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Abstract

Our experimental system studies the effects of external controlled oscillation on di-

rectly and indirectly driven system of metronomes. This is analogous to many prac-

tical systems such as pacemaker effect on heart cells [14], external light effect on

suprachiasmatic nucleus in the brain [21]. Here the pacemaker can be compared

to external driving force to system where the heart cells are our oscillating system.

Also in the suprachiasmatic nucleus cell system the external input is external light

which synchronizes the cell. We explore the synchronization of directly and indirectly

driven metronomes due externally provided forcing.

We designed an experimental setup to closely replicate the experimental system

constructed by Martens et al[12]. The system consists of 3 platforms which contain

4 metronomes each (Figure 2.2). Each metronome and platform have UV sensitive

dots which shines in dark room with UV light over it. This allows us to analyze the

metronome motion using the video analysis toolbox of matlab. Our video analysis
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code can compute the phases of metronomes and platforms which help us to qualita-

tively examine the system. We drive our system via a servo motor which is connected

to the middle platform with an arm designed to reduce friction. The servo motor

has a built-in feedback mechanism and its input is controlled via a PID controller to

give sinusoidal input to the platform.

We observe in our experiments that when the metronomes are directly driven and

the driving frequency is within ±3% of metronomes frequency, the metronomes Ku-

ramoto order is near unity i.e. the metronomes synchronize. We observe that when

the driving frequency is similar to metronomes placed on indirect driven platform,

metronomes on indirect driven platform synchronize. While at the same time if driv-

ing frequency is different then metronome on directly driven platform, metronomes

on directly driven do not synchronize.

Our experiments show that in order for a pacemaker to synchronize the oscillat-

ing system, the frequency of input should be similar as systems one is seeking to

synchronize. This suggests that for example if we want to synchronize certain cells

of heart while not affecting other, the pacemaker input should match the target cells

frequency.
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Chapter 1

Introduction

1.1 Introduction

Synchronization in coupled oscillators was first observed by Christiaan Huygens who

observed that two pendulum clocks suspended on a beam always exact anti-phase

motion[6]. He explained this synchronization was due to vibration traveling across

the beam. In 2002 Kuramoto showed that synchronous and disordered states could

coexist[9]. Kuramoto work led to extensive Kuramoto’s work led to extensive theo-

retical studies in order and disorder coexists in population [1], [11], [15].The exper-

iment setup developed by Karen Blaha [3] studied the chimera states [2] arising in

population of mechanical oscillators by varying the type of coupling between them.

We extended this experiment to study the effect of an external control action

on directly and indirectly driven population of mechanical oscillators – metronomes.

We developed external driving for metronomes on a platform via a servo motor. The

layout of the experiment setup is discussed in chapter 2. In chapter 3 we find the

parameters of our model by fitting experiment data to a model. In chapter 4 we

discuss the experiments performed and results obtained.
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Chapter 1. Introduction

1.2 Motivation

The external control action on population of oscillators is analogous to many practical

systems such as a pacemaker acting on heart cells[14], and the effect of sunlight on the

circadian rhythm via the suprachiasmatic nucleus in the brain[20]. In the heart, the

external pacemaker drives a population of oscillating heart cells while in our system

the servo drives a population of oscillating metronomes. In the suprachiasmatic

nucleus the external input is external light which synchronizes cells in the brain.

We want to show the synchronization of directly and indirectly driven metronomes

due to a certain externally provided forcing.

1.3 Methodology

We use external driven model given by Martens et al 2013[12]:

φ̈(t)︸︷︷︸
Term 1

+µφ̇(t)

(
1− φ2(t)

φ2
0

)
︸ ︷︷ ︸

Term 2

+A sinφ(t)︸ ︷︷ ︸
Term 3

+
ω2

Ω
cosφ(t) ¨Φ(t)︸ ︷︷ ︸
Term 4

= 0 (1.1)

φ(t) = Metronome angle, Φ(t) = Swing Angle

Ω = Swing frequency, ω = Metronome frequency.

Here our external control input through servo motor to the platform such that swing

angle (Φ) = external input(F (t)) (Figure2.2).

In Equation 1.1 term 1 is inertia, term 2 is non-linear damping, term 3 is force of

restitution and term 4 is driving swing inertia.

To study the synchronization of oscillators we use the Kuramoto order parameter

which is defined for the Kuramoto model [8]:

dθi
dt

= ωi +
K

N
ΣN
j=1 sin(θj − θi), i = 1..N, (1.2)

2



Chapter 1. Introduction

where the system is composed of N limit-cycle oscillators, with phase θi, natural

frequency ωi and coupling K.

The Kuramoto order parameter is given by:

reiψ =
1

N

N∑
j=1

eiθj (1.3)

Here the magnitude (r) represents the phase-coherence of the population of os-

cillators and ψ indicates the average phase. When r=1, the oscillators are fully

synchronized; when r is near 0, the oscillators are desynchronized. The kuramoto

model has been used to model beating of heart [14], flashing fireflies [4], pedestrians

on a bridge [17], chemical oscillators [7] [18], metabolic oscillation in yeast cell [5] and

life cycle of phytoplankton [13], circadian clocks in the brain [10], superconducting

Josephson junction [19].

3



Chapter 2

Experimental Setup Design and

Analysis

2.1 Setup for Experiments with undriven metronomes

We designed an experimental setup to closely replicate the experimental system

constructed by Martens et al [12] (Figure 2.1). The system consists of 3 platform

which can support up to 15 metronome each. These platforms are connected to

the frame by bearing blocks, and coupled to each other by extension springs that

are attached to the platform rod with adjustable coupling blocks (Figure 2.2). The

distance between the bearing and platform is typically 22cm.

4



Chapter 2. Experimental Setup Design and Analysis

Figure 2.1: Experimental Setup.

Figure 2.2: Experiment Layout.

To compare forcing inertia of system we compare the masses of metronomes to

mass of the platform. The total mass of each metronome is 93g, the mass of the

platform along with the rods and bearings is 615g. For experiments, we place 12

metronomes on each platform so the ratio of mass of metronomes to mass of platform

is approximate 2:1 (Not all metronomes swing during experiment).

We place a UV sensitive dot at the top of the arm of each metronome and on

each swing. We perform the experiments in a dark room lit with ultraviolet lights

to make the dots fluoresce, see Figure 2.3. We record experiments with a Nikon

D90 camera with a 18-55 mm Nikon DX lens recording at 60 frames per second(fps).

5



Chapter 2. Experimental Setup Design and Analysis

The swinging of the UV dots allows us to isolate the motion of the metronomes in

post-processing of the video. (Figure 2.4).

Figure 2.3: Metronome with uv dot.

Figure 2.4: Photo of experiment under UV light.

We perform the experiments following a standardized protocol. The Bearing

blocks are first set to the desired offset values and secured in place. We set the

frequency on each metronome, wind them and place them on the platforms. The

metronomes are placed to swing of the pendulums parallel to the platform’s motion.

The ends of the rod are connected by Extension springs in between. We then place

6



Chapter 2. Experimental Setup Design and Analysis

the camera and record the experiment under UV light.

2.2 Setup for experiments with external driving

(Servo motor)

We use a Quanser Rotary Servo Base to give input to the system. It consists of

a DC motor in an aluminum frame with built-in feedback mechanism with PID

controller to give desired response from the motor (Figure 2.6). The Servo motor

sits on a platform behind the frame so unintended motion doesn’t transfer to the

experimental system. The motor is connected to the middle platform via an arm;

it directly forces the middle platform and indirectly forces the side platform via the

coupling spring (Figure 2.5). The arm connecting the servo motor to the system was

designed with CAD software (Figure 2.7) to have the least friction. The arm was 3d

printed to give precision (Figure 2.8).

Figure 2.5: Forcing to middle platform

7



Chapter 2. Experimental Setup Design and Analysis

Figure 2.6: Quanser Servo DC Motor

Figure 2.7: CAD model of servo motor arm

Figure 2.8: Servo DC motor connection.
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Chapter 2. Experimental Setup Design and Analysis

The Servo motor gives sinusoidal input to the platform. The Quanser servo motor

uses a PID controller. PID gains are modeled using first principal modeling. The

frequency response of the servo motor and parameters are given by Quanser [16].

These gains are fine tuned to account for the weight of servo arm. The PID gain

response is given by figure2.9.

u(t) = Kpe(t) +Ki

∫ t

0

e(t) +Kd
de(t)

dt
(2.1)

The optimal gains are:

Kp= 30 V/rad

Kd= 2 V.s/rad

Ki= 0.157 V/(rad×s)

Figure 2.9: PID response of servo motor.
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Chapter 2. Experimental Setup Design and Analysis

2.3 Video Analysis of Experiment

2.3.1 Extracting metronome position from video

We analyze the videos with the Matlab video analysis toolbox to measure the hori-

zontal position (figure 2.10) and vertical position (figure 2.11) of the metronome and

platform dots.

Figure 2.10: Raw data of X-centroid of 4 metronomes on a platform.

Figure 2.11: Raw data of Y-centroid of 4 metronomes on a platform.

10



Chapter 2. Experimental Setup Design and Analysis

We identify platform data whose vertical location is maximum in raw data (Figure

2.11). We filter the raw centroid data of metronome by removing the platform data

from it.

2.3.2 Quantitative measurement of the system from position

data

From position vs time plots (Figure 2.10) we extract peaks of data (Figure 2.12).

Figure 2.12: Filtered X-centroid data of metronome

We identify the peaks of the metronome oscillations which help us to look at

frequency vs time (Figure 2.13) plot.

11



Chapter 2. Experimental Setup Design and Analysis

Figure 2.13: Frequency variation of metronome (Natural frequency set to 120BPM)
with respect to time.

Using peak analysis, we compute the phase of each metronome and plot the phase

of metronome vs phase of platform plots(Figure2.14).

Also we are able to compute the Kuramoto order (Equation 1.3) between metronomes(Figure

2.15).

Figure 2.14: Phase of metronome vs Phase of platform.
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Chapter 2. Experimental Setup Design and Analysis

Figure 2.15: Kuramoto order between metronomes.
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Chapter 3

Identifying System Parameters

3.1 Introduction

We want to compare the experiment to simulation using Martens model. To use this

model, we have to fit parameters. We calculate Metronome parameters from physics

equations of model(section 3.2). Then we compare these with our experiments pa-

rameters fitting without driving (section 3.3) and fitting with driving (section 3.4).

The dynamics of metronomes on a platform are (Martens et al 2013 [12]) :

φ̈+ µφ̇(1− φ2

φ2
0

) + A sinφ+
ω2

Ω
cosφΦ̈ = 0 (3.1)

φ = Metronome angle, Φ = Swing Angle

Ω = Swing frequency, ω = Metronome frequency.

Here A corresponds to force of restitution of metronome and depends on frequency

of metronome. φ0 is half of standard displacement angle of an uncoupled, non-

accelerated metronome pendulum mounted on a horizontal surface. µ is van der Pol

14



Chapter 3. Identifying System Parameters

term to model the escapement mechanism. In section 3.3, we experimentally fit µ,

φ0 and A by experiments of metronome without driving. In section 3.4 we fit µ, φ0,

A and forcing term with driving.

3.2 Metronome Parameters calculated Numerically

In this section fit parameters of our systems from equations from free body repre-

sentations of the system. This helps us to verify our results from experiment curve

fitting of the system and gives idea for initial guess in our curve fitting plots.

Figure 3.1: Metronome Components [12]

mbob = 5.5g (Mass of bob)

mp = 22.6g (Mass of Pendulum)

m = mbob + mp = 28.1g (Total mass of swinging part)

From Martens paper[12] we have our system equation as:

φ̈ = −mgrcm
I

sinφ− νm
I
φ̇[(

φ

φ0

)2 − 1]− mrcm
I

L cosφΦ̈ (3.2)

Here the distance of the center of mass of the pendulum from the pivot point

(the point at which the pendulum swings) is rcm = (m0l0 + mboblbob)/m = r0 +

15



Chapter 3. Identifying System Parameters

mbob

m
lbob.(Where lbob is distance between the bob and pivot point).

For metronome at 208bpm, lbob = 26mm, we balance it at edge of blade to find the

center of mass to be at distance rcm = −7.5mm , which gives r0 = −12.58mm which

is a constant. Therefore, rcm = | − 0.01258 + 0.1957.lbob|

where, lbob = 0.073− 0.00022× f(bpm) ([12])

The second moment of inertia of pendulum is given by

I = m0l
2
0 +mbobl

2
bob

I = mgrcmω
−2,

I0 = I|f=208 −mbobl
2
bob = 1.29× 10−5 which is a constant.

I = 1.29× 10−5 + 5× 10−3.l2bob

In equation 3.4 the forcing is introduced in terms of platform swing angle (Φ).

We give sinusoidal input to swing, Φ = C sin(ω0t).

Φ̈ = −Cω2 sin(ω0t)

Φ̈ = Kφ, where K is constant

Our systems equation is given by

φ̈+ µφ̇(
φ2

φ2
0

− 1) + A sinφ+ ω cosφθ = 0 (3.3)

Here,

A =
mgrcm
I

µ =
νm
I

K ′ = −mrcm
I

L ∗K (3.4)

K’ depends on forcing constant. Therefore its difficult to compute it numerically.
A and µ are calculated numerically for different frequencies to be:

Frequency A(Num) µ(Num)

112 32.3156 0.0678
116 34.708 0.069
120 37.1747 0.0702
126 41.0172 0.0721

Table 3.1: A and µ numerical values
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Chapter 3. Identifying System Parameters

3.3 Experimentally Identifying Model Parameter

without forcing

As first step we identify µ, φ0 and A, using the undriven metronome. To do that we

follow this strategy:

• Compute the state variables (φ, φ̇) from the experiment

• Find the model parameters that best fit the trajectory

3.3.1 Get the state variables (φ, φ̇) from the experiment

We perform a table top experiment with a single metronome set to 120BPM fre-

quency. We get X and Y displacement of UV dot on metronome in term of pixels

(Figure 3.2). We can compute φ from the UV dot dot (Figure 3.2). From the known

frame rate we can get φ(t). We then compute φ̇(t) using central difference.

Figure 3.2: Metronome With UV dot and φ.
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3.3.2 Finding model parameters which best fits the trajec-

tory

To identify the model parameters (since the model is non-linear) we directly optimize

(using Matlab fminsearch routine) the cost function

∫ T f

0

(φ(t)− φexp(t))2dt (3.5)

where φexp(t) is the experiment data and φ(t) is the solution of the differential equa-

tion (3.1) (we set φ(0) = φexp(0)), up to a certain time T f .

Since the system is periodic, we have chosen T f = nT (the oscillation period) in

order to avoid local minima.

We plot φexp(t) vs φ̇exp(t)(figure 3.3). We remove the initial transient and observe

the plot(figure 3.4) settles to a limit cycle.

Figure 3.3: φ and φ̇ before transient
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Figure 3.4: φ and φ̇ after transient

To get the asymptotic solution, we take average of the trajectories.

We find the points where φ(t) changes from negative to positive. At these points

will be different time periods for single cycle on φ(t) vs φ̇(t) plot. We average out to

find average time period of metronome to complete one cycle. Now we sample all the

cycles to the average time period and then find out the average of these trajectories

(Figure 3.7) and use it to fit our model equation to find parameters.

Figure 3.5: Averaged trajectory
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Once we find suitable parameter set we can refine the parameters identification

making the trajectory longer and longer (two periods, three periods, etc...)

Figure 3.6: State φ and φ̇ simulation

Figure 3.7: Time Series Simulation

The identified parameters for a single metronome on a platform with natural

frequency 120BPM: A = 42.2853, µ = 0.6365, φ0 = 0.286.

3.3.3 Identifying parameters for different frequencies

We want to check now how these parameters changes with change in frequency of

metronome. Similar experiments were conducted for 108 BPM, 112 BPM, 116 BPM,

120 BPM, 126 BPM, 132 BPM.
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Figure 3.8: Parameter A for the equation 3.1
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Figure 3.9: Parameter φ0 for the equation 3.1
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Figure 3.10: Parameter µ for the equation 3.1

We can see from figure 3.8 that parameter A changes linearly while parameter

φ0 and µ remains constant(figure 3.9 & 3.10). This can be seen in equation 3.4 that

parameter A depends on length of bob(which is directly proportional to frequency)

while parameter φ0 and µ are property of metronome (Section 3.1).

3.4 Finding forced system parameters

We identify the system parameters with forcing. We want to identifyK ′ in equation3.3.
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Figure 3.11: Quasi periodic behavior

In the previous case we had a limit cycle, but here we get a quasi periodic be-

havior(as seen in figure 3.11)

3.4.1 Parameter fitting for Forcing

We tried fitting the forcing parameter with the model but we always got stuck in

local minimum as we didn’t get good initial guess. We take the model in terms of

lbob as we expand martens equation.

Our model equations are given by:

φ̈ = −mgrcm
I

sinφ− νm
I
φ̇[(

φ

θ0
)2 − 1]− mrcm

I
L cosφθ̈ (3.6)

Which can be written as:

φ̈ = −A (b0 + b1 ∗ lbob)
(a0 + a1 ∗ l2bob)

sinφ− νm
(a0 + a1 ∗ l2bob)

φ̇[(
φ

θ0
)2−1]−F (b0 + b1 ∗ lbob)

(a0 + a1 ∗ l2bob)
cosφθ

(3.7)

where, A = m ∗ g and F = m ∗ L ∗ forcing

Expected Values of parameters:
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a0 = 1.29 ∗ 10−5, a1 = 5 ∗ 10−3, b0 = −0.01258, b1 = 0.1957, A = 0.2744, θ0, µm and

F are property of metronome and forcing.

For fitting we looked in to experiment where the metronome frequency was fixed

to 120BPM, and the forcing frequency was changed. In Martens equation only forcing

term should change for all the experiment.

We performed 3 experiments on 120BPM metronome:

F1: Amplitude 0.2, Frequency 0.6 hz

F2: Amplitude 0.2, Frequency 0.8 hz

F3: Amplitude 0.2, Frequency 1.2 hz

We are trying to fit a0, a1, b0, b1, A, µm, θ0, F1, F2, F3.

Here F1, F2, F3 are forcing term in different experiment.

Since we are fitting 11 parameters, choosing initial guess for curve fitting is very

important.

To start fitting, I fixed first a0,a1,b0,b1 from our physics calculation of model.

Then to find the A, µm, θ0, I ran the curve fitting code for small duration for one

of the forcing and tried different initial condition so as the fitting is good. Once I

had A, µm, θ0, I had to only fit F1, F2, F3. For this I found the cost function plot vs

the forcing parameter(figure3.12) so that I am not stuck in local minimum for each

forcing term.
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Figure 3.12: Plot of Cost function vs Forcing parameter

3.4.2 Comparing fits

Parameter Values from Physics Curve fitting Value error

a0 1.29 ∗ 10−5 1.29 ∗ 10−5 0
a1 5 ∗ 10−3 5 ∗ 10−3 0
b0 −0.01258 −0.01258 0
b1 0.1957 0.1957 0

A 0.2744 0.29106 0.0166

µm − 2.042 ∗ 10−5 −
θ0 − 0.2724 −
F1 − 12.6795 −
F2 − 11.0965 −
F3 − 44.9978 −

Table 3.2: Values from Physics vs Curve fitting values of parameters

• a0,a1,b0,b1 were fixed while curve fitting.

• A is negative cause we have taken rcm to be negative.
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• θ0 comes to be 16degree. In martens paper they have mentioned it to be 17-18

degree.

• Curve fitting of F1, F2 and F3 can be seen in figure3.13, 3.14, 3.15.

Figure 3.13: Curve fitting of F1

Figure 3.14: Curve fitting of F2
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Figure 3.15: Curve fitting of F3
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Experiments

4.1 Metronomes on platform directly driven by

servo motor

Four metronomes are placed on a platform which is directly driven by a servo mo-

tor (Figure 4.1). The metronome frequency is fixed to 120BPM, forcing is applied

through a servo motor attached to the middle platform. The forcing signal of a

sinusoidal wave is applied and we change its amplitude and frequency.

We compute the Kuramoto order [9](Section 1.3) between these four metronome

to check the synchronization between them. If the Kuramoto order is near one, we

say metronomes are synchronized with each other.

We also make a phase plot of the metronome against the phase of the platform. If

there is a locking between the phase of metronome and platform we see the straight

lines with some slope on the x-axis.
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Figure 4.1: Direct forcing applied on metronomes.

4.1.1 Driver frequency equal to Metronome frequency

Four metronomes (set to 120BPM) are placed on a platform and driven by a servo

motor (Figure 4.1). We fix the forcing frequency to 120BPM and change the ampli-

tude of the sinusoidal wave.

When lower amplitude (0.2 amplitude) of forcing is applied, not all metronomes

synchronize with each other and the Kuramoto order is less then 1 (Figure 4.2).

We also see this in a phase plot between the phase of metronome and the phase of

platform (Figure 4.3). We see that the phase of metronomes 2, 3 and 4 locks directly

proportional to the phase of the platform while phase of metronome 1 is π anti-phase

with the phase of platform.
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Figure 4.2: Kuramoto order at lower amplitude(0.2)
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Figure 4.3: Phase plot at 0.2 amp forcing

When higher amplitude (0.3 amplitude) of the forcing is applied, we see all the

metronomes synchronize with each other. We can see this from the Kuramoto order

plot (Figure 4.4) that the order reaches 1 and in the phase plot, the phase of all

metronomes locks to phase of platform and are anti-phase ratio of π (Figure 4.5).
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Figure 4.4: Kuramoto order at Higher amplitude(0.3)
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Figure 4.5: Phase plot at 0.3 amp forcing

We check the Kuramoto order for different amplitude from 0.1 to 0.4 and conclude

that at least 0.25 amplitude of forcing is required for all the four metronomes to

synchronize (Figure 4.6).
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Figure 4.6: Kuramoto order variation with change in amplitude

4.1.2 Driver frequency is different than Metronome frequency

We drive our system of four metronome on the platform with a frequency different

than the frequency of the metronome. We varied our driving frequency at: 72BPM,

84BPM, 96BPM, 108BPM, 120BPM, 132BPM, 144BPM, 156BPM and change our

driving amplitude at: 0.2, 0.25, 0.3, 0.35 and 0.4.

When the driving frequency is different than the metronomes frequency the Ku-

ramoto order (Figure 4.7) changes with respect to the time and doesn’t settles to a

value. To determine the kuramoto order we take the average of order over time once

the transient is gone.
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Figure 4.7: Kuramoto order at 0.2 amplitude and 132BPM forcing
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We can also see that in the phase plot (Figure 4.8) there is no phase locking

between the phase of metronomes and the phase of the platform. Therefore we can

say that the metronomes don’t synchronize with each other.
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Figure 4.8: Phase plot at 0.2 amp 132BPM forcing

We compute the Kuramoto order for different amplitudes and frequency of forcing

and plot the Kuramoto order with respect to a variation in the driving frequency

and amplitude (Figure 4.9). We can see in this plot region where Kuramoto order is

near one, metronomes synchronize with each other.
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Figure 4.9: Kuramoto order variation with change in driver frequency and amplitude
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4.1.3 Metronome frequency and driver frequency are varied

while keeping amplitude constant

Here we have four metronomes on a directly driven platform (Figure 4.1). We change

the metronomes frequency and the driver frequency to compare how metronomes

synchronize with each other. We keep the driver forcing amplitude (0.35) high enough

to synchronize (From Figure 4.6). To compare the synchronization we compute the

average Kuramoto order [9] after the transient.

We observe that when the driver frequency is equal to the metronome frequency,

the Kuramoto order is near to unity (Figure 4.10).
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Figure 4.10: Kuramoto order variation with a change in the driver frequency and
the metronome frequency

4.1.4 Synchronization in metronomes when non-sinusoidal

driving force is applied

Four metronomes are on the platform directly driven with the servo motor with natu-

ral frequency of 120BPM. When the driver signal is square waveform with frequency

different (96BPM) than metronome frequency we see the Kuramoto order (Figure

4.11) varies and doesn’t settle to unity. When the driver frequency (120BPM) is

similar to the metronome frequency the Kuramoto order (Figure 4.12) reaches unity.
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Figure 4.11: Driver square waveform with frequency different then metronomes

Figure 4.12: Driver square waveform with frequency same as metronomes

When the driver signal is a triangle waveform with a frequency different (96BPM)

than the metronome frequency we see the Kuramoto order (Figure 4.13) varies and

doesn’t settles to unity. When the driver frequency is similar to the metronome

frequency the Kuramoto order (Figure 4.14) reaches unity.
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Figure 4.13: Driver triangle waveform with frequency different then metronomes

Figure 4.14: Driver triangle waveform with frequency same as metronomes
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4.2 Metronomes on platform indirectly driven by

servo indirectly

Figure 4.15: Indirect forcing applied on metronomes.

Here the metronomes are on the platform which is driven by forcing on the

adjacent platform. The forcing is communicated via spring, therefore metronomes

talk to each other too.

4.2.1 Driver frequency equal to Metronome frequency

When the forcing frequency is same as the metronome frequency(120 BPM), we see

from figure 4.16 that the metronome synchronize with each other as their Kuramoto

order reaches unity.

Also all the phases of all the metronomes locks with the phase of platform with

ratio π(Figure 4.17).
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Figure 4.16: Order when forcing is indirect of 0.25 amplitude and 120BPM
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Figure 4.17: Phase of metronome with respect to phase of Metronomes when forcing
is indirect of 0.25 amplitude and 120BPM

4.2.2 Driver frequency is different then Metronome frequency

When the driving frequency is different(144BPM) than the metronome frequency, we

see the Kuramoto order (Figure 4.18) changes with time and never settles to unity.

The metronomes are not synchronized and also their phases never lock to the phase

of platform (Figure 4.19).
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Figure 4.18: Kuramoto order plot of indirectly driven metronomes with 0.2 Ampli-
tude, 144BPM forcing
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Figure 4.19: Phase plot of indirectly driven metronomes with 0.2 Amplitude,
144BPM forcing

We change the forcing amplitude and frequency and plot the change in kuramoto

order (Figure 4.20.)
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Kuramoto Order for directly driven metronomes
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Figure 4.20: Kuramoto order variation with the change in forcing amplitude and
frequency.

4.3 Metronomes on platform directly and indi-

rectly driven simultaneously

We set the metronomes on a directly driven and indirectly driven platform at different

frequencies. Now we drive our system with a frequency equal to the metronomes on

driven platform and then the frequency equal to the metronomes on indirectly driven

platform and compare the synchronization.

Metronomes on the driven platform are kept at 120BPM and metronomes on the

indirectly driven platform are kept at 80BPM.

When forcing of the frequency same as directly driven platform (120BPM) is

given, we observe that the metronome on the directly driven platform synchronize

(Kuramoto order reaches 1) and those on the indirectly driven platform do not

synchronize (Figure 4.21).
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Figure 4.21: Kuramoto order of directly and indirectly driven metronomes when
driver frequency is same as metronomes on directly driven platform

When forcing of frequency same as indirectly driven platform (80BPM) is given,

we observe that the metronome on the indirectly driven platform synchronize (Ku-

ramoto order reaches 1) while those on the directly driven platform do not synchro-

nize (Figure 4.22).
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Figure 4.22: Kuramoto order of directly and indirectly driven metronomes when
driver frequency is same as metronomes on indirectly driven platform.
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Conclusion & Future work

5.1 Conclusion

• When the driving frequency is same as the metronome frequency, the metronomes

on the driven and undriven platforms synchronize. Although, the time taken

by them for synchronization varies with the amplitude of forcing.

• When the driving frequency is different than the metronome frequency, the

metronomes donot synchronize. Even though some of them synchronize for

short period of time, but if we run experiment for a longer period of time, they

tend to lose the synchronization with each other.

• Also when the metronomes on the directly and indirectly driven platforms

are set to different frequencies with external driving, we see that only the

metronomes whose frequency matches the frequency of the driver are synchro-

nized.

• Metronomes tend to synchronize more when the forcing is given to them indi-

rectly (via spring). This way they get the forcing from the servo and can talk
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to each other too.

5.2 Future work

• We plan to conduct more experiments where we look at how the metronomes

react to the driver on a platform with different frequencies.

• We have a new camera system from Basler which would allow us in future

to expand this system by looking at more number of metronomes where the

driving is given through feedback.
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1967.

[7] IZ Kiss. Iz kiss, y. zhai, and jl hudson, science 296, 1676 (2002). Science,
296:1676, 2002.

[8] Minayori Kumamoto, Toru Oshima, and Tomohisa Yamamoto. Control prop-
erties induced by the existence of antagonistic pairs of bi-articular musclesme-
chanical engineering model analyses. Human Movement Science, 13(5):611–634,
1994.

[9] Yoshiki Kuramoto and Dorjsuren Battogtokh. Coexistence of coherence and
incoherence in nonlocally coupled phase oscillators. arXiv preprint cond-
mat/0210694, 2002.

44



References

[10] Chen Liu, David R Weaver, Steven H Strogatz, and Steven M Reppert. Cellular
construction of a circadian clock: period determination in the suprachiasmatic
nuclei. Cell, 91(6):855–860, 1997.

[11] Erik A Martens. Chimeras in a network of three oscillator populations with
varying network topology. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 20(4):043122, 2010.

[12] Erik Andreas Martens, Shashi Thutupalli, Antoine Fourrière, and Oskar Hal-
latschek. Chimera states in mechanical oscillator networks. Proceedings of the
National Academy of Sciences, 110(26):10563–10567, 2013.

[13] Thomas M Massie, Bernd Blasius, Guntram Weithoff, Ursula Gaedke, and Gre-
gor F Fussmann. Cycles, phase synchronization, and entrainment in single-
species phytoplankton populations. Proceedings of the National Academy of
Sciences, page 200908725, 2010.

[14] Donald C Michaels, Edward P Matyas, and Jose Jalife. Mechanisms of sinoatrial
pacemaker synchronization: a new hypothesis. Circulation Research, 61(5):704–
714, 1987.

[15] Mark J Panaggio and Daniel M Abrams. Chimera states: coexistence of coher-
ence and incoherence in networks of coupled oscillators. Nonlinearity, 28(3):R67,
2015.

[16] H.J.; Vilkko M.K. Pyrhonen, V.-P.; Koivisto. A reduced-order two-degree-of-
freedom composite nonlinear feedback control for a rotary dc servo motor. In
2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,
2017.

[17] Steven H Strogatz, Daniel M Abrams, Allan McRobie, Bruno Eckhardt, and Ed-
ward Ott. Theoretical mechanics: Crowd synchrony on the millennium bridge.
Nature, 438(7064):43, 2005.

[18] Annette F Taylor, Mark R Tinsley, Fang Wang, Zhaoyang Huang, and Kenneth
Showalter. Dynamical quorum sensing and synchronization in large populations
of chemical oscillators. Science, 323(5914):614–617, 2009.

[19] Kurt Wiesenfeld, Pere Colet, and Steven H Strogatz. Frequency locking in
josephson arrays: Connection with the kuramoto model. Physical Review E,
57(2):1563, 1998.

[20] Anna Wirz-Justice. Biological rhythm disturbances in mood disorders. Inter-
national Clinical Psychopharmacology, 21:S11–S15, 2006.

45



References

[21] Mark J Zylka, Lauren P Shearman, David R Weaver, and Steven M Reppert.
Three period homologs in mammals: differential light responses in the suprachi-
asmatic circadian clock and oscillating transcripts outside of brain. Neuron,
20(6):1103–1110, 1998.

46


