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ABSTRACT 
 

The model, “Remote Sensing Communication Model” (RSCM), which permits 

the estimation of the timeliness of remote sensing systems (RSS) is tested (Lippitt, Stow, 

& Clarke, 2014). This model conceptualizes RSS as having capacities that determine the 

timeliness of the systems, where a system is comprised of three segments, each with a 

capacity that determines the timeliness of that segment: acquisition capacity, transmission 

capacity, and receiver capacity (i.e., the capacity of a human and/or machine analyst to 

produce information) (Lippitt et al., 2014).  Acquisition and transmission capacity 

analyses are run to aid in the optimization of a flexible time-sensitive remote sensing 

system being designed for emergency response in Bernalillo County, NM. Modeled 

timeliness is validated using empirical tests of airborne acquisitions, the model modified 

to improve fit, and then used for a variety of manned and unmanned platform and sensor 

combinations to infer the timeliness of data delivery to emergency managers, based on 

both currently available and potential airborne assets. In doing so, this research assesses 

the accuracy of capacity based estimates of timeliness for airborne RSSs and demonstrate 

a method for the optimization of platform, sensor, and transmission configurations for 

emergency response. 
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1. INTRODUCTION 
 

Remote sensing is a critical hazard response technology and the timeliness of its 

information is critical for its effective use in hazard response (Bruzewicz, 2003; Cutter, 

2003). Timeliness is defined by Lippitt as “the time between information request and the 

use of that information to inform a decision” (C. D. Lippitt, Stow, & Clarke, 2014). 

While we can predict the timeliness of image acquisitions from static systems with 

known temporal resolutions, such as satellites, it is far more difficult to predict the 

timeliness of acquisitions from aircraft and unmanned aerial systems. Predicting the 

timeliness of remote sensing systems prior to operational deployment is a requirement for 

time-sensitive remote sensing (Lippitt et al. 2014). When compared to satellites, aircraft 

acquisitions have additional factors affecting timeliness that makes it challenging to 

incorporate them into the standard operating procedures of emergency management 

organizations (C. Lippitt, Stow, & Coulter, 2015). The number of aircraft, their locations 

relative to areas at high risk for disasters, the types of aircraft, and the imaging sensors 

they operate, all affect the timeliness of data acquisition and delivery. As the literature 

review elucidates, accurately estimated timeliness of data delivery from airborne remote 

sensing systems is not currently incorporated into emergency managers’ standard 

operating procedures, and this has resulted in limited use of remote sensing in response 

and recovery efforts (C. D. Lippitt et al., 2014).  

This research tests a model called “Remote Sensing Communication Model” 

(RSCM), which permits the estimation of the timeliness of remote sensing systems (RSS) 

(Lippitt, Stow, & Clarke, 2014), for the estimation of timeliness for airborne RSSs. The 
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RSCM conceptualizes RSSs as having capacities that determine the timeliness of the 

systems, where a system is conceptualized as having three segments (sensor, channels, 

and receivers), each with a capacity that determines the timeliness of that segment based 

on the data volume to be acquired: acquisition capacity, transmission capacity, and 

receiver capacity (i.e., the capacity of a human and/or machine analyst to produce 

information) (Lippitt et al., 2014).  To validate portions of the RSCM and to aid in the 

optimization of a flexible time-sensitive remote system being designed for emergency 

response in Bernalillo County, NM and San Diego County, CA this research performs 

and validates an acquisition and transmission capacity analysis. Modeled timeliness is 

validated using empirical tests of actual airborne acquisitions, the model is modified to 

improve fit, and used with a variety of extant platform and sensor combinations, operated 

by local aerial survey companies, to infer the timeliness of data delivery to emergency 

managers for six potential critical infrastructure sites based upon both currently available 

and potential manned and unmanned airborne assets. This research therefore assesses the 

accuracy of capacity based estimates of timeliness for airborne RSSs and demonstrates a 

method for the on demand optimization of platform, sensor, and transmission 

configuration for emergency response. The questions, “How accurately can the timeliness 

of airborne data acquisition and delivery be estimated, using the Remote Sensing 

Communication Model Capacity Analysis?”, “Using RSCM Capacity Analysis, what is 

the estimated data delivery timeliness of extant aerial survey firms in support of a remote 

sensing system for hazard response in New Mexico and San Diego County, CA?”, and 

“How will the introduction of UAS affect data delivery timeliness?” are answered in this 

thesis. 
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2. BACKGROUND 
 

Before, during, and after a hazard event, there is an obvious desire to have and utilize 

best available information in an effort to prevent damage to property and loss of life. 

Emergency managers and disaster responders have previously used combinations of on 

the ground assessments, satellite imagery, and airborne imagery, to collect this 

information, with varying degrees of success (Cutter, 2003; Ehrlich, Guo, Molch, Ma, & 

Pesaresi, 2009).  

Disasters and hazards can be local, regional, and global in their effects on places and 

people. Often, there is little time to prepare for an impending disaster, and once such an 

event occurs, there is often a short window of hours-days available in which to rescue 

survivors and assess damaged critical infrastructure (Cutter, 2003; C. Lippitt et al., 2015). 

For these reasons, the types of technologies and information necessary for improving 

disaster prevention and response across spatial and temporal scales continues to be an 

active research area.  This review looks at how emergency managers utilize remotely 

sensed data, models for estimating the acquisition and delivery timeliness of imagery, and 

the potential benefits of small unmanned airborne systems (S-UAS) to image acquisition 

and delivery timeliness.  

2.1 The Disaster Management Framework and User Needs 

Determining the data needs of emergency managers and disaster responders first 

requires an understanding of the types of groups that provide disaster management, the 

frameworks in which they operate, and how they use various types of remotely sensed 

data. 
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Modern disaster management regimes exist at scales that range from neighborhood 

communities and local governments, up to national and global levels. These regimes also 

consist of formal and informal institutions (Cutter, 2003). Formal institutions are 

generally governmental agencies and well-established non-profit organizations, and 

informal institutions can be individuals, volunteer groups, impromptu aid and donation 

organizations and funds, the media, etc. Often, disaster management involves 

coordination between these agencies and networks to share financial, technological, and 

personnel resources, as well as information.  

Most formal disaster management institutions, which are the primary focus of this 

research, recognize and use a structured framework called the “Disaster Management 

Cycle” (Gitas, Polychronaki, Katagis, & Mallinis, 2008; Laben, 2002). This cycle, which 

is also referenced in the majority of literature reviewed in this thesis, consists of phases. 

The pre-disaster and inter-disaster phases are: Reconstruction, Mitigation, and 

Preparedness. The post-disaster phases are: Rescue, Relief, and Recovery. These six 

phases are often condensed as Mitigation, preparedness, response, and recovery (Laben, 

2002). It is helpful to think of disaster and hazard management in these phases as most 

remote sensing technologies have varying degrees of usefulness depending on the phase. 

The current trend shows that satellite and airborne remote sensing systems are being 

adopted heavily for Reconstruction, Mitigation, Preparedness and Recovery, but not in 

the Rescue and Relief phases (Cutter, 2003; Laben, 2002). The Reconstruction, 

Mitigation, Preparedness, and Recovery phases generally span longer time frames, which 

makes them more likely to be compatible with the slow acquisition, processing, 
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transmission, and publication times that are historically typical for remote sensing 

(Cutter, 2003; Joyce, Belliss, Samsonov, McNeill, & Glassey, 2009).  

There remains significant interest in the potential for using satellite, manned, and 

unmanned remotely sensed data for the Rescue and Relief phases, but acquisition and 

processing times make supplying information within the first 48 hours challenging and, 

therefore, remote sensing derived information for hazard response unreliable (Bruzewicz, 

2003). For these reasons, remote sensing derived information for Rescue and Relief still 

remains a largely supplementary, rather than primary, source of information. Ready 

estimation of data delivery timeliness could lead to increased use and usability of remote 

sensing in these two critical phases of the emergency management cycle (C. D. Lippitt et 

al., 2014). These gaps include a better understanding of the existing capacity of aerial 

survey firms to provide timely remote sensing data and an improved understanding of the 

accuracy of models used to estimate RSS information timeliness. 

2.2 Remote Sensing Technologies for Disaster Response 

The overall trend in disaster management has been an increase reliance upon remote 

sensing across the phases of the disaster management cycle (Colomina & Molina, 2014; 

Cutter, 2003; Laben, 2002; Metternicht, Hurni, & Gogu, 2005). Features depicted in 

imagery (e.g., structures, transportation infrastructure) taken before and after disaster 

events, are often classified based on degrees of damage from automated or manual 

change-detection (C. D. Lippitt & Stow, 2015).  

Satellite and aircraft-based imagery have been useful in the preparedness, recovery 

and reconstruction phases of several disaster types, including: earthquakes, tsunami, 

hurricanes, landslides, and floods (Cutter, 2003; Eguchi & Huyck, 2001; Ehrlich et al., 
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2009; Jeyaseelan, 2003; Joyce, Belliss, Samsonov, McNeill, & Glassey, 2009; Laben, 

2002; Metternicht et al., 2005).   

Specific applications of remote sensing to the hazard response phase include: 

evaluating the immediate aftermath of the Indian Ocean Tsunami 2010 via satellite 

imagery (Cutter, 2003; Laben, 2002; Laituri & Kodrich, 2008), a damage detection 

assessment using passive optical imagery and Synthetic Aperture Radar after the 

Marmara Earthquake of 1999 (Eguchi & Huyck, 2001), damage detection after the 

Wenchuan Earthquake of 2008 using high-resolution satellite imagery and Synthetic 

Aperture Radar (Ehrlich et al., 2009), the extent of fire damage and vegetation loss from 

the Peloponnese fires in 2007 using moderate-resolution satellite imagery (Gitas, 

Polychronaki, Katagis, & Mallinis, 2008), and the 2008 Super-Sauze Landslide using 

very high-resolution UAS-based imagery (Niethammer, James, Rothmund, Travelletti, & 

Joswig, 2012; Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012).  

The data acquired from aircraft and satellites for these various disasters typically 

exhibit spatial resolutions of 0.05m to 0.25m for aerial, and between 1m – 1km for 

satellites (Ehrlich, Guo, Molch, Ma, & Pesaresi, 2009; Joyce et al., 2009; Metternicht, 

Hurni, & Gogu, 2005). Aerial and satellite imagery provide synoptic sampling over large 

spatial extents, and therefore make it possible to detect damage to critical infrastructure 

over large extents. Unfortunately, imagery could potentially be unavailable for an area for 

a significant (>72 hours) period of time if the weather conditions make flying impossible, 

if the area is covered in clouds or smoke, and if the timeliness of the acquisitions are 

uncertain or not accounted for in standard operating procedures (Cutter, 2003; Ehrlich et 

al., 2009; C. Lippitt et al., 2015).  To minimize processing and analysis times and 
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improve trust in results, the disaster management community still primarily uses manual 

image interpretation and ground inspections of damaged areas for initial rescue and 

recovery operations (Joyce et al., 2009; C. Lippitt et al., 2015). Despite the trend of 

increased reliance on remote sensing data, delays in information delivery, a lack of 

reliability and certainty in the expected timeliness of the systems, and the lack of 

inclusion of the systems in standard operating procedures have made the systems less 

effective in the response and recovery phases of the DMC.  

2.2.1 S-UAS for Hazard Response 

Small Unmanned Aerial Systems (S-UAS) are currently being studied and in some 

cases used operationally for image acquisitions in order to address some of the problems 

related to timeliness of damage detection (Niethammer, James, Rothmund, Travelletti, & 

Joswig, 2012). Specifically, S-UAS are being used to monitor the Super-Sauze landslide 

progression because of their ability to be rapidly deployed and create digital surface 

models with ground sample resolutions of 0.03m to 0.08m (Niethammer et al., 2012). 

S-UAS are capable of being deployed at lower-cost and with less technical training 

than manned aircraft or their larger unmanned counterparts, are capable of multi-spectral 

imaging, and their low-altitudes make them ideal for capturing data at hyper-spatial 

resolutions (Westoby et al., 2012; Zhang et al., 2015; Zhang, Lippitt, Bogus, Loerch, & 

Sturm, 2016). S-UAS acquired remote sensing for both rapid (within 24 hours) and real-

time (imagery is processed and delivered as a disaster is occurring) hazard response 

improves upon the manned and satellite platform timeliness delays of up to 72 hours.. 

Following the Fukushima nuclear disaster, Tokai and Nihon universities in Japan began a 

project to demonstrate the capability of  S-UAS based remote sensing in conjunction with 
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satellite imagery to provide continuous (daytime) data about the disaster (Baltsavias, 

Cho, Remondino, Soergel, & Wakabayashi, 2013).  

Current U.S. Federal Aviation Administration classifications of UAS are based upon 

their total weight and maximum airspeed (Maddalon, Hayhurst, Morris, & Verstynen, 

2013), whereas manufacturers and users of UAS typically rely on a classification system 

based upon the UAS’ capabilities and characteristics (Watts, Ambrosia, & Hinkley, 

2012). “Nano Aerial Vehicles”, for example, are UAS that are the size of small birds and 

can be immediately launched in the event of a disaster, and “High Altitude, Long 

Endurance” or “HALE” systems are capable of flight durations of over 30 hours and can 

be launched within minutes of a disaster (Watts, Ambrosia, & Hinkley, 2012).  The FAA 

classification of “Category 1 Small UAS” (S-UAS) consists of vehicles whose maximum 

weight including payload is 55 lbs or less with an airspeed less than or equal to 70 knots 

(Maddalon et al., 2013).  Operators of this class of UAS are currently being granted 

exemptions to Section 333 of the FAAs rules governing commercial use of aircraft, 

making them legal for use under strict altitude and airspace conditions (George, 2015). 

These exemptions, coupled with the low-cost, off-the-shelf availability and hyper-spatial 

resolutions of S-UAS, make them ideal candidates for inclusion in the disaster 

management cycle and associated standard operating procedures of emergency managers.  

As with traditional remote sensing platforms, most UAS carry sensors that are 

capable of imaging in some combination of visible and near-infrared wavelengths 

(Nebiker, Annen, Scherrer, & Oesch, 2008).  This capability allows them to be used for 

vegetation and other multispectral indices that are useful for damage assessment and 
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management applications (Franke, Roberts, Halligan, & Menz, 2009; Lerma, Navarro, 

Cabrelles, & Villaverde, 2010; Roberts, 1999).  

Small unmanned aerial systems generally require light-weight imaging sensors 

(Colomina & Molina, 2014), and the trend of cameras’ resolutions increasing while 

simultaneously steadily decreasing in physical size and weight has meant that hyper-

spatial ground resolutions can be achieved using consumer-off-the-shelf digital cameras. 

These systems, largely due to the altitudes at which they are safely flown, are capable of 

capturing images with resolutions in the millimeter range (Smith, Chandler, & Rose, 

2009; Turner et al., 2003). The size and imaging sensor capabilities of these S-UAS 

systems are expected to result in their increased use for scientific research and 

infrastructure/emergency management (C. D. Lippitt, 2015). 

It is clear from the literature that Unmanned Aerial Systems address the limitations of 

spatial resolution, rapid deployment, and cost associated with remote sensing as a disaster 

management tool.  We therefore assess the timeliness of data delivery from S-UAS, as a 

likely near-term technology, to assess their potential impact on data delivery timeliness 

for hazard response.  

2.3 Estimating the Timeliness Capacity of Remote Sensing Systems 

Understanding the amount of time necessary to move any given imaging sensor and 

platform into place, acquire images, and deliver the imagery to analysts is both 

fundamental to the decision making process of which sensors and platforms to use, and 

the incorporation of remotely sensed imagery into the standard operating procedures of 

emergency managers (Joyce et al., 2009; C. Lippitt et al., 2015).  The answer to the 

fundamental question, “How long will it take to receive useful information from remotely 
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sensed imagery during this disaster event” is one of the goals of information theory 

models intended to estimate timeliness (C. D. Lippitt et al., 2014; C. Lippitt et al., 2015).  

The Remote Sensing Communication Model (RSCM) is a conceptual model of 

remote sensing based on information theory that was developed to inform the 

configuration of RSSs in the context of Time Sensitive Remote Sensing (TSRS) (C. D. 

Lippitt et al., 2014). The concept of modeling RSS capabilities dates back to the Strahler 

Remote Sensing Model (RSM) and subsequent derivatives (Phinn, 1998; Strahler, 

Woodcock, & Smith, 1986).  While these models aided in the identification of 

appropriate data and analysis techniques for the extraction of a given information type, 

and some included a temporal component (Phinn, Stow, Franklin, Mertes, & Michaelsen, 

2003), they did not address the question of timeliness in the configuration RSSs. The 

RSCM addresses this question by conceptualizing the process of obtaining information as 

having a source (i.e., reality of the scene to be imaged), an encoder of that reality (i.e., the 

sensor), a channel that communicates that encoded reality, and a receiver (analyst) that 

decodes that reality into information and delivers it to a user, each with a capacity that 

collectively determines the capacity of the RSS to transmit information from the source 

to users of that information (e.g., decision makers). See Figure 1 for a graphical depiction 

of the RSCM. These are identified as the Sensor Capacity, Transmission Capacity, and 

Analyst Capacity (C. D. Lippitt et al., 2014). Given any specifically configured imaging 

sensor, delivery platform, data transmission and analyst type, the timeliness of an RSS 

can be estimated based on these capacities. The result is an overall assessment of the 

timeliness of any given Remote Sensing System, and therefore the answer to the 
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question, “How long will it take to receive a given type of information from remotely 

sensed imagery during this disaster event?”. 

2.3.1 Acquisition Capacity 

Acquisition Capacity determines the timelines of acquisition, which is a product of 

the sensor and platform. Components of this segment of the RSCM include the size of the 

sensor’s imaging array, view angle (i.e., focal length), the altitude of the aircraft above 

ground, the number of flight lines, overlap, and distance flown to transition from one 

flight line to the next, etc. (C. D. Lippitt et al., 2014). In other words, sensor capacity 

reflects the amount of time required to move an aircraft and camera from the location 

where it is stored to the area to be imaged and acquire imagery.  

The following equations and explanations for Acquisition Capacity are from Lippitt 

et al. 2014. Acquisition Capacity is given as: 

	

𝑻𝑨𝒄𝒒 =
𝑩𝑺
𝑪𝑨𝒄𝒒

+ 𝑻𝑫 + 𝑻𝑴(𝑵 − 𝟏)		 (	1	)	

 

where 𝑇2 is the amount of time it would take the aircraft to reach the targeted region, 𝑇3 

is the amount of time it takes to transition from one flight line to the next, and 𝑁 is the 

number of flight lines required to cover the region. 𝐵6 is the “total number of bits 

required to image the scene,” and this is determined by the formula: 

 

𝐵7 = 𝐹 𝐵9𝐴7 1 + 𝐸7   ( 2 ) 
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where 𝐹 is the “compression factor” used by the imaging sensor, 𝐵9 is the bits per unit 

ground area, 𝐴7 is the total area of the targeted region, and 𝐸7 is the percentage of 

redundant acquisition due to necessary side lap and overlap. The bits per unit ground 

area, 𝐵9, is estimated by: 

 

𝐵9 = 	
>?
@AB

  ( 3 ) 

 

where 𝑅D  is the ground sampling distance and 𝐵E the number of bits required to store a 

pixel. The last variable of the time of acquisition formula, 𝐶9GH, is estimated by: 

 

𝐶9GH = 𝛽𝐵9  ( 4 ) 

 

where 𝛽 represents the rate of acquisition in area per unit time, given by: 

 

𝜷 = 𝑫𝑾𝑽		 (	5	)	

 

where 𝐷N represents the “swath width in ground distance” and 𝑉 is the velocity of the 

aircraft.  

2.3.2  Transmission Capacity 

Transmission Capacity determines the timeliness of image delivery from the sensor to 

the analyst and from the analyst to the information user. This segment of the model 

accounts for the total amount of data acquired by the sensor(s) in bits and the expected 
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transmission rates of the sensor’s hardware, the bandwidth of the specific networks used 

for transmission, any other potential transmission channels, and includes latencies that 

can be expected either with the chosen data transmission channels and with human 

interactions.. The following equations and explanations for Transmission Capacity are 

from Lippitt et al. 2014. The time required to transmit the data from the imaging sensor to 

the analyst, TChan, is estimated by: 

 

𝑇PQRS = 1 >T
PUVWX,Z

+ 𝐿\]
\   ( 6 ) 

 

 Transmission channel segments, i, each need to be modeled individually. The 

variable 𝐶PQRS is the channel/transmission capacity in bits per unit time. The variable 𝐿 

represents latencies in data transmission that are related to medium limitations and human 

factors such as approval processes.  

2.3.3 Analyst Capacity 

Analyst Capacity determines the timeliness of generating and delivering actionable 

information in the forms of change detection maps, etc. Analyst timeliness is more easily 

estimated when the analyst is an automated process running on a computing system, 

stated as a function of the quantity of bits received from the imaging sensor, the 

complexity of processing, and the processing speed of the system, but can be estimated 

for manual (i.e., human) receivers as well. Because this research investigates only Sensor 

and Channel capacities, Analyst capacity analysis was excluded from the analysis. 

This RSCM can be leveraged in a couple ways within the disaster management 

framework and the standard operating procedures of emergency managers, in order to 
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increase both the use and usability of remote sensing during the time-sensitive phases of 

disaster management (C. Lippitt et al., 2015). The RSCM could be used explicitly in the 

design and configuration of a system that satisfies the information needs of emergency 

managers, but can also be used to estimate the timeliness of flexible RSSs dynamically, 

in order to inform emergency managers which sensor/aircraft system to deploy for varied 

disaster scenarios.  

The use of remote sensing for disaster management, and the number and types of 

people and organizations that are doing so, continues to increase. Newer technologies, 

such as flexible RSSs, requires the ability to accurately estimate the timeliness of data 

collection and delivery.  
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3. METHODS 
 

The methods used in this research involved data collection from a number of sources, 

the creation of “Aerial Data Acquisition Processing Transmission - Timeliness 

Estimator” (ADAPTTE), a computer application implementation of the Remote Sensing 

Communication Model, and an analysis of data delivery timeliness for past and potential 

sensors and platforms. After implementation of the RSCM in ADAPTTE, initial model 

validation was performed using empirical flight records. Model validation by term was 

used to identify changes to the RSCM that improved model fit; these changes were 

implemented in ADAPTTE and timeliness for a matrix of aircraft and sensor 

combinations was modeled for the six critical infrastructure sites based upon extant aerial 

survey firms actual capacities and the hypothetical use of on-site or nearby S-UAS. 

3.1 Data 

The data collected and used in this research was derived from a survey of aerial 

imaging firms, manufacturers specifications, and actual image acquisition flights from 

manned and unmanned remote sensing systems. 

3.1.1 Field Data 

The Acquisition and Transmission Capacity components of the RSCM used in this 

analysis had not been rigorously tested, and therefore twelve actual flights were 

conducted and used to validate the model prior to its use for estimating data delivery 

timeliness for hazard response in Bernalillo County, NM.  The data collection involved 

eight flights with two different manned aircraft and sensors, and four flights with a single 

unmanned aircraft equipped with two different sensors. The company Near Earth 
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Observation Systems provided the manned flights using a Quicksilver GT-500 ultralight 

aircraft with a Canon 5D Mark II sensor, and a Cessna with a Nikon D800. Regions 

imaged during the manned flights were: six flights at the Deer Creek Plateau, South of 

Albuquerque, NM (Figure 2), one flight over a portion of the Rio Grande River in 

Albuquerque, NM (Figure 3), and one flight over the San Diego State University (San 

Diego, CA) campus (Figure 4). The four unmanned aircraft flights were conducted using 

the 3D Robotics Iris+ Quadcopter and the SX260HS and Elph 130IS cameras. Regions 

imaged during the unmanned flights were: two flights near the North Domingo Baca Park 

in Northeast Albuquerque, NM (Figure 3), one flight near the University of New 

Mexico’s North Campus golf course in Albuquerque, NM (Figure 5), and one flight at the 

Little Painted Desert, North of Winslow, AZ (Figure 6).  

Information from the flights necessary to validate the Acquisition Capacity 

component was collected from a combination of specifications from the aircrafts’ and 

sensors’ makes/models, and the flight/sensor logs. These logs contain information about 

aircraft speed, velocity, flight path, and image station locations. Information necessary to 

validate the Transmission Capacity component was collected from the image data volume 

folder attributes, and transmission channel rates were based on IEEE and USB standards 

(Intel et al., 2000; Ramamurthy & Ashenayi, 2002; Seifert, 1998).  

3.1.2 Survey Data 

Answering the proposed research question required specific platform, sensor, and 

operating procedure data from individual aerial survey firms with the potential to service 

New Mexico and or San Diego County, CA. This data was acquired through an online 

survey of aerial survey firms in the Southwester United States. The firms were identified 
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through the Google Maps Database and the American Society of Photogrammetry and 

Remote Sensing’s list of sustaining members and selected based upon their geographic 

locations: Southern California, Arizona, New Mexico, and Colorado.  

Detailed questions were asked about each business, their aircraft, sensors, operating 

procedures, etc., in order to generate the numerical values necessary to satisfy the input 

variables of the RSCM Acquisition and Transmission Capacity model components. This 

allowed for estimation and ranking of each of aerial survey firms’ platform/sensor 

combinations and transmission methods to provide timely data to emergency managers. 

Because some firms contract work to pilots and aircraft they do not employ or own, and 

because this could lead to redundant samples of aircraft/sensor combinations, an initial 

disqualifying question for the online survey was whether or not the responding firm owns 

and operates its own aircraft.  

The Ubuntu Linux server that hosted the survey was located in the Geography 

department and used a static internet protocol address and domain name system. The web 

server software was Apache, with a Joomla content management front-end. The survey 

used a customized version of the Joomla extension “BF Survey.” The entire site was 

accessed using secure socket layer encryption with a certificate purchased through The 

University of New Mexico’s Information Technology Department, in order to ensure 

encrypted transmission of the survey data. 

Of the original 70 Aerial Survey Firms identified as potential online survey 

participants, 44 were found to be ineligible. Criteria for ineligibility included: not 

owning/operating own aircraft, not performing aerial survey work, or the company no 

longer is in business. Of the remaining 26 eligible firms, eight responded, although two 
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of those responded that they operate only film-based systems and were therefore also 

excluded, leaving six usable survey responses. There were a total of 14 non-responses, 

with 5 being direct declines. The total response rate for the survey was 31% of identified 

eligible firms.  

Of the six responses used in this research, three own and operate a total of four 

aircraft with multiple sensor options South of Los Angeles, California, one operates a 

single aircraft and sensor from the Phoenix Metro area of Arizona, one operates a single 

aircraft and sensor in New Mexico, and one operates an aircraft and sensor located in 

Kansas but expressed a willingness to fly surveys, “Anywhere West of the Mississippi.” 

Information about the specific variables satisfied by the survey responses can be found in 

Table 1, and the extant aerial survey firms’ platform/sensor combinations is in Table 2. 

3.1.3 UAS Data 

Performance specifications from two different S-UAS were used to model the 

timeliness of example S-UAS compared to traditional manned aircraft. Because of the 

demonstrated ability of S-UAS to operate in swarms (Daniel, Dusza, Lewandowski, 

Wietfeld, & De, 2009), this modeling included the hypothetical use of 1-3 individual S-

UAS of a given model to cover an area.  

The Iris+ Quadcopter developed by 3D Robotics and S1000+ Octocopter developed 

by DJI were used to represent Vertical Take-Off/Landing (VTOL) small unmanned aerial 

systems (S-UAS). The Iris+ carries a lightweight consumer of the shelf camera point and 

shoot camera, the Canon PowerShot SX260 while the DJI Spreading Wings S1000+ 

carries Nikon D810, a consumer digital single lens reflex full-frame camera with a 35mm 

lens. Specifications for these systems were gathered from the manufacturers and used in 
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the same manner as the survey data in order to create timeliness estimates of the case 

study regions, based upon these systems.  

3.1.4 Targeted Regions/Sites  

The targeted regions and sites in this section differ from those used for the model 

validations. Six sites were chosen from locations listed as “Critical Infrastructure Sites” 

by a separate survey of emergency managers that is ongoing as part of a National Science 

Foundation funded study on the optimization of remote sensing networks for monitoring 

critical infrastructure. From the list of critical infrastructure identified sites were selected 

to encompass a range of scene sizes. The San Vicente Dam and associated reservoir site, 

in Southern California, was chosen because it represents a potential critical infrastructure 

feature that is 182 hectares (Figure 7). The Del Mar Pump Station, in Southern 

California, was chosen because it represents a small area, 0.44 hectares, covering a single 

building and nearby concrete sewage-system enclosure (Figure 8). The North Torrey 

Pines Bridge, in Southern California, was chosen because it represents a potentially 

critical transportation infrastructure feature that covers an area of 3.1 hectares (Figure 9). 

The New Mexico South Capital Complex, in Northern New Mexico, was chosen because 

it is a relatively large area, 73.2 hectares, that encompasses several potentially critical 

state department buildings and road features (Figure 10). The Cochiti Lake, in Central 

New Mexico, was chosen because it is located in a remote area and encompasses 2,987 

hectares (Figure 11). The Sandoval County Detention Center, in Central New Mexico, 

was chosen because, like the Del Mar Pump Station, it represents a smaller area of 14 

hectares (Figure 12). The primary impetus for choosing the six sites is that they were 
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identified as “Critical Infrastructure” by emergency managers in the aforementioned 

ongoing survey of emergency managers.  

3.2 Analysis 

The program ADAPTTE was created using Equations 1-6 in Section 2.3.1 and 

Section 2.3.2. Using ADAPTTE with the field data collected from the flight logs and 

manufacturer specifications for the actual flights, the model was validated, revised based 

on evaluation of errors by term, and re-validated. The data collected from the aerial 

survey firms, and from the manufacturers’ specifications for the S-UAS platforms, was 

then used as inputs for the revised RSCM. 

3.2.1 Implementation of the Model in Code 

To facilitate practical and dynamic on-the-fly use of the RSCM, it was necessary to 

implement it in a computer application. Python was chosen as the scripting language 

most adaptable and suitable for the scope of this thesis, as it allows for the code to be 

utilized on a number of computing platforms, without complex development 

environments, and it could be readily ported to either a web application programming 

interface or an ESRI ArcGIS plugin. PostgreSQL was chosen as the database from which 

to read and write the model’s parameters and results.  

ADAPTTE introduces a method for calculating Tm in the RSCM.  Tm represents the 

transition time between flight lines, and is a function of the distance between flight lines. 

The RSCM, as written in Lippitt et al. 2014, accounts for, but does not specify, a specific 

mathematical method for calculating this term. Given the combination of physics, aircraft 

specifications, and human pilot interactions involved in transitioning between flight lines, 

implementing a reasonable definition for Tm is not trivial (Dashora & Lohani, 2013). The 
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definition implemented in ADAPTTE for Tm is based upon pseudo-code (Dashora & 

Lohani, 2013) for generating transition paths between flight lines using the flight line 

spacing, maximum bank angle of the aircraft, and velocity of the aircraft. ADAPTTE 

checks aircraft and scene parameters to determine whether a U-turn is suitable, whether 

an extended heading change and return curve to the following flight line is required, and 

then outputs a total transition time, Tm, based upon the above determinants. Because the 

VTOL UAS used in the field data was observed to perform 90° turns and pursue a 

straight path to the following flight line, an additional parameter not existing in Dashora 

2013 was included to check for whether the aircraft used in the model is a VTOL UAS 

capable of performing direct path transitions. 

3.2.2 Model Validation 

There are two portions of the model that are validated in this paper: Acquisition 

Capacity and Transmission Capacity. In order to provide validation of acquisition and 

transmission capacity estimates, manned and unmanned aircraft and sensors were 

deployed for several flights each and the timeliness results compared to those predicted 

by the model. Percent Error and linear models reported as Adjusted R2 are the metrics 

used for assessing how well the terms TAcq, BS/CAcq, TM, TD, TChann, and BS fit the actual 

flight results. An additional metric, Root Mean Squared Error, is used for assessing the 

overall error in TAcq and TChann. These metrics are later used to provide an indication of 

the model’s accuracy when predicting the acquisition and transmission timeliness of 

hypothetical flights. 

For the Acquisition Timeliness validation assessment, the parameters listed in Table 1 

were acquired for each aircraft, sensor, and region. The manned flights utilized an image 
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acquisition hardware/software system called “Aviatrix”. This system outputs many flight 

log files, three of which were used in every manned flight validation. The 

“PhotoCenters.txt” file provided timestamps of each image, making it possible to 

determine when a flight line began, when it ended, and when the next one began. The 

time elapsed between the end of one flight line and the beginning of another made it 

possible to determine the actual time spent transitioning between flight lines, Tm. These 

time stamps also made it possible to determine the actual time spent imaging the scene. 

The actual value of bits required to image the scene, Equation 10, was determined by 

converting the reported total file size of all images actually acquired during the flights 

from bytes to bits. The actual value of TD, travel time to and from the scene, was derived 

from the first and last image timestamps in the “PhotoCenters.txt” file, and from the first 

and last GPS coordinates/heading timestamps in the “Trax.txt” files, which records the 

aircraft’s flight path in decimal degrees and heading, every ten seconds. The dimensions 

of the scenes that were imaged were derived from the “PhotoCenters.txt” files, with half 

the value of swath width covered by a line of images added to the boundary of the scenes.  

The aircraft specifications, cruise velocity, maximum velocity, and maximum bank 

angle are added to a row in the database and used in part for calculating the times spent 

imaging, transitioning between flight lines, and moving to and from the scene. The 

aircraft platform’s associated sensor specifications, sensor width and height, image width 

and height, focal length, radiometric and spectral resolutions are then added and used in 

calculating the sensor capacity and data volume. Additional information regarding the 

sensor transmission channels were then added and used to assess transmission timeliness, 

TChan. The dimensions of the scene to be imaged are included, and in conjunction with the 
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aircraft and sensor specifications and a desired Ground Sample Distance, timeliness 

estimates are created using ADAPTTE. The values for all individual terms are also output 

by ADAPTTE. 

Model validations for the four unmanned flights were performed identically to the 

manned flights as described above, with two exceptions. The autopilot hardware/software 

on the 3D Robotics Iris+ outputs a single log file containing all of the in-flight 

parameters, including those that contain the same values as Aviatrix; photo center 

coordinates and timestamps, and complete path of the UAS. Also, an aircraft platform 

parameter is set in ADAPTTE to indiciate the platform is a VTOL aircraft, thereby 

affecting how ADAPTTE calculates TM. As was previously mentioned, TM for VTOLs is 

calculated as a direct trajectory between flight lines rather than a curved path. 

The assessment of transmission timeliness accuracy is performed using two sets of 

data for each of the eleven flights where the actual imagery was available. The first set of 

data comprised the actual imagery from each flight, and the second was the modeled data 

volumes from the Acquisition Capacity analysis. The SDSU Campus flight was excluded 

from the transmission analysis as the actual data was unavailable. In the context of this 

research, where the purpose of the model validation is to determine how well the RSCM 

can predict timelines compared to reality, it was not possible to know how long it actually 

took for the data to be delivered from the sensor to the analyst for the actual flights. 

Those times were not recorded during the initial data collection. Given that the actual 

flights were not originally conducted for time sensitive applications, the actual 

transmission times (TChan) would not be indicative of those we would expect under hazard 

response. The transmission capacity validation is therefore conducted using Standards for 
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various data transfer media (Company, 2011; Intel et al., 2000; Ramamurthy & Ashenayi, 

2002; Seifert, 1998).  

The first transmission channel represents the medium used to transfer sensor data to a 

computer which, in the case of the actual flights, was either USB2 or USB3 depending on 

the sensors’ specifications. The second channel tested is from a computer, over a 

network, to a server, . The third is via either USB2 or USB3, whichever was not used as 

the initial sensor transmission channel media. Many additional transmission channels, 

including eSata, FireWire, wireless technologies, and other network/hardware systems 

exist, and ADAPTTE currently includes the specifications for 30 different channel types 

and the ability to manually specify a channel/transmission rate. In the context of the 

transmission capacity validation, however, only the three listed channels were empirically 

tested.  

Transmission timeliness accuracy is a component of the entire model to be validated 

and is not truly a stand-alone component, therefore, if the modeled data volume is 

inaccurate, the modeled time required to transfer the inaccurate volume of data will also 

be inaccurate when compared to the actual transfer times of the actual data. Therefore, 

the model is run twice, once to estimate the timeliness of data transmission given the 

actual known data volume, and once to model the timeliness of data transmission given 

the data volume calculated in the Acquisition Timeliness component. The actual data for 

each flight was then transferred using the three mentioned transmission channels, on a 

Dell Precision T1700, and the transmission times recorded.  

The difference between the modeled total transmission times across all three channels 

and the actual transmission times across the three channels forms the basis for assessing 
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the accuracy of the Transmission Capacity component. This assessment could 

conceivably account for human-related latencies, as written in the RSCM, but details of 

those latencies were not available for the actual flights. Additionally, current modes of 

data transmission, and their inherent bandwidths and latencies are documented in IEEE 

and USB standards (Company, 2011; Intel et al., 2000; Ramamurthy & Ashenayi, 2002; 

Seifert, 1998), and these standards are used in ADAPTTE. Actually testing and verifying 

all extant network technologies and physical media was not possible for this thesis.  

3.2.3 Estimating Timeliness for Extant Platform/Sensor Combinations 

Information collected from the responding aerial survey firms was used to model 

information delivery timeliness for all extant platform and sensor combinations for which 

data from the survey was available. These combinations were then used in conjunction 

with the locations and dimensions of the six critical infrastructure sites to generate Total 

Time to Data Delivery estimates for each site, based upon each combination.  

 

𝑻𝑫𝒂𝒕 = 	𝑻𝑨𝒄𝒒 + 𝑻𝑪𝒉𝒂𝒏	 	 	 	 	 	 ( 7 ) 

  

Each platform and sensor combination available, based upon the survey responses, to 

San Diego County, CA and the State of New Mexico, was modeled for each CI site at 6 

centimeters and 12 centimeters Ground Sample Distance. Each sensor was modeled at 

two levels of compression, high quality TIF or RAW format and JPEG, based upon 

sensor specifications. Finally, for sensors with exchangeable lenses of varying focal 

lengths, models were calculated using both a 50mm and a 100mm focal length lens. 
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3.2.4 Estimating Timeliness for S-UAS Platform/Sensor Combinations 

Information collected from the manufacturers’ websites about the 3D Robotics Iris+ 

S-UAS, DJI Spreading Wings 1000+ S-UAS, Canon PowerShot SX260 camera, and 

Nikon D810 camera was used to model information delivery timeliness for these systems, 

for the six previously identified critical infrastructure sites. The Iris + was modeled with 

the PowerShot SX260, and the Spreading Wings was modeled with the Nikon D810 and 

a 50mm lens. Both systems were modeled for each of the six sites at 6 centimeters and 12 

centimeters Ground Sample Distance. With the exception of the North Torrey Pines 

Bridge site, the S-UAS systems distance to/from the scenes are modeled as though they 

were located within a building on-site. For the North Torrey Pines Bridge site, since there 

is not a facility available on-site, the Caltrans District 11 station, 12.6 miles from the 

bridge is used, and the to/from time modeled as 15 minutes, based upon the Google Maps 

road network time estimate.  

Using methods outlined in Section 3.2.3, TAcq and TChann are initially calculated for 

each of the sites. Because S-UAS have the ability to be pre-programmed for use in a 

swarm, where multiple S-UAS can be deployed to the same region and cover a larger 

area in a shorter period of time (Daniel et al., 2009), estimates of TDat for the S-UAS 

platforms use a sufficient quantity of S-UAS at the site to image the site with each 

individual S-UAS flying only once. An individual Spreading Wings S-UAS carrying a 

Nikon D810 and lens has a maximum flight time of 15 minutes, and an individual Iris+ 

with the Canon Powershot SX260 has a maximum flight time of 12 minutes. The value 

calculated for TAcq for each platform/sensor combination for each site is then divided by 

either 15 or 12 minutes, and the number of S-UAS required is the rounded-up result. 
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Once the number of required S-UAS is known, TAcq is divided by the number of required 

S-UAS, the resultant value is added to TChann and the result is TDat. 
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4. RESULTS AND DISCUSSION 
 

The results of this work encompass three analyses: the assessment of the accuracy 

and error bounds of the RSCM, assessment of extant aerial survey firms’ capacities to 

provide time-sensitive remote-sensing services to emergency managers for six critical 

infrastructure sites, and assessment of the impact of S-UAS on the timeliness of data 

delivery. 

4.1 Model Validation 

During the initial process of model validation, the RSCM was found to require 

revisions.  

After the initial model validation results were evaluated. It was observed that both the 

Sensor Capacity timeliness term and the Bits to Image the Scene term were producing 

values much lower than the results from the actual field data. A closer inspection of the 

RSCM revealed the necessity of two changes. 

First, Equation 2 applies the compression factor, 𝐹, to the calculated number of bits 

for the given scene area and percent of overlap. This essentially compresses the data 

volume and the physical scene dimensions. Using the original model, the result led to 

much faster estimated flight times than what actually occurred with the validation flights. 

This first revision to the original Equation 2 removes the compression factor from the 

estimation of Acquisition Capacity (see new Equation 8), and adds it to the original 

Equation 6, (see new Equation 9). 
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𝐵7 = 𝐵9𝐴7 1 + 𝐸7   ( 8 ) 

 

𝑇PQRS = 1 b(>T)
PUVWX,Z

+ 𝐿\]
\   ( 9 ) 

 

The second revision to the RSCM, and Equation 2, is to properly account for percent 

of redundant side lap and overlap. As originally written, 𝐸7 is the “percent of redundant 

acquisition due to side lap and overlap” to which the area of the scene without overlap is 

added (the value ‘1’). In order to properly account for redundant acquisition, Equation 2 

should be further modified to Equation 10 and Equation 11. 

 

𝐵7 = 	𝐵9𝐴7𝐸7 ( 10 ) 

 

𝐸7 = (1 + 𝑆𝑖𝑑𝑒𝑙𝑎𝑝)(1 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝) ( 11 ) 

  

Following the above revisions to the RSCM, which were necessary in order to 

conduct a model validation that better fits reality, ADAPTTE and the revised RSCM 

were ready for the model validation analysis.   

4.1.1 Acquisition Capacity 

Overall model fit for Acquisition Capacity is highly dependent upon the term TD, 

especially for the modeling of manned flights. For 7 out of the 8 manned flights, the 

value, in seconds, of TD, was greater than the values of any other individual terms. Figure 

6 clearly indicates one of the difficulties encountered in modeling TD; without access to 

air route networks, detailed terrain information related to aircraft capabilities, and a 



	 30	

discussion with the pilot prior to modeling travel distances, the chosen alternative was a 

measurement of Euclidean distance from the airport where the aircraft is located, to the 

scene. While many aircraft may be technically capable of flying straight paths to a given 

scene, logistically this was not the case for any of the manned flights used in the 

validation. A second difficulty encountered in assessing the model accuracy with TD was 

the existence of uncertainty concerning the integrity/viability of the validation data from 

the flights, for TD. While each of the 8 manned flights had flight path data available in the 

logs, for each flight the return from scene information either appeared to end in an 

unpopulated place away from any airport, or it did not exist because the flight 

management system (e.g., Aviatrix) was powered down prior to the return trip. 

The model fit of TAcq for all flights, when including the problematic TD term, had an 

Adjusted R2 value of 0.751 and a Root Mean Squared Error of 49 minutes with an 

average actual timeliness of acquisition of 126 minutes. See Table 3 for Adjusted R2 

values by term and manned/manned and UAS. By contrast, for just the S-UAS flights, the 

Adjusted R2 value was 1.00 and the Root Mean Squared Error was 2 seconds, for flights 

lasting an average of 8 minutes. Extreme variability in TD as a result of human control 

over the flight paths of an aircraft (Figure 13) are not a factor for the S-UAS flights, 

which flew pre-programmed routes controlled by the Pixhawk autopilot system. These 

results suggest that coupling ADAPTTE with air traffic routing models would improve 

the estimation of TD for manned aircraft. 

Excluding TD from the model assessment results in an Adjusted R2 value of 0.992 for 

all flights and an Adjusted R2 of 0.964 for just the manned flights. The Root Mean 
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Squared Error for the modeled manned flights was 4.2 minutes for flights lasting an 

average of 50 minutes when excluding TD.  

Percent Errors for the individual model terms in the estimation of Acquisition 

Timeliness, BS/CAcq, TM, and TD exhibited varying degrees of fit. Figure 14 summarizes 

the Percent Errors for the overall timeliness of acquisition, and each of the terms that 

comprise it. The white boxes in Figure 14 show errors for only manned flights, and the 

grey boxes show errors for the manned and UAS flights combined. UAS flights are not 

displayed separately in Figure 14 due to a sample size of 4. 

While the median values for BS/CAcq and TM fall at or below 20% error, and the 

median value of TAcq is near 20% error, including the problematic TD term, there are some 

notable patterns in the errors. For all terms, the inclusion of the UAS data decreases the 

median error percent and increases the Adjusted R2 values. The UAS flights differed 

substantially from the manned flights in that they were pre-programmed to take off, fly a 

number of flight lines, and when done, land. Transitions between flight lines, length of 

flight lines, distances to and from the scene, and aircraft velocity were pre-programmed 

and not subject to human/pilot interaction. Consequently, it is not surprising that the 

model’s ability to predict the UAS flights’ timeliness of acquisitions was substantially 

better than with manned flights (R2 = 0.310 for manned flights, 1.00 for UAS). 

The errors seen in the estimation of TM (R2 = 0.63 for manned flights, 0.996 for 

UAS), in particular, suggest that the autonomy of a human pilot is a source of error in the 

model. The inclusion of four UAS flights to the eight manned flights causes the median 

error percent of TM to decrease from 11.2% to 5.5%. TM is the transition time between 

flight lines, which is a factor of the aircraft velocity while transitioning, and the distances 
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of the transitions. While the python implementation of the RSCM attempts to predict the 

required turn radius and heading changes for different aircraft, it does so using purely 

mathematical assumptions of an aircraft’s abilities. For manned flights, the transition 

curves and distances are determined by the pilot of the aircraft, not software, and are not 

programmed into an auto-pilot. Figure 8 shows examples of flight line transition 

variability related to human control of the aircraft. The implementation of RSCM used in 

this study attempts to model the average, normal transition curves shown in Figure 15 as 

Transition 1, but is unable to account for transition curves like those shown in Transition 

7. The average time required to fly each of the transitions shown in Figure 15 was 88 

seconds, with Transition 7, the maximum value and an outlier, taking 154 seconds, and 

Transition 10 (not shown) having the second highest value, at 114 seconds. With the 

transitions 7 and 10 excluded from the mean value of TM, the average time of the actual 

flight line transitions changes from 88 seconds to 82 seconds. The model estimate had an 

average transition time of 79 seconds (3 seconds difference). This pattern of transition 

times varying due to one, two, or more non-standard transition paths in a flight exists 

within each of the eight manned flights used in this study.  

4.1.2 Transmission Capacity 

Overall model fit for Transmission Capacity, using the actual data volume values 

within the model had an Adjusted R2 value of 0.987 and an RMSE of 199 seconds. The 

model fit when using the modeled data volume values with the actual data volume 

transmission times produced an Adjusted R2 of 0.997 and an RMSE of 77 seconds. See 

Tables 4 for the Transmission Capacity information. 
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It is important to note that the high accuracy values of the transmission capacity 

analysis do not take into consideration the human factors that certainly would contribute 

to the latency term for each channel, L. As previously noted in the Acquisition Capacity 

results, human factors can be a substantial source of variability and therefore model error.  

4.2 Aerial Survey Firm Results by Platform/Sensor Combination and Site 

The three example critical infrastructure locations in Southern California are the San 

Vicente Dam, the Del Mar Pump Station, and the North Torrey Pines Bridge. For each of 

these three sites the platform/sensor combination of the Cessna T206 using the Nikon 

D800 Camera with a 50mm lens yielded the shortest TDat estimates. Given a Ground 

Sample Distance of 6cm, this combination could deliver imagery from the San Vicente 

Dam in 3.16 hours, from the Del Mar Pump Station in 2.8 hours, and from the North 

Torrey Pines Bridge in 2.84 hours. See Table 5 for additional estimates by 

platform/sensor for these sites at 6cm GSD. At 12cm Ground Sample Distance, this 

combination could deliver imagery from the San Vicente Dam in 3.05 hours, from the 

Del Mar Pump Station in 2.8 hours, and from the North Torrey Pines Bridge in 2.82 

hours. See Table 6 for additional estimate by platform/sensor for these sites at 12cm 

GSD. 

The three example critical infrastructure locations in New Mexico are the South 

Capital Complex, Cochiti Lake, and the Sandoval Detention Center. The Cessna 182 with 

the Canon 6D yields the shortest TDat for each of the three sites. Given a Ground Sample 

Distance of 6cm, this combination could deliver imagery from the South Capital 

Complex in 1.41 hours, from the Cochiti Lake in 4 hours, and from the Sandoval 

Detention Center in 0.78 hours. See Table 7 for additional estimates by platform/sensor 
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for these sites at 6cm GSD. At 12cm Ground Sample Distance, this combination could 

deliver imagery from the South Capital Complex in 1.3 hours, from the Cochiti Lake in 

2.29 hours, and from the Sandoval Detention Center in 0.74 hours. See Table 8 for 

additional estimate by platform/sensor for these sites at 12cm GSD. 

Due to the fact that only one survey respondent’s aircraft and sensor are located in 

New Mexico, the combination of the Cessna 182 with a Canon 6D camera outperforms 

the other two available platform/sensor combinations by over six hours for the South 

Capital Complex and Sandoval County Detention Center sites. Due in part to the slower 

available sensor transmission channels of the Canon 6D compared to the UltraCam X and 

Intergraph DMC1, the larger overall area of the Cochiti Lake compared with the other 

two sites, and the smaller sensor size of the Canon 6D compared with the UltraCam X 

and Intergraph DMC1, the timeliness estimates for the for those two sensors and 

associated aircraft are within 3 hours of the estimates for the Canon 6D. Both the Piper 

Navajo with the DMC1 and the Cessna TU206G with the UltraCam X are capable of 

acquiring imagery in four-bands, whereas the Canon 6D acquires only three bands. 

Although not explicitly stated in the online survey answers, it is conceivable that the 

operators of the two platforms/sensors not physically located in New Mexico could 

acquire imagery at CI sites in New Mexico, land at a local nearby airport, and transfer the 

data prior to returning to their airports of origin. Because the estimates used in the model 

for time to travel to and from the scene makes the assumption that the aircraft would 

return to its home facility, an operator willing to land closer to the sites of interest could 

effectively reduce the total timeliness estimate for data delivery. 
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4.3 S-UAS Results by Site 

For each of the three sites in Southern California, the two S-UAS platform/sensor 

combination swarms had TDat estimates within 3 minutes of each another. As noted in 

Section 3.2.4, the value of TDat for these swarms will be near the maximum flight time of 

an individual S-UAS from a given platform/sensor combination. With this in mind, the 

greatest variation for the S-UAS systems is in the number of S-UAS required for a site. 

Given a Ground Sample Distance of 6cm, a swarm of 3 Spreading Wings 1000’s 

(S1000s) with Nikon D810 cameras and 50mm lenses could deliver imagery from the 

San Vicente Dam in 0.23 hours, 2 S1000’s or 2 Iris+’s with Canon Powershot SX260 

cameras could deliver imagery from the Del Mar Pump Station in 0.18 hours, and 2 

S1000’s could deliver imagery from the North Torrey Pines Bridge in 0.44 hours. See 

Table 9 for additional timeliness and S-UAS swarm size estimates for these sites at 6cm 

GSD. Given a Ground Sample Distance of 12cm, 3 S1000’s could deliver imagery from 

the San Vicente Dam in 0.2 hours, 2 S1000’s or 2 Iris+’s could deliver imagery from the 

Del Mar Pump Station in 0.2 hours and 0.19 hours, and 2 S1000’s or 2 Iris+’s could 

deliver imagery from the North Torrey Pines Bridge in 0.45 hours. See Table 10 for 

additional timeliness and S-UAS swarm size estimates for these sites at 12cm GSD. 

For each of the three sites in New Mexico, the two S-UAS platform/sensor 

combination swarms also had TDat estimates within 3 minutes of each another. Given a 

Ground Sample Distance of 6cm, a swarm of 3 S1000s with Nikon D810 cameras and 

50mm lenses could delivery imagery from the South Capital Complex in 0.19 hours, 21 

SW1000’s could deliver imagery from the Cochiti Lake in 0.46 hours, and 2 S1000’s 

could deliver imagery from the Sandoval Detention Center in 0.2 hours. See Table 11 for 
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additional timeliness and S-UAS swarm size estimates for these sites at 6cm GSD. Given 

a Ground Sample Distance of 12cm, 3 S1000’s could deliver imagery from the South 

Capital Complex in 0.17 hours, 12 S1000’s could deliver imagery from the Cochiti Lake 

in 0.3 hours, and 2 S1000’s could deliver imagery from the Sandoval Detention Center in 

0.21 hours. See Table 12 for additional timeliness and S-UAS swarm size estimates for 

these sites at 12cm GSD. 

4.4 Limitations of These Results 

Specific limitations of the results of this research were discussed along with the 

results. Model validation results were derived from 8 manned and 4 unmanned flights, 

and while the Adjusted R2 and RMSE values show a strong fit between what the RSCM 

predicts and the actual flight values for terms TAcq, BS/CAcq, TM and TChann, access to and 

incorporation of additional manned/unmanned flights and platform/sensor combinations 

could be useful in further refining the error bounds of the RSCM.  Having access to flight 

data where the integrity of the TD term is not compromised by the logging hardware being 

shutdown immediately after image acquisition could improve the model fit for that term. 

Human-related latencies are not evaluated in the model validation of Transmission 

Capacity, which would result in an increase in the error of Transmission Capacity. 

The extant platform timeliness assessments for each of the six critical infrastructure 

sites were based upon the results from the aerial survey firms that chose to participate in 

our survey, which totaled 31% of the online survey requests sent to eligible firms. 

Particularly, those firms which actively declined to participate in the survey could 

potentially provide more timely platform/sensor combinations for the evaluated critical 

infrastructure sites.   
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5. CONCLUSIONS 
 

The ability to assess the timeliness of TSRSS is critical to the configuration and 

incorporation of these systems into emergency managers’ and management 

organizations’ standard operating procedures (C. Lippitt et al., 2015). The RSCM was 

created, in part, to provide a means for assessing the timeliness of information delivery 

under various RSS configurations. Automation of RSCM capacity analysis through 

ADAPTTE makes the estimation of acquisition and transmission timeliness in the RSS 

design phase routine, but also enables on-the-fly estimation of data delivery time (TDat) to 

aid in asset tasking (i.e., dynamic RSS configuration) during the response phase of the 

hazard cycle. This thesis answers three questions related to the use of the RSCM for 

providing timeliness assessments of extant systems and configuring hypothetical systems.  

The first question, “How accurately can the timeliness of airborne data acquisition 

and delivery be estimated, using the Remote Sensing Communication Model Capacity 

Analysis?” is answered by the results in Section 4.1.1. Eight manned and four unmanned 

flights were used to empirically test the predictions from the RSCM. For manned 

platform systems, given the complications of calculating the time to move the platform to 

and from the scene, an RMSE of 60 minutes is observed for Acquisition Capacity, and an 

RMSE of 1.3 minutes is observed for Transmission Capacity. The results clearly indicate 

improved model fit when human pilots are not directly operating the aircraft platform but 

also suggest that integration of addition information affecting TD (e.g., airspace 

information, ground elevation data). 

The second question, “Using RSCM Capacity Analysis, what is the estimated data 

delivery timeliness of extant aerial survey firms in support of a remote sensing system for 
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hazard response in New Mexico and San Diego County, CA?” is answered by the results 

in Section 4.2. The online survey results from six aerial survey companies were used to 

estimate extant platform/sensor combinations in support of hazard response at six 

potentially critical infrastructure sites. In San Diego County the following sites were 

used: San Vicente Dam, Del Mar Pump Station, North Torrey Pines Bridge. In New 

Mexico the following sites were used: South Capital Complex, Cochiti Lake, Sandoval 

Detention Center. The results in Table 5, Table 6, Table 7, and Table 8 show timeliness 

estimates by platform/sensor configuration and Ground Sample Distance for the extant 

aerial survey firms.  

The third question, “How will the introduction of UAS affect data delivery 

timeliness?” is answered by the results in Section 4.3. Two S-UAS platform/sensor 

combinations were evaluated, using multiple S-UAS in a swarm at each site, for each of 

the six critical infrastructure sties. Assuming on-site location of the systems, for the two 

platforms evaluated, this amounted to 15 minutes, and 12 minutes, per site. Transmission 

Capacity of these systems was dependent upon whether images were to be captured in 

Raw or JPEG format, and whether the sensor uses USB 2 or USB 3 for its primary 

transmission channel. The range of transmission times was from less than 1 minute to 27 

minutes, dependent upon the size of the area and sensor/format used. These results show 

that the introduction of S-UAS could have the potential for reducing data delivery times 

by: having the systems located at or near the sites, having a sufficient number of systems 

in a swarm to cover an area in one flight per platform, and configuring the systems to 

meet the spatial/spectral needs of the emergency manager/organization. This is best 

demonstrated by a comparison of the shortest Time to Data Delivery (TDat) estimates. 
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Using the San Vicente Dam as the example, the shortest manned platform TDat was 3.05 

hours at 12cm GSD, whereas with 3 Spreading Wings 1000 S-UAS platforms operating 

simultaneously, the San Vicente Dam could be imaged at 6cm GSD in 14 minutes. 

This research clearly demonstrates that the RSCM can be used for modeling the 

acquisition and transmission timeliness of dynamically configurable RSS. Additionally, 

the capacity for aerial survey firms to provide timely information about sites in San 

Diego County, CA and Central/Northern New Mexico ranges from ~1 to ~4 hours for the 

three band sensors, and ~2 to ~6 hours for the four band sensors. Using a sufficient 

number of S-UAS in a swarm configuration to cover an entire area has the possibility of 

substantially reducing these estimates, to slightly over the maximum flight time for a 

single given S-UAS.  
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7. TABLES 
 

Table	1:	RSCM	Variable	definitions	and	sources.	

 

 

 

 

 

 

Variable Description Source 
𝑹𝒆𝒈	 Targeted region Selected from lists of Critical Infrastructure sites 
𝑫𝑹𝒆𝒈	 Distance from aircraft 

location to targeted 
region 

Derived from survey question “where is your aircraft located”, 
and for S-UAS, at the site. 

𝑻𝑫 Time to fly platform to 
targeted region 

Derived from platform make/model velocity and 𝐷@pq  

𝑻𝑴 Time to transition 
between flight lines 

Derived from flight line spacing, number of flight lines, and 
aircraft velocity 

𝑵 Number of flight lines 
to cover region 

Derived from Aviatrix/Mission Planner flight-planning software 
and based on the area of 𝑅𝑒𝑔 

𝑭 Compression factor 
used by imaging 
sensor 

Derived from sensor make/model. 

𝑨𝑺 The total area of the 
targeted region 

Derived from 𝑅𝑒𝑔 

𝑬𝑺 Percentage of 
redundant overlap  

Derived from the flight-line planning using Aviatrix/Mission 
Planner software. 

𝑹𝑮 Desired Ground 
Sampling Distance 

This will be based on somewhere between 1-6 inches GSD for 
each region. 

𝑩𝑷 # of bits required to 
store a pixel 

Derived from the bit-depth and file format of the images created 
by the imaging sensors  

𝑫𝑾 Swath width in 
Ground Distance 

Derived from the altitude of the aircraft/S-UAS and the size of 
the imaging sensor. This information was generated through a 
combination of Aviatrix/Mission Planner flight planning and 
survey answers 

𝑽 Aircraft velocity 
during acquisition 

Derived from aircraft/S-UAS make/model, imaging sensor 
capabilities, and flight logs 

𝑪𝑪𝒉𝒂𝒏 Channel transmission 
capacity in bits per 
unit time 

Derived from the data transfer/transmission capabilities of the 
methods/services listed in the survey answers, which apply to S-
UAS as well 

𝑳 Latencies in data 
transmission 

Human and technical latencies derived from information in the 
survey answers and inherent in the transmission technologies 
used.  



	 47	

Table	2:	Extant	Platform/Sensor	Combinations	

Platform	 Location	 Sensor	
Cessna	T206	 Southern	California	

	
  

Nikon	D800	

	  
Canon	5D	Mark	III	

Cessna	TU206G	 Central	Arizona	
	

  
Vexcell	Ultracam	X	

Cessna	320D	 Southern	California	
	

  
MS	Ultracam	Falcon	Prime	

Piper	Navajo	Chieftain	 Southern	California	
	

  
Intergraph	DMC	1	

Beechcraft	Bonanza	 Southern	California	
	

  
Intergraph	DMC	2	

Cessna	182	 Central	New	Mexico	
	

  
Canon	6D	

Piper	Navajo	 Northeast	Kansas	
	

  
Intergraph	DMC	1	

 

Table	3:	RSCM	Acquisition	Capacity	Model	Fit	

Variable	 Manned	Only	
R2

adj	
Manned	Only	
MPE	

Manned	&	UAS	R2
adj	 Manned	&	

UAS	MPE	
TAcq	 0.310	 31	 0.751	 21	

BS/CAcq	 0.953	 11	 0.985	 7	
TM	 0.686	 16	 0.937	 11	
TD	 0.053	 53	 0.409	 36	

 

Table	4:	RSCM	Transmission	Capacity	Model	Fit	

Variable	 	(R2
adj)	 MPE	(%)	

TChann: Modeled Volume	 0.997	 9	
TChann: Actual Volume	 0.987	 13	
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Table	5:	Timeliness	Estimates	for	Sites	in	San	Diego	County,	CA	at	6cm	GSD	

	 	    

San	Vicente	
Dam	

	

Del	Mar	
Pump	Station	

	

North	Torrey	
Pines	Bridge	

Platform	 Sensor	 Bit	Depth	 Bands	
Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Cessna	
T206	

D800	-	
100mm	 14	 3	 3.17	 129	 61	 2.80	 108	 60	 2.84	 110	 60	

	

D800	-	
100mm	 8	 3	 3.16	 129	 61	 2.80	 108	 60	 2.83	 110	 60	

	

5D	Mark	III	
-	100mm	 14	 3	 3.29	 133	 65	 2.80	 108	 60	 2.84	 110	 60	

	

5D	Mark	III	
-	100mm	 8	 3	 3.26	 133	 63	 2.80	 108	 60	 2.84	 110	 60	

Cessna	
320D	

Ultracam	
FP	-	100mm	 12	 4	 4.15	 129	 120	 3.96	 117	 120	 3.97	 118	 120	

	

Ultracam	
FP	-	100mm	 8	 3	 4.15	 129	 120	 3.96	 117	 120	 3.97	 118	 120	

Piper	
Navajo	
Chieftain	

DMC	1	-	
120mm	 12	 4	 3.41	 85	 120	 3.22	 73	 120	 3.24	 74	 120	

	

DMC	1	-	
120mm	 8	 3	 3.41	 85	 120	 3.22	 73	 120	 3.24	 74	 120	

Beechcraft	
Bonanza	

DMC	2	-	
92mm	 14	 4	 3.42	 85	 120	 3.23	 74	 120	 3.25	 75	 120	

	

DMC	2	-	
92mm	 8	 3	 3.41	 85	 120	 3.23	 74	 120	 3.25	 75	 120	

Cessna	
TU206G	

Ultracam	X	
-	100mm	 12	 4	 6.71	 282	 120	 6.83	 290	 120	 6.83	 290	 120	

	

Ultracam	X	
-	100mm	 8	 3	 6.74	 282	 120	 6.83	 290	 120	 6.83	 290	 120	
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Table	6:	Timeliness	Estimates	for	Sites	in	San	Diego	County,	CA	at	12cm	GSD	

	 	    

San	Vicente	
Dam	

	

Del	Mar	
Pump	Station	

	

North	Torrey	
Pines	Bridge	

Platform	 Sensor	 Bit	Depth	 Bands	
Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Cessna	
T206	

D800	-	
100mm	 14	 3	 3.06	 123	 60	 2.80	 108	 60	 2.82	 109	 60	

	

D800	-	
100mm	 8	 3	 3.05	 123	 60	 2.80	 108	 60	 2.82	 109	 60	

	

5D	Mark	III	
-	100mm	 14	 3	 3.11	 125	 61	 2.80	 108	 60	 2.82	 109	 60	

	

5D	Mark	III	
-	100mm	 8	 3	 3.10	 125	 61	 2.80	 108	 60	 2.82	 109	 60	

Cessna	
320D	

Ultracam	
FP	-	100mm	 12	 4	 4.11	 126	 120	 3.95	 117	 120	 3.97	 118	 120	

	

Ultracam	
FP	-	100mm	 8	 3	 4.11	 126	 120	 3.95	 117	 120	 3.97	 118	 120	

Piper	
Navajo	
Chieftain	

DMC	1	-	
120mm	 12	 4	 3.36	 81	 120	 3.21	 73	 120	 3.23	 74	 120	

	

DMC	1	-	
120mm	 8	 3	 3.35	 81	 120	 3.21	 73	 120	 3.23	 74	 120	

Beechcraft	
Bonanza	

DMC	2	-	
92mm	 14	 4	 3.36	 82	 120	 3.23	 74	 120	 3.25	 75	 120	

	

DMC	2	-	
92mm	 8	 3	 3.36	 82	 120	 3.23	 74	 120	 3.25	 75	 120	

Cessna	
TU206G	

Ultracam	X	
-	100mm	 12	 4	 6.65	 279	 120	 6.83	 290	 120	 6.83	 290	 120	

	

Ultracam	X	
-	100mm	 8	 3	 6.65	 279	 120	 6.83	 290	 120	 6.83	 290	 120	
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Table	7:	Timeliness	Estimates	for	Sites	in	New	Mexico	at	6cm	GSD	

	 	    

South	Capital	
Complex	

	
Cochiti	Lake	

	

Sandoval	
Detention	
Center	

Platform	 Sensor	 Bit	Depth	 Bands	
Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Cessna	
TU206G	

Ultracam	X	
-	100mm	 12	 4	 8.04	 362	 120	 8.63	 394	 123	 7.53	 332	 120	

	

Ultracam	X	
-	100mm	 8	 3	 8.04	 362	 120	 8.60	 394	 122	 7.53	 332	 120	

Cessna	
182	

Canon	6D	-	
100mm	 14	 3	 1.43	 83	 2	 4.55	 198	 76	 0.78	 46	 0	

	

Canon	6D	-	
100mm	 8	 3	 1.41	 83	 1	 4.00	 198	 42	 0.78	 46	 0	

Piper	
Navajo	

DMC	1	-	
120mm	 12	 4	 8.70	 402	 120	 9.72	 459	 123	 8.99	 419	 120	

	

DMC	1	-	
120mm	 8	 3	 8.70	 402	 120	 9.69	 459	 122	 8.99	 419	 120	

 

 

Table	8:	Timeliness	Estimates	for	Sites	in	New	Mexico	at	12cm	GSD	

	 	    

South	Capital	
Complex	

	
Cochiti	Lake	

	

Sandoval	
Detention	
Center	

Platform	 Sensor	 Bit	Depth	 Bands	
Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

Cessna	
TU206G	

Ultracam	X	
-	100mm	 12	 4	 8.00	 360	 120	 8.12	 367	 120	 7.51	 331	 120	

	

Ultracam	X	
-	100mm	 8	 3	 8.00	 360	 120	 8.13	 367	 121	 7.51	 331	 120	

Cessna	
182	

Canon	6D	-	
100mm	 14	 3	 1.31	 78	 1	 2.43	 127	 19	 0.74	 44	 0	

	

Canon	6D	-	
100mm	 8	 3	 1.30	 78	 0	 2.29	 127	 11	 0.74	 44	 0	

Piper	
Navajo	

DMC	1	-	
120mm	 12	 4	 8.66	 400	 120	 9.19	 431	 120	 8.97	 418	 120	

	

DMC	1	-	
120mm	 8	 3	 8.66	 400	 120	 9.20	 431	 121	 8.97	 418	 120	
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Table	9:	S-UAS	Timeliness	Estimates	for	Sites	in	San	Diego	County,	CA	at	6cm	GSD	

	 	    San	Vicente	
Dam	

	 	 Del	Mar	
Pump	
Station	

	 	 North	Torrey	
Pines	Bridge	

Platform	 Sensor	 Bit	
Depth	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

S1000	 D810	-	
50mm	

14	
3	 0.23	 42	 1	 2	 0.18	 22	 0	 2	 0.44	 53	 0	

	 D810	-	
50mm	

8	
3	 0.23	 42	 1	 2	 0.18	 22	 0	 2	 0.44	 53	 0	

Iris+	 SX260	 8	 8	 0.19	 93	 2	 2	 0.18	 22	 0	 3	 0.38	 68	 0	
 

 

Table	10:	S-UAS	Timeliness	Estimates	for	Sites	in	San	Diego	County,	CA	at	12cm	GSD	

	 	    San	Vicente	
Dam	

	 	 Del	Mar	
Pump	
Station	

	 	 North	Torrey	
Pines	Bridge	

Platform	 Sensor	 Bit	
Depth	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

S1000	 D810	-	
50mm	

14	
3	 0.2	 35	 0	 2	 0.2	 24	 0	 2	 0.45	 54	 0	

	 D810	-	
50mm	

8	
3	 0.19	 35	 0	 2	 0.2	 24	 0	 2	 0.45	 54	 0	

Iris+	 SX260	 8	 5	 0.22	 62	 0	 2	 0.19	 22	 0	 2	 0.45	 54	 0	
 

 

Table	11:	S-UAS	Timeliness	Estimates	for	Sites	in	New	Mexico	at	6cm	GSD	

	 	    South	Capital	
Complex	

	 	 Cochiti	Lake	 	 	 Sandoval	
Detention	
Center	

Platform	 Sensor	 Bit	
Depth	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

S1000	 D810	-	
50mm	

14	
3	 0.19	 33	 1	 21	 0.62	 310	 23	 2	 0.20	 24	 0	

	 D810	-	
50mm	

8	
3	 0.19	 33	 0	 21	 0.46	 310	 13	 2	 0.20	 24	 0	

Iris+	 SX260	 8	 5	 0.21	 60	 1	 95	 0.65	 1135	 27	 3	 0.16	 29	 0	
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Table	12:	S-UAS	Timeliness	Estimates	for	Sites	in	New	Mexico	at	6cm	GSD	

	 	    South	Capital	
Complex	

	 	 Cochiti	Lake	 	 	 Sandoval	
Detention	
Center	

Platform	 Sensor	 Bit	
Depth	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

#	of	
UAS	

Tdat	
(h)	

Tacq	
(m)	

Tchan	
(m)	

S1000	 D810	-	
50mm	

14	
3	 0.17	 30	 0	 12	 0.34	 176	 6	 2	 0.21	 25	 0	

	 D810	-	
50mm	

8	
3	 0.17	 30	 0	 12	 0.30	 176	 3	 2	 0.21	 25	 0	

Iris+	 SX260	 8	 4	 0.19	 44	 0	 50	 0.31	 596	 7	 3	 0.15	 27	 0	
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8. FIGURES 
	

Figure	1:	Graphic	depiction	of	the	RSCM	

 

 

 

Figure	2:	Validation	Site	

 

 



	 54	

 

Figure	3:	Validation	Site	
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Figure	4:	Validation	Site	
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Figure	5:	Validation	Site	
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Figure	6:	Validation	Site	
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Figure	7:	Example	Critical	Infrastructure	Site,	San	Diego	County,	CA	
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Figure	8:	Example	Critical	Infrastructure	Site,	San	Diego	County,	CA	
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Figure	9:	Example	Critical	Infrastructure	Site,	San	Diego	County,	CA	
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Figure	10:	Example	Critical	Infrastructure	Site,	Santa	Fe	County,	NM	
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Figure	11:	Example	Critical	Infrastructure	Site,	Sandoval	County,	NM	
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Figure	12:	Example	Critical	Infrastructure	Site,	Sandoval	County,	NM	
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Figure	13:	Example	of	TD	Deviation	from	Euclidean	Distance	Model	
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Figure	14:	Percent	Error	by	Acquisition	Capacity	Term.	White	boxes	are	Manned	Only,	Gray	are	Manned	&	UAS	

 

 



	 66	

Figure	15:	Example	of	TM	Modeling	Source	of	Error	

 


