routes. The distance of these lines is ignored, as only the
waiting time attribute of these lines is relevant. These boarding lines included the
creation of the fields for the one-way attribute, A.M. peak wait time, P.M. peak wait time,
and off-peak wait time. These were populated in a similar fashion as for the route lines,
but the frequency of the bus at a particular scheduled stop was averaged over the
aforementioned time categories. The average wait time for the specific time windows was
calculated by recording the wait times between buses and then averaging them within that
time window and finally, dividing by two. The boarding lines up to the next scheduled
stop were given the attributes of the previous scheduled stop and since these only hold
wait time information, no length calculations were necessary. To exit the bus routes back
to the street network necessitates exit lines, which were copies of the boarding lines, but
with the one-way attribute indicating the other direction. These hold no time
information, i.e. Tgr=0, and therefore no time is accumulated for exiting the bus.
Transfers between lines necessitated establishing a connectivity policy, in which
each route direction is a separate connectivity group and the only interaction between
routes is through walking on the street network (Figure 3.2). This ensures that the
transfer time between routes is accounted for, that is the average wait time is

accumulated, before transferring to the new route.
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Figure 3.2. Schematic of transfers between bus routes, proceeding from Bus Route 1,
through the Exit Line, Walking Network, Boarding Line, and onto Bus Route 2

With the network data attributed, a network dataset was then constructed in the
feature dataset, with all of the route and walking network features. Fifteen groups were
created for the connectivity policy, which determines how the networks interact
topologically. One group was for the street network and the other 14 were so that each
route direction had its own group (a snapshot is in Appendix I). This ensured that
transfers between lines only occurred on the walking network. The boarding points were
assigned to its route direction and to the walking network, to serve as the connection
between the networks.

The network attributes, which are fields and expressions by which the network is
analyzed, were created to assess the time to traverse the unified network during the A.M.

peak, P.M. peak, and off-peak times, as well as a proportion attribute, shown in Appendix
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J. The travel time attribute evaluators were the entire set of line feature classes
previously attributed, but the assignment of their value depended on their role in the
network (see for example Appendix K). The boarding lines, which hold the average wait
time for the particular route for the three time windows, were assigned to use those fields’
values directly. For example, the Time A network attribute was assigned the Time A
field for all of the boarding lines, since these lines rely on the time only and not the
distance of these lines. The routes, in which the travel time between the scheduled stops
does depend on distance, were given the value of the time field multiplied by the
proportion attribute. For example, the Time A network attribute was assigned the Time
A field multiplied by the proportion field for all of the routes, resulting in the minutes it
takes the bus to travel between all of the stops in both directions. The walking network
evaluator was assigned the previously-calculated walking time and was constant for all
the network attributes. This resulting network was copied to a new feature dataset and
the network was built without the Rapid Ride routes for the baseline comparison to the
current network with all of the routes included. The complete network is in Appendix L.
The address points for the City of Albuquerque were not explicitly part of the
network, but were used to run the analysis. The address points in the study were visually
selected to encompass the Westside, specifically west of the Rio Grande. To choose only
the residential address points, a spatial join to the land-use polygon shapefile was
required. But, the land-use shapefile required the selection of residential land uses, which
necessitated a table join with the land use code table to identify the residential types.
This appends to the land-use shapefile the land-use codes, in a many-to-one cardinality.

This table was created by selecting only the residential descriptions text
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(http://www.cabq.gov/gisshapes/ABQlanduse.pdf) and creating a table from it. This
table was joined to the land use shapefile and only matching records were kept. This
produced the residential land use polygon layer, which was then joined to the address
points, resulting in the residential address points on the Westside of Albuquerque,
approximately 65,000 points. These are in Appendix M, with relation to the network.

The other point data required is the downtown point, which was digitized on-
screen, to the Alvarado Transportation Center (ATC) at Central Avenue and First Street
SW, where the buses that travel downtown begin or end their routes. Two of the routes,
Atrisco/Rio Bravo, and Coors Boulevard do not leave the Westside and therefore don’t
end Downtown. The Rapid Ride Blue Line runs through Downtown, but the closest stop
to the ATC is at Fourth Street and Lomas, some blocks to the north and west. For this
analysis, it was considered that Downtown as an area was the destination, so the boarding
and exit lines for the Blue Line originated from the ATC.

Finally, census data, in the form of block groups was necessary to obtain the
spatial distributions and measures of traditional transit dependent users. These indicators
are age (under 18 or over 65), vehicle-less, and low income. The proportions of these
groups were calculated, relative to the population in the block groups as a whole. Equal
weighting was given to each variable proportion to produce a transit-users index, detailed
more in the Results chapter. The high proportion areas of the variables are clustered on
the south side of the study area, as opposed to northern portion, which has a low
proportion of the variables. This identifies the areas of high transit demand from which

addresses will be chosen to compare to the areas of lower transit demand.
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The final analysis, the statistical comparison of travel time savings for the socio-
economic indicators, necessitates splitting the census blocks into two groups: those with a
significant savings and those without. First, this requires weighting the address points, to
account for the number of people living at each address point. This information comes
from the landuse data that was previously joined to points and adding a new field to the
address points. This weight field is populated by assigning a number based on the
description of the housing type. For example, a single-family house was given a weight
of 1, the same as a townhouse or a mobile home. Apartments were given the middle
number of the range of units. Apartments listed as 5-9 units would result in a weight of
7. Once weights were assigned, the points then needed to be related to the census block
groups to make the comparison of individual travel times to socio-economic variables.
This is done by spatially joining the points to the block groups resulting in a point
shapefile with the census block group identifier appended to each point. The average
weighted time for each block group was then determined, as it was very similar to the
median time, as discussed in the Results section.

The output will allow for the comparison of times before and after the addition of
the Rapid Ride Routes, and specifically, when address points are mapped onto the census
block group classifications, to visually compare the change in travel time to these
destinations between the most transit dependent block groups and the less transit
dependent groups, while allowing for the increased influence of multiple unit address
points. This will achieve the goal of mapping the change in accessibility in the City of

Albuquerque, before and after the Rapid Ride Routes that the transit system provides.
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Also, this allows for the quantification of the change in temporal accessibility to the

transit dependent areas of the Westside, which is my second objective.
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Chapter Four: Results

The results of the scenarios run show a distinct contrast between the beneficiaries
of the travel time savings realized with the implementation of the Rapid Ride lines. The
four scenarios run to elicit these differences were to Downtown from the address points
for the A.M. peak time, from Downtown to the address points for the P.M. peak, and both
directions for the off-peak time period. These scenarios were chosen to represent a
morning commute into the downtown area, an afternoon commute out of the Downtown
area, and traveling in either direction outside of these times. The analysis of the
scenarios is broken down into visual analysis, correlations as shown with tables and

figures, and then with non-parametric comparisons.

4.1. Visual Analysis

Symbolizing the individual address points by travel time savings allows
individual household level differences to be visualized for each of the scenarios. This
method approximates isochrones maps, which contributes to the overall goal of this
paper: to map the effect of the Rapid Ride on the change in temporal accessibility that it
provides. In Figure 4.1, the time savings with the implementation of the Rapid Ride
routes is negligible, less than five minutes, for the majority of the address points for the
A.M. commute into Downtown. Compared to Figure 4.2, the time savings, to Downtown
from the address points for the off-peak period, is about the same in the southern portion,
but in the northern portion more points appear to have a greater time savings (the upper
limit is 4 minutes higher). This indicates that there is an additional time savings realized

for some address points during the off-peak time period when compared to the A.M. peak
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period. This highlights the variability of the time-savings benefits of the Rapid Ride
additions, and demonstrates the non-constant time benefits of these additions. That is,
there is a greater time savings for some points during the off-peak time period than the
A.M. peak, which may be the result of congestion that mediates this time savings during

the A.M. peak.
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Figure 4.1. Travel time savings after the Rapid Ride additions, to Downtown from
address points for the A.M. peak time period
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Figure 4.2. Travel time savings after the Rapid Ride additions, to Downtown from
address points for the off-peak time period
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The comparison between the travel-time savings from Downtown to the address
points for the P.M. peak and off-peak time periods are seen in Figures 4.3 and 4.4,
respectively. These appear to have a smaller variance between the distribution of time
savings than the toward downtown scenarios, as they look almost the same and the range
of values is the same. There does appear to be an overall greater time saving in this
direction, for both time periods, than the toward Downtown scenarios, indicating a
possible directional effect on the range and amount of time savings with the Rapid Rides.
This may be due to the commuting patterns of increased congestion heading into the
downtown area, whereas it is faster leaving the area.

The visual comparisons of individual address points between different time
scenarios highlight the differing time savings actualized and allows for a fine level of
analysis for differing time period and direction scenarios. For example, the effect of stop
placement is apparent at this level of analysis, whereas once the points are aggregated
into block groups, this detail is lost. In all of the time scenarios, hot spots of time savings
are apparent around most of the Blue Line stops. This is due to the much more infrequent
bus that parallels the Blue Line, as compared to the more frequent bus that parallels the
Red Line and shows the smaller significance of the placement of the Red Line stops. The
aggregation of these points is necessary though, to explore the relations between the time
savings due to the Rapid Ride, and the socio-economic variables, which are only

available at the block group level.
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Figure 4.3. Travel time savings after the Rapid Ride additions, from Downtown to
address points, for the P.M. peak time period
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Figure 4.4. Travel time savings after the Rapid Ride additions, from Downtown to
address points, for the off-peak time period
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Closer analysis of the address point patterns reveals the strength of this data
model. In Figure 4.5, an example of one of the address point time savings, around the
Montano Plaza Blue Line stop to Downtown from the address points, shows the
usefulness of using the walking network. The time saving from the addition of the Blue
Line to the area, specifically its stop, is not constant for address points in an equal radius
from the stop. The time savings vary, as demonstrated by the 500 meter buffer,
depending on the walking network grid and the accessibility it provides. Not all points
within the buffer see the same time savings, and this is particularly true for the limited
access of the neighborhoods to Coors Blvd. The addresses closer to the access road see a
greater savings, even though they may have a farther straight-line distance than other
addresses. This example underscores the usefulness of the street network as the basis for
walking accessibility to bus stops.

Also, in Figure 4.5, two address points near Montano Rd and Coors Blvd are
labeled and are examples for the necessity of weighting the address points when looking
at the average time for the block groups. Both of these points were given a weight of 50,
since they represent at least 50 units, and need to reflect this when combined with points

that represent single-family homes.
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Figure 4.5. Detail of address points time savings after the Rapid Ride additions, near the
Montano Plaza Blue Line stop, with 500 meter buffer for comparison of non-constant
savings with distance
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4.2. Correlations

After the visual analysis of the travel time savings in general, a more detailed
analysis is now pursued to look for a relationship between the travel time savings
highlighted in the previous section and the distribution of the transit user populations.
The correlations are first demonstrated with tables to highlight the significance and
strength of the relationships between travel time savings and the chosen socio-economic
indicators. Next, a visual comparison between the block groups’ average weighted time
savings and the transit index is assessed. These correlations are between the average
weighted time savings by block group with the proportion in poverty, the combined age
proportion of those over 65 and under 18, the proportion without a car, and the combined
index of these three, the transit index.

The results of the correlations are in Tables 4.1-4.4, from the statistical software
Minitab, which detail the strength of the correlations and the associated Pearson’s p-value
for each. These correlations are based on the assumption of a linear relationship between
these variables. The questionable normality assumption of the distribution of these
variables leads to the use of a Spearman’s Rank correlation (Appendix N), but the
coefficients are very similar. These show negative correlations between all of the
variables and the average weighted time savings, for all of the scenarios. This means that
the greater the time saved, the smaller the proportion indicator is for the block group. All
of these correlations are statistically significant, with p-values of 0.000. The similar
strengths for each indicator across the four scenarios indicate the small variations in time

savings, which is apparent when looking at the proceeding figures which visually show
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these differences. The strongest negatively correlated variable is the transit index, which

is to be expected, as it is merely an equally weighted average of the other three variables.

The proportion of households in poverty is the next strongest indicator. Any of

these indicators could be used alone for correlations, or in combination, as the transit user

index is, since they are spatially auto-correlated.

Poverty Combined Age No Car Transit Index
Proportion Proportion Proportion Proportion
Average Time -0.681 -0.550 -0.439 -0.710
P-value 0.000 0.000 0.000 0.000

Table 4.1. Correlations of average weighted travel time savings from Downtown to
address points during the off-peak time period with socioeconomic variables, with

Pearson’s p-values

Poverty Combined Age No Car Transit Index
Proportion Proportion Proportion Proportion
Average Time -0.685 -0.547 -0.436 -0.710
P-value 0.000 0.000 0.000 0.000

Table 4.2. Correlations of average weighted travel time savings from Downtown to
address points during the P.M. peak time period with socioeconomic variables, with

Pearson’s p-values
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Poverty Combined Age No Car Transit Index
Proportion Proportion Proportion Proportion
Average Time -0.678 -0.547 -0.430 -0.704
P-value 0.000 0.000 0.000 0.000

Table 4.3. Correlations of average weighted travel time savings to Downtown from
address points during the A.M. peak time period with socioeconomic variables, with

Pearson’s p-values

Poverty Combined Age No Car Transit Index
Proportion Proportion Proportion Proportion
Average Time -0.674 -0.551 -0.419 -0.700
P-value 0.000 0.000 0.000 0.000

Table 4.4. Correlations of average weighted travel time savings to Downtown from
address points during the off-peak time period with socioeconomic variables, with

Pearson’s p-values

The visualization of the correlations between the average weighted travel times

for the block groups and the transit index follow in Figures 4.6-4.9. In general, the higher

transit index scores are in the southern half of the study area, south of Interstate 40, but

within the service area of the Red Line. Also, the greatest time savings across the study

area is seen in the northern portion, north of Interstate 40, in the Blue Line’s service area,

with some variations in the amount of time savings between different time periods.

In Figure 4.6, weighted average travel time savings from the address points to

Downtown to for the A.M. peak shows a few more block groups in the southern portion

with travel time savings than Figure 4.7, which is for the off-peak time period. This is

still insignificant, less than five minutes, and the general trend of higher time savings in

the north is consistent with the visual comparison of the address points already seen.
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Again, the greater travel time savings of some block groups in the off-peak time period
over the A.M. peak period is evident, consistent with the address point maps previously

discussed.

51



oy o

Blue Line &  Blue Line Stops

7 KM
Red Line @ Red Line Stops L I A

Transit Users Index
] 0.41:-021
O 10.22-0206
0.27-0.33
0.34- 042

Difference {minute_s)

Figure 4.6. Visual comparison of Transit Index with average weighted time savings by

block group for the A.M. peak time period to Downtown
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Figure 4.7. Visual comparison of Transit Index with average weighted time savings by
block group for the off-peak time period to Downtown
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In Figure 4.8, the weighted average travel time savings to the address points from
downtown for the P.M. peak period shows some block groups with a savings differing
from the off-peak period (Figure 4.9). The same dichotomy between time savings is
apparent between north and south, but there is a greater number of block groups seeing a
time savings between 1-5 minutes in each of these scenarios than the toward Downtown
scenarios, but this still is insignificant to the overall distributions of time savings
amounts.

These visual comparisons, of the aggregated time savings of the address points by
census block groups and transit users index builds on the visualization of just the address
points’ time saving previously presented and the correlation tables. The time savings
between block groups that experience a time savings and those that do not can be

justified by more than just a visual comparison and is achieved through a statistical test.
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Figure 4.8. Visual comparison of Transit Index with average weighted time savings by

block group for the P.M. peak time period from Downtown
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Figure 4.9. Visual comparison of Transit Index with average weighted time savings by
block group for the off-peak time period from Downtown
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4.2. Non-parametric Comparisons

The socioeconomic indicators were determined to be non-normal (see Appendices
O-R), which were the normality results of the census data indicators for the block groups
in the study area, used in all scenarios. These graphs, also produced in Minitab, show the
results of Anderson-Darling normality tests, and all of the p-values are less than 0.005,
leading to a rejection of the null hypothesis of normality. This test uses an empirical
cumulative distribution function of the data to an expected normal distribution. These
results required a non-parametric comparison to be used for evaluation of differences in
socioeconomic proportions between block groups. The Kruskal-Wallis test, which
compares the medians between two groups, was selected for the comparison of the
indicators between groups without a significant time savings and those with one. The
null hypothesis for this test is that the medians are statistically indistinguishable; whereas
the alternative hypothesis is that they are statistically different.

The 5-minute time savings threshold was used determine the two groups of block
groups to compare those without a significant travel time savings and those with a
savings. The average weighted time savings for the block groups was compared to the
median weighted time savings, as the time savings were not normally distributed either.
Figure 4.10 shows a comparison between the block groups symbolized by the 5-minute
threshold for the average weighted time and the median weighted time savings from the
address points to Downtown, for the off-peak time period. Apparent is the same
classification for the block groups into significant time savings and insignificant savings,
whether average or median time savings is used, despite the non-normality of the

distribution of times. For an example of the non-normal distribution see Appendix S,
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which shows the rejection of the normality assumption for the Anderson-Darling test, for
the from Downtown to address points for the off-peak time period. This is a
representative distribution of the other scenarios, since the time savings were not
drastically different. The analysis proceeded using the average weighted travel times to

classify the block groups into significant or insignificant travel time categories.
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Figure 4.10. Comparison of average weighted time savings by block group to the median
time, for categorization into groups with time savings and without for statistical
comparison of census variables
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The delineation between census block groups with a significant time savings
created the same groupings for three of the scenarios. These scenarios were from
downtown to address points for the P.M. peak and the off-peak time, and to Downtown
for the A.M. peak period, which all resulted in the same block groups as the ones
classified in Figure 4.10. This resulted in the same block groups to compare the
socioeconomic variables, with 41 blocks seeing a time benefit and 51 not seeing a time
benefit for these three scenarios. One scenario, to Downtown from the address points for
the off-peak time, did have an additional block group classified as not seeing a time

benefit (Figure 4.11).
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Figure 4.11. Additional block group classified in the insignificant savings category, for
statistical comparison of census variables
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The null hypothesis of the Kruskal-Wallis is that the medians of the indicators are
equal between the block groups with time savings and those without. The p-value for all
of these tests, carried out in Minitab, are in Tables 4.5-4.8, and leads to the rejection of
this hypothesis at any alpha level. That is, the medians are not equal in any of the
comparisons for the three time periods which had the same block groups categorized.
Therefore, there is a significant difference between the median of the socio-economic
indicators for the block groups that have a time savings greater than 5 minutes and those
with less. Furthermore, the Z scores indicate that the medians for all of the tests for the
groups experiencing a time benefit were less than the medians of the groups not
experiencing a benefit. That is, the block groups experiencing the time savings benefit of
greater than 5 minutes did not have as high as a socio-economic need as those that did not
realize a benefit from the Rapid Ride lines. Also, similar to the correlation performed
previously, the transit index has the largest Z score of the tests, indicating the strongest

relationship, though the proportion in poverty is a very strong indicator as well.
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Time Benefit N Median Z score P-value

Yes 41 01216 -4.16 .000

No 51 .04396 4.16

Table 4.5. Kruskal-Wallis test for difference of medians of the proportion of no car
households

Time Benefit N Median Z score P-value

Yes 41 3714 -6.53 .000

No 51 4300 6.53

Table 4.6. Kruskal-Wallis test for difference of medians of the proportion of combined

age
Time Benefit N Median Z score P-value
Yes 41 .05378 -7.15 .000
No 51 .18830 7.15

Table 4.7. Kruskal-Wallis test for difference of medians of the proportion of poverty

Time Benefit N Median Z score P-value
Yes 41 .2010 -7.45 .000
No 51 3273 7.45

Table 4.8. Kruskal-Wallis test for difference of medians of the transit index
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For the scenario to Downtown during the off-peak period, which had an
additional block group categorized as not having a time benefit, these same comparisons
were run and are recorded in tables 4.9-4.12. These are very similar to the other times’

comparisons, and the interpretation is the same.

Time Benefit N Median Z score P-value

Yes 40 .01248 -4.03 .000

No 52 .04874 4.03

Table 4.9. Kruskal-Wallis test for difference of medians of the proportion of no car
households

Time Benefit N Median Z score P-value

Yes 40 3747 -6.25 .000

No 52 4297 6.25

Table 4.10. Kruskal-Wallis test for difference of medians of the proportion of combined

age
Time Benefit N Median Z score P-value
Yes 40 .05485 -6.85 .000
No 52 18574 6.85

Table 4.11. Kruskal-Wallis test for difference of medians of the proportion of poverty

Time Benefit N Median Z score P-value
Yes 40 2088 -7.12 .000
No 52 3270 7.12

Table 4.12. Kruskal-Wallis test for difference of medians of the transit index
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4.4, Limitations

The limitations of this study are the necessary simplifications and assumptions all
research must make. Only all day bus routes on the Westside of Albuquerque were
considered along with the Rapid Ride routes. There are express and commuter buses
within the study area, which run during the peak travel times. These would have possibly
increased the accessibility during these times. Also, only weekday bus schedules were
considered, but weekends would provide an additional case that could have interesting
results as all of the buses are more infrequent. Validation of the assumption that the bus
schedules analyzed for compilation of average waiting times and average travel times for
the three time periods are reasonably accurate would require field validation- a massive
undertaking. It is assumed that ABQ Ride has these schedules based on real world
conditions, with them reflecting increased travel time during the peak periods, for
example. Additionally, average wait times for the buses were used for the three time
periods, as well as average travel times for these same periods. This simplification still
required a lot of effort to calculate, but the decision to use three time period categories
could be seen as arbitrary durations to average time over. The census data used is almost
10 years old, but the most current available, and did necessitate the aggregation of the
time savings address points, as socioeconomic data is not available at a finer scale.

While the use of address points increases the accuracy of the measure of
accessibility of individual buildings, problems arise when large complexes are
represented by a point. For example, in Figure 4.5 the two large apartments, representing
over 100 units are just two dots, which may have an effect on their accessibility if they

have different spatial relationships with the street network. The address points are
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snapped to the closest street and the analysis is run from there. The points might not
represent the apartment’s relationship to the closest street and could skew the results.
This is also possible with any of the residential points- it is assumed the closest street to
the point is the only possible route to the bus stop. This of course depends on the
accuracy of the street network and obviously does not include informal passages. The
street network is a more accurate representation of accessibility than radial distances from
bus stops, but it still assumes that pedestrians do not cut through empty lots and otherwise
not travel on the sidewalks.

The assumption of walking to the bus stop ignores bicycling, being dropped off,
or using the park and ride facilities that exist for the Rapid Ride termini and used a
constant walking speed of 3 kilometers per hour. The simplification of downtown as a
destination was necessary and provides a representative destination as to the effects of the
Rapid Ride on travel time. Whether transit users actually work downtown isn’t terribly
relevant, as there are transfers to other city buses, intercity buses and rail, or continuing
on the Rapid Rides to destinations farther east. In any case, the time savings calculated

here would still be realized with the addition of the Rapid Rides.
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Chapter Five: Conclusions

The implementation of new bus routes in an automobile-oriented city should
benefit those that depend on their services the most (Sanchez, et al. 2003). The
construction of a detailed household-level temporal accessibility model to assess changes
caused by new routes can highlight the travel time savings with consideration of bus
frequencies and travel time for specific travel periods, walking time on the street
network, and the use of address points as origins. The current methods and level of
simplification of public transportation accessibility studies are not detailed enough to
capture travel time at the household level and at varying times of day. The goal of this
paper was to map the effect that recent changes to the public transit system have had on
the accessibility that the system provides in Albuquerque, NM and to quantify this
change in accessibility of the city to traditional transit users, the vehicle-less, low income,
and elderly and young people.

The mapping of the effect of the addition of the Rapid Ride routes to travel time
between address points in the study area and downtown showed a marked variation in
savings for individual addresses. The address point maps symbolized by travel time
savings displayed a level of detail not possible through the generalization of addresses
into census block groups. The use of address points, along with detailed bus routes and
stops, allows the specific effects of stops on time savings to be visualized, as noticed
around Rapid Ride Blue Line Stops in the northern part of the study area. However, the
intentional generalization of these points allows the approximation of travel time savings

intervals to be visualized. These are useful since the travel time savings of destinations
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within the given areas can be estimated, even though an analysis was not run for that
particular location.

The first objective was to model the temporal accessibility that the transit system
provides to the city, to account for the A.M., P.M., and off-peak variability, in frequency
and travel time, and spatial accessibility to the system through walking on the street
network. This model did highlight some variations between the travel times for a
particular direction. For example, some residences saw a greater off-peak travel time
savings with the Rapid Ride to Downtown than during the A.M. peak time period. Also,
the difference between route directions was noticed as well, with time savings for the
commute out of Downtown to address points was higher for some points than commuting
into Downtown, regardless of time period.

The assumption that the time saving would be equal across varying time periods
would miss this detail. The reason to include the variations in both the frequency of
buses and the travel time of buses during the three time periods proves useful and
insightful to the analysis of transit users who work or travel outside of the traditional
business hours of the day, represented here as the A.M. and P.M. peak scenarios. The
additional time saving may not seem like much, possibly an extra 5 minutes saved, but
the simplification of temporal accessibility into one time period would miss additional
benefits that might be valuable and unexpected- such as increased accessibility during
off-peak hours. My hypothesis, that there is a variation, appears correct, though I did not
statistically test the significance of the difference between travel time savings between

the three time periods and two directions.
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The use of the street network for walking to and from the destinations and origins
increased the accuracy of the model and underscored the merits of this method. For
example, few addresses in the southern portion of the study area were close enough to the
Rapid Ride stops to walk the additional distance to utilize the service. Hence, there was
no observed time savings for these address points. Instead, these address points took the
local bus, Route 66, with numerous stops and a slower travel time. This goes against
reason, but the time saved by not walking to the farther apart spaced Rapid Ride Red
Line stops allowed them to realize the shortest time to the destination, by taking the same
bus as before, despite the addition of the Rapid Ride. In reality, residents at such
addresses would probably walk the additional distance to the Rapid Ride Red Line stops,
as these coincide with the Route 66 bus stops. This would be more feasible, because the
waiting time at these locations would be the average of both of the two bus lines,
considerably shorter than either alone, which this model did not take into consideration.

The second objective was to quantify the change in accessibility of traditional
transit users caused by the additional routes, using accessibility to downtown as the
representative destination to measure the change in time. This time savings with the
addition of the Rapid Ride routes, between the groups of transit users and the rest of the
study area, was discovered to be very significant. Despite the Red Line running through
the southern area, no significant travel time was observed by visual inspection of the
address points, for all time and direction scenarios. First, the general correlations of
block groups between the average weighted time savings and the socio-economic
indicators resulted in reasonably strong, negative correlations. These were significant at

any reasonable alpha-level, with p-values of 0 to three decimal places for all of the time
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and direction scenarios. This means that the higher the average time savings actualized
by the Rapid Ride routes, the smaller the proportion of transit users in those block
groups. The implications of this result are that there was indeed a social impact to the
routing of the Rapid Ride routes. Whether this resulting injustice caused by the current
alignment was intentional or not is unknown, but a great disparity exists in the transit
users residences and those who benefited the most.

In general, a less than 5 minute savings for most of the transit users block groups
was observed, and several saw no time savings at all, depending on time period and
direction. The off-peak time period to downtown from address points saw the greatest
number of block groups with an average weighted time savings of 0. The visual
comparison between the average weighted time savings by block group and the transit
users index provided visual confirmation of the correlations provided in the tables. It
also allows the magnitude of weighted time savings by block group to be visualized. The
large difference between less than a 5 minute time savings and a 20 or 30 minute time
savings was easily observed across all of the time and direction scenarios.

To further analyze this relationship, a formal statistical comparison was used.
Since the data were not normally distributed, a non-parametric test was used, the
Kruskal-Wallis test. This required the classification of block groups into those that saw a
significant time savings and those that did not. The distinction of less than 5 minutes and
more than 5 minutes was used for the groupings and allowed the transit users proportions
between block groups to be formally tested for differences. Three of the scenarios
classified the groupings of block groups as the same, with the to downtown, off-peak

time classifying an additional block group in the no significant time savings category.
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The Kruskal-Wallis test, which assumed the median values between the two groups were
equal, resulted in the rejection of this hypothesis for all of the time and direction
scenarios, even for the to downtown, off-peak scenario.

The strongest indicator for the relationship between travel time savings and socio-
economic variables was the transit index, though all variables were significant in all
comparisons. This index was an equally weighted average of the proportions in poverty,
those without a car, and over 65 and under 18 in the block groups. Though, this index
does not necessarily need to be created, as all of these variables are correlated and
spatially auto-correlated, but the proportion in poverty provides as nearly as strong
relationships as a combined index, if only one variable is sought for simplicity.

Future research could take into consideration random sampling within the study
area to determine proportion of actual ridership within block groups to provide additional
weighting, rather than relying on socio-economic proxies, more accurate
destinations/origins, and determination of the most frequent hours that transit is used.
Such additional information could further be used to increase the efficacy of new bus
route additions, both for routing lines and stop placement, but also frequencies that would
be the most beneficial for populations that depend most on its services. Also, a more
complete model of the bus system could be constructed to assess transportation options
more accurately. Not only can this model be used to analyze various scenarios in an
existing public transportation network, but it can be utilized for detailed decisions about
future route alignments and stop placement. Travel time to and from individual weighted
residential addresses to various destinations can be analyzed and mapped, with calculated

times able to be compared and maximized for the largest benefit to the greatest number of
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people. Whether this is based on density alone, or a weighted density, where address
points within transit user’s block groups are given more consideration is one possibility.

With the successful construction and implementation of this model, social justice
issues can be analyzed at a finer level of detail than previously possible. The evaluation
of the transportation improvements, due to the Rapid Ride implementations, are defined
by this research in terms of accessibility, a correction to transportation modeling which
reflects equity considerations (Litman 2007). The findings of a disparity in the spatial-
temporal accessibility benefits, due to the current Rapid Ride route alignments, suggest
an inequitable distribution of benefits of these routes, namely a decrease in travel time.
The lack of a noticeable decrease in travel time for transit users in the southern area of
the Westside is a barrier for the transition out of poverty and may significantly and
adversely affect employment opportunities for people with low earnings capability (US
GAO 1998). Considering that the suggested alignment of the Rapid Ride Blues Line was
not followed, where it was to traverse the length of Coors Blvd, the current alignment
appears to favor choice commuters into Downtown and the UNM area farther east (City
of Albuquerque 2003).

The conclusion of the Mid Region Council of Government (2004) that there are
no social inequalities in the distribution of the public transportation system can be
challenged with these results. It is apparent that the method of assessing accessibility has
a considerable influence upon the conclusions about equity that are reached. The
households that benefit with the greatest time savings from the new route alignments, in
the northern portion of the study area, are not where the greatest proportion of transit

users are located, in the southern portion of the study area. This is visually apparent,
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from the address point maps and block groups, as well as statistically confirmed through

correlations and formal tests.
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61ta 63ga B5Ta 131p  159p 2117p 126p 145p 218p
z 622a  6h0a 708a 142p 210p 223p 140p 156p 229p z
: 633 T07a Ti%a 153p 221p 239p 151p 207p 240p :
6443 712a 7i0a 204p 232p 250p W2p 218p 251p
o 6553 723a 741a 215p 243p 301p 3p 220p 302p o
Tota 7Ma 752 220p 2%4p Nap 2Mp 0p I
o 7173 7452 B03a 237p 30%p 323p 238p 257p 3Mp o
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w T50a 818a BIGa 310p 338p  356p 08p 3Ip ISP (7, ]
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856n 024a O42a 416p 444p S02p g5ta 910a 943a #14p 430p 503p
g07a 8352 853a 427p As5p 513p 905a 921ta 954a 425p 4dip Sidp
91%a 0462  1004a 438p S506p 5X4p 916a 9322 1005 436p 452p 535p
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1203p 1231p 1249p 723p 751p 809p 1201p 1217p 1250p 721p 7aTp Ei0p
1214p 124%p 100p 734p 802p B20p 1212p 1228p 101p TMp 750p 823p
1225p 1253 1i1p T4%p 813p 8lp 1223p 1239p 112p T43p 758p 832p
1236p 104p 122p 750p 824p BAZp 12Hp 1250p 123p 54p 810p 843p
1247p 115p 133p A 1245p 107p 13p 5
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Appendix H

ALL RAPIDRIDE ELISEE ARE
WHEELCHAIRACCESSIELE
|
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Appendix |

i II —
Netwark Dataset Properiies
Gereral | Sources  Connectivy | Elevation | Tums | Attabutes | Dinsciions |
(=t ety B
Source I:Eﬂnnm:tivity Palicy i I-i ?_,i 3-i 4i e
Inbound_51 End Paimt O o= olE
Inbound_51_Bearding_Li.. End Paint AlRIRAE
Inbound 51 Euit Lines  End Paint 08 = 0
Inbound 53 End Paint 080 =
Inkound_53_Boarding Lu. End Paint 5 g
Inbound_53_Exit_Lines End Paint Y
Inbound 54 End Paint =0 ET ERE
Inbound 54 Boarding Li,, End Point ST =]
Inbound 54 Exit Lines End Point EIEEE
T b [ I = Il =l = il =
4] 11 | ' b
|_-;||_.|,||_| Ll I |5 j || ||._,| i |
0K l Canicel | Sl |

Sample of the Network Dataset Properties, Connectivity Goups
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Appendix J

MNetwork Dataset Properties |0

Genersl | Sources | Cannectiviy | Bevatien | Tums  Afibutes | Drections |
Specify the stinbutes farthe network datasst: i |

! |®] Name | Usage | Units | DataTw.. |
& Meters Cost Meters Double
& Oneway Restricti,,  Unknewn Boolean
Propartion Cost Unknewn Double
Time & Cost Minutes  Double
Time_ 0 Cost Minutes  Double
Time_P Cost Minutes  Double

[ ok | caest | |||

Network Dataset Properties, Attributes: Time A.M. peak, off-peak, and P.M. peak
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Appendix K

Evaluators M
Airbute: b
Agdribite Vahies:
Source Values | Defaut Valles |

_,!J_ﬁ.omce I Olrection Element Type I Value I -
Inbound_51 From-Toe Edge Field <Expression= |E] Ll
Inbound_51 To-From Edge Field <Expressions L=
Inbound 51 Boardin.. From-To Edge Field Time_ A e
Inbound 51 Boardin.. Teo-From Edge Field Time_ A
Inbound_51_Bat Lines From-Tao Edge Field Time_ A
Inbound_51_BExt Lines  To-From Edge Field Time A
Inbound_53 From-Toe Edge Field <Expressions=
Inbound_53 To-From Edge Field <Expressions
Inbound_53_Boardin.. From-To Edge Field Time_ A
Inbound_53_Boardin.. Te-From Edge Field Time_ A
Inbound_53_Bat Lines From-Tao Edge Field Time_ A
Inbound_53_Bxt Lines  To-From Edge Field Time A
Inbound_54 From-Toe Edge Field <Expressions=
Inbound_54 To-From Edge Field <Expressions
Inbound_54 Boardin... From-Tao Edge Field Time A -

| oK I Cancal | FfIy |

2“

Example of the evaluators for the A.M. peak time period, including bus routes, boarding
lines and exit lines
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Appendix L
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Completed network, which includes the walking network and the select bus routes and
associated elements, with the nodes connecting the two networks also displayed
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Appendix M

Rasidential Address Points
= Network Junctions

Metwork Edges

Residential address points in relation to the complete network
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Appendix N

Rank No Car | Rank Combined | Rank Poverty Rank Transit

Age Index

AM. to -0.449 -0.597 -0.727 -0.726

Downtown

P.M. from -0.447 -0.536 -0.711 -0.706

Downtown

Off-peak to -0.417 -0.609 -0.732 -0.729

Downtown

Off-peak from -0.429 -0.525 -0.701 -0.694

Downtown

Spearman’s Rank correlations p values
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Appendix O

Percent
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Probability Plot of No Car Proportion
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99

95
90+

80
70
60
501
40_
30
20

0.1

Mean
StDev
N

AD
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0.03869
92
2.905
<0.005
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T T
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Appendix P

Percent

99.9

Probability Plot of Combined Age Proportion
Normal

99

95
90+

80
70
60
501
40_
30
20

T T
0.2 0.3 0.4 0.5 0.6
Combined_A

Mean 0.4021
StDev 0.05548
N 92
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P-Value  <0.005
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Appendix Q

Percent

99.9

Probability Plot of Poverty Proportion
Normal
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95
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501
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20

T T
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0.5

Mean 0.1394
StDev 0.09602
N 92
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P-Value  <0.005
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Appendix R

Percent

99.9

Probability Plot of Transit Index
Normal

99

95
90+

80
70
60
501
40_
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20

Mean
StDev
N

AD
P-Value

0.2831
0.08397
92
1.243
<0.005

T
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Trans_Inde
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Appendix S

Percent

Probability Plot of Difference

Normal
99.9999

Mean 17.17
99,99 StDev 15.72
N 65105
AD 5684.620
99 1 P-Value <0.005
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