
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Summer 7-5-2017

A NOVEL APPLICATION OF MACHINE
LEARNING METHODS TO MODEL
MICROCONTROLLER UPSET DUE TO
INTENTIONAL ELECTROMAGNETIC
INTERFERENCE
Rusmir Bilalic
University of New Mexico - Main Campus

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Bilalic, Rusmir. "A NOVEL APPLICATION OF MACHINE LEARNING METHODS TO MODEL MICROCONTROLLER
UPSET DUE TO INTENTIONAL ELECTROMAGNETIC INTERFERENCE." (2017). https://digitalrepository.unm.edu/
ece_etds/365

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/365?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/365?utm_source=digitalrepository.unm.edu%2Fece_etds%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Rusmir Bilalic
 Candidate

 Electrical and Computer Engineering

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Dr. Edl Schamiloglu, Chairperson

 Dr. Christos Christodoulou

 Dr. Manel Martinez-Ramon

 Dr. Trilce Estrada

 Dr. Timothy Clarke

 Dr. Sameer Hemmady

ii

A NOVEL APPLICATION OF MACHINE LEARNING

METHODS TO MODEL MICROCONTROLLER UPSET DUE

TO INTENTIONAL ELECTROMAGNETIC INTERFERENCE

by

RUSMIR BILALIC

B.S Electrical Engineering, Northeastern University,

Boston, MA, 2005

M.S. Electrical Engineering, Northeastern University,

Boston, MA, 2009

M.S. Strategic Intelligence, National Intelligence University,

Washington, DC, 2014

Ph.D. Engineering, University of New Mexico

Albuquerque, NM, 2017

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

July 2017

iii

DEDICATION

To my family.

iv

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude to my committee chair and advisor,

Prof. Edl Schamiloglu for giving me the freedom and flexibility to pursue a topic of my

interest. His guidance, mentorship, and support during stressful qualifying exam periods

as well as his encouragement and support during the experimentation and analysis phases

of this project enabled me to complete my degree requirements on a very short timeline.

Next, I gratefully acknowledge the assistance and support of my committee

members: Dean Christos Christodoulou, Prof. Manel Martinez-Ramon, Prof. Trilce

Estrada, Dr. Tim Clarke, and Prof. Sameer Hemmady. Their invaluable feedback and

encouragement enabled me to pursue this topic with confidence. I am especially indebted

to Dr. Clarke and company for allowing me to use AFRL facilities and equipment

24/7/365. Without his generous support, none of this would have been possible. Big

thanks to Prof. Sal Portillo for his positive encouragement and for being my sounding

board for ideas with very candid feedback -- he never doubted that any of this would

happen. “Embryonic Dr. Rus” he would say.

Additionally, I gratefully acknowledge the Air Force Institute of Technology, big

Air Force, and my previous commanders for selecting me for this program and the very

generous financial support during my studies. Also thanks to Mr. Daniel Clepper, Lt Col

Garcia, Lt Col Kleinschmidt, and the UNM ROTC Det 510 crew for the administrative

support during my time at UNM.

v

I would also like to extend my sincere gratitude to my dear friend, Mr. Daniel

Guillette. This task would have been much more complex had it not been for his technical

expertise and motivational support. I would also like to take this opportunity and

gratefully acknowledge the support by Dr. Julie Lawrance, Mr. Matt Landavazo, Mr.

Hugh Pohle, and other future colleagues within AFRL.

Next, enormous thanks to my family who sacrificed everything so that my brother

and I can have opportunities that they never did. Finally, I am eternally thankful to my

wife Jasna, who endures the constant moves and uncertainty that comes with our

lifestyle. Her love and support, and her willingness to stand by me no matter what means

the world to me. I could go on and on for pages, and I would still fail to acknowledge

everyone whose support contributed to my success. To everyone that I failed to mention,

a big thank you!

vi

A NOVEL APPLICATION OF MACHINE LEARNING

METHODS TO MODEL MICROCONTROLLER UPSET DUE

TO INTENTIONAL ELECTROMAGNETIC INTERFERENCE

by

RUSMIR BILALIC

B.S Electrical Engineering, Northeastern University,

Boston, MA, 2005

M.S. Electrical Engineering, Northeastern University,

Boston, MA, 2009

M.S. Strategic Intelligence, National Intelligence University,

Washington, DC, 2014

Ph.D. Engineering, University of New Mexico

Albuquerque, NM, 2017

ABSTRACT

A novel application of support vector machines (SVMs), artificial neural

networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model

microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI)

is presented. In this approach, an MCU performs a counting operation (0-7) while

electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected

into the MCU clock line. Injection times with respect to the clock signal are the clock

low, clock rising edge, clock high, and the clock falling edge periods in the clock window

during which the MCU is performing initialization and executing the counting procedure.

The intent is to cause disruption in the counting operation and model the probability of

effect (PoE) using machine learning tools. Five experiments were executed as part of this

research, each of which contained a set of 38,300 training points and 38,300 test points,

for a total of 383,000 total points with the following experiment variables: injection times

vii

with respect to the clock signal, injected RF power, injected RF pulse width, and injected

RF frequency. For the 191,500 training points, the average training error was 12.47%,

while for the 191,500 test points the average test error was 14.85%, meaning that on

average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving

out the results for the worst-performing model (SVM with a linear kernel), the test

prediction accuracy for the remaining machines is almost 89%. All three machine

learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in

their ability to model and predict the PoE on an MCU due to IEMI. The GP approach

performed best during training with a 7.43% average training error, while the ANN

technique was most accurate during the test with a 10.80% error.

viii

Table of Contents

DEDICATION.. iii

ACKNOWLEDGMENTS ... iv

ABSTRACT .. vi

List of Figures .. x

List of Tables .. xix

Chapter 1: Introduction and Research Contribution ... 1

Chapter 2: Literature Review .. 16

Chapter 3: Machine Learning Overview .. 32

Chapter 3-1: Machine Learning Theory... 32

Chapter 3-1-1: Probabilistic Perspective on Machine Learning 36

Chapter 3-1-2: Error and Noise in Data .. 39

Chapter 3-1-3: Algorithm Generalization Theory .. 42

Chapter 3-1-4: Is Learning Feasible? .. 45

Chapter 3-1-5: Important Learning Principles .. 47

Chapter 3-2: Support Vector Machines (SVMs).. 49

Chapter 3-3: Artificial Neural Networks (ANN) .. 70

Chapter 3-4: Gaussian Processes for Machine Learning (GPML) 98

Chapter 3-4-1: Laplace’s Method ... 104

Chapter 3-4-2: Expectation Propagation ... 107

Chapter 3-4-3: Covariance Functions for GPML ... 113

Chapter 3-4-4: Model Selection for GP Classification ... 118

ix

Chapter 3-4-5: Bayesian Model Selection .. 121

Chapter 3-4-6: Cross-validation .. 122

Chapter 3-4-7: Model Selection for GP Classification ... 123

Chapter 3-4-8: Approximation for Large Datasets ... 125

Chapter 4: Experiment Setup .. 128

Chapter 5: Experiment Data Analysis and Results ... 141

Chapter 5-1: Experiment Data Analysis Strategy ... 141

Chapter 5-2: Test Experiment 1 (TE-1) Data Analysis ... 151

Chapter 5-3 Test Experiment 3 (TE-3) Data Analysis .. 180

Chapter 5-4 Test Experiment 4 (TE-4) Data Analysis .. 194

Chapter 5-5 Test Experiment 5 (TE-5) Data Analysis .. 209

Chapter 5-6: Discussion of Results .. 223

Chapter 6: Summary and Conclusion... 231

Chapter 7: Future Research .. 237

Bibliography .. 240

Appendix A .. 249

x

List of Figures

Figure 1: Threat level vs. technical expertise [1]. ... 2

Figure 2: The spectral distribution of different types of electromagnetic environments [3].

... 4

Figure 3: Photograph of a standard household microwave magnetron [4]. 6

Figure 4: Example of a medium-tech HPM source [5]. .. 7

Figure 5: Example of a high-tech HPM system: an impulse radiating antenna (IRA)

hyperband source [3]... 8

Figure 6: An example of permanent damage to an input transistor due to IEMI [6]. 9

Figure 7: Microcontroller susceptibility test setup [16]. ... 18

Figure 8: Camp, et al. setup to model MCU breakdown behavior [17]............................ 19

Figure 9: Test parameters for modeling of MCU breakdown behavior [17]. 20

Figure 10: Camp et al.’s results of IEMI breakdown study [17]. 20

Figure 11: Internal impedance and internal current activity for different MCU instructions

[18]. ... 22

Figure 12: Candidate scenario for an NN application to an electromagnetics problem

[20]. ... 24

Figure 13: Test setup to determine electromagnetic immunity behavior [21]. 25

Figure 14: Multiconductor transmission line (MTL) crosstalk model [22]. 26

xi

Figure 15: Direct power injection method according to IEC 62132-4 [26]. 29

Figure 16: Simulation scenario for SVM-derived electromagnetic properties of the

material under test [27]. .. 30

Figure 17: SVM results vs. HFSS results [28]. ... 30

Figure 18: Basic flow of the learning problem [29]. .. 34

Figure 19: Basic learning problem flow with probability factored in [29]. 39

Figure 20: Basic learning problem flow with error measure incorporated [29]. 42

Figure 21: A separating hyperplane w, b for a two-dimensional training set [32]. 51

Figure 22: Illustration of feature mapping [34]. ... 57

Figure 23: Typical architecture of SVMs and related kernel methods [35]. 67

Figure 24: 5-fold cross-validation data split [36]. .. 68

Figure 25: Illustration of problem-solving flow using ANNs [38]. 72

Figure 26: Illustration of a single input neuron [38]. .. 74

Figure 27: Hard limit transfer function [38]. .. 75

Figure 28: Linear transfer (activation) function [38]. ... 76

Figure 29: Sigmoid transfer (activation) function [38]. .. 77

Figure 30: Multiple input neuron [38]. ... 78

Figure 31: Classification scenario ill-suited for single perceptron [29]. 79

xii

Figure 32: Two perceptrons required to solve the XOR problem illustrated in Fig. 23

[29]. ... 79

Figure 33: Target classification with different numbers of perceptrons [29]. 80

Figure 34: A layer of S neurons [38]. ... 81

Figure 35: Layer of S neurons in abbreviated notation [38]. .. 82

Figure 36: Illustration of a 'softened' MLP ANN [29]. ... 82

Figure 37: Example of an ANN node in a hidden layer [29]. ... 84

Figure 38: Example of an ANN node [29].. 85

Figure 39: Forward propagation algorithm [29]. .. 87

Figure 40: Illustration of the backpropagation process [29]. .. 90

Figure 41: The ANN algorithm [29]. .. 91

Figure 42: Laplace's method for Gaussian process classification [47]. 107

Figure 43: Expectation propagation for binary classification [45]. 111

Figure 44: Algorithm for prediction step of EP [45]. ... 112

Figure 45: GPC with Laplace's approximation for computation of log marginal likelihood

and derivatives [45]... 125

Figure 46: GPC with EP approximation for the computation of marginal likelihood [45].

... 125

Figure 47: MCU upset experiment logical diagram. .. 128

xiii

Figure 48: MCU Upset experiment setup. .. 129

Figure 49: MCU with injection network. .. 129

Figure 50: DUT#1 (ATMEL AT89LP2052) pin diagram [56]. 133

Figure 51: High-level architecture of DUT#1 [56]. .. 134

Figure 52: DUT#1 instruction execution timing diagram [56]. 135

Figure 53: DUT#1 oscilloscope capture - normal operation. ... 136

Figure 54: DUT#1 oscilloscope capture – upset. .. 138

Figure 55: DUT#1 Oscilloscope Capture - Upset ... 139

Figure 56: A confusion matrix and associated metrics [57]. .. 142

Figure 57: ROC space illustration [60]. .. 144

Figure 58: Probability of effect (PoE) as a function of injection location and RF voltage.

... 146

Figure 59: ANN architecture used to analyze MCU upset data...................................... 148

Figure 60: Bayes-optimized minimum CV-error; selection of C and σ (SVM-RBF, TRG-

1 data).. 154

Figure 61: Minimum cross-validation error vs. number of function evaluations (SVM-

RBF, TRG-1 data). .. 155

Figure 62: Bayes-optimized minimum CV-error; selection of C and σ (SVM-CUBIC,

TRG-1 data). ... 156

xiv

Fig. 63: Minimum cross-validation error vs. number of function evaluations (SVM-

CUBIC, TRG-1 data). ... 157

Figure 64: Classifier confusion matrix during training (TRG-1 data). 158

Figure 65: ROC analysis of top four performing classifiers (TRG-1 data). 159

Figure 66: Threshold vs. accuracy for the TST-1 dataset. .. 160

Figure 67: Classifier confusion matrix during testing (TST-1 data)............................... 161

Figure 68: ROC analysis for top-four performing classifiers (TST-1 data). 162

Figure 69: PoE vs. injection location for top four performing classifiers (TST-1 data). 163

Figure 70: Bayes-optimized minimum CV-error; selection of C and σ (SVM-RBF, TRG-

2 data).. 168

Figure 71: Cross-validation error vs. number of function evaluations (SVM-RBF, TRG-2

data)... 169

Figure 72: Bayes-optimized minimum CV-error; selection of C and σ (SVM-CUBIC,

TRG-2 data). ... 170

Figure 73: Cross-validation error vs. number of function evaluations (SVM-CUBIC,

TRG-2 data). ... 171

Figure 74: Classification performance during training (TRG-2 data). 172

Figure 75: ROC analysis of top four performing classifiers (TRG-2 data). 173

Figure 76: Threshold vs. accuracy for TST-2 dataset. .. 174

xv

Figure 77: Classification performance during testing (TST-2 data). 175

Figure 78: ROC analysis of top four performing classifiers during test (TST-2 data). .. 176

Figure 79: PoE vs. injection location for top four performing classifiers (TST-2 data set).

... 178

Figure 80: Bayes-optimized minimum CV-error; selection of C and σ (SVM-RBF, TRG-

3 data).. 182

Figure 81: Cross-validation error vs. number of function evaluations (SVM-RBF, TRG-3

data)... 183

Figure 82: Bayes-optimized minimum CV-error; selection of C and σ (SVM-CUBIC,

TRG-3 data). ... 184

Figure 83: Cross-validation error vs. number of function evaluations (SVM-CUBIC,

TRG-3 data). ... 185

Figure 84: Classification training performance for TRG-3 data. 186

Figure 85: ROC analysis of top four performing classifiers during test (TRG-3 data). . 187

Figure 86: Threshold vs. accuracy for the TST-3 dataset. .. 188

Figure 87: Classifier performance during testing (TST-3 dataset). 189

Figure 88: ROC analysis of top four performing classifiers during test (TST-3 data). .. 190

Figure 89: PoE with respect to RF injection location during clock window (TST-3 data).

... 192

xvi

Figure 90: Bayes-optimized minimum CV-error; selection of C and σ (SVM-RBF, TRG-

4 data).. 196

Figure 91: Cross-validation error vs. number of function evaluations (SVM-RBF, TRG-4

data)... 197

Figure 92: Bayes-optimized minimum CV-error; selection of C and σ (SVM-CUBIC,

TRG-4 data). ... 198

Figure 93: Cross-validation error vs. number of function evaluations (SVM-CUBIC,

TRG-4 data). ... 199

Figure 94: Classification training performance for TRG-4 data. 200

Figure 95: ROC analysis of top four performing classifiers during test (TRG-5 data). . 201

Figure 96: Threshold vs. accuracy for the TST-4 dataset. .. 203

Figure 97: Classifier performance during testing (TST-4 data set). 204

Figure 98: ROC analysis of top four performing classifiers during test (TST-4 data set).

... 205

Figure 99: PoE vs. injection location for top two performing SVM classifiers (TST-4 data

set). .. 206

Figure 100: PoE vs. injection location for ANN and GP-SE-ARD classifiers (TST-5 data

set). .. 207

Figure 101: Bayes-optimized minimum CV-error; selection of C and σ (SVM-LINEAR,

TRG-5 data). ... 211

xvii

Figure 102: Cross-validation error vs. number of function evaluations (SVM-LIN, TRG-5

data)... 212

Figure 103: Bayes-optimized minimum CV-error; selection of C and σ (SVM-

QUADRATIC, TRG-5 data). .. 213

Figure 104: Cross-validation error vs. number of function evaluations (SVM-

QUADRATIC, TRG-5 data). .. 214

Figure 105: Classification training performance for TRG-5 data. 215

Figure 106: ROC analysis of top four performing classifiers during test (TRG-5 data). 216

Figure 107: Threshold vs. accuracy for the TST-5 dataset. .. 217

Figure 108: Classifier performance during testing (TST-5 data set). 218

Figure 109: ROC analysis of top four performing classifiers during test (TST-5 data set).

... 219

Figure 110: PoE vs. injection location for top two performing SVM classifiers (TST-5

data set). .. 220

Figure 111: PoE vs. injection location for ANN and GP-SE-ARD classifiers (TST-5 data

set). .. 221

Figure 112: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-1 data). 225

Figure 113: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-2 data). 226

Figure 114: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-3 data). 227

Figure 115: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-4 data). 228

xviii

Figure 116: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-5 data). 229

Figure 117: ANN transfer functions [38].. 249

xix

List of Tables

Table 1: IEME classification based on bandwidth [3]. ... 5

Table 2: Radiated electric fields generated by HPM systems [3]. 6

Table 3: Categories and consequences of electronic effects [1]. 10

Table 4: MCU susceptibility results summary [16]. ... 19

Table 5: Neural network training database [20]. .. 24

Table 6: MTL scenario training vector [22]. .. 26

Table 7: layer l parameters of ANN node of Fig. 27 .. 85

Table 8: Commonly used covariance functions [45]. ... 118

Table 9: Counter program in assembly language. .. 136

Table 10: Variables studied during this research. ... 140

Table 11: Machine prediction of MCU upset - summary of results. 151

Table 12: Classifier performance summary for the TE-1 data set. 165

Table 13: Classifier performance summary for the TE-2 data set. 179

Table 14: Classifier performance summary for the TE-3 data set. 193

Table 15: Classifier performance summary for the TE-4 data set. 208

Table 16: Classifier performance summary for the TE-5 data set. 223

Table 17: Machine prediction of MCU upset - summary of results. 234

xx

1

Chapter 1: Introduction and Research Contribution

Industrialized nations today depend on the fast flow of information as well as

information processing systems that make that flow possible. A vast majority of these

information processing systems and infrastructure is not hardened against

electromagnetic pulse (EMP) and EMP-producing weapon technology [1]. In addition to

unintentional sources of electromagnetic (EM) radiation that can adversely affect critical

electronic infrastructure, advanced militaries are experimenting with the use of high-

power microwave (HPM) weapon systems. These systems are referred to as directed

energy weapons (DEW), and their EM radiation can be used to upset or damage

electronic systems. DEWs can be classified into three categories: lasers, microwave or

radio frequency (RF) energy weapons also known as HPM weapons, and charged particle

beam weapons. HPM weapons do not face the same propagation issues as lasers and

charged particle beam weapons. Particle beams and lasers have difficulty propagating in

the atmosphere, and electron beams cannot propagate in space, whereas HPM weapons

propagate through a diffraction-limited manner and can accommodate some lack of

precision, in contrast to the other types of DEWs [1].

The level of technological sophistication that is required to cause electronic

system malfunction is not only available to modern militaries but also to non-state actors

who were previously considered technologically backward. Fig. 1 illustrates the threat

level vs. required technical knowledge to execute an HPM attack.

2

Figure 1: Threat level vs. technical expertise [1].

As Fig. 1 shows, this technology is becoming more accessible at a reasonable

cost. Potential EMP targets range from small systems, such as automobiles, to highly

complex systems, such as aircraft, energy and power delivery infrastructure, as well as

systems used in the banking and financial sectors [1]. Indeed, there have been several

instances of HPEM weapons use against civilian and military infrastructure [2].

Electromagnetic interference (EMI), as well as intentional electromagnetic

interference (IEMI), are two important concepts related to the development and

protection of critical electronic equipment for civilian and military use. IEMI/EMI can

render civilian and military systems inoperable and can present significant obstacles to

mission accomplishment, whether in the context of military operations or civilian use in

hospitals, airports, or industry.

Counter-electronics High Power Microwave Advanced Missile Project (CHAMP)

is a joint concept technology demonstration championed by the Air Force Research

Laboratory Directed Energy Directorate (AFRH/RD) at Kirtland Air Force Base in

Albuquerque, New Mexico. Its purpose is to demonstrate a military capability of an air-

3

launched DEW platform capable of incapacitating or damaging electronic systems. Test

demonstrations were conducted in which the platform was successful in disrupting the

normal operation of electronic systems in a test environment. In fact, a recent National

Academy study, the CHAMP platform was described as having a DEW capability with a

defined concept of operations (CONOPS), meaning there exist military plans to utilize

such DEWs. These CONOPS entail non-kinetic counter-electronics (NKCE) attacks of

value in operations that fall short of kinetic engagement, in which the re-establishment of

normal target operations might be of operational interest [1]. In other words, the EM

energy released by a CHAMP-like platform may have the objective to temporarily

disrupt, but not destroy, the operation of electronic systems. In such cases, the operation

is restored shortly after the attack.

After EM energy penetrates electronic systems enclosures, the predictable

susceptibility of small-scale semiconductor devices becomes critical for DEW utility

assessment [1]. The type of malfunction that this EM energy causes to semiconductor

devices as well as predictive modeling of such malfunctions is not well understood, and it

is the subject of this research.

Before research into effects of electronic systems due to unwanted EM radiation

is presented, it is important to define some concepts that relate to IEMI/EMI. In a recent

special issue paper, Radasky et al. describe high-power electromagnetics (HPEM) and

IEMI as a new threat that can compromise the modern technology on which western

economies and the military rely [2]. The term HPEM encompasses a set of transient EM

pulses in which the peak fields can be of such intensity to cause an undesired operation or

malfunction of electronic systems. Phenomena that can produce such EM transients

4

include lighting strikes, electrostatic discharge (ESD), EMP created by nuclear bursts or

other weapons, as well as EM fields generated by radar equipment [2], and directed

energy weapons such as CHAMP. The phenomenon where the EM interference is

intended to cause disruption to electronic systems is referred to as IEMI, and it is the

primary focus of this research.

Several attributes can be used to describe and classify IEMI/IEME. The first is

related to the EM field that is impinging on an electronic system. Fig. 2 shows the

spectral classification of such an electric field as a function of frequency. The second

attribute is related to the source that is producing the undesired IEMI. The third attribute

that is used to describe and classify IEMI is the effects of the IEMI on the electronic

systems [3]. Modeling and prediction of IEMI effects are the primary focus of this

research.

Figure 2: The spectral distribution of different types of electromagnetic environments [3].

Fig. 2 shows the EM spectrum of natural lightning, high-altitude EMP (HEMP),

ultrawideband (UWB) EM, and HPM environments in the narrowband. Naturally

occurring EMP phenomena, such as lightning, are not of primary focus. The two IEMI

5

environments mentioned above can be characterized into four categories based on the

frequency content of their spectral densities as follows: narrowband, moderate band,

ultramoderate band, and hyperband.

The parameter that is used to characterize IEME is the band ratio (br), and it is

defined as 𝑏𝑟 =
𝑓ℎ

𝑓𝑙
 where 𝑓ℎ and 𝑓𝑙 are denoted as the high and low frequency of

operation, respectively. Although different agencies, namely the Federal

Communications Commission (FCC) and the Defense Advanced Research Projects

Agency (DARPA), utilize different classifications, the bandwidths that are sufficiently

useful for an introductory treatment are summarized in Table 1 [3].

Table 1: IEME classification based on bandwidth [3].

Alternatively, IEMI environments can be characterized and classified based on

the electric field strength that is produced by the HPEM source at a specified distance

away from the source. Table 2 shows the radiated electric fields at certain distances as

produced by relatively compact antennas using readily-available microwave sources.

6

Table 2: Radiated electric fields generated by HPM systems [3].

The final category by which IEMI environments can be classified is the

technological level of the sources that are used to generate HPM. These sources can be

broadly classified as low-tech generator systems, medium-tech generator systems, and

high-tech generator systems. The microwave magnetron operating at a frequency of 2.45

GHz is an example of a low-tech, low-cost, commercially available microwave source

that can be operated to generate HPM. The IEMI produced by a low-tech device, an

example of which is shown in Fig. 3, was able to cause significant upset or damage to

common household appliances [3].

 Figure 3: Photograph of a standard household microwave magnetron [4].

7

Radio Research Instruments provides several medium-tech HPM sources that can

be modified to create IEMI generators. An illustration of a medium-tech HPM sources is

shown in Fig. 4.

Figure 4: Example of a medium-tech HPM source [5].

 Medium-tech generator systems require the skills of a qualified operator and are

built using more sophisticated components, such as commercially available radars that

can be modified to create IEMI. In contrast, high-tech HPEM generator systems require

advanced and specialized technologies and may have the capability to be tuned to cause

damage to various targets. An example of such a system is shown in Fig. 5.

8

Figure 5: Example of a high-tech HPM system: an impulse radiating antenna (IRA) hyperband source [3].

 Finally, classifying IEMI environments by what effects they have on electronic

systems is the most appropriate criterion related to this research. Once the EM energy

penetrates the electronic system, the effect can manifest itself in several different ways:

as noise, as false information, as transient upset, or as permanent damage.

 Noise usually couples via front door mechanisms, meaning through receivers that

are designed to accept and transmit EM signals. Receivers in civilian electronics systems

are designed to operate with electric field intensities as low as several 𝜇V m⁄ with a

narrow bandwidth. The operation of such receivers is easily degraded through significant

presence of noise, but the degradation of operation usually lasts only as long as the noise

signal persists.

 False information effects occur with electric field strengths of a decade or more

above the signal level [3]. Consequences of this upset are more significant, because the

electronic systems and the user may not be aware that there is a malfunction in progress,

potentially leading to catastrophic failures. False information upsets are usually caused by

EM energy that is coupled via front door mechanisms.

9

Transient upsets usually require several volts of induced signals to affect the logic

state of digital systems. The characteristics of the aggressor signal depend on the

operating frequency and the quality factor 𝑄 of the system, among other factors.

Consequences of this type of upset depend on the system design and recovery

mechanisms in place to correct transient failure events. This type of upset generally

manifests itself through back-door coupling of EM energy into electronic systems. This

type of upset and its predictive modeling is the primary focus of this research [3].

The most severe type of effect is permanent damage, an example of which is

shown in Fig. 6. Permanent damage results from back door coupling of high-amplitude

EM energy into electronic systems. For this effect to occur, there must be a significant

overvoltage applied to semiconductor junctions. Typical values of electric field intensity

required to cause this type of damage lie in the range of 15-20 kV m⁄ [6].

 Figure 6: An example of permanent damage to an input transistor due to IEMI [6].

To fully understand how electronic devices operate in extreme EM environments

and to improve their immunity, it is important to develop an understanding of what

IEMI/EMI is and how it affects electronic systems. IEMI effect on digital electronics is a

10

high priority research topic for the Department of Defense in general, and the Air Force

Research Laboratory in particular.

The ultimate goal of this research is to develop knowledge about the effects of

HPM on digital systems and to develop a model that can accurately characterize and

predict the circumstances under which these events are likely to occur. However,

developing a system-level model for IEMI effects on a large-scale system, such as a

personal computer, is a very complex task. The number of transistors, the large number

of propagation paths through a complex system, in addition to the large number of

possible interpretations of transistor states at the software level, make the task of

developing a system-level model to predict system malfunction extremely challenging

[7].

When it comes to research of IEMI effects on electronic systems, Schamiloglu et

al. define an initial framework composed of categories and consequences of electronic

effects. Such a framework, presented in Table 3, provides an excellent starting point to

guide initial experiments with the ultimate goal of developing a predictive model for

upset in electronic systems due to IEMI.

Table 3: Categories and consequences of electronic effects [1].

Failure Mode Power

Required

Wave Shape Recovery

Process

Recovery Time

Interference /

disturbance

Low Repetitive pulse

or continuous

Self recovery Seconds

Digital upset Medium Short pulse,

single or

repetitive

Operator

intervention

Minutes

Damage High UWB or

narrowband

Maintenance Days

11

To simplify system analysis and provide a good starting point for the development

of a predictive model for upset due to IEMI, this research attempts to construct a

computational model for prediction of a microcontroller unit (MCU) upset using machine

learning tools. The MCU problem presents an ideal choice because it is a complete

computer on a single chip that represents an intermediate level of system complexity

between an individual CMOS device and a complete digital system [7]. Machine learning

tools are well-suited to analyze MCU upset data because of the probabilistic nature of the

problem and the necessity to predict such probabilistic upset events. The availability and

structure of such data make it an ideally suitable target for machine learning tools.

To date, there have been very limited reports of modeling IEMI effects on

electronic systems. This research proposes a novel application of machine learning tools

to study transient effects on digital electronics, starting with the most compact

representation of a complete digital system – an MCU. Specifically, three machine

learning techniques and their applicability to the MCU upset problem are utilized:

support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian

processes (GPs) for machine learning (GPML).

Several reports have been published covering the application of SVMs to EM

problems. For SVM classifiers the key underlying notion is the kernel trick. The kernel

trick is used to lift the data into feature space, in which a maximum margin hyperplane is

constructed that separates the data into two classes. The popularity of SVMs is due to its

appealing features and its effectiveness. Specifically [8]:

a. SVMs represent a methodology where geometric intuition, elegant

mathematics, theoretical proofs, and practical algorithms exist;

12

b. SVMs are a methodology that can be applied to many types of regression,

classification, and novelty detection problems;

c. The underlying theory of SVMs is very general and flexible;

d. In contrast to NNs, SVMs eliminate the problem of local minima when trying

to minimize an error function;

e. This method is relatively simple to use, and it does not require extensive

expert knowledge of the underlying theory;

f. There are many successful applications of SVMs where they have proven to

be relatively insensitive to noise as well as to many different distributions of

the data used during the training phase.

Feedforward ANNs, such as multilayer perceptrons (MLPs) and SVMs, are

popular tools for nonlinear regression and classification problems. From a Bayesian

perspective, the choice of an ANN model may be viewed as defining a prior probability

distribution over nonlinear functions, and the ANN learning process can be interpreted in

terms of the posterior probability distribution over the unknown function. Concisely,

Neal [9] has shown that certain ANNs with one hidden layer converge to a GP prior

probability distribution over functions, meaning that GPs can be considered as

alternatives to ANNs.

A feedforward neural network, also known as an MLP, is a series of logistic

regression models stacked on top of each other, with the final layer representing another

logistic regression model or a linear regression model, depending on whether the problem

to be solved is of the classification or regression type. ANNs have been the subject of

great interest due to their suitability to build learning machines. The field is widely

13

viewed as having begun with McCulloch and Pitts [10], who devised a simple

mathematical model of the neuron in 1943, in which they approximated the output as a

weighted sum of inputs that are passed through a threshold function. Rosenblatt [11]

invented the perceptron learning algorithm in 1957, paving the way to estimate the

parameters of a McCulloch-Pitts neuron. In 1986, Rumelhart, Hinton, and Williams

discovered the backpropagation algorithm, which allows the fitting of models with

hidden layers [12].

 The GP approach defines a prior probability distribution over functions that can

be converted to a posterior over functions once the algorithm is exposed to some training

data. A GP assumes that the input probability distribution is jointly Gaussian, with a

given mean and covariance function represented by a covariance matrix, or kernel, the

requirement of which is to be positive semi-definite. The basic idea is that if the kernel

deems two input entries to be similar, then the output of the function at those points will

be similar as well. GPs can be thought of as a Bayesian alternative to the kernel methods,

such as the SVM method. Although SVMs are sparser and therefore faster, they do not

produce a well-calibrated probabilistic output, which is important for many applications.

In summary, communication systems, sensors, data processing devices, and other

civilian and military systems make up critical modern infrastructure in daily life or on the

battlefield. Damage or failure of these systems have the potential to damage economies

and cause injuries or loss of life. Additionally, technological advances and easy access to

HPM source and radiating technologies by potentially nefarious actors necessitate

research into the effects of IEMI on electronic systems and its components. The

assessment of electronic upset and damage are important research activities in the

14

development of behavioral as well as predictive models that will aid in the development

of appropriate protection methods for civilian and military electronic systems. Three

machine learning methods will be utilized to accomplish the difficult task of modeling

MCU upset within this framework, SVM, ANNs, and GPs.

 The primary and original contribution of this research is the application of the

three machine learning methods (SVMs, ANNs, GPs) to model and predict MCU upset,

which is defined as any operation of an MCU other than the one desired. Even though

SVMs, ANNs, and GPs have been extensively used to tackle traditional problems in

electromagnetics, their applicability to model IEMI effects on electronic devices has not

been studied to date. Once the proof-of-concept is achieved, the ultimate goal and related

future work will be to generalize these techniques to model upset of more complex

electronic systems.

This dissertation is organized in the following manner:

Chapter 1 - Introduction and Research Contributions (Significance of Research):

This chapter gives a definition and overview of the intentional EM interference and

environment (IEMI/IEME) and why it is important to study this topic. Additionally, it

presents key research contributions and their significance.

Chapter 2 - Literature Review: This chapter surveys the state-of-the-art literature in

IEMI modeling and machine learning applications to problems of EM nature, including

IEMI.

Chapter 3 - Theoretical Considerations: This chapter presents an overview of the

theoretical foundations of machine learning, specifically, SVMs, ANNs, and GPs.

15

Chapter 4 - Experiment Setup and Description: This chapter illustrates the

experimental setup, description of key hardware components, as well as a brief

description of experiment control and analysis software.

Chapter 5 - Results and Analysis: This chapter presents the results and analysis of the

experimental data and a discussion related to any discrepancies observed.

Chapter 6 - Summary and Conclusion: A summary and conclusion of the research are

presented in this chapter.

Chapter 7 - Future Research: This chapter makes recommendations for future research

related to the topic of IEMI modeling with machine learning tools.

Appendices: The appendices contain data that is pertinent to this research, but that was

omitted from the main body of the document to avoid clutter.

16

Chapter 2: Literature Review

 The purpose and organization of this chapter are twofold. The first part surveys

the literature on IEMI research, while the second part covers the literature on the use of

machine learning techniques, specifically ANNs, SVMs, and GPs applied to problems

related to IEMI modeling and other problems related to electromagnetics, as applicable.

 There has been significant research into effects of EM energy on the operation of

electronic systems, individual components, as well as microcontrollers. For instance,

Wendsche et al. [13], [14] have found that the immunity of digital equipment in general,

and MCUs in particular, largely depends on the hardware and software structure. They

investigated the time-dependent immunity of 8-bit and 16-bit microcontrollers by

subjecting the MCU power supply to single burst spikes of EM energy and have found

that susceptibility to IEMI depends directly on the microcontroller’s operational

functions, especially on the microinstructions used for an assembler instruction. In other

words, they have shown that the MCU susceptibility is directly related to the instruction

that the MCU is executing and the instruction-dependent hardware state at the time of

impulsive disturbance. Additionally, they have found that the susceptibility (or

probability of upset) of one assembler instruction can vary anywhere from 0% to 100%

depending on when the EM energy is injected into the device. They found that their

results did not depend on the particular model or type of microcontroller used, but that it

was applicable universally across all the devices they tested, which is why this research is

focused on studying one microcontroller model.

Additionally, Wang et al. [15] used the direct injection method to inject an RF

signal into the clock pin of an 8-bit ripple counter that was designed and fabricated using

17

AMI 0.5 pm process technology. In this study, the authors have shown that relatively low

levels (16.8 dBm) of injected pulse-modulated RF signal into the clock network affected

the normal functioning of a digital counter circuit. The reason for the effect manifestation

at a relatively low RF power level is the decreasing feature size that results in a lower

charge that is required for transistors to change states. At a carrier frequency of 1 GHz,

the end-to-end system was not perfectly matched, as they determined the magnitude of

the reflection coefficient to be approximately Γ ≈ 0.559, so not all power was delivered

to the clock network. They intend to further investigate additional parameters, such as RF

pulse width, pulse rise/fall time, and varying input voltage bias to see how they affect and

cause state changes at output pins.

 In their paper, Nitsch et al. [16] give an overview of the susceptibility of a wide

range of electronic systems such as computer networks, computer systems,

microprocessor boards, microcontrollers and other integrated circuits (ICs) to IEMI. They

also assessed physical damage to the devices under test (DUT) by opening them and

examining the damaged components. The experiment consisted of free-field tests in

which the equipment under test (EUT), enclosed in a TEM structure, was subjected to an

EM free field of varying strength. It should be noted that the EUT was fairly dated (e.g.

233 MHz motherboards, 10/100 Ethernet connections, among others).

The portion of their experiment that is most pertinent to this research is their

investigation of microcontroller upset. The parameters varied during their research are

shown in Fig. 7, and a summary of results is shown in Table 4. Their measures of upset

are: breakdown failure rate (BFR), defined as the number of breakdowns of the system

divided by the number of pulses applied to it; the breakdown threshold (BT), defined as

18

the value of the electric field strength at which the BFR attains 5% of maximum; and the

breakdown bandwidth (BB), defined as the span of electric field strength at which the

BFR changes from 5% to 95% of maximum. The authors tested the effects of different

data, reset, oscillator, and power supply line lengths, as well as clock rate on the BFR and

BT. They found that different devices of the same MCU type exhibited similar BFR and

BT, but different types of MCUs showed different BFRs and BTs. In general, BT of the

tested MCUs was heavily dependent on the reset line length, clock, and power supply line

length, but it was independent of data line length and clock rate (up to 8 MHz).

Figure 7: Microcontroller susceptibility test setup [16].

When it comes to BB, it is influenced by the type of microcontroller, reset line

length, and power supply line length. BB was not dependent on the oscillator line length,

data line length, nor the MCU clock operating frequency. The level of influence of each

parameter on BT and BB is summarized in Table 4.

19

Table 4: MCU susceptibility results summary [16].

 Camp et al. [17] studied the IEMI susceptibility of three different microcontroller

types manufactured using complementary metal oxide semiconductor (CMOS)

technology, following which they used a novel statistical test procedure to model the

breakdown probabilities as a function of interfering pulse amplitude. Their setup is

shown in Fig. 8.

Figure 8: Camp, et al. setup to model MCU breakdown behavior [17].

It should be noted that Camp et al. conducted a free-field test while modifying the

experimental parameters shown in Fig. 9.

20

Figure 9: Test parameters for modeling of MCU breakdown behavior [17].

Similar to [16], Camp et al. studied the probability of effect (PoE) as a function of

the I/O port state, different signal line lengths, MCU clock rate, and EM pulse shape. The

results of their study are summarized in Fig. 10.

Figure 10: Camp et al.’s results of IEMI breakdown study [17].

The symbol 𝜉 is a descriptive factor that accounts for the length of the signal line.

Their results show that the PoE is highest when the IEMI affects the reset pin, followed

by the clock and power pins, depending on the port state. IEMI effect on the I/O pin

remains relatively constant. Further analysis of their data showed that for a Weibull-

21

distributed critical EM field strength, it is possible to determine the breakdown failure

probability of the MCU under test.

Investigating the behavior of electronic devices when they are subjected to IEMI

is a relevant and vibrant research topic of interest to various civilian and government

agencies all over the world. Understanding how devices operate in aggressive EM

environments helps in the development of effective countermeasures and hardening

methods. In addition to understanding how RF transients affect electronic devices at the

device physics level, it is also important to build knowledge on how device level effects

propagate to the functional layer, i.e. at the software level. Yuan [18] presents a process

for building a model of how conducted EMI (cEMI) causes software-level effects. In

their approach, a black box cEMI modeling procedure is utilized. This model building

approach relies on only on measurement information. The model relies on the premise

that the internal impedance of the MCU changes as different instructions are being

executed and that each instruction corresponds to a unique internal impedance (intZ)

signature as well as an internal current activity (intCA) signature. The result is that the

BBIR algorithm can estimate intZ and intCA for a specific instruction with a reasonable

degree of accuracy, as shown in Fig. 11.

22

Figure 11: Internal impedance and internal current activity for different MCU instructions [18].

 In conclusion, the author states that the BBIR model can be used to accurately

estimate the cEMI of code sequences or even entire programs being executed by the

MCU.

 Complex problems in science in general, and electromagnetics in particular,

increasingly require a multidisciplinary approach to solve. Traditionally, the

electromagnetics and machine learning disciplines have been considered to be two

distinct scientific fields, even though researchers in the field of electromagnetics have

leveraged the diverse toolset of the machine learning community. This chapter presents

23

an overview of successful applications of machine learning techniques, such as NNs,

SVMs, and GPs to problems in the electromagnetics domain.

 In their paper, Caorsi and Cevini [19] utilized an ANN approach to solve an EM

diagnostic problem and predict the EM field absorption inside a dielectric. They utilized

the values of the incident electric field at a fixed number of physical locations as the input

training vector and features describing the EM absorption as the output of the ANN.

Research of this type has the potential to predict the absorption of EM fields inside

biological tissues that are exposed to wireless communication systems. The estimation in

this research is performed by a single-layer feedforward perceptron ANN with sigmoid

activation trained using a backpropagation algorithm. Their preliminary results show that

this approach provides a satisfactory accuracy of the ANN in reconstructing the selected

absorption features and that the ANN can successfully estimate these characteristics.

Good results have been obtained for signal to noise ratios (SNR) of 30 dB and above.

 Additionally, Micu et al. [20] successfully utilized a layer recurrent ANN solution

for an EMI problem, wherein they studied induced AC voltages in the underground

metallic pipeline due to nearby high-voltage grids, as shown in Fig. 12. This approach

used 37 training instances that were developed using traditional computational

electromagnetics methods, as shown in Table 5. Their research concluded that the ANN-

based approach proved to be very effective in predicting the induced voltages. The ANN

approach is advantageous because it provides nearly instantaneous results when

compared to traditional finite element methods (FEM) [20]. Good results were obtained,

despite using a relatively small number of training events.

24

Figure 12: Candidate scenario for an NN application to an electromagnetics problem [20].

Table 5: Neural network training database [20].

 Ceperic and Baric [21] present a simple and efficient method of modeling the

immunity of ICs to conducted EMI using ANNs. In their work, they showed that the

universal approximation property of ANNs can efficiently determine the conducted EM

immunity behavior. In their approach, they use an input sinusoid with a specified voltage

that is applied to the input pin of the IC as a training vector. The measured output voltage

at each output pin is used as a target output vector to train the NN that was developed

using the MATLAB Neural Network Toolbox. Their setup is shown in Fig. 13.

25

Figure 13: Test setup to determine electromagnetic immunity behavior [21].

In contrast to Micu et al. who utilized only 37 training instances, Ceperic and

Baric noted that a large number of input-output learning pairs needed to be obtained to

train the ANN (𝑛 > 10,000) successfully. The reason for this large discrepancy could lie

in the fact that Ceperic and Baric only used one dimension (input voltage) to train the

ANN, effectively utilizing a 1xN training vector, whereas Micu et al. used a 5xN training

vector. Micu et al. also utilized two different layer-recurrent NNs, which they claim

eliminated their need for a large training data set. Another interesting contrast between

the two approaches used to gather training data is that Micu et al. used a (FEM)-based

approach to generate training data, whereas Ceperic and Baric chose an experimental

approach, both with good results and execution times much faster than when compared to

traditional computational methods.

In their paper, Li et al. [22] utilized ANNs to solve electromagnetic compatibility

(EMC) problems in electronic systems design. Specifically, an ANN was used in a classic

EMI-type problem to predict the crosstalk coupling between two wires. Fig. 14 shows a

schematic of their setup.

26

Figure 14: Multiconductor transmission line (MTL) crosstalk model [22].

According to EM field theory, the coupled voltage on the victim line is a function

of several parameters, including wire geometry, height above the metal plate, the

separation between lines, and aggressor voltage. Table 5 shows the values of the

parameters that have been used to train and test the NN. Their results obtained via ANNs

was in good agreement with results produced by multiconductor transmission line (MTL)

theory.

 Table 6: MTL scenario training vector [22].

Chahine et al. [23] have successfully used NNs to model the susceptibility of ICs

to conducted EM disturbances. Traditional modeling of IC susceptibility to continuous

wave (CW) interference, as proposed in EMI/EMC literature, is accomplished via two

well-established methods. The first method consists of re-use of the IC emission model

(ICEM) model for predicting IC susceptibility by substituting the internal structure of the

27

IC with a load based on lumped elements. The second method makes use of input/output

buffer information specification (IBIS) files and Spice technological data to prepare a

preliminary susceptibility model. Each of these two traditional approaches requires

internal knowledge of the IC under test which may be kept confidential by the

manufacturers. This paper takes a three-step approach to model building using NNs. In

step 1, they apply the direct power injection method according to IEC 62132-4, which is

an EMC testing standard. In step 2, they observe the IC response to the injected signal

and record data. In step 3, they implement the ANN approach to extract the mathematical

expression that relates the input vector and the output vector. They achieved near-perfect

prediction capability.

Next, Devabhaktuni et al. [24] demonstrate an ANN-based approach for rapid

EMI/EMC analysis of printed circuit boards (PCB) and shielding enclosures. They

hypothesize that ANNs can be viable alternatives to physics-based simulation, driven by

ANNs’ generalization and extrapolation capabilities. They term their proposed approach

as “reverse-modeling.” It entails interchanging input and output columns during NN

training activities, and they report errors of <5% in their attempt to model results

obtained using MTL theory. The error is computed with respect to results that obtained

using standard EM field solvers such as HFSS.

As illustrated in several examples above, NNs have been successfully utilized in

solving a variety of problems related to electromagnetics. In these examples, small sets of

diverse data were used to train the NN, which produced results that rivaled traditional

computational methods used in electromagnetics in a fraction of the computational time.

28

In an overview of SVM applications to electromagnetics, Oliveri et al. [8] present

some cases of SVM solutions to EM-related problems along with a discussion on the

potential and limitations of SVM applications in electromagnetics. Specifically, they

demonstrate the utility of SVM regression to model the direction of arrival (DoA) of

signals impinging on antenna arrays with very good results. Furthermore, they utilize

SVM classification to detect buried objects, and although the method did not correctly

determine the number of buried objects, it was able to estimate with good accuracy the

position of the objects in the soil.

In addition to the NN-based approach to EMI/IEMI modeling, Ceperic and Baric

[25] published results where they transformed a traditional cEMI problem into a binary

classification problem that is solved by SVMs. In their approach, the black-box SVM

model is used to predict the conducted immunity when the circuit is exposed to cEMI

interferences and the SVM results are compared with transistor-level simulations

obtained with SPICE. The setup of their approach is modeled according to the IEC

62132-4 standard and is shown in Fig. 15.

29

Figure 15: Direct power injection method according to IEC 62132-4 [26].

The number of training data used for this approach was 10,000, and it should be

noted that the SVM testing condition differed significantly from the SVM training

condition, indicating that the SVM generalized very well to unseen data. Indeed, Ceperic

and Baric were able to obtain testing accuracy of almost 100%, in addition to a much-

improved speed-up factor of 10 over traditional SPICE models, showing the SVM

feasibility to model cEMI of ICs to be feasible with excellent accuracy.

While Ceperic and Baric used SVM to solve a cEMI problem that was formulated

in a binary classification manner, Wu et al. were able to solve a traditional EM problem

using SVMs for regression. Specifically, they utilized SVM to estimate the permittivity

and permeability of materials. In their approach, HFSS was used to obtain the S-

parameters of the structure under consideration, from which the permittivity and

permeability parameters were derived. The material under test was modeled as a

microstrip transmission line, as shown in Fig. 16. It should be noted that they do not

mention the number of data points that were used for training or testing, but the accuracy

30

of the SVM to simulate the permeability and permittivity was over 93%. The SVM

simulated results vs. HFSS results are shown in Fig. 17.

Figure 16: Simulation scenario for SVM-derived electromagnetic properties of the material under test [27].

Figure 17: SVM results vs. HFSS results [28].

SVMs’ and ANNs’ utility to problems in electromagnetics has been successfully

demonstrated. However, the utilization of GPs in electromagnetics is not as prevalent. To

31

the author’s knowledge, this is the first time a GP-approach has been taken to study

problems in electromagnetics, specifically problems pertaining to EMI.

32

Chapter 3: Machine Learning Overview

 This chapter is composed of four significant subsections. The first subsection

presents an overview of the machine learning field and how it is used to solve complex

problems for which no analytical solutions exist. The second subsection reviews the

theory behind SVMs, while the third and fourth subsections present material related to

ANNs and GPs, respectively.

Chapter 3-1: Machine Learning Theory

 Tools that aid in the analysis of large datasets are becoming increasingly

important in industry. The term “big data” is usually used to describe a scenario or

scenarios in which there is a lot of information and data available, but due to its volume,

it is very difficult to extract knowledge. A tool that is often used to make sense of a lot of

seemingly disconnected data is machine learning. Specifically, machine learning is

defined as “a set of methods that can automatically detect patterns in data, and then use

the uncovered patterns to predict future data, or to perform other kinds of decision

making under uncertainty” [12], such as which data to collect next!

 Machine learning or learning from data is used to solve problems for which no

analytic solutions exist, but there is data available to construct an empirical solution

based on that data. The idea of machine learning covers a lot of territory and material. It

is one of the most widely used techniques applied to problems in science, engineering,

and economics, among other fields [29].

 Many professionals and researchers in the financial, medical, and social media

fields all have successfully utilized machine learning techniques to solve very complex

33

and important problems. The power of learning from data is that the entire process of

determining the most likely function that explains the data and makes a prediction on

future data combinations is fully automated. In other words, the learning algorithm

reverse-engineers important factors that make up the function that is based solely on

previous data.

 Machine learning uses a specific set of terms to formalize the learning problem.

The input to the machine learning algorithm is labeled as 𝒙, while the unknown target

function 𝑓: 𝑋 → 𝑌 uses the set of all possible inputs 𝒙 (𝑋) to produce the desired output

space 𝑌. That is the crux of the learning problem. Additionally, there is a data set 𝐷 that

represents all the possible input-output examples, i.e. (𝒙1, 𝑦1),… , (𝒙𝑁 , 𝑦𝑁), where 𝑦𝑁 =

𝑓(𝒙𝑁) for 𝑁 = 1,… ,𝑁. These examples are also referred to as data points or data that has

been collected from the experiment with the corresponding outcome. Finally, there is a

learning algorithm that uses the data set 𝐷 to determine a formula g such that 𝑔: 𝑋 → 𝑦

thus approximating 𝑓. The algorithm chooses the approximating function g from a set of

candidate functions under consideration, labeled as a hypothesis set 𝐻. For example, the

algorithm can consider a set of all linear models 𝐻 and pick the best linear model fit to

the data. A workflow representation of the formalized learning problem is shown in Fig.

18. The result of the machine learning algorithm will be only as good as the extent to

which 𝑔 faithfully replicates 𝑓 when it is presented with new data, or data that the

algorithm has not seen before.

34

Figure 18: Basic flow of the learning problem [29].

To achieve a good approximation for 𝑓, the learning algorithm chooses 𝑔 that best

matches 𝑓 based on the previously available data with the goal that it will still continue to

match 𝑓 for new data; in other words, the goal is that 𝑔 will generalize well [29].

 The field of machine learning involves many probability models and algorithms

that are suitable for a wide variety of data and tasks. Even though the presence of

numerous models and algorithms may make the machine learning field convoluted, the

field can be divided into two main types: supervised and unsupervised learning.

 In the predictive or supervised learning approach, the learning goal is to learn a

mapping, or a function, from inputs 𝑥 to outputs 𝑦, given a labeled training set of input-

output pairs represented by 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 where 𝑁 represents the number of training

samples. In the simplest machine learning scenario, each training input 𝑥𝑖 is a 𝐷 −

 dimensional vector of real numbers, representing measurements or attributes that relate

to the experiment, such as the dimensions or descriptions of some object, or as in this

case RF-pulse attributes, RF pulse injection locations, and so on. These are also called

35

features, attributes, or covariates describing some phenomenon or experiment

measurements [12].

 Similarly, the form of the output or response variables can in principle be

anything, but most machine learning methods require 𝑦𝑖 to be a categorical or nominal

variable from some finite set, 𝑦𝑖 ∈ (1,… , 𝐶), i.e. a label representing a binary outcome of

a random experiment, i.e. “upset” or “no upset”. In the case that 𝑦𝑖 is categorical, the

machine learning problem is usually referred to as a problem of classification or pattern

recognition and when 𝑦𝑖 is a real-valued scalar such as a voltage level, current level, or

magnitude of a magnetic field, the problem is considered to be of a regression type. In the

unsupervised learning approach, we are given inputs such as 𝒟 = {(𝑥𝑖)}𝑖=1
𝑁 with the goal

to find interesting patterns in the data. This approach is also referred to as knowledge

discovery. Problems of this type do not have predetermined outcomes and generally do

not have obvious error functions for the algorithm to minimize, making these types of

problems less well defined [12]. There are other learning types available, such as

reinforcement learning, but that type of learning is not the focus of this research and will

not be covered in detail.

 Since we have experiment outcomes that can be used as labels, i.e. “upset”/“no

upset,” the focus of this research will be on supervised learning. Within supervised

learning techniques there exist two types of problems to be solved: classification and

regression. In classification, we wish to learn a mapping from inputs x to outputs y,

where 𝑦 ∈ {1,… , 𝐶}, with 𝐶 being the number of classes according to which experiment

outcomes are classified. The case where 𝐶 = 2 is called binary classification. In binary

classification, it is often assumed that 𝑦 ∈ {0,1} or 𝑦 ∈ {−1,1}, depending on the

36

implementation of the machine learning algorithm. The case where 𝐶 > 2 is called

multiclass classification or multi-label classification depending on whether the class

labels are mutually exclusive or not [12].

Definition (Learning problem) The learning problem is to determine the functional

relationship ℎ ∈ 𝒴𝒳 between objects 𝑥 ∈ 𝒳 and targets 𝑦 ∈ 𝒳 based solely on a set of

example scenarios 𝒛 = (𝒙, 𝒚) = ((𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)) ∈ (𝑋 × 𝑌)
𝑚 of size 𝑚 ∈ ℕ

which are drawn from an unknown distribution 𝑷𝑋𝑌 and are independent and identically

distributed. If the output space contains a finite number |𝑌| of elements then the task is

called a classification problem.

Chapter 3-1-1: Probabilistic Perspective on Machine Learning

 Probability theory is sometimes the most suitable approach for some data analysis

problems. Probability theory can be applied to any problem involving uncertainty. In the

field of machine learning, uncertainty is present in the form of several questions: what is

the best model to explain a set of data? What is the best prediction about a future event

given some past data? What measurement should be performed next? The application of

probability theory to problems involving machine learning is closely related to the field

of statistics, with slightly different focus and terminology [12]. More formally, it is

possible to infer something outside of the data set 𝐷 using only 𝐷, but in a probabilistic

way [29].

The following example illustrates the role of probability theory in machine

learning, and it is covered in more detail in [29]. The example illustrates whether

choosing a sample from a set and whether we can say something about the objects

37

outside of that sample. Consider a bin containing many red and green balls. The

proportion of red and green balls in the bin is such that if we pick a ball at random, the

probability that it will be red is 𝜇 and the probability that it will be green is 1 − 𝜇. It is

assumed that we do not know the value for 𝜇. Additionally, suppose a random sample of

𝑁 independent balls is picked with replacement from this bin, and the fraction 𝑣 of red

balls is observed. Is it possible to infer something about the value of 𝜇 given 𝑣? This

situation is similar to taking a poll and the probability distribution of the random variable

𝑣 in terms of the parameter 𝜇 is well understood. When 𝜇 the sample size is large, 𝑣 tends

to be close to 𝜇.

 The relationship between 𝑣 and 𝜇 can be quantified by a bound called the

Hoeffding Inequality. It states that for any sample size N,

 ℙ[|𝑣 − 𝜇 | > 휀] ≤ 2𝑒−2
2𝑁 for any 휀 > 0, (1)

where ℙ[∙] denotes the probability of an event with respect to the random sample we pick

and where 휀 is any positive real value. Informally, as the sample size 𝑁 grows, it

becomes exponentially unlikely that 𝑣 will deviate from 𝜇 by more than a chosen

tolerance 휀. The only quantity that is random is 𝑣 which depends on the random sample

or experiment outcome. The utility of the Hoeffding Inequality is to infer the value of 𝜇

using the value of 𝑣, although it is 𝜇 that affects 𝑣 and not vice versa. Although

ℙ[|𝑣 − 𝜇 | > 휀] depends on 𝜇, the probability can be bound by 2𝑒−2
2𝑁, which does not

depend on 𝜇. In order to make a good approximation of 𝜇 using 𝑣, a larger sample size 𝑁

is needed to make 2𝑒−2
2𝑁 sufficiently small. We do not have control over v since v is

based on a particular hypothesis ℋ. During the learning process, we explore an entire

38

hypothesis set ℋ, looking for some ℎ ∈ ℋ that has a small error rate. If only one

hypothesis is available, then we are not really learning but simply verifying whether that

hypothesis is good or not [29].

 In general, when dealing with data that is generated by a random experiment or

ambiguous cases in which it is difficult to determine a classifier with absolute certainty, it

is necessary to handle predictions in terms of a probability value. A probability

distribution over possible classifiers or labels given the input vector 𝑥 and a training set 𝐷

can be defined as 𝑝(𝑦|𝒙, 𝐷). Generally, this represents a vector of length 𝐶 – in the MCU

upset scenario 𝐶 = 2 and in this case, it is sufficient to return the single number

𝑝(𝑦 = 1|𝒙,𝐷), since 𝑝(𝑦 = 1|𝒙, 𝐷) + 𝑝(𝑦 = 0 or − 1|𝒙, 𝐷) = 1, where 𝑦 = 1 and 𝑦 =

0 𝑜𝑟 − 1 denotes MCU upset and no MCU upset respectively. This notation states that

the PoE is conditional on the test input 𝒙 and the training set 𝐷, and implicitly the model

𝑀 being considered. The setup from Fig. 18 has been updated to reflect the role of

probability, and the new setup is shown in Fig. 19.

39

Figure 19: Basic learning problem flow with probability factored in [29].

 Concisely, the question of whether 𝐷 tells us anything outside of 𝐷 that we did

not know before has two possible but different answers. If the requirement is to produce

an accurate, deterministic answer then the answer is no, 𝐷 will not tell us anything

outside of 𝐷 that we did not know before. On the other hand, if a probabilistic answer

will satisfy the requirement, meaning that the data set 𝐷 tells us something that is likely

about 𝑓 outside of 𝐷, then the answer is yes, the data set 𝐷 will tell us something outside

of 𝐷 that was not known before [29].

Chapter 3-1-2: Error and Noise in Data

 There are two very important concepts related to the machine learning problem

that resemble the real world. The first concept is the meaning of approximation when it is

claimed that the chosen hypothesis approximates the target function well. The second

concept is related to noise that makes the output of 𝑓 not uniquely determined by the

input data. For example, identical input data can produce both outputs in a binary

classification problem. In this particular case, identical experiment parameters can

40

produce “upset” at one time and “no upset” at other times. This section examines

ramifications of having a noisy target in connection with the learning problem.

 Machine learning techniques are not expected to replicate the target function

perfectly. The chosen hypothesis 𝑔 is only an approximation of 𝑓; hence, it is expected

that there is some error involved. This error measure needs to be sufficiently quantified

so that it enables a quantitative assessment of how far the hypothesis 𝑔 is from the actual

target function 𝑓. The choice of the error measure is an important step as it directly

affects the outcome of the learning process. A different choice of error measure may lead

to different final hypotheses even if the target and the data are the same, hence the

importance of error measure selection [29].

 Formally, an error measure in the context of machine learning quantifies how well

each hypothesis ℎ in the model approximates the target function 𝑓, i.e.

 Error = 𝐸(ℎ, 𝑓). (2)

While 𝐸(ℎ, 𝑓) is entirely based on ℎ and 𝑓, it is almost universally defined based on the

errors on individual input points in 𝒙. In some respects, the error measure will depend on

the nature of the problem and the data it contains. For example, if a pointwise error is

defined, the overall error is going to be the average value of the pointwise error. So far,

an error of the following form has been described: 𝐸(ℎ(𝒙), 𝑓(𝒙)) = ⟦ℎ(𝒙) ≠ 𝑓(𝒙)⟧.

Ideally, the error measure should be user specified, as it heavily depends on the nature of

the learning problem. Another way to express the notion of the error measure is the cost

of using ℎ when 𝑓 should be used instead [29]. Generally, the choice of error measure

41

depends on the how the system is going to be used and not on any inherent criterion that

can be independently determined during the learning process.

 When it comes to the effect of noise in many practical applications of machine

learning, the data that is used for learning is usually not produced by a deterministic

target function. Instead, the data are generated in a noisy environment in which the output

is not uniquely determined by the input. In the scenario of MCU upset, two identical sets

of criteria can produce different system behavior, i.e. “upset” or “no upset.” Therefore,

the function that determines the upset model will not be a deterministic function, but a

probabilistic and noisy one, hence the need for the probabilistic treatment of machine

learning as discussed earlier.

 Noisy data can be readily modeled within the machine learning framework.

Instead of considering 𝑦 = 𝑓(𝒙), a random variable 𝑦 can be considered. This random

variable will be affected rather than determined by the input vector 𝒙. In other words, we

would have a target distribution 𝑃(𝑦|𝒙) instead of a target function 𝑦 = 𝑓(𝒙). In a sense,

a noisy target can be considered as a deterministic target with added noise. If 𝑦 is a real-

valued target, the expected value of 𝑦 given 𝒙 can be considered the deterministic 𝑓(𝒙)

with noise added in the form of 𝑦 − 𝑓(𝒙). There is no loss in generality if we consider

the target function 𝑓 to be a distribution rather than a function. Hence, the entire analysis

of the feasibility of learning applies to noisy target functions as well. This is because the

Hoeffding Inequality applies to an arbitrary, unknown target function. The general

conclusion is that noisy targets are not as easy to learn as deterministic ones [29]. The

workflow of the general learning problem, incorporating an error measure, is shown in

Fig. 20.

42

Figure 20: Basic learning problem flow with error measure incorporated [29].

 As mentioned earlier, the choice of the error measure depends on how the

machine learning system is going to be used rather on some inherent criterion determined

through the learning process, and in this case, a pointwise error comparing each

prediction (upset/no upset) with the particular measurement of upset/no upset.

Chapter 3-1-3: Algorithm Generalization Theory

 The ability of the learning model to perform well on data that the algorithm has

not seen before is referred to as generalization. Before covering the theory behind

generalization, it is important first to introduce some definitions. First, the error rate

within the sample, which corresponds to 𝑣 in the previously considered bin example, is

called the in-sample error, or fraction of 𝐷 where 𝑓 and ℎ disagree,

 𝐸in(ℎ) =
1

𝑁
∑⟦ℎ(𝒙𝑛) ≠ 𝑓(𝒙𝑛)⟧

𝑁

𝑛=1

. (3)

Similarly, the out-of-sample error is defined as

43

 𝐸out(ℎ) = ℙ[ℎ(𝒙) ≠ 𝑓(𝒙)], (4)

which corresponds to 𝜇 in the bin model. This probability is based on the distribution 𝑃

over 𝑋 used to sample the data points 𝒙. In other words, the out-of-sample error 𝐸out is

used to measure how well the training on the data set 𝐷 has generalized to data that the

algorithm has not seen before, while 𝐸in is based on data points that have been used to

train the algorithm [29].

 Since the concept of generalization is key in machine learning, the generalization

error can be defined as the discrepancy between 𝐸in and 𝐸out and the Hoeffding

Inequality provides a way to characterize it with a probabilistic bound, such that

 ℙ⟦|𝐸in(𝑔) − 𝐸out(𝑔)| > 휀⟧ ≤ 2𝑀𝑒
−2𝜖2𝑁 (5)

for any 휀 > 0. In other words, if we pick a tolerance level 𝛿, i.e. 𝛿 = 0.05 and assert with

probability at least 1 − 𝛿 that the out-of-sample error

 𝐸out(𝑔) ≤ 𝐸in(𝑔) + √
1

2𝑁
ln (
2𝑀

𝛿
) (6)

representing the generalization bound that bounds 𝐸out by 𝐸in. The Hoeffding Inequality

introduced earlier applies to this generalization bound [29].

 The error bound √
1

2𝑁
ln (

2𝑀

𝛿
) depends on 𝑀, which is the size of the hypothesis

set ℋ, which can be a set of infinite size, meaning that the bound goes to infinity and

becomes meaningless. It turns out that a lot of interesting learning models have an

44

infinite set of hypotheses, including the ANN model and GP model. It is desirable to

replace 𝑀 with a finite set so that the error bound becomes meaningful. The way 𝑀 is

obtained in the first place was by taking the disjunction of events, such as

 |𝐸in(ℎ1) − 𝐸out(ℎ1)| > 휀 or (7)

|𝐸in(ℎ1) − 𝐸out(ℎ1)| > 휀 or
⋮

(8)

 |𝐸in(ℎ𝑀) − 𝐸out(ℎ𝑀)| > 휀, (9)

which is guaranteed to include our chosen hypothesis 𝑔 that approximates 𝑓, i.e.

|𝐸in(𝑔) − 𝐸out(𝑔)| > 휀 since 𝑔 is always one of the hypotheses in ℋ [29].

It turns out that the events |𝐸in(ℎ𝑀) − 𝐸out(ℎ𝑀)| > 휀,where 𝑚 = 1, … ,𝑀 are

strongly overlapping if ℎ1 is similar to ℎ2, which is usually the case. In fact, in a typical

learning model, many hypotheses are indeed very similar. Consider the perceptron model

as an example, as the weight vector w is varied during training, it is possible to generate

infinitely many hypotheses that differ from each other by an infinitesimal amount. The

mathematical theory of generalization is dependent on this observation.

If machine learning techniques are to be successfully used in practical

applications, it is necessary to determine the effective number of hypotheses to be

examined by the learning algorithm. The determination of the number of hypotheses to be

examined is done by specifying a growth function, which will replace 𝑀 in the

generalization bound above. The growth function is a combinatorial quantity that

captures how different the hypotheses in ℋ are. To show how the growth function helps

45

us determine an upper bound on the number of hypotheses to be tested, it is necessary to

define the growth function, bound its value, and use it to replace 𝑀 in the generalization

bound above.

Let 𝒙1, … , 𝒙𝑁 ∈ 𝑋. The dichotomies generated by ℋ on these points are defined

by ℋ(𝒙1, … , 𝒙𝑁) = {(ℎ(𝒙1),… , ℎ(𝒙𝑁))|ℎ ∈ ℋ}. The growth function is defined for a

hypothesis set ℋ by 𝑚ℋ(𝑁) =
𝑚𝑎𝑥

𝒙1, … , 𝒙𝑁 ∈ 𝑋
|ℋ(𝒙1, … , 𝒙𝑁)|, where |∙| denotes the

cardinality (number of elements) of a set. In other words, 𝑚ℋ(𝑁) is the maximum

number of dichotomies that can be generated by the hypothesis set ℋ on any 𝑁 points.

Just like M, 𝑚ℋ(𝑁) is a measure of the number of the number of hypotheses in ℋ,

except that a hypothesis is not considered on 𝑁 points instead of the entire set 𝑋, and it is

bounded by

 𝑚ℋ(𝑁) ≤ 2
𝑁 [29]. (10)

Chapter 3-1-4: Is Learning Feasible?

Having defined the learning model and associated error functions, the next most

logical question to ask is: is learning feasible for the problem at hand? In typical machine

learning problems, the target function 𝑓 is the objective of the learning algorithm with the

most important assertion that 𝑓 is truly unknown. In that case, how can a limited data set

reveal enough information to determine the entire target function? There is a possibility

that more than one function 𝑓 can explain the underlying data, however that same

function would sometimes indicate an outcome synonymous with “upset” and at other

times an outcome synonymous for “no upset”, for the same input data! In other words,

how is it possible to infer something outside of the data set 𝐷 using only 𝐷 with

46

certainty? It turns out that this scenario is the rule, and not the exception in the field of

machine learning [29].

There appear to exist conflicting arguments about the feasibility of learning. One

argument says that it is not possible to learn anything outside of 𝐷 and the other says that

it is possible. If a probabilistic view of learning is adopted, then we get a positive answer

to the question of feasibility without paying a high price. The only assumption that is

required for this to work is that the data in 𝐷 are generated independently. There is no

need to use any particular probability distribution or even the need to know what

distribution is used. However, the probability distribution needs to remain constant from

the generation of the data samples in 𝐷 through the evaluation of how well 𝑔

approximates 𝑓. Keeping the probability distribution consistent throughout the learning

process is what makes the Hoeffding Inequality applicable [29].

The second concept related to the feasibility of learning is the error measure. The

process of learning produces a hypothesis 𝑔 that is supposed to approximate the unknown

target function 𝑓 reasonably well, in the case that learning is feasible. If the application of

machine learning algorithms is successful, then 𝐸out(𝑔) ≈ 0. This is not the case for

probabilistic analysis. In probability-based learning, we have 𝐸in(𝑔) ≈ 𝐸out(𝑔), meaning

that in order for 𝐸out(𝑔) ≈ 0, it is necessary that 𝐸in(𝑔) ≈ 0. There is no guarantee that

we will find a hypothesis that achieves 𝐸in(𝑔) ≈ 0, however we will know when we find

it. In essence, the feasibility of learning boils down to two key questions: first, is it

possible to ensure that 𝐸out(𝑔) ≈ 0 is close enough to 𝐸in(𝑔) ≈ 0? Second, is it possible

to make 𝐸in(𝑔) small enough. The Hoeffding Inequality addresses the first question. The

answer to the second question is obtained after the learning algorithm processes the data

47

and the value of 𝐸in(𝑔) is determined. Analyzing the feasibility of learning in this

manner provides important insight into the role that different components of the learning

problem play [29].

Two of the more important components of machine learning are the hypothesis set

ℋ and the target function 𝑓. If the number of hypotheses 𝑀 increases, the risk of 𝐸in(𝑔)

being a poor estimator of 𝐸out(𝑔) does as well. In this case, 𝑀 represents the complexity

of ℋ, and it needs to be kept as simple as possible, even though the most interesting

solutions to machine learning problems present themselves when ℋ is complex to an

extent. Additionally, a complex ℋ gives more flexibility in finding an approximation 𝑔

that fits the data well, so a tradeoff between complexity and good approximations is

necessary. It seems obvious that a complex target function 𝑓 is more difficult to learn

than a simple one. Additionally, if the target function is complex, the second question of

feasibility of learning comes into play, because 𝐸in(𝑔) is likely to be larger than desired.

The good news is that most target functions in reality are not very complex, so it is

possible to learn them from a reasonable set of training data 𝐷 using a reasonable set of

hypotheses ℋ [29].

Chapter 3-1-5: Important Learning Principles

 The field of machine learning incorporates three general and very important

principles. The first principle relates to the choice of model and is commonly referred to

as Occam’s razor. The second principle is related to the data and is known as sampling

bias. The third principle is also related to data handling and is called data snooping. A

good understanding of these three principles increases the likelihood that the machine

48

learning approach is implemented correctly and the generalization of performance is

interpreted properly.

 Occam’s Razor dates back to the 14th century and is attributed to William of

Occam. The term razor is meant to trim down the explanation to the bare minimum that is

consistent with the collected data. The penalty of model complexity is, in a way, a

manifestation of Occam’s razor. In other words, Occam’s razor reinforces the principle

that “the simplest model that fits the data is also the most plausible” [29]. Applying this

principle means that we should choose as simple of a model as we think we can get away

with to explain the data.

 Two natural considerations are relevant in applying this principle. First, we need

to establish what it means for a model to be simple and second, we need to convince

ourselves (and perhaps others) that a simpler model yields a better solution. One of the

more common ways to describe object complexity is in terms of the number of bits

required to describe an object in the computational world. In terms of simple counting, a

simple object is not only intrinsically simple, but it is also one of few because there are

fewer objects that have short descriptions than there are objects that have long

descriptions. The second consideration that simpler is better has nothing to do with

elegance or aesthetics; it means that a simpler model has a better chance of being correct

for a given data set. Stated differently, a large set of complex hypotheses would

determine a fit for a dataset 𝐷, even if the relationship between input and target vectors in

𝐷 is completely random. Fitting the data in such a way does not mean much in the

context of machine learning [29].

49

 The second important principle of machine learning is related to sampling bias. It

states that “if the data is sampled in a biased way, learning will produce a similarly biased

outcome” [29]. Applying this principle to the machine learning problem means that the

probability distribution used for training must be the same probability distribution used

for testing or performance evaluation of the machine learning algorithm and model.

 The final principle that applies to all problems involving machine learning is

commonly referred to as data snooping. Simply, this means that the machine learning

algorithm must not be exposed to the same data that is used for training and validation.

Otherwise, the outcome is compromised. That is a bad thing. One way to avoid this pitfall

is to choose the learning model before seeing any of the data. Some aspects to consider in

making the choice of learning model can be the number of data points and prior

knowledge regarding the input space and target function, just not the actual data set 𝐷

[29]. The most common way to fall for this type of pitfall is to reuse the same data set

during training, validation, and testing.

Chapter 3-2: Support Vector Machines (SVMs)

 In machine learning problems, our goal is to discover structure in the data. This

section describes how to discover structure in the data using SVMs. Since the early

1990s, there have been a lot of theoretical developments and applications of SVMs, the

theory of which is based on the combination of optimization theory, statistical learning,

kernel theory, and algorithm development. SVMs are a popular tool used to solve

problems in fields such as text categorization, biomedical engineering, magnetic

resonance imaging, linear signal processing, speech recognition, and image processing,

but it is not as prevalent in the field of electromagnetics as its promising potential might

50

suggest. Christodoulou and Martinez-Ramon outline four typical situations in which

SVMs would make good candidates for use in the field of engineering electromagnetics.

The use of SVMs for analysis is suitable under the following circumstances: (1) when

closed forms solutions to the problem do not exist; (2) when practical applications

require real-time or near real-time performance; (3) when faster convergence rates and

smaller errors are required in the optimization of large systems; and (4) sufficient

measurement data exist to train an SVM for prediction purposes [30].

 Support Vector Machines (SVM) are machine learning systems that utilize a

hypothesis space of linear functions in a high-dimensional feature space. SVMs are

trained with a learning algorithm used in optimization theory. This learning algorithm

implements a learning bias derived from statistical learning theory. The learning strategy

behind this algorithm was introduced by Vapnik in the early 1970s and even though it has

only gained traction recently, it is a very powerful method that has already outperformed

most other learning systems in a wide range of applications. This theoretical summary in

this section closely follows Christianini and Shawn-Taylor, whose text can be referenced

for more detail regarding SVMs and other kernel methods [31].

 In supervised learning, the machine is given a training set of examples (inputs)

with associated labels (targets/output values). The examples from which the machine

learns are in the form of attribute vectors that makes the input space a subset of ℝ𝑛. With

the availability of attribute vectors, several sets of hypotheses can be chosen to model the

problem at hand. Among all the available hypotheses, linear functions represent the

simplest possible classifier.

51

 Binary classification is usually performed by using a real-valued function 𝑓: 𝑋 ⊆

ℝ𝑛 → ℝ as follows: the input sample 𝒙 = (𝑥1, … , 𝑥𝑛)
𝑇 is assigned to a positive class

(+1) if 𝑓(𝒙) ≥ 0, and otherwise to the negative (−1) class. In the case where 𝑓(𝒙) is a

linear function of 𝒙 ∈ 𝑋, it can be written as

 𝑓(𝒙) = 〈𝒘 ∙ 𝒙〉 + 𝑏 =∑𝑤𝑖𝑥𝑖 + 𝑏,

𝑛

𝑖=1

 (11)

where (𝒘, 𝑏) ∈ ℝ𝑛 × ℝ represent the parameters that control 𝑓(𝒙) that must be learned

from the data. A geometrical representation of this type of hypothesis is that the input

space 𝑋 is separated into two parts by the hyperplane 〈𝒘 ∙ 𝒙〉 + 𝑏 = 0, as shown in Fig.

21.

Figure 21: A separating hyperplane (𝒘, 𝑏) for a two-dimensional training set [32].

52

A hyperplane is defined as an affine subspace of dimension 𝑛 − 1 that divides a

space into two parts. These two spaces depend exclusively on the input vector of input

data. As seen in Fig. 21, the vector w defines a direction perpendicular to the hyperplane

and the value of 𝑏 moves the hyperplane parallel to itself. In the SVM approach, it is

necessary to include 𝑛 + 1 free parameters if it is desired to represent all possible

hyperplanes in ℝ𝑛 . SVMs can be utilized when the experiment data has exactly two

classes, as is the case in the MCU upset problem (0: no upset; 1: upset). The SVM

classifies data by finding the most optimal hyperplane that separates all data points of one

class from those of the other class. The best and most optimal hyperplane for an SVM

means the hyperplane with the largest margin between the two classes. The margin means

the largest width of the slab that is parallel to the hyperplane and that has no interior data

points. Like in the neural network approach, the quantities w and b are referred to as

weight and bias and, the linear classifier in SVMs can be referred to as a linear

discriminant and is nearly equivalent to the perceptron concept in NNs.

 The problem of learning a hyperplane that separates two sets of points is an ill-

posed problem, because several different solutions may exist. Some algorithms, such as

the perceptron algorithm, may be susceptible to producing different results based on the

order in which the data are processed. In short, the danger of arriving at solutions for ill-

posed problems is that those solutions may not be equally useful. Awareness of this

potential pitfall and ways of circumventing it helps to produce better learning solutions.

One way to rectify an ill-posed problem such as this one is to try to optimize a different

cost function, ensuring that the solution the algorithm arrives at is always unique. In this

case, a solution can be chosen that not only separates the two classes of data but also to

53

choose a hypothesis that is located at a maximum distance from all data points. This

solution is a hyperplane that realizes the maximal margin as defined by 〈𝒘 ∙ 𝒙〉 + 𝑏 = 1

and 〈𝒘 ∙ 𝒙〉 + 𝑏 = −1, as seen in Fig. 21. This solution also possesses the characteristic

of maximum stability [31].

 The SVM binary classification problem has two important cases. The first case

deals with perfectly separable data in which a most optimal hyperplane can separate the

data into two classes with no error. This approach has a primal and a dual formulation

from a mathematical perspective. The second case deals with data that is not perfectly

separable into two classes, i.e. there are some data points that will be misclassified. Both

cases can be mathematically expressed in primal and dual form.

 For the perfectly separable case, the data for training is a set of vectors 𝒙𝑗 along

with their categories or targets 𝒚𝑗. For some dimension 𝑑, 𝒙𝑗 ∈ 𝑅
𝑑, and 𝒚𝑗= ±1. In the

mathematical primal formulation, the equation for the separating hyperplane becomes

 𝑓(𝑥) = 𝑥′𝛽 + 𝑏 = 0, (12)

where 𝛽 ∈ 𝑅𝑑 and 𝑏 is a real number. The problem that is formulated in terms of the best

separating hyperplane goes as follows: find 𝛽 and 𝑏 that minimize ‖𝛽‖ such that for all

data points (𝒙𝑗 , 𝒚𝑗)

 𝒚𝑗𝑓(𝒙𝑗) ≥ 1. (13)

In this case, the support vectors are the 𝒙𝑗 on the boundary that separates the two classes,

i.e. those for which 𝒚𝑗𝑓(𝒙𝑗) = 1.

54

 For the case where the experiment data is not perfectly separable (non-separable),

the SVM algorithm can use a soft-margin, meaning that the hyperplane will separate

many, but not all data points. For SVMs, there are two standard formulations of soft

margins, and both involve the slack variable 𝝃𝑗 and a misclassification penalty parameter,

or so-called box-constraint 𝐶.

The 𝐿1 – norm problem is formulated as

min
𝛽,𝑏,𝜉

(
1

2
𝜷′𝜷 + 𝑪∑ 𝝃𝑗

𝑗) such that 𝒚𝑗𝑓(𝒙𝑗) ≥ 1 − 𝝃𝑗

 ; 𝝃𝑗
 ≥ 0,

(14)

and the 𝐿2 – norm is formulated as

 min
𝛽,𝑏,𝜉

(
1

2
𝜷′𝜷 + 𝑪∑𝝃𝑗

2

𝑗

) such that 𝒚𝑗𝑓(𝒙𝑗) ≥ 1 − 𝝃𝑗
 ; 𝝃𝑗

 ≥ 0. (15)

Furthermore, dual representation is a very important concept in linear machines,

and it is present in a wide class of algorithms, including SVMs. A very important

property of the dual representation is that the data only appear through entries in the

Gram matrix and not through their attributes. Similarly, in the dual representation of the

decision function 𝑓(𝒙), it is only the inner products of the data with the new test point

that are needed. Many of the algorithms and concepts relevant to SVMs are special cases

of optimization problems, for which a mathematical framework exists that encompasses

the concept of duality [31].

In mathematical dual formulation, which represents the dual quadratic

programming problem, which is computationally less complex, the 𝐿1-norm problem

becomes

55

 𝐿𝑝 =
1

2
𝜷′𝜷 −∑𝜶𝑗

𝑗

(𝒚𝑗(𝒙𝑗
′𝜷 + 𝒃) − 1), (16)

where 𝜶𝑗 are the positive Lagrange multipliers. The objective is to find a stationary point

𝐿𝑝 over 𝜷 and 𝒃, so setting the gradient of 𝐿𝑝 to 0 we obtain

 𝜷 =∑𝜶𝑗𝒚𝑗𝒙𝑗
𝑗

 (17)

and

 0 = ∑ 𝛼𝑗𝑦𝑗𝑗 . (18)

Substituting these values into 𝐿𝑝, the dual equivalent 𝐿𝐷 is obtained:

 𝐿𝐷 =∑𝛼𝑗
𝑗

−
1

2
∑∑𝛼𝑗𝛼𝑘𝑦𝑗𝑦𝑘

𝑘𝑗

𝑥𝑗
′𝑥𝑘 , (19)

which is maximized over 𝛼𝑗 ≥ 0. In practice, however, many Lagrange multipliers have a

zero maximum value. The nonzero 𝛼𝑗 in the solution to the dual problem define the

hyperplane, which gives 𝛽 = ∑ 𝛼𝑗𝑦𝑗𝑥𝑗𝑗 , and the data points 𝑥𝑗 that correspond to the

nonzero values of 𝛼𝑗 are the support vectors. Additionally, the derivative of 𝐿𝐷 with

respect to a nonzero Lagrange multiplier is zero at an optimum, resulting in [33]

 𝑦𝑗𝑓(𝑥𝑗) − 1 = 0. (20)

 In the case of nonseparable data, the soft-margin approach is used. Here the goal

is to minimize the following function for the 𝐿1 – norm problem:

 𝐿𝑝 =
1

2
𝛽′𝛽 + 𝐶∑𝜉𝑗

𝑗

−∑𝛼𝑗 (𝑦𝑗𝑓(𝑥𝑗) − (1 − 𝜉𝑗)) −∑𝜇𝑗𝜉𝑗
𝑗𝑗

. (21)

56

 Complex, real-world applications like the MCU upset modeling problem, usually

require more extensive hypothesis spaces than simple linear functions offer, thus

requiring the learning to be performed in kernel-induced feature spaces, in which the

algorithm can exploit abstract features of the data. Another way to look at kernel-induced

feature spaces is to express the data as a linear combination of the attributes, however

more complex feature spaces are required for the learning algorithm to be effective in

practical applications. Kernel representations of the data offer an alternative solution by

projecting the data into a high-dimensional feature space helping to increase the

computational power of linear learning machines. The use of learning machines in dual

representation is what makes the implicit utilization of this step possible. As mentioned

earlier, in dual representation the data examples never appear isolated, but occur rather as

inner products between pairs of examples. The advantage of the dual representation is

that the number of tunable parameters does not depend on the number of attributes

present in the data. By replacing the inner product with an appropriate kernel function,

the nonlinear mapping of data to a high-dimensional feature space is accomplished

implicitly, thereby increasing the number of tunable parameters, assuming that the kernel

computes the inner product of the input feature vectors corresponding to the input pair.

 When learning in the feature space, the complexity of the target function to be

learned depends on the way it is represented. This representation should ideally match the

specific learning problem, so a common strategy in machine learning is to change the

representation of the input data, i.e.

 𝒙 = (𝑥1, … , 𝑥𝑛) → 𝝓(𝒙) = (𝜙𝟏(𝑥),… , 𝜙𝟏(𝑥)). (22)

57

This step is equivalent to mapping the input space X into a new space 𝐹 = {𝝓(𝒙)|𝒙 ∈ 𝑋}.

 Mapping the data into another space has been known to simplify the learning

task greatly, and that has given rise to a number of techniques used to represent the data

in a useful way. While discussing kernel-based techniques such as SVMs, it is useful first

to define some terminology used in the field. The quantities that are introduced to

describe the data are referred to as features, while original quantities are called attributes,

while the task of choosing the most suitable representation is referred to as feature

selection. The space X is usually referred to as the input space while 𝐹 = {𝝓(𝒙)|𝒙 ∈ 𝑋}

is called the feature space. Fig. 22 illustrates how a feature map can simplify the

classification task.

Figure 22: Illustration of feature mapping [34].

 There are different approaches to the process of feature selection. The goal of

feature selection is to identify the smallest set of features that still conveys the essential

information described by the attributes. This process is referred to as dimensionality

reduction. More formally,

 𝒙 = (𝑥1, … , 𝑥𝑛) → 𝝓(𝒙) = (𝜙𝟏(𝒙),… ,𝝓𝒅(𝒙)), 𝑑 < 𝑛. (23)

58

The process of dimensionality reduction reduces the computational expense and

generalization performance of the model because it mitigates effects of the curse of

dimensionality that states that a growing number of features have adverse effects on

model performance. The curse of dimensionality is a rather unfortunate phenomenon

because a diverse set of (potentially redundant) features can potentially improve the

probability of finding an 𝑓(𝒙) with a standardized learning machine [31]. Another

component of feature selection is the detection and removal of irrelevant features. One of

the main reasons why feature selection is so important in machine learning, is that the use

of many features during training can create overfitting problems resulting in poor

generalization of the learning model.

 Linear SVMs can be applied as a learning method to learn nonlinear relations in

data. For this learning to occur successfully, a set of nonlinear features needs to be

selected, and the data needs to be represented in a way such that a linear machine can be

used. One way to accomplish this is by implicit mapping into feature space. Hence, the

set of hypotheses to be considered in this case are of the type

 𝑓(𝒙) =∑𝑤𝑖𝜙𝑖(𝒙) + 𝑏

𝑁

𝑖=1

 (24)

where 𝜙:𝑋 → 𝐹 is a nonlinear map from the input space to a feature space, meaning that

the use of linear machines is composed of two steps: first, input data is mapped into a

feature space suitable for linear machines and second, a linear machine is used to classify

the data in the feature space.

59

The reason for this two-step process involving linear machines is that currently,

only the linear hyperplane optimality criterion is available, enabling the practical

application of SVMs. Currently, there are no general results available for nonlinear

functions. Fortunately, Mercer’s theorem, developed in the early 1900s is key to

extending the learning principle of SVMs to nonlinear machines, and it is key to

validating a kernel function. Concisely, vectors 𝒙 in a finite dimension input space can be

mapped to a possibly infinite-dimensional Hilbert space through implicit mapping as

discussed earlier [30].

 The dual representation property of linear learning machines means that the

hypothesis can be expressed as a linear combination of the data points used during

training. This way, the decision rule can be evaluated using inner products between the

training points and the test point:

 𝑓(𝒙) =∑𝛼𝑖𝑦𝑖〈𝝓(𝒙𝑖) ∙ 𝝓(𝒙)〉 + 𝑏

𝑙

𝑖=1

; (25)

moreover, if there is a way to compute the inner product directly 〈𝝓(𝒙𝑖) ∙ 𝝓(𝒙)〉 in

feature space directly as a function of the original input points, then a nonlinear learning

machine has effectively been created. This method of direct computation of the inner

product of training data in feature space and testing data is called a kernel function.

Formally, a kernel function is a function 𝐾, such that for all 𝒙, 𝒛 ∈ 𝑋

 𝐾(𝒙, 𝒛) = 〈𝝓(𝒙𝑖) ∙ 𝝓(𝒙)〉, (26)

where 𝝓 represents a mapping from 𝑋 to an inner product feature space 𝐹 [31].

60

 The name kernel comes from the integral operator theory, which forms the

foundation of the theory of the relation between kernels and their corresponding feature

spaces. With the use of dual representation, the dimension of the feature space does not

affect the computation complexity of the learning problem. By accomplishing implicit

mapping into feature space, the linear machine is trained in that same space, sidestepping

the computational complexity of having to evaluate the entire feature map. The only

representation of the training data that is used in SVMs is their representation in the form

of a Gram matrix in feature space. The Gram matrix, with the entries specified by 𝑮 =

(〈𝒙𝑖 ∙ 𝒙𝑗〉)𝒊,𝒋=𝟏
𝒍

, is the only way the data enter the learning algorithm. This Gram matrix is

also referred to as the kernel matrix [31].

 The symbol 𝑲 used to denote a kernel function and the key to the kernel-based

learning approach is to find a kernel function that can be evaluated efficiently. Once such

a function has been determined, the decision rule can be evaluated by at most 𝑙

evaluations of the kernel

𝑓(𝒙) =∑𝛼𝑖𝑦𝑖𝐾(𝒙𝑖𝒙) + 𝑏

𝑙

𝑖=1

.

(27)

Because kernel functions are critical to the performance of SVMs, it is important to

determine what characterizes them and consequently build kernels that may be a better

representative of the data to which the learning machine is applied.

 The use of a kernel function presents an alternative and attractive computational

short-cut. Generally, to use this promising approach, a complicated feature space would

need to be created, along with a definition of inner product in that space. The final step

61

would be to compute the inner product in the space using the original inputs. In practical

applications, these steps are accomplished by the definition of a kernel function directly,

making this a very critical step during the kernel-based learning approach.

 Several characteristics are important in determining whether a kernel is valid for

some feature space. First, the function must be symmetric, i.e.

 𝐾(𝒙, 𝒛) = 〈𝜙(𝒙) ∙ 𝜙(𝒛)〉 = 〈𝜙(𝒛) ∙ 𝜙(𝒙)〉 = 𝐾(𝒛, 𝒙); (28)

second, the function must satisfy the following inequalities that follow from the Cauchy-

Schwartz inequality:

𝐾(𝒙, 𝒛)2 = 〈𝜙(𝒙) ∙ 𝜙(𝒛)〉2 ≤ ‖𝜙(𝒙)‖2‖𝜙(𝒛)‖2
= 〈𝜙(𝒙) ∙ 𝜙(𝒙)〉〈𝜙(𝒛) ∙ 𝜙(𝒛)〉

 = 𝐾(𝒙, 𝒙)𝐾(𝒛, 𝒛),

(29)

none of which is sufficient to guarantee the existence of a feature space [31].

 Mercer’s theorem, developed in the 1900s, provides a characterization of when a

function 𝐾(𝒙, 𝒛) is a kernel. To define a kernel function, consider X to be a finite input

space with 𝐾(𝒙, 𝒛) representing a symmetric function on X. Then 𝐾(𝒙, 𝒛) is a kernel

function if and only if the matrix

 𝑲 = (𝐾(𝒙𝑖, 𝒙𝑗))
𝑖,𝑗=1

𝑛

 (30)

is positive semi-definite; in other words, the matrix has non-negative eigenvalues [31].

According to Mercer’s theorem, if 𝑋 is a compact subset of ℝ𝑛 and suppose that 𝐾 is a

continuous symmetric function such that the integral operator 𝑇𝐾: 𝐿2(𝑋) → 𝐿2(𝑋),

62

 (𝑇𝐾𝑓)(∙) = ∫𝐾(∙, 𝒙)

𝑋

𝑓(𝒙)𝑑𝒙 (31)

is positive, i.e.

 ∫ 𝐾(𝒙, 𝒛)𝑓(𝒙)𝑓(𝒛)𝑑𝒙𝑑𝒛

𝑋×𝑋

≥ 0 (32)

for all 𝑓 ∈ 𝐿2(𝑋). Then 𝐾(𝒙, 𝒛) can be expanded in a uniformly convergent series on 𝑋 ×

𝑋 in terms of 𝑇𝐾′𝑠 eigenfunctions 𝜙𝑗 ∈ 𝐿2(𝑋) with ‖ 𝜙𝑗 ‖𝐿2
= 1 and with positive

associated eigenvalues 𝜆𝑗 ≥ 0,

 𝐾(𝒙, 𝒛) = ∑ 𝜆𝑗𝜙𝑗(𝒙)𝜙𝑗(𝒛)
∞
𝑗=1 . (33)

The positivity condition ∫ 𝐾(𝒙, 𝒛)𝑓(𝒙)𝑓(𝒛)𝑑𝒙𝑑𝒛

𝑋×𝑋
≥ 0 above corresponds to the

positive semi-definite condition in the finite case. Hence, the conditions for Mercer’s

theorem require that for any finite subset of 𝑋, the corresponding matrix is positive semi-

definite [31]. The basic idea behind this is that vectors x in a finite dimensional input

space can be mapped to a possibly infinite-dimensional Hilbert space ℋ provided with a

dot product through linear transformation 𝜙(∙), most of which are unknown. The dot

product of the corresponding spaces can be expressed as a function of the input vectors.

Specifically, for every Mercer kernel defined over the domain 𝑋 ⊂ ℝ𝑑 there exists a

reproducing kernel Hilbert space (RKHS) of functions defined over 𝑋 for which K is the

reproducing kernel [26, 27].

63

 The condition satisfying Mercer’s theorem is not easy to prove for any function.

Among the first kernels to be proven to satisfy Mercer’s conditions were the

homogeneous polynomial kernel

 𝐾(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇 , 𝒙𝑗)

𝑝
 (34)

and the inhomogeneous polynomial kernel

 𝐾(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇 , 𝒙𝑗 + 1)

𝑝
. (35)

The mapping for these two kernels can be determined explicitly, and their corresponding

Hilbert space has finite dimension. Another important kernel that applies to this research

is the Gaussian kernel (RBF kernel). This kernel is also widely used in many other

practical applications and has the form

𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2 .
(36)

For the Gaussian kernel, the nonlinear mapping is not explicit, and the corresponding

Hilbert space is infinite-dimensional [30].

The positivity condition ∫ 𝐾(𝒙, 𝒛)𝑓(𝒙)𝑓(𝒛)𝑑𝒙𝑑𝒛

𝑋×𝑋
≥ 0 is the key to verifying

that a news symmetric function is a kernel, specifically, the requirement is that the matrix

restricted by the function to any finite set of points is positive-semidefinite. Several new

kernels can be created by following this criterion. Refer to Christianini and Shawe-Taylor

[31] for the detailed proof that if we consider 𝐾1 and 𝐾2 to be kernels over 𝑋 × 𝑋, 𝑋 ⊂

ℝ𝑑, 𝑎 ∈ ℝ+ where 𝑓(∙) is a real-valued function on 𝑋, and given a linear transformation

64

 𝜙:𝑋 → ℝ𝑚 (37)

with 𝐾3 a kernel over ℝ𝑚 × ℝ𝑚 and 𝑩 a symmetric positive semi-definite 𝑛 × 𝑛 matrix,

then the following functions are also valid kernels:

1. 𝐾(𝒙, 𝒛) = 𝐾1(𝒙, 𝒛) + 𝐾2(𝒙, 𝒛)

2. 𝐾(𝒙, 𝒛) = 𝛼𝐾1(𝒙, 𝒛)

3. 𝐾(𝒙, 𝒛) = 𝐾1(𝒙, 𝒛)𝐾2(𝒙, 𝒛)
4. 𝐾(𝒙, 𝒛) = 𝑓(𝒙)𝑓(𝒛)

5. 𝐾(𝒙, 𝒛) = 𝐾3(𝜙(𝒙), 𝜙(𝒛))

6. 𝐾(𝒙, 𝒛) = 𝒙′𝑩𝒛.

Besides combining existing kernels according to the rules above to make new

kernels, kernels can also be created based on the features of the experimental / collected

data. The making of new kernels can be accomplished by starting with the features and

by determining their inner product. When creating kernels this way, we do no need to

verify that the kernel is positive semi-definite, since that condition follows automatically

from the inner product definition [31]. For this research, only the linear, polynomial, and

RBF kernels are considered in the SVM context. The exploration of custom kernels is left

for future research.

 The last section of this section deals with the applicability of the SVM approach

to the binary classification problem of MCU upset. For mathematical convenience, the

outcomes of the MCU upset problem are labeled as +1 denoting upset and 0 denoting no

upset. The underlying pattern of this problem could be anything, and no assumption is

made regarding 𝑋 other than it being a set, however in order to apply the theory of SVMs

to this problem, additional types of structures are needed. Specifically, in machine

learning problems the goal is to be able to generalize the machine learning algorithm to

unseen data and have it perform adequately. In the case of binary classification, this

65

means that for some new pattern 𝑥 ∈ 𝑋, we would like to accurately predict the

corresponding output labels 𝑦 = (1, 0). Generally speaking, the output label 𝑦 will be

chosen in such a way that the input-output pair (𝑥, 𝑦) is chosen in a similar fashion as

represented by the training examples.

 Characterizing the similarity of the outputs in the binary case is relatively

straightforward: the two labels (upset/no upset) can either be identical or different. The

way by which we measure this similarity based on the inputs is the core question that is

fundamental to the field of machine learning. To formalize the problem, consider a

similarity measure of the form

 𝑘: 𝑋 × 𝑋 → ℝ (38)

 (𝑥, 𝑥′) → 𝑘(𝑥, 𝑥′), (39)

which is a function that, given two patterns 𝑥 and 𝑥’, returns a real number that

characterizes the similarity between the two patterns. The symbol 𝐾 denotes the kernel

function that is assumed to be symmetric [35].

 Starting with a simpler notion, the measure of similarity that could apply to this

case is the dot product. For instance, given two vectors 𝒙, 𝒙′ ∈ ℝ𝑛, a canonical dot

product is defined as

 〈𝒙, 𝒙′〉 ≔ ∑ [𝒙]𝒊[𝒙′]𝒊
𝑵
𝒊=𝟏 , (40)

where [𝒙]𝒊 denotes the 𝑖𝑡ℎentry of the vector 𝒙. The dot product is also referred to as

inner product or the scalar product and sometimes is represented alternatively by (𝒙 ∙ 𝒙′).

Geometrically, the dot product can be interpreted as the cosine of the angle between the

66

vectors 𝒙 and 𝒙′. Additionally, the geometric representation allows the computation of

the length of the vector, also referred to as the norm, i.e.

 ‖𝒙‖ = √〈𝒙, 𝒙〉. (41)

Moreover, the distance between two vectors is computed as the length of the difference

vector. Therefore, the ability to compute the dot product enables us to formulate all the

geometric constructions in terms of angles, lengths, and distances. Even though this

seems like a simple approach, most interesting problems require a more complex SVM

solution.

 Having discussed the basic theory and architecture behind SVMs, we now discuss

a basic process flow used by SVMs in arriving at classification and regression solutions.

Fig. 23 shows a typical architecture of SVMs and related kernel methods. This case

assumes that we are dealing with the more complex case of multi-class classification,

instead of binary classification, but the concept applies to both. As shown in Fig. 23, the

inputs x and the expansion patterns 𝑥𝑖 are nonlinearly mapped by 𝜙(∙) into a (possibly

infinite) feature space ℋ, also referred to as a higher-dimensional Hilbert-space, in which

dot products are computed. As described earlier, these two steps are accomplished in a

single step through the use of the kernel 𝑘. Next, the results are linearly combined using

weights 𝑣𝑖, found by solving a quadratic problem, which in pattern recognition (or binary

classification) is represented by 𝑣𝑖 = 𝑦𝑖𝛼𝑖 and in regression estimation 𝑣𝑖 = 𝛼𝑖
∗ − 𝛼𝑖, or

by solving an eigenvalue problem using kernel principal component analysis (PCA). As

the final step, the linear combination is processed by the function 𝜎 to produce a classifier

or regressor value, which in pattern recognition (MCU upset binary classification) is

67

𝜎(𝑥) = sgn(𝑥 + 𝑏), and for completeness, in regression estimation is 𝜎(𝑥) = 𝑥 + 𝑏, and

in kernel PCA is 𝜎(𝑥) = 𝑥 [35].

Figure 23: Typical architecture of SVMs and related kernel methods [35].

 SVMs for classification and regression require that a kernel function and the

parameter 𝐶 be specified, along with any applicable kernel scale parameters. Typically, 𝐶

is chosen by 𝑘-fold cross-validation. 𝐾-fold cross validation uses part of the available

data to fit the model (choose 𝐶 and kernel scale 𝜎) and a different part to test it. During

this process, the data is split into 𝐾 roughly equal-sized parts. For example, suppose that

𝐾 = 5, then the data will be split into five roughly equal parts, as shown in Fig. 24.

68

Figure 24: 5-fold cross-validation data split [36].

 For the 𝑘 − 𝑡ℎ part (data subset 3 above), the algorithm fits the model to the other

𝐾 − 1 parts of the data (subsets 1,2,4,5), and calculates the prediction error of the fitted

model during the prediction process for the 𝑘 − 𝑡ℎ part of the data. The algorithm does

this for 𝑘 = 1,2,3, … , 𝐾 and combines the 𝐾 estimates of prediction error, usually by

averaging them. The cross-validation estimate of the prediction error is given by

 𝐶𝑉(𝑓) =
1

𝑁
∑ 𝐿 (𝑦𝑖 , 𝑓

−𝜅(𝑖)(𝑥𝑖))
𝑁
𝑖=1 . (42)

Typical choices of 𝐾 are 5 or 10. The case where 𝐾 equals the number of data points is

known as leave-one-out-validation, which is computationally prohibitive for large

datasets.

 In this research the Bayesian approach is used with cross-validation. As with

other types of optimization methods, the goal of the Bayesian approach is to find the

extrema of a function 𝑓(𝑥) on some bounded set 𝑋. In this case, we are looking to

choose 𝐶 and 𝜎 in such asway, as to minimize the cross-validation loss in equation 25.

What makes the Bayesian approach unique is that it constructs a probabilistic model for

𝑓(𝑥) and then exploits this model to make decisions about where in 𝑋 to next evaluate

the function, while integrating out uncertainty. The key idea is to use all of the

69

information available from previous evaluations of 𝑓(𝑥) and not simply to rely on local

gradient and Hessian approximations. This results in a procedure that can find the

minimum of difficult non-convex functions with relatively few evaluations (30 in the

MCU upset case) at the cost of performing more computations to determine the next

point to evaluate. These computations are usually expensive to perform when training a

machine learning algorithm, but the result enables the machine to perform better

decisions. MATLAB implements Bayesian optimization with a GP prior, and it gives a

range of choices for the so-called acquisition function, which is used to construct a utility

function from the model posterior, that is used to determine the next point to evaluate

[37].

 As introduced earlier, the GP is a convenient and powerful prior distribution on

functions of the form 𝑓: 𝑋 → ℝ. It is defined by a property in which any finite set of 𝑁

points induces a multivariate Gaussian distribution on ℝ𝑛. The 𝑛 − 𝑡ℎ of these points is

taken to be the function value 𝑓(𝑥𝑛) and the marginalization properties of the Gaussian

distribution allow us to compute the marginals and conditionals in closed form. The

resulting distributions in functions are determined by a mean function and a covariance

function.

 Assuming that a function 𝑓(𝑥) is drawn from a GP prior and that our observations

have the form {𝑥𝑛 , 𝑦𝑛}𝑛=1
𝑁 , where 𝑦𝑛~𝒩(𝑓(𝑥𝑛), 𝜐) where 𝜐 is the variance of the noise in

the observations. The prior together with the data induces a posterior over functions. In

Bayesian optimization, the acquisition function 𝑎: 𝑋 → ℝ+ determines which point in 𝑋

should be evaluated next via a proxy optimization denoted by 𝑋𝑛𝑒𝑥𝑡 = argmax𝑋𝑎(𝑋)

where several different functions have been proposed. These acquisition functions

70

depend on the previous observations as well as on the GP hyperparameters, and this

dependence is denoted by 𝑎(𝑥; 𝑥𝑛, 𝑦𝑛, 𝜃). There are several popular choices for the

acquisition function, but the one that will be utilized to optimize the choice of SVM

kernel parameters is a version of the expected improvement acquisition function, given

by

𝑎𝐸𝐼(𝑥; 𝑥𝑛, 𝑦𝑛, 𝜃)

= 𝜎(𝑥; 𝑥𝑛, 𝑦𝑛, 𝜃) (𝛾(𝑥)Φ(𝛾(𝑥)) +𝒩(𝛾(𝑥); 0,1)),
(43)

where 𝛾(𝑥) =
𝑓(𝑥𝑏𝑒𝑠𝑡)−𝜇(𝑥; 𝑥𝑛,𝑦𝑛,𝜃)

𝜎(𝑥; 𝑥𝑛,𝑦𝑛,𝜃)
 and Φ(𝛾(𝑥)) is the maximized probability of

improvement over the current best result.

Chapter 3-3: Artificial Neural Networks (ANN)

 One of the computational techniques that will be utilized to model transient upset

events in microcontrollers is based on ANNs. Just like SVMs and GPs for machine

learning, this technique is based on algorithms that can learn from, and make predictions

on data. Rather than utilizing strictly static programming instructions, ANNs build a

model from sample data to make predictions or decisions. An important property of NNs

is their ability to perform input-output mapping by way of supervised or unsupervised

learning. In this learning process, there exists a collection of input-output pairs, which

will be used to train a neural network and perform MCU upset modeling tasks. In

conjunction with a priori experimental data, the NN should be able to learn which set of

input pairs is most likely to cause an upset event. Naturally, the NN may not be able to

71

produce error-free results, but it has a built-in capability to adapt its synaptic weights to

changes in the environment in which they operate to minimize the error measure [38].

 ANNs are a biologically-inspired model that is enjoying considerable engineering

success in applications ranging from time series prediction to computer vision and even

electromagnetics as covered in the literature search chapter. ANNs are a good candidate

model for the learning from data task because they can efficiently approximate complex

target functions. Another reason why they present a suitable tool is that they are usually

packaged with good algorithms for data fitting. This section introduces the concept

behind ANNs and how to train them on collected data. Moreover, a number of techniques

will be presented that fit the data by minimizing the in-sample error. Neural networks are

a very flexible model with great approximation power, but they can be prone to

overfitting, if not properly utilized. Several techniques that are specific to neural

networks are available to control overfitting.

The computational technique that will be utilized to model transient upset events

in microcontrollers is ANNs. Fig. 25 shows a summary of the utilization of ANNs to

address a data analysis problem.

72

Figure 25: Illustration of problem-solving flow using ANNs [38].

 The modern perspective on ANNs began in the 1940s with the McCulloch and

Pitts neuron. They showed that ANNs could, in principle, compute any arithmetic or

logical function. Their work is often acknowledged as the foundation of the ANN field.

Following McCulloch and Pitts, Webb posed that classical conditioning, that was

discovered by Pavlov is present because of individual neurons’ properties, based on

which he proposed a mechanism for learning in biological neurons. The next significant

development provided for the first application of ANNs came in the late 1950s. At the

core of this idea was the invention of the perceptron network and the associated learning

rule as proposed by Rosenblatt in 1958. Rosenblatt and his colleagues built a perceptron

network and demonstrated that it is able to perform pattern recognition, a success which

generated a great deal of interest in ANN research, even though the basic perceptron has

been shown to be able to solve only a limited class of problems. Around the same time,

Widrow and Hoff introduced a new learning algorithm that is used to train adaptive linear

73

neural networks. These networks were similar in structure and capability to Rosenblatt’s

perceptron. The Widrow-Hoff learning rule [39] is still used today. However, both

Rosenblatt’s and Widrow’s network suffered inherent limitations, the details of which do

not warrant additional coverage here.

 Interest in neural networks research all but halted in the late 1960s because of the

lack of innovative ideas and the lack of powerful computers that can be used to aid the

research. However, these impediments were overcome in the 1980s when the use of

personal computers and the introduction of two new concepts reinvigorated the research.

The first concept that helped reinvigorate the research into ANNs was the use of

statistical mechanics to explain the operation of a certain class of recurrent network.

Hence, the class of networks that resulted from this theory was termed Hopfield

networks. The second key development was the backpropagation algorithm for training

the MLP. It should be noted that several independent researchers discovered this

algorithm almost simultaneously. However, the most influential description was

published by Rumelhart and McClelland in 1986 [40]. Indeed, many of the advances in

ANNs have had to do with innovative architectures and training rules, that along with the

availability of powerful new computers continue to drive the research today [38].

 The fundamental concept in the field of ANNs is the single input neuron, shown

in Fig. 26.

74

Figure 26: Illustration of a single input neuron [38].

 The scalar input 𝑝 is multiplied by the scalar weight 𝑤 to form 𝑤𝑝, which is one

of the terms sent to the adder block. The other input, which is the scalar 1 is multiplied by

a bias 𝑏 and then passed to the same adder block. The output of this adder, labeled 𝑛 is

referred to as the net input, which goes into the transfer function, also referred to as the

activation function, 𝑓, producing a scalar output 𝑎. More formally, the neuron output if

calculated as

 𝑎 = 𝑓(𝑤𝑝 + 𝑏), (44)

and if the weight, input, and bias is defined as 𝑤 = 3, 𝑝 = 2, and 𝑏 = −1.5, then the

neuron output becomes

 𝑎 = 𝑓(3(2) − 1.5) = 𝑓(4.5). (45)

The actual output 𝑎 depends on the transfer function that is chosen. The terms transfer

and activation function refer to the same concept and are used interchangeably. The bias

acts like a weight, except that its input is set to a constant of 1, but it can be omitted. In

75

this case, 𝑤 and 𝑏 are adjustable scalar parameters of the neuron. The transfer function is

chosen by the designer while 𝑤 and 𝑏 are adjusted by some learning rule so that the

neuron input/output relationship meets a specific goal.

 The transfer function 𝑓 introduced in Fig. 27 may be a linear or nonlinear function

of 𝑛. Moreover, any particular transfer function is chosen in a way such that it satisfies

some specification of the problem that the neuron and the ANN are attempting to solve.

The three most commonly used transfer functions are the hard limit, the linear and the

log-sigmoid transfer function.

 The hard limit transfer function, as shown in Fig. 27 below sets the output of the

neuron to 0 if the function argument is less than 0, or it sets the output to 1 if its argument

is positive. This transfer function is used to create neurons whose task is to classify

inputs into two distinct categories, as applied to the MCU upset problem [38].

Figure 27: Hard limit transfer function [38].

 The second most commonly used transfer function is the linear transfer function:

 𝑎 = 𝑛, (46)

as shown in Fig. 28.

76

Figure 28: Linear transfer (activation) function [38].

The neuron output 𝑎 versus input 𝑝 characteristic is shown in Fig. 28 (right).

 Finally, the log-sigmoid activation function is shown in Fig. 29. This function

takes the input, which may have a range −∞ < 𝑝 < +∞ and squashes the output into the

range 0 ≤ 𝑎 ≤ 1 according to the following expression:

 𝑎 =
1

1 + 𝑒−𝑛
. (47)

The log-sigmoid activation function is commonly used in multi-layer ANNs that are

trained using the backpropagation algorithm because this function is differentiable. Other

commonly used transfer functions are summarized in Appendix A [38].

77

Figure 29: Sigmoid transfer (activation) function [38].

 While a single input neuron is used to illustrate the general concept, typically in

practice a neuron has multiple inputs, each of which corresponds to one dimension of the

input data. Such a neuron is shown in Fig. 30. In this case, the individual inputs 𝒑 =

{𝑝1, … , 𝑝𝑛} are each weighted by the corresponding weight elements 𝑾 =

{𝒘𝟏,𝟏, … ,𝒘𝟏,𝑹} of the weight matrix. The neuron has a bias 𝑏 that is summed with the

weighted inputs resulting in 𝑛 = 𝑤1,1𝑝1 + 𝑤1,2𝑝2 +⋯+𝑤1,𝑅𝑝𝑅 + 𝑏 or in matrix form

𝑛 = 𝑾𝒑 + 𝑏 in which the matrix 𝑾 is a single row for the single neuron case. The

neuron output can now be written as [38]

 𝑎 = 𝑓(𝑾𝒑 + 𝑏). (48)

78

Figure 30: Multiple input neuron [38].

 The issue with the single perceptron or neuron is that it cannot implement simple

classification functions. Fig. 31 illustrates a scenario in which a single perceptron is ill-

suited to find a solution. The example in Fig. 31 is related to the Boolean XOR function.

In this case, the classifying function 𝑓 cannot be written as sign(𝒘𝑻𝒙), because it is

composed of two linear parts. To solve the XOR problem, the classification function 𝑓

can be decomposed into two simple perceptrons corresponding to the two lines separating

the two classes. The outputs of these two perceptrons can be combined to reconstruct the

classification function 𝑓. Fig. 32 shows the two perceptrons required to successfully

tackle the XOR problem.

79

Figure 31: Classification scenario ill-suited for single perceptron [29].

Figure 32: Two perceptrons required to solve the XOR problem illustrated in Fig. 23 [29].

80

The classifying target function 𝑓 equals +1 when exactly one of ℎ1, ℎ2 equals +1.

Using standard Boolean notation, this target function can be written as

 𝑓 = ℎ1ℎ2 + ℎ1ℎ2, (49)

implying that more complicated targets (problems) can be solved by various

combinations of perceptrons as shown in Fig. 33.

Figure 33: Target classification with different numbers of perceptrons [29].

The formal proof of this concept is somewhat similar to the theorem of calculus

which says that any continuous function on a compact set can be approximated arbitrarily

closely using step functions. In the scenario of Fig. 33, the perceptron is the analog of the

step function [29]. Thus, more complex target functions can be modeled by adding more

nodes (hidden units) in the hidden layers, corresponding to allowing more perceptrons to

work on the decomposition of the target function 𝑓, which we wish to learn.

In practice, a single neuron with many inputs may not be sufficient. It may be

necessary to employ five or ten, maybe more layers that are operating in parallel, forming

a neuron layer. A single-layer network of 𝑆 neurons is shown in Fig. 34.

81

Figure 34: A layer of S neurons [38].

For this case, each of the 𝑅 inputs is connected to each neuron, resulting in a

weight matrix 𝑾 with 𝑆 rows. The layer includes the weight matrix, the summers, the

bias vector 𝒃, the transfer function boxes, and finally the output vector 𝑎. Some literature

refers to the input layer as a separate layer. Each element of the input matrix 𝒑 is

connected to each neuron through the matrix 𝑾, defined as

 𝑾 = [

𝑤1,1 𝑤1,2 … 𝑤1,𝑅
𝑤2,1 𝑤2,2 … 𝑤2,𝑅
⋮ ⋮ ⋮
𝑤𝑆,1 𝑤𝑆,2 … 𝑤𝑆,𝑅

] (50)

where the row indices indicate the destination neuron associated with that weight, and

where the column indices indicate the source input for that weight. For example, the

82

indices in 𝑤1,2 indicate that this weight represents the connection to the first neuron from

the second source. Fig. 35 shows the MLP drawn in abbreviated notation [38].

Figure 35: Layer of S neurons in abbreviated notation [38].

Similarly, an ANN can contain multiple layers. This type of configuration is

referred to as the MLP described earlier, and is shown in Fig. 36.

Figure 36: Illustration of a 'softened' MLP ANN [29].

The ANN in Fig. 36 is an example of a feed-forward MLP. To facilitate concise

mathematical description, a slight change in notation follows. The layers are labeled by

𝑙 = 0,1,2, … 𝐿. Fig. 36 shows a ANN with 𝐿 = 3, meaning that there are three layers, the

input layer, the hidden layer, and the output layer, even though the input layer is usually

83

not considered a layer in the traditional sense. The layer 𝐿 is the output layer and, it

determines the value of the function. The layers 0 < 𝑙 < 𝐿 are the hidden layers. The

information flows from the inputs on the far left, along links and through the hidden

nodes, to the output ℎ(𝒙) on the far right [29].

The superscript(𝑙) is used to refer to a layer, each of which has dimension 𝑑(𝑙).

This means that each layer has 𝑑(𝑙) + 1 nodes, labeled 0,1, … , 𝑑(𝑙). As mentioned earlier,

each layer has a special node, also called a bias node. The bias node is set to have an

output value of 1. In an ANN every arrow represents a weight or connection strength

from one node in a layer to a node in the next higher layer. Generally, if a node has an

incoming arrow that indicates that this node has an incoming signal. Every node with

such an input signal has a transformation or transfer function 𝜃. In the case of MLP for

classification, this transfer function is 𝜃(𝑠) = sign(𝑠). A soft version of the MLP with

𝜃(𝑥) = tanh(𝑥) can be used to approximate the sinh(∙) function. The tanh(∙) function is

a soft threshold or sigmoid, whose output, in the case of classification, is replaced by the

hard threshold sign(∙) [29].

 The ANN architecture is what determines the neural network model ℋ𝑛𝑛. The

architecture of the network is determined by the dimension of each layer 𝒅 =

[𝑑(0), 𝑑(1), … , 𝑑(𝐿)], where 𝐿 represents the number of layers in the ANN. The

determination of the interconnect weights specifies a hypothesis ℎ ∈ ℋ𝑛𝑛. For example,

consider a node in a hidden layer shown in Fig. 37.

84

Figure 37: Example of an ANN node in a hidden layer [29].

Consider a node that has an incoming signal 𝑠 and an output 𝑥. A pair of

incoming signals and outgoing signals forms a link between two nodes that has a weight

𝑤(𝑙) associated with it. These weights are indexed by the layer for which they act as input

signals, therefore the output of the nodes in layer 𝑙 − 1 is multiplied by the weights of the

links that act as input signals to layer 𝑙, or 𝑤(𝑙). Subscripts on the weights are used to

index the nodes in a layer, meaning that 𝑤𝑖𝑗
(𝑙)

is the weight into node 𝑗 in layer 𝑙 from node

𝑖 in the previous layer. The signal 𝑠𝑗
(𝑙)

 denotes the signal going into node 𝑗 in the layer 𝑙.

The output of the node 𝑗 is denoted as 𝑥𝑗
(𝑙)

. The ANN also contains some special nodes.

The zero nodes in every layer are called constant nodes (bias nodes) and each of their

outputs is set to 1. These nodes do not have an incoming weight, but they do have an

outgoing weight. The nodes in the input layer (𝑙 = 0) are reserved for the input values

and they have no incoming weight or transformation function [29].

 Generally, the theoretical treatment of ANNs is dealt with on a layer-by-layer

basis. All the input signals to nodes 1,… , 𝑑(𝑙) and all the output nodes 0,… , 𝑑(𝑙) in the

85

layer 𝑙 are collected in the vector 𝒙 ∈ {1} × ℝ𝒅
(𝒍)

. Additionally, there are links that

connect the outputs of all nodes in a previous layer to the inputs of layer 𝑙. Therefore, a

(𝑑(𝑙−1) + 1) × 𝑑(𝑙) matrix of weights 𝑊(𝑙) serves as input to layer 𝑙. The 𝑖, 𝑗 entry of

𝑊(𝑙) is 𝑤𝑖𝑗
(𝑙)

 going from node 𝑖 in the previous layer to node 𝑗 in layer 𝑙. A concise

summary of this concept is illustrated in Fig. 38 and its accompanying Table 7 [29].

Figure 38: Example of an ANN node [29].

Table 7: layer l parameters of ANN node of Fig. 27

signals in 𝒔(𝑙) 𝑑(𝑙) dimensional input vector

outputs 𝒙(𝑙) 𝑑(𝑙) + 1 dimensional output vector

weights in 𝑾(𝑙) (𝑑(𝑙−1) + 1) × 𝑑(𝑙) dimensional matrix

weights out 𝑾(𝑙+1) (𝑑(𝑙) + 1) × 𝑑(𝑙+1) dimensional matrix

 Once the weights 𝑊(𝑙) for 𝑙 = 1,… , 𝐿 are determined, we have specified a neural

network hypothesis ℎ ∈ ℋ𝑛𝑛. All the weight matrices are collected into a single weight

parameter 𝒘 = {𝑊(1),𝑊(2), … ,𝑊(𝐿)}, sometimes written in short notation as ℎ(𝒙;𝒘)

indicating the dependence of the hypothesis on 𝒘 [29].

 The neural network hypothesis is computed via the forward propagation

algorithm. The input-output relationship of each layer is given by

86

 𝒙(𝑙) = [
1

𝜃(𝒔(𝑙))]
(51)

where 𝜃(𝒔(𝑙)) is a vector with components 𝜃(𝑠(𝑙)). To get the input vector to layer 𝑙, the

weighted sum of the outputs from the previous layer must be computed. The weights are

specified by

 𝒔(𝑙) = (𝑾(𝑙))
𝑇
𝒙(𝑙−1). (52)

The remaining step is to initialize the input layer to 𝒙(0) = 𝒙, so 𝑑(0) = 𝑑, which is the

input dimension and use the equations for 𝒙(𝑙) and 𝒔(𝑙) introduced above in the following

chain

 𝒙 = 𝒙(0)
𝑾(1)

→ 𝒔(1)
𝜃
→ 𝒙(1)

𝑾(2)

→ 𝒔(2)
𝜃
→ 𝒙(2)…𝒔(𝐿)

𝜃
→ 𝒙(𝐿) = ℎ(𝒙) (53)

in which the input vectors are augmented with 𝒙0 = 1. The forward propagation

algorithm is summarized and illustrated in Fig. 39 [29].

87

Figure 39: Forward propagation algorithm [29].

Once the forward propagation algorithm has completed processing, the

computation of the output vector 𝑥(𝑙) at every layer 𝑙 = 0,1, … , 𝐿 has been accomplished.

To compute the input error discussed earlier, all that is required are ℎ(𝑥𝑛) and 𝑦𝑛, with

the sum of squares

 𝐸𝑖𝑛(𝒘) =
1

𝑁
∑ (ℎ(𝑥𝑛; 𝑤) − 𝑦𝑛)

2𝑁
𝑛=1 =

1

𝑁
∑ (𝑥𝑛

(𝐿)
− 𝑦𝑛)

2
𝑁
𝑛=1 . (54)

The weights are learned by minimizing 𝐸𝑖𝑛 by directly applying an efficient gradient

descent algorithm [29].

88

 The gradient descent is a general technique that is used to minimize a twice-

differentiable function, such as 𝐸in(𝒘). In this case, 𝐸in(𝒘) is an error surface in high-

dimensional space. During the initial step of the gradient descent algorithm, we start

somewhere on this surface and attempt to find a local minimum, thereby decreasing the

in-sample error 𝐸in(𝒘) in the case of logistic regression problems, however it is possible

to use it for classification problems as well. The weights are initialized to 𝒘(0) and the

weights are updated by taking a step in the negative gradient direction

 𝒘(𝑡 + 1) = 𝒘(𝑡) − 𝜂∇𝐸in(𝒘(𝑡)), for 𝑡 = 1,2,3, … (55)

the implementation of which requires the gradient.

 Consider a sigmoidal multi-layer network with 𝜃(𝑥) = tanh (𝑥). Since tanh (𝑥)

and thus ℎ(𝒙) is a smooth function, the gradient descent algorithm can be applied to the

resulting error function. To apply this algorithm, the gradient ∇𝐸in(𝒘) is needed, where

the weight vector 𝒘 = 𝑊(1), … ,𝑊(𝐿), along with the derivatives with respect to all these

weights. For the multilayer sigmoidal network, there exists no simple closed form

expression for the gradient. Additionally, consider an in-sample error defined as the sum

of point-wise errors over data points

 𝐸in(𝒘) =
1

𝑁
∑𝑒𝑛,

𝑁

𝑛=1

 (56)

where 𝑒𝑛 = 𝑒(ℎ(𝑥𝑛), 𝑦𝑛), which in case of the squared error measure is defined as

𝑒(ℎ, 𝑦) = (ℎ − 𝑦)2. To compute the gradient of 𝐸in, the derivative with respect to each

weight matrix is required:

89

𝜕𝐸in
𝜕𝑊(𝑙)

=
1

𝑁
∑

𝜕𝑒𝑛
𝜕𝑊(𝑙)

𝑁

𝑛=1

, (57)

which can be determined via the finite numerical difference approach. Backpropagation

is based on several applications of the chain rule to express partial derivatives in layer 𝑙

using partial derivatives in layer (𝑙 + 1). The backpropagation algorithm is based on the

sensitivity vector for layer 𝑙, denoted as 𝜹(𝑙)and defined as the gradient of the error 𝑒 with

respect to the input signal to the layer 𝑙, 𝒔(𝑙). The sensitivity vector is defined as

 𝜹(𝑙) =
𝜕𝒆

𝜕𝒔(𝑙)
 (58)

and it describes how the error changes with 𝒔(𝑙). The partial derivatives with respect to

the weights 𝑊(𝑙) can now be written as

𝜕𝑒

𝜕𝑊(𝑙)
= 𝒙(𝑙−1)(𝛿(𝑙))

𝑇
. (59)

The partial derivatives of the weights on the left-hand side form a matrix with dimensions

(𝑑(𝑙−1) + 1) × 𝑑(𝑙). The partial derivatives are composed of two components: (i) the

sensitivity vector of the layer from which the weights originate, and (ii) the sensitivity

vector of the layer into which the weights go. The sensitivity of the error 𝑒 is directly

proportional to the magnitude of the sensitivity vector [29].

 As mentioned earlier, the outputs 𝒙(𝑙) for every layer are computed by forward

propagation and to obtain partial derivatives, it is necessary and sufficient to compute the

sensitivity vectors 𝜹(𝑙) for every layer, which can be accomplished by running a

90

modified version of the network backwards, hence the label backpropagation. More

succinctly, in forward propagation, the algorithm computes 𝒙(𝑙) from 𝒙(𝑙−1)and in

backpropagation, the algorithm computes 𝜹(𝑙) from 𝜹(𝑙+1). Thus, in forward propagation,

the output of each layer is the vector 𝒙(𝑙)and in backpropagation the output of each layer

is 𝜹(𝑙), as illustrated in Fig. 40.

Figure 40: Illustration of the backpropagation process [29].

 The network is slightly modified for the backpropagation case. The modification

entails a change in the transformation function for the nodes. In forward propagation, the

transformation is the sigmoid 𝜃(∙), whereas for the backpropagation case the

transformation is the multiplication by 𝜃′(𝒔(𝑙)) where 𝒔(𝑙) is the input to the node. The

transformation function is now different for each node and it depends on the input to the

node, which in turn depends on the input 𝒙, which was computed during the forward

propagation. The mathematical notation for the forward propagation case with the 𝑡𝑎𝑛ℎ

transformation function is tanh′(𝒔
(𝑙)) = 1 − tanh2(𝑠(𝑙)) = 1 − 𝒙(𝑙)⨂𝑥(𝑙), where ⊗

91

denotes component-wise multiplication, whereas the notation for the backpropagation

case is 𝛿(𝑙) = 𝜃′(𝑠(𝑙)) ⊗ [𝑊(𝑙+1)𝛿(𝑙+1)]
1

𝑑(𝑙)

, where the vector [𝑊(𝑙+1)𝛿(𝑙+1)]
1

𝑑(𝑙)

 contains

components 1,… , 𝑑(𝑙) of the vector 𝑊(𝑙+1)𝛿(𝑙+1) [29].

 The backpropagation algorithm works with a data point (𝑥, 𝑦) and weights 𝒘 =

{𝑊(1), … ,𝑊(𝐿)}. One run of the forward and backward propagation algorithms computes

the outputs 𝒙(𝑙) and the sensitivities 𝛿(𝑙)with algorithm run time that is in order of the

number of weights in the network. Generally, this is computed once and for each data

point (𝑥, 𝑦) to get ∇𝐸in(𝒙in) and eventually the full batch gradient ∇𝐸in(𝒘) defined

earlier. The full algorithm is summarized in Fig. 41.

Figure 41: The ANN algorithm [29].

In addition to the standard backpropagation algorithms, there are several

alternative adaptive learning algorithms for feedforward neural networks that have been

developed with the most pertinent one being the scaled conjugate gradient (SCG) for fast

supervised learning, originally proposed by proposed by Moller in 1993 [41]. The SCG

algorithm for training a feedforward neural network is implemented in the MATLAB

92

neural networks toolbox and will be described in more detail. Standard backpropagation

algorithms usually have poor convergence rates, and they depend on user-defined

parameters such as learning rate and momentum constant. The additional disadvantage of

using the standard backpropagation algorithms is that there is no theoretical backing for

an optimal choice of these user-defined parameters [41].

From an optimization perspective, the learning problem in the neural network

approach is equivalent to minimizing a global error function, which is a form of a

multivariate function that depends on the weights of the network. The approach of

minimizing a function is well known in the conventional numerical analysis field. It is the

general opinion in the numerical analysis community that the Conjugate Gradient

Methods are particularly well suited to tackle large-scale problems in an effective

manner. Most of the optimization methods that are used to minimize functions are based

on the same strategy. The minimization is a local iterative process in during which an

approximation to the function in a neighborhood of the current point in weight space is

minimized. This approximation is often given by a first order Taylor expansion of the

function. This approach is illustrated in the following the pseudo-algorithm:

1. Choose the initial weight vector 𝒘1 and set 𝑘 = 1

2. Determine a search direction 𝒑𝑘 and a step size 𝛼𝑘 so that 𝐸(𝒘𝒌 + 𝛼𝑘𝒑𝒌) <

𝐸(𝒘𝑘)
3. Update vector: 𝒘𝑘+1 = 𝒘𝑘 + 𝛼𝑘𝒑𝑘

4. If 𝐸′(𝒘𝑘) ≠ 0 set 𝑘 = 𝑘 + 1 and return to step 2, otherwise return 𝒘𝑘+1 as

the desired minimum.

The determination of the next current point in this iterative process involves two

independent steps. During the first step, a search direction is determined, that is in which

direction we should move next to determine the minimum value of the error function. In

93

other words, in what direction in the weight space do we need to go next in the search for

a new current point. Once the direction has been determined, the next step is to determine

how far the algorithm should go in that direction, i.e. a step size needs to be chosen. In

the case when the search direction in the above algorithm is set to the negative gradient

−𝐸′(𝒘) and the step size is set to a constant 휀 then the algorithm becomes a gradient

descent algorithm [41].

 Conjugate direction methods also utilize the same general optimization strategy,

but they make use of information from the second order approximation 𝐸𝑞𝑤(𝒘 + 𝒚) ≈

𝐸(𝒘) + 𝐸′(𝒘)𝑇𝒚 +
𝟏

𝟐
𝒚𝑇𝐸′′(𝒘)𝒚 to choose the search direction and step size more

carefully. Quadratic functions have certain advantages over general functions. Consider

the quadratic approximation to the error function 𝐸 in a neighborhood of a point 𝒘 given

by

 𝐸𝑞𝑤(𝒚) = 𝐸(𝒘) + 𝐸′(𝒘)
𝑇𝒚 +

1

2
𝒚𝑇𝐸′′(𝒘)𝒚. (60)

To determine the minima of 𝐸𝑞𝑤, we must solve the following linear system to find the

critical points

 𝐸′𝑞𝑤(𝒚) = 𝐸
′′(𝒘)𝒚 + 𝐸′(𝒘) = 0. (61)

If a conjugate system is available, the solution of this linear system is simplified

considerably [41]. If and only if the Hessian matrix 𝐸′′(𝒘) is positive definite, then

𝐸𝑞𝑤(𝒚) has a unique global minimum, otherwise the minimum can be a saddle point or a

maximum.

94

 The following two theorems, when combined, are the driving force behind the

conjugate gradient algorithm.

THEOREM 1: Let 𝒑1, … , 𝒑𝑁 be a conjugate system and 𝒚1 a point in weight-space. Let

the points 𝒚2, … , 𝒚𝑁+! be recursively defined by 𝒚𝑘+1 = 𝒚𝑘 + 𝛼𝑘𝒑𝑘 where 𝜶𝑘 = 𝝁𝑘 𝜹𝑘⁄ ,

𝝁𝑘 = −𝒑𝑘
𝑇𝐸′𝑞𝑤(𝒚𝑘), 𝜹𝑘 = 𝒑𝑘

𝑇𝐸′′(𝒘)𝒑𝑘. Then 𝒚𝑘+1 minimizes 𝐸𝑞𝑤 restricted to the k-

plane 𝜋𝑘 given by 𝒚1 and 𝒑1, … , 𝒑𝑘 [41].

The algorithm portion that is based on this theory ensures that the global minimum of a

quadratic function is detected in, at most, 𝑁 iterations. Additionally, if the all the

eigenvalues of the Hessian 𝐸′′(𝒘) fall into multiple groups of the same size then there is

increased probability that the algorithm will terminate in much less than 𝑁 iterations [41].

 To reach the conjugate part of the algorithm, Theorem 2 is used to obtain the

conjugate vectors that are also referred to as conjugate gradient directions.

THEOREM 2: Let 𝒚1be a point in weight space and 𝒑1 and let 𝒓1 equal to the steepest

descent vector −𝐸′𝑞𝑤(𝒚𝟏). Additionally, let 𝒑𝑘+1 be recursively defined as

 𝒑𝑘+1 = 𝒓𝒌+𝟏 + 𝜷𝒌𝒑𝒌 (62)

where 𝒓𝑘+1 = 𝐸′𝑞𝑤(𝒚𝑘+1), 𝜷𝑘 = (|𝒓𝑘+1|
2 − 𝒓𝑘+1

𝑇 𝒓𝑘) 𝒑𝑘
𝑇𝒓𝑘⁄ and 𝒚𝑘+1 is the point

generated in Theorem 1. Then 𝒑𝑘+1 is the steepest descent vector to 𝐸𝑞𝑤 restricted to the

(𝑁 − 1)-plane 𝜋𝑁−𝑘 conjugate to 𝜋𝑘 given by 𝒚1 and 𝒑1, … , 𝒑𝑘 [41].

 The combination of Theorem 1 and Theorem 2 forms the basis of the conjugate

gradient algorithm. In each iteration, this algorithm is applied to the quadratic

95

approximation 𝐸𝑞𝑤 of the global error function 𝐸 at the current point 𝒘 in weight space

and it is restarted if it does not converge in 𝑁 iterations. It should be noted that this

algorithm is valid only under the assumption that the error function is quadratic. Line

search techniques can be applied to approximate a minimization of the error function in

the nonquadratic case, however line-search techniques are dependent on crucial user-

defined parameters that determine when the line search should terminate [41].

One way to avoid a costly line search to determine the appropriate step size in

determining an approximation of the minimum error function 𝐸 is to estimate the term

𝒔𝑘 = 𝐸′′(𝒘𝑘)𝒑𝑘 in the original conjugate gradient method with a non-symmetric

approximation

 𝒔𝑘 = 𝐸′′(𝒘𝑘)𝒑𝑘 ≈
𝐸′(𝒘𝑘+𝝈𝑘𝒑𝑘)−𝐸′(𝒘𝑘)

𝝈𝑘
, (63)

where 0 < 𝝈𝑘 ≪ 1. The limit of the approximation tends to approach the true value of

𝐸′′(𝒘𝑘)𝒑𝑘. The drawback of this modified conjugate gradient algorithm is known to

converge to a non-stationary point, because the algorithm only works for error functions

with positive definite Hessian matrices and the quadratic approximations which the

algorithm uses can be very poor when the current point is too far from the desired

minimum. In some cases, the Hessian matrix for the global error function 𝐸 is indefinite

in different areas of the weight space, causing the traditional conjugate gradient algorithm

to fail for certain learning problems. One way to avoid this problem as proposed my

Moller is to combine the model-trust region approach from the Levenberg-Marquardt

algorithm [42], [43] with the conjugate gradient approach described earlier, resulting in

96

the SCG algorithm. In the SCG case, a scalar 𝜆𝑘 is introduced, which helps regulate the

indefiniteness of 𝐸′′(𝒘𝒌), by setting

 𝒔𝑘 =
𝐸′(𝒘𝑘 + 𝝈𝑘𝒑𝑘) − 𝐸′(𝒘𝑘)

𝝈𝑘
+ 𝜆𝑘𝒑𝑘 (64)

and adjusting 𝜆𝑘 in each iteration in which 𝜹𝑘 < 0 indicates that the Hessian is not

positive definite. The scalar 𝜆𝑘 can be adjusted to ensure that 𝜹𝑘 > 0, and thus ensuring

that the Hessian 𝐸′′(𝒘𝑘)𝒑𝑘 is positive definite. A reasonable choice of a raised 𝜆𝑘,

defined as 𝜆𝑘̅̅ ̅, in the quest for an optimal solution is

 𝜆𝑘 = 2(𝜆𝑘 −
𝜹𝑘
|𝒑𝑘|2

) (65)

leading to

 �̅�𝑘 = −𝜹𝑘 + 𝜆𝑘|𝒑𝑘|
2 > 0 (66)

with the step size given by

 𝛼𝑘 =
𝜇𝑘

𝛿𝑘
=

𝜇𝑘

𝒑𝑘
𝑇+𝜆𝑘|𝒑𝑘|

2. (67)

The values of the scalar 𝜆𝑘 are inversely proportional to the step size.

 The output of the algorithm, which is the quadratic approximation to the error

measure 𝐸𝑞𝑤 may not always be accurate since 𝜆𝑘 artificially scales the Hessian matrix,

necessitating a mechanism to adjust the scalar to give a good approximation even if the

97

Hessian is positive definite. To implement this, a definition of a measure of how well

𝐸𝑞𝑤(𝛼𝑘𝒑𝑘) approximates 𝐸′(𝒘𝑘 + 𝛼𝑘𝒑𝑘). One such measure is

 Δ𝑘 =
2𝛿𝑘[𝐸(𝒘𝑘) − 𝐸(𝒘𝑘 + 𝛼𝑘𝒑𝑘)]

𝜇𝑘
2 (68)

with the condition that the closer Δ𝑘 is to 1, the better the approximation, leading to the

somewhat arbitrary decision boundary that

 if Δ𝑘 > 0.75, 𝜆𝑘 =
1

4
𝜆𝑘 (69)

 if Δ𝑘 < 0.25, 𝜆𝑘 = 𝜆𝑘 +
𝛿𝑘(1−Δ𝑘)

|𝒑𝑘|
2 . (70)

The implementation details of the SCG algorithm are covered by Moller [41], and this

algorithm is implemented by the MATLAB Neural Networks Toolbox, making it ideally

suitable for MCU upset analysis.

 Feedforward neural networks, such as the MLPs introduced earlier, are popular

tools for nonlinear regression and classification problems. The feedforward neural

network framework can be looked at from a Bayesian perspective, in which the choice of

a neural network model can be viewed as defining a prior probability distribution over

nonlinear functions. From the same perspective, the neural network learning process can

be interpreted in terms of the posterior probability distribution over the unknown

function. Additionally, in the limit of large but otherwise standard neural networks, the

prior distribution over nonlinear functions implied by the Bayesian neural network falls

in a class of probability distribution known as GPs [44]. Moreover, the hyperparameters

98

of the neural network model determine the characteristic lengthscales of the GP. The

concept of GPs for machine learning (GPML) is discussed next.

Chapter 3-4: Gaussian Processes for Machine Learning (GPML)

This section summarizes the theory behind GPML and summarizes approximation

methods for GPML binary classification. The GP overview closely follows Rasmussen

and Williams [45]. A variety of methods has been proposed to tackle the problem of

supervised learning, two of which are more common than others. The first approach

seeks to restrict the class of functions that are considered, whereas the second approach

aims to give a prior probability to every possible function. Naturally, a higher probability

is assigned to functions that are more likely because of some of their inherent

characteristics, i.e. smoothness [45].

The issue with the first approach is that we are forced to decide upon the richness of

features associated with a class of functions. If the choice of function does not represent

the underlying data well, then it is obvious that the prediction capabilities of the learning

algorithm will be poor. Increasing the flexibility of the class of functions being

considered increases the risk of overfitting. The problem of overfitting occurs when the

algorithm obtains a good fit for the training data but generalizes poorly to data that it has

not seen before. The problem with the second approach is that many candidate functions

are making it difficult to compute the results in a reasonable time. GPs effectively deal

with both problems [45].

A GP is considered a generalization of the Gaussian probability distribution. A

probability distribution describes random variables, whereas a stochastic process

describes the properties of functions. A function can be considered as a very long vector,

99

whose entries specify function values of 𝑓(𝑥) at a particular point. Considering the

properties of the function of interest at a finite number of points, the inference step in

GPs gives the same answer as if the entire set of infinitely many points were considered,

making the problem computationally tractable. In general, many models used in machine

learning and statistics can be considered to be special cases of GPs [45]. Effectively, GPs

generalize multivariate Gaussian distributions over finite dimensional vectors to infinite

dimensionality. Specifically, a GP is a stochastic process that has Gaussian-distributed

finite-dimensional marginal distributions and it defines a distribution over functions,

making each draw from a GP a function. GPs provide a principled, practical, and

probabilistic approach to inference and learning in kernel machines [46].

A Gaussian probability distribution is completely specified by its mean and

covariance matrix. Similarly, a GP is fully characterized by its mean function 𝑚(𝑥) =

𝑬[𝑓(𝑥)] and covariance function

 𝐶(𝑥, 𝑥′) ≔ 𝑬[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]. (71)

In general, a real process 𝑓(𝑥) is GP-distributed with a mean function 𝑚(𝑥) and a

covariance function 𝐶(𝑥, 𝑥′) is expressed as 𝑓~𝒢𝒫(𝑚(𝑥), 𝐶(𝑥, 𝑥′)) [46].

The mean function can be arbitrary for convenience, and it is often chosen to be a

zero function because the observed outputs can always be centered to have a zero mean.

The covariance function, on the other hand, must be positive-definite to ensure the

existence of all finite-dimensional distributions. Positive-definiteness of the covariance

function 𝐶 ensures the positive semi-definiteness of all covariance matrices, Σ, in the

exponent of the finite-dimensional multivariate Gaussian distribution [46].

100

Classification problems in machine learning deal with the case in which the

requirement consists of assigning an input pattern 𝒙 to one of 𝒞 = {𝒞1, … , 𝒞𝐶} classes.

The classification case can be of binary type (two-class or 𝐶 = 2) or multi-class (𝐶 > 2).

The classification type provided by the GP method is probabilistic classification. In

probabilistic classification, test prediction take the form of class probabilities, which

contrasts with methods that provide a guess at the class label, such as SVMs [45].

Both classification and regression can be viewed in terms of function approximation

problems. Solving classification problems using GPs is more demanding than solving

regression problems using the same approach. The reason for this is that for regression

problems, it was assumed that the likelihood function was Gaussian and a GP prior

combined with a Gaussian likelihood results in a posterior GP over functions with

everything remaining analytically tractable. For classification problems, in which class

labels are discrete, the assumption of a Gaussian likelihood is not appropriate [45].

Linear models for binary classification are the foundation of GP classification

models. In GP classification, output labels 𝑦 = 1 (denoting upset) and 𝑦 = −1 (denoting

no upset) to distinguish the two classes in binary classification problems. The likelihood

of upset is then given by

 𝑝(𝑦 = 1|𝒙,𝒘) = 𝜎(𝒙𝑇𝒘) (72)

given the weight vector 𝒘 and 𝜎(𝑧) can be any sigmoid. The probability of the two

classes (upset/no-upset) sum to 1 and we have

𝑝(𝑦 = 0|𝒙,𝒘) = 1 − 𝑝(𝑦 = 1|𝒙,𝒘) = 1 − 𝜎(𝒙𝑇𝒘).
(73)

101

In the case of symmetric likelihood functions, this can be written more compactly as

 𝑝(𝑦𝑖|𝒙𝒊, 𝒘) = 𝜎(𝑦𝑖𝑓𝑖), (74)

where 𝑓𝑖 ≜ 𝑓(𝑥𝑖) = 𝒙𝑖
𝑇𝒘 [45].

Given a set of data 𝒟 = {(𝒙𝑖, 𝑦𝑖)|𝑖 = 1,… , 𝑛} and assuming that the labels are

generated independently, conditional on 𝑓(𝑥), a Gaussian prior 𝒘~𝒩(𝟎, Σ𝑝), an un-

normalized log-posterior can be obtained in the form of

 log 𝑝(𝒘|𝑋, 𝑦) = −
1

2
𝒘𝑇Σ𝑝

−1𝒘+ ∑ log 𝜎(𝑦𝑖𝑓𝑖)
𝑛
𝑖=1 . (75)

For the classification problem, the posterior does not have a simple analytic form.

However, some sigmoid functions, i.e. the logistic and cumulative Gaussian the log

likelihood is a concave function of 𝒘 for fixed 𝔇, meaning that it is relatively

straightforward to find its unique maximum. The standard method for finding the

maximum is Newton’s method also called the iteratively reweighted least squares (IRLS),

however faster methods may exist such as the conjugate gradient ascent [45].

 In the case of binary classification, i.e. upset/no-upset, the basic idea behind the

GP approach is simple. A GP prior is placed over the latent function 𝑓(𝑥) and this is

pushed through the logistic function to obtain a prior on 𝜋(𝑥) ≜ 𝑝(𝑦 = 1|𝑥) = 𝜎(𝑓(𝑥)).

Model development for binary classification is a natural generalization of the linear

logistic model for regression. Specifically, the linear 𝑓(𝑥) function in this equation

102

 log 𝑝(𝒘|𝑋, 𝑦) = −
1

2
𝒘𝑇Σ𝑝

−1𝒘+∑log 𝜎(𝑦𝑖𝑓𝑖)

𝑛

𝑖=1

 (76)

is replaced by a GP and correspondingly the Gaussian prior on the weights by a GP prior

[45].

More specifically, to format the implementation of GP for binary classification

(GPC), we let the output labels 𝑦 = {−1,1} corresponding to an input vector 𝒙. In this

case, the GPC model is discriminative in the sense that it models 𝑝(𝑦|𝒙) which for fixed

𝑥 is a Bernoulli distribution. The probability of MCU upset (success) is 𝑝(𝑦 = 1|𝒙) is

directly related to an unconstrained latent function 𝑓(𝑥) which is mapped to the unit

interval by a sigmoidal transformation, i.e. the 𝑙𝑜𝑔𝑖𝑡 or the 𝑝𝑟𝑜𝑏𝑖𝑡 functions. For analytic

convenience in the EP algorithm, the 𝑝𝑟𝑜𝑏𝑖𝑡 model is used in the form of 𝑝(𝑦 = 1|𝒙) =

Φ(𝑓(𝒙)) where Φ denotes the cumulative density function (CDF) of the standard normal

distribution [47].

In the GPC model, Bayesian inference is performed on the latent function 𝑓 given

the observed data 𝔇 = {(𝑦𝑖, 𝒙𝑖)|𝑖 = 1,… ,𝑚}. Let 𝑓𝑖 = 𝑓(𝒙𝑖) 𝑎𝑛𝑑 𝒇 = [𝑓1, … , 𝑓𝑚]
𝑇

represent the values of the latent function and 𝒚 = [𝑦1, … , 𝑦𝑚]
𝑇, 𝒙 = [𝑥1, … , 𝑥𝑚]

𝑇

represent the class labels (target outputs) and inputs, respectively. Given the latent

functions, the class labels are interdependent Bernoulli variables, so the joint likelihood is

 𝑝(𝒚|𝒇) =∏𝑝(𝑦𝑖|𝑓𝑖)

𝑚

𝑖=1

 (77)

and it depends on f only through its value at the corresponding observed inputs. In the

case of the 𝑝𝑟𝑜𝑏𝑖𝑡 model, the individual likelihood terms become 𝑝(𝑦𝑖|𝑓𝑖) = Φ(𝑦𝑖|𝑓𝑖)

[47].

103

As the prior over functions 𝑓 a zero-mean GP prior is used, a GP is a stochastic

process where each input 𝒙 has an associated random variable 𝑓(𝒙). The joint

distribution of function values that corresponds to any set of inputs 𝑿 is multivariate

Gaussian as in 𝑝(𝒇|𝑿,𝚯) = 𝒩(𝒇|𝟎,𝑲). The covariance matrix is defined element-wise

so that 𝑲𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗 , Θ) where k is a positive-definite covariance function

parameterized by Θ. By choosing a covariance function we inherently introduce

hyperparameters Θ to the prior [47].

Next, using Bayes’ rule, the posterior distribution over latent function values 𝒇 for

given hyperparameters θ becomes

 𝑝(𝒇|𝒟, 𝜃) =
𝑝(𝒚|𝒇)𝑝(𝒇|𝑿, 𝜽)

𝑝(𝒟|𝜽)
=
𝒩(𝒇|𝟎,𝑲)

𝑝(𝒟|𝜽)
∏Φ(𝑦𝑖, 𝑓𝑖)

𝑚

𝑖=1

, (78)

which is non-Gaussian [47].

 The main purpose of classification models is to predict the class label 𝑦∗ for test

inputs 𝒙∗. The distribution of the latent function value can be computed by

marginalization

𝑝(𝑓∗|𝒟, 𝜽, 𝒙∗) = ∫𝑝(𝑓∗|𝒇, 𝑿, 𝜽, 𝒙∗)𝑝(𝒇|𝒟, 𝜽)𝑑𝒇 ;

(79)

moreover, by computing the expectation

 𝑝(𝑦∗|𝒟, 𝜽, 𝒙∗) = ∫𝑝(𝑦∗|𝑓∗)𝑝(𝑓∗|𝒟, 𝜽, 𝒙∗)𝑑𝑓∗ (80)

by which the prediction distribution is obtained, which is a Bernoulli distribution [47].

104

According to Kuss et al. [47], a key premise is that a Gaussian approximation to

the posterior implies a GP approximation to the posterior process, resulting in an

approximate predictive distribution for test cases. Introducing the approximate Gaussian

posterior 𝑝(𝑓∗|𝒟, 𝜽, 𝒙∗) above, gives the approximate posterior

 𝑞(𝑓∗|𝒟, 𝜽, 𝒙∗) = 𝒩(𝑓∗|𝜇∗) (81)

with mean and variance defined as

 𝜇∗ = 𝒌∗
𝑇𝑲−1𝒎 (82)

 𝜎∗
2 = 𝑘(𝒙∗, 𝒙∗) − 𝒌∗

𝑇(𝑲−1 −𝑲−1𝑨𝑲−1)𝒌∗, (83)

where 𝒌∗ = [𝑘(𝒙1, 𝒙∗), … , 𝑘(𝒙𝑚, 𝒙∗)]
𝑇 is a vector of prior covarianes between 𝒙∗ and the

training inputs 𝑿. For the 𝑝𝑟𝑜𝑏𝑖𝑡 likelihood the approximate predictive probability

𝑝(𝑦∗|𝒟, 𝜽, 𝒙∗) of 𝒙∗ belonging to class 1 can be analytically computed as

 𝑞(𝑦∗ = 1|𝒟, 𝜽, 𝒙∗) = ∫Φ(𝑓∗)𝒩(𝑓∗|𝜇∗, 𝜎∗
2) = Φ(

𝜇∗

√1+𝜎∗
2
). (84)

The parameters 𝒎 and 𝑨 of the posterior approximation can be found using Laplace’s

method or by Expectation Propagation (EP), introduced in the next two subsections

respectively.

Chapter 3-4-1: Laplace’s Method

 Since the posterior, the predictive distribution, nor the marginal likelihood, can be

computed analytically, approximations are needed. This subsection covers the theory

behind Laplace’s approximation method. Laplace’s method uses a Gaussian

105

approximation 𝑞(𝒇|𝑋, 𝒚) of the posterior 𝑝(𝒇|𝑋, 𝒚) in 𝑝(𝑓∗|𝑋, 𝒚, 𝒙∗) =

∫𝑝(𝑓∗|𝒇, 𝑿, 𝒙∗, 𝒇)𝑝(𝒇|𝑋, 𝒚)𝑑𝒇, obtained by

 𝑞(𝒇|𝑋, 𝒚) = 𝒩(𝒇|�̂�, 𝐴−1) ∝ 𝑒𝑥𝑝 (−
1

2
(𝒇 − �̂�)

𝑇
𝐴((𝒇 − �̂�))), (85)

where �̂� = argmax𝒇 𝑝(𝒇|𝑋, 𝒚) and 𝐴 = −∇∇log 𝑝(𝒇|𝑋, 𝒚)𝒇=�̂� is the Hessian of the

negative log posterior at that point. What is needed next is to determine �̂� and 𝐴, then to

make predictions after obtaining 𝑞(𝒇|𝒚) [45].

Bayes’ rule gives the posterior over the latent variables by computing

 𝑝(𝒇|𝑋, 𝒚) =
𝑝(𝒚|𝒇)𝑝(𝒇|𝑋)

𝑝(𝒚|𝑋)
; (86)

however, with 𝑝(𝒚|𝑋) being independent of 𝒇, only the un-normalized posterior will be

considered. Taking the logarithm of the expression above and introducing the expression

log(𝑝(𝒇|𝑋)) = −
1

2
𝒇𝑇𝐾−1𝑓 −

1

2
log|𝐾| −

𝑛

2
log (2𝜋) for the GP prior,

𝜓(𝒇) ≜ log 𝑝(𝒚|𝒇) + log 𝑝(𝒇|𝑋)

 = log 𝑝(𝒚|𝒇) −
1

2
𝒇𝑇𝐾−1𝑓 −

1

2
log|𝐾| −

𝑛

2
log (2𝜋). (87)

Differentiating the expression above and determining the maximum, we obtain �̂� =

𝐾(∇ log 𝑝(𝒚|�̂�)), which needs to be solved iteratively via methods such as the Newton’s

method. Having determined the maximum posterior �̂�, the Laplace approximation to the

posterior is given as a Gaussian with mean �̂� covariance matrix given by the negative

inverse Hessian of 𝜓

106

 𝑞(𝒇|𝑋, 𝒚) = 𝒩(�̂�, (𝐾−1 +𝑊)−1), (88)

where 𝑨 = (𝐾−1 +𝑊)−𝟏 [45].

After calculating the posterior, the next step in using Laplace’s method is to

determine the computation of the predictive step. Under the Laplace approximation, the

posterior mean for 𝑓∗ can be expressed as

 𝔼𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗] = 𝒌(𝒙∗)
𝑇𝐾−1�̂� = 𝒌(𝒙∗)

𝑇∇ log 𝑝(𝒚|�̂�). (89)

In this case, positive training examples result in a positive coefficient for their kernel

function, because ∇𝑖 log 𝑝(𝑦𝑖|𝑓𝑖) > 0, while negative examples result in negative

coefficients, similar to solutions obtained via SVMs. It is also worth noting that training

examples, for which ∇𝑖 log 𝑝(𝑦𝑖|𝑓𝑖) ≅ 0, do not contribute strongly to predictions at

novel test points. It is also possible to compute the variance of 𝑓∗|𝑋, 𝒚 under the Gaussian

approximation, e.g.

 𝕍𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗] = 𝑘(𝒙∗, 𝒙∗) − 𝒌∗
𝑇(𝐾 +𝑊−1)−1𝒌∗. (90)

Having obtained the mean and variance of 𝑓∗, predictions are computed by

 �̅�∗ ≅ 𝔼𝑞[𝜋∗|𝑋, 𝒚, 𝒙∗] = ∫𝜎(𝑓∗)𝑞(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑑𝑓∗ (91)

in which 𝑞(𝑓∗|𝑋, 𝒚, 𝒙∗) is Gaussian with mean and variance given by 𝔼𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗] and

𝕍𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗], respectively. In this case, if 𝜎(𝑧) is the cumulative Gaussian function

then this prediction can be computed analytically; however, if it is anything else but

107

Gaussian, we need to resort to sampling or approximation methods to compute the one-

dimensional integral. If we are only concerned about the most probable classification, it

is not necessary to compute the prediction step 𝔼𝑞[𝜋∗|𝑋, 𝒚, 𝒙∗]; however, the step is

required if we are interested in confidence intervals related to our prediction. The

algorithm for Laplace’s approximation for GP classification is shown in Fig. 42 [45].

Figure 42: Laplace's method for Gaussian process classification [47].

 A problem with Laplace’s approximation is that it is uncontrolled, meaning that

the Hessian evaluated at �̂� may give a poor approximation to the true shape of the

posterior. An alternative to Laplace’s approximation for GPC is expectation propagation

(EP), which is discussed next.

Chapter 3-4-2: Expectation Propagation

 The EP algorithm, coined by Minka in 2001 [48], is a general approximation tool

that can be used in a wide range of applications, including the specific case of a GP

model for binary classification. EP is used in Bayesian machine learning to tune the

parameters of a simpler, albeit approximate distribution, e.g. a Gaussian, to match the

posterior distribution of the true model parameters given the experimental data. It is a

108

deterministic method well-suited for large datasets as well as dynamic systems, where

exact Bayesian inference methods fail and where Monte Carlo methods are too slow [46].

 The posterior distribution over latent variables

 𝑝(𝑓|𝑋, 𝒚) =
1

𝑍
𝑝(𝒇|𝑋)∏ 𝑝(𝑦𝑖|𝑓𝑖)

𝑛
𝑖=1 , (92)

is a concept of high importance in this approach, in which the posterior is computed using

Bayes’ rule as the product of a normalization term,
1

𝑍
, the prior, 𝑝(𝒇|𝑋), and the

likelihood ∏ 𝑝(𝑦𝑖|𝑓𝑖)
𝑛
𝑖=1 . The prior is assumed to be Gaussian and the likelihood

factorizes over training cases. The normalization term is the marginal likelihood given by

 𝑍 = 𝑝(𝒚|𝑋) = ∫𝑝(𝑓|𝑋)∏ 𝑝(𝑦𝑖|𝑓𝑖)𝑑𝒇
𝑛
𝑖=1 . (93)

 The difference between the regression and classification analytic framework for

GPs is that in the case of classification, the likelihood 𝑝(𝑦𝑖|𝑓𝑖) is not Gaussian – a

property that was heavily relied on in arriving at analytical solution for the GP regression

framework. When the probit likelihood, 𝑝(𝑦𝑖|𝑓𝑖) = Φ(𝑦𝑖|𝑓𝑖), is used for binary

classification, it makes the posterior 𝑝(𝑓|𝑋, 𝒚) above, intractable. To overcome this

intractability in the EP framework, the likelihood is approximated by a local likelihood

approximation in the form of an un-normalized Gaussian function in 𝑓𝑖,

 𝑝(𝑦𝑖|𝑓𝑖) ≅ 𝑡𝑖(𝑓𝑖|�̃�𝑖, 𝜇𝑖, �̃�𝑖
2) ≜ �̃�𝑖𝒩(𝑓𝑖|𝜇𝑖, �̃�𝑖

2) (94)

where �̃�𝑖, 𝜇𝑖, and �̃�𝑖
2 are site parameters, and 𝒩 is the normalized Gaussian distribution

[45]. It is clear that we are approximating a likelihood or a probability distribution which

109

normalizes over the targets 𝑦𝑖, by an unnormalized Gaussian distribution over the latent

variables 𝑓𝑖.

The EP method unifies two previously developed techniques: assumed density

filtering (ADF), which extends the Kalman filter, and loopy belief propagation, which

extends belief propagation in Bayesian networks. EP approximates the belief states by

only retaining expectation, such as the mean and variance, and it keeps iterating until

these expectations are consistent throughout the network [48].

 EP is an extension of ADF, which is a single-pass, sequential method for

computing an approximate posterior distribution. In ADF, observations are processed

one-by-one, updating the posterior distribution which is then approximated before

processing the next observation. The primary weakness of ADF is its sequential nature of

processing – information that is discarded early may prove to be important later during

processing. An additional weakness is that ADF may be sensitive to observation ordering,

which is an undesirable artifact in a batch-processing context [48].

 Specifically, EP extends ADF to incorporate iterative refinement of the

approximations by making additional passes through the network. Information from later

observation refines the choices made earlier so that the most relevant information is

retained. EP is faster than sampling and more general than Kalman filtering, and it is

applicable in all scenarios in which ADF applies as well. Computationally, it is more

expensive than ADF but only by a constant factor that is proportional to the number of

passes EP performs in the network [48].

110

In loopy belief networks, it is known that approximate marginal distributions can

be obtained by iterating belief propagation recursions – known as loopy belief

propagation. EP is more general than loopy belief propagation in two ways: (1) like

variational methods, it can use approximations that are not completely disconnected, and

it can impose useful constraints on functional form, such as a multivariate Gaussian.

Minka [48] describes the general form of EP as follows:

1. Initialize the term approximations 𝑡𝑖
2. Compute the posterior for 𝒙 from the product of 𝑡𝑖

 𝑞(𝒙) =
∏ 𝑡𝑖(𝒙)𝑖

∫∏ 𝑡𝑖(𝒙)𝑖 𝑑𝒙

3. Until all 𝑡𝑖 converge:

a. Choose a 𝑡𝑖 to refine

b. Remove 𝑡𝑖 from the posterior to get an ‘old’ posterior 𝑞\𝑖(𝒙) by dividing

and normalizing:

𝑞\𝑖(𝒙) ∝
𝑞(𝒙)

𝑡𝑖(𝒙)

c. Combine 𝑞\𝑖(𝒙) and 𝑡𝑖(𝒙) and minimize KL-divergence to get a new

posterior 𝑞(𝒙) with normalizer 𝑍𝑖

d. Update 𝑡𝑖 = 𝑍𝑖𝑞(𝒙)/𝑞
\𝑖(𝒙)

4. Use the normalizing constant of 𝑞(𝒙) as an approximation to 𝑝(𝐷):

 𝑝(𝐷) ≈ ∫∏ 𝑡𝑖(𝒙)𝑑𝒙𝑖

which for the binary classification case, is implemented as described in Fig. 43.

111

Figure 43: Expectation propagation for binary classification [45].

The classification targets 𝒚 are used in line 7. In lines 13-15, the algorithm re-

computes the approximate posterior. The re-computation is performed again because of

the large number of rank-one updates in line 10 causing a loss in numerical precision in

Σ. The computational complexity of the EP algorithm is dominated but the rank one-

updates in line 10 and is in the order of 𝒪(𝑛2) per variable or 𝒪(𝑛3) when sweeping over

all variables, indicating that large datasets will take considerably longer to process,

making this a potentially expensive process in terms of computational time [45].

For the second (prediction step) the algorithm is described in Fig. 44.

112

Figure 44: Algorithm for prediction step of EP [45].

As seen in line 8, the prediction algorithm returns

 𝜋∗ ≜ 𝑝(𝑦∗ = 1|𝑋, 𝒚, 𝒙∗) = ∫𝜎(𝑓∗)𝑝(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑑𝑓∗, (95)

which represents the predictive class probability for class 1, representing MCU upset

probability. There is no guarantee for the algorithm to converge, but several authors have

reported that EP for GP models works relatively well [45].

 The assumption that the posterior is close to a Gaussian as it is usually the case

with low-dimensional parametric models with large amounts of data is not likely to be

valid with a high-dimensional model with relatively few data. Laplace’s approximation

technique centers around the mode of the posterior resulting in overly cautious predictive

distributions, whereas EP does not rely on a local expansion. EP assumes the marginal

distribution of the posterior is well approximated by Gaussians and Kuss et al. [47] show

that it performs better than Laplace’s approximation for a generic set of pseudo-randomly

generated data.

113

 Since the mean and covariance functions are key in fully specifying a GP and

having discussed the theory behind GP classification, the next two subsections cover the

background of the covariance function and model selection for GPML.

Chapter 3-4-3: Covariance Functions for GPML

 The covariance function is the critical ingredient in the GP predictor because it

encodes some assumptions about the function which we want to infer. Generally, in a

supervised learning problem, the concept of similarity between data points is key with the

underlying assumption that data points with input 𝒙 which are close are likely to have

similar outcomes or target values 𝑦 and therefore the data points used for testing the

model that are near a training point should be able to predict the outcome of the test point

with some probability. In GPML, the covariance function defines this similarity between

data points. An arbitrary function of input pairs 𝒙 and 𝒙′ is generally not a valid

covariance function, and this subsection describes the general properties of valid

covariance functions. Supervised machine learning problems by nature share some

general mathematical concepts, therefore each section may repeat some concepts covered

earlier, however will be described as they apply to a machine learning discipline [45].

A stationary covariance function 𝒙 − 𝒙′ is invariant if it is not sensitive to

translations in the input space. For example, the squared exponential (SE) function, that

specifies the covariance between pairs of random variables,

 cov (𝑓(𝒙𝑝), 𝑓(𝒙𝑞)) = 𝑘(𝒙𝑝, 𝒙𝑞) = exp (−
1

2
|𝒙𝑝 − 𝒙𝑞|

2
) (96)

114

is a stationary covariance function, because it is a function of 𝒙𝑝 − 𝒙𝑞. Additionally, if

the covariance function is also a function |𝒙 − 𝒙′| it is also isotropic, meaning that it is

invariant to all rigid motions. The SE function is an example of an isotropic function.

Furthermore, the function is considered a radial basis function (RBF) if it is a function of

𝑟 = |𝒙 − 𝒙′| [45].

 In the case where a covariance function depends only on 𝒙 and 𝒙′ through 〈𝒙 ∙ 𝒙′〉,

it is labeled a dot product covariance function, an example of which is 𝑘(𝒙, 𝒙′) = 𝜎0
2 +

〈𝒙 ∙ 𝒙′〉. The dot product covariance function is obtained through linear regression by

putting 𝒩(0,1) priors on the coefficients of 𝑥𝑑(𝑑 = 1,… , 𝐷) and a prior of 𝒩(0, 𝜎0
2) on

the bias or the constant function. An important example of a dot product covariance

function is the inhomogeneous polynomial kernel 𝑘(𝒙, 𝒙′) = 𝜎0
2 + 〈𝒙 ∙ 𝒙′〉, where 𝑝 is a

positive integer. The dot product covariance functions are invariant to a rotation of the

coordinates about the origin, but are not invariant to translations [45].

 The general name for a function 𝑘(∙) of two arguments that maps a pair of inputs

𝒙 ∈ 𝑋, 𝒙′ ∈ 𝑋 into ℝ is a kernel. The term stems from integral operator theory, where the

operator

 𝑇𝑘𝑓(𝑥) = ∫𝑘(𝒙, 𝒙
′)𝑓(𝒙′)𝑑𝜇

𝑋

(𝒙′) (97)

and 𝜇 denotes a measure. A kernel is said to be symmetric if 𝑘(𝒙, 𝒙′) = 𝑘(𝒙′, 𝒙),

representing a key criterion for a valid covariance function.

 Just as in SVMs, the Gram matrix is a fundamental concept in GPML. If we

consider a set of input points {𝑥𝑖|𝑖 = 1,… , 𝑛}, the Gram matrix contains entries

115

determined by 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). In the case where 𝑘 is a covariance function, the

corresponding matrix 𝐾 is referred to as the covariance matrix. A real 𝑛 × 𝑛 matrix 𝐾 is

called positive semidefinite (PSD) if it satisfies 𝑄(𝒗) = 𝒗𝑇𝐾𝒗 ≥ 0 for all 𝑣 ∈ ℝ𝑛, where

𝑄(𝒗) is referred to as the quadratic form. Generally, the Gram matrix belonging to a

general kernel function does not need to be PSD, but the Gram matrix belonging to a

covariance function in GPML must be PSD. Also, a kernel 𝑘 is said to be PSD if

 ∫𝑘(𝒙, 𝒙′)𝑓(𝒙)𝑓(𝒙′)𝑑𝜇(𝒙)𝑑𝜇(𝒙′) ≥ 0 (98)

for all 𝑓 ∈ 𝐿2(𝑋, 𝜇) and every time a kernel function gives rise to PSD Gram matrices for

any 𝑛 ∈ (ℕ,𝒟), that kernel function is considered to be PSD [45].

 Another key concept in theory related to valid covariance functions for GPML is

that of mean square continuity, or smoothness, and differentiability. If we consider

𝒙1, 𝒙2, … to be a sequence of points and 𝒙∗is a fixed point in ℝ𝒟 such that |𝒙𝑘 − 𝒙∗| → 0

as 𝑘 → ∞, then process 𝑓(𝒙) is continuous in mean square at 𝒙∗ if 𝔼[|𝑓(𝒙𝑘) −

𝑓(𝒙∗)|
2] → 0 as 𝑘 → ∞. If both conditions are met for all 𝒙∗ ∈ 𝐴 with 𝐴 ⊂ ℝ𝒟 then

𝑓(𝒙) is said to be continuous in mean square at 𝒙∗, which for stationary covariance

functions reduces to checking continuity at 𝑘(𝟎) [45].

 The mean square derivative of 𝑓(𝒙) in the 𝑖th direction is defined as

𝑑𝑓(𝒙)

𝑑𝑥𝑖
= l. i. m

ℎ→0

𝑓(𝒙 + ℎ𝒆𝑖)

ℎ
,

116

when the limit exists and where l.i.m denotes the limit in mean square and 𝒆𝑖 is the unit

vector in the 𝑖th direction. Here, the covariance function of
𝑑𝑓(𝒙)

𝑑𝑥𝑖
⁄ is given by

𝜕2𝑘(𝒙, 𝒙′)
𝜕𝑥𝑖𝜕𝑥′𝑖
⁄ and these definitions can be extended to higher order derivatives [45].

 The input domain for covariance functions is 𝑋 ⊂ ℝ𝒟. A commonly used

covariance function is the squared exponential (SE) covariance function of the form

 𝑘𝑆𝐸(𝑟) = exp (−
𝑟2

2𝑙2
), (99)

where the parameter 𝑙 defines the characteristic length scale. The SE covariance function

is infinitely differentiable, meaning that it is very smooth. Even though there are

arguments that such strong smoothness is not realistic for modeling real world physical

processes along with a recommendation to use the Matérn class [49], the SE is one of the

most widely used kernels within the kernel machine learning field [45].

 The Matérn class of covariance functions has the form of

 𝑘Matérn (𝑟) =
2𝑙−𝑣

Γ(𝑣)
(
√2𝑣𝑟

𝑙
)

𝑣

𝐾𝑣 (
√2𝑣𝑟

𝑙
) (100)

where 𝑣 and 𝑙 denote positive parameters, and 𝐾𝑣 is a modified Bessel function. If the

scaling for the Matérn class is chosen in such a way that 𝑣 → ∞, the result is the SE

covariance function. In the Matérn class, the process is 𝑘-times MS differentiable if and

only if 𝑣 > 𝑘. Also, if 𝑣 = 𝑝 + 1 2⁄ , with p being a nonnegative integer, the Matérn

covariance function transforms into a product of an exponential covariance function and a

polynomial covariance function of order 𝑝. Rasmussen and Williams [45] postulate that

117

the most interesting cases of the Matérn class for machine learning may be with 𝑣 = 3/2

and 𝑣 = 5/2, for which

 𝑘𝑣=3/2(𝑟) = (1 +
√3𝑟

𝑙
) 𝑒𝑥𝑝 (−

√3𝑟

𝑙
), (101)

 𝑘𝑣=5/2(𝑟) = (1 +
√5𝑟

𝑙
+
5𝑟2

3𝑙2
) 𝑒𝑥𝑝 (−

√5𝑟

𝑙
). (102)

The reason for the machine learning suitability at these two values is that for 𝑣 = 1/2,

the process becomes very rough and for 𝑣 ≥ 7/2 it becomes difficult to distinguish

between finite values of 𝑣 in the presence of noise. Additionally, as mentioned earlier, as

𝑣 → ∞, the Matérn class becomes the SE covariance function.

 Table 8 summarizes several commonly used covariance functions. The table

shows the covariance functions expressed in terms of 𝒙 and 𝒙′ or as a function of 𝒓 =

|𝒙 − 𝒙′|. The columns denoted S and ND denote whether the covariance functions are

stationary and nondegenerate, respectively.

118

Table 8: Commonly used covariance functions [45].

Chapter 3-4-4: Model Selection for GP Classification

 Many practical applications do not lend themselves to an easy specification of all

aspects of covariance functions with confidence. Some properties, such as the stationarity

of the covariance function may be easily determined from the context, other properties

such as the value of hyperparameters, e.g. length-scales, are more difficult. Moreover, the

exact form and possible hyperparameters of the likelihood function may not be known in

advance. Thus, to use GPs as a potential analysis tool in the MCU upset problem, it is

necessary to address model selection techniques. The model selection problem may be

interpreted in a broad sense to include the discrete choice of the covariance function form

in addition to the values for any hyperparameters.

 For the model to become a practical tool in an application, one is required to make

choices regarding some of the details of its specification. While it may be easy to specify

some properties of the model, only vague information may be available about some other

119

aspects. As mentioned earlier, model selection refers to the discrete choices and the

setting of hyperparameters of the covariance functions. A good choice for a model can

help to refine its predictions and give the user a valuable interpretation of the

experimental data properties, e.g. that a non-stationary covariance function may perform

better than a stationary one.

 In the previous subsection, an overview of available covariance functions was

presented. Each of these covariance functions is associated with several free

hyperparameters whose values need to be determined. Thus, selecting a covariance

function for a particular application comprises of setting the hyperparameters within a

family of covariance functions as well as comparing them across different families.

Training of a GP entails the selection of a covariance function and its hyperparameters.

This definition of training is in contrast to its use in Support Vector Machine (SVM)

literature where the term refers to finding the support vectors for a fixed kernel.

 For example, the squared exponential (SE) covariance function can be

parameterized in terms of hyperparameters,

 𝑘(𝒙𝑝, 𝒙𝑞) = 𝜎𝑓
2exp {−

1

2
(𝒙𝑝 − 𝒙𝑞)

𝑇

𝑀(𝒙𝑝 − 𝒙𝑞)} + 𝜎𝑛
2𝛿𝑝𝑞 (103)

where 𝜽 = ({𝑴}, 𝜎𝑓
2, 𝜎𝑛

2) is a vector containing all the hyperparameters, in which 𝑀

denotes the parameters in the symmetric matrix 𝑀. The noise level parameter 𝜎𝑛
2 is

treated in a similar manner as a hyperparameter, so it may be, for all intents and purposes,

be considered as such. Possible choices for the matrix 𝑀 include

 𝑀1 = 𝑙
−2𝐼 (104)

120

 𝑀2 = diag(𝒍)
−2 (105)

 𝑀3 = ΛΛ
𝑇 + diag(𝒍)−2 (106)

where 𝑙 is a vector of positive values, and Λ is a 𝐷 × 𝑘 matrix, 𝑘 < 𝐷. For many

covariance functions it is relatively straightforward to interpret the meaning of its

hyperparameters which is of great importance when it comes to understanding the

experimental data. In the case of the SE covariance function with distance measure 𝑀2,

the 𝑙1, … , 𝑙𝐷 hyperparameters represent the characteristic length-scales, that can be

described as the distance along a particular axis in input space such that the function

values become uncorrelated. Such a covariance function implements automatic relevance

determination (ARD), since the inverse of the length-scale determines the relevance of a

particular input. If the value of the length-scale is very large, the covariance will become

almost independent of that input, effectively removing it from the inference [45]. There is

plenty of slack for variation even within a family of covariance functions and the task is,

based on a set of training data, to make inferences about the form and parameters of the

covariance function, or equivalently, about the relationships in the data.

 The task of model selection is essentially open-ended. Even for the SE covariance

function, the is a large variety of possible distance measures, enabling the true learning

from data. This variety necessitates a systematic and practical approach to model

selection. Concisely, we need to be able to compare two or more methods whose values

of particular parameters differ or compare the performance of a GP to the performance of

any other model. There are many suggestions for model selection in the literature.

However, there are three general principles that need to be observed: (1) compute the

probability of the model given the data, (2) estimate the generalization error, and (3)

121

bound a generalization error. The term generalization error refers to the average error on

unseen test examples from the same distribution. The training error is not a useful

measure of how the model will generalize to unseen data because the model may fit the

noise in the training set, leading to a low training error but poor generalization

performance. Poor generalization performance is realized when the training error is low,

but the generalization error is significantly larger. This concept is also referred to

overfitting the data. The next subsection covers the Bayesian view on model selection,

which involves the computation of the probability of the model, given the data [45].

Chapter 3-4-5: Bayesian Model Selection

 The computations that are needed for Bayesian inference are based on the

posterior over the parameters, represented by 𝒘 at the lowest levels, which is computed

via Bayes’ rule

 𝑝(𝒘|𝒚, 𝑋, 𝜽,ℋ𝑖) =
𝑝(𝒚|𝑋,𝒘,ℋ𝑖)𝑝(𝒘|𝜽,ℋ𝑖)

𝑝(𝒚|𝑋,𝜽,ℋ𝑖)
, (107)

where 𝑝(𝒚|𝑋,𝒘,ℋ𝑖) is the likelihood and 𝑝(𝒘|𝜽,ℋ𝑖) is the parameter prior. The prior

encodes our knowledge about the parameters before seeing the data in the form of a

probability distribution. If this prior knowledge about the parameters is vague, then the

prior distribution is chosen to be broad. Thus, the posterior combines the information

from the prior with the data, through the likelihood. The normalizing constant

𝑝(𝒚|𝑋, 𝜽,ℋ𝑖) is independent of the parameters and it is referred to as the marginal

likelihood or evidence, and is computed by

 𝑝(𝒚|𝑋, 𝜽,ℋ𝑖) = ∫ 𝑝(𝒚|𝑋, 𝒘,ℋ𝑖) 𝑝(𝒘|𝜽,ℋ𝑖)𝑑𝒘. (108)

122

Next, the posterior over the parameters, in which the marginal likelihood from above

plays the role of the likelihood, is computed by

𝑝(𝜽|𝒚, 𝑋,ℋ𝑖) =

𝑝(𝒚|𝑋,𝜽,ℋ𝑖)𝑝(𝜽|ℋ𝑖)

𝑝(𝒚|𝑋,ℋ𝑖)
,

(109)

where 𝑝(𝜽|ℋ𝑖) is the hyper-prior and where the normalizing constant is given by

𝑝(𝒚|𝑋,ℋ𝑖) = ∫𝑝(𝒚|𝑋, 𝜽,ℋ𝑖) 𝑝(𝜽|ℋ𝑖)𝑑𝜽.

(110)

Finally, the posterior of the model given the data is computed by

𝑝(ℋ𝑖|𝒚, 𝑋) =

𝑝(𝒚|𝑋,ℋ𝑖)𝑝(ℋ𝑖)

𝑝(𝒚|𝑋)
,

(111)

where the normalizing constant 𝑝(𝒚|𝑋) = ∑ 𝑝(𝒚|𝑋,ℋ𝑖)𝑝(𝜽|ℋ𝑖)𝑖 . Note that the

implementation of Bayesian inference calls for the evaluation of several, possibly

intractable integrals that may call for the application of one of the approximation methods

such as Markov chain or Monte Carlo (MCMC) [45].

Chapter 3-4-6: Cross-validation

 Another method for model selection is cross-validation (CV). The idea behind CV

is to split the training data set into two disjoint sets, one of which is used for training, and

the other is used to validate model performance as a proxy for the generalization error.

Model selection using CV is carried out using the measurement of the generalization

error. A negative consequence of the holdout method is that only a fraction of the data

can be used for training, and if the training data set is too small, it can lead to a poor

generalization performance of the model. 𝐾-fold cross-validation is used to resolve this

problem. In a 𝑘-fold CV setting, the data is split into 𝑘 disjoint, equally sized subsets.

Following the split, validation is performed on a single subset and training is done using

the union of the remaining 𝑘 − 1 subsets. The entire process is repeated 𝑘 times, each

123

time with a different subset for validation. Using the 𝑘-fold CV process, a large fraction

of the data can be used for training and all cases appear as validation cases. The price for

the robustness of validation is paid by computational time, because we are training 𝑘

models instead of one. Typical values of 𝑘 range from 3 to 10, with 10 being the gold

standard [45].

Chapter 3-4-7: Model Selection for GP Classification

 This subsection deals with the computation of derivatives of the approximate

marginal likelihood for the Laplace and expectation propagation (EP) method discussed

earlier. The section also presents algorithms for these cases and discusses the possible use

of CV for training binary GP classifiers, among other methods.

 The approximate log marginal likelihood is given by

 log 𝑞 (𝒚|𝑋, 𝜽) = −
1

2
�̂�𝑇𝐾−1�̂� + log 𝑝(𝒚|�̂�) −

1

2
log|𝐵|, (112)

where 𝐵 = 𝐼 +𝑊
1

2𝐾𝑊
1

2 and �̂� is the maximum of the posterior determined using

Newton’s method, and 𝑊 is the diagonal matrix 𝑊 = −∇∇ log 𝑝(𝒚|�̂�). The optimization

of the approximate marginal likelihood 𝑞(𝒚|𝑋, 𝜽) with respect to the hyperparameters 𝜽.

To determine the, it is necessary to obtain the partial derivative 𝜕(𝒚|𝑋, 𝜽) 𝜕⁄ 𝜃𝑗 , and with

the covariance matrix 𝐾, �̂�, and 𝑊 all being a function of the hyperparameters 𝜽, we

obtain

𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝜃𝑗
=
𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝜃𝑗
|
𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡

+ ∑
𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕�̂�𝑗

𝜕�̂�𝑖

𝜕𝜃𝑗

𝑛
𝑖=1 , (113)

124

where

𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝜃𝑗
|
𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡

=
1

2
�̂�𝑇𝐾−1

𝜕𝐾

𝜕𝜃𝑗
𝐾−1�̂� −

1

2
𝑡𝑟 ((𝑊−1 + 𝐾)−1

𝜕𝐾

𝜕𝜃𝑗
), (114)

and where

𝜕 log 𝑞(𝒚|𝑋, 𝜽)

𝜕𝑓𝑖
= −

1

2

𝜕 log|𝐵|

𝜕𝑓𝑖
= −

1

2
𝑡𝑟 ((𝐾−1 +𝑊)−1

𝜕𝑊

𝜕𝑓�̂�
)

= −
1

2
[(𝐾−1 +𝑊)−1]𝑖𝑖

𝜕3

𝜕𝑓𝑖
3 log 𝑝(𝒚|�̂�),

(115)

and

𝜕�̂�

𝜕𝜃𝑗
=
𝜕𝐾

𝜕𝜃𝑗
∇ log 𝑝(𝒚|�̂�) + 𝐾

∇ log 𝑝(𝒚|�̂�)

𝜕�̂�

𝜕�̂�

𝜕𝜃𝑗

 = (𝐼 + 𝐾𝑊)−1
𝜕𝐾

𝜕𝜃𝑗
∇ log 𝑝(𝒚|�̂�).

(116)

Fig. 45 shows the implementation of the GP classification in which the normalizing

integral is performed using the Laplace approximation technique. Deemed a better

alternative to the Laplace approximation, EP will be used to analyze MCU upset data.

Fig. 46 summarizes the implementation of the EP method.

125

Figure 45: GPC with Laplace's approximation for computation of log marginal likelihood and derivatives [45].

Figure 46: GPC with EP approximation for the computation of marginal likelihood [45].

Chapter 3-4-8: Approximation for Large Datasets

 The most significant problem with GP prediction is that it is computationally

expensive, as it scales with 𝒪(𝑛3), making the storage of the Gram matrix and solving of

the associated linear systems prohibitive on modern workstations for data sets that

contain 𝑛 > 10,000 data points on most modern workstations. This boundary can be

stretched further by using high-performance machines of supercomputers. The

126

approximation methods for GPC are similar to those for GPR, but they need to deal with

the non-Gaussian likelihood as well, either by using the Laplace approximation or

expectation propagation (EP), which lends itself to sparsity. The three most widely used

methods for approximations for large datasets in GPs are the subset of regressors (SR),

subset of datapoints (SD), the projected process (PP) approximation, and the Bayesian

committee machine (BCM).

For the SR method, we can use the model 𝑓𝑆𝑅(𝑥∗) = ∑ 𝛼𝑖𝑘(𝑥∗, 𝑥𝑖)
𝑚
𝑖=1 with

𝜶𝒎~𝒩(𝟎,𝐾𝑚𝑚
−1). The likelihood is non-Gaussian, but the optimization problem to find

the MAP value of 𝜶𝒎 is convex and can be obtain via the Newton iteration method.

Using the MAP value of 𝜶𝒎 and the Hessian at this point we can obtain a predictive

mean and variance of 𝑓(𝑥∗) and obtain a probabilistic prediction by feeding it through a

sigmoid. The choice of which subset of points to use can be done through a clustering

method [50] or a forward selection strategy [51].

Another method is to select a subset of data points (SD) [52], using an EP-style

approximation of the posterior, and the differential entropy score to select new points for

inclusion. The EP-approach naturally encompasses sparsification. The projected process

(PP) approximation can also be used with non-Gaussian likelihoods via an online method

where samples are processed sequentially. This method also encompasses an expectation-

propagation type algorithm where multiple sweeps through the data are allowed [53].

Finally, the BCM has also been generalized to accommodate non-Gaussian

likelihood required for GPC [54]. Here, the dataset it broken up into blocks, but now

approximate inference is carried out using the Laplace approximation in each block to

127

yield an approximate predictive mean and an approximate predictive covariance, which

are then combined to produce predictive probabilities.

For this research, a sample set of 3,000 training data points was sufficient to build

a good model that approximates the PoE curve well, and the only sparse approximation

used was expectation propagation. Having introduced the three machine learning

methods (SVM, ANN, GP), the next section discusses the experiment that will be used to

collect MCU upset data.

128

Chapter 4: Experiment Setup

 The experimental procedure proposed to collect the data representing the

phenomenon of MCU, and that will be used to validate the machine learning ability to

predict MCU upsets is shown in Fig. 47.

Figure 47: MCU upset experiment logical diagram.

The physical realization of this setup is shown in Fig. 48.

129

Figure 48: MCU Upset experiment setup.

 Fig. 49 shows a close-up of the printed circuit board with the MCU and associated

injection network.

Figure 49: MCU with injection network.

130

 The setup consists of:

 Stanford Research DG345 digital delay/pulse generator

 Stanford Research DG645 digital delay/pulse generator

 HP83620A synthesized sweeper

 Tektronix TDS7404 oscilloscope

 power supplies and amplifiers

 high impedance buffer amplifiers

 Tektronix current probe

 various high / low-pass filters.

The DS345 function generator is a 30 MHz synthesized function generator that

generates many standard waveforms with excellent frequency resolution (1 µHz) and has

flexible modulation capabilities including AM, FM, Burst, PM and frequency sweeps.

The unit can also generate arbitrary waveforms as needed. Additionally, the DS345 has

the capability to generate sinusoidal and square waves at frequencies up to 30.2 MHz, as

well as triangle and ramp waveforms up to 100 kHz. The published frequency resolution

for all of these functions is 1 μHz [55]. The main purpose of this device in the

experimental setup is to provide the MCU clock signal.

The DG645 is a digital delay/pulse generator that provides precisely defined pulses at

repetition rates up to 10 MHz. The instrument features low jitter, higher accuracy, faster

trigger rates, and more outputs. The DG645 also features Ethernet, GPIB, and RS-232

interfaces for computer or network control of the instrument. The purpose of the

instrument is to provide timing control and reference to the other devices in the setup.

The Hewlett Packard (HP) 83620A synthesized sweeper is used to generate the RF

signal at varying frequency that is injected together with the clock into the clock pin of

the MCU. The power of the RF signal will vary between -10 dBm and -20 dBm.

131

The setup illustrated in Fig. 47 is controlled using a Matlab program, called SALVO,

which acts as the interface between the user and the equipment. As the initial step, the

user creates a configuration file and imports it into the SALVO control suite. The

program interprets the configuration file and distributes the relevant parameters to each

instrument via the GPIB interface. Once the equipment is properly initialized, the test

control suite activates the DG-645. This activation signal is designated as the reference

time-stamp 𝑡0 and serves as a reference point to all other commands. The DG 645 then

sends signals to reset the MCU, cue the oscilloscope to record and toggle the RF switch.

When the switch is toggled ON, a continuous wave (CW) radio frequency (RF) signal is

allowed to pass to the amplifier for the duration of the user-defined pulse width, which

results in the RF pulse being injected into the MCU clock pin, together with the clock

signal. The MCU output bit values and the input clock/RF signals are recorded by the

oscilloscope and retrieved by the SALVO data acquisition suite in Tektronix proprietary

format. Data post-processing, any applicable visualization, and initial/manual analysis is

performed using SALVO and other MATLAB-based scripts, respectively.

The parameters that are passed to the individual experiment components are

controlled with a Microsoft Excel-based setup file. The setup file is designed to be able to

specify experiment parameters such as injected RF pulse frequency, RF power, RF pulse

duration, RF injection location on the clock signal, among others. Additionally, the setup

file has the capability to accommodate these parameters for two district RF pulses that

can be injected at specified locations with respect to the clock signal. For this research,

only a single RF pulse injection will be used. After the brief overview of the setup file, a

more detailed description is presented next.

132

The Excel-based setup file contains 21 experiment descriptors, some of which are

control parameters such as RF pulse duration, RF power, RF frequency, and RF injection

location. The first column in the setup file labeled “Sequence #” denotes the sequence

number or also referred to as the experiment number. Each sequence can be thought of as

a separate experiment in which one variable is modified and whose results (upset/no

upset) are recorded by the oscilloscope, along with RF pulse parameters that are recorded

at the DUT. The second column, labeled “#Shots” specifies the number of shot for a

particular experiment or sequence, in other words, is specifies the number of times each

sequence should be executed. The term “shot” signifies a single injection of RF pulse in

the DUT. These two columns are used for internal software control purposes.

Next, the column termed “Frequency_Hz” denotes the frequency of the injected

RF pulse in units of Hertz (Hz). This parameter is passed by SALVO to the RF sweeper

instructing it to set the frequency of the RF pulse to the desired value. The fourth column

termed “Pwr_dBm” denotes the power level of the injected RF pulse in dBm. These two

setup parameters are examples of direct experiment parameters as opposed to internal

control parameters used by the SALVO experiment control suite. The next four columns

are used to define the location with respect to the clock signal as well the duration of the

RF pulse, respectively.

The next four columns are termed “P1_A_Ref,” “P1_A_Dly,” “P1_B Ref,” and

“P1_B_Dly.” Most references termed “Ref” are set to refer to “T0”, a reference set to

the beginning of the experiment, or 0 nanoseconds. In this case “P1_A_Ref” and

“P1_B_Ref” are both set to “T0”, whereas “P1_A_Dly” and “P1_B_Dly” refer to RF

pulse injection location and RF pulse duration for the first pulse, respectively. An

133

identical set of columns exists to describe characteristics for the second injected RF

pulse, however, for this research, only the effects of one pulse will be modeled. Future

research may include the additional pulse characterization. The last 14 columns are actual

measured quantities relating to pulse width and magnitude, and energy delivered to the

MCU clock pin, as well as their average and standard deviations.

During initial tests, the MCU that will be used as the DUT is an ATMEL

AT89LP2052. This specific DUT is the first one to be tested, and it will be labeled

DUT#1. Most of the description of this chip follows Atmel’s datasheet. DUT#1 is a low-

power, high-performance CMOS 8-bit microcontroller with 2Kbytes of programmable

flash memory. DUT#1 fetches a single byte of memory every clock cycle. Traditionally,

in the 8051 architecture, each fetch requires 6 clock cycles, forcing instructions to

execute in 12,24, or 68 clock cycles. With this fetch feature, DUT#1 executes instructions

in 1-4 clock cycles, thus greatly increasing throughput. Approximately 70% of

instructions require only as many clock cycles as the number of bytes they execute and

most of the remaining instructions only require one additional clock cycle. Fig. 50 shows

a diagram of DUT#1 and its pin labels [56].

Figure 50: DUT#1 (ATMEL AT89LP2052) pin diagram [56].

134

DUT#1 uses a Harvard Architecture with separate address spaces for program

memory and data memory. This DUT is part of a family of devices that are fully binary

compatible with the MCS-51 instruction set. Even though there are significant

compatibilities with existing standards, DUT#1 inherent differences in system behavior

are a direct result of its high-performance nature. Details of specific differences in

comparison to Standard 8051 are listed in the datasheet provided by the manufacturer.

Fig. 51 shows a high-level overview of the underlying MCU architecture.

Figure 51: High-level architecture of DUT#1 [56].

DUT#1 possesses an enhanced CPU that runs 6-12 times faster than the standard

8051 devices. The faster performance can be attributed to two factors: first, the CPU

fetches one instruction byte from the code memory every clock cycle and second, the

CPU uses a simple two-stage pipeline to fetch and execute instructions in parallel. Fig. 52

shows a sample instruction execution diagram [56].

135

Figure 52: DUT#1 instruction execution timing diagram [56].

The main component of interest to this research is the system clock because that

will be the periphery into which the RF signal is injected. The system clock on DUT#1 is

generated directly from one of two selectable clock sources - the on-chip crystal

oscillator and the external clock source. Only one of these options can be selected as the

clock source at any given time. When enabled, the internal inverting oscillator amplifier

is connected between XTAL1 and XTAL2 for connection to an external quartz or

ceramic resonator. When a crystal oscillator is used, XTAL2 should not be used to drive

a board-level clock. The external clock option is selected by setting the oscillator bypass

fuse, disabling the amplifier and allowing XTAL1 to be driven directly by the clock

source. For this experiment, an external clock source, specifically the DS345, is used

[56].

The program that this MCU will execute is a simple counter procedure during

which the MCU performs counting operations starting from 0 to 7 at a clock frequency of

1 MHz as shown in Table 9. The specific assembly-level commands are shown together

with the amount of time in clock cycles that it takes the DUT#1 to execute the specific

136

command. The overall time duration that it takes the DUT#1 to initialize and count from

0 to 7 is 95 𝜇𝑠. Because RF injection occurs at different locations on the clock signal, it

is inherent that the location will correspond to a specific instruction being executed. Fig.

53 shows the output as recorded by the oscilloscope.

Table 9: Counter program in assembly language.

Instruction Time (us)

NOP (1) 1-5 (1 clock cycle)

MOV SP,#080H (2) 6, 7 (2 clock cycles)

MOV 0C2H,#001H 8, 9 (2 clock cycles)

MOV 0C3H,#001H 10, 11 (2 clock cycles)

MOV P1,#001H 12, 13 (2 clock cycles)

L0011: Loop Label (0 clock cycles)

MOV A,P1 14, 15 (2 clock cycles)

ADD A,#001H (3) 16, 17 (2 clock cycles)

MOV P1,A 18, 19 (2 clock cycles)

SJMP L0011 (4) 20, 21, 22 (3 cycles)

Figure 53: DUT#1 oscilloscope capture - normal operation.

137

 Fig. 53 shows the output signals of the four oscilloscope channels. Channel 1

shows the clock signal as well as the injected RF pulse. Channels 2-4 show the output

signals of the MCU output pins where channel 2,3, and 4 correspond to bits 0,1, and 2 of

the 0-7 count, respectively. The row of decimal numbers between channel 1 and channel

2 represents the binary count translated to the decimal system. This experiment instance

shows a microcontroller that is not affected by the injected RF pulse, in other words, this

experiment yielded an outcome denoted as “no upset.”

 “No Upset” denotes one of the binary outcomes of this experiment. The other

binary outcome is denoted as “Upset,” and Fig. 54 shows the first example of an outcome

with this label. If the expected bit value at a previously specified time is not a 0 or 1, the

post-processing algorithm will label it as upset. Upset scenarios include the situation in

which the bit value flips from an expected 0 to a 1, or vice versa. Additionally, it involves

the scenario in which the bit shifts by a significant amount, i.e. more than a clock cycle to

the left of right of the time at which it is expected to have a certain value. Even though

the experiment exhibits several different types of upset, a binary label denoting normal

operation or upset is utilized for the purpose of this research. Additional classifications of

upset scenarios will be considered for future research.

138

Figure 54: DUT#1 oscilloscope capture – upset.

The manifestation of MCU upset in Fig. 54 shows that the output pins

representing bits 0,1, and 2 are in an unknown state, requiring a device reset to clear the

condition. It can also be seen that the RF pulse injection location for this scenario differs

that the injection location from that in Fig. 51.

 Injecting RF pulses with different characteristics at different locations on the

clock signal generates different types of upset scenarios. Fig. 55 shows an additional

example of MCU upset. There are several more variations, but they will not be discussed

in detail. Instead, the research will focus on a simplified type of analysis and prediction

that is related to a binary experimental outcome – “upset” and “no upset.”

139

Figure 55: DUT#1 Oscilloscope Capture - Upset

During the data post-processing, several attributes about the RF pulse will be

measured and recorded using the oscilloscope. Even though we request the RF sweeper to

produce a perfect pulse at a given power and frequency, as that pulse propagates through

the experiment setup, it will degrade and become noisy, causing slight signal variation at

the physical point of injection, which is the clock pin and the subsequent signal

processing physical architecture. During the course of this research, the effect of several

changing variables on the software operation of the MCU has been studied. These

variables and their ideal values are shown in Table 10.

140

Table 10: Variables studied during this research.

VARIABLE VALUES UNDER CONSIDERATION

(UNITS)

RF INJECTION LOCATION Rising Clock Edge, Clock High, Falling

Clock Edge, and Clock Low

RF SIGNAL DURATION 50, 100 (ns)

RF SIGNAL POWER LEVEL -10,-15,-20 (dBm)

RF SIGNAL FREQUENCY 50, 100 (MHz)

MCU CLOCK FREQUENCY 1 (MHz)

These variable values represent the ideal case (instrument settings), and because

of equipment idiosyncrasies and different types of noise present in the system, the

quantities that are delivered to the MCU as measured by the oscilloscope may differ. The

amount of EM energy coupled to the chip is also dependent on the internal chip state, as

determined by the instruction being executed at the time.

141

Chapter 5: Experiment Data Analysis and Results

 This chapter is organized into seven separate subsections. Section 5-1 describes

the analysis strategy for the MCU upset problem. Sections 5-2 through 5-6 present

analysis for the TE-1 through TE-5 test cases, respectively. The analysis of each test case

is broken down to present machine learning results during training and during test.

Section 5-7 discusses the results and provides a comparison between the three analysis

methods and their effectiveness in tackling the MCU upset problem.

Chapter 5-1: Experiment Data Analysis Strategy

 This section presents the key concepts behind MCU upset modeling using

machine learning methods. During this research, the effect of several parameters (RF

pulse width, RF injection location, RF power level, and RF frequency) on the MCU

operation was studied. These variables and their nominal values are shown in Table 10

previously. The focus of this research is to study the effects of an interfering RF signal as

it is injected into different stages of program execution. The dependent variable, in this

case, is the event of upset and the cumulative probability of upset. The independent

variables that affect the dependent variable are the various characteristics describing the

nature of the RF signal and the injection location with respect to the MCU clock signal.

In this study, the MCU upset problem is formulated as a binary classification

problem in machine learning. The two possible outcomes of this experiment are upset (1)

or no upset (0 for SVMs and ANNs or -1 for GPs). A classification model (or classifier)

represents a mapping from input vectors to predicted classes. Some classifiers produce a

continuous output, such as an estimate of an instance’s class membership probability. In

this research, NNs and GPMLS both produce a probability of upset, given the data, while

142

SVMs produce a discrete class label that indicates only the predicted class of each

instance (1=upset/0=no upset). Various thresholding techniques can be applied to

continuous outputs to predict class membership. To distinguish between the actual class

and the predicted class, the labels {𝒀,𝑵} are used to denote class predictions produce by a

given model. Given a classifier and an instance, there are four possible outcomes. If the

instance is positive and the model classifies it as positive, it is counted as a true positive,

and if it is classified as a negative, then it is counted as a false negative. Conversely, if

the instance is negative and it is classified as negative, it is counted as a true negative,

and if it is classified as positive, it is counted as a false positive. Given a classifier and a

set of instances, a two-by-two confusion matrix (also referred to as a contingency table)

can be constructed that represents the dispositions of the set of instances, as shown in Fig.

56.

Figure 56: A confusion matrix and associated metrics [57].

143

 The numbers along the major diagonal represent the correct classification made

by the classifier, whereas the numbers off the diagonal represent errors – or confusion –

between the classes. The confusion matrix forms the basis for many common metrics,

such as the receiver operating characteristic (ROC) curve.

 The ROC analysis and the confusion matrix will be used to assess the

performance of a machine and its ability to predict MCU upset. ROC curves were

developed by radar engineers during World War II for detecting enemy objects in the

battlefield. They have also long been used in signal detection theory to depict the tradeoff

between hit rates (signal) and false alarm rates (noise) of classifiers. In classification

problems, such as the MCU upset binary classification problem, the ROC curve is a

technique used to visualize, organize, and select classification models based on their

performance. In statistics, the ROC curve is a graphical plot that is used to assess the

performance of a binary classifier system as a function of its discrimination threshold.

Technically, ROC curves, also known as ROC graphs, are two-dimensional plots

in which the true-positive rate (TPR) is plotted on the Y-axis, and the false-positive rate

is plotted on the X-axis. This way, an ROC graph depicts relative trade-offs between

benefits (‘true positives’) and costs (‘false positives’) . The curve is created by plotting

the TPR against the FPR for various threshold settings. The true-positive rate is also

referred to as sensitivity, recall, or probability of detection in machine learning

applications. A sensitivity of 100% means that the classifier recognizes all observed

negative cases. The false-positive rate is also known as the fall-out or probability of false

alarm and can be calculated as (1 − specificity). ROC analysis can be used to select

optimal models and to discard suboptimal ones [58], [59].

144

Fig. 57 illustrates the ROC space. The diagonal red line signifies that any model

positioned on it is no better than a random guess in a binary classification problem.

Models that are in the upper half (model ‘C’ and model ‘A’) will perform better, while

model ‘C’ will perform worse than a random guess (model ‘B’).

Figure 57: ROC space illustration [60].

In ROC analysis, the area under the curve (AUC) is a quantifier used to evaluate a

model’s performance. An AUC of 1 signifies perfect classification, while an AUC of 0

signifies maximum misclassification. AUC=0.5 is as good as a random guess whether the

145

injected RF signal will cause an MCU upset. Gronescu [61] gives the following rough

guide for determining the accuracy of a classifier in terms of the AUC:

 0.90 < 𝐴𝑈𝐶 < 1.00 → 𝐞𝐱𝐜𝐞𝐥𝐥𝐞𝐧𝐭 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧

 0.80 < 𝐴𝑈𝐶 < 0.90 → 𝐠𝐨𝐨𝐝 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧

 0.70 < 𝐴𝑈𝐶 < 0.80 → 𝐟𝐚𝐢𝐫 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧

 0.60 < 𝐴𝑈𝐶 < 0.70 → 𝐩𝐨𝐨𝐫 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧

 0.50 < 𝐴𝑈𝐶 < 0.60 → 𝐟𝐚𝐢𝐥𝐮𝐫𝐞.

 During the testing phase, the performance of the machine will be assessed and

illustrated using a confusion matrix, shown in Fig. 56, ROC analysis as shown in Fig. 57,

in addition to the overall PoE as a function of RF voltage and injection location with

respect to the clock shown in the top plot of Fig. 58. The confusion matrix plot is used to

understand how the classifier performed in each class and it helps to identify the areas

where the classifier has performed poorly. The rows show the true class, and the columns

show the predicted class. The diagonal cells show the cases in which the true class and

predicted class match. If these cells are green, the classifier has performed well and

classified observations of this true class correctly. A very interesting illustration that

shows the suitability of each machine to model MCU upset will be the PoE vs. RF

injection location plot for any given RF power level, RF frequency, and RF pulse

duration as shown in the top plot of Fig. 58. A high prediction accuracy, as measured by

the confusion matrix and an AUC close to 1 should translate to a close match between

predicted and observed PoE curves on the PoE plot.

146

Figure 58: Probability of effect (PoE) as a function of injection location and RF voltage.

The top half of Fig. 58 shows how the PoE changes as a function of injection

location with respect to time and the peak-to-peak voltage of the injected RF signal. In

this case, the PoE is simply the frequency of effect at each injection location,

Probability of Effect (PoE) =
Number of Upsets

Number of Experiments⁄ .

Each machine learning technique (SVM, NN, GPML) will make a prediction

(upset or no upset) for each of the test cases, and the predicted PoE would be generated

using the equation above which in turn will be used to construct the PoE plot in Fig. 58.

There are 5 test cases, each of which contains 38,300 training data points and 38,300 test

data points. The training points are used to train the machine and select the best

performing models, following which the machine will be tested on unseen test points.

The training data set and the test data set both contain 38,300 data points for SVM and

147

NN analysis, while the GPML is constrained to 3000-5000 training data points to keep

the computational complexity and training time reasonable. The performance of a

machine to determine upset or no upset is evaluated during training and during test.

For the SVM training, there are two considerations that warrant extensive

computing. First, the model parameters 𝐶 (misclassification penalty) and 𝜎 (kernel scale)

need to be determined, followed by the determination of support vectors. In the case of

GPs, it should be noted that the computational complexity [𝑂(𝑛3)] during GPML

training only allows for 𝑛 < 10,000 training points [45] and thus only 3,000 - 5,000

points are used to determine GP hyperparameters. Specifically, 5,000 training points are

chosen at random for the TE-1 data set, while 3,000 points are chosen at random for the

remaining four data sets, for no other reason than to speed up GP training.

The ANN model has unknown parameters, often referred to as weights, the values

of which need to be determined for the model to fit the training data well. For the

classification case, the cross-entropy, or deviance, will be used to quantify ANN error

during the training, validation, and test. The ANN that will be used is a two-layer

feedforward neural network that contains sigmoid neurons in the hidden layer and

softmax neurons in the output layer. Together with the softmax activation function and

the cross-entropy error function, the ANN model is exactly a linear logistic regression

model in the hidden units, and all its model parameters are estimated by maximum

likelihood [36]. Typically, a global minimizer leads to an overfitted solution, and

overfitting is prevented through a penalty term through early stopping of ANN training

activities.

148

 As with the SVM approach, all inputs for the ANN were standardized to have

mean zero and a standard deviation of one, ensuring that all inputs are treated equally in

the regularization process. Moreover, it is better to have too many hidden units that too

few. A model that is built with too few hidden units may not have enough flexibility to

capture the nonlinearities in the data, while too many units can have their weights shrunk

to zero with the appropriate regularization technique. A typical range for the number of

hidden units is somewhere in the range of 5 to 100. For this analysis, a neural network

with 50 hidden units is used, and its architecture is summarized at a high level in Fig. 59.

As with SVMs, the performance of the ANN will be evaluated during the training and

test phases. Training of the ANN was achieved using the scaled conjugate gradient

technique described earlier.

Figure 59: ANN architecture used to analyze MCU upset data.

There are several covariance function choices for GPML, with the squared

exponential covariance function being one of the most widely used. Other functions

include the polynomial covariance function of the second and third degree and the neural

network, among many others. Each of these covariance functions typically has a number

of free hyperparameters whose values need to be determined to assemble a complete GP

model. The selection of a covariance function and its parameters is generally referred to

149

as the training phase of a GP. The squared exponential covariance function is

parameterized in terms of its hyperparameters as follows:

 𝑘(𝒙𝒑, 𝒙𝒒) = 𝜎𝑓
2exp (−

1

2
(𝒙𝒑 − 𝒙𝒒)

𝑇
𝑀(𝒙𝒑 − 𝒙𝒒)) + 𝜎𝑛

2𝛿𝑝𝑞

, (117)

with 𝜽 = ({𝑀}, 𝜎𝑓
2, 𝜎𝑛

2) being a vector that contains all the hyperparameter, and 𝜎𝑛
2

denoting the noise level parameter. Possible choices for the matrix M are:

 𝑀1 = 𝑙
−2𝐼 (118)

 𝑀2 = diag(𝑙)
−2 (119)

 𝑀3 = 𝛬𝛬
𝑇 + diag(𝑙)−2, (120)

where 𝑙 represents a vector of positive values and 𝛬 is a 𝐷 × 𝑘 matrix, where 𝑘 < 𝐷. The

properties of covariance functions depend on the values of hyperparameters, which are

determined from data. For the square exponential covariance function above with

distance measure 𝑀2, the 𝑙1, … , 𝑙𝐷 hyperparameters play the role of characteristic length-

scales, in other words, they encode how far you need to move along a particular axis in

input space for the function values to become uncorrelated. Such a covariance function

implements automatic relevance determination (ARD), which has been successfully used

to remove irrelevant inputs [45]. The squared-exponential covariance function with ARD

is used for training and testing GPs on MCU upset data as well.

The number of training data for the GP is not identical to the training data and

composition of the SVM and the ANN. The reason for this is a significant problem with

150

GP prediction in that its computational complexity typically scales as 𝒪(𝑛3), resulting in

large storage requirements for the Gram matrix and significant computational burden for

solving the associated linear systems, although this restriction boundary could be

stretched further by using supercomputers. Because of this limitation, a random set of

5,000 data points is chosen from the TRG-1 dataset and the hyperparameters are trained

using the 5,000 points, and 3,000 points are chosen at random for the next four data sets.

Testing of the GPML, however, is still done on the full 38,300 data points in all

experiments.

Five experiments were executed as part of this research, each of which contained

a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points

with the following experiment variables: injection times with respect to the clock signal,

injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500

training points, the average training error was 12.47%, while for the 191,500 test points

the average test error was 14.85%, meaning that on average, the machine was able to

predict MCU upset with an 85.15% accuracy during testing. Leaving out the results for

the worst-performing model (SVM with a linear kernel), the test prediction accuracy for

the remaining machines is almost 89%. All three machine learning methods (ANNs,

SVMs, and GPML) showed excellent and consistent results in their ability to model and

predict the PoE on an MCU due to IEMI, with the GP approach performing best during

training with a 7.43% error, while the ANN technique was most accurate during test with

a 10.80% error. The summary of results is shown in Table 11.

151

Table 11: Machine prediction of MCU upset - summary of results.

TE-ALL Data (TRG (N)=191,500 / TST (N)=191,500, TOTAL(N)=383,000)

Injected RF Frequency (𝑓) = 50, 100 𝑀𝐻𝑧,
Injected RF Power (𝑃) = −10,−15,−20 𝑑𝐵𝑚,

Injected RF Pulse Width (𝑃𝑊) = 50, 100 𝑛𝑠

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel 0.1544 0.1837

SVM – 2nd Degree Polynomial (Quadratic) Kernel 0.1018 0.1146

SVM – 3rd Degree Polynomial (Cubic) Kernel 0.1022 0.1170

SVM – Radial Basis Function (RBF/Gaussian) Kernel 0.0954 0.1086

Artificial Neural Network (ANN) 0.0952 0.1080

GPs with SE-ARD Covariance Function (EP) / likERF 0.0743 0.1104

GPs with SE-ARD Covariance Function (LP) / likERF 0.0888 0.1076

AVERAGE ERROR 0.1247 0.1485

 Table 11 also summarizes the results for GPs that were obtained using the

Laplace approximation (LP) method in addition to the EP method. Even though

Rasmussen and Williams [47] present results that favor EP over LP, for this research, it

appears that approximating the Bernoulli distribution using Gaussians via Laplace

approximations yields slightly better results. Laplace approximation probabilistic output

is within 1% when compared to the EP probabilistic output when they are compared

against the ANN softmax probabilistic output, but the Laplace approximation method is

significantly faster (minutes vs. hours) during GP training and is also qualitatively faster

during prediction.

Chapter 5-2: Test Experiment 1 (TE-1) Data Analysis

 The data for test experiment 1 (TE-1) is divided into two sets. The first set of

38,300 data points is used to train SVMs and the ANN and select a model that provides

152

the best fit, given the training data (TRG-1 data). The GP is to be trained on a randomly

selected subset of 5,000 data points from the TRG-1 data set. The second set consists of

38,300 test data points (TST-1 data). The TST-1 dataset will be used to test how well

each machine generalizes to unseen data and to generate the PoE curves. None of the

machines under consideration have been exposed to the TST-1 data set.

For the TE-1 data set, the injected RF frequency is 𝑓 = 100 MHz, the injected RF

power level is 𝑃 = −10 dBm, and the injected RF pulse width is 𝑃𝑊 = 100 ns. The RF

pulse is injected into the clock pin, and it is timed to coincide with each clock edge

(rising edge, clock high, falling edge, clock low) starting at time 𝑡 = 0.5 𝜇𝑠 until 𝑡 =

95 𝜇𝑠, which is the time window during which the MCU initializes and completes the

counting operation. In sum, there are 383 injection locations during the clock window,

each consisting of 100 shots (instance during which RF is injected into the clock pin), for

a total of 38,300 data points. The first test run is used to collect 38,300 data points that

will be used to train each machine, except the GP, which will be trained with a randomly

selected subset of 5,000 data points. The test is then repeated to collect an additional

38,300 data that will be used to test each machine.

The machines under consideration include SVMs with linear (SVM-LINEAR),

quadratic (SVM-QUADRATIC), cubic (SVM-CUBIC), and Gaussian/radial basis

function (SVM-RBF) kernels. The other two models used to model MCU upset include a

two-layer feedforward neural network (ANN) that is trained using the scaled conjugate

gradient and GPs with the squared exponential covariance functions with automatic

relevance determination (GP-SE-ARD).

153

The performance of each machine is assessed during training and during the test

phase. The training assessment features a Bayesian optimization analysis for the selection

of key SVM parameters, a confusion matrix for training data, and ROC analysis for

training data for all classifiers. The test assessment features a confusion matrix for test

data, ROC analysis for test data, and a plot of the PoE as a function of injection location,

injected RF power, injected RF frequency, and injected RF pulse duration for all

classifiers.

Classifier Performance During Training – TRG-1 Data

In classification and regression scenarios, SVMs require that the kernel function

(with its scale) be chosen along with the misclassification penalty parameter C. One of

the more effective ways to do this is to utilize Bayesian optimization, as described in

Section 3-5. The objective of Bayesian optimization here is to choose parameters 𝐶 and 𝜎

that will minimize the cross-validation error. Even though four different kernel types

were analyzed for the SVM models, only the two best performing SVM models will be

presented in more detail for each test case.

For the first training case (TRG-1) as well as the corresponding test case (TST-1),

both of which contain 38,300 test points, the best performing SVM kernel is the RBF /

Gaussian kernel (SVM-RBF), while the second best SVM kernel is the third-degree

polynomial (SVM-CUBIC). The selection of kernel parameters for all SVM kernels was

done using a Bayesian optimization method that minimized the 10-fold cross-validated

loss, which for the SVM-RBF resulted in 𝐶 = 3.3734, and 𝜎 = 0.55027 with a Bayes-

estimated CV-error of 0.09684 (9.684%), as shown in Fig. 60.

154

Figure 60: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-RBF, TRG-1 data).

In arriving at the optimal values for 𝐶 and 𝜎 using Bayesian optimization, the

number of objective function evaluations required to reach the minimum observed and

estimated error is 30, as shown in Fig. 61. There was little to no improvement in the

cross-validation error from function evaluation number 7 onwards.

155

Figure 61: Minimum cross-validation error vs. number of function evaluations (SVM-RBF, TRG-1 data).

Similarly, the selection of SVM-CUBIC parameters was made using a Bayesian

optimization method that minimized the 10-fold cross-validated loss, which for the SVM-

CUBIC resulted in 𝐶 = 4917.8 and 𝜎 = 4.1674 with a Bayes-estimated CV-error of

0.1011 (10.11%), as shown in Fig. 62.

156

Figure 62: Bayes-optimized minimum CV-error; selection of C and 𝜎 (SVM-CUBIC, TRG-1 data).

The Bayes-estimated error for the SVM-CUBIC model 0.1011, which is in

excellent agreement with the actual obtained error of 0.101. The Bayes optimization of

values of 𝐶 and 𝜎 that minimized the cross-validation error were determined to be 𝐶 =

4917.8 and 𝜎 = 4.1674, while the number of function evaluations used in arriving at this

result is shown in Fig. 63.

157

Fig. 63: Minimum cross-validation error vs. number of function evaluations (SVM-CUBIC, TRG-1 data).

The confusion matrix for the training scenario, that contains training performance

for the SVM-RBF, SVM-CUBIC, ANN, and GPML-SE-ARD is shown in Fig. 64. As

shown by the confusion matrix, the SVM-RBF classifier performed best with an overall

training accuracy of 90.5%, followed by the ANN and GP-SE-ARD models performing

almost equally well with an overall training accuracy of 90.2% and 90.1% respectively.

The fourth-best classifier is the SVM-CUBIC model with an overall training accuracy of

89.9%. Even though the ANN accuracy during training was slightly lower than the

accuracy of the SVM-RBF method, the model selection and training for the ANN was

significantly faster.

158

Figure 64: Classifier confusion matrix during training (TRG-1 data).

The second statistical classifier description, based on the confusion matrix, as

introduced earlier in the chapter, is the ROC analysis. The ROC curve for all four

classifiers is shown in Fig. 65. As shown in Fig. 65, all four classifiers are deemed

excellent classifiers, based on the scale introduced earlier. The AUC for the SVM-RBF,

ANN, GP-SE-ARD, and SVM-CUBIC models was determined to be 0.9546, 0.9531,

0.9577, and 0.9329, respectively. Following the training phase performance assessment,

the test performance of the classifiers is assessed next. This is also referred to as the

classifier generalization performance, or in other words, how well does the classifier

generalize to data that it has not seen before.

159

Figure 65: ROC analysis of top four performing classifiers (TRG-1 data).

Classifier Performance During Testing – TST-1 Data

To build the test performance matrix shown in Fig. 67, as well as the training

performance matrix shown in Fig. 64, the probabilistic output of the ANN and the GP

needs to be converted to a binary (upset/no upset) output. To do this, a decision boundary

(threshold) needs to be determined above which the probability of upset is set to 1 and

below which the probability of upset is set to 0 without compromising the accuracy of the

machine. Fig. 66 shows a plot of prediction accuracy vs. threshold for TST-1 data and it

indicates that reasonable threshold choice is 0.5, without compromising prediction

accuracy.

160

Figure 66: Threshold vs. accuracy for the TST-1 dataset.

The TST-1 test case contains 38,300 test points that will be used to assess the

classifier generalization performance. As shown in Fig. 67, for the TST-1 test case, the

SVM-RBF classifier performed best, with an overall accuracy of 91.5%, followed by the

ANN, SVM-CUBIC, and GP-SE-ARD models with accuracies of 91%, 90.9%, and

90.7% respectively.

161

Figure 67: Classifier confusion matrix during testing (TST-1 data).

The ROC curve in Fig. 68 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.9469, 0.9390, 0.9528, and 0.9550 respectively, all of which

are in excellent agreements with the respective training AUCs. There is a small

miscorrelation between AUC and classifier performance in the confusion matrix because

the probabilistic outputs of the ANN and GP are “thresholded” at 0.5 to obtain a binary

classification output. Otherwise, both the ANN and GP output a probability of upset.

162

Figure 68: ROC analysis for top-four performing classifiers (TST-1 data).

The PoE plot illustrates how the excellent accuracy during training and

generalization translates to the classifiers’ ability to approximate the PoE as a function of

RF pulse injection location for any given injected RF power level, frequency, and pulse

width. The PoE plot in Fig. 69 is generated by computing the PoE for each position in

time for each rising edge of the clock window, each of which contains 100 predicted and

100 measured data points, via the following formula:

Probability of Effect (PoE) =
Number of Upsets

Number of Experiments⁄ . The

SVM-RBF classifier approximates the PoE curve for each clock edge extremely well.

Most of the misclassification contained in the error rates stem from upset

163

misclassifications when the RF pulse is injected during the clock low period of the

counting operation. An attempt will be made to improve the classifier performance for

the clock low period in the discussion section that following the analysis. Fig. 69 shows

how the excellent training and test performance translates to the approximation of the

PoE plot as a function of injection location for a given injected RF power level, pulse

width, and frequency.

Figure 69: PoE vs. injection location for top four performing classifiers (TST-1 data).

As mentioned earlier, the PoE plot in Fig. 69 is generated by computing the PoE

for each position in time for each rising edge of the clock window, each of which

contains 100 predicted and 100 measured data points. All four classifiers approximate the

PoE curves for each clock edge extremely well. As was the case with SVM-RBF-

164

generated plots, most of the misclassification contained in the various error stems from

upset misclassifications when the RF pulse is injected during the clock low period of the

counting operation. An attempt will be made to improve the classifier performance for

the clock low period in the discussion section that following the analysis. The reason for

the zero probability estimates of ANNs and GPMLs is that these two classifiers output a

probability of an upset, which is then converted to a binary output of upset/no upset

through a threshold with a decision boundary of 0.5. If the probability of upset is greater

than 0.5, then it is converted to a 1 (upset), and if it is less than 0.5, it is converted to a 0

(no upset). A possible solution to the fair performance during clock low is to not

threshold the probabilistic outputs of the GP and ANN, in other words, the solution could

be to leave the ANN and GPML outputs in terms of their respective probability of upset.

This solution will be explored in the discussion section that concludes this chapter.

To summarize results for the TE-1 test case, all three machine learning methods

(SVM, ANN, and GPML) performed very well on TE-1 data, which consisted of 38,300

training points (TRG-1) and 38,300 test points (TST-1). The average training error across

all three methods is 0.1102 (11.02%), meaning that they were almost 88.8% accurate, on

average, with the actual accuracy ranging from 84.5% for the SVM-LIN classifier to

90.3% for the SVM-RBF classifier. Performance on the test data (TST-1) was also

excellent. The average error across all classifiers for the test data is 10.2%, which is

lower than the average training error of 11.02%. The best overall performing machine for

TE-1 data is the support vector machine with a radial basis function kernel (SVM-RBF),

even though the Bayes optimization of the model parameters and the training to

determine the support vectors took the longest among the three methods. The execution

165

time for training and test is not an objective of the research, and thus only a cursory

qualitative assessment is provided. Classifier performance for the TE-1 data set was

summarized in Table 12. The overall measured PoE for the TE-5 test case is 0.6908, with

the machine-approximated values being 0.6442, 0.6500, and 0.6569 for the SVM-RBF,

ANN, and GP-SE-ARD respectively.

Table 12: Classifier performance summary for the TE-1 data set.

TE-1 Data (TRG-1(N)=38,300 / TST-1(N)=38,300, TOTAL(N)=76,600)

Injected RF Frequency (𝑓) = 100 MHz
Injected RF Power (𝑃) = −10 dBm

Injected RF Pulse Width (𝑃𝑊) = 100 ns

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel

𝐶 = 6.6988𝑒 − 05, 𝜎 = 4.3029𝑒 − 04
Bayes Optimization Est. Error: 0.1538

0.155 0.150

SVM – 2nd Degree Polynomial (Quadratic) Kernel

𝐶 = 3.0505, 𝜎 = 0.7081

Bayes Optimization Est. Error: 0.1072

0.107 0.096

SVM – 3rd Degree Polynomial (Cubic) Kernel

𝐶 = 4917.8, 𝜎 = 4.1674

Bayes Optimization Est. Error: 0.1011

0.101 0.091

SVM – Radial Basis Function (RBF/Gaussian) Kernel

𝐶 = 3.3734, 𝜎 = 0.55027
Bayes Optimization Est. Error: 0.09684

0.097 0.085

Artificial Neural Network (ANN) 0.100 0.090

Gaussian Processes for Machine Learning (GPML)

Squared-Exponential Covariance Function w/ARD

N=5000, T=38,300

0.101 0.100

Machine Learning Method

Overall PoE (TST-1)

Measured Predicted

SVM - RBF

0.6908

0.6442

ANN 0.6500

GPML – SE-ARD 0.6569

166

Chapter 5-3 Test Experiment 2 (TE-2) Data Analysis

 The data for test experiment 2 (TE-2) is divided into two sets. The first set of

38,300 data points is used to train SVM and ANN and select a model that provides the

best fit, given the data (TRG-2 data). The GP will be trained on a randomly selected

TRG-2 subset of 3,000 data points. The reason for the reduction in the training data set

for the GP model from 5,000 to 3,000 was done to reduce training time. The quantitative

analysis of training/prediction times is not within the scope of this research, as the

primary assessment criteria for classifier performance is prediction accuracy. The second

set within the TE-2 data set also consists of 38,300 test data points (TST-2 data). The

TST-2 dataset will be used to test the machine and generate the TST-2 confusion matrix,

ROC curves, and the PoE plot. None of the machines under consideration have been

exposed to the TST-2 data set.

For the TE-2 data set, the injected RF frequency is 𝑓 = 100 MHz, the injected RF

power level is 𝑃 = −15 dBm and the injected RF pulse width is 𝑃𝑊 = 100 ns. The RF

pulse is injected into the clock pin, and it is timed to coincide with each clock edge

(rising edge, clock high, falling edge, clock low) starting at time 𝑡 = 0.5 𝜇𝑠 until 𝑡 =

95 𝜇𝑠, which is the time window during which the MCU initializes and completes the

counting operation. In sum, there are 383 injection locations during the clock window,

each consisting of 100 shots (instance during which RF is injected into the clock pin), for

a total of 38,300 data points. The first test run is used to collect 38,300 data points that

will be used to train each machine, except the GP, which will be trained with a randomly

selected subset of 3,000 data points. The test is repeated to collect an additional 38,300

data that will be used to test each machine.

167

The machines under consideration include SVMs with linear (SVM-LINEAR),

quadratic (SVM-QUADRATIC), cubic (SVM-CUBIC), and Gaussian/radial basis

function (SVM-RBF) kernels. The other two models used to model MCU upset include a

two-layer feedforward neural network (ANN) that is trained using the scaled conjugate

gradient and GPs with the squared exponential covariance functions with automatic

relevance determination (GP-SE-ARD).

The performance of each machine is assessed during training and during the test

phase. The training assessment features a Bayesian optimization analysis for the selection

of key SVM parameters, a confusion matrix for training data, and ROC analysis for

training data for all classifiers. The test assessment features a confusion matrix for test

data, ROC analysis for test data, and a plot of the PoE as a function of injection location,

injected RF power, injected RF frequency, and injected RF pulse duration for all

classifiers.

Classifier Performance During Training – TRG-2 Data

In classification and regression scenarios, SVMs require that the kernel function

(with its scale) be chosen along with the misclassification penalty parameter 𝐶. One of

the most effective ways to do this is to utilize Bayesian optimization, as described in

Section 3-5. The objective of Bayesian optimization here is to choose 𝐶 and 𝜎 that will

minimize the cross-validation error. Even though four different kernel types were

analyzed for the SVM models, only the two best-performing SVM models will be

presented in more detail for each test case, but the performance of all four kernel

selections was summarized in Table 12.

168

For the training case (TRG-2) as well as the corresponding test case (TST-2), both

of which contain 38,300 test points, the best performing SVM kernel is the SVM-RBF,

while the second best SVM model is the SVM-CUBIC model. The selection of kernel

parameters for all SVM kernels was made using a Bayesian optimization method that

minimized the 10-fold cross-validation loss, which for the SVM-RBF resulted in 𝐶 =

80.649, 𝑎𝑛𝑑 𝜎 = 0.8429 with a Bayes-estimated CV-error of 0.0272 (2.72%), as shown

in Fig. 70.

Figure 70: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-RBF, TRG-2 data).

169

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

required to reach the minimum observed and estimated error is 30, as shown in Fig. 71.

Figure 71: Cross-validation error vs. number of function evaluations (SVM-RBF, TRG-2 data).

The estimated as well as the observed cross-validation error of 0.0272 (2.72%)

that were obtained using Bayesian optimization, were in excellent agreement with the

actual SVM-RBF training cross-validation error of 0.0272 (2.72%).

The Bayes-estimated error for the SVM model with a cubic kernel machine is

0.0297, which is excellent agreement with the actual obtained error of 0.0298. The Bayes

optimization of values of 𝐶 and 𝜎 that minimized the cross-validation error were

170

determined to be 𝐶 = 7.8099𝑒 − 05 and 𝜎 = 0.1535, the model of which is shown in

Fig. 72.

Figure 72: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-CUBIC, TRG-2 data).

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

required to reach the minimum observed and estimated error is 30, as shown in Fig. 73.

171

Figure 73: Cross-validation error vs. number of function evaluations (SVM-CUBIC, TRG-2 data).

The confusion matrix for the training scenario, that contains training performance

for the SVM-RBF, SVM-CUBIC, ANN, and GPML-SE-ARD is shown in Fig. 74. As

shown in Fig. 74, the SVM-RBF and the GP-SE-ARD classifier performed best with an

overall accuracy of 97.3% and 97.2, respectively, followed by the ANN and SVM-

CUBIC classifiers with accuracies of 97.1% and 96.6%, respectively.

172

Figure 74: Classification performance during training (TRG-2 data).

The ROC curve in Fig. 75 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.9788, 0.9625, 0.9645, and 0.9790 respectively. There is a

small miscorrelation between AUC and classifier performance in the confusion matrix

because the probabilistic outputs of the ANN and GP are thresholded at 0.5 to obtain a

binary classification output. Otherwise, both the ANN and GP output a probability of

upset.

173

Figure 75: ROC analysis of top four performing classifiers (TRG-2 data).

As shown in Fig. 75, all four classifiers are excellent classifiers, based on the

scale referenced earlier in the chapter. Following the training performance assessment,

the test performance of the classifiers is assessed next. This is also referred to as the

classifier generalization performance, or in other words, how well does the classifier

generalize to data that it has not seen before.

Classifier Performance During Testing – TST-2 Data

To build the performance matrix shown in Fig. 77, the probabilistic output of the

ANN and the GP needs to be converted to a binary (upset/no upset) output. To do this, a

decision boundary (threshold) needs to be determined above which the probability of

upset is set to 1 and below which the probability of upset is set to 0 without

174

compromising the accuracy of the machine. Fig. 76 shows a plot of prediction accuracy

vs. threshold for TST-2 data and it indicates that reasonable threshold choice is 0.5,

without compromising prediction accuracy.

Figure 76: Threshold vs. accuracy for TST-2 dataset.

The TST-2 test case contains 38,300 test points that will be used to assess the

classifier generalization performance. As shown in Fig. 77, on the classification for the

TST-2 test case, the SVM-RBF, and the GP-SE-ARD classifier performed best, both of

which have an overall accuracy of 93.6%, followed by the ANN and SVM-CUBIC

classifiers with accuracies of 93.4% and 92.9%, respectively. The test performance of all

classifiers was slightly worse than performance during training.

175

Figure 77: Classification performance during testing (TST-2 data).

The ROC curve in Fig. 78 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.8994, 0.8965, 0.9065, and 0.9001, all of which are in

excellent agreements with the respective training AUCs. There is some miscorrelation

between AUC and classifier performance in the confusion matrix because the

probabilistic outputs of the ANN and GP are put through a threshold with a decision

boundary at 0.5 to obtain a binary classification output. Otherwise, both the ANN and GP

output a probability of upset.

176

Figure 78: ROC analysis of top four performing classifiers during test (TST-2 data).

The PoE plot illustrates how the excellent accuracy during training and

generalization translates to the classifiers’ ability to approximate the PoE as a function of

RF pulse injection location for any given injected RF power level, frequency, and pulse

width. The PoE plot in Fig. 79 is generated by computing the PoE for each position in

time for each rising edge of the clock window, each of which contains 100 predicted and

100 measured data points, via the following formula

Probability of Effect (PoE) =
Number of Upsets

Number of Experiments⁄ . The

SVM-RBF classifier approximates the PoE curve for each clock edge extremely well.

Most of the misclassification contained in the error rates stem from upset

177

misclassifications when the RF pulse is injected during the clock low period of the

counting operation. An attempt will be made to improve the classifier performance for

the clock low period in the discussion section that follows the analysis. Fig. 79 shows

how the excellent training and test performance translates to the approximation of the

PoE plot as a function of injection location for a given injected RF power level, pulse

width, and frequency.

As mentioned earlier, the PoE plot in Fig. 79 is generated by computing the PoE

for each position in time for each rising edge of the clock window, each of which

contains 100 predicted and 100 measured data points. All four classifiers approximate the

PoE curves for each clock edge extremely well. As was the case with SVM-RBF-

generated plots, most of the misclassification contained in the various error stems from

upset misclassifications when the RF pulse is injected during the clock low period of the

counting operation. An attempt will be made to improve the classifier performance for

the clock low period in the discussion section that following the analysis. The reason for

the zero probability estimates of ANNs and GPMLs is that these two classifiers output a

probability of an upset, which is then converted to a binary output of upset/no upset

through a threshold with a decision boundary of 0.5. If the probability of upset is greater

than 0.5, then it is converted to a 1 (upset), and if it is less than 0.5, it is converted to a 0

(no upset). A possible solution to the fair performance during clock low is to not put the

probability of upset data through the threshold mechanism, in other words, the solution

could be to leave the ANN and GPML outputs in terms of their respective probability of

upset. This solution will be explored in the discussion section that concludes this chapter.

178

Figure 79: PoE vs. injection location for top four performing classifiers (TST-2 data set).

To summarize the TE-2 test case, all three machine learning methods (SVM,

ANN, and GPML) performed very well on TE-2 data, which consisted of 38,300 training

points (TRG-2) and 38,300 test points (TST-2). The average training error across all three

methods is 0.0612 (6.12%), meaning that they were almost 93.88% accurate, on average,

with the actual accuracy ranging from 77.67% for the SVM-LIN classifier to 97.28% for

the SVM-RBF classifier. Performance on the test data (TST-2) was also excellent. The

average error across all classifiers for the test data is 9.87%, which is higher than the

average training error of 6.12%. The best overall performing machine for TE-2 data is the

179

support vector machine with a radial basis function kernel (SVM-RBF), even though the

Bayes optimization of the model parameters and the training to determine the support

vectors took the longest to determine when compared to training times among the three

methods. The execution time for training and test is not an objective of the research, and

thus only a cursory qualitative assessment is provided. Classifier performance for the TE-

2 dataset is summarized in Table 13. The overall measured PoE for the TE-2 test case is

0.2595, with the machine-approximated values being 0.2102, 0.2146, and 0.2144 for the

SVM-RBF, ANN, and GP-SE-ARD, respectively.

Table 13: Classifier performance summary for the TE-2 data set.

TE-2 Data (TRG-2(N)=38,300 / TST-2(N)=38,300, TOTAL(N)=76,600)

Injected RF Frequency (𝑓) = 100 MHz
Injected RF Power (𝑃) = −15 dBm

Injected RF Pulse Width (𝑃𝑊) = 100 ns

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel

𝐶 = 0.0807, 𝜎 = 186.5021

Bayes Optimization Est. Error = 0.2233

0.2233 0.2595

SVM – 2nd Degree Polynomial (Quadratic) Kernel

𝐶 = 0.5777, 𝜎 = 0.3349

Bayes Optimization Est. Error = 0.0309

0.0309 0.0681

SVM – 3rd Degree Polynomial (Cubic) Kernel

𝐶 = 7.8099𝑒 − 05, 𝜎 = 0.1535

Bayes Optimization Est. Error = 0.0297

0.0298 0.071

SVM – Radial Basis Function (RBF/Gaussian) Kernel

𝐶 = 80.649, 𝜎 = 0.8429
Bayes Optimization Est. Error = 0.0272

0.0272 0.064

Artificial Neural Network (ANN) 0.0290 0.066

Gaussian Processes for Machine Learning (GPML)

Squared-Exponential Covariance Function w/ARD

N=3000, T=38,300

0.0270 0.064

Machine Learning Method

Overall PoE (TST-2)

Measured Predicted

SVM – RBF

0.2595

0.2102

ANN 0.2146

GPML – SE-ARD 0.2144

180

Chapter 5-3 Test Experiment 3 (TE-3) Data Analysis

The data for test experiment 3 (TE-3) is divided into two sets. The first set of

38,300 data points is used to train SVM and ANN and select a model that provides the

best fit, given the data (TRG-3 data). The GP will be trained on a randomly selected

TRG-3 subset of 3,000 data points. The reason for the reduction in the training data set

for the GP model from 5,000 to 3,000 was done to reduce training time. The quantitative

analysis of training/prediction times is not within the scope of this research, as the

primary assessment criteria for classifier performance is prediction accuracy. The second

set within the TE-3 data set also consists of 38,300 test data points (TST-3 data). The

TST-3 dataset will be used to test the machine and generate the TST-3 confusion matrix,

ROC curves, and the PoE plot. None of the machines under consideration have been

exposed to the TST-3 data set.

For the TE-3 data set, the injected RF frequency is 𝑓 = 100 MHz, the injected RF

power level is 𝑃 = −20 dBm, and the injected RF pulse width is 𝑃𝑊 = 100 ns. The RF

pulse is injected into the clock pin and it is timed to coincide with each clock edge (rising

edge, clock-high, falling edge, clock-low) starting at time 𝑡 = 0.5 𝜇𝑠 until 𝑡 = 95 𝜇𝑠,

which is the time window during which the MCU initializes and completes the counting

operation. In sum, there are 383 injection locations during the clock window, each

consisting of 100 shots (instance during which RF is injected into the clock pin), for a

total of 38,300 data points. The first test run is used to collect 38,300 data points that will

be used to train each machine, except the GP, which will be trained with a randomly

selected subset of 3,000 data points. The test is repeated to collect an additional 38,300

data that will be used to test each trained machine.

181

The machines under consideration include SVMs with linear (SVM-LINEAR),

quadratic (SVM-QUADRATIC), cubic (SVM-CUBIC), and Gaussian/radial basis

function (SVM-RBF) kernels. The other two models used to model MCU upset include a

two-layer feedforward neural network (ANN) that is trained using the scaled conjugate

gradient and GPs with the squared exponential covariance functions with automatic

relevance determination (GP-SE-ARD).

The performance of each machine is assessed during training and during the test

phase. The training assessment features a Bayesian optimization analysis for the selection

of key SVM parameters, a confusion matrix for training data, and ROC analysis for

training data for all classifiers. The test assessment features a confusion matrix for test

data, ROC analysis for test data, and a plot of the PoE as a function of injection location,

injected RF power, injected RF frequency, and injected RF pulse duration for all

classifiers.

Classifier Performance During Training – TRG-3 Data

In classification and regression scenarios, SVMs require that the kernel function

(with its scale) be chosen along with the misclassification penalty parameter 𝐶. One of

the most effective ways to do this is to utilize Bayesian optimization, as described in

Section 3-5. The objective of Bayesian optimization here is to choose 𝐶 and 𝜎 that will

minimize the cross-validation error. Even though four different kernel types were

analyzed for the SVM models, only the two best-performing SVM models will be

presented in more detail for each test case, but the performance of all four kernels

selections is summarized in Table 14 at the end of the section.

182

For the training case (TRG-3) as well as the corresponding test case (TST-3), both

of which contain 38,300 test points, the best performing SVM kernel is the

RBF/Gaussian kernel (SVM-RBF), while the second best SVM kernel is the polynomial

kernel of third degree (SVM-CUBIC). The selection of kernel parameters for all SVM

kernels was made using a Bayesian optimization method for which the objective function

was the minimum 10-fold cross-validation loss, which for the SVM-RBF resulted in 𝐶 =

7.4541 and 𝜎 = 0.9517 with a Bayes-estimated CV-error of 0.0192 (1.92%), as shown

in Fig. 80.

Figure 80: Bayes-optimized minimum CV-error; selection of C and 𝜎 (SVM-RBF, TRG-3 data).

183

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

performed to reach the minimum observed and estimated error is 30, as shown in Fig. 81.

Figure 81: Cross-validation error vs. number of function evaluations (SVM-RBF, TRG-3 data).

The estimated, as well as the observed cross-validation errors of 0.0192% (1.92%)

for the SVM-RBF model, obtained using Bayesian optimization, were in excellent

agreement with the actual SVM-RBF training cross-validation error of 0.0192 (1.92%).

The Bayes-estimated error for the SVM model with a cubic kernel is 0.0196,

which is excellent agreement with the actual obtained error of 0.0200. The Bayes

optimization of values of 𝐶 and 𝜎 that minimized the cross-validation error for the SVM-

184

CUBIC model were determined to be 𝐶 = 1.2546𝑒 − 04 and 𝜎 = 486.4421, which is

shown in Fig. 82.

Figure 82: Bayes-optimized minimum CV-error; selection of C and 𝜎 (SVM-CUBIC, TRG-3 data).

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

performed to reach the minimum observed and estimated error is 30, as shown in Fig. 83.

185

Figure 83: Cross-validation error vs. number of function evaluations (SVM-CUBIC, TRG-3 data).

The estimated, as well as the observed cross-validation error of 0.01961%

(1.961%) for the SVM-CUBIC model that were obtained using Bayesian optimization,

were in excellent agreement with the actual SVM-CUBIC training cross-validation error

of 0.0200 (2.00%).

The confusion matrix for the training scenario (TRG-3), that contains training

performance for the SVM-RBF, SVM-CUBIC, ANN, and GPML-SE-ARD is shown in

Fig. 84.

186

Figure 84: Classification training performance for TRG-3 data.

As shown by the confusion matrix, the GP-SE-ARD classifier performed best

with an overall training accuracy of 98.3%, with the ANN and SVM-RBF models

performing equally well with an overall training accuracy of 98.1%. The fourth-best

classifier is an SVM with a cubic kernel and an overall training accuracy of 98%.

The second statistical classifier description, based on the confusion matrix, is the

ROC analysis. The ROC curve for all four classifiers is shown in Fig. 85.

187

Figure 85: ROC analysis of top four performing classifiers during test (TRG-3 data).

The ROC curve in Fig. 85 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.9792, 0.9757, 0.9796, and 0.9936 respectively, all of which

indicate excellent, almost perfect classifier performance. There is a small miscorrelation

between AUC and classifier performance in the confusion matrix because the

probabilistic outputs of the ANN and GP are thresholded at 0.5 to obtain a binary

classification output. The SVM classifier outputs the best guess label 0 or 1 (no

upset/upset).

188

Classifier Performance During Testing – TST-3 Data

To build the test performance matrix shown in Fig. 87 and the training

performance matrix shown in Fig. 84, the probabilistic output of the ANN and the GP

needs to be converted to a binary (upset/no upset) output. To do this, a decision boundary

(threshold) needs to be determined above which the probability of upset is set to 1 and

below which the probability of upset is set to 0 without compromising the accuracy of the

machine. Fig. 86 shows a plot of prediction accuracy vs. threshold for TST-3 data and it

indicates that reasonable threshold choice is 0.5, without compromising prediction

accuracy.

Figure 86: Threshold vs. accuracy for the TST-3 dataset.

The TST-3 test case contains 38,300 test points that will be used to assess the

classifier generalization performance. As shown in Fig. 87, on the classification

confusion matrix for the TST-3 test case, the SVM-RBF and the GP-SE-ARD classifier

189

performed best, both of which have an overall accuracy of 94.7%, followed by the ANN

and SVM-CUBIC classifiers with accuracies of 94.6% and 94.5%, respectively. The test

performance of all classifiers was slightly worse than performance during training.

Figure 87: Classifier performance during testing (TST-3 dataset).

The ROC curve in Fig. 88 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.9099, 0.9098, 0.9085, and 0.9073, all of which are in

excellent agreements with the respective training AUCs. There is a small miscorrelation

between AUC and classifier performance in the confusion matrix because the

190

probabilistic outputs of the ANN and GP are thresholded at 0.5 to obtain a binary

classification output. Otherwise, both the ANN and GP output a probability of upset.

Figure 88: ROC analysis of top four performing classifiers during test (TST-3 data).

The PoE plot illustrates how the excellent accuracy during training and

generalization translates to the classifiers’ ability to approximate the PoE as a function of

RF pulse injection location for any given injected RF power level, frequency, and pulse

width. Just as in the previous two data sets, the PoE plot for the TST-3 case in Fig. 89 is

generated by computing the PoE for each position in time for each rising edge of the

191

clock window, each of which contains 100 predicted and 100 measured data points, via

the following formula

Probability of Effect (PoE) =
Number of Upsets

Number of Experiments⁄ . The

SVM-RBF classifier approximates the PoE curve for each clock edge extremely well. As

was the case in previous test cases, most of the misclassification contained in the error

rates stem from upset misclassifications when the RF pulse is injected during the clock

low period of the counting operation. An attempt will be made to improve the classifier

performance for the clock low period in the discussion section that following the analysis.

Fig. 89 shows how the excellent training and test performance translates to the

approximation of the PoE plot as a function of injection location for a given injected RF

power level, pulse width, and frequency.

192

Figure 89: PoE with respect to RF injection location during clock window (TST-3 data).

To summarize the TE-3 test case, all three machine learning methods (SVM,

ANN, and GPML) performed very well on TE-3 data, which consisted of 38,300 training

points (TRG-3) and 38,300 test points (TST-3). The average training error across all three

methods is 0.0218 (2.18%), meaning that they were almost 97.82% accurate during

training, on average, with the actual training accuracy ranging from 94.98% for the SVM-

LIN classifier to 98.3% for the GP-SE-ARD classifier. Performance on the test data

(TST-3) was also excellent. The average error across all classifiers for the test data is

0.0592 (5.92%), which is higher than the average training error of 2.18%. The best

193

overall performing machine for TE-3 data is the support vector machine with a radial

basis function kernel (SVM-RBF), even though the Bayes optimization of the model

parameters and the training to determine the support vectors took the longest to determine

when compared to training times among the three methods. The execution time for

training and test is not an objective of the research, and thus only a cursory qualitative

assessment is provided. Classifier performance for the TE-3 dataset is summarized in

Table 14. The overall measured PoE for the TE-3 test case is 0.2499, with the machine-

approximated values being 0.2140, 0.2138, and 0.2125 for the SVM-RBF, ANN, and GP-

SE-ARD respectively.

Table 14: Classifier performance summary for the TE-3 data set.

TE-3 Data (TRG-3(N)=38,300 / TST-3(N)=38,300, TOTAL(N)=76,600)

Injected RF Frequency (𝑓) = 100 MHz
Injected RF Power (𝑃) = −20 dBm

Injected RF Pulse Width (𝑃𝑊) = 100 ns

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel

 𝐶 = 4.0621, 𝜎 = 2.0760
Bayes Optimization Est. Error: 0.0501

0.0502 0.0822

SVM – 2nd Degree Polynomial (Quadratic) Kernel

𝐶 = 5.3501𝑒 + 03, 𝜎 = 4.2421

Bayes Optimization Est. Error: 0.0223

0.0224 0.0570

SVM – 3rd Degree Polynomial (Cubic) Kernel

𝐶 = 1.2546𝑒 − 04, 𝜎 = 486.4421

Bayes Optimization Est. Error: 0.0196

0.0200 0.0550

SVM – Radial Basis Function (RBF/Gaussian) Kernel

𝐶 = 7.4541, 𝜎 = 0.9517
Bayes Optimization Est. Error: 0.0192

0.0192 0.053

Artificial Neural Network (ANN) 0.019 0.053

Gaussian Processes for Machine Learning (GPML)

Squared-Exponential Covariance Function w/ARD

N=3,000, T=38,300

0.0187 0.055

Machine Learning Technique
Overall PoE (TST-3)

Measured Predicted

SVM - RBF

0.2499

0.2140

ANN 0.2138

GPML – SE-ARD 0.2125

194

Chapter 5-4 Test Experiment 4 (TE-4) Data Analysis

The data for test experiment 4 (TE-4) is also divided into two sets. The first set of

38,300 data points is used to train SVM and ANN and select a model that provides the

best fit, given the data (TRG-4 data). The GP will be trained on a randomly selected

TRG-4 subset of 3,000 data points. The reason for the reduction in the training data set

for the GP model from 5,000 to 3,000 was done to reduce training time, without

compromising prediction accuracy. The quantitative analysis of training/prediction times

is not within the scope of this research, as the primary assessment criterium for classifier

performance is prediction accuracy. The second subset of the TE-4 data set consists of

38,300 test data points (TST-4 data). The TST-4 dataset will be used to test the machine

and generate the TST-4 confusion matrix, TST-4 ROC curves, and the TST-4 PoE plot.

None of the machines under consideration have been exposed to the TST-4 data set.

For the TE-4 data set, the injected RF frequency is 𝑓 = 50 MHz, the injected RF

power level is 𝑃 = −15 dBm, and the injected RF pulse width is 𝑃𝑊 = 50 ns. The RF

pulse is injected into the clock pin, and it is timed to coincide with each clock edge

(rising edge, clock-high, falling edge, clock-low) starting at time 𝑡 = 0.5𝜇𝑠 until 𝑡 =

95𝜇𝑠, which is the time window during which the MCU initializes and completes the

counting operation. In sum, there are 383 injection locations during the clock window,

each consisting of 100 shots (instance during which RF is injected into the clock pin), for

a total of 38,300 data points. The first test run is used to collect 38,300 data points that

will be used to train each machine, except the GP, which will be trained with a randomly

selected subset of 3,000 data points. The test is repeated to collect an additional 38,300

data that will be used to test each trained machine.

195

The machines under consideration include SVMs with linear (SVM-LINEAR),

quadratic (SVM-QUADRATIC), cubic (SVM-CUBIC), and Gaussian/radial basis

function (SVM-RBF) kernels. The other two models used to model MCU upset include a

two-layer feedforward neural network (ANN) that is trained using the scaled conjugate

gradient and GPs with the squared exponential covariance functions with automatic

relevance determination (GP-SE-ARD).

The performance of each machine is assessed during training and during the test

phase. The training assessment features a Bayesian optimization analysis for the selection

of key SVM parameters, a confusion matrix for training data, and ROC analysis for

training data for all classifiers. The test assessment features a confusion matrix for test

data, ROC analysis for test data, and a plot of the PoE as a function of injection location,

injected RF power, injected RF frequency, and injected RF pulse duration for all

classifiers.

Classifier Performance During Training – TRG-4 Data

In classification and regression scenarios, SVMs require that the kernel function

(with its scale) be chosen along with the misclassification penalty parameter 𝐶. One of

the most effective ways to do this is to utilize Bayesian optimization, as described in

section 3-5. The objective of Bayesian optimization here is to choose 𝐶 and 𝜎 that will

minimize the cross-validation error. Even though four different kernel types were

analyzed for the SVM models, only the two best-performing SVM models will be

presented in more detail for each test case, but the performance of all four kernels

selections is summarized in Table 15 at the end of this section.

196

For the training case (TRG-4) as well as the corresponding test case (TST-4), both

of which contain 38,300 test points, the best performing SVM model is the SVM-RBF

model, while the second best SVM model is the SVM-CUBIC model. The selection of

kernel parameters for all SVM kernels was made using a Bayesian optimization method

for which the objective function was the minimum 10-fold cross-validated loss, which for

the SVM-RBF resulted in 𝐶 = 33.5612 and 𝜎 = 0.6697 with a Bayes-estimated CV-

error of 0.2330 (23.30%), as shown in Fig. 90.

Figure 90: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-RBF, TRG-4 data).

197

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

performed to reach the minimum observed and estimated error is 30, as shown in Fig. 91.

Figure 91: Cross-validation error vs. number of function evaluations (SVM-RBF, TRG-4 data).

The estimated, as well as the observed cross-validation error of 0.2330 (23.30%)

for the SVM-RBF model, obtained using Bayesian optimization were in excellent

agreement with the actual SVM-RBF training cross-validation error of 0.2321 (23.21%).

198

The Bayes-estimated error for the SVM-CUBIC kernel is 0.2585 (25.85%). The

Bayes optimization of values of 𝐶 and 𝜎 that minimized the cross-validation error for the

SVM-CUBIC model were determined to be 𝐶 = 40.1093 and 𝜎 = 1.7520, which is

shown in Fig. 92.

Figure 92: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-CUBIC, TRG-4 data).

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

performed to reach the minimum observed and estimated error is 30, as shown in Fig. 93.

199

Figure 93: Cross-validation error vs. number of function evaluations (SVM-CUBIC, TRG-4 data).

The estimated, as well as the observed cross-validation error of 0.2585 (25.85%)

for the SVM-CUBIC model that were obtained using Bayesian optimization, were in

excellent agreement with the actual SVM-CUBIC training cross-validation error of

0.2586 (25.86%).

The confusion matrix for the training scenario (TRG-5), that contains training

performance for the SVM-RBF, SVM-CUBIC, ANN, and GPML-SE-ARD is shown in

Fig. 94.

200

Figure 94: Classification training performance for TRG-4 data.

As shown by the confusion matrix, the SVM-RBF classifier performed best with

an overall training accuracy of 78.5%, with the GP-SE-ARD and SVM-CUBIC models

performing equally well with an overall training accuracy of 77.5% and 74.3%,

respectively. The fourth-best classifier is the ANN model with an overall training

accuracy of 74%.

201

The second statistical classifier description, based on the confusion matrix, is the

ROC analysis. The ROC curve for all four classifiers is shown in Fig. 95.

Figure 95: ROC analysis of top four performing classifiers during test (TRG-5 data).

The ROC curve in Fig. 95 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.8357, 0.7640, 0.7706, and 0.8336 respectively. According to

the ROC scale introduced earlier in the chapter, the SVM-RBF and the GP-SE-ARD

models represent good classifiers, while the SVM-CUBIC and ANN models represent

202

fair classifiers. There is a small miscorrelation between AUC and classifier performance

in the confusion matrix because the probabilistic outputs of the ANN and GP are

thresholded at 0.5 to obtain a binary classification output. The SVM classifier outputs the

best guess label 0 or 1 (no upset/upset).

Classifier Performance During Testing – TST-4 Data

To build the test performance matrix shown in Fig. 97 and the training

performance matrix shown in Fig. 94, the probabilistic output of the ANN and the GP

needs to be converted to a binary (upset/no upset) output. To do this, a decision boundary

(threshold) needs to be determined above which the probability of upset is set to 1 and

below which the probability of upset is set to 0 without compromising the accuracy of the

machine. Fig. 96 shows a plot of prediction accuracy vs. threshold for TST-4 data and it

indicates that reasonable threshold choice is 0.5, without compromising prediction

accuracy.

203

Figure 96: Threshold vs. accuracy for the TST-4 dataset.

The TST-4 test case contains 38,300 test points that will be used to assess the

classifier generalization performance. As shown in Fig. 97, on the classification

confusion matrix for the TST-4 test case, the SVM-RBF and the SVM-CUBIC classifier

performed best, with an overall accuracy of 76.3% and 73.6%, respectively, followed by

the ANN and GP-SE-ARD classifiers with accuracies of 73.4% and 73%, respectively.

The test performance of all classifiers was slightly worse than performance during

training.

204

Figure 97: Classifier performance during testing (TST-4 data set).

The ROC curve in Fig. 98 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.6952, 0.6965, 0.7636, and 0.7655. There is a small

miscorrelation between AUC and classifier performance in the confusion matrix partly

because the probabilistic outputs of the ANN and GP are thresholded at 0.5 to obtain a

binary classification output. Otherwise, both the ANN and GP output a probability of

upset. Lower AUC scores also reflect the poorer performance during testing on unseen

data. Even though their accuracies were comparable, AUC scores for the SVM classifiers

indicate that SVMs represent poorly performing classifiers for this data set, while ANNs

and GP-SE-ARD classifiers represent fair performing classifiers for the TST-4 data set.

205

Figure 98: ROC analysis of top four performing classifiers during test (TST-4 data set).

The PoE plot illustrates how the excellent accuracy during training and

generalization translates to the classifiers’ ability to approximate the PoE as a function of

RF pulse injection location for any given injected RF power level, frequency, and pulse

width. Just as in the previous two data sets, the PoE plot for the TST-4 case in Fig. 99 is

generated by computing the PoE for each position in time for each rising edge of the

clock window, each of which contains 100 predicted and 100 measured data points, via

the following formula

Probability of Effect (PoE) =
Number of Upsets

Number of Experiments⁄ . The SVM-

RBF classifier approximates the PoE curve for each clock edge extremely well. As was

the case in previous test cases, most of the misclassification contained in the error rates

206

stem from upset misclassifications when the RF pulse is injected during the clock low

period of the counting operation. An attempt will be made to improve the classifier

performance for the clock low period in the discussion section that following the analysis.

Fig. 99 shows how the training and test performance translates to the approximation of

the PoE plot as a function of injection location for a given injected RF power level, pulse

width, and frequency.

Figure 99: PoE vs. injection location for top two performing SVM classifiers (TST-4 data set).

207

 To reduce clutter, the PoE plot for the TST-4 data set has been split to show

performance for the top two SVM classifiers in Fig. 99 and the performance of the ANN

and GP-SE-ARD classifiers in Fig. 100.

Figure 100: PoE vs. injection location for ANN and GP-SE-ARD classifiers (TST-5 data set).

To summarize the TE-4 test case, all three machine learning methods (SVM,

ANN, and GPML) performed at an acceptable level on TE-4 data, which consisted of

38,300 training points (TRG-4) and 38,300 test points (TST-4). The average training

error (TRG-4 data) across all three methods is 0.2654 (26.54%), meaning that they were

almost 73.46% accurate during training, on average. Performance on the test data (TST-

208

4) was also acceptable. The average error across all classifiers for the test data is 0.2768

(27.68%), which is higher than the average training error of 26.54%. The best overall

performing machine for TE-4 data is the SVM-RBF. The measurement of training and

prediction times is an objective of the research. The single criterion for performance

assessment is prediction accuracy. Classifier performance for the TE-4 dataset is

summarized in Table 15. The overall measured PoE for the TE-4 test case is 0.3469, with

the machine-approximated values being 0.2419, 0.2586, and 0.2912 for the SVM-RBF,

ANN, and GP-SE-ARD respectively.

Table 15: Classifier performance summary for the TE-4 data set.

TE-4 Data (TRG-4(N)=38,300 / TST-4(N)=38,300, TOTAL(N)=76,600)

Injected RF Frequency (𝑓) = 50 MHz
Injected RF Power (𝑃) = -15 dBm

Injected RF Pulse Width (𝑃𝑊) = 50 ns

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel

𝐶 = 1.5132𝑒 − 04, 𝜎 = 0.0072

Bayes Optimization Est. Error: 0.3434

0.3434 0.3470

SVM – Quadratic Kernel

𝐶 = 2.1680, 𝜎 = 0.5028

Bayes Optimization Est. Error: 0.2728

0.2730 0.2770

SVM –Cubic Kernel

𝐶 = 40.1093, 𝜎 = 1.7520

Bayes Optimization Est. Error: 0.2585

0.2586 0.2640

SVM – Radial Basis Function (RBF) Kernel

𝐶 = 33.5612, 𝜎 = 0.6697
Bayes Optimization Est. Error: 0.2330

0.2321 0.2370

Artificial Neural Network (ANN) 0.2600 0.2660

GPs with Expectation Propagation

Squared-Exponential Covariance Function w/ARD

N=3,000, T=38,300

0.2250 0.2700

Machine Learning Method
Overall PoE (TST-4)

Measured Predicted

SVM - RBF

0.3469

0.2419

ANN 0.2586

GP – SE-ARD 0.2912

209

Chapter 5-5 Test Experiment 5 (TE-5) Data Analysis

The data for test experiment 5 (TE-5) is also divided into two sets. The first set of

38,300 data points is used to train SVM and ANN and select a model that provides the

best fit, given the data (TRG-5 data). The GP will be trained on a randomly selected

TRG-5 subset of 3,000 data points. The reason for the reduction in the training data set

for the GP model from 5,000 to 3,000 was done to reduce training time. The quantitative

analysis of training/prediction times is not within the scope of this research, as the

primary assessment criteria for classifier performance is prediction accuracy. The second

set within the TE-5 data set also consists of 38,300 test data points (TST-5 data). The

TST-5 dataset will be used to test the machine and generate the TST-5 confusion matrix,

ROC curves, and the PoE plot. None of the machines under consideration have been

exposed to the TST-5 data set.

For the TE-5 data set, the injected RF frequency is 𝑓 = 100 MHz, the injected RF

power level is 𝑃 = −20 dBm, and the injected RF pulse width is 𝑃𝑊 = 100 ns. The RF

pulse is injected into the clock pin, and it is timed to coincide with each clock edge

(rising edge, clock-high, falling edge, clock-low) starting at time 𝑡 = 0.5 𝜇𝑠 until 𝑡 =

95 𝜇𝑠, which is the time window during which the MCU initializes and completes the

counting operation. In sum, there are 383 injection locations during the clock window,

each consisting of 100 shots (instance during which RF is injected into the clock pin), for

a total of 38,300 data points. The first test run is used to collect 38,300 data points that

will be used to train each machine, except the GP, which will be trained with a randomly

selected subset of 3,000 data points. The test is repeated to collect an additional 38,300

data that will be used to test each trained machine.

210

The machines under consideration include SVMs with linear (SVM-LINEAR),

quadratic (SVM-QUADRATIC), cubic (SVM-CUBIC), and Gaussian/radial basis

function (SVM-RBF) kernels. The other two models used to model MCU upset include a

two-layer feedforward neural network (ANN) that is trained using the scaled conjugate

gradient and GPs with the squared exponential covariance functions with automatic

relevance determination (GP-SE-ARD).

The performance of each machine is assessed during training and during the test

phase. The training assessment features a Bayesian optimization analysis for the selection

of key SVM parameters, a confusion matrix for training data, and ROC analysis for

training data for all classifiers. The test assessment features a confusion matrix for test

data, ROC analysis for test data, and a plot of the PoE as a function of injection location,

injected RF power, injected RF frequency, and injected RF pulse duration for all

classifiers.

Classifier Performance During Training – TRG-5 Data

In classification and regression scenarios, SVMs require that the kernel function

(with its scale) be chosen along with the misclassification penalty parameter 𝐶. One of

the most effective ways to do this is to utilize Bayesian optimization, as described in

Section 3-5. The objective of Bayesian optimization here is to choose C and 𝜎 that will

minimize the cross-validation error. Even though four different kernel types were

analyzed for the SVM models, only the two best performing SVM models will be

presented in more detail for each test case, but the performance of all four kernels

selections is summarized in Table 16 at the end of the section.

211

For the training case (TRG-5) as well as the corresponding test case (TST-5), both

of which contain 38,300 test points, the best performing model is the SVM-LINEAR

model, while the second best is the SVM-QUADRATIC model. The selection of kernel

parameters for all SVM kernels was made using Bayesian optimization for which the

objective function was the minimum 10-fold cross-validated loss, which for the SVM-

LINEAR resulted in 𝐶 = 3.7666 and 𝜎 = 0.0666 with a Bayes-estimated CV-error of

0.0802 (8.02%), as shown in Fig. 101.

Figure 101: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-LINEAR, TRG-5 data).

212

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

performed to reach the minimum observed and estimated error is 30, as shown in Fig.

102.

Figure 102: Cross-validation error vs. number of function evaluations (SVM-LIN, TRG-5 data).

The estimated, as well as the observed cross-validation error of 0.07919%

(7.919%) for the SVM-LINEAR model, obtained using Bayesian optimization were in

excellent agreement with the actual SVM-LINEAR training cross-validation error of

0.0802 (8.02%).

213

The Bayes-estimated error for the SVM-QUADRATIC kernel is 0.0760 (7.60%),

which is excellent agreement with the actual obtained error of 0.0758 (7.58%). The Bayes

optimization of values of 𝐶 and 𝜎 that minimized the cross-validation error for the SVM-

QUADRATIC model were determined to be 𝐶 = 9.3326𝑒 + 04, and 𝜎 = 57.0923,

which is shown in Fig. 103.

Figure 103: Bayes-optimized minimum CV-error; selection of 𝐶 and 𝜎 (SVM-QUADRATIC, TRG-5 data).

In determining optimal values for 𝐶 and 𝜎 that minimize the 10-fold cross-

validation loss using Bayesian optimization, the number of objective function evaluations

214

performed to reach the minimum observed and estimated error is 30, as shown in Fig.

104.

Figure 104: Cross-validation error vs. number of function evaluations (SVM-QUADRATIC, TRG-5 data).

The estimated, as well as the observed cross-validation error of 0.0760% (7.60%)

for the SVM-QUADRATIC model that were obtained using Bayesian optimization, were

in excellent agreement with the actual SVM-QUADRATIC training cross-validation

error of 0.0758 (7.58%).

The confusion matrix for the training scenario (TRG-5), that contains training

performance for the SVM-LINEAR, SVM-QUADRATIC, ANN, and GPML-SE-ARD is

shown in Fig. 105.

215

Figure 105: Classification training performance for TRG-5 data.

As shown by the confusion matrix, the GP-SE-ARD classifier performed best

with an overall training accuracy of 100%, with the ANN and SVM-QUADRATIC

models performing equally well with an overall training accuracy of 93% and 92.4%,

respectively. The fourth-best classifier is the SVM-LINEAR model and an overall

training accuracy of 92%.

The second statistical classifier description, based on the confusion matrix, is the

ROC analysis. The ROC curve for all four classifiers is shown in Fig. 106.

216

Figure 106: ROC analysis of top four performing classifiers during test (TRG-5 data).

The ROC curve in Fig. 106 shows a test AUC for the SVM-LINEAR, SVM-

QUADRATIC, ANN, and GP-SE-ARD of 0.9469, 0.9501, 0.9596, and 1 respectively, all

of which indicate excellent, almost perfect classifier performance. For the GP training set

that contains 3,000 data points, the GP-SE-ARD classifier performance was perfect.

There is a small miscorrelation between AUC and classifier performance in the confusion

matrix because the probabilistic outputs of the ANN and GP are thresholded at 0.5 to

obtain a binary classification output. The SVM classifier outputs the best guess label 0 or

1 (no upset/upset).

217

Classifier Performance During Testing – TST-5 Data

To build the performance matrix shown in Fig. 108, the probabilistic output of the

ANN and the GP needs to be converted to a binary (upset/no upset) output. To do this, a

decision boundary (threshold) needs to be determined above which the probability of

upset is set to 1 and below which the probability of upset is set to 0 without

compromising the accuracy of the machine. Fig. 107 shows a plot of prediction accuracy

vs. threshold for TST-4 data and it indicates that reasonable threshold choice is 0.5,

without compromising prediction accuracy.

Figure 107: Threshold vs. accuracy for the TST-5 dataset.

The TST-5 test case contains 38,300 test points that will be used to assess the

classifier generalization performance. As shown in Fig. 108, on the classification

confusion matrix for the TST-5 test case, the GP-SE-ARD and the ANN classifier

performed best, with an overall accuracy of 93.7% and 93.5%, respectively, followed by

218

the SVM-QUAD and SVM-LIN classifiers with accuracies of 92.5% and 92 %,

respectively. The test performance of all classifiers was slightly worse than performance

during training.

Figure 108: Classifier performance during testing (TST-5 data set).

The ROC curve in Fig. 109 shows a test AUC for the SVM-RBF, SVM-CUBIC,

ANN, and GP-SE-ARD of 0.9099, 0.9098, 0.9085, and 0.9073, all of which are in

excellent agreements with the respective training AUCs. There is a small miscorrelation

between AUC and classifier performance in the confusion matrix because the

probabilistic outputs of the ANN and GP are thresholded at 0.5 to obtain a binary

classification output. Otherwise, both the ANN and GP output a probability of upset.

219

Figure 109: ROC analysis of top four performing classifiers during test (TST-5 data set).

The PoE plot illustrates how the excellent accuracy during training and

generalization translates to the classifiers’ ability to approximate the PoE as a function of

RF pulse injection location for any given injected RF power level, frequency, and pulse

width. Just as in the previous two data sets, the PoE plot for the TST-5 case in Fig. 110 is

generated by computing the PoE for each position in time for each rising edge of the

clock window, each of which contains 100 predicted and 100 measured data points, via

the following formula

Probability of Effect (PoE) =
Number of Upsets

Number of Experiments⁄ . The SVM-

RBF classifier approximates the PoE curve for each clock edge extremely well. As was

the case in previous test cases, most of the misclassification contained in the error rates

220

stem from upset misclassifications when the RF pulse is injected during the clock low

period of the counting operation. An attempt will be made to improve the classifier

performance for the clock low period in the discussion section that following the analysis.

Fig. 110 shows how the excellent training and test performance translates to the

approximation of the PoE plot as a function of injection location for a given injected RF

power level, pulse width, and frequency.

Figure 110: PoE vs. injection location for top two performing SVM classifiers (TST-5 data set).

221

 To reduce clutter, the PoE plot for the TST-5 data set has been split to show

performance for the top two SVM classifiers in Fig. 110, and the performance of the

ANN and GP-SE-ARD classifiers in Fig. 111.

Figure 111: PoE vs. injection location for ANN and GP-SE-ARD classifiers (TST-5 data set).

To summarize the TE-5 test case, all three machine learning methods (SVM,

ANN, and GPML) performed very well on TE-5 data, which consisted of 38,300 training

points (TRG-5) and 38,300 test points (TST-5). The average training error (TRG-5 data)

across all three methods is 0.0712 (7.12%), meaning that they were almost 92.88%

222

accurate during training, on average, with the actual training accuracy ranging from

89.6% for the SVM-LIN classifier to 100% for the GP-SE-ARD classifier. Performance

on the test data (TST-5) was also excellent. The average error across all classifiers for the

test data is 0.0818 (8.18%), which is higher than the average training error of 7.12%. The

best overall performing machine for TE-5 data is the GP with the squared exponential

covariance function that implements automatic relevance determination (GP-SE-ARD).

The measurement of training and prediction times is an objective of the research. The

single criterion for performance assessment is prediction accuracy. Classifier

performance for the TE-5 dataset is summarized in Table 16. The overall measured PoE

for the TE-5 test case is 0.8957, with the machine-approximated values being 0.9170,

0.8822, and 0.8782 for the SVM-LINEAR, ANN, and GP-SE-ARD respectively.

223

Table 16: Classifier performance summary for the TE-5 data set.

TE-5 Data (TRG-5(N)=38,300 / TST-5(N)=38,300, TOTAL(N)=76,600)

Injected RF Frequency (𝑓) = 50 MHz
Injected RF Power (𝑃) = −10 dBm

Injected RF Pulse Width (𝑃𝑊) = 100 ns

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel

𝐶 = 3.7666, 𝜎 = 0.0666
Bayes Optimization Est. Error: 0.0792

0.0802 0.080

SVM – Quadratic Kernel

𝐶 = 9.3326𝑒 + 04, 𝜎 = 57.0923

Bayes Optimization Est. Error: 0.0760

0.0758 0.0750

SVM –Cubic Kernel

𝐶 = 1.2546𝑒 − 04, 𝜎 = 486.4421

Bayes Optimization Est. Error: 0.1017

0.1017 0.1040

SVM – Radial Basis Function (RBF) Kernel

𝐶 = 7.9906𝑒 − 05, 𝜎 = 3.4674
Bayes Optimization Est. Error: 0.1017

0.1017 0.1040

Artificial Neural Network (ANN) 0.068 0.065

GPs with Expectation Propagation

Squared-Exponential Covariance Function w/ARD

N=3,000, T=38,300

0 0.063

Machine Learning Method
Overall PoE (TST-5)

Measured Predicted

SVM - LIN

0.8957

0.9170

ANN 0.8822

GP – SE-ARD (EP) 0.8782

Chapter 5-6: Discussion of Results

 While all three machine learning techniques produced excellent results in

predicting the probability of upset for the AT89LP2052 MCU, there are several instances

in which the predicted PoE curve did not quite match the measure PoE curve during

certain clock periods. For the TST-1 data set, the classifier performance for the clock-low

cycle was suboptimal, while for the TST-2 and TST-3 data sets, all classifiers could use

improvement on the rising-edge, clock high, and clock-low clock cycles. For the TST-5

data set, all classifiers could benefit from modified post-processing to achieve better

accuracy starting with the 80 𝜇s point in the clock window.

224

There are two plausible explanations as to why the classifier performance is not

optimal in the cases mentioned above. First, the probabilistic outputs of ANNs and GPs

are put through a threshold with a decision boundary at 0.5 that causes lower probability

events to be rounded down to zero. While this is a rudimentary boundary, it works quite

well for all test cases considered. An improvement in PoE plots between predicted and

measured PoEs could be enhanced by not converting the probability outputs of ANNs

and GPs to a binary classification value. Second, in the case of SVMs, instead of a

probabilistic output, the classifier produces a hard-labeling �̂�(𝒙) = sign(𝑓(𝒙)), leaving

out the measure of confidence in our prediction. Unfortunately, SVMs do not lend

themselves to a convenient probabilistic interpretation. One heuristic approach is to

interpret 𝑓(𝑥) as the log-odds ratio log
𝑝(𝑦=1|𝑥)

𝑝(𝑦=0|𝑥)
 and convert the output of the SVM to a

probability using

 𝑝(𝑦 = 1|, 𝒙, 𝜽) = 𝜎(𝑎𝑓(𝒙) + 𝑏), (121)

where 𝑎 and 𝑏 can be estimated by maximum likelihood on a separate validation set.

However, the resulting probabilities are not well-calibrated, because there is nothing in

the SVM training procedure that justifies interpreting 𝑓(𝑥) as a log-odds ratio. Hence,

additional analysis involving the probabilistic output of 𝑝(𝑦 = 1|𝒙) is done with ANNs

and GPs only [12].

For the TST-1 data case, the “non-thresholded” PoE curves are shown in Fig. 112.

Averaging the probabilities for each point in time as opposed to thresholding them at 0.5

to produce a binary output produces a much more refined PoE plot that closely matches

the measured PoE curve.

225

Figure 112: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-1 data).

Similarly, for the TST-2 data, the non-thresholded PoE curves are shown in Fig.

113. Averaging the probabilities for each point in time as opposed to thresholding them at

0.5 to produce a binary output produces a much more refined PoE plot that closely

226

matches the measured PoE curve.

Figure 113: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-2 data).

For the TST-3 data case, the non-thresholded PoE curves are shown in Fig. 114.

Indeed, averaging the probabilities for each point in time produces a much more refined

PoE plot.

227

Figure 114: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-3 data).

For the TST-4 data case, the non-thresholded PoE curves are shown in Fig. 115.

As before, averaging the probabilities of upset for each point in time (100 measurements)

produces a much more refined PoE plot.

228

Figure 115: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-4 data).

For the TST-5 data case, the non-thresholded PoE curves are shown in Fig. 116.

As before, averaging the probabilities of upset for each point in time (100 measurements)

in time produces a much more refined PoE plot.

229

Figure 116: Non-thresholded ANN/GP-SE-ARD classifier performance (TST-5 data).

While overall accuracy remains excellent when the probabilities are put through a

threshold to create a binary output, the predicted PoE plots such as the one in Fig. 116 are

much more refined when the machine produces a probabilistic output. ANN and GP

models naturally produce a probabilistic output, which is why those two methods are

featured in the non-thresholded PoE discussion. Standard SVMs, on the other hand, do

not provide such probabilities. There are methods that enable probabilistic output for

SVMs, such as Platt Scaling [62] and Isotonic Regression [63] that produce results that

230

are competitive with probabilistic methods, but their application to this research is out of

scope.

231

Chapter 6: Summary and Conclusion

Industrialized nations today depend on the fast flow of information as well as

information processing systems that make that flow possible. A vast majority of today’s

information processing systems and infrastructure is not hardened against EMP-

producing weapon technology [1]. In addition to unintentional and rudimentary sources

of EM radiation that can adversely affect critical electronic infrastructure, advanced

militaries are experimenting with the use of HPM weapons systems. The level of

technological sophistication that is required to cause electronic system malfunction is not

only available to modern militaries but to non-state actors who were previously

considered technologically unsophisticated. Potential EMP weapon/device targets range

from small systems such as automobiles to highly complex systems such as aircraft,

energy and power delivery infrastructure, as well as systems used by the banking and

financial sectors [1]. Indeed, there have been several instances of HPEM weapons use

against civilian and military infrastructure [2]. Understanding how IEMI affects digital

electronics by means of predictive model development is the first important step to

developing effective countermeasures.

To simplify system analysis and the initial development of a predictive upset

model for electronic systems due to IEMI, the problem that this research proposes to

tackle is to construct a computational model for microcontroller upset (MCU) prediction

using machine learning tools. The MCU problem presents an ideal choice because it is a

complete computer on a single chip representing an intermediate level of system

complexity between an individual CMOS device and a complete digital system [7].

Machine learning tools are well-suited to analyze data that describes MCU events

232

because of the inherent probabilistic nature of the problem and the necessity to predict

upset events based on previously available data. The statistical nature of the problem,

ever-decreasing feature size of ICs, and ever-increasing frequency of operation, call for

data-driven models that do not rely on specific technologies and upset mechanisms to

effectively predict upset scenarios. A properly designed input-output parameter space

together with powerful machine learning techniques have the potential to provide insights

into the effects problem that have not been available to date.

 During the course of this research, several different methods have been utilized

for to model and predict MCU upset, two of which are kernel machines (SVMs, GPs) and

ANNs, which are not kernel-based. All kernel methods require tuning of kernel

parameters. Since GPs are based on Gaussian priors, the marginal likelihood is

maximized using efficient gradient-based optimizers whereas SVM parameters (𝐶 and 𝜎)

are determined by minimizing the 10-fold cross-validation loss using Bayesian

optimization. ANNs use interconnect weights that are determined by data via a scaled-

conjugate-gradient method with error backpropagation. SVMs are sparse methods,

meaning that they only use a subset of the training examples, while GPs and ANNs are

not sparse – they use all the training examples. The main advantage of sparse methods is

that prediction at test time is usually faster, and sometimes they produce results with

better accuracy, however in the MCU upset scenario, SVMs did not produce significantly

improved accuracy when compared to GPs. Additionally, GPs and ANNs produce a

probabilistic output of the form 𝑃(𝑦|𝒙), whereas SVMs produce a confidence value that

can be converted to probability, but these probabilities are not well-calibrated and hence

may produce suboptimal results.

233

 In MCU upset experiments, all three methods had comparable accuracy when

averaged over a range of test cases, provided the regularization constants are chosen

appropriately. Given that the performance of all three models is roughly the same, a

criterion for additional model comparison is computational performance. Because GPs do

not exploit sparsity, they are generally the slowest and computationally most expensive

scaling with 𝒪(𝑛3), while SVM also scale with 𝒪(𝑛3) during training, unless a linear

kernel is used, in which case we only need 𝒪(𝑛2) computational time. Therefore,

suitability of each model will depend on additional performance criteria, the detailed

study of which is not within the scope of this research.

GPs can be used to specify prior distributions for Bayesian inference. On the one

hand, in the case of regression with Gaussian noise, inference can be computed in closed

form, because the posterior is also a GP. On the other hand, for non-Gaussian likelihoods,

such as e.g., in binary classification, exact inference is analytically intractable, and we

must resort to approximations, such as Laplace approximation [64], expectation

propagation (EP) [48] and Kullback-Leibler divergence (KL) minimization [65]

comprising of Variational Bounding (VB) as a special case [66]. Another approach is

based on a factorial approximation, rather than a Gaussian approximation [67].

The MCU upset data was collected and analyzed using various MATLAB

toolboxes [68] and the latest release of GPML [69] software. For the five datasets

composed of 191,500 data points (383,000 if training data is included), the average

training accuracy was 88.25%, 90.48%, and 91.88%, for the SVM, ANN, and GP

approach respectively. The average test accuracy was determined to be 86.91%, 89.2%,

and 88.96 for the SVMs, ANNs, and GPs respectively. If test prediction accuracy is our

234

primary criterion for model selection, then the ANN approach is preferred, even though

all three methods produced excellent results in terms of prediction accuracy. Model

complexity and computational complexity are other possible performance criteria,

according to which we can evaluate model suitability. The results are summarized in

Table 17.

Table 17: Machine prediction of MCU upset - summary of results.

TE-ALL Data (TRG (N)=191,500 / TST (N)=191,500, TOTAL(N)=383,000)

Injected RF Frequency (𝑓) = 50, 100 𝑀𝐻𝑧,
Injected RF Power (𝑃) = −10,−15,−20 𝑑𝐵𝑚,

Injected RF Pulse Width (𝑃𝑊) = 50, 100 𝑛𝑠

Machine Learning Technique
Error Rates

Training Test

SVM – Linear Kernel 0.1544 0.1837

SVM – 2nd Degree Polynomial (Quadratic) Kernel 0.1018 0.1146

SVM – 3rd Degree Polynomial (Cubic) Kernel 0.1022 0.1170

SVM – Radial Basis Function (RBF/Gaussian) Kernel 0.0954 0.1086

Artificial Neural Network (ANN) 0.0952 0.1080

GPs with SE-ARD Covariance Function (EP) / likERF 0.0743 0.1104

GPs with SE-ARD Covariance Function (LP) / likERF 0.0888 0.1076

AVERAGE ERROR 0.1247 0.1485

Looking at the data, the overall trend is that shorter, lower power, RF pulse

widths cause upset less frequently than longer RF signals of higher power. It is also

interesting that the overall PoE for the TE-1 dataset (𝑓 = 100 MHz, 𝑃 =

−10 dBm, 𝑃𝑊 = 100 ns) was measured to be approximately 0.70 and predicted to be

approximately 0.65, while the overall PoE for the TE-5 dataset (𝑓 = 50 MHz, 𝑃 =

−10 dBm, 𝑃𝑊 = 100 ns) was measured and predicted to be almost 0.90, indicating that

injected RF signal frequencies that are closer to the operating frequency of the MCU have

235

a higher likelihood of causing upset. This limited dataset indicates that all variables

studied are important in causing MCU upset, and more experiments will need to be

performed to fully characterize the effect of each variable on the PoE and the effect of

data composition on machine prediction accuracy, before more general conclusions can

be made.

As far as machine learning accuracy is concerned, it appears that the machine is

more accurate on imbalanced datasets, i.e. if the data is imbalanced toward upset or no

upset. The closer the overall PoE is to 0 or 1, the more accurate machine learning

prediction becomes, as evidenced by datasets TE-2, TE-3, and TE-5. For example,

datasets TE-2 and TE-3 have an overall PoE of about 0.25, and an overall prediction error

of 0.20 to 0.25, on average, while dataset TE-5 has an average error of approximately

0.071 with an overall PoE of 0.89. Datasets TE-1 and TE-4 are less imbalanced with

overall PoEs of 0.69 and 0.34, respectively. The average error for the less imbalanced

datasets TE-1 and TE-4 is 0.11 and 0.26, respectively. More experiments, over a wider

range of injected RF frequencies, injected RF power, injections locations, and injected

RF pulse width are needed to build more comprehensive models.

Three machine learning methods, SVMs, ANNs, and GPs were applied to a very

difficult problem of modeling MCU upset when it is formulated as a binary classification

problem with excellent results. None of the three techniques used to analyze MCU upset

data is without limitation. While ANN models provide the best accuracy during the test,

the method suffers from poor interpretability. SVMs models also produce excellent

predictions but do not provide well-calibrated probabilistic output for the same, and the

GP method computational complexity scales with 𝒪(𝑛3), making training and prediction

236

computationally expensive. Deep learning kernel methods have the potential to alleviate

the computational expense associated with GPs and SVM training, but they are unlikely

to resolve the remaining limitations. There are numerous ways to expand on this

promising approach, and they are discussed in the next chapter.

237

Chapter 7: Future Research

 This research assessed the suitability of three popular machine learning methods

(SVMs, ANNs, GPs) to model and predict MCU upset with excellent results. There are

several recommendations on how to expand on this research: (1) enhance the experiment

setup to reduce the noise level present in the system (2) fully explore the available model

space by utilizing automated model selection methods as described in [70], [71]; (3)

include analysis of two simultaneously injected RF pulses; (4) broaden the definition of

upset to discriminate among several different types and repeat the analysis under a multi-

class classification paradigm; (5) expand the number of models under consideration to

include two-class decision forest, two-class boosted decision tree, two-class logistic

regression, among many other binary classification algorithm; (6) explore regression

methods to directly estimate the PoE, which may raise the prediction accuracy; (7)

explore the use of recently-popular deep learning techniques such as deep kernel methods

(SVMs, GPs), convolutional neural networks (CNNs), among many others; (8) utilize

ensemble learning methods. Four immediate recommendations are to improve the

experiment setup, use automated model selection methods, use deep learning techniques,

and use ensemble learning techniques to achieve better scalable results.

 The reduction of noise in the experimental setup can be achieved in several ways.

This can be achieved by replacing a dated RF sweeper and acquisition oscilloscope. Data

acquisition speed can be optimized by revamping SALVO acquisition software to acquire

data via ethernet, rather than via USB/GPIB connections. It is estimated that data

acquisition time can be reduced by a factor of 10, and with the reduction of noise in the

system, better data quality and quantity can improve prediction accuracy.

238

 Malkomes et al. [70] propose an automatic framework for exploring a set of

potential models with the goal to select the model that best explains the given data. Even

though they focus on GP models, their method can be easily extended to any probabilistic

model with a parametric or structured model space. Specifically, they apply a Bayesian

optimization method to explore a model space, a process that they demonstrated to be

capable of predicting the evidence value of unseen models with sufficient fidelity. In his

Ph.D. work, Duvenaud [71] explores the automatic construction of models based on GPs

that can capture many types of a statistical structure such as periodicity, changepoints,

additivity, and symmetries, the nature of which is encoded through kernel selection. He

describes an automated kernel selection and construction process, a task that has

traditionally been considered a “black art” performed by data experts.

 Deep learning computational models are composed of multiple processing layers

that are used to learn a representation of data by using multiple levels of abstraction,

often increasing accuracy over “shallow” methods. CNNs are designed to process data in

the form of multiple arrays, such as a color image, or really any other data or

phenomenon whose characteristics can be described by an array of data – MCU upset

data being one of them. CNNs take advantage of the properties of natural signals: local

connections, shared weights, pooling, and the use of many layers. Recent CNN

architectures have 10-20 layers of rectifier linear units (ReLUs), hundreds of millions of

weights, and billions of connections between units. Two years ago, training these neural

networks would have taken weeks, advancements in hardware, software, and algorithm

parallelization have reduced that time to a few hours. In the field of image recognition,

239

the performance of CNNs is approaching the human level [72]. It would be very

interesting to investigate how CNNs would perform on MCU upset data.

 The utilization of ensemble learning is another immediate recommendation to

expand this research. Ensemble learning is a method for constructing ensembles from

libraries of thousands of models [73]. The method utilizes a forward stepwise selection to

add to the ensemble models, that maximize performance on a particular set of data.

Ensemble selection allows ensembles to be optimized based on performance metrics such

as accuracy, cross-entropy, mean precision, or ROC area under the curve (AUC).

Caruana et al. used the ensemble model to train 2000 different models for each problem

by using SVMs, ANNs, decision trees (DT), boosted decision trees (BST-DT), among

others. Some models resulted in an excellent performance, while others did not, and

rather than combine good and bad models in an ensemble, a forward stepwise selection

from the library of models is used to find a subset of models that, when combined, yields

excellent performance. Ensemble selection finds ensembles that outperform the best

single models. The most important feature of ensemble selection is that it can optimize

performance to any easily-computed performance metric, such as accuracy, cross-

entropy, mean-precision, or ROC AUC, almost all of which were utilized during this

research. It would be very interesting to examine whether ensemble learning could stitch

together several models that will outperform SVMs, ANNs, and GPs on MCU upset data.

240

Bibliography

[1] J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 3rd. Boca

Raton, FL: CRC Press, 2016.

[2] W. A. Radasky, C. E. Baum, and M. W. Wik, “Introduction to the Special Issue on

High-Power Electromagnetics (HPEM) and Intentional Electromagnetic

Interference (IEMI),” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 314–

321, 2004.

[3] D. V. Giri and F. M. Tesche, “Classification of intentional electromagnetic

environments (IEME),” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp.

322–328, 2004.

[4] “Magnetron – Wikipedia.” [Online]. Available:

https://hu.wikipedia.org/wiki/Magnetron. [Accessed: 01-Jun-2017].

[5] I. Radio Research Instrument Co., “Radio Research Instrument Co., Inc.” [Online].

Available: http://pe2bz.philpem.me.uk/Comm01/- - Ion-Photon-RF/- - Radar - -

/Prod-100-Userd/radiores.html.

[6] M. Backstrom and K. Lovstrand, “Susceptibility of Electronic Systems to High-

Power Microwaves: Summary of Test Experience,” IEEE Trans. Electromagn.

Compat., vol. 46, no. 3, pp. 396–403, 2004.

[7] T. Clarke, “Modeling of High Power Electromagnetic Effects on Digital

Electronics,” Air Force Office of Scientific Research Annual Report, 2013.

[8] G. Oliveri, P. Rocca, and A. Massa, “SVM for Electromagnetics: State-of-art,

241

Potentialities, and Trends,” in IEEE Antennas and Propagation Society, AP-S

International Symposium (Digest), 2012, pp. 7–8.

[9] R. M. Neal, “Bayesian Learning for Neural Networks,” Springer Verlag, New

York, NY, 1996.

[10] W. S. Mcculloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[11] F. Rosenblatt, “A probabilistic model for information storage and organization in

the brain,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.

[12] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA:

MIT Press, 2012.

[13] S. Wendsche, R. Vick, and E. Habiger, “Modeling and testing of immunity of

computerized equipment to fast electrical transients,” IEEE Trans. Electromagn.

Compat., vol. 41, no. 4 PART 2, pp. 452–459, 1999.

[14] R. Vick and E. Habiger, “The dependence of the immunity of digital equipment on

the hardware and software structure,” in International Symposium on

Electromagnetic Compatibility Proceedings, 1997, pp. 383–386.

[15] H. Wang, C. Dirik, S. V Rodriguez, A. V Gole, and B. Jacob, “Radio Frequency

Effects on the Clock Networks of Digital Circuits,” in 2004 International

Symposium on Electromagnetic Compatibility, 2004, pp. 93–96.

[16] D. Nitsch and M. Camp, “Susceptibility of Some Electronic Equipment to HPEM

Threats,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 380–389, 2004.

242

[17] M. Camp and H. Gerth, “Predicting the Breakdown Behavior of Microcontrollers

Under EMP/UWB Impact Using a Statistical Analysis,” IEEE Trans. Electromagn.

Compat., vol. 46, no. 3, pp. 368–379, 2004.

[18] S. Y. Yuan, “A Microcontrller Conducted EMI Model Building for Software-level

Effect,” in 9th International Workshop on Electromagnetic Compatibility of

Integrated Circuits, 2013, pp. 186–189.

[19] S. Caorsi and G. Cevini, “A Neural Network Approach for Electromagnetic

Diagnostic Applications,” PIERS Online, vol. 2, no. 4, pp. 385–389, 2006.

[20] D. Micu, L. Czumbil, G. Christoforidis, and A. Ceclan, “Layer Recurrent Neural

Network Solution for an Electromagnetic Interference Problem,” IEEE Trans.

Magn., vol. 47, no. 5, pp. 1410–1413, 2011.

[21] V. Ceperic and A. Baric, “Modelling of Electromagnetic Immunity of Integrated

Circuits by Artificial Neural Networks,” in 2009 20th International Zurich

Symposium on Electromagnetic Compatibility, 2009, pp. 373–376.

[22] X. Li, J. Yu, Y. Zhu, Q. Wang, and Y. Li, “Prediction of Electromagnetic

Compatibility Problems Based on Artificial Neural Networks,” in 2008 World

Automation Congress, 2008.

[23] I. Chahine, M. Kadi, E. Gaboriaud, A. Louis, and B. Mazari, “Using Neural

Networks for Predicting the Integrated Circuits Susceptibility to Conducted

Electromagnetic Disturbances,” in Proceedings of the 18th International Zurich

Symposium on Electromagnetic Compatibility, EMC, 2007, no. C, pp. 13–16.

243

[24] V. Devabhaktuni, C. F. Bunting, D. Green, D. Kvale, L. Mareddy, and V.

Rajamani, “A New ANN-based Modeling Approach for Rapid EMI/EMC Analysis

of PCB and Shielding Enclosures,” IEEE Trans. Electromagn. Compat., vol. 55,

no. 2, pp. 385–394, 2013.

[25] V. Ceperic, G. Gielen, and A. Baric, “Black-box Modelling of Conducted

Electromagnetic Immunity by Support Vector Machines,” in IEEE International

Symposium on Electromagnetic Compatibility, 2012, no. 1.

[26] V. Ceperic, G. Gielen, and A. Baric, “Black-box modelling of conducted

electromagnetic immunity by support vector machines,” IEEE Int. Symp.

Electromagn. Compat., no. 1, 2012.

[27] Y. Wu, Z. Tang, B. Zhang, and Y. Xu, “Using Support Vector Machine

Regression for Measuring Electromagnetic Parameters of Magnetic Materials,” in

International Symposium on Microwave, Antenna, Propagation, and EMC

Technologies for Wireless Communications, 2007, pp. 1020–1022.

[28] Y. Wu, Z. Tang, B. Zhang, and Y. Xu, “Using Support Vector Machine

Regression for Measuring,” pp. 1020–1022, 2007.

[29] Y. S. Abu-Mostafa, M.-I. Malik, and H.-T. Lin, Learning From Data: A Short

Course. United States of America: AML Book, 2012.

[30] M. Martínez-Ramón and C. Christodoulou, Support Vector Machines for Antenna

Array Processing and Electromagnetics, 1st Editio., vol. 1, no. 1. United States of

America: Morgan & Claypool Publishers, 2006.

244

[31] N. Christianini and J. Shawe-Taylor, Support Vector Machines and Other Kernel-

Based Learning Methods. Cambridge: University Press, 2003.

[32] M. Herst, T. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support Vector

Machines,” Wikipedia, 1998. [Online]. Available:

https://en.wikipedia.org/wiki/Support_vector_machine. [Accessed: 11-Oct-2016].

[33] MathWorks, “Support Vector Machines for Binary Classification,” 2015. [Online].

Available: http://www.mathworks.com/help/stats/support-vector-machines-for-

binary-classification.html. [Accessed: 29-Mar-2017].

[34] R. ter Borg and F. ter Borg-Brinkman, “Mercer Kernel.” [Online]. Available:

https://www.terborg.net/research/kml/reference/mercer_kernel.html. [Accessed:

11-Nov-2016].

[35] B. Scholkopf and J. Smola, Alexander, Learning with Kernels. MIT Press, 2002.

[36] J. Friedman and T. Hastie, The Elements of Statistical Learning. New York, NY:

Springer Verlag, 2008.

[37] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of

Machine Learning Algorithms,” 2012.

[38] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesus, Neural Network

Design, 2nd ed. San Bernadino, CA: Martin Hagan, 2015.

[39] B. Widrow and M. Hoff, “Adaptive switching circuits.,” 1960 IRE WESCON

Conv. Rec., no. 4, pp. 96–104, 1960.

[40] D. E. Rumelhart and J. L. McCellland, Parallel Distributed Processing.

245

Cambridge, MA: MIT Press, 1986.

[41] M. F. Møller, “A Scaled Conjugate Gradient Algorithm for Fast Supervised

Learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, 1993.

[42] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear

parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[43] K. Levenberg, “A Method for the solution of certain non-linear probles in least

squares.,” Quart. Appl. Math, vol. 11, no. 2, pp. 164–168, 1944.

[44] D. J. C. MacKay, “Introduction to Gaussian Processes.”

[45] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning. Cambridge, MA: MIT Press, 2006.

[46] C. Sammut and G. Webb, “Gaussian Processes,” Encyclopedia of Machine

Learning. Springer Verlag, New York, 2010.

[47] M. Kuss and C. E. Rasmussen, “Assessing Approximate Inference for Binary

Gaussian Process Classification,” J. Mach. Learn. Res., vol. 6, pp. 1679–1704,

2005.

[48] T. P. Minka, “Expectation Propagation for Approximate Bayesian Inference,”

Uncertain. Artif. Intell., vol. 17, no. 2, pp. 362–369, 2001.

[49] L. Stein, Michael, Interpolation of Spatial Data: Some Theory for Kriging. 1999.

[50] B. X. Lin, G. Wahba, D. Xiang, F. Gao, R. Klein, and B. Klein, “Smoothing Spline

Anova Models for Large Data Sets,” Ann. Stat., vol. 28, no. 6, pp. 1570–1600,

2000.

246

[51] J. Zhu and T. Hastie, “Kernel Logistic Regression and the Import Vector

Machine,” J. Comput. Graph. Stat., vol. 14, no. 1, pp. 185–205, 2005.

[52] N. Lawrence, M. Seeger, and R. Herbrich, “Fast Sparse Gaussian Process

Methods: The Informative Vector Machine,” Adv. Neural Inf. Process. Syst. 15,

pp. 625–632, 2003.

[53] L. Csató and M. Opper, “Sparse On-line Gaussian Processes.,” Neural Comput.,

vol. 14, pp. 641–668, 2002.

[54] V. Tresp, “A Bayesian Committee Machine,” Neural Comput., vol. 2741, no. 12,

pp. 2719–2741, 2000.

[55] Stanford Research, “Function Generator - DS345.” [Online]. Available:

http://www.thinksrs.com/products/DS345.htm.

[56] ATMEL Corporation, “AT89LP4052.” ATMEL Corporation.

[57] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Data Mining

Researchers ROC Graphs : Notes and Practical Considerations for Data Mining

Researchers,” 2003.

[58] Mathworks, “Detector Performance Analysis Using ROC Curves - MATLAB &

Simulink Example,” Www.Mathworks.Com. [Online]. Available:

http://www.mathworks.com/help/phased/examples/detector-performance-analysis-

using-roc-curves.html. [Accessed: 14-Apr-2017].

[59] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognit. Lett., vol. 27,

no. 8, pp. 861–874, Jun. 2006.

247

[60] Wikimedia Commons, “ROC space,” 2009. [Online]. Available:

http://upload.wikimedia.org/wikipedia/commons/3/36/ROC_space-2.png.

[Accessed: 14-Apr-2017].

[61] F. Gorunescu, Data Mining: Concepts and Techniques. Berlin: Springer Verlag,

2011.

[62] J. Platt, “Probabilistic Outputs for Support Vector Machines and Comparisons to

Regularized Likelihood Methods,” Adv. Large Margin Classif., vol. 10, no. 3, pp.

61–74, 1999.

[63] B. Zadrozny and C. Elkan, “Transforming Classifier Scores into Accurate

Multiclass Probability Estimates,” in Proceedings of the Eighth International

Conference on Knowledge Discovery and Data Mining, 2002, p. 694.

[64] C. K. I. Williams and D. Barber, “Bayesian Classification with Gaussian

Processes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1342–

1351, 1998.

[65] M. Opper and C. Archambeau, “The Variational Gaussian Approximation

Revisited,” Neural Comput., vol. 21, no. 3, pp. 786–792, 2009.

[66] M. N. Gibbs and D. J. C. MacKay, “Variational Gaussian Process Classifiers,”

IEEE Trans. Neural Networks, vol. 11, no. 6, pp. 1458–1464, 2000.

[67] L. Csató, E. Fokoue, M. Opper, B. Schottky, and O. Winther, “Efficient

approaches to Gaussian process classification,” Adv. Neural Inf. Process. Syst. 12,

vol. 12, no. x, pp. 251–257, 2000.

248

[68] Mathworks, “MATLAB.” Mathworks, Inc., Natick, MA, 2017.

[69] C. E. Rasmussen and C. K. I. Williams, “Gaussian Processes for Machine

Learning Software.” 2016.

[70] G. Malkomes, C. Schaff, and R. Garnett, “Bayesian Optimization for Automated

Model Selection,” Adv. Neural Inf. Process. Syst. 29, vol. 1, no. Nips, pp. 1–7,

2016.

[71] D. K. Duvenaud, “Automatic Model Construction with Gaussian Processes,”

University of Cambridge, 2014.

[72] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, pp. 436–

444, 2016.

[73] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble Selection

from Librairies of Models,” in Proceedings of ICML ’04, 2004, vol. 34, pp. 1–21.

249

Appendix A

Figure 117: ANN transfer functions [38].

