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Abstract

Interaction of optical waves with nanostructures made of various material sys-

tems has been the subject of intensive research for many years. These researches

have been mainly driven by the need to make smaller optical devices and exploiting

the functionalities offered by light-matter interaction in nanoscale. Majority of the

nanostructures are fabricated using electron beam (e-beam) lithography that is slow

and expensive. As such alternative methods have been developed to enable nanoscale

fabrication faster and less expensive. Among these interferometric lithography (IL)

is a relatively simple method for quick fabrication of nanostructures. As IL method

generates periodic patterns, exploring the potential applications of the nanostruc-

tures that can be fabricated using it, is of primary importance. This dissertation

is focused on two applications of silicon nanostructures fabricated by IL method:
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nanostructured anti-reflection layers (NALs) and plasmonic nanostructures based

on arrays of silicon nanopillars (SiNPs) for surface enhanced Raman spectroscopy

(SERS). Silicon has been chosen as the structural material due to its extensive usage

as the substrate for monolithic electronic circuits and many optical devices.

NALs offer several advantages over traditional antireflection coatings made by

multilayer deposition. NALs are created by fabricating a nanostructured surface

on the substrate material without the need for deposition of different materials and

therefore can tolerate large thermal gradients in high power laser applications. We

have developed a mathematical model and calculated the optimal profile for the unit

cell for a silicon NAL and examined its performance using rigorous coupled-wave

analysis (RCWA). The impact of different geometrical parameters on the perfor-

mance of NALs have been carefully studied. In particular we have evaluated the

impact of these geometrical parameters on the transmitted optical power and sup-

pression of higher spatial modes generation. Next using the theoretical outcomes as

a guide, we have fabricated several silicon NALs using IL patterning followed by dry

etching and measured and computed their performance in mid-IR spectral region.

The second category of silicon nanostructures studied here consist of flat top

silicon nanopillar (SiNP) arrays with one or a stack of metallic nanodisks on top

(with silica nanodisk as spacer) used for Raman enhancement applications. These

structures, fabricated using IL, are designed to enhance Raman emission from the

adsorbed molecules using surface plasmons. This is achieved by high electric field

enhancement, through localization of plasmons at the edges. In order to understand

the enhancement mechanism, resonance of these nanostructures along with the E-

field enhancements are carefully studied using numerical simulations. Regarding

possible role of nanopillars in field enhancement, simulation results have revealed

hybridization between SiNP and plasmonic nanodisk stacks. This indicates possibil-

ity of transfer of energy of incident laser into plasmonic structure through nanopillar,
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further amplifying the E-field enhancement. We have also studied the role of geo-

metrical and structural parameters on the field enhancement of these nanostructures.

This provides a guide for designing nanostructures with optimal field enhancement

for SERS. Next, we have fabricated several samples of SiNPs caped with gold nan-

odisks and gold-silica-gold nanodisk (stacks) and tested their performance as SERS

substrates by measuring the spectrum of the Raman signal (using Thionine and

Methylene Blue as target molecules). Our experimental studies have revealed the

impact of geometrical parameters of the SiNP and gold nanodisks on the Raman

signal. We have also fabricated and tested gold nanodisk performance using SiO2

nanopillar. Finally we have fabricated and tested SiNPs caped with selected non-

metallic nanodisks obtained by post processing of nanodisks made of Ge, and TiN.

This preliminary study paves the road for a new category of SiNP based SERS

substrates that may have advantages over those that use metallic caps in certain

applications.
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Chapter 1

Introduction

Nanostructures and their application in optical interactions is the main focus of

this dissertation. More specifically we have studied the interaction of optical waves

with certain sub-wavelength structures. Two main applications are investigated: 1)

Nanostructured antireflection layers (NALs) and 2) surface enhanced Raman spec-

troscopy (SERS) using metal or metal/insulator/metal plasmonic structures (MIM)

over silicon nano-pillars (SiNPs).

When light passes through the interface between two mediums with different

refractive indexes, it will get partially reflected. This happens due to sudden change

in the refractive index between the two medium according to Fresnel equations.

As in many applications reflection is undesired. Antireflection coatings (ARC) are

commonly used to reduce reflection of light at the interface. These anti-reflection

coatings can be in the form of thin film layers or nanotextured layers. Thin film ARC

are based on destructive interference of light [70, 110, 19]. That is, the light reflected

back from bulk material substrate, interferes destructively with the light reflected

from surface of ARC layer [110]. Nanotextured ARC layers on the other hand, work

by gradual change of effective refractive index from incidence medium (like air) into
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Chapter 1. Introduction

the bulk material (like quartz or silicon). These nanostructured materials, work

based on fill factor concept [110].

These nanostructures can replace the conventional multi-layer antireflection coat-

ings [35]. If designed and fabricated correctly, nanostructured anti-reflection coatings

(NALs), can almost completely eliminate reflection at the interface while the con-

ventional method may be challenging due to difficulty of fabricating too many layers

and finding the the materials with the desired refractive index. Another important

advantage of NALs over traditional antireflection coating is the similarity of their

thermal properties with the substrate. This eliminates the possibility of delamination

due to temperature gradient in the presence of heating.

Structured anti-reflection layers started as micro-structured antireflection layers

around 1980 [44]. Soon after fabrication techniques of nanostructured layers were

developed [10, 110]. Later on these nanostructures were used as antireflection and

anti-glare coatings. The most common anti-glare coatings were used to eliminated

reflection from surface of materials like quartz and glass [117, 81]. These nanostruc-

tures also found their way in solar cell technology [77, 18, 122] and infrared detectors

[134]. By texturing surface of substrates used for solar cell applications, scientists

could effectively enhance the transmission of light into the high refractive index bulk

materials such as silicon (which is transparent at IR)[85, 141]. NALs were used for

enhancing transmission of LED light from high refractive index sources to low re-

fractive index transmission mediums such as air [75, 79]. By advances in technology

and emergence of new devices, the applications of nanostructured surfaces (also re-

ferred to as Moth-eye antireflection coatings in some references) also grew. Using

materials transparent to infrared (IR) transmission to fabricate the antireflection

nanotextures, the detection capabilities of infrared cameras considerably improved

[54, 76]. Recently Weng et.al. used nanotextured CaF2, which is also IR transparent,

to enhance the efficiency of PbS2 IR-detectors by 200%. [134].

2



Chapter 1. Introduction

As NAL is carved out of the substrate, it eliminates the residual stress issue that

is a major limitation for fabrication of multilayer ARCs. This significantly increases

their durability when exposed to repeated cooling and heating cycles. Therefore, one

of the main applications of these NALs is enhancing transmission of light through

optical elements used in high-power-laser applications [45, 124, 53, 55]. In such

applications, it is also crucial to avoid scattering. This can be achieved by replacing

the randomly distributed nanostructures by orderly arranged ones as shown by Hobbs

et al [54] (See Fig. 1.1). The arrangement and profile of nanostructures is controlled

by the fabrication method used.

Figure 1.1: Nanostructured anti-reflection coating carved out of bulk silicon [54].
The tapered profile provide a smooth transition from air into silicon medium.

The choice of fabrication method depends on the application of the specific nanos-

tructures, material and the cost. Most common applications of nanostuctured an-

tireflection coatings (and their fabrication methods) include but are not limited to:

optical lenses (using injection molding) [78], solar cells (using sol-gel methods [32] or

soft imprint lithography [81]), anti-glare glasses (using self mask etching [117]) and

Light-extraction enhancement as in GaN LEDs (using nanostructure growth [79]).

Other fabrication methods which are used to fabricate nanostructures for different

applications include hot embossing [52], colloidal mask [121], glanced angle deposited

mask [83], self masking [117], laser ablation [111] nano-imprint lithography [15], and

interference lithography [23]. The latter one, is relatively more expensive and best

3



Chapter 1. Introduction

suited for laser applications [127].

Interference lithography (IL) has recently been point of interest due to advances

in laser technology and the demand for optical elements used for transmitting laser.

IL generates periodic patterns with adjustable pitches and pattern sizes, which is

well suited for fabrication of arrays of nanostructures designed to refrain introduc-

ing scattering in the transmitted laser beam while increasing transmission. IL is

also compatible with silicon technology. Silicon is one of the most commonly used

substrates in optoelectronic industry and is transparent to infrared light, therefore

developing practical and cost effective methods for eliminating reflection in air-silicon

interfaces is very important. Nanostructured antireflection layers carved out of silicon

substrate provide high transmission (IR) with considerable advantages over conven-

tional antireflection coatings. Silicon is transparent in infrared and texturing it, is an

effective way of increasing transmission through this high refractive index material

[54].

Table 1.1, briefly list the few substrate materials and fabrication methods used

to fabricated nanostructured antireflection surfaces.

Table 1.1: Brief summary of materials, methods and progress on NALs

Substrate Texturing Technique Best Transmission Date

Si,CZT,Ge,Sapphire,
CZT, ZNS, ZnSe

Interference lithography Over 94% [54] 2005

Glass
Hybrid nano-patterning
lithography

98% [65] 2010

AZO Holographic lithography 97% [84] 2010
Silicon Colloidal silica mask Over 99% [76] 2016

So far, considerable research has been done on fabrication of NALs for enhanc-

ing transmission of IR [76, 65, 77, 82, 65, 138, 86, 9, 134, 150, 55]. However, to

best of our knowledge, no work has been done on studying the optimum profile of

the nanostructures for light transmission with minimum scattering, which becomes
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Chapter 1. Introduction

more critical if the refractive index of substrate is high. Also, the effect of pitch size

in these periodic nanostructured antireflection layers have not been investigated in

detail. We have investigated a possible optimum profile for maximizing the trans-

mission of light, while keeping the height of the nanostructures as low as possible.

Shorter silicon nanopillars (SiNPs) have considerable advantages over taller ones.

Shorter SiNPs are more robust to mechanical damage and have proven to minimize

introduction of higher spatial modes to the transmitted beam. As the height of SiNPs

decreases, the effect of pitch becomes more significant. The optimum pitch result-

ing in maximum transmission at every wavelength is determined by post-processing

the transmission simulation results obtained using Rigorous Coupled Wave Analysis

(RCWA) method. We used IL patterning and plasma etching to fabricate periodic

silicon nanopillars (SiNPs) with a tapered profile on bulk silicon substrates and mea-

sured IR transmission from air into the corresponding Si substrate.

The second topic investigated in this dissertation, is the Surface Enhanced Raman

Spectroscopy (SERS) based on silicon nanopillars (SiNPs). Raman spectroscopy is a

well-known technique for identifying the chemical composition of different molecules

[5]. Since every Raman-active-molecule generates a unique Raman spectrum, the

obtained spectrum includes the Raman signature of the molecular bonds of the spec-

imen. Typically, Raman signals are very weak and therefore difficult to detect. As

such, in addition to high intensity sources, highly sensitive detectors and high quality

filters (for eliminating the excitation laser) [109, 21] are essential for Raman spec-

troscopy. Several techniques have been developed to further enhance Raman signals.

Examples include surface enhanced Raman, Resonant Raman, stimulated Raman,

and hyper Raman [102, 91, 31, 46, 42]. Among these, Surface-enhanced Raman

spectroscopy (SERS) is a relatively cheap and easy technique. SERS is based on

electromagnetic field enhancement and/or chemical enhancement [131]. Electromag-

netic field enhancement (EM) is achieved through localization of surface plasmons

(mainly on metallic nanostructures). To expose the specimen molecules to this en-
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Chapter 1. Introduction

hanced electric field, they are allowed to get adsorbed on these structures, which

are generally made of Au, Ag, Cu or Ni, before conducting the measurement. A

considerably large electric field, results in a enhancement of Raman emission from

the molecules.

Considerable research has been done on design and fabrication of nanostructures

for SERS applications, motivated by better performance, lower cost, and compat-

ibility with certain systems [58, 11, 17, 59]. The basic principle used in all these

designs is the confinement of the plasmons (usually) at the edges of the plasmonic

nanostructures and generation of high electric field peaking at resonance frequency

(due to higher quality factor of the plasmonic resonator at resonance frequency).

The resulting large electric field causes strong polarization of the adjacent molecules

and therefore enhanced Raman emission.

Nanodisks made of plasmonic materials have gained considerable interest due to

ease of fabrication and compatibility with silicon technology. Research groups like

Zahng et.al. have investigated the resonance of Ag/SiO2/Ag nanodisks using ana-

lytical analysis and Bessel equations for the oscillating plasmonic waves [143]. The

resonances frequencies are important since they are directly related to scattering

cross section peaks. If a plasmonic structure is excited with a laser whose frequency

is close to the structures scattering cross section peak, the laser can efficiently en-

hance the field at the edges of the plasmonic disk due to localization of a portion

of resonating plasmons [120, 30, 119]. Chang et.al has studied the scattering cross

section of MIM and hybridization of two plasmonic disks separated by a thin insu-

lator layer. He has studied the effect of the SiO2 insulator layer thickness on the

resonance frequency of even and odd modes generated by the hybridization of the

two disks [30, 47]. Hybridization can further enhances the field at the edges of the

plasmonic disks. Raman enhancement, field enhancement and scattering cross sec-

tion of Au/SiO2/Au nanodisks are studied experimentally by Su et.al. [120, 119]
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(he has not compared the difference between Raman enhancement by single disk and

disk-dielectric stack). Zhang et.al.[144] conducted a theoretical study on the forma-

tion of symmetric and asymmetric modes when more than two metal layers are used.

Although these modes play role in resonance (and therefore field enhancement) of

multi layer metal disks, there hasn’t been a substantial study on the effect of these

modes on Raman enhancement. Metallic or MIM plasmonic structures are gener-

ally fabricated directly over a substrate such as quartz [119]. However, little has

been done on studying the effect of substrate material and its geometry, on Raman

enhancement generated by plasmonic disk.

Bare silicon nanopillars have been investigated for possibility of enhancing Raman[72,

146, 27]. However these studies have mainly focused on Raman of silicon itself (with-

out using an analyte). Recently, two groups (Wells et.al. and caldarola et.al.) have

fabricated deep sub-micron SiNPs which are capable of detecting analytes [133, 24].

Silicon nanopillars do have the potential of assisting field enhancement but they have

rarely been investigated as a platforms for plasmonic disks [25, 26]. We have studied

the effects of using flat-top silicon nanopillars as the substrate for plasmonic single

nanodisks and nanodisk stacks.

There are a variety of approaches for fabrication of nanostructures for SERS, such

as nanosphere lithography [51], self assembly [11] and electrochemical roughening

[3]. However for integrating Raman enhancement surfaces with a microelectronic,

photonic or microfluidic circuits (or lab on a chip [94, 130, 125]), one would need

to use approaches that are compatible with IC technology [128, 129, 112]. Optical

lithography provides a feasible way for integrating nanostructures and plasmonic

nanostructures on a circuit [57]. This is highly needed since although for example

colloidal nanoparticles can enhance Raman signal [123], they can not controllably be

integrated over sub-micron regions in an IC . Among different approaches, e-beam

lithography [61, 4], and interference lithography [136, 92, 6] are two candidates for
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Chapter 1. Introduction

integrating SERS structures on a chip, in deep sub-micron dimensions [104]. For

periodic structures, IL is a cost effective, relatively simple and fast alternative to e-

beam lithography. We have used IL to create periodic arrays of flat top SiNPs which

are carved out of silicon substrate. We have then used these SiNPs as a substrate

for plasmonic nanodisks and stacks.

A brief history of advances on SERS relevant to lithography techniques, has

been shown in table 1.2. The table includes works on plasmonic disks and SiNPs

fabricated by IL and e-beam lithography and also covers some simulations related

to metallic disks or metal/dielectric stacks analysis, using Finite Difference Time

Domain (FDTD) approach.

Table 1.2: Brief summary of materials, methods and progress of SERS
based on plasmonic disks and SiNPs

Nanostructure Substrate Method Study Focus Date

Ag/SiO2/Ag
Disks

Quartz IL
Scattering, Raman of
analyte [120]

2006

Au/SiNP Si E-beam lithography Raman of analyte [25] 2011
SiNP Si E-beam lithography Raman of SiNP [87] 2010
SiNP Si E-beam lithography Raman of analyte [133] 2012
Ag and
Ag/SiO2/Ag
Disks

- Simulation Resonance modes [30] 2012

Multilayer
Ag/SiO2 Disks

- Simulation Resonance modes [47] 2013

Au/Al2O3/Au
Disks

- Simulation Resonance modes [144] 2015

SiNP Si E-beam lithography Raman of analyte [24] 2015

While the impact of the silicon nanodisk diameter (down to 80nm [25]) on field

and Raman enhancement has been investigated, to best of our knowledge, the effect

of dimensions (including height of nanopillar) and materials of nanopillars (NPs),

on field and Raman enhancement has not been studied, neither theoretically nor

experimentally. Also, Raman generation based on stacks of several plasmonic layers
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fabricated on top of SiNP has not been studied experimentally (but studied the-

oretically [120]). This is partially due to challenges associated with fabrication of

multilayer stacks on silicon surface using lift off process. SiNPs provide a practical

way of fabricating multi-layer plasmonic structures with no specific limitation on the

number of layers. In addition (as we will show) when the plasmonic layer is on top of

SiNP, the efficiency of energy transfer from the excitation laser beam to the localized

plasmon resonance is increased. We have theoretically investigated the formation of

hybrid resonance mode between SiNP and Au/SiO2/Au structure, and compared it

with scattering cross section results. This hybridization can also considerably affect

the resonance frequency. SiNP-based plasmonic structures offer the possibility of

maximizing Raman signal in integrated configurations. We have also fabricated and

tested non-metallic layers over SiNPs and showed that after some post processing

they are capable of enhancing the Raman signal. The generated Raman signal from

non-metals may become a major point of interest, because of the need for eliminating

metals in certain applications.

Here is a summary of the materials covered in the following chapters:

Chapter 2 is dedicated to fabrication methods. Specific processes used to fabri-

cate the nanostructures (both NAL and SERS) are explained. We use IL to generate

the required photoresist patterns for all of our fabrications. As mentioned before IL is

a relatively low cost, simple and scalable lithographic technique; however controlling

the feature size and pitch of the patterns made by IL can be very challenging. We

have developed recipes for controlling different geometric parameters that along with

the our recipes for photo-resist development and silicon etching, allowed us to fabri-

cate efficient NALs. Different recipes are provided for controlling various structural

parameters. The nanostructures are crudely divided into two groups: 1) moth-eyed

structures and nanopillars. In the second part of chapter 2, SiNPs will get fine-tuned

for Raman applications. Different plasmonic structures will be fabricated on top the

9



Chapter 1. Introduction

nanopillars. These structures will be mainly in the form of metallic layers separated

with dielectric layers.

Chapter 3 is mainly focused on measurement techniques used for characterizing

NALs and characterizing the scattering and Raman emissions from Nanostructures

(SiNPs). The design and operation mechanisms of the corresponding equipments

and setups are presented and explained.

Chapter 4 is devoted to an the in depth study of NALs based on periodic arrays

of SiNPs. This includes both theoretical and experimental analysis of the interaction

of optical waves with these structures. Optimum profiles are designed to yield max-

imum transmission of infra-red light from air into silicon substrate. This includes

discussions on the fill-factor and optimal height of NALs. These theoretical analysis

provide very useful guidelines for designing optimal profile of NALs. Several samples

have been fabricated and characterized using the methods explained in chapter 3.

Very high efficiency ARC layers (for IR) have been fabricated using IL patterning

and ICP etching of silicon.

Chapter 5 is devoted to study of surface enhanced Raman emission based on

nanostructures consisting of SiNPs caped with one or more metallic nanodisks (serv-

ing as plasmonic resonators). In order to understand the enhancement, localized plas-

mon oscillations, electromagnetic modes, E-field enhancement and absorption/scattering

cross-sections of these nanostructures are carefully studied using numerical simula-

tions. To simplify the complex behavior of the SiNPs caped with metallic nanodisks,

first we study metallic nanodisks and SiNPs separately and later we look at the op-

tical response of the whole nanostructure. This allowed for better understanding of

the interaction between SiNPs and the metallic nanodisks fabricated on top of them.

The hybridization of plasmonic and cavity resonances are studied numerically. To

support the calculated scattering cross-sections, we present the measured scatter-

ing cross-sections for bare SiNPs and those caped with metallic nanodisk. The two
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Chapter 1. Introduction

main phenomena happening for the plasmonic metals are the coupling of the two

metal nanodisks, which generate odd and even modes [30, 47] and in the case of

multilayer stacks symmetric and asymmetric modes [144]. When considering the

effect of hybridization of SiNP and the metal stacks, the problem gets a little bit

complex. Other than numerical evaluation, the practical option we have for char-

acterizing our designs, is measuring the Raman enhancement of test molecules by

our plasmonic nanostructures. Therefore, we measured Raman spectra from vari-

ous samples of SiNPs caped with metallic nanodisks. For these measurements we

used Thionine, Rhodamine B and Methylene Blue as the target molecules. Thionine

and Rhodamine B are primarily used for comparing Raman signal enhancement on

different structures (and therefore the associated field enhancement) and Methylene

Blue is used to study the plasmonically induced chemical transitions [123]. using

different nanostructures. These measurements along with the scattering measure-

ments are used to describe the overall optical response of the metallic nanodisk-SiNP

coupled system. The Raman measurements include Au nanodisks, Au/SiO2/Au and

Au/SiO2/Au/SiO2/Au/SiO2/Au stacks on top of SiNPs. We have also observed and

measured both temporal (using Thionine) and spectral (using Methylene Blue) evo-

lution of the Raman spectrum. Our study also covers SiNPs caped with selected non-

metallic nano-disks obtained by post processing (NH3 and oxygen plasma-treatment)

of nanodisks made of Ge, and TiN nanodisks. Germanium permittivity is positive in

visible wavelengths [48]. Previously other groups have been able to generate Raman

enhancement from germanium by surface processes over Germanium nanowires. Ac-

cording to Wang et. al. Germanium can not have plasmons contribution at visible

wavelength[131]. Therefore any Raman enhancement is related to Charge Transfer

(CT) between the surface of Ge and the specimen molecule. We have processed

germanium by plasma and have achieved considerable Raman enhancement from

Methylene Blue molecule. In the course of our study we have observed that the per-

mittivity of Germanium becomes negative at visible after the plasma process. This

11



Chapter 1. Introduction

indicates possible contribution of plasmon at visible wavelength. We don’t expect

that this phenomena is happening due to impurities [100], and believe that a new

composite material has been formed although we don’t yet know the structure of this

new material. The other nonmetal exhibiting plasmonic characteristics is Titanium

Nitride. TiN is known for having a negative permittivity at 630nm [108]. Therefore,

there is a possibility for the role of plasmons in Raman enhancement. Other groups

have fabricated TiN nanorods above 800oC , which are capable of Raman enhance-

ment [146]. We have chosen to deposit TiN films over SiNPs for integration purposes.

Our results show that pure TiN thin films couldn’t generate Raman enhancement.

By further processing TiN over SiNP under NH3 plasma, we have been able to en-

hance Raman of MB. Last of all we have investigated removing the background noise,

which is observed for the cases of Raman enhancement from Rhodamine B molecules

over Au stack on SiNP. The Raman signal quality has been highly enhanced.
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Chapter 2

Fabrication

In this chapter the details of the fabrication processes used in this dissertation will

be discussed. Since many samples were fabricated and characterized during the

course of this project, this chapter is focused on introducing the basic principles

of each fabrication processes covering the main factors that affect the outcome of

each process. The sequence of the steps and details such as temperature, time and

thicknesses are discussed in the following chapters and will be explained case-by-case

as each sample is different.

The fabrication processes used in this dissertation can be divided into two main

categories those that rely on interferometric-lithography (IL) and those that do not.
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2.1 Lithography

Lithography is Greek word meaning producing by stone and has been used as a

printing method in ancient civilizations. In modern era, lithography is mainly used

to refer to the methods that rely on optical exposure of selected areas of a photore-

sist (PR) material in order to create the desired protective pattern on a substrate.

Using lithography, micro/nano-structures can be fabricated over a substrate. The

substrates used in this dissertation are (100) silicon or SiO2 over silicon. Nano-sized

features over the substrate will range from non-metals to metals. In this work we

have used a specific type of lithography called “Interferometric Lithography” or IL.

The main steps of IL are explained below.

2.2 Interferometric Lithography (IL)

Interferometric-Lithography (IL) is a mask-less lithography. In this method two

beams of light interfere and due to constructive and destructive interference, the two

beams cancel each other in some regions while amplifying each other in some other

regions depending on their relative phase. This will result in dark and bright regions

in the image plane. Figure 2.1 illustrates the interferometric lithography setup used

in this dissertation. The light source is a pulsed laser with a wavelength of 355nm

and adjustable output power tunable from 1mW to 10W . The power of each 3ns long

laser pulse can be adjusted from 1 to 100mJ with repletion rate of 1 to 100 pulse per

second. The 355nm UV laser is generated by frequency doubling a 1060nm source

laser and adding the resulting green wavelength (530 nm) to original IR wavelength

(1060 nm) to generate the 355nm laser ( 1
λ3

= 1
λ1

+ 1
λ2

).The residual green light is

filtered out and the UV wavelength is uniformly distributed over a concave lens using

a lens.
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Figure 2.1: The IL setup showing the generation of the periodic nano-patterns on
the photoresist through interference.

The reflected wave from the mirror is a collimated beam with a diameter larger

than 6 inches (that is considerably wider than the size of the sample). While lowering

the intensity of light, expanding the beam is necessary as it improves the spatial

coherence over the sample. Moreover the power distribution over the sample will

be more uniform as the intensity distribution across the beam becomes closer to a

flat-top function as opposed to Gaussian.

This will insure identical intensity over the sample surface. Half of the beam is

reflected from a mirror mounted perpendicular to the sample (represented by the

black double-line) and interferes with the other identical half over the surface of the

wafer (represented with the red rectangle). The interference illustrated here results

in strips of dark and bright fringes. The bright regions being where the two beams

of light interfere constructively and the dark regions being the regions where the two

beams interfere destructively. After laser exposure and developing the photoresist,

parallel strips of photoresist remain on the wafer.
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2.2.1 Theory of IL

The relative phase between the two beams is a function of the incident beam angle

and the location in the image-plane. This means that the pitch of the periodic

interference pattern, can be controlled by changing the angle of the mirror, which

in turn changes the angle of the incident beam with respect to the substrate (θ).

This dependence can be expressed as the following equation (eq. 2.1), where d is the

pitch, λ is the wavelength of the laser used and θ is the angle between the incident

light and normal to sample substrate. This formula suggests that theoretically, the

smallest pitch achievable by this set up is λ
2nM

where nM in our case, is the refractive

index of air, which is 1:

d =
λ

2nM .sin(θ)
(2.1)

When using IL setup in conjunction with equation (2.1), one should keep in mind

to have an antireflection layer (ARC layer) of proper-thickness (coated on substrate

before PR) to minimize internal reflections at PR-substrate boundary. The recom-

mended thickness for the bottom anti-reflection coating (under the PR in contrary

to top anti-reflection coating which is on top of PR) is λ
2nARC

, where nARC is the

refractive index of the Arc layer. The ARC layer is required to avoid multiple reflec-

tions that reduce the contrast of the original interference pattern (this is specially

important for generating sub-micron patterns).

2.2.2 Maximum Sample Size in IL

The mechanism of fringe formation explained in Sec. 2.2 would yield in periodic

fringes all over the image-plane if the laser used was composed of absolutely a single

wavelength with infinitely small bandwidth. However no matter how good of a laser

source we use, the spatial coherence is limited and this limits the exposure area.
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This means that the sample size is limited and can not be larger than the spatial

coherence length of the laser. Coherence-length can be calculated using (2.2) [7].

L =
2ln(2)λ2

πn∆λ
(2.2)

No matter how small the bandwidth (∆λ ) is, there is an upper limit for the sample

size that can be patterned with high fidelity. Another factor that influences the

minimum feature size is the intensity profile of the beam. A laser beam by default

has a Gaussian profile, being intense in the center and dimmer on the edges. If the

beam is not flat top (constant amplitude), the resulting interference pattern will be

affected and the fringe contrast will be higher at the center and considerably reduce

toward the edges resulting in dimmer fringes. This will also result in patterns with

smaller depth (for a negative photoresist) toward the edges from the center of the

beam as illustrated in Fig 2.2. The same non-uniformity problem exists if the sample

size is comparable to coherence length. Thus in order to obtain a larger sample, one

needs to use a laser with smaller bandwidth. All the samples fabricated for this

project are selected smaller than 1cm2.

2.2.3 Fabrication of A 2D Array of Features on A Silicon

Wafer

In this section the details of the fabrication procedure required to fabricate an array

of Silicon Nano-Pillars (SiNP) on a Silicon wafer will be explained. The substrate is

a polished, (100) single crystal silicon wafer. The first step is to clean the wafer, then

the wafer is coated with an antireflection and photoresist layers on top of it, and then

exposed to 355nm laser light in the interferometric lithography setup and developed.

After removal of Arc from the exposed areas of photoresist (developed regions), a

thin layer of Cr or Ni is deposited all over the sample using electron-beam deposition

method. The metal layer will be deposited both on the exposed silicon and on the
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Figure 2.2: The impact of the beam profile being non-flat-top, on the interference
pattern

regions covered with photoresist. Lift-off process is used to remove metal layer from

the unwanted regions. Since the locations of the wafer where a metal-mask is not

desired are covered with a layer of photoresist to begin with, an acetone gun is used

to achieve proper lift-off (wash off the photoresist with the metal on it). Acetone

dissolves the photoresist causing the metal layer over it, to peel off and get washed

away. Acetone gun does this by blowing acetone with pressure over the sample.

Finally an oxygen-plasma treatment is used for removal of remaining anti-reflection

coating. The product of this set of procedures is a metal layer covering some specific

regions of the silicon substrate. This metal layer protects/masks the silicon beneath,

during subsequent etching processes and is commonly referred to as metal mask.

The patterned silicon wafer is then etched to create the desired structure. Lift-off for

metal patterning the silicon is necessary since photoresist etches easily in the plasma

used for silicon etching.

Figure 2.3 illustrates the steps necessary to fabricate nanostructures using metal

mask and plasma etching. Steps (a)-(d) of Fig 2.3 are common for both isotropic
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and anisotropic etches. Figures 2.3(e) and 2.3(f) illustrate the characteristic shapes

resulting from anisotropic and isotropic etching of the masked-wafer of Fig 2.3(d),

respectively. Plasma etching can be “isotropic”, “anisotropic” (other anisotropic

etches can be found at [66]) or a combination of both. During anisotropic etching,

the pressure of the plasma chamber is kept low (usually below 15mTorr for the

system used here) and the power of plasma is increased. Lowering the pressure

increases the mean free path of the etchant species and increasing the power, increases

their momentum [101]. The combined effect increases the directionality of the etch

resulting in a vertical etch. In the case of isotropic etching on the other hand, the

plasma pressure relatively higher, and the power of the plasma is kept rather low.

Short mean free path and lower momentum of the etching species means the etching

will happen homogeneously in all directions. There is an other deterministic factor

that plays a crucial role for vertical etching and that is the protective Teflon layer

which will be discussed in section 2.3.

The procedure illustrated in Fig. 2.3 is used for fabrication of nano-pillars in this

dissertation. The fabricated nano-pillars can vary in shape, configuration, concen-

tration and critical dimensions. The details related to fabrication of each specific

type of nano-pillars will be covered case-by-case in Section 2.3. Some applications of

nanopillars, require further processing such as deposition of metallic and nonmetallic

layers on top of the nano-pillars.

Fabrication of high quality metal masks and optimization of etching procedures

paves the way to high quality nano-structures and nanopillars.. The generic steps

required to fabricate a metal mask will be covered in this section. The following

section will focus on some special cases of metal masks as well es proper etching

techniques and further processing.
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 2.3: Silicon nanostructure fabrication steps (a) Spin-coated photoresist on a
silicon wafer. (b) Patterned the photoresist using interferometric lithography. (c)
The antireflection layers on the exposed areas is etched using oxygen plasma. (d)
Deposition of a layer of metal (Cr or Ni) as the mask material. (e) Lift-off of mask
and removal of the Arc layer by oxygen plasma afterwards. now only metal mask is
left on the substrate. (f) Anisotropically etched substrate. (g) Isotropically etched
substrate.The bulk silicon, Arc, photoresist, and the mask metal are shown in blue,
yellow, red, and green respectively.

Wafer Cleaning

The standard procedure for cleaning the wafer is to run RCA processes. Depend-

ing on the type of the contaminations, either of the two different versions of RCA

procedures (or both) can be used.
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RCA I, cleans the organic contaminations from the surface of the wafer. In this

process, the wafer is soaked in a solution which is composed of 1 part H2O2 (30%), 1

part NH4OH(29%) and 5 part DI water. The solution should have a temperature of

75oC − 80oC . The wafer is soaked for 10 minutes, washed with deionized (DI) water

and then dried using a nitrogen gun.

RCA II targets the ionic and metallic contaminations. The solution used for

RCA II is is composed of 1 part H2O2, (30%), 1 part HCL(37%) and 6 parts DI

water. The rinse time and solution temperature remains the same as RCA I and the

wafer needs to be rinsed off with DI water at the end. Then, the wafer is dried off

by nitrogen gun.

In order to remove both organic and inorganic contaminations it is recommended

to use both RCA I and II as it was done here.

One Dimensional (1-D) Periodic Array

A thin layer of “Barli 90AZ” or “ICON7” anti-reflection coating is spin coated on

the silicon wafer at 3000RPM and baked at 200oC for 1 minute. Then the wafer

is coated with “NR7-500p”, a negative photoresist, at 3000RPM and baked for 1

minute at 150oC .

The wafer is cut into smaller pieces by diamond scriber and rinsed by DI water

to wash off any possible silicon particles. The coated wafer in placed on the sample

holder of Interferometric Lithography setup. The vacuum pump is used to fix the

substrate on the holder. The mirror of the IL set-up is orthogonal to the substrate

as shown in Figure 2.1. The pitch can be adjusted by changing the angular position

of the mirror/sample assembly with respect to the incident beam. The sample is

exposed at a “repetition rate” of 50 and pulse power of 50 to 75mJ .
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It should be noted that increasing the exposure time in a negative photoresist

can result in larger feature size due to side exposure. Unless specified otherwise, the

post-exposure bake is performed at 110oC for 1 minute. A diluted RD6 developer

(RD6(orMF TM)/H2O = 3/1) develops the NR7-500p negative resist in ≈ 90 sec-

onds. Figure 2.4 shows the result of this process. The stripes obtained so far, are

”1D” pattern.

Figure 2.4: Simple lines generated for NR-7 resist spin coated over silicon.The good
coherence length of the laser results in a uniform gap distribution between the lines.

Two Dimensional (2-D) Periodic Array

In order to fabricate a “2D” pattern, after the first exposure, the sample is rotated

(90o in our case) and exposed again. The time required for the 2D exposure procedure

is considerably less than the time required for 1D exposure procedure (usually by

30% to 50% less for each exposure). The sample then goes under 1 minute or a 40s,

post-bake at 110oC for1 minute for increasing cross linking in negative resist and is

developed for 90 seconds by diluted RD6 developer. If the post exposure bake is not

done, the whole resist peals off during developing. Finally the sample is washed by

DI-water and dried by a nitrogen gun. Figure 2.5 shows an example of the resulting
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2D photoresist pattern.

Figure 2.5: SEM image of the 2D nano-hole periodic pattern generated on photoresist
before metal deposition.

A recipe of 2D IL patterning, has been shown in table 2.1. As can be seen light

exposure time and post exposure bake both play critical role in dimension of the nano-

holes developed after patterning (and backing which is done after light exposure).

In all cases the power of the 3ns pulsed UV laser beam (355nm) is 5Watts, and

temperature of the post exposure bake is 110oC developed using MF TM
321 /H2O = 3/1

solution for 90 seconds.

Table 2.1: Recipe for 2D IL patterning Using a 5Watts, 355nm UV laser

Exposure Time
Resulting Photoresist Disk

Diameter
Resulting Photoresist Disk

Diameter
(s) (40 seconds post-exposure bake) (60 seconds post-exposure bake)

50 Not Developed 170nm
12 Not Developed 220nm
10 Not Developed 260nm
8 200nm 310nm
7 230nm 350nm
6 300nm 420nm

Note that the structure in Figure 2.5 is a 2D array of holes, because a negative
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photoresist is used. We can obtain an array of disks instead of holes, if positive

photoresist is used. The last point that needs to be considered in the case of 2D

interference lithography is the nonlinearity of the photoresist. Because of this effect

the edges of the pattern, which is expected to be rectangular, are rather curved

after developing the resist. If the dimension of the feature size is small enough, the

resulting shape after developing will be circular. The shorter the laser wavelength,

the sharper the developed edges become and for getting circular patterns we must

over expose the resist. 2D IL can be done for sample rotation angles other than the

90o mentioned, which can yield different features, like elliptical holes.

Metal Deposition

Although theoretically, the photoresist is developed and washed off of the holes

(Figure 2.5), the underlaying Arc needs to be removed to expose the silicon substrate.

A low energy oxygen plasma (Reactive Ion Etching or RIE) is used for this purpose.

This process is also known as “ashing”. After this procedure a 40nm-thick Chromium

or Nickel layer is deposited on the surface using electron-beam evaporator. Since the

deposited metal layer is much thinner than the photoresist layer, the unwanted metal

and photoresist can easily be removed by lift-off. Note that Acetone in the lift off

process is not capable of removing the antireflection coating. A final oxygen plasma

ashing is used to remove the left over antireflection layer. The result is a 2D pattern

of deposited metal as shown in Figure 2.6.

2.2.4 Using IL For Creating 2D Nanostructures

In principle interference of two beams of light creates bright and dark regions with

similar widths. Although exposure time as well as beam or photoresist imperfections

can affect the pattern as shown in figure 2.4 for 1D case and in figure 2.7 for 2D
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Figure 2.6: Metal Cr disks of 40 nm thickness and 300 nm diameter fabricated
using interferometric lithography.

case, typically the exposed and unexposed regions are expected to have comparable

widths

In the following sections we will discuss how to create patterns with unequal dark

and bright regions and therefore samples with duty cycles larger or smaller than 50%.

Using IL for Creating Small Feature Sizes With Large Pitch Values

In this section, the aim is to change this equality between the widths of exposed and

unexposed regions and generate samples where the feature sizes are merely a fraction

of the distances between them. The features fabricated will thus be relatively far

away from each other, enabling one to study the interaction of light with an individual

feature (nano structure) rather than the overall effects.

In order to achieve considerably large ratios between the gaps and diameter of

the features, one must increase the exposure time and reduce the post-exposure

bake time. Increasing the exposure time will cause more of the photoresist to be

exposed reducing the feature sizes however it can lead to incomplete development.
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Figure 2.7: 2D photoresist patterned created by the IL setup and 355nm UV laser
beam creating the low-pitch periodic nanopatterns on the photoresist. This has been
done by increasing θ (see figure 2.1).

Reducing the post exposure bake time can overcome this problem and result in proper

development of the photoresist.

(a) (b)

Figure 2.8: Creating high pitch PR pattern. (a) Over exposure of the PR (50 seconds
at 5Watts, post bake 60s, 110oC ) showing the hole are not developed all the way to
the ARC interface (Incomplete development means the photoresist is not removed
completely from the holes during the development) (b) Reduction of post exposure
bake to 40s, 110oC , improved the quality of the pattern and the holes.

Figure 2.8 shows a high pitch pattern created on a PR layer with 500nm thickness

over 70nm antireflection coating. Figure 2.8(a), illustrates the incomplete develop-
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ment and existence of left-over photoresist as a result of over-exposure (Incomplete

development means the photoresist is not removed completely from the holes dur-

ing the development). Figure 2.8(b) is fabricated by over exposure (50 seconds at

5Watts) and reduced post-exposure time (40 seconds at 110oC). As evident from

the figure the photoresist is completely developed. The features have a diameter of

sub 200nm and are located at a distance of 2.1µm from each other.

It should be noted that both, the light exposure and baking help in polymer-

ization of our resist. The difference is that baking affects all of the photoresist film

while light plays role in polymerization of only the exposed parts. Increasing the

light exposure time reduces the feature size because, between the two exposed and

unexposed regions, there are “semi-exposed” regions and by overexposure, polymer-

ization occur in those regions as well. This and the nonlinearity of the photoresist

polymerization (response to light), are the two main factors in reducing pattern

dimensions as intended here.

As a final step, a low energy oxygen plasma is used to remove the anti-reflection

coating from the bottom of the holes and exposing the underlaying silicon for metal

deposition and further processing of this sample. Note that any left over photoresist

can prevent proper adhesion of the metal mask to the silicon substrate resulting in

improper etching.

To summarize, the coated photoresist in this approach has a thickness of 500nm

and sits over the antireflection coating(100nm). The exposure time in the case of

small pores of figure 2.8 is 50 seconds and the power of UV (355nm) pulsed laser has

is 5watts.The post-bake time must decrease 30% while the developing time increases

30% (to 1 minute). The antireflection coating was removed by a 50Watts oxygen

plasma, applied for 60seconds under 15mTorr (15sccm).
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Using IL For Creating Large Features With Small Pitch Values

For certain applications (e.g. nano-pillar arrays used as anti-reflection coatings) the

feature size has to be larger than the period, e.g. considerably larger than 50% of the

period. In particular for antireflection structures, two main requirement should be

satisfied. First, the pitch should be small (considerably smaller than the wavelength

of light). Second, the 3D shape of the resulting nano-pillars should start from a

pointy tip, comprising 0% of the unit-cell cross-section area, and gradually increase

to 100% as the base of the nanopillars. In other words, the second condition means

the pillars should merge with each other at the base. As shown in figure 2.9 first

condition is satisfied by limiting the pitch to 630nm. In order to satisfy the second

condition, the metal masks should be in the form of circles circumscribed by the

square of the unit cells. This means the circular patterns of the metal masks will

be touching each-other each other as illustrated in Fig 2.9. The side view will be a

continuous thin film over the bulk silicon and will not yield any useful information.

For creating the highest diameter of the holes possible, the resist is under exposed

while the post bake time is 60 seconds (instead of 40 seconds for high pitch case).

Also the developing time decreases from 90 to 60 seconds due to lower mechanical

stability of the photoresist.

Figure 2.10 shows an example of metal mask fabricated using a PR pattern gener-

ated by the above mentioned technique. This sample was fabricated using 500nm of

NR7 photoresist on top of 70nm of ICON7 antireflection, covering a silicon substrate.

The photoresist was exposed for 7s at 5Watts, exposed again after rotating the sam-

ple by 90o, and post-baked for 60s at 110oC . 40nm of Cr layer was deposited by

e-beam evaporation. the unwanted metal and photoresist can easily be removed by

lift-off. The reduced laser exposure results in larger pore size on negative photoresist.

The sample of figure 2.10(a) shows considerable non-uniformities of the metal
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Figure 2.9: The ideal metal mask for fabrication of nano-pillar array used as nano-
structured anti-reflection coatings is an array of circular metallic pads circumscribed
by the square unit cells.

(a) (b)

Figure 2.10: Top view of a metallic mask with high duty cycle (after lift off). (a)
Small magnification to show defects caused by imperfections in photo-resist. (b)
Close up view of a region.

mask with some regions completely fused into each other while figure 2.10(b) repre-

sents a much better quality metal mask with distinct circular regions, barely touching

each other on four sides.

The non-uniformities observed in figure 2.10(a) are mainly in the form of metal-

lic regions merging with each other rather than touching. These issues are more
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pronounced at smaller pitches and thus need special consideration. The main rea-

sons of these non-uniformities, superimposed on the main pattern, can be any or

combination of the following:

• Non-uniformities in photoresist thickness

• Aged photoresist

• contaminations in photoresist

• Imperfections in the laser beam

The non-uniformities caused by photoresist degradation and contamination were

eliminated by using a new photoresist. These laser beam imperfections were caused

by diffraction from dust particles on the optical components as well as any dust

particle floating in the air, which may have landed on the surface of the resist. Most

of these imperfections were successfully eliminated. The sample of figure 2.10(b)

is an almost ideal metal mask for fabrication of nano-pillars used as anti-reflection

coating.

To summarize, it’s also worth mentioning that for achieving the pores with diam-

eters as large as the unit-cells (at 630nm pitch), the exposure time was reduced to

7 seconds (for comparison, fabrication of the half-duty-cycle samples would require

9 seconds). The reduced exposure time means the photoresist is not properly cured

and therefore due to reduced mechanical strength of the polymerized resist (by expo-

sure to UV light) it should be developed for a shorter time. Therefore the developing

time is reduced for 30% from 90s to 60s. After developing the photoresist, an oxygen

plasma was used to remove the antireflection coating and expose the silicon before

metal deposition. The plasma had a power of 50Watts and a pressure of 15mTorr

(15sccm O2 flow). The sample was exposed to the plasma for 90seconds. The thin
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Cr or Ni layer was deposited using e-beam and then lifted off using an acetone gun.

Afterwards the ARC layer was removed by oxygen plasma.

2.3 Etching The Nanopillars Out of Silicon

The metallic pattern created using one of the techniques descried in Sec. 2.2.4 (re-

sulting from the IL, photoresist development, metal deposition and lift-off), is used

as the mask to etch the exposed silicon regions and create the desired silicon struc-

tures (nano- pillars protruding off the silicon substrate). It is important to note

that, photoresist can not be used as a masking material in plasma etching. The

reactive ion etching (RIE) system used generates a plasma using O2 and CF4 gases.

The plasma will produce free radicals and ions which will be accelerated toward the

sample. Free radicals and ions can both etch the sample. The etching process and

thus the nano-pillar profile can be tuned by controlling the exposure time, CF4/O2

flow-rate, Reactive-gas pressure, chamber-pressure, RF-power and etch time. As

mentioned earlier in this chapter, dry etching can be used for isotropic, anisotropic

or a combination of isotropic and anisotropic etches. Although pure isotropic and

anisotropic etches are common too, in practice using a combination of both can offer

a more diverse range of profiles. In this section a discussion of different etches, the

mechanisms behind them and their distinct profiles will be discussed.

For anti-reflection, nano-textured coating application the nano-pillars should have

a conical shape where the pillar cross-section decreases linearly as a function of pillar

high. This is generally achievable by isotropic or a combination of isotropic and

anisotropic etching. For field enhancement and plasmonic applications typically a

more uniform cross-sectional area along the pillar is desired. This profile is achievable

mainly by anisotropic etch or a combination of isotropic and anisotropic etch (RIE).
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2.3.1 Isotropic Etch

Figure 2.11: Reactive Ion Etching, isotropic etching

Figure 2.11 illustrates the isotropic etch progression. As the reactive species

move toward the sample they collide with each other, changing directions. Thus the

molecules move in random directions but their overall speed is toward the sample

(see Fig. 2.11(a) ). Once the reactive species reach the target, they will chemically

react with the target molecules producing volatile gases that leave the chamber.

Even these gases can collide with reactive species. The isotropic nature of the etch

is controlled by the chemical etching which happens at the same rate everywhere

(see Fig. 2.11(b & c)). Initially the etch moves downward since the initial exposed

surface is flat ((see Fig.2.11(a) )) but as the etch continues the edges smooth out

((see Fig.2.11(b) )) and the etch profile gets spherical as illustrated in Fig. 2.11(c).

The factors that are important to achieve isotropic etch are the chamber pressure

and RF power.

Figure 2.12 shows two samples etched isotropically.The sample of fig. 2.12(a) was

32



Chapter 2. Fabrication

(a) (b)

Figure 2.12: Isotropically etched silicon at different levels of oxygen and CF4/O2 at
50Watts (a) CF4/O2 = 35/1 (a) negligible under-etching beneath the metal mask at
25 minutes. (b) Isotropic etch can reduce the diameter to deep sub-micron dimen-
sions.

fabricated using a metal mask with a period of 650nm. The etch chamber pressure

was 20mTorr with the flow rates of oxygen and CF4 equal to 2SCCM and 35SCCM

respectively. The sample was etched for 25 minutes at a power of 50Watts. The

sample of 2.12(b) was fabricated from a metal mask having a the same period. The

etch chamber has a pressure of 20mTorr while etching using only CF4 gas with

70Watts power. Then with the flow rates of oxygen and CF4 equal to 3SCCM and

35SCCM respectively the sample was etched. The sample was etched at 50Watts for

20minutes. The introduction of oxygen in the chamber has prevented the surfaces

from being covered by a Teflon layer. This, in conjunction with the relatively low

power, has made the etch isotropic. The sample of fig. 2.12(b) is significant in the

fact that it represents the capability of fabricating samples with critical dimensions

as small as 75nm. The top sides which were initially etched by vertical etching

(without oxygen) have become thinned considerably and the bottom side which is

just etched isotropically has a tapered profile.
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Figure 2.13: Reactive ion vertical etching

2.3.2 Anisotropic Etch

Anisotropic etch is a “line of sight” etch in which, the etching happens only in the

direction of the ions. Anisotropic etch is mainly a mechanical etch achieved by

bombardment of the sample with high energy ions. The ions are accelerated toward

the sample and knock out target molecules upon impact. The RF power is generally

higher to increase the momentum of the ions and the pressure is lower to increase

the mean free path. Higher momentum will help with removing of materials upon

impact and will also guarantee smaller deviations in ion-directions even in case of

some collisions in their path toward the sample.

Figure 2.13 illustrates the anisotropic etch. As seen in Fig. 2.13.(a) the ions are

accelerated toward the sample with high momentum. The ions have enough energy

to remove molecules from the target upon impact and thus “dig” into the sample

as illustrated in Fig. 2.13.(b). But as the etch gets deeper it gets more difficult for

the produced gases to leave the chamber cavity and the collisions increase. These
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collisions can eventually modify the nature of the etch and introduce some isotropic

characteristics as well. This is usually an unwanted effect since as illustrated in

Fig. 2.13.(c) it prevents the anisotropic etch to proceed vertically down and changes

the etch profile [40]. One method to overcome this, is to cover the side walls with

a layer of Teflon and protect them from being etched. The Teflon forms when the

carbon radicals reacting with other radicals present in the chamber and covers all

surfaces [115]. However the Teflon gets removed from the “’line of sight” surfaces as

soon as it forms. The Teflon deposited on the side walls protects them from reactive

species helping the etch to proceed anisotropically for much longer [39, 97]. This

method is illustrated in Fig. 2.14.

Figure 2.14: Deep reactive ion etching. The vertical surfaces of silicon are protected
by a polymer formed by plasma gas chemical reaction with silicon.

Figure 2.15 shows an array of nano-pillars etched anisotropically. This sample

was fabricated with using the same metal mask of fig. 2.12(b), the only difference

being the type of etching. The pressure of the chamber was set to 15mTorr. The

CF4 : O2 ratio was 35 : 2. The sample was etched for 25 minutes at a power of
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Figure 2.15: Cross section of the silicon nanopillars carved out of the silicon wafer
nanopillars with diameter of approximately 230nm.

100Watts. Some side etch is visible in the close up view of fig. 2.15. As explained

earlier in this section, this was expected.

Figure 2.16 shows an other array of nanopillars fabricated anisotropically. The

sidewalls of this sample doesn’t show any sign of side etch, making this etch a com-

pletely vertical one. This is achieved by fine-tuning the etch process in such a way

that side walls are completely protected and the etch happens only in the line-of-

sight surfaces. The chamber pressure was 15mTorr and no oxygen was allowed in

the chamber. The sample was etched for 25 minutes at 70Watt. Although the lower

power suggests that the etching will be rather isotropic, Teflon deposited on the side

walls emerges as the prominent role player.
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Figure 2.16: Nanopillars Carved out of the silicon wafer (a) The cross-section of the
nanopillars etched out of silicon by CF4. The period is 0.63µm and the pillar height
and diameter are 490nm and sub− 200nm respectively. (b) Closer view of the cross
section of the nanopillars showing nanopillars with diameter of approximately 190nm

2.3.3 Combined Isotropic And Anisotropic Etch

As discussed in Sections 2.3.1 & 2.3.2, isotropic and anisotropic etches are two distinct

etching methods. Each method has its own signature shape and both are equally

important. However etches are seldom 100% isotropic or anisotropic. This is due to

the fact that the physical and chemical etching mechanisms are always competing

each other. A combination of the two methods can open the door to the possibility

of fabricating a wide range of etch profiles. Figure 2.17 is one such example. This

sample illustrates tapered nanopillars with linear sidewalls. If we cut the nanopillars

by a plane parallel to the substrate, the cross section area of the pillars decrease from

base to the tip. We later, in chapter 4, will use these kinds of gradual change of cross

section areas. This sample was fabricated at a pressure of 10mTorr with a CF4 : O2

ratio of 35 : 5. The RF power was 70Watt and the procedure took 20 minutes.
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Figure 2.17: Sharp tips using a hybrid of isotropic and anisotropic etching.

2.4 NanoPillars as A Platform for Field Enhance-

ment

While the tapered nano-pillars of Figure 2.17, with their tilted sidewalls and relatively

pointy tips, are useful as nano-structured anti-reflection coatings, the nano-pillars of

Figure 2.15 or 2.16 that have more vertical side walls (the side walls are closer to 90o)

and flats top can serve as platforms for deposition of multilayer structures. Building

up a metal-dielectric stack on top of the nanopillars of Figs. 2.15 or 2.16 can turn

them to sites for producing optical field enhancement for Raman spectroscopy.

In order to create a stack of desired materials on top of the nano-pillars, the

metal mask which was protecting the top surface of the nano-pillars during etching

processes, is removed in acid etchant. Then a layer (or layers) of selected mate-

rials (mainly metallic) is deposited on the exposed top-surface of the nano-pillars.

Figure 2.18 illustrates the steps taken for this purpose. The nanopillars fabricated

as discussed in section 2.3.2 are topped with a metal as illustrated in fig. 2.18(a).

This metal layer is used solely as an etch mask and needs to be removed before

any further processing. This is accomplished by submerging the sample in metal

etchant solution(see figure 2.18(b)). Once the masking metal is removed, electron-
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Figure 2.18: The fabrication process used to build a MIM-stack over SiNPs. (a)
The fabricated SiNPs as described in figure 2.3(e) are fabricated with the metal
mask still intact (Cr). (b) Metal mask is removed to expose the Si top-surface
of the nanopillars. (c) A metal/dielectric/metal stack is deposited using e-beam
deposition. (d) The dielectric between the two metallic disks of the stack is radially
etched from the sides.

beam deposition is used to deposit one or more layers as illustrated in fig. 2.18(c)).

The deposited layers cover the exposed top surface of the nanopillars as well as the

substrate. The deposited layers are a sandwich of alternating metallic and dielectric

layers refereed to as the metal/insulator/metal (MIM)-stack, in here. As a final step,

the sample is dipped in a dilute HF acid bath. This radially etches the SiO2 between

the top and bottom metallic disks. The etch is done for only a couple of seconds.

The goal is to remove SiO2 from the rims of the metallic disks, as illustrated by the

green layer in fig. 2.18(d). The etch rate may differ fro silica deposited by different

methods [135]. Our oxide etches with rate of 150 nm
min

, using a 0.4% diluted Buffer HF.
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Depending on the materials used one can get different stacks with different proper-

ties. In this dissertation, the metals used for this purpose include Au, Cu, Ag and

Al. These layers have a thickness of 25nm. The dielectric layers are all made of SiO2

and have a thickness of 15nm.

In this dissertation we have also fabricated two samples using TiN and Ge instead

of the metal layers. Neither TiN nor Ge are classified as metals. TiN is a semi-metal

and Ge is semiconductor. However they have proven to outperform some metals in

generating active plasmons in visible range, when treated with a plasma. Some

metals actually fail to generate active plasmons in visible range. The fabrication

processes followed in these two samples are identical to others with the only difference

being the fact that only one layer was deposited instead of a stack. The thicknesses of

TiN and Ge layers in their corresponding samples were 40nm and 25nm respectively.

The samples were treated with 60Watt, 200mTorr, NH3 plasma for 10 minutes.

Figure 2.19 shows a set of nanopillars coated with a stack of Ag/SiO2/Ag layers.

The MIM-stacks on top of the nanopillars are better visible in the insets (which

show the same sample at higher magnifications) and are used in Surface Enhanced

Raman Spectroscopy (SERS). Once the stack is fabricated, the sample is submerged

in a diluted Buffer HF [135] bath for 4 seconds (150 nm
min

, using a 0.4% diluted Buffer

HF). This etches the SiO2 circumferentially (10nm in the radial direction) exposing

the rims of the metal nano-disks on top of the pillar. We have measured the etch

rate for the oxide which is deposited using Ebeam evaporation.

2.5 Conclusion

This chapter provided details of each step and procedure used for fabrication of the

nanostructures studied here. The custom made interferometric lithography system

used here, is introduced and its operation mechanism is explained. The devices fab-
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(a)

(b) (c)

Figure 2.19: The nanostructure (Diameter of 330nm)is coated with Ag/SiO2/Ag.
The fallen caps can be seen in some of the nanopillars. The cartoon in figure 2.18(d)
shows the design (a) SiNPs with deposited Ag on top viewed from 45o angle (b)
Closer view of (a), (c) the metal capped SiNPs viewed from 75o angle. The side etch
is so small that can’t be seen under SEM.

ricated in this chapter are divided into two main categories i.e. nanostructures used

for NALs and nanopillars (with and without metal stacks on top) that are for Raman

enhancement. The details of wet bench, interferometric lithography, metal-masks,

lift-off processes and plasma assisted etching procedures are provided. Different

processes used, allowed fabrication of different sample profiles ranging from semi-
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parabolic to cylindrical structures. However this chapter didn’t cover the deposition

of metallic layers and metal/dielectric stacks over SiNPs or the surface treatments

used in some samples. Since these are different from sample to sample, they will be

explained on a case-by-case basis in Chapter 5.
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Measurement

3.1 Introduction

The measurements reported in this thesis are performed using a Fourier-Transform

Infrared (FTIR) Spectrometer and a custom-made scattering measurement setup.

FTIR is used for characterizing the IR transmission spectrum and the scattering

setup is used for measuring elastic and inelastic scattering spectrum through and

from nano-structured surfaces.

3.2 FTIR and Nicolet 10 iN Infrared Microscope

Fourier-Transform Infrared (FTIR) Spectroscopy is a fast and accurate method for

measuring the infrared transmission, reflection, and absorption spectrum of a sample.

The FTIR used in our measurements was a Nicolet 10 iN Microscope. Figure 3.1

illustrates the internal structure of this microscope. The operational principle of

the microscope is shown in figure 3.2. A beam splitter is used to divide the light
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coming from the mid-IR source, into two identical beams. One gets reflected from

a fixed mirror and the other one, from a moving mirror. As shown in the figure

both mirrors are corner cube mirrors. Besides improving mechanical stability, this

also guarantees that the reflected beam is parallel to the original beam, reducing

system complexity[1, 2]. The path length difference (and thus the phase difference)

between the two beams results in constructive and destructive interference when the

two beams are combined in the detector. Figure 3.2(b) shows a sample interferogram

generated by the interferometer. A spectrum is obtained by performing a Fast Fourier

Transformation (FFT) on the interferogram (Figure 3.2(b)). Besides the IR source,

FTIR system is also equipped with a He-Ne laser source for calibration.

Figure 3.1: Internal structure of Nicolet 10 iN [2]

Before a successful measurement the device should be calibrated for the back-

ground transmission. This is done using an inert nitrogen atmosphere that fills the

device chamber. The transmission of each sample is measured with respect to back-

ground for a range of IR wavelengths. The method can be used for solid, liquid, and
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(a)

(b)

Figure 3.2: Operation principle of FTIR (a) Interference of the two beams for gen-
erating the interferogram. (b) interferogram versus ∆x and the FFT from the inter-
ferogram showing the transmission of sample versus frequency [2]

gaseous samples. It can also be used both as a qualitative and quantitative method.

Nicolet 10 iN is a fast and efficient FTIR tool capable of measuring IR transmission

spectrum with high resolution in a reasonably small time interval. Figure 3.3 shows

the optical path with in FTIR. As shown in the figure the IR beam is focused on the

sample from the bottom and the transmitted beam is collected and guided to the

top detector.

The angle of incidence for rays within the beam is between 25o to 45o. The two
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Figure 3.3: The optical path in Nicolet 10 FTIR

beams are focused on the sample passing to an 3 − 4µm2 area. In FTIR systems,

the measurement speed can be modified, to address the state of the sample (gas,

liquid, solid) and frequency resolution as well as signal to noise ratio requirements.

Liquids and solids have broad natural line width, and don’t require high resolution

measurements (high resolution is not going to give any extra information about them)

[2]. The device is equipped with a high speed interferometer which can perform up

to 10 scans per second at 16cm−1 resolution and has the maximum resolution of

0.4cm−1. The range of wavelengths used for measurement can also be adjusted. One

can also modify this easily using the settings available.

Nicolet 10 iN is equipped with two types of detectors. One of them works at

room temperature, and the other one is cooled with nitrogen. The detector cooled

with nitrogen provides higher speed and sensitivity. High resolution nitrogen cooled

detector is used for measuring IR transmissions in all FTIR measurements performed

in this dissertation. This detector is (MCT-A) works in spectral range of 7800cm−1
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to 650cm−1 (λ = 1300nm to 15400nm). Before a measurement is performed on a

sample one needs to make sure to clear the light path from any obstacles (such as

a sample) and run the “Optimize” procedure. According to the manufacturer doing

so, the system adjusts itself to maximize the amount of IR beam received from the

source passing the vacuum space. This procedure needs to be run only once per each

measurement session and is valid for all the experiments ran in one sitting.

In order to specify the exact location of the measurement the microscope is also

equipped with an secondary LED light source which can be used to see a wider area

( 500µm) of the sample and make sure that the measurement will be performed on

the correct spot of the sample. The measurement spot is specified by a cross sign

in the center of the field of view. It is worth mentioning that the wavelength of

the secondary light falls outside of the measurement range and will not affect the

measurement.

3.3 Elastic and Inelastic Scattering Measurement

The Scattering Measurement Setup (shown in figure 3.4) is a home-made system that

is capable of measuring both elastic and inelastic scattering. The light source can be

a He-Ne laser or a lamp depending on the measurement. First part of this section

will be focused on elastic scattering measurement and the second part on inelastic

(Raman) scattering. The section will end with a discussion on Photoluminescence

(PL) that usually interferes with Raman measurements.

3.3.1 Elastic Scattering

In an elastic scattering of light, the frequency and thus the energy of the scattered

light does not change and remains the same as the incident beam. Here the elastic
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scattering spectrum from the sample is measured when the the light is incident at

a fixed angle. The scattering data reported are normalized to that of a bare silicon

wafer. In all scattering measurements the temperature of the detector was maintained

at approximately −70oC (using liquid nitrogen).

Figure 3.4: The Scattering Measurement Setup showing the incident and scattered
beams

In this mode of operation, the incident beam comes from white light lamp (visible

to near-IR spectrum). As illustrated, first a collimated beam is formed, then it’s

central region is blocked by an opaque disk resulting in an annular collimated beam

of light (which is reflected towards the sample by a ring mirror). This beam is

focused on the sample by a lens with NA of 0.9. The incident beam is focused on

the sample with an angle between 20o-30o(as shown in fig 3.4).The diffraction from

the sample is collected over a 120o cone using the same lens. The collimated beam
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from the objective is divided between a CCD camera (to generate an image of the

sample) and a spectrometer (to measure the spectrum). Two 1200grooves/cm and

150grooves/cm gratings can be used inside the spectrometer. The grating diffracts

different frequencies of light, pointing them toward different parts of the CCD. The

CCD then generates the spectrogram. Note that the red ray, representing the laser

and the mirror located between the beam-splitter (BS) and dichroic-mirror (DM) are

removed in this mode of operation.

Figure 3.5: Scattering of Cr nano-plates lifted off over silicon surface. The pitch is
630nm and duty cycle is approximately 60%

The initial step in each measurement is to calibrate the device using a bare

silicon wafer as the reference. After the calibration, one can measure the diffraction

of different samples. Figure 3.5 shows an example of such elastic scattering data.

This scattering spectrum is generated by nano-structures of Cr on a silicon (The

sample was fabricated using Interferometric lithography). Chapter 5 will cover the

scattering measurements in detail
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Image Acquisition

The main CCD camera in illustration of Fig 3.4 is used to image the surface of the

sample. The use of annular beam and capturing the 120o central portion of the light

enables the setup to image deep sub-micron samples even using a regular incoherent

white-light source. This is an obvious superiority over conventional microscopes. In

figure 3.6 one can see an array of Nano-pillars with average diameter of 230nm, and

periodicity of 2100nm.

Figure 3.6: Bare SiNPs seen by microscope using CCD camera.

The difference in the height of the pillars beside empty (black) regions, can result

in a difference in the scattered color, or equivalently different resonance frequencies

inside the silicon nanopillars SiNPs (The missing nano-pillars are broken due to the

mechanical stresses).

As an example figure 3.7 shows elastic scattering spectrum obtained from different

regions of the sample shown in figure 3.6 using the 150groove/cm grating and white

light illumination. It can be seen that the spectrum of the green region, as expected,
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lies in green spectrum, but the intensity of this spectrum is significantly reduced.

Figure 3.7: Spectrum of Bare SiNPs with 230nm diameter, 490nm height and
2100nm pitch scattering under white light

Figure 3.8 shows the uniform color of the image captured from the scattered light

of gold nano-disks over SiNPs.The nano-pillars imaged here are 230nm in diameter

however as the resolution of the system is limited by detected by the CCD the

nanopillars in the image look bigger than 230nm (therefore one can not determine the

diameter of nano-pillars using this microscope). The actual dimensions are measured

using scanning electron microscope (SEM).

3.3.2 Inelastic Scattering

In inelastic scattering, the frequency of the scattered light is not equal to that of the

incident light. In order to measure the inelastically scattered spectrum (and calculate

the frequency shift relative to the incident beam), a narrow bandwidth laser should

be used as the light source.

Here for measuring Raman (and Photoluminescence), a He-Ne laser with a wave-

length of 632.8 nm is used as light source. As a part of the laser is also scattered
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Figure 3.8: Photo of 230nm diameter SiNPs coated with Au layer, observed using
the setup shown in figure 3.4. The pitch of the structures is 2100nm. The dimensions
are measured using SEM.

within the collection angle, high pass filter is used to remove 632.8nm light, so only

the stokes shifted wavelengths reach the spectrometer.

For inelastic scattering measurement we use the high resolution 1200grooves/cm

grating. Figure 3.9 shows the impact of the grating resolution on measured spec-

trum. Although it is not obvious in Figure 3.9, the finer resolution obtained by

the 1200grooves/cm grating, comes with the cost of shrinking the bandwidth of the

measurement. However this problem can be solved by ”Stick and Glue” procedure.

In this procedure, Raman data from multiple measurements covering different wave-

length spans, can be combined to produce a single spectrum covering a wide range

of frequencies.
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(a) (b)

Figure 3.9: Measured Raman of Thionine by two different gratings. (a) Raman
Spectra measured by a 150 grooves/mm grating. (b) Raman Spectra measured by a

1200 grooves/mm grating.

The power of the laser source can be adjusted in the 0 to 4mWatts range.

However in order to prevent saturation of the detector it is recommended to limit

the power to lower amounts, specially when scattering is caused by metallic nano-

structures.

Figure 3.10: Raman Spectra of bare silicon wafer, peaking at 654nm corresponding
to a Raman shift of 520cm−1. The small filtered laser signal is 632.8nm.
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The calibration of Raman spectrum is preformed by matching the Raman peaks

corresponding to silicon. Silicon is selected for this purpose because it is the base

of all the samples fabricated in this dissertation and also the silicon in the wafer,

has only one type of bond yielding to a unique peak. Figure 3.10 shows the Raman

signal obtained from a silicon wafer. The dominant peak corresponds to silicon and

the the weaker peak belongs to the laser source which is attenuated by the high-

pass filter before reaching the spectrometer detector. The Silicon peak is expected

to have a shift of 520cm−1 from the laser used. For the He-Ne laser used here, this

shift means that the silicon Raman peak should be located at 654.45nm as confirmed

experimentally here. The measurement software can show the results, in the Raman

Shift form, which is calculated by ( 1
λ0
− 1

λ0
) ∗ 107. The units of the resulting shift is

cm−1.

3.3.3 Photoluminescence

While measuring the Raman spectrum, PL is present in most Raman measurements

as a background noise. The mechanisms or Raman generation and Photolumines-

cence are in some aspects very similar and sometimes Photoluminescence happens

along side Raman. Choosing the laser source carefully decreases the PL substantially.

PL typically happens through band to band transitions while Raman is phonon-

assisted phenomenon and happens by intra band transitions via virtual levels. Fig-

ure 3.11 illustrates the mechanisms for PL and Raman generation. Despite their

different mechanisms both PL and Stocks-Raman result in signals with longer wave-

lengths compared to the excitation source (laser). Raman is the desired signal in

all our measurements but PL generated by the target molecule is generally much

stronger and can overshadow the Raman signal. Thus for evaluating the field en-

hancement by nanostructures one should choose molecules that generated PL at
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(a) (b)

Figure 3.11: Inelastic scattering depicted versus Photoluminescence (PL) (a)
Raman transition by a photon with energy less than band-gap excites the electrons
to a virtual band, and by phonon assisted recombination generates Raman signal

(b) Photon with energy equal or greater than band-gap excites the electrons to the
electron conduction band and as depicted recombination from different conduction

bands to the valence band can generate a broad PL pattern, depending on the
excitation light and band structure.

wavelengths that do not overlap with the desired Raman Signal.

(a) (b)

Figure 3.12: Measured Spectrum by 150 grooves/cm grating (a) Raman
scattering spectrum of Au/SiO2/Au layer coated with thionine measured by
150groove/mm grating. (b) Photo Luminescence of none-coated Au/SiO2/Au layer
by 150groove/mm grating.
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The metallic nano-structures also generate PL. The source of this PL is plasmonic

damping. The oscillating plasmons can radiate in a much wider wavelength range

compared to the excitation laser. This happens through the band to band transitions

inside the metal nano-plate, while the oscillating plasmon is oscillating in the metal

nano-plate. Figure 3.12shows an example of measured scattering data. These plots

illustrate the Raman peaks superimposed on the PL curve. Ideally one would prefer

the overlap between Raman and PL frequency-spans to be as small as possible or have

a PL signal which is smaller than the Raman signal. As will be seen in Chapter 5,

besides other results, we have been able to achieve circumstances where the PL signal

was considerably smaller than the Raman signal, allowing much better detections to

be possible. The measurement setup (Figure 3.4) can detect both Raman and PL

signals. To capture both signals the 150grooves/cm grating is preferred as it allows

measuring a broader spectrum.

3.4 Conclusion

Alongside optical microscopy, SEM, AFM, and ellipsometry, we have also used two

other characterization tools which were highly crucial for this project. This chapter

covered these two characterization methods, FTIR and Raman Spectroscopy. The

specific FTIR used in this project is introduced and the basics of its mechanisms

of operation are explained. The custom made Raman dark field microscope and

different modes of its operation were also discussed in details. These equipment are

equipped with white light as well as a 633nm HeNe laser source. The scattered light

from the surface of the sample is guided toward the spectrometer for analysis through

the same lens used for focusing the beam on the sample. For Raman measurement,

a filter is added to the path of light scattered back from the sample, for filtering the

elastically scattered 633nm red light.
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Chapter 4

Nanostructured Antireflection

Layers (NALs)

4.1 Introduction

When passing through the interface of two mediums, light can get reflected, diffracted,

scattered or transmitted (see Fig. 4.1). This is due to the sudden change of refraction

index at the interface. Using an intermediary medium, referred to as the “antire-

flection coating (ARC)”, the overall transmission can be increased (The interference

between the reflections from the two interfaces reduces the reflected intensity. If

the refractive index of the antireflection layer is the geometric mean of the two,

e.g.
(
n2 =

√
n1n3

)
, and its thickness is λ

4neff
then at normal incidence the reflection

is zero.). These layers are called antireflection coatings since they started as thin

homogeneous layers, deposited on the interface[145]. This is achieved using the es-

tablished deposition methods such as thermal/electron-beam evaporation[147, 69] or

plasma enhanced chemical-vapor-deposition (PECVD)[34] or sol-gel processes [32]

which provide highly controllable deposition rates. By proper selection of the thick-
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ness and refractive index, the presence of the ARC layer results in generation of

two reflected waves (instead of one) with a relative phase of pi that cancel each

other. The ARC layer should have a refractive index, intermediate to (ideally equal

to the geometric average of) those of the two medium [36]. The effects of using an

ARC is specially noticeable when the refractive indexes of the two medium differ

considerably, to begin with [53, 145].

Figure 4.1: Illustration of light going from air (1) to an other transparent medium
(3), through an antireflection-coating-layer (2) which uses destructive interferences

of the reflected waves shown in yellow, for suppressing reflection.

A single layer of antireflection coating is not enough to achieve optimum trans-

mission over a wide band range. Using multiple layers of ARC with proper refraction

indexes and thickness reduces the reflection over a wider range of wavelengths and

incident angles. There are two shortcomings to this approach though: 1) It is not

always possible to find materials with the calculated refractive indexes 2) The differ-

ence in thermal expansion coefficients of the layers can yield to considerable residual

stresses [12] and delamination, specially when high power lasers are used [137].

Nanostructured surfaces [41] (also referred to as Nanostructured Antireflection

Layers or NALs in here), provide an alternative and much better solution. These are

generally made in the form of an array of nanostructures. Both random and highly
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controlled shapes are reported for NALs. The distribution of the nanostructures can

also be random or organized. If all the nanostructures in a specific NAL sample have

identical shape and are distributed with a specific order, the result will be a NAL in

the form of a periodic structure which will not generate “grain-boundary scattering”

in contrary to randomly distributed nanostructures.

The nanostructured antireflection layers yield increased spectral bandwidth and

incident angle tolerances. Their main disadvantage is the potential increase in diffrac-

tion. At a first glance this can limit their use in LEDs [64, 79, 74] and solar cells

[106, 33]. These applications require considerable light transmission and are not

very sensitive to scattering. Also other applications such as transmission-windows

for lasers [114] for example, require considerably lower scattering. Reducing the size

of individual nanostructures (sub-wavelength) can considerably reduce the scattering

of NALs, making them suitable for such demanding applications. Also, the pitch of

the structure should be low enough to avoid diffraction effects.

The material to be used for a specific NAL is determined by the specific applica-

tion as well as the fabrication method. Polymers have been used to fabricate NALs for

low power applications such as light extraction from LEDs [149] [16] [62][64][79],[74].

They can be fabricated using nanoparticles spin-coated on a substrate [149], nano-

imprinting[15] as well as more established lithography techniques. Moth-eye-shaped

structures common for these NALs. Polymeric moth-eye structures are used over ITO

for increased transmission (400nm to 1100nm) as well as increased hydrophobicity.

Fused-silica moth-eye features, treated with chemicals to become hydrophobic, pro-

vide a wider transmission bandwidth (400nm to 2300nm) [80, 20]. A usual technique

used for lithography of moth-eye structures is colloidal lithography. They are fabri-

cated by plasma etching. The nano-spheres get etched while etching the substrate

beneath them [86] creating a tapered profile. Silicon can be used as a mold to pat-

tern a polymer over different substrates, like the one done over GaSb surface by
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Kanamori [63]. Chiu et al. [37] used Ni mask for nano-patterning the GaN surface.

He created the Ni nanoparticles by annealing a thin layer (10nm) of Ni at 850oC .

This rapid annealing converts the Ni layer to numerous Ni-nanoparticles. Nano-

particles are commonly used as masking materials for subsequent plasma etching.

Lin et. al. [89] used Ni and poly-silicon mask to etch Sapphire.

Surface texturing [41] using Interferometric Lithography (IL) followed by plasma

etching is an established method for fabricating NALs [74, 148] for higher power ap-

plications [53] or wherever suppression of reflection is needed. Fabrication of highly

organized arrays of nanostructures with considerably small dimensions is possible

using this method. Silicon is one of the common materials used for nano-structured

antireflection layers, designed for infrared (IR) applications. Si is transparent at a

portion of near-IR and mid-IR [116] region. However in absence of NAL, its high re-

fractive index of 3.5 [48] causes too much reflection at the silicon/air interface. Nano-

structuring the surfaces of silicon is used to improve transmission at the silicon/air

interface in the IR and near-IR applications. The non-polymeric antireflection struc-

tures usually provide a higher laser damage threshold. The high damage threshold

of fused-silica NALs has been investigated by [114] by a 8ps laser with wavelength

of 1030nm [114]. Other groups have reported fabrication of GaAs nanostructured

antireflection layer by etching the GaAs wafer coated with a layer of silica as the

mask, using a plasma etching method [121, 73].

Different fabrication methods can yield nanostructures with different profiles.

Some of the common structures used as antireflection layers are nano-pillars [142] and

(micron-size) pyramids created by etching [139]. Improving the profile of the nanos-

tructures can have considerable effect on the overall performance of the NAL. Struc-

tured anti-reflection coatings can be fabricated as a part of the substrate through pat-

terning and etching. This will produce NALs with the same material and thus ther-

mal expansion coefficient as the substrate. Such antireflection layers are more robust
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and can tolerate considerable temperature changes without delamination since no

residual stresses exist. This makes them ideal for high-power laser-beam-transmission

as well as space applications [93].

4.2 Theory of Antireflection Layers

Theory and fabrication of nanostructured antireflection layers has been the focus

of numerous reports such as [110]. Although many numerical methods have been

developed and used to study transmission of light through the wide variety of ex-

perimentally fabricated structures, there is still a need for developing models for

gaining mathematical insight into how these structures function with the goal of de-

signing the optimum profile which can lead to optimum transmission for the specific

wavelength.

By definition an anti reflection layer introduces an intermediary layer which re-

places the otherwise considerable change of refractive index between the two medium

by two smaller steps. It can be shown that this means the refractive index of an-

tireflection layer/coating should ideally be the geometric average of the refractive

indexes of the two medium. Deviation from the required refractive index reduces

the performance of the antireflection layer. In eq. (4.1) ni and nt are the refractive

indexes of the “incident” and the “transmission” medium respectively.

n =
√
nint (4.1)

In order to achieve maximum transmission, the thickness of the antireflection layer

should be equal to λ
4neff

[43], where neff represents the effective overall refractive

index of the antireflection layer. This thickness will result in a phase change of π

through the thickness of the antireflection layer [43].
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4.2.1 Multilayer Antireflection

Using multiple layers instead of only one, can break the sudden change in the refrac-

tion index into even smaller steps, further smoothing out the transition. This has

been proven to allow broader wavelengths to pass as well as increasing the angular

tolerance [113]. In a multi-layer antireflection coating, each layer’s refractive index

should ideally be intermediate to the layer before and after. With the refractive

indexes of the incident and transition mediums known, one can use equation (4.2) to

determine the required refractive index for each intermediate layer. In this equation

the 0th and (N + 1)th layers represent the “incident” and “transmission” mediums

respectively.

ni =
√
ni−1ni+1 where i = 0, 1, 2, ..., N + 1 (4.2)

Using the natural logarithm of each term converts the nonlinear equation be-

tween refractive indexes of subsequent layers (eq. (4.2) ) to the linear recursive equa-

tion (4.3).

lnni =
1

2
(lnni−1 + lnni+1) where i = 0, 1, 2, ..., N + 1 (4.3)

Defining AN = lnnN one can write eq. (4.3) as eq. (4.4), which can be used

to determine the required refractive index for each of the layers of an N -layered

antireflection coating, for maximum performance.

2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1

0 0 0 · · · −1 2





A1

A2

...

AN−1

AN


=



A0

0
...

0

AN+1


(4.4)

62



Chapter 4. Nanostructured Antireflection Layers (NALs)

In this matrix A0 and AN+1 are the only known parameters, referring to the logarithm

of refractive index of the “incident” and “transmission” mediums respectively.

Equation (4.4) can be used to determine the required refractive index for each

of the intermediate layers of a multi-layered antireflection coating. As the num-

ber of layers increase, the transition of refractive index becomes smoother, however

it is almost impossible to match the required refractive indexes with the available

materials.

4.2.2 Nanostructures as Antireflection Layer

Nanostructured surfaces provide an alternative to regular single and multi-layered

antireflection coatings. Nanostructured antireflection layers are built in as part of

the substrate (previously referred to as the “transmission medium”) through micro-

machining and thus is made from the same material as the substrate. This elimi-

nates residual stresses and delamination problems, common with regular antireflec-

tion coatings. Figure 4.2(a) shows the SEM image of such structure created on a

silicon chip. The distance between two corresponding points adjacent structures de-

termines the period and pitch in a specific direction. If the period of the structures

and thus their sizes are considerably smaller than the wavelength of light, the optical

wave interacts with the nanostructure as if it’s a continuous layer with an effective

refractive index less than silicon and more than air. As a result, light will pass

through the nano-structured layer without diffraction [127].

The NALs can be studied as 2-D arrays of semi-cone-shaped structures illustrated

in Fig. 4.2(b). For ease of explanation and understanding, the NAL of this figure is

illustrated as isolated nanostructures but they can merge at their base as well. Each

unit cell is composed of a nanostructure and the air surrounding it. The pitch in

each direction is the distance from a point in one unit cell to the corresponding point
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(a)
(b)

Figure 4.2: NALs for improving transmission (a) A micro-graph of silicon NALs
carved out of a silicon wafer (b) Eliminating the substrate, a NAL can be studied as
a 2-D array of semi-cone-shaped nanostructures.

in the adjacent unit cell. One can also consider the NAL of Fig. 4.2(b) as thousands

of infinitesimally thin cross-sections, on top of each other. Each horizontal cross-

section of Fig. 4.2(b) will have periodic regions of silicon and air. The percentage of

the each cross-section occupied by silicon is referred to as the “Fill-Factor”, at that

elevation and has a deterministic factor on its optical properties. Using eq.( 4.5)

one can calculate the refractive index at each cross-section as function of the fill

factor and the refractive indexes of the materials composing it, i.e. air and silicon in

here. This means a nanostructured antireflection layer can be modeled as numerous

homogeneous antireflection coatings stacked on top of each other, with each layer’s

refractive index being equal to the effective refractive index at that elevation. Thus

by controlling the fill factor one can effectively engineer the refractive index to any

desired value overcoming the difficulty faced in homogeneous antireflection coatings.

n(z) = p(z) nSi +
(
p(z) − 1

)
nAir (4.5)

In eq. (4.5), n(z) and p(z) are the effective refractive index and the fill-factor at

height z, measured from the surface of the silicon wafer. A gradual change in the
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fill-factor (from 0% at the top to 100% at the bottom) results in refractive index

gradually changing from that of the air on top to that of silicon at the bottom [56,

110]. Although eq. (4.5) is used for special case of silicon nanostructures surrounded

by air in here, it can be used for other materials as well.

4.3 Optimum Profile Design

In this section the optimal profile for the periodic nanostructures is calculated. In

order to achieve optimum transmission, the profile of the nanostructures should be

designed such that the refractive index at each cross-section follows the geometric

average rule of eq. (4.2). The height of each cross-section and subsequently the

total height of the nanostructures is an other important parameter that should be

determined. The design process thus can be divided into two main steps, i.e. determi-

nation of the fill-factor and the thickness of each cross-section of the nanostructures.

4.3.1 Determination of the Fill-Factor

Each cross-section of a specific NAL can be considered a thin antireflection layer.

Simultaneous solution of eqs. (4.4) and (4.5) determines the refractive index of every

cross-section layer, required to achieve optimum transmission between adjacent lay-

ers. This calculation can be done for any desired number of cross-sections. Increasing

the number of cross-sections result in finer increments in refractive index between

layers and thus better transmission. Although theoretically one can divide the NAL

to any number of horizontal segments, it was observed that no significant improve-

ment is achieved by increasing the number of cross-sections by more than 100. Thus

all the calculations performed here are reported for 100 horizontal cross-sections.

Figures 4.3(a)& 4.3(b) show the calculated refractive index and the fill-factors
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required for each of the 100 cross-section layers comprising a silicon LAN. The cross-

section layers are numbered from 1 to 100, starting at the top. Fig. 4.3(a) shows that

as expected, the refractive index continuously increases from n = 1 (the refractive

index of air) to n = 3.5 (the refractive index of silicon) as we go from layer 1 to

100. Fig. 4.3(b) shows that the fill-factors required at each cross-section increase

continuously from p = 0 to p = 1 (or 100%) at the bottom. In other words, layer

1 is completely composed of air. The percentage of the area composed of silicon, at

each cross-section, increases continuously over the NAL’s height. The last layer is

completely composed of silicon. This means the nanostructures should start from a

point at the top and merge together at the base.

(a) (b)

Figure 4.3: The calculated refractive index of each cross section of the NAL (a)
The refractive indexes increase gradually from Layer 1 to Layer 100. nAir = 1 and
nSi = 3.5. (b) The Si Fill-Factor changes gradually from 0% at Layer 1, on the top,
to 100% at Layer 100, in the bottom.

It worth mentioning that interferometric lithography, used to fabricated NALs in

here, results in 2-D Cartesian arrays of nanostructures and thus a 100% fill-factor at

the base is best achievable by nanostructures with rectangular cross-sections However

as the dimensions approach 100′s of nanometers and smaller, circular cross-sections

are more feasible experimentally. A circular base can either be enclosed in the square

boundaries of the unit cell or enclose it. 100% fill factor using a circular cross-section,
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is only possible in the later case.

Having determined the percentage of the unit cell area occupied by silicon at every

cross-sectional layer of the silicon nanostructures, the width (for nanostructures with

square cross-section) or radius (for nanostructures with circular cross-section) of the

nanostructures can then be easily calculated at each layer. Also the fact that fill

factor is a percentage rather than an absolute value provides considerable flexibility

when it comes to physically fabricating the designed NALs. The actual dimensions

are determined by multiplication of the fill factor by the selected pitches in x&y

directions.

4.3.2 Cross-section Thicknesses and Profile Design

Although a taller [110] nanostructure helps achieving smoother transition, it is not

necessarily the best approach. Not only taller nanostructures are more difficult,

time consuming and expensive to fabricate, they are considerably more vulnerable

to mechanical damages. It’s crucial to maximize transmission while limiting the

nanostructured height.

Simulation results (please refer to Sec.4.4.3 for more info) have shown that the

performance of a nanostructured antireflection coating increases as its overall thick-

ness (in other words the height of nanostructures) increases but the trend saturates

at a thickness which corresponds to a phase change of π in the light as it travels inside

the nanostructure. Further increase of the NAL thickness or thus the height of nanos-

tructures doesn’t result in any noticeable improvement in transmission. Thus the

minimum height of nanostructures which can still result in optimum transmission, is

the one which results in a phase difference of π in the light.

Eq. (4.6) describes the total phase-change in the light as it travels through the
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NAL as the summation of the phase-changes in each cross-sectional layer.

N∑
i=1

kiti = π (4.6)

In this equation ti and ki are the thickness and the wave vector at each of the N

layers, correspondingly. The wave vectors can be expressed as ki = 2πni

λ
, where λ is

the wave length of the light at air (incidence medium). ni is the effective refractive

index of each layer calculated in equation 4.5.

N∑
i=1

niti =
λ

2
(4.7)

Using the method of [110] and eq.(4.7), the thickness of each layer can be calculated

as in eq. (4.8). Figure 4.4 shows the calculated thickness required at each cross-

section layer.

ti =
λ

2Nni
(4.8)

Figure 4.4: The required thickness of each of the 100 cross-sectional layers of a NAL
that will maximize transmission of of a 4µm light from air into silicon substrate.

Having determined the fill-factor and thickness at each of the cross-sections of a

NAL, one can plot the ideal profile for a nanostructure as shown in Fig. 4.5. The
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Figure 4.5: Nano-pillars with square cross section

input parameters in the design each profile are the refractive indexes of the incident

and transmission medium and the wavelength of the light. Choosing the incident

transmission media as air and silicon, the optimum profile can be designed for each

wavelength.

It should be noted that the x & y axis in Fig. 4.5 are in units of “normalized-

length” (which can also be interpreted as the 1-D fill-factor). This method of ex-

pressing the results offers considerable flexibility. By multiplication of the results ob-

tained in normalized-length, with the pitch (controlled by interferometric lithography

setup), one can readily obtain the shape of the optimal profile of the nanostructure

in units of nm for the specific wave-length and pitch.

An other important consideration about the calculated profile of Fig. 4.5 is that

the designed nanostructure starts as a point at the top (with a fill factor of 0%) and

gradually widens to occupy the unit cell completely at the base. Thus each of the

designed nanostructures merge with their immediate neighbors as well as with the

silicon substrate. As the light travels through the depth of a nanostructured an-

tireflection coating designed using this method, the effective refractive index changes

gradually from that of air to that of silicon maximizing transmission. The simulation
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results of the next section will study the performance of these nanostructures using

numerical methods.

Figure 4.6: A NAL composed of a 2D array of nanostructures. For avoiding
diffraction, it is essential to keep the pitch of nanostructures well below the

wavelength of light.

Fig. 4.6 illustrates a NAL made of an array of the designed nanostructures. In

order to prevent any diffraction from the nanostructures it is essential to keep the

pitch of the nanostructures well below the wavelength of light.

4.4 RCWA Simulation Results

Extensive numerical studies have been reported on the performance of NALs of dif-

ferent shapes and materials. These reports use different methods including Effective

Medium Theory (EMT), Finite Difference Time Domain (FDTD), Transfer Matrix

Method (TMM), Finite Element Method [50] and Rigorous Coupled Wave Analysis

(RCWA). Using these methods, researches have simulated the behavior of different

designs such as cylindrical, cone shaped, parabolic and moth-eye structures [118].

The main method used here to simulate the performance of the proposed profile
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is RCWA although some FEM has been used as well. RCWA method solves the

electromagnetic field equations (4.9) and (4.10) to study the scattering of electro-

magnetic waves in particular by periodic structures. Here RCWA will be used to

study the scattering as a function of the geometry and shape of individual elements

of the periodic structure.

O×µ−1r ( O×E) = k20(εr −
j0σ

ωε0
).E (4.9)

E(x, y, z) = E(x, y).e−ikz (4.10)

Equations (4.9) and (4.10) relate the geometry of nanostructures to the electric field

(and the coupled magnetic field intensity H) and to the transmission of different

wavelengths. This dependence is more considerable at smaller wavelengths (com-

pared with the pitch and dimensions of the nanostructures) but decreases as the

wavelength increases. The simulations performed here, cover a wide range of wave-

lengths and pitch values as well as substrates materials other than silicon.

4.4.1 Transmission Through NAL with Optimized Profile

In this section transmission of mid-IR (MIR) light through nanostructured antire-

flection layer (NAL) is studied. All NALs used in these numerical analysis have the

same optimized height & fill-factor profile but different pitch values. The height

and fill factors used in this section are optimized for wavelengths between 4µm and

9µm. Figure 4.7(a) shows the RCWA simulation results for transmission of MIR

light (3µm < λ < 9µm) through NALs as a function of the wavelength (λ) and the

nanopillar pitch. The profiles of the nanopillars used in this simulation are designed

to be optimal at every specific λ. These results show that, the transmission drops

considerably at large pitch values due to the diffraction from nanostructures. At

very small pitch values on the other hand, transmission drops very slowly. This is

due to over simplification of the interaction by the effective refractive index concept
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(that is an approximation and doesn’t distinguish between profiles as opposed to

exact solution to Maxwell equations). The peak values of transmission ( represented

as a bright yellow region in figure 4.7(a)), seem to fall along a transverse line in the

λ-pitch plane. Fig. 4.7(b) shows this behavior much better by capturing the top view

of the transmission data. This figure reveals that transmission is maximum along

the pitch = 0.28λ. Table 4.1 reports the values of transmission on a couple of points

along this imaginary line, confirming this observation.

(a)

(b)

Figure 4.7: Transmission of IR light (4µm < λ < 9µm) through NALs (a) 3-D repre-
sentation of transmission results. (b) Top-view representation of transmission results
of part (a). The yellow line represents the maximum values corresponding to trans-
mission for pitch = 0.28λ (the transmission reduces away from the yellow region)
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As the pitch to wavelength ratio becomes larger, scattering to high spatial fre-

quencies increases and therefore the scattering free transmission efficiency (zeroth

order transmission) is reduced. To better understand this phenomenon we again

refer to figure 4.7. The maximum transmission happens along the yellow line. The

data in table 4.1 is also alongside this yellow line. On the right hand side of this

yellow line (larger wavelengths region at a fixed pitch), according to the simulations,

all the energy is transmitted through the zeroth order (scattering free transmission).

On the left hand side of the yellow line (lower wavelengths at the fixed pitch) we

always see scattering to higher spatial frequencies, which drastically decrease the

zeroth order transmission. By cutting the surface of figure 4.7 along pitch and λ

axis, these variations can be observed more clearly as shown in figure 4.8.

Table 4.1: The maximum transmission values at different wavelengths for
optimal shape and pitch (air-silicon interface)

Index of refraction λ(µm) Pitch(µm) Optimum Transmission
n = 3.5 4 1.11 0.9906
n = 3.5 7 1.91 0.9911
n = 3.5 10 2.7 0.9910

In addition to the profile of nanostructure, the transmission is affected by the

angle of incident beam and pitch of the NAL. According to [22, 103], the angle of of

scattered light is related to the angle of incident light and pitch through:

k2n2
2sin

2(θmn) =

(
kn1sin(θ)cos(φ) +

2πm

dx

)2

+

(
kn1sin(θ)sin(φ) +

2πn

dy

)2

(4.11)

where dx and dy represent the pitch values in the X and Y directions respectively

(corresponding to the NAL on top of the substrate). θ and φ are the polar and

azimuthal angles for the incident beam (incident k-vector).θmn specifies the propa-

gation direction of the transmitted (diffracted) wave (m and n are integers defining

the diffraction order related to the periodicity along x and y directions respectively).
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(a) (b)

Figure 4.8: 2D cut planes from the 3D transmission data in Figure 4.7(a). (a) Trans-
mission versus pitch at different wavelengths. (b) Transmission versus wavelength at
different pitches.

n1 is the refractive index of the incidence medium (usually air), and n2 is the refrac-

tive index of the substrate. If the pitch is small enough, the equation has solutions

for larger values of m and n. When the angle of incidence is zero there is a simple

relation for the pitch Pitch to refrain diffraction is:

Pitch =
λinc
n2

(4.12)

where n2 is the refractive index of the substrate.

In our theoretical estimation of transmission we have assumed the angle of inci-

dence to be zero. Also the features of the periodic nano-texture are considered small

compared to wavelength, so the transmission will mainly occur at zeroth order.

4.4.2 Transmission Through NALs With Parabolic Profile

An alternative profile previously reported for NALs is the parabolic profile. Fig-

ure 4.9(a) shows the RCWA simulation results for NALs with parabolic profile.

Parabolic profile is not the ideal profile and the corresponding peak transmission
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values are less than that of the optimal profile presented in the previous sections as

evident from figure 4.8 however the differences are in the range of less than couple of

percents. Note that when using high power lasers, even the smallest improvements

can have significant impact on system performance. It should also be mentioned that

parabolic designs, based on RCWA simulation results, improve the transmission over

a broader wavelength range.

(a) (b)

Figure 4.9: Transmission through NAL with parabolic profile.(a) Transmission
through NAL plotted versus pitch at different wavelengths. (b) Transmission through
NAL plotted versus wavelength at different pitch values.

Table 4.2: Maximum transmission at optimal pitch values (for parabolic
profile) through substrates with different refractive indexes.

Index of refraction λ(µm) Pitch(µm) Transmission
n = 1.5 4 0.8 0.9997
n = 1.5 7 1.5 0.9997
n = 1.5 10 2.1 0.9993
n = 2.5 4 0.8 0.9873
n = 2.5 7 1.5 0.9882
n = 2.5 10 2 0.9873
n = 3.5 4 0.8 0.9632
n = 3.5 7 1.5 0.9698
n = 3.5 10 2 0.9633
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Although the main focus of this study is transmission through a silicon substrate,

Table 4.2 also shows a the transmission data for three different substrate materials

with different refractive index values at multiple λ and pith values. The simulation

results of this table confirm that for the same λ and p values, the transmission is

smaller for larger substrate-refractive-indexes. In general it is well understood that

as the index contrast between the background and substrate medium increases the

transmission decreases making the use of antireflection coating more crucial.

4.4.3 Increasing Height to Wavelength Ratio

The nanostructures studied so far, had a height of λ
2neff

which would result in a

phase-lag of π in the light as it travels through the nanostructure. For simplicity we

will refer to this height as hπ. This value is different for different profiles. The hπ is

actually half of the value commonly used in other reports. However our simulation

results indicate that increasing the nanostructure-heights further than hπ won’t result

in any significant increase in transmission at a specific wavelength. This section is

devoted to study the effects of NAL thickness (nanostructure-heights) in transmission

of IR-light.

The results of Fig. 4.10(a) & Fig. 4.10(b) show how transmission changes as

a function of nanostructure height. Each of the nanostructures of Fig. 4.10(a) is

designed for a different λ and pitch values. The selected pitch and λ values fall on

the λ = 3.7 ∗ Pitch line of Fig. 4.7(b). This guarantees that the profile used will

yield maximum transmission and the observed effects are only due to the change in

nanostructure height. As can be seen the transmission increases as the nanostructure-

height increases. The transmissions reach almost 100% as the height reaches hπ. As

shown in Fig. 4.10(b), all curves of Fig. 4.10(a) overlap when the nanostructure-

heights are normalized with respect to to their corresponding hπ. Thus Fig. 4.10(b)
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(a) (b)

Figure 4.10: The transmission versus pillar height for different wavelengths. The
total phase shift is π where T = 99.1% (a) Transmission versus NAL height. λ =
3.7 ∗ Pitch as discussed in Fig. 4.7(b). (b) All transmission curves overlap when the
nanostructure-heights are normalized with respect to the hπ for each design.

can be used to study the effect of nanostructure-height on transmission through NAL

for all the wavelengths of interest.

(a) (b)

Figure 4.11: Comparison of the transmission bandwidth between two sets of nanos-
tructures with heights of (a) hπ and (b) 2hπ.

The results obtained here indicate that NALs with a thickness of hπ provide max-

imum transmission while keeping the nanostructure heights at minimum. Further
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increase of nanostructure-heights can increase the transmission over a larger band-

width. Fig 4.11 shows the simulated transmission of nanostructures with heights of

hπ and 2hπ. Thus depending on the application one might find either hπ or 2hπ as

the ideal nanostructure height.

Figure 4.12: Both identical pillars height designed for 7µm wavelength. (a) Trans-
mitting wavefront when incident beam is a 4µm light (the height is equivalent for a
roughly 2π phase shift for this wavelength) (b) The illumination is at 7µm equivalent
to π phase shift of the light

In a recent work, Wang et al. [132] showed that when the ratio of height to wave-

length of nanostructures increase, the wavefront is distorted as it passes through the

NAL. The finite element simulation results of Fig. 4.12 show a comparison between

the transmitted wavefronts for nanostructures with heights of hπ and 2hπ. These re-

sults are in good agreement with the results of [132] revealing that as ratio of height

to wavelength is increased the wave is diffracted into higher spatial frequencies.

78



Chapter 4. Nanostructured Antireflection Layers (NALs)

Over all the results of this section indicate that hπ is the optimal height for the

nanostructures and in order to obtain maximum transmission at a target wavelength,

the pitch should be set as using the λ = 3.7 ∗ Pitch relationship according to figure

4.7(b) and 4.8.

4.5 Experimental Results for IR Transmission Through

Silicon and Effects of NAL

As explained in Chapter 3, an FTIR microscope is used for measuring IR trans-

mission through the samples with NALs. The specific microscope used, can run

measurements in both “Reflection” and “Transmission” Modes. Fig 4.13 shows the

comparison of these two modes for IR transmission through a microscope slide as

well as two-side-polished silicon wafer. Silicon is inherently transparent through a

portion of the infra-red (IR) regime.

(a) (b)

Figure 4.13: Transmission of materials with known IR transmission profile have been
measured for calibration. (a) Transmission through a microscope slide (b) Transmis-
sion through a double-side-polished silicon wafer, using two different reflection and
transmission modes.
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(a) (b)

Figure 4.14: Transmission of IR through two (100) double side polished silicon wafers,
(a) Intrinsic (b) Highly doped.

The transparency bandwidth can change significantly based on the manufacturing

method of the wafer and impurities present. Figure 4.14 compares the transmission

bandwidth of an intrinsic silicon wafer with a highly doped one. The transmission

is shown for two intrinsic silicon wafer with different manufacturing technology of

silicon wafer in figure 4.15. Overall if high transmission is needed, one should choose

intrinsic silicon. [126].

Figure 4.15: Effects of positive and negative doping on transmission bandwidth[126].

As shown in figure 4.15 and according to [126], the optical grade Czochralski
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silicon crystal can be used in a wave length region of 1µm to 6µm while the float

zone silicon crystal can perform from 1µm to 14µm. All the nanostructured antire-

flection layers whose experimentally-measured transmission data are reported here,

are fabricated using identical intrinsic silicon wafers.

A total of four samples will be presented and discussed here. In the first (Fig. 4.16)

and last (Fig. 4.19) samples the nanostructures are fabricated only on one side of the

wafer while samples 2 and 3 (Figs. 4.17 & 4.18) have nanostructures on both sides.

(a) (b)

Figure 4.16: Vertical profile. 40% duty cycle corresponds to 16% of unit cell. No sig-
nificant change of transmission is observed (a) One-sided-polished intrinsic Si wafer
with a NAL fabricated on the polished side. The nanostructures demonstrate rela-
tively large pitch values, low duty cycle and straight side-walls. (b) Transmission of
the fabricated NAL is compared to the intrinsic one-side-polished silicon wafer.

In the sample of figure 4.16(a) the nanostructures are relatively spars, covering a

considerably small portion of the unit-cell also they have vertical sidewalls. Vertical

sidewalls means the fill factor remains relatively constant with a refractive index

intermediary to that of air and silicon. Also the relatively small fill-factor means

the effective refractive index is numerically closer to that of air. These factors are

expected to significantly reduce the performance of this NAL as confirmed by the
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experimental data of Fig. 4.16(b). This transmission plot obtained is not signifi-

cantly difference from a bare Silicon wafer. This emphasizes the importance of the

nanostructures profile, and fill-factor, in their performance.

(a) (b)

Figure 4.17: 84% duty cycle means 70% of the cross section area is covered by
vertical NAL. We should consider the sqrt of the transmission measured to get T

for one layer (which reaches 83%) (a) SiNPs (b) Transmission of bare and
double-side-nanostructured intrinsic silicon

Samples number 2 and 3 were fabricated with the goal of achieving 100% fill-

factor at the base. As can be seen in Figures 4.17(a) and 4.18(a), the fabricated

nanostructures represent much higher fill-factors than that of Figure 4.16. In figure

4.18(a) the fill factors reduce from ≈ 100% fill-factor at the base to a smaller value

at the tips, through optimizing the etching process, yielding a higher transmission

compared to figure 4.17.

The experimental transmission data of Figs.4.17(b) & 4.18(b) might not look very

impressive at a first glance since it is not even close to the simulation results. However

it should be noted that these experimental data are for double-sided samples. As long

as the reflections are little (around 10%), if the transmission through one interface

82



Chapter 4. Nanostructured Antireflection Layers (NALs)

(a) (b)

Figure 4.18: Transmission from double side taper NAL( a) High duty cycle thick
nanostructures with near 75% fill factor at the base and tapered sidewalls. (b)
Transmission of (2 side polished) bare and double-side nanostructured intrinsic

silicon

is denoted by T% the transmission from a two sided sample will be T 2. This means

in order to obtain transmission data corresponding to a single interface one should

calculate the square root of the transmission data obtained from a double sided

sample (See Fig. 4.20(b)). Comparison of the square root of the transmission data in

Figures 4.17(b) and 4.18(b) with the transmission percentage of Fig. 4.16(b) would

then reveal the considerable improvement achieved by samples 2 and 3.

Figure 4.19(a) shows the fourth sample which presents a profile very close to

the optimal profile designed in section4.3. These nanostructure are fabricated on

the polished side of an intrinsic silicon wafer using inductive couple plasma (ICO).

Currently we are waiting the ICP to fabricate identical structures on both sides of

the wafer since the available RIE can’t perform homogeneous etching required to

fabricate these profiles.

Finally, a comparison is done between the experimentally measured transmis-
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(a) (b)

Figure 4.19: Tapered profile fabricated by ICP and CF4.(a) SEM image of the NAL.
(b) The transmission calculated by RCWA (the measured transmission is not avail-
able).

(a)
(b)

Figure 4.20: Simulation of structures transmission by RCWA (a) Average profile
of the nanostructures of Fig 4.18(a) is obtained and used to perform numerical
simulations using RCWA. (b) Comparison of RCWA and experimental results for
transmission percentage through NALS into the underlaying bulk silicon

sion data and simulation results for one of the fabricated samples. The sample of

Fig.4.18(a) is used for this purpose. The average profile of the fabricated nanos-

tructures are obtained from the micro-graphs and reconstructed in MATLAB (see

Fig. 4.20(a)). RCWA method is used to determine transmission through the obtained

84



Chapter 4. Nanostructured Antireflection Layers (NALs)

profile. The experimental and simulation results for this specific sample are com-

pared in Fig. 4.20(b). The one-interface transmission data are obtained by square

root of the two-sided experimental data of 4.18(b) and then compared by simulation

results. Fig. 4.20(b) show considerable agreement between experimental and simu-

lation results as well as some small differences that can be due to the simplifications

inherent to the RCWA method.

4.6 Conclusion

Nanostructured antireflection layers were studied in this chapter and found to offer

significant advantages over traditional multilayer deposited antireflection coatings.

NALs etched out of a substrate, have the same material as the substrate minimizing

any thermal stresses. NALs are designed to optimize transmission of infrared light

(3µm-7µm) from air to silicon substrate. As long as the pitch and dimensions of the

nanostructures are kept small compared to the wavelength of the light, the refractive

index can be engineered in NALs through changing the “Fill-factor”. This allowed

continuous transition of refractive index from air to the silicon substrate resulting in

considerably high transmission. Using the analytical method derived in this chapter,

the optimal fill-factor profile of the NALs were designed and was analyzed using

RCWA method. The effect of different geometrical parameters on the performance

of the designed NALs were studied numerically. It was determined that besides

the fill-factor profile, the pitch of the nanostructures have significant effect on their

performance. According to our results, in order to maximize transmission for a

specific wavelength one should select pitch = 0.275λ. Our studies show that after

the fill-factor profile, height of the nanostructures is the most deterministic factor

in the overall transmission. The transmission increases considerably with increasing

nanostructure heights but it saturates at a height which corresponds to a π phase
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shift of the light transmitting through the pillars. The bandwidth of the transmission

(versus different incident wavelengths) grows broader as we increase the height, but

increasing the height over the π shift, will introduce diffraction and the k vector of the

transmitted light will no more be orthogonal as the k vector of the orthogonal incident

plain wave. NALs with different profiles and pitch values were fabricated and tested

experimentally. The experimental results were found supporting the theoretical and

analytical results.

86



Chapter 5

Raman

5.1 Introduction

5.1.1 Objective : Characterization, and Application of Plas-

monic Resonators on Silicon Nanopillars (SiNPs)

The main objectives of this study are understanding the electromagnetic behavior

of gold nanodisk and gold nanodisk stacks (with silica nanodisks in between) on a

silicon nanopillar (SiNP) and the application of the corresponding field enhancement

(through plasmonic resonance) in Raman spectroscopy. This study consist of four

parts; 1) Theoretical analysis of resonant modes and the absorption/scattering cross-

sections of SiNPs and comparison with experimental results. 2) Theoretical analy-

sis of resonant modes and the absorption/scattering cross-sections of gold nanodisk

and gold nanodisk stacks. 3) Theoretical analysis of resonant modes and absorp-

tion/scattering cross-sections of gold nanodisk and god nanodisk stacks on top of

SiNPs including local field enhancement in these structures. 4) Experimental study

of Raman scattering by selected molecules in the vicinity of silicon pillars with gold
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nanodisks (or gold nanodisk stacks) on top.5) Experimental study of Raman scat-

tering by selected molecules in the vicinity of silicon pillars with non-gold metallic

and semi-metallic nanodisks.

This chapter starts with a review of the main concepts. Next I calculate the

resonant frequency and distribution of electromagnetic modes in SiNPs using finite

element modeling. The scattering and absorption cross sections for SiNPs are calcu-

lated using finite Difference Time Domain (FDTD) method and then compared with

experimental measurements. The plasmonic modes of gold nanodisk are calculated

using analytical method, and also a simple RLC model is developed for this resonat-

ing system. The scattering/absorption cross-sections for gold nanodisks and gold

nanodisks stacks are calculated using FDTD in the presence and absence of silicon

substrate.

Next the behavior of the gold nanodisk (single and stack) on top of SiNP is

studied by calculating the absorption/scattering cross-sections of the structure using

FDTD method. Based on the outcomes of similar calculations for isolated SiNP

and gold nanodisks, the interaction between plasmonic and dielectric modes are

investigated. After identifying the resonance frequency of these structure, the loca-

tion and magnitude of field enhancement is evaluated using FDTD simulation with

excitation wavelength matched to the resonance frequencies extracted from the ab-

sorption/scattering spectrum.

In the experimental section,the plasmonic local field enhancement by gold nan-

odisks and nanodisks stacks are used to enhance the Raman scattering by methylene

blue and thionine molecules. The measured Raman spectra are used to evaluate the

field enhancement for each structure. In addition to enhanced Raman emission, in

several cases decomposition of methylene blue has been observed.

The last section of this chapter is a preliminary study of the impact of the material
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properties of the nanodisk on field enhancement. I have measured Raman scattering

in the vicinity of SiNPs that instead of gold nanodisks, are covered by Ag, processed

Ge, TiN , and CuO nanodisks.

5.1.2 Raman Enhancement Using Plasmon and Dielectric

Resonance

While most photons scattered from molecules have the same energy as the incident

ones (elastic scattering), a very small fraction can scatter inelastically. Raman-

Scattering is the inelastic scattering of photons by molecules that are excited to

their higher vibrational or rotational levels. The frequency (energy) of these photons

that is shifted (usually to a lower frequency) relative to the incident photons, can

be used to identify molecules and their internal energy structures. Since approxi-

mately only 1 in every 10 million photons are scattered through Raman process, it is

essential to increase the strength of the interaction by resonant enhancement tech-

niques. Nanostructures made from different materials, with different configurations

and shapes have been used for this purpose.

Resonant enhancement can occur both in dielectric and metallic nanostructures.

In metallic nanostructures the enhancement is a result of localized plasmon reso-

nance. The local resonant field generated by optically excited electronic resonance

is larger than the incoming optical field by the so called ”field enhancement factor”.

Field enhancement at the frequency of incoming radiation increases the efficiency of

the Raman process proportional to the second power of the field enhancement factor.

Additionally as the molecule excites the plasmonic resonance, the field enhancement

at Raman frequency increases the scattered radiation also proportional to the second

power of the field enhancement factor. As such in the presence of plasmonic reso-

nance, the overall efficiency of Raman scattering is enhanced by the fourth power of
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field enhancement factor.

The presence of multiple plasmonic modes in the bandwidth of interest can be

also important in achieving considerable field enhancement. The field-enhancement

happens mainly at the resonance frequency through coupling of the propagating

plasmon wave to the localized mode. Zhang et. al. [144] used Bessel equations to

study these modes. It is important to emphasize that, although existence of different

modes can be positive factor in Raman enhancement, the most important factor is

the coupling of the plasmonic waves with the localized modes and the resulting field-

enhancement and polarization of test molecule.

In dielectric nanostructures, the field enhancement is a result of the optical res-

onance formed by the dielectric boundary. However as the resonant field is not

confined on the surface (where the interaction with molecules occur), the resulting

enhancement (both in generation and radiation efficiency) is more complicated and

has to be analyzed on a case by case bases.

In addition to field enhancement, the Raman scattering efficiency can be enhanced

also by charge transfer between nanostructure and the molecules.This is a less un-

derstood mechanism and its strength strongly depend on the chemical composition

of the nanostructure and the molecule. In this chapter we also report observation of

this phenomenon for certain molecules.

Plasmonic structures, such as the metallic nanodisks and the metal/dielectric

stacks have been extensively used for field-enhancement [120]. Silicon nanostructures

have been also demonstrated to be capable of Raman generation [133, 131]. Silicon

Nano-cones, deposited by CVD and with tips as sharp as 5nm, have been reported

to yield an enhancement of 1000 [27]. Some recent reports have used silicon-nano-

pillars for field enhancement and Raman generation [72, 24]. While they attribute

their observations to field enhancement by silicon, Wang et al.’s results [131] attribute
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the relatively weak Raman signal obtained using Si and Ge nanostructures to the

chemical enhancement caused by hydrogen bonds on Si and Ge.

Field enhancement sites can be increased by stacking multiple layers of plas-

monic layers, separated by a thin dielectric layer. Maximum field-enhancement usu-

ally happens at the edges of the metal and in the dielectric region between metallic

nanostructures[120, 140]. In the later case, the field won’t be very accessible for

the target molecules and thus can’t play a role in SERS. Zhang et al. have in-

vestigated the different modes of metal-dielectric-metal and corresponding optical

resonances [143].When using more than one plasmonic layer, separated with a thin

layer of dielectric, the resonant fields of these layers can couple. As such the reso-

nance frequency of the single plasmonic disk, can split into two resonance frequencies

of a metal/dielectric/metal stack (usually an even mode [30, 47]). It is possible to

reduce the wavelength of the odd modes and “blue-shift” them from far-infrared

to near-infrared, by reducing the oxide-thickness between the metallic layers[47].

Zhang et. al [144] investigated multi metal/dielectric stacks and the possible modes

that can form. According to this study, ”Only symmetrical modes survive for small

dielectric thickness” for multilayer stacking [144]. Cao et al. [28] reported a consid-

erable decrease in reflection and wide angular tolerance, achieved by a stack of 32

metal/dielectric layers (Au:Si , 10nm : 20nm). They’ve attributed this to synergistic

effect of “slow light” mode and localization of surface plasmon [28]. In fact the ab-

sorbed light has turned to plasmonic waves coupled with localized surface plasmons

(LSP) [90].

Note that excessive field enhancement can also lead to degradation of the tar-

get molecules. Tesema et al. [123] investigated N-demethylation of methylene blue

molecules to thionine in presence of plasmon and red light . Mukherjee et al. [99]

investigated the effect of hot electron in hydrogen dissociation on gold nanoparticles

under visible light. In this case, the surface plasmons excited on gold, decay into hot
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electrons with energies between vacuum and that of metal work function, transfer-

ring into resonance of hydrogen molecule absorbed, triggering its splitting into two.

The absorbed energy by nanomaterial will ultimately turn into heat (if not radiated

back) as in any absorber of light [99, 96, 123]

Raman measurement is used by researchers for detecting traces of different ma-

terials. Therefore in contrary to other sensors usually designed for quantitative

measurements [95, 13, 98, 49, 68, 71, 107], we have focused on maximizing sensor

signal intensity for purpose of enhancing SERS structures capability for detecting

minute traces of molecules, without quantizing it.

5.2 Optical Response of Bare SiNPs

This section focuses on SiNPs, e.g. nanostructures etched out of silicon. The details

of the fabrication procedure of these structures are explained in chapter 2. Studying

the scattering of light from SiNPs provides an understanding of their role in Ra-

man generation. The optical response of SiNPs are studied both numerically and

experimentally. SiNPs can serve as a substrate for metal/insulator/metal (MIM)-

stacks. 5.4. However silicon’s high refractive index makes it possible to achieve

light-confinement and cavity resonance at visible wavelength. Silicon is a common

choice for dielectric nano-resonators as it is relatively cheap and benefits from a very

mature processing technology. The SiNPs of figure 5.1 illustrate one example of such

structures.

Due to low density of fee electrons in the absence of doping, SiNPs interact with

light primarily through their bound charges [38]. This means that when a SiNP

is illuminated, the field is mainly confined inside the nanopillar and the scattering

observed under dark-field is solely the result of participation of the bound charges

and no plasmonic resonance effect takes place.
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Figure 5.1: An SEM image of SiNPs fabricated by interferometric lithography (IL)
and plasma etching (see chapter 2 for fabrication details). The specific SiNPs batch
presented in this figure, have an average height and diameter of 400nm and 186nm
respectively. SiNPs will be fabricated with 230nm diameter for Raman generation,
and scattering measurements.

5.2.1 Permittivity of Silicon

(a) (b)

Figure 5.2: Permittivity data for silicon as provided by Lumerical software’s data
base. Dots show Palik’s [105] experimental data used by Lumerical as the reference.
The continuous line is a curve fit performed by Lumerical in order to determine
permittivity at any intermediary wavelength.(a) Real part of silicon’s permittivity
(b) Imaginary part of silicon’s permittivity
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Permittivity of silicon has a deterministic effect in our subsequent analysis and

numerical studies. The permittivity data used in our simulations are directly ob-

tained from the database of LUMERICAL software. Lumerical uses a curve fit to

the experimentally measured permittivity values of Palik [105] in order to determine

permittivity at any intermediary wavelength as well. Figure 5.2 is duplicated from

Lumerical’s database and shows Palik’s data along side the fitted curve.

5.2.2 Field-Enhancement by SiNP

As a dielectric resonator, SiNP can sustain confined optical resonance. Confinement

and resonance together result in optical field enhancement. Fig. 5.3 illustrates a

Figure 5.3: Illustration of the SiNP used for simulating the field enhancement and
scattering. The lines AA, BB and CC are the locations where most of the

simulations results are reported. These probe lines are located 1nm away from the
structure surface.

SiNP and the lines along which the field enhancement is monitored in our simula-

tions. Unless specified otherwise, the simulations reported in this chapter are done

for a single nanostructure (bare SiNP and SiNP with a MIM-stack on top). The

optical modes in these structures are excited by a 4 femto-second optical pulse with

a wavelength of 630nm. Fig. 5.4(a) shows the calculated near field resulting from
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(a) (b)

Figure 5.4: FDTD simulation results for E field intensity (a) Near field scattering by
a SiNP on a silicon substrate (calculated with source power of unity). (b) field along
C-C line on top of 450nm high SiNP.

illuminating a silicon nano-pillar. As shown in the figure the excitation of a reso-

nant mode of the SiNP supports the capability of dielectric nanostructures to sustain

and enhance the E-field. However with the exception of the sharp edges (on top),

significant portion of the field resides inside the nanostructure and therefore is not

accessible for surface interaction with molecules. Fig.5.4(b) shows the field along the

C-C line and as expected, as mentioned above the field enhancement is maximum at

the edges. Note that the enhancement is quantified relative to an incident field of

unity. All the field enhancement measurements will be done along a line parallel to

laser incidence, 1nm away from the plasmonic disks or SiNPs. The maximum of the

fields happen at the edges of the metal disks.

5.2.3 Scattering Cross-Sections of SiNP: Numerical Analysis

It is well-known that SiNPs with different dimensions appear with different colors

under the dark field microscope (see Fig. 5.6). This observation indicates that the

scatterings is frequency dependent and in particular some peaks should be observable
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in the visible region. The location and the amplitude of these scattering peaks are

also associated with the resonances in SiNP and therefore the corresponding field

enhancement. Given that local field enhancement is very difficult to measure, usu-

ally the scattering and absorption cross-sections and their frequency dependence are

the primary sources of information about the field enhancement and performance of

the SiNP as a Raman enhancement site. As such we have used finite difference time

domain (FDTD) method to investigate the impact of SiNP geometry (both height

and diameter) on the optical responses of SiNPs. Fig. 5.5 shows the calculated

(a) (b)

Figure 5.5: Calculated scattering cross-section for SiNPs with different diameters
and heights. (a) Height = 400nm and diameter=100nm, 130nm, 150nm, 200nm
and 280nm. (b) Diameter=280nm and height = 300nm, 350nm, 400nm, 450nm,
500nm, and 550nm.

scattering cross-section as a function of excitation wavelength, at different heights

and diameters. In part-a the height is kept constant at 400nm and the diameter

is changed (100nm, 130nm, 150nm, 200nm and 280nm). In part-b the diameter is

kept constant at 280nm and the height is changed (300nm, 350nm, 400nm, 450nm,

500nm, and 550nm). As evident from the plots, that at a fixed height the resonant

peak can be tuned by changing the pillar diameter without significant impact on

its spectral width (that is proportional to the quality factor of the corresponding
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resonant mode). On the other hand changing the pillar height at a fixed diameter

mainly affects the resonant bandwidths and not the location of the peaks. These

results provide a guide line for selecting the optimal wavelength for a given SiNP

geometry of fabricate SiNPs for field enhancement at a given wavelength. For the

wavelength used in our experiments ( 633nm), a SiNP with a diameter of 280 nm

and height of 400 nm seem to be optimal (results in the largest and narrowest scat-

tering). Note that at controlling the pillar height and diameter in nano-scale is a

challenging and in practice one can only get close to the optimal values. While a

strong and narrow resonant peak indicates the presence of a high-Q resonance within

the SiNP, the resulting field enhancement and its usefulness for Raman enhancement

is not guaranteed and require further investigation (regarding the location and the

magnitude of the enhanced field).

5.2.4 SiNPs Scattering Cross-Section: Experimental Results

The fabricated SiNPs of Fig. 5.6 are 400nm in height and 230nm in radius. The

periodicity of this nano-pillar array is 2.1µm. Scattering data of white light by

these silicon nano-pillar structures are shown in Fig 5.7. In order to determine the

scattering of the light from a single SiNP, the light should be focused on a single

nanopillar. While the beam spot size can not be in the scale of a single SiNP (230nm

in radius) but it can be focused to a size smaller than the period of the array (2.1µm).

Fig. 5.7(a) shows the results of 20 measurements.

As can be seen, the scattering can be different based on the position of the light

compared to the single SiNP (we can not center the light in the middle of pillar

since the pillar is much smaller than the wavelength used in measurement). This

is because, different incident angles on SiNPs can stimulate different resonance fre-

quencies. However averaging the results of 20 data-sets can presents the scattering
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Figure 5.6: Dark-field image of a SiNP array fabricated using Ni mask over silicon.
The nanopillars are 400nm in height and 230nm in radius. The pitch is 2.1µm

(a) (b)

Figure 5.7: Experimentally measured scattering cross-section of an individual SiNP.
(a) Shows the results of 20 measurements. The variations associated with optical
alignment. b) is the average of the 20 measurements.

cross section of nanopillar more reliably (see Fig. 5.7(b)). The variation of the peak

wavelength and the spectral shape is most probably associated with simultaneous

excitation of various modes. However the average value of the measured scattering

cross-section is in relatively good agreement with the simulation results in terms

of the resonant wavelength (in particular with the green curve in Fig. 5.5(a) corre-

sponding to the SiNP with height=400 nm and diameter=280 nm).
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5.3 The Absorption/Scattering Cross-Sections of

Gold Nanodisk And Gold Nanodisk Stacks

The objective of this section is to find the resonance frequencies and absorption/scattering

cross-sections of the gold (Au) nanodisks as well as Au/SiO2/Au stacks (also referred

to as MIM stack). The structures studied in this section are considered to be sur-

rounded by air and don’t have any substrates. Along with the previous study (for

SiNP), this study will allow a better understanding of the absorption/scattering

cross-sections of the more complicated structures in the form of gold nanodisks that

will be discussed later. Both scattering cross section and resonance frequency play a

decisive role in generating Raman signal. Clearly if the excitation laser wavelength

is closer to the scattering cross section peak of the metallic nanostructure, it will

generate a larger localized plasmonic resonance for the Raman enhancement.

5.3.1 General Formulation of Plasmonic Nano-Disk Resonators

Eq. 5.1 can be used to investigate the plasmonic effects of the metal dielectric junc-

tions in cylindrical structures. This equation can be written in the Hankel form of

eq. 5.1, [143],

Ez(ρ, φ, z) = a(z)
[
H2
m(kgspρ) + rmH

2
m(kgspρ)

]
eimφ

kgsp = k0

√√√√√εd + 0.5

(
k0gsp
k0

)
+

√√√√(k0gsp
k0

)2
[
εd − εm + 0.25

(
k0gsp
k0

)2
] (5.1)

whew k0 stands for the vacuum wave vector and k0gsp = −2εd/εm stands for the wave

vector of the Surface Plasmon Polaritons (SPPs) in the limit of very small gap thick-

ness (d → 0). Depending on the boundary conditions, toroidal modes [8], Di-pole,

Quadra-pole [143] and other modes are possible. For example, toroidal resonances
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[143] can happen if Dirichlet boundary condition exists at the edges of the dielectric

layer(Ezρ = 0). From the resonance condition that can be achieved from these Han-

kel equations it’s possible to estimate the frequencies of the scattering cross section

peaks. While analytical solutions for simple cases may provide some physical insight,

practically determination of resonance frequencies and absorption/scattering cross-

sections for more complex structures can be done only using numerical methods.As

such in this section we use FDTD for these calculations.

5.3.2 Cross Sections Calculated by FDTD Method

Here we calculate the scattering and extinction cross sections of stand-alone gold

nanodisks as well as a stack of two gold nanodisks separated by a 15nm-thick layer

of SiO2. The diameters used for studying stand-alone gold nanodisks (25nm thick)

cover a wide range from 60nm to 330nm. The Au/SiO2/Au (25nm/15nm/25nm

thickness) has been only studied at diameter = 50nm & 230nm. The two later

dimensions match the samples that are fabricated. The structures are considered

to be suspended in air for the purposes of these simulations. Figure 5.8 shows the

absorption, scattering and extinction cross sections for stand-alone gold nanodisk

as well as Au/SiO2/Au stacks, while Figure 5.9 shows the movement of the peak

frequency for different diameters.

Also the results of Figure 5.8 are summarized in Fig. 5.10. These diagrams show

the impact of diameter on the peak-value of scattering cross-section as well as the

wavelength where it happens. The simulation results indicate that these parameters

(the peak-value of scattering cross-section as well as the wavelength where it happens)

increase as the diameter of the nanodisks increase. In order to study the effect of

adding a second Au disk the scattering data of Figures 5.8(d) and 5.9(a) are compared

in Fig. 5.11. By changing the single disk to stack, the peak at 827nm wavelength
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Extinction, Scattering and Absorption cross-sections of gold nanodisks
of different diameters floating on air (without substrate) are calculated using FDTD
method. Each sub-figure represents the results for a specific diameter and 25nm
gold thickness. These diameters are: (a) 60nm (b) 130nm (c) 180nm (d) 230nm (e)
280nm (f) 330nm.

moves to 808nm. For the case of stack, as seen in figure 5.11 a secondary peak

appears too, at 1400nm. The smaller peak at near-IR is thus the result of interaction

between the nanodisks. It is also evident that the absorption has increased in near-

IR without any scattering increase at the same wavelength. Theoretically we know

that there is a peak in infrared which is related to odd modes. Odd mode means

that the plasmonic waves of the upper and lower disks are antisymmetric. Therefore,

the far-field radiations from this mode cancel out and we don’t detect any scattering

at infrared (due to pi phase difference between the two plates oscillation). However

electric field exists between the top and bottom metal disks, inside the dielectric or

air between the two plasmonic disks.
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(a) (b)

Figure 5.9: Scattering cross-sections of stacks of different diameters, calculated using
FTDT method. These diameters are: (a) 230nm. The minor peak at 1400nm
belongs to odd mode resulting from closing two single disks (this is in agreement
with literature). (b) 50nm. Whole the spectrum has blue shifted. We expect the
peak here at visible to be the same odd mode in Figure 5.9(a) which has blue shifted.

(a) (b)

Figure 5.10: Summary of the simulation results for scattering cross-sections of gold
nanodisks as well as Au : SiO2 : Au nanodisk-stacks with different diameters. (a)
Peak value of the scattering cross-section as a function of disk diameter. (b) Wave-
length at which the cross-sections reaches its maximum value as a function of disk
diameter.

5.4 Plasmonic Structures on Top of SiNP

The main purpose of this section is to study the effects of lifting the metallic nan-

odisk or metal/insulator/metal (MIM) stacks, off the substrate through fabricating
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(a) (b)

Figure 5.11: The scattering data of 230nm plasmonic disks repeated here for ease of
comparison. (a)Au nanodisk (b) Au/SiO2/Au nanodisks-stack

them on SiNPs (note that collectively we refer to these as plasmonic nanostructures).

We will study both single metallic layer and metal/dielectric/metal cases (stacks).

The dielectric/semiconductor SiNPs of Sec. 5.2 can be used as a platform for depo-

sition of metal and metal/dielectric/metal stacks (see Sec.5.3). The SiNP can posi-

tively effect field enhancement of metallic structure used in Surface Enhanced Raman

Spectroscopy(SERS). The metallic nano-structures deposited on the nanopillars are

highly exposed and offer high ability to generate field-enhancement and Raman scat-

tering from different molecules. These structures usually generate very high electric

field enhancements specially at the edges of the metal tips. Plasmonic structure (with

negative real permittivity and usually low imaginary permittivity) can focus the field

outside of the nanostructure, mainly near the edges. The field enhancement by plas-

monic structures, is mainly achieved by involvement of the metal’s surface plasmons.

Surface plasmons are oscillations of conductive surface electrons of a plasmonic metal

[144]. Using two metallic layers which are separated by a thin dielectric, can yield in

significant field enhancement, at a relatively different resonance frequency compared

to that of a single metal. This resonance happening at the same frequency for both

plasmonic disks is called a hybridized resonance. One resonance frequency of a single
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disk, by putting them closely on top of another disk with same type and dimension,

yields two frequencies related to odd modes (at lower frequency) and even modes (at

higher frequencies).

Numerical analysis (FDTD) is used to study the field enhancement location and

magnitude. These simulations are used to compare the effects of a single Au layer

over a SiNP and a stack of Au/SiO2/Au over a SiNP. Also considerable simulations

are used to study the effects of diameter, dielectric-side-etch, polarization, angle-of-

incidence, SiNP-height on field enhancement. We have briefly checked if the mesh

resolution of our simulations is in an acceptable range.

5.4.1 Field Enhancement

FDTD simulations are carried out using Lumerical to study electric field enhance-

ment in devices composed of plasmonic structures (single metal layer or MIM)

fabricated on top of dielectric nano-pillars. Three main studies have been done

here; two of them, using only one plasmonic layer on nanopillars and one with a

metal/dielectric/metal stack on nanopillars. The structure studied in Figs. 5.12(a),

5.12(b), 5.12(c) areAu nanodisks andAu/SiO2/Au stacks, respectively. The nanopil-

lars of Fig. 5.12(a) & 5.12(c) are made of Si while the nanopillar of Fig.5.12(b) is

made of SiO2. All the diameters used here are 80nm. The nanopillars have a height

of 400nm. The Au layers are 25nm-thick while the SiO2 separating the two layers

of gold in Fig. 5.12(c) has a thickness of 20nm. The input pulses used for these

calculations have a wavelength of 633nm.

A close look at the results of Fig.5.12(a) reveals that although some enhancement

is visible, half-way up the nano-pillar, the main enhancement is confined to a small

region close to the edge of the Au layer. This is expected, considering the difference in

permittivities of Au and the SiNP. Note that as shown in section 5.4.6. In addition
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(a) (b)

(c)

Figure 5.12: Electric field magnitude for plasmonic structures over nanopillars. All
structures have a diameter of 80nm. The height nanopillars are 400nm. The thick-
nesses of Au and SiO2 layers are 25nm and 20 respectively. The configurations
used are: (a) Au layer over Si nanopillar; (b) Au layer of SiO2 nanopillar and (c)
Au/SiO2/Au layers over Si nanopillar

to the interaction between the Au nanodisks in stack, the coupling between the

plasmonic modes and the SiNP modes plays an important role in the overall field

enhancement.

Replacing the SiNP with silica (SiO2) nanopillar allows further enhancement in

the field as can be seen in Fig. 5.12(b). While the enhancement is improved by more

than twice, our studies are only focused on SiNp. A closer look at the results of
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Fig. 5.12(c) reveals that the field around the lower Au-layer is not even comparable

with the field around the top Au-layer. The reason can be understood by referring

back to the results of Figs. 5.12(b) and 5.12(a) and the fact that the only difference

between the structures used, is the material of the nanopillars. The top Au-layer

of Fig.5.12(c) is deposited over a layer of SiO2 which is a dielectric while the lower

Au-layer is on a semi-conductive SiNP.

5.4.2 Effect of Changing The Diameter

The effects of the diameter on the electric field and its enhancement in Au/SiO2/Au

stacks over SiNPs, is studied over a wide range of diameters. Except their diameters,

all the physical parameters of the nanostructures studied here are identical to those

used in Sec. 5.4.1. Figures 5.13(a)-(d) show the numerical simulation results and the

field distribution around the nanostructures for d = 40nm, 90nm, 260nm and 340nm,

respectively. The relationship between the peak value of the field and the diameter

of the nano-pillars is summarized in the graph of Fig. 5.13(e). As can be seen in

this graph, in general larger fields are observed at smaller diameters but optimized

diameter is not necessarily the smallest diameter studied.

5.4.3 Effect of SiO2 Side Etch

Slightly Etching the rim of the oxide-layer between the two Au-layers will expose

the edges of the metallic layers. This can have significant impact on the resulting

Raman signal as it improves the interaction cross-section of the enhanced field with

the target molecules. Except the slightly smaller diameter of SiO2 (etched 10nm

from the sides), all the physical parameters of the nanostructures studied here are

identical to those used in Sec. 5.4.1.
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(a) (b)

(c) (d)

(e)

Figure 5.13: Excited E-field distribution for various diameters of nanostructure
(Au/SiO2/Au-stack on SiNP). (a) d = 40nm (b) d = 90nm (c) d = 260nm (d)
d = 340nm (e) Peak value of the electric field is plotted as a function of diameter.

Fig. 5.14 shows the electric field distribution after the diameter of SiO2 layer is

reduced by 10nm. Reducing the SiO2 diameter does not effect the field distribution

considerably but slightly increases the peak value.
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Figure 5.14: Electric field after etching the SiO2 layer for 10nm around its rim. This
exposes the Au layers at the edges. The field distribution is almost not effected by
this etch process.

5.4.4 Effect of Polarization and Angle of Incidence

The polarization of the light and the angle at which it illuminates the nanostructure,

can have a significant effect on the achievable field enhancement. All the physi-

cal parameters of the nanostructures studied here are identical to those studied in

Sec. 5.4.1. However the polarization (TE or TM) and the angle of incidence are

varied to study their impact. Fig. 5.15 shows the electric field distribution and its

peak values resulting from illuminating a Au/SiO2/Au-stack on a SiNP, when the

incident beam is TM polarized. The light source illuminates the sample with dif-

ferent incident angles ranging from 0o − 60o. 0o corresponds to normal incidence to

the top surface (Au layer). As evident from part-e, the maximum field enhancement

occurs when the Au-SiNP is illuminated with a TM polarized beam at 30o incidence

angle. Fig. 5.16 shows the electric field when illuminating the nanostructure with

a TE light with an incident angle 45o. The numerical results show no considerable

enhancement when using a TE source for any of the incidence angles used. Thus

only the simulations results for 45o incident angle case, are presented here.
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(a) (b)

(c) (d)

(e)

Figure 5.15: Electric field when illuminating a Au/SiO2/Au nanostructure fabricated
on a SiNP with a TM polarized-light at different incident angles of (a) 15o, (b) 30o,
(c) 45o, and (d) 60o. (e) Maximum E-field plotted against incident angles for TM
illumination.
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Figure 5.16: Electric field distribution when Au/SiO2/Au-SiNP nanostructure on
the silicon substrate is illuminated by TE polarized-light with an incidence angle of
45o

The comparison of field enhancement factor (EF) at table 5.1, for different de-

signs, shows the effect of material of nanopillar and effect of stacking on top of SiNP

(height is fixed at 400nm). Also at fixed radius of 45nm, effect of angle is shown for

stack over SiNP. For each polarization, the maximum field, happens at a different

angle, which is written beside each of the polarizations at table 5.1.

Table 5.1: EF for Plasmonic Structures on Nano-Pillars (FDTD)

NP
Radius
(nm)

Illumination
Angle (o)

Enhancement Factor
Au/SiNP Au/SiO2 −NP Au/SiO2/Au/SiNP

40 Orthogonal 7 14 25
45 Orthogonal - - 44
45 TM 30o ∗ - - 62
45 TE 45o ∗∗ - - 11

* : Optimum angle for TM
** : Optimum angle for TE
Illumination source E-field: 1(V/m)

110



Chapter 5. Raman

5.4.5 Scattering Cross-Sections of SiNPs With Au/SiO2/Au

Stack

In Figure 5.17 and 5.18 the calculated extinction, absorption and scattering cross-

sections for gold nanodisk(s) on SiNP are compared to those of the isolated gold

nanodisk and SiNP in order to understand the possible formation of coupled modes.

The calculations are performed for two sets of nanostructures with diameters of

50nm and 230nm. In figure 5.17(d) (gold nanodisk on SiNP) two peaks at 530nm

and 669nm have emerged that existed neither in Figure 5.17(a) nor 5.17(b) (i.e. these

peaks are missing in the cross sections of floating gold nanodisk and bare SiNP). The

same holds for silicon stack (Au/SiO2/Au : 25nm/15nm/25nm) in Figure 5.17(e)

compared to Figures 5.17(a) and 5.17(c).

In Figure 5.18, the same cross-sections are compared for nanostructures with di-

ameter of 230nm. Single floating gold has a peak at 850nm, and floatingAu/SiO2/Au

has two peaks at 815nm and roughly 1400nm. As we mentioned earlier, the week

peak of scattering cross section versus the strong absorption is a verification of our

assumption that this peak belongs to odd mode. This means the top and bottom

plasmons oscillations have π phase difference, significantly reducing the far field (and

therefore the measured scattering cross section).

From comparison of the SiNP scattering with scattering of gold on SiNP and gold

stack on SiNP, we see that below 800nm wavelength they have the same cross section

spectrum with similar peaks (altogether the approximate distance of the peaks of the

three cases in figures 5.18(a), 5.18(d), and 5.18(e) are below 10nm for wavelengths

below 800nm). This similarity is not seen for the floating cases of Figures 5.18(b)

and 5.18(c) compared to SiNP cross sections below the same range of frequencies.

For further analysis we simplify the problem. Since our main interest is identifying

the peaks associated with plasmonic resonance, we focus on the absorption curves.
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(a) (b)

(c) (d)

(e)

Figure 5.17: Comparison of extinction, scattering and absorption cross sections
for nanostructures with a diameter of 50nm: (a) SiNP (height=400nm), (b)
Floating single gold nanodisk (thickness=25nm). (c) Floating Au/SiO2/Au
stack (gold thickness=25nm, silica thickness=15nm) (d) Au on SiNP,(gold
thickness=25nm,pillar height=400nm) (e) Au/SiO2/Au on SiNP(gold
thickness=25nm, silica thickness=15nm, pillar height=400nm).
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(a) (b)

(c) (d)

(e)

Figure 5.18: Comparison of extinction, scattering and absorption cross sections
for nanostructures with a diameter of 230nm: (a) SiNP (height=400nm), (b)
Floating single gold nanodisk (thickness=25nm). (c) Floating Au/SiO2/Au
stack (gold thickness=25nm, silica thickness=15nm) (d) Au on SiNP,(gold
thickness=25nm,pillar height=400nm) (e) Au/SiO2/Au on SiNP(gold
thickness=25nm, silica thickness=15nm, pillar height=400nm).
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(a) (b)

Figure 5.19: Comparison of absorption cross section for 230nm diameter structures
of 400nm height, 230nm diameter SiNP, floating plasmonic structure, and plas-
monic structure on SiNP (a) Au disk (25nm) as plasmonic layer (b) Au/SiO2/Au :
25nm/15nm25nm stack as MIM

The absorption cross sections of the 230nm nanopillars with bare SiNP, floating gold

nanodisk stack, and gold nanodisk stack on top of SiNPs is shown in figure 5.19(a)

and 5.19(b). The absorption of SiNP is expected to be large for wavelengths below

600nm due to the large imaginary part of the permittivity (figure 5.2. In figure

5.19(a) it’s clear that the major role player in absorption cross section below 620nm

wavelength is SiNP loss. SiNP shows a minor peak at 763nm. Since the imaginary

part of silicon decreases continuously for wavelengths above 600nm we don’t expect

the same behavior. However if we consider that scattering (resonance) of SiNP

changes the direction of the normally incident wave and therefore the propagation

length of light inside the underlaying silicon substrate (inside the simulation region

using FDTD), we can infer the peak in absorption, to a scattering happening by the

nanopillar. Also there is a resonance for metal at 821nm. The shape of the mode

of the resonance of the plasmonic wave and the pillar is unknown, but these two

potentially can hybridize (due to close resonance frequencies) and yield the peak at

(794nm). The effect of under laying SiNP is seen for the gold stack over SiNP at

1232nm and 1517nm in figure 5.19(b). The two new peaks don’t belong to either of

SiNP or floating gold stack.
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5.4.6 Coupling of Plasmonic and Cavity Resonances

(a) (b)

(c) (d)

Figure 5.20: FEM simulation for investigating the possible coupling of plas-
monic wave of MIM and SiNP (a) plasmon resonance seen for Au/SiO2/Au :
25nm/15nm/25nm with 230nm diameter at 317THz (b) Cavity resonance inside
the 400nm, height (230nm diameter) at 377THz (c) Weak coupling between the
plasmonic resonance and cavity resonance at 448THz (d) Coupling of plasmonic
resonance and cavity resonance at 440THz

The FDTD simulations of Sec.5.4.5 indicated that the SiNPs not only work as

a platform to lift the plasmonic structures off the wafer surface, but they can also

interact with the plasmonic layers. The observed enhancement is due to localization

of resonating plasmon at the edges. Using Finite Element simulations, we can study
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this interaction even better through obtaining the resonance modes of the overall

structure. Fig. 5.20 shows the resonance modes of a Au/SiO2/Au stack over over an

individual SiNP. The SiNP is 400nm tall and has a diameter of 230nm. The thick-

nesses of Au and SiO2 layers are 25nm and 15nm, respectively. Resonance mode at

318THz shows plasmonic oscillations that are confined to the metal/dielectric/metal

stack only (see Fig.5.20(a)). At the resonance frequency of 377THz, the cavity res-

onance is happening inside the SiNP only (Figure 5.20(b)). Fig. 5.20(c) shows weak

coupling between the plasmonic and cavity resonances at 448THz. The resonance

mode at 440THz shows strong coupling between the plasmon resonance and cavity

resonances as shown in Figure 5.20(d).

5.4.7 Scattering Cross-Section of SiNP with Plasmonic Struc-

tures: Experimental Results

In order to experimentally study the effects of elevating the plasmonic structures by

fabricating them on SiNPs, two sets of samples are prepared. The SiNPs of the two

samples are identical. They have a height of 400nm and a diameter of 230nm. The

thicknesses of the deposited Au and SiO2 layers are 25nm and 15nm respectively.

For the reasons mentioned before, it is difficult to make sure that light is com-

pletely focused on the nanostructure. Therefore more than 20 datasets have been

collected for each sample by running 20 different measurements. By averaging these

measurements, one can estimate the scattering cross-section of a single nanostruc-

ture. The scattering cross-section data and their averages are represented in Fig. 5.21.

Clearly the scattering strength of the Au/SiO2/Au-SiNP is larger than that of the

Au-SiNP.
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(a) (b)

(c) (d)

Figure 5.21: Experimentally measured scattering cross-section of Au and
Au/SiO2/Au plasmonic structures fabricated on SiNPs. 20 different measurements
are conducted and the data are averaged. (a) Scattering cross-section measurements
from Au over SiNP. (b) Scattering cross-section measurements from Au/SiO2/Au
over SiNP. (c) Average of measurements from Au over SiNP (d) Average of measure-
ments from Au/SiO2/Au over SiNP

5.5 Raman Scattering Measurements

In this section Raman generation on MIM is studied in particular to compare the level

of enhancement provided by different structures, understand the temporal and spec-

tral evolution of the Raman signal in the vicinity of MIM (spectral evolution of the

Raman signal). The measurements related to comparisons of Raman intensity are all

carried out using a 1.5∗10−5M Thionine solution, as the test specimen, and identical

illumination and sampling conditions. The measurements are performed after the
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nanostructures are wetted by 10µLiter Thionine solution and allowed to dry. The ex-

perimental studies of this section include Raman enhancement using bare SiNPs and

Au nano-disks as well as Au, Au/SiO2, Au/SiO2/Au and Au/SiO2/Au/SiO2/Au

nanodisks over SiNPs. Spectral evolution of Raman signal is studied using “Methy-

lene blue” (MB) as the test specimen and Au,Au/SiO2 and Au/SiO2/Au stacks

over SiNP. Through this evolution ( also known as demethylation) MB decomposes

to Thionine.

5.5.1 Raman Enhancement By SiNPs

The Raman spectrum of bare SiNPs coated by Thionine molecules is presented in

Fig 5.22. The measured spectrum (the peaks and their locations) is simply the

Figure 5.22: Raman spectrum after 10µliter of 1.5e − 5 molar Thionine solution is
allowed to dry on bare-SiNPs. The average diameter and height of the SiNP used
are 230nm and 400nm respectively (pitch = 675nm).

Raman spectrum of silicon. This means that bare SiNPs did not enhance the indicant

optical field to the level required for generation of measurable Raman signal from

the Thionine molecules. This is believed to be due to lack of plasmon resonance.

The SiNPs used for this experiment had an average height of 400nm and average

diameter of 230nm with a pitch of 675nm.
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5.5.2 Raman Enhancement By Au Nanodisks

As the starting point, we have studied the Raman enhancement provided by gold

nanodisks over plain silicon. Numerous samples of Au nanodisks are fabricated and

used as the substrate for Raman measurement. All nanodisks had a thickness of

25nm and were fabricated on plain silicon wafers by lift-off process (as described in

chapter 2). Fig 5.23(a) shows the Raman spectrum of Thionine molecules coated on

Au nanodisks. The first and largest peak is the characteristic peak of Thionine that

occurs at 479cm−1 and the spectrum is similar to the typical Raman spectrum of

Thionine. This figure includes the data for 7 sets of nanodisks with diameters ranging

from 210nm to 440nm. All samples Fig 5.23 have a pitch of 675nm. Fig 5.23(b) shows

how the magnitude of this peak varies as the diameter of the nanodisks changes.

We have also measured the Raman signal for very large nanodisks. The SEM

image of Fig.5.23(c) shows the corresponding sample with the same pitch of 675nm,

where the nanodisks are almost touching each other. Some of the nanodisks do

indeed blend with each-other but others illustrate tiny gaps which can in some cases

be too small to be able to measure accurately. The resulting small gaps yield in

considerably larger Raman signal as seen in Fig. 5.23(d).

5.5.3 Raman Enhancement: Au Layers Over SiNP

This section includes Raman spectrum obtained from SiNPs with Au layers on top.

The SiNP makes the Au layers (plasmonic resonators) more exposed to molecules by

elevating them. Additionally numerical simulations suggest that the field enhance-

ment is improved in the presence of pillar. We have fabricated and studied SiNPs with

one, two and four layers of gold stacked on top of them. All the Au layers are 25nm-

thick and any two subsequent Au layers are separated by 15nm-thick layers of SiO2.

The height, diameter and pitch of the SiNPs are 400nm, 230nm and 675nm respec-

119



Chapter 5. Raman

(a) (b)

(c) (d)

Figure 5.23: Raman spectrum of 10µliter of 2.5 ∗ 10−5 molar Thionine on Au nan-
odisks. All samples have identical pitch of 675nm. (a) Raman spectrum are com-
pared for Au nanodisks with different diameters ranging from 210nm to 440nm. (b)
The peak intensities of the measured spectra are compared at 479cm−1 as a function
of nanodisk-diameters (c) This micro-graph shows the case where the diameters of
the Au nanodisks are much bigger, reducing the gap between the two nano-disks
considerably. The Raman measurement using this sample is shown in (d) showing a
considerable boost in Raman peaks which is due to very small distances of the plates

tively. Figures 5.24(a)-5.24(c) show the measured Raman signal of Thionine obtained

using Au over SiNP, Au/SiO2/Au over SiNP and Au/SiO2/Au/SiO2/Au/SiO2/Au

over SiNPs. The observed enhancement is also seen in simulations. In order to

achieve this goal, a 4sec submersion in diluted buffer HF (0.4%) is used. Fig. 5.24(d)

shows the obtain Raman signal. The experimental results obtained so far support
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(a) (b)

(c) (d)

Figure 5.24: Raman signal of Thionine generated from different number of gold layers
on top of SiNPs. The SiNPs are 400nm tall and have a diameter and pitch of 230nm
and 675nm respectively. The Au layers are 25nm thick and are separated by 15nm-
thick layers of SiO2. (a) A layer of Au over SiNP. (b) Au/SiO2/Au-stack over SiNP.
(c) Au/SiO2/Au/SiO2/Au/SiO2/Au stack over SiNP. (d) Raman using the sample
of Au/SiO2/Au/SiO2/Au/SiO2/Au-stack-over-SiNP, after etching the SiO2 layers
in 0.4% dilute buffer HF for 4sec. stacked

our numerical simulation results; the Raman signal increases as the number of gold

layers increase and as expected by our simulations.
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Effects of Nanopillar Material

Our simulation results also suggested considerable improvements by using silicon

dioxide nanopillars as the base instead of SiNPs (see Fig. 5.12(b)). This triggered

interest in experimental verification of these suggestions. However for fabrication

purposes we decided to fabricate only a portion of the nanopillar from silicon dioxide.

A nanopillar which is composed of 350nm, SiO2 nanopillar, deposited over 800nm

SiNPs, is used as a platform for gold deposition. A 25nm layer of Au is deposited on

top of this nanopillar and used to generate Raman from Thionine. The Raman signal

measured is depicted in figure 5.25. Every peak in a Raman spectrum is related to a

certain bond in the molecule used. Resolving more peaks can allow a better detection

which is the ultimate goal of Raman.

Figure 5.25: Considerable Raman enhancement in the Raman signal (1.5e −
5molar, 10µliter,Thionine) generated by Au over SiO2 nanopillars

Effects of Nanopillar Height

The effects of SiNP-height over the overall performance of the Au over SiNP struc-

tures are studied using samples with varying SiNP heights ranging from 80nm to

400nm. Fig 5.26 shows how the measured Raman signal is affected by the pillar
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height. Fig. 5.26(b) plots the magnitude of the main peaks as a function of pillar

height. The experimental results show that 240nm tall nanopillar substrates yield

the largest Raman signal among the other heights tested. At this height the main

peak and the smaller peaks are all larger than the other cases.

(a) (b)

Figure 5.26: Raman spectrum of Thionine coated on Au-SiNPs with different heights
(Au thickness =25nm). (a) Raman spectrum for different pillar heights ranging from
80nm-400nm. (b) The magnitudes of the main peaks plotted as a function of pillar-
height.

Effects of Reducing The Diameter

All the experimental Raman spectra reported so far were obtained using nanopillars

with 230nm diameter. To examine the effect of having a very small pillar diame-

ter a set of SiNPs are fabricated with diameter of ∼50nm and a height of 290nm.

Fig. 5.27(a) shows the SEM image of these nanopillars. The Ni sample is removed

before a 25nm layer of Au is deposited on the SiNPs. The measured Raman spec-

trum of Thionine is shown in Fig. 5.27(b). As seen in Fig. 5.27(a) the etching process

has made the Si substrate, between the nanopillars, very rough and porous. The

contribution of this rough surface makes the interpretation of the observed signal

more difficult. In order to remove this background signal and obtain the spectrum of
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Fig. 5.27(b) a silicon substrate was processed in an identical way as our sample but

without the nanopillars. The Raman spectrum of this sample was used to eliminate

the effect of the background (In Fig. 5.27(b) this background is already subtracted).

As can be seen from the results of Fig. 5.27(b), reducing the diameter can consider-

(a)
(b)

Figure 5.27: The Raman Enhancement from sub 100nm diameter nanopillars (a)
SEM showing 50nm diameter of SiNP (290nm height) holding the big nickel plate
right after thinning the originally 230nm diameter nanopillars to 50nm. (b) Raman
enhancement of Au disks over nanopillars after removal of nickel and deposition of
25nm gold.

ably increase the Raman signal. The sample reported in this figure has only one layer

of gold deposited on top of SiNP but the spectrum measured is comparable with the

spectrum in Fig.5.24(c) which was obtained using a Au/SiO2/Au-stack over SiNP

but with a diameter of 230nm.

A comparison of the results showing the effect of stacking and side etching of silica

on the Raman spectrum of 10µliter Thionine (at 479cm−1) with density of 1.5∗10−5is

shown at table 5.2. The gold disks of the stacks are separated by SiO2 : 15nm.
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Table 5.2: Measured peak Raman intensity for various designs

Number of Disks over SiNP * Peak Raman intensity at 479cm−1

0− Au layer on SiNP -
1− Au layer on SiNP 1130
2− Au** layer on SiNP 3500
4− Au** layer on SiNP 9770
4−Au** layer on SiNP, with silica side
etching

15660

*: SiNP height and diameter is 400nm, 230nm
** : The gold disks of the stacks are separated by SiO2 : 15nm.

In conclusion we have investigated the effect of stacking of Au layers and side

etching of silica on Raman enhancement. We have also observed the effect of changing

the pillar height, reducing SiNP diameter, and Changing the material of silicon

nanopillar (to silica NP), all with a single Au layer on top. The Raman enhancement

for these experiments are as follows:

• Raman enhancement for Au/SiNP (diameter/height = 230nm/270nm): 8190

• Raman enhancement for Au/SiO2−NP (diameter/height = 230nm/350nm):

48170

• Raman enhancement for Au/SiNP (diameter/height = 50nm/290nm): 15100

It should be noted that for SiO2-NP is deposited by E-beam over 800nm SiNP.

5.5.4 Transition of Methylene Blue to Thionine (Spectral

Transition of The Raman Signal )

The Raman signal generated from molecules over plasmonic nanostructures (metallic

nano structures made from Au,Ag,Cu and even Ni) can increase significantly due to

E-field enhancement (proportional to E4). Additionally for certain molecules the
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large field enhancement combined with interaction with free electrons in metal can

result in chemical transitions and therefore evolution of the Raman spectrum. Here

we study the transitions of Methylene Blue (MB) to Thionine in the vicinity of SiNPs

with Au, Au/SiO2 and Au/SiO2/Au caps. The SiNPs, all have diameters of 230nm

and height of 400nm. The nanostructures used are separated as far as 2.1µm from

each-other. Such large distances make it experimentally possible to record the effects

of a single nano-disk or nano-stack. The considerable field enhancement obtained

using MIM can potentially lead to chemical transition of the target molecule (as

it happens for MB in our measurements). Since a major effort of this dissertation

was to enhance Raman through field enhancement, it is important to investigate

the effect of excessive field enhancement on the stability of the target molecule . In

particular for sensing applications this is an undesired effect as it does not allow for

clear identification of a molecular finger print (a specific Raman spectrum).

Figure 5.28: Time evolution of MB Raman scattering, obtained using SiNPs topped
with Au/SiO2/Au. The spectrum are obtained after different exposure duration to
633nm He-Ne laser with a power of 939nW/µm2.

Fig. 5.28 shows the Raman spectra of MB over a SiNP which is topped with

Au/SiO2/Au stack. This figure shows four different spectra recorded after different

exposure durations. Comparing the four different spectra it can bee seen how Methy-
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lene Blue is converted to Thionine overtime. Similar phenomena have been reported

by other groups for different structures as well and have been reported to be due

plasmons turning into hot electrons [123]. Hot electrons are high energy electrons

that can initiate the decomposition of MB to Thionine.

(a) (b)

(c) (d)

Figure 5.29: Raman scattering of MB as a function of time for a period of 5 minuets.
The 632.8nm laser light power used was 939nW/µm2. The data are recorded from
MB coated on (a) Au (b) Au/SiO2 (c) Au/SiO2/Au -capped SiNPs. (d) The Raman
intensity of different structures compared at the end of 5min time-line. The Raman
intensity curve for Au/SiO2/Au over SiNP shows emerging Thionine molecule re-
sulted from demethylation of MB.

To further investigate sample stability during Raman spectroscopy and the ef-

fects of structures used, we have obtained the Raman emissions of Methylene Blue

(MB) using different nanostructures. These data are shown in Fig. 5.29. Each plot

of this figure summarizes the results of 1500 measurements. Each plot is composed
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of 150 spectra obtained at different times. Each spectra is the average of 10 differ-

ent measurements obtained from 10 different points. Except some changes in the

amplitudes, no changes in the locations of the characteristics peaks are observed in

Figs. 5.29(a) & 5.29(b). On the other hand, figure 5.29(c) shows significant peaks

at 479cm−1 and 1621cm−1 which are characteristics of Thionine. Since there was

no initial Thionine, the existence of these peaks can only mean conversion of MB to

Thionine in presences of red light and plasmons which generate hot electrons. These

hot electrons are high energy electrons that are not coupled to light.

It has been shown that in presence of surface plasmon and red laser, MB decom-

poses to Thionine by demethylation [123]. The results of Fig. 5.29(d) indicate that

demethylation happens only in the Au/SiO2/Au case. The simulations carried out on

the effects of using more than one metallic layer suggested considerable field enhance-

ment by Au/SiO2/Au-SiNP (see Fig.5.24(c)). Thus we can attribute the difference

between the behavior of MB, to the different field intensities. The intense field in

the Au/SiO2/Au, can be considered responsible for generation of hot electrons and

MB degradation. The fact that demethylation doesn’t happen immediately, means

this process needs a certain amount of absorbed energy to proceed.

Fig. 5.30 confirms that SiNP topped withAu are not capable of initiating demethy-

lation process even after 60 minutes of exposure (at the same light intensity). None

of the characteristic peaks of the Thionine are observed even after such a long ex-

posure time. However careful observation of the the results presented in Fig. 5.30

reveals that although the peaks detected don’t change, their amplitude does. Over

time the overall signal reduces in amplitude. This is due to decomposition of MB in

presence of oxygen and is not our focus.

During our experiments we have observed that, when the light intensity is high,

even a stable molecule’s Raman signal (such as Thionine) degrades fast. Our laser is

a 633nm HeNe laser. Focusing the light over the sample, rapidly degrades the signal
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Figure 5.30: Raman scattering of MB over Au-topped SiNP are studied during a
60minute period.

intensity. Therefore, for having a reasonable span of time to reliably measure the

Raman spectra we have defocused the beam to cover an area of roughly 1600µm2.

5.6 Raman Enhancement With Non-Metallic Stacks

on SiNP

So far this chapter was devoted to understanding field enhancement, scattering cross-

section and Raman scattering. Special effort was put into limiting the samples used

to SiNPs and SiNPs topped with one or more Au layers and stay away from other

materials. This allowed an in depth study of the effects of different parameters. How-

ever we have also explored the possibility of using non-metallic plasmonic resonators

(non-metals with significant negative permittivity). Not only this has yielded consid-

erable results but it also has opened the door to a vast research area which deserves an

in depth study by other researchers. However it is important to mention that to the
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best of our knowledge, some of the phenomena observed in this section have not yet

been completely understood and thus we will inevitably, frequently, refer to claims

made by other researchers to partially explain some of these phenomena/results.

This section will include experimental results obtained using Ge, TiN , as well as

Au, Au/SiO2/Au, Ag, Cu and super thin Au layers on SiNPs.

5.6.1 Ge as The Non-Metallic Thin-Film

Two samples have been prepared by depositing 25nm Ge on SiNP arrays (400nm

tall, 230 in diameter). One of the samples is kept as as but the other one is treated

with a NH3 plasma. The treatment is done using 60W , 500mTor, NH3 plasma with

a flow rate of 30sccm, for a duration of 5 minutes, at 180oC . During this process no

significant nitridation will happen for Ge [14], but it will get hydrogenated [29]. The

resulting structures are used for surface enhanced Raman spectroscopy of a 10µLiter

sample of 1.5 ∗ 10−5M , MB solution. Fig 5.31 shows the SERS spectrum obtained

using these devices. Figs. 5.31(a) and 5.31(b) shows the spectrum obtained by the

“as-fabricated” and plasma treated samples. As can be seen from these spectra,

the as-fabricated sample doesn’t show any noticeable enhancement but the plasma

treated sample is capable of significant SERS generation.

Untreated Ge is not capable of any detectable SERS. Two main reasons for this

are its positive permittivity and amorphous structure. Ge does has a considerably

large positive permittivity. Technically the (dark-)conductivity of Ge can not be

increased very much since Ge can not be doped more than 1020cm−3 (although some

other materials like oxides have been reported to have higher dopant solubility as

high as 1021cm−3 [100]). Achieving negative permittivity in Ge would require a much

higher doping than practically possible [100]. The other fact that prevents untreated-

Ge from producing Raman is its amorphous structure which results in low carrier
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(a) (b)

Figure 5.31: Raman signal obtained from MB using 25nm layer of Ge over SiNP. (a)
No enhancement was observed. The peak at 520cm−1 belongs to the Si substrate
and is not an indication of Raman enhancement. (b) The Raman signal using the
same sample after an NH3 plasma treatment was performed on it.

mobility. Germanium is a semiconductor thus it has much less conduction electrons

to couple with the light and generate plasmon polaritons compared to metals.

Fig. 5.32 show the measured permittivity of the Sample after being treated with

NH3 plasma. The observe negative permittivity explains the reason why the sam-

ple was capable of considerable Raman enhancement after being treated with NH3

plasma.

5.6.2 TiN as The Non-Metallic Thin-Film

The procedure of Sec 5.6.1 is repeated here with the only difference being that instead

of GE, TiN is deposited over SiNP. The thickness of the TiN layer is 30nm. Fig. 5.33

compares the SERS spectrum of MB obtained using TiN -topped-SiNPs as well as

TiN-topped-SiNPs which were treated with NH3 plasma. The results of Fig. 5.33

shows that just like Ge, treating TiN with NH3 plasma considerably increases its
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(a) (b)

Figure 5.32: Permittivity of Germanium treated with NH3 plasma at 180oC (a) real
part of epsilon which is negative at our Raman and laser wavelength range more
negative than Nickel at 633nm of our laser wavelength [60](b) imaginary part of
epsilon which is comparable to metals like Chromium and nickel at 633nm. [60].

(a)
(b)

Figure 5.33: SERS of RhB obtained by (a) TiN over SiNPs (b) NH3-plasma-treated
TiN over SiNPs. Raman enhancement is achieved only in the plasma treated sample.
The SiNPs were 400nm tall and 230nm in diameter. The TiN layer is 30nm thick

performance. Untreated TiN exhibits no Raman enhancement but when treated

with a NH3 plasma, considerable Raman signal enhancement is observed.
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5.7 Impact of Metal Properties and Surface Rough-

ness on Raman Signal: A Study with Au, Ag

and Cu Nanodisks on SiNPs

The SiNPs used are 400nm tall and 230nm in diameter. The samples that will

be presented here are Au, Ag, Cu and Au/Cr2O3 over SiNPs. All the metallic

layers used in this section are 25nm thick. Fig. 5.34 shows the SERS spectrum of

(a) (b)

Figure 5.34: The Raman spectrum of RhB obtained by SiNPs topped with (a)
Au/SiO2/Au-stack and (b) Ag thin-film. The SiNPs are 400nm tall and 230nm
in diameter. The thickness of Au, Ag and SiO2 layers are 25nm, 25nm and 15nm
respectively.

RhB obtained using Ag and Au deposited on top of SiNPs. Both spectrum show

the characteristics Raman peaks of RhB (see Fig. 5.36(c)). However the spectrum

don’t have a flat baseline. This is due to radiation of the metal nanodisks. We call

this none-flat baseline the “background” and it is different for different materials.

Theoretically one can try to identify and eliminate them but that is not the scope of

the work here. Our goal in here is to prevent radiation to begin with. For this end,

we have tried different combinations of the materials and processing techniques.
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(a) (b)

Figure 5.35: The Raman spectrum of RhB obtained by SiNPs topped with (a) Au
(b) Cu. The SiNPs are 400nm tall and 230nm in diameter. The thicknesses of Au,
Ag, and Cu are 25nm, 25nm, and 25nm respectively.

Replacing the Au on top SiNPs with with a 25nm layer of Ag yields in much

easier to distinguish Raman peaks but cover noise (antenna radiation) remains as a

considerable issue still. None of our samples using Ag was able to solve this problem.

Fig. 5.35 shows the SERS spectrum of RhB obtained using copper and copper

oxide over SiNPs. These two spectrum represent considerable improvement in min-

imizing background. Oxidation of copper has been achieved by a 10-second oxygen

plasma (60Watts at 200mTorr). The observed shifts in the location of the peaks,

seen both in Fig. 5.35(a) and 5.35(b) are due to chemical phenomena and need

quantum mechanical analysis which is not a part of our work.[67]. Despite the ob-

served improvements, the shift in the location of the peaks makes it super difficult

to associate different peaks to their corresponding bonds.

The sample used for obtaining the SERS of Fig. 5.36 illustrate considerably flat

baseline. All the characteristic Raman peaks (see Fig. 5.36(c)) of RhB are at the

expected locations and are considerably enhanced. This is achieved by using a super

thin layer of Au over SiNP. The SiNPs are fabricated using a Cr2O3 Mask which
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(a)

(b)
(c)

Figure 5.36: Comparison between SERS of RhB obtained here with the typical RhB
Raman spectrum available in literature. (a) AFM graph of the roughness of Si surface
after using Cr etchant. (b) RhB SERS by a thin layer of gold(4.5nm) over 30nm
chromium oxide on SiNP . The SiNP was 400nm tall and 230 in diameter. (c) The
reference RhB powder Raman spectra[88]

need to be removed before gold is deposited. This process renders the surface of

the nanopillar rough as can be seen in Fig. 5.36(a). The thickness of the Au layer

deposited is 4.5nm which is comparable with the surface roughness of the SiNP. The

rough Au layer on SiNPs thus experimentally proves to be an ideal method to achieve

highly desirable Raman enhancement using MIM-stacks on SiNPs.
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5.8 Conclusion

The applications of nanostructures in Raman enhancement are studied in this chap-

ter. Field enhancement, scattering cross-section and Raman enhancement of metallic

nanodisks and SiNPs as well as nanodisks on SiNPs are investigated. The effects of

different geometric parameters on the field enhancement of the nanostructures are

studied. Some of the experimental results obtained, didn’t completely agree with

the numerical simulations, mainly because the beam of light used in experimental

measurements is not a collimated one. The effect of SiNPs on field enhancement of

the Au or Au/SiO2/Au layers on top of them was studied.

Coupling of the stacks was also shown to yield considerable field enhancement.

As a result, the Raman signal increased nonlinearly as we moved from one Au-over-

SiNP to Au/SiO2/Au-over-SiNP and Au/SiO2/Au/SiO2/Au/SiO2/Au-over-SiNP.

The coupling is proven both numerically and experimentally. However field enhance-

ment came with the cost of sample specimen degradation due to strong fields formed

at the edges. Our experiment and simulation suggests that side etching the silica of

the stacks increases the touching surface of edges and molecules, increasing Raman

without the cost imposed by field enhancement.

Although the metallic layers used were mainly made of gold, different other metal-

lic and even non-metallic materials were also explored. It was observed that plasma

treatment of Ge and TiN changes their plasmonic performance considerably, yielding

negative permittivity (for germanium only) and considerable Raman enhancement

for both. The optical permittivity of processed Germanium was superior to that

of Nickel at wavelengths from 600nm to 700nm. It was also observed that surface

roughness of the substrate just below the metallic layer has considerable effect on

removing background noise in the recorded Raman signal. Our experimental results

showed that when the top surface of a SiNP is roughened before Au deposition (a
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roughens of 3nm), a super-thin (5nm) layer of gold deposited on the SiNPs (400nm

tall and 230nm in diameter), is capable of yielding considerable Raman enhance-

ment with distinct peaks which match with the characteristic spectrum of the RhB

powder, and no noticeable background noise. This sample outperformed a stack of

Au/SiO2/Au : 25nm/15nm/25nm, both in amplitude and quality of the obtained

Raman spectrum.
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