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Abstract

Electronic health records contain the clinical history of patients. The enormous po-

tential for discovery in such a rich dataset is hampered by their complexity. We

hypothesize that machine learning models trained on EHR data can predict future

clinical events significantly better than current models. We analyze an EHR database

of 594,862 Echocardiography studies from 272,280 unique patients with both unsu-

pervised and supervised machine learning techniques.

In the unsupervised approach, we first develop a simulation framework to eval-

uate a family of di↵erent clustering pipelines. We apply the optimized approach

to 41,645 patients with heart failure without providing any survival information to

the underlying clustering approach. The model separates patients with significantly
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di↵erent survival characteristics. For example, in a 10-cluster model, the minimum

and maximum risk clusters had a median survival of 22 and 53 months respectively.

In the supervised approach, with 723,754 videos available from 27,028 unique

patients, we assess the predictive capacity of Echocardiography video data for one-

year mortality. Also, we hold out a balanced dataset of 600 patients to compare the

model performance against cardiologists. We found that the best model, among four

candidate architectures, is a 3D dyadic CNN model with an average AUC of 0.78 for

a single parasternal long axis view. The model yields an accuracy of 75% (AUC of

0.8) on the held-out dataset while the cardiologists achieve 56% and 61%. The model

performance was significantly higher than that of the cardiologists (p = 4.2⇥ 10�11

and p = 6.9⇥ 10�7).

Finally, we develop a multi-modal supervised approach that enables interpretabil-

ity. The model provides interpretations through polynomial transformations that

describe the individual feature contribution and weights the transformed features to

determine their importance. We validate our proposed approach using 31,278 videos

from 26,793 patients. We test our proposed approach against logistic regression and

non-linear and non-interpretable models based on Random Forests and XGBoost.

Our results show that the proposed neural network architecture always outperforms

logistic regression models while its performance approximates the other non-linear

models. Overall, our multi-modal classifier based on 3D dyadic CNN and the inter-

pretable neural network outperforms all other classifiers (AUC=0.83).
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Chapter 1

Introduction

1.1 Electronic Health Records

Recent advances in technology and medicine have enabled the implementation of

Electronic Health Records (EHR) to facilitate patient management. The EHR data

contain a patient’s full clinical history including imaging measurements, demograph-

ics, laboratory values, and treatments.

Comprehensive interpretation of this rich information should support physicians

to optimize predictions about the most appropriate diagnosis, prognosis and treat-

ments. However, the complex and heterogeneous nature of this rich dataset preclude

physicians from fully digesting all the information [5]. Thus, in the current clinical

practice, diagnoses are only based on a few pieces of information, and are often times

broad and generic [6].

Risk calculators, based on metrics from the patient’s health, are widely spread in

clinical use. For example, the Framingham risk score [7] yields the risk of developing

a cardiovascular disease within ten years, and the Seattle Heart Failure score [8]

1



Chapter 1. Introduction

predicts 1-, 2-, and 3-year mortality in patients with Heart Failure. Yet, this scores

are mainly developed in a controlled environment which is not a realistic scenario

for a real world application. In consequence, this current risk scores yield poor

generalization [9, 10, 11].

Leveraging the complex data in EHR is non-trivial. Di↵erent components of

patient data (e.g. imaging data, demographics, laboratory values, etc.) often live in

di↵erent tables of the databases; human errors are often involved during data entry,

which results in unrealistic measurements as human errors are often involved during

data entry. For example, di↵erent units may be used for the same measurements;

multiple clinical tests might be ordered to obtain the same information, or the same

test may be performed multiple times (redundant information); many fields in the

imaging report may be sparsely filled depending on the purpose of the study.

Fortunately, advances in data analysis and machine learning can be harnessed

to train computers to fully utilize the information from EHR and make a more

informative and personalized prediction of a patient’s risk. We hypothesize that risk

models trained on EHR data can use the historical EHR information to produce an

accurate prediction of future clinical events superior to state-of-the-art clinical risk

models.

In particular, deep learning has gained popularity because of the performance

yields in multiple fields of study [12]. These complex neural network structures are

most e↵ective on large datasets and has shown promise in natural images, video,

audio, and text. The advances in neural networks amount from the development of

regularization techniques [13], gradient descent algorithms [14, 15], and the reduction

of parameters [2].

In the medical field, deep learning models dominate research on medical im-

ages [16] and tabular EHR data [17, 18]. To particularly highlight the capabilities

2



Chapter 1. Introduction

of deep learning in medical imaging analysis, such methods have been used in ul-

trasound video analysis for frame labeling tasks such as segmentation of certain

chambers of the heart (the left ventricle) [19, 20], and fetal standard image plane /

orientation detection [21, 22].

The rapid rise of deep learning methods has also been associated with the de-

velopment of lower-parameter neural network systems that can also deliver better

performance than previously considered methods. To demonstrate the trend, we

consider some of the most popular successful classifiers. In 2012, AlexNet used 60M

parameters to achieve a top-5 test error rate of 15.3% for the ILSVRC-2012 competi-

tion [2]. In 2016, the updated version of the Inception architecture used about 25M

parameters to achieve a top-5 test error rate of 5.6% for the same competition [3].

In 2017, DenseNet-201 used 20M parameters model to achieve 6.34% accuracy on

the same dataset and thus match the performance of a 101-layer ResNet with more

than 40M parameters [4].

1.2 Interpretability and Explainability

Linear models such as linear or logistic regression, are inherently interpretable mod-

els. When the input variables are equally scaled, the coe�cients of the linear predic-

tor can be used to assess feature importance based on the coe�cient’s magnitude,

and the e↵ect directionality based on the coe�cient’s sign. Some examples of clinical

adoption of linear models are the Framingham risk score [23], and the Seattle Heart

Failure score [8]. Unfortunately, the performance of linear models can be limited [24].

A well calibrated non-linear model can outperform any linear model at the cost

of interpretation ability. While not as direct as linear models, there are also ap-

proaches to support explanations for non-linear methods. As described in section

4.2, explanation models build around black-box models and approximate simpler in-
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Chapter 1. Introduction

terpretable models at the cost of performance, whereas interpretable models do not

require separate explanation models.

Explanations are a step forward to interpretability, however inherently inter-

pretable models are still desired in high stake decisions such as the prediction of

clinical outcomes [25]. An interpretable model would allow understanding of the

data source, which at the same time enables us to detect any irregularities and iter-

ate on the input data processing. Moreover, the ability to detect issues in the data

source would only help improve performance.

When a non-interpretable model latches on confounding factors, such as artifi-

cial annotations in an image [26], it would possibly escape from the cross-validated

performance metrics. However, an interpretable model would have shown that the

confounding factor play an important role in the final decision. Furthermore, ex-

planation models forces us to relay on two models (the black-box and explanation

model), which, by design, disagree with each other. If they were to agree all the time

then the explanation model would be preferred.

In this dissertation, I designed inherently interpretable neural network which

once trained, yields inter-modality feature importance, feature response functions,

and intuitive interpretations.

1.3 Thesis Statement

Given the potential of EHR data to inform and describe the patient’s health status,

I hypothesize that incorporating multiple EHR sources to calculate the patient risk,

with interpretability while maintaining the performance of best performing models,

could yield accurate and transparent models for clinical use.
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1.4 Contributions

The primary contributions of the dissertation include:

• Suitable EHR clustering pipeline: I propose a simulation framework and use

it to evaluate multiple clustering pipelines. We apply the pipeline to patients

with Heart Failure, and ultimately find a characterization that separates risk

better than the clinical standard of Heart Failure with preserved or reduced

Ejection Fraction.

• Optimal deep learning architecture for mortality prediction from Echocardiog-

raphy videos: I design and report an optimal deep learning architectures for

Echocardiography video analysis, and present the potential of combining video

and tabular data for mortality prediction.

• Multi-modal Interpretable Neural Network architecture: I propose an inherently

interpretable neural network that has the ability to rank multiple data modal-

ities while learning transformation function for individual tabular inputs. The

rank and the transformation functions compose a transparent model that does

not sacrifice performance when compared to other non-linear, non-interpretable

models.

1.5 Organization

The remainder of the dissertation is organized as follows:

• In chapter 2, I describe the EHR simulation framework used to obtain a suitable

clustering pipeline, and its application to patients with Heart Failure.
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• In chapter 3, I describe the experimental design for the search of an optimal

neural network architecture for Echocardiography video classification.

• In chapter 4, I describe the proposed inherently interpretable neural network

and its application to patients with available Echocardiography video data.

• In chapter 5, I summarize the research findings, state concluding remarks and

future work.
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Chapter 2

Unsupervised EHR Clustering

Doctors provide diagnoses to help predict the health trajectory of their patients. A

diagnosis also helps to predict what treatments have the highest likelihood of im-

proving a patients health. The more granular the diagnosis, the more specific or

“precise” medicine can become. The wealth of medical data gathered from patients,

that is digitally available in an electronic health record (EHR), should support highly

granular diagnoses. Unfortunately, the current clinical paradigm of a human physi-

cian wading through this vast sea of data cannot deliver the promise of precision

medicine.

Fortunately, advances in machine learning can be harnessed to sift through this

rich dataset and extract useful information to facilitate human decisions. One pop-

ular application is phenotyping by cluster analysis. Previous studies [27, 28, 29]

have shown that clustering algorithms have the potential to classify patients into

similar phenotypes based on data contained in the medical record. For example,

using unbiased hierarchical cluster analysis and penalized model-based clustering,

Shah et al. [28] identified 3 phenotypes in patients diagnosed with heart failure with

preserved ejection fraction. Upon identification of such granular and more homoge-
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neous clusters, the outcomes (e.g. hospitalization, cardiac events or mortality) and

attempted therapies within each cluster can then be linked together to predict likely

outcomes resulting from choosing particular therapies.

While there have been many advances in the field of cluster analysis [30], the

methods rely on the assumption of homogeneous, non-redundant and complete data.

However, EHR data are heterogeneous (variables can be continuous or categori-

cal, and with di↵erent scales), redundant (multiple measurements may assess the

same underlying patient feature), incomplete (many fields in the clinical reports are

sparsely filled depending on the purpose of the study), and noisy (not all variables

are informative in all conditions). Additionally, human errors and system biases

also contribute to measurement errors in EHR data. Thus, to fully utilize the EHR

to reliably detect disease subtypes, clustering techniques must be paired with pre-

processing techniques that normalize and reduce the complexity of the raw EHR data.

Such a clustering pipeline, including pre-processing steps, has not been previously

proposed or validated.

In this chapter, we assess, propose, and apply the optimized clustering pipeline

that is robust to the nuisances of EHR data. The pipeline consists of imputation,

normalization, feature reduction, and clustering. Multiple commonly used techniques

are evaluated at each step, and the best performing pipeline is selected. Since the

accuracy of clusters in real EHR applications cannot be measured due to lack of a

ground truth, we assessed accuracy using simulated EHR data where ground truth

could be easily defined. To the best of our knowledge, this is the first study to

propose and validate an unsupervised homogenization pipeline for EHR clustering.
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2.1 EHR Data Simulation

We simulated patient encounters with a sample generator that mimics the redun-

dancy and heterogeneity of EHR data. We defined rows for patient encounters (sam-

ples) and columns for measurements taken from the patient (features). We designed

three clusters with n samples per cluster, observed dimensionality m, and e↵ective

dimensionality of 2 (for visualization convenience).

The sample generator drew 3n independent samples from a multivariate normal

distribution with µ = [0, 0], and ⌃ = I2⇥2 to form the matrix N3n⇥2. Then, we

separated the clusters by shifting n samples at a time. The first n samples stayed

in the origin, while the next n were shifted by [d, 0], and the last n were shifted by

[d2 ,
p
3
2 d], forming an equilateral triangle with a distance d from each vertex.

We emulated redundancy by projecting the original feature vector to a m dimen-

sional space: X3n⇥m = N3n⇥2P2⇥m, where the elements of the projection matrix, P ,

were drawn from a uniform distribution in the range (0, 1).

We then enforced heterogeneity by quantizing half of the variables (set to zero

if below the mean and 1 otherwise), chosen at random, and scaling each continuous

feature with a random factor between 1 and 100. Finally, we added Gaussian noise

(µ = 0, � = 1) to every element in the data matrix to mimic measurement errors.

2.2 EHR Clustering Pipeline

Imputation

We tested median imputation, where the median value from valid samples complete

missing values; k-Nearest Neighbors (KNN), where the average value from the k-

9



Chapter 2. Unsupervised EHR Clustering

nearest samples is used; and Multiple Imputation by Chained Equations (MICE) [31],

where the missing values are predicted based on regression models with complete

samples.

Normalization

For continuous variables, we tested Z-score, where every variable is set to zero mean

and unit variance; MinMax, which normalizes to a [0,1] range; and Whitening, where

the feature space is linearly projected such that inter-feature covariance is the identity

matrix.

Feature reduction

We propose the use of Deep Autoencoders (DAE) [32] and Denoising Autoencoders

(DnAE) [33] for EHR feature reduction. Autoencoders are trained to reconstruct an

input through encoding and decoding networks. In the DnAE case, noise is added

to the encoded units to enforce robustness to measurement noise.

We designed the network architecture with a hyper-parameter search for layers,

hidden, and encoding units. The network with the least number of encoding units

that achieves the reconstruction error of 1% or less is preferred. The encoding vec-

tors represent EHR data in a compressed and continuous vector, suitable for any

clustering technique.

For comparison, we evaluated other methods with local (Local Linear Embedding

(LLE) [34]) and global neighbor algorithms (Isometric Mapping (ISOMAP) [35]); as

well as a�nity matrix algorithms, such as Spectral Embedding [36] and Multidimen-

sional Scaling (MDS) [37].
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Table 2.1: Simulation experiments with default parameters p = 0, ⌘ = 0, d = 10,
n = 5000, and m = 10.

Experiment Parameter Levels

E↵ect Size d [3, 4, 5, 6, 7, 8]
Features m [6, 20, 40, 100, 200, 500]
Missingness (%) p [0, 10, 20, . . . , 80]
Noise ⌘ [4, 16, 64, 128, 256]

Clustering

For simplicity, we used K-means to conduct the final cluster analysis.

2.3 Simulation Setup

First, we simulated a baseline scenario where all parameters were set to an ideal

level with complete, free of noise, d = 10, 5000 samples per cluster, and m = 10. An

e↵ect size of 10 resulted in less than 0.01% overlap between clusters, and heuristically

m = 10 resulted in good performance for all pipelines. This baseline was used to

identify the best performing pair of normalization and feature reduction methods,

which were then used in the rest of the experiments.

We then simulated four scenarios for testing the pipeline robustness at various

levels of severity. In all experiments, we swept one simulation parameter while keep-

ing all others constant. We measured the adjusted rand-score [38], which computes

a similarity measure between the results of two sets of labels by counting pairs that

are assigned in the same or di↵erent clusters in the predicted and true clustering

while adjusting for random chance. Table 2.1 describes each experimental setup and

the default parameters. Every experiment was run 5 times to extract the mean and

standard deviation of the performance.
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Missingness

To simulate the missing entries in the EHR, we randomly removed a percentage p,

from the observed data matrix and denoted them as missing values. We varied p

from 0 to 80% in increments of 10%.

E↵ect Size

We manipulated the e↵ect size by varying the distance between cluster centers, d. In

two dimensions, we can calculate the number of overlapped samples by counting the

number of samples beyond a distance of d
2 in a bivariate standard normal distribution.

Then, in a triangular setting, the number of overlapped samples would be 6 times

the calculated amount. By conducting a Monte Carlo simulation, we can convert the

e↵ect sizes of 3–8 to the percentage of overlapped samples [13.35%, 4.55%, 1.24%,

0.27%, 0.04%, 0.01%]. This can be interpreted as the lower-bound for error in cluster

assignment.

Redundant Features

We assessed the robustness to the number of redundant features present in the dataset

by increasing the dimensionality, m, while keeping the ground-truth dimensionality

of 2. We simulated projection matrices that generated [6, 20, 40, 100, 200, 500]

features.

Uninformative/Noisy Features

EHR data contain information that may not be useful in determining clusters of

similar patients. We assessed the e↵ects of including non-informative variables by
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Table 2.2: Baseline results for identifying best scaling for each feature reduction
method. The entries show average score and standard deviation of the scores across
repetitions.

MinMax Raw Whitening Z-score

DAE 0.982(0.03) 0.822(0.20) 0.841(0.15) 0.998(0.00)
DnAE 0.983(0.03) 0.769(0.20) 0.781(0.20) 0.998(0.00)
MDS 0.903(0.17) 0.985(0.03) 0.294(0.18) 0.999(0.00)
ISOMAP 0.264(0.41) 0.235(0.35) 0.822(0.26) 0.390(0.43)
LLE 0.737(0.20) 0.976(0.05) 0.503(0.32) 0.745(0.21)
Spec. Emb. 0.770(0.21) 0.994(0.01) 0.634(0.29) 0.753(0.23)

appending ⌘ random continuous and ⌘ random binary variables.

2.4 Dataset

In the span of 26 years (1991-2017), Geisinger Health System and a�liations gathered

427,012 Echocardiography studies from 206,650 patients. We extract demographics

(see Table 2.3), ICD codes, Echocardiography measurements, clinical notes, and

Heart Failure diagnostic [1].

The demographics contain gender, self reported race and smoking status, and

date of birth and death, for each patient. The ICD table contain ICD-10 codes with

onset and resolved dates. Old ICD-9 codes are mapped to the ICD-10 standard for

consistency. The Echocardiography table consists of 528 measurements and session

date. The clinical notes are free text notes written by clinicians that describes

findings and impression from each session, we only extract the estimation of the left

ventricular ejection fraction (LVEF).
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Table 2.3: Summary of the historical Echocardiography records at Geisinger and
a�liations. Gender was not reported in 172 studies, and the status of the patient in
761 studies is unknown. Age is shown as mean±standard deviation. The diagnosis
of Heart Failure follows the eMERGE guidelines [1]

Gender Status

Female Male Alive Deceased Age

Not HF 187,049 198,160 289,064 95,542 61.8±17.3
HF 18,412 23,219 21,928 19,717 72.2±12.9

Total 205,461 221,379 310,992 115,259 62.8±17.2

2.4.1 Processing pipeline

This processing pipeline that takes EHR data tables and assigns cluster labels to

each Echocardiography study. The pipeline consists of the following steps performed

sequentially: merging, cleaning, imputation, feature space reduction (homogeniza-

tion), and clustering.

Merging

We define a sample as an Echocardiography study, thus all other tables are modified

to meet the same format. From the demographics table, we compute the age and

include the survival time in months from the study date, including the known status

of the patient (deceased or alive). The LVEF values are appended to the table since

it has a direct relation to each study.

The reformatted ICD table indicates whether a code is active or not at the time

of the study, i.e if the study date falls between the code onset and resolved dates,

the code is set to one, zero otherwise. Also, we only include codes relevant to

the circulatory system (I codes). Similarly, the HF diagnosis is computed for each

Echocardiography study following the eMERGE guidelines [1].
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Cleaning

We identify and remove measurement errors by detecting out-of-range values. The

pipeline set thresholds based on heuristics and remove any value outside the valid

range. For example, LVEF is a measurement that denotes the percentage of blood

pumped out of a ventricle of the heart, however the data is prone to typographical

errors since clinicians write it in a free text report. Thus, we flag any measurement

that is negative or larger than 100 as missing.

None of the measurements in our tables should be negative, we set the minimum

to zero. For measurements in which a maximum is not defined, we set the threshold

to the average plus three standard deviations as the maximum value.

Imputation

Given the wide array of tests and measurements that can be obtained on patients,

missing data is common, as it is unlikely that every patient has every possible test

and measurement. Physicians evaluate the cost-benefit of each test and may not

request one if normal results or no significant di↵erence from the previous test is

expected. Based on this assumption, we can rely on past and future information to

interpolate some missing values.

To complete the rest of missing data, i.e when a patient never had a test or mea-

surement, the pipeline uses multiple imputation by chained equations (MICE) [31].

Feature reduction

EHR data is both heterogeneous (i.e. the variables can be continuous, binary, or

categorical) and redundant (i.e. multiple tests or measurements may assess nearly

the same underlying patient feature). The heterogeneity and redundancy of EHR
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data is reduced to a continuous space with deep-autoencoders, where categorical

variables are encoded with a one-hot technique, and continuous data is normalized

to a 0 to 1 range.

An autoencoder is a tool for extracting latent features without knowledge of pre-

conceived labels. Autoencoders train to optimally reconstruct the input through

encoding and decoding networks. The encoding network reduces the inputs dimen-

sionality and produces a compressed feature vector through a non-linear mapping.

The feature vector is then decoded to reconstruct the original input.

We train a deep-autoencoder for a maximum of 1000 epochs, stopping if there

is no reduction in the loss function for 50 epochs. The architecture is designed by

conducting a hyper-parameter search. We evaluate the number of layers, number

of hidden units, and cost function (mean squared error vs cross-entropy), where the

network with the least number of encoding units that achieves the desired recon-

struction error is preferred. The encoding units are used to represent EHR data in

a compressed and continuous feature vector, suitable for any clustering technique.

Clustering

We use clustering to explore the underlying structure of the encoding units and

yield a natural classification of studies. Since the encoding units are continuous and

homogeneous, we apply a classical and intuitive clustering technique, K-means [39],

which labels k groups of similar patients. The similarity is set as the Euclidean

distance between encoding feature vectors.

We use metrics of intra-cluster similarity and inter-cluster separation, such as

the silhouette score, to guide the value of k. However, as those metrics have limita-

tions [40] we also evaluate the relationships of the extracted phenotypes to outcomes

and optimal therapies for several values of k in order to find the most clinically useful
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set of phenotypes.

2.5 Statistical analysis

We used Cox Proportional Hazard Regression (CPH) [41] to predict survival as a

function of time. By defining birth as the study date and death as all-cause mortality,

we can assess how di↵erent phenotypes broadly relate to outcomes.

The new phenotype of patients with HF is compared against the traditional

classification, reduced ( 50%) or preserved (> 50%) LVEF, computing the cross-

validated concordance score from the CPH models that predicts survival from the

clusters.

2.6 Optimal Pipeline Simulation Results

The baseline experiment revealed that the performance of the clustering pipeline

heavily depended on the choice of normalization and feature reduction method (see

Table 2.2). DAE, DnAE, and MDS paired best with Z-scoring, all with scores above

0.99. ISOMAP performed best with Whitening while LLE and Spectral Embedding

obtained its best performance when no scaling was used. We used these optimal

pairs to conduct the remainder of the experiments.
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Figure 2.1: Missingness experiment results.

2.6.1 Robustness Experiments

Missingness

As shown in Fig. 2.1, levels of missingness above 60% significantly impaired the

clustering performance for all pipeline configurations (all scores below 0.8). Among

the three imputation methods, MICE resulted in the best performance for all feature

reduction methods except ISOMAP, for which KNN was marginally better up to

50%. Median imputation consistently the worst performance.

E↵ect Size

As expected, the performance of all configurations increased with the e↵ect size (Fig.

2.2a). Overall, the top three performing feature reduction methods were LLE, DAE,

and MDS. LLE exhibited the best performance across feature reduction methods but
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only marginally better than DAE, e.g. the p-value of a paired t-test was 0.03 at the

e↵ect size of 4.

Features

LLE, DAE, and MDS were essentially immune to large amounts of redundant fea-

tures (Fig. 2.2b). DnAE appeared to be similarly immune at low levels, but its

performance sharply decreased with greater than 200 features. Conversely, Spectral

Embedding benefited from higher numbers of redundant features and performed on

par to the best methods for 200 and 500 redundant features. ISOMAP performed

poorly at all levels

Uninformative/Noisy Features

As shown in Fig. 2.2c, most methods, except DnAE and ISOMAP, were immune

to large amounts of uninformative variables. DnAE was robust to uninformative

variables up to 32 continuous and binary uninformative variables. ISOMAP did not

tolerate even the minimum number of uninformative variables.

2.6.2 Interaction Experiments

Following the robustness experiments, we identified DAE and LLE as the top 2 best

performing feature reduction methods overall. To further compare these methods,

we performed subsequent experiments that allowed for interactions of varying e↵ect

sizes, missingness, and noise.

Overall, LLE matched or outperformed DAE. In the e↵ect size vs noise experi-

ment, (Fig. 2.6a) large amounts of uninformative variables and medium e↵ect sizes

favored LLE. In the e↵ect size vs missingness experiment, (Fig. 2.6b) LLE showed
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Figure 2.2: Robustness experiments results for (a) E↵ect size, d, (b) number of
informative features m, and number of noisy features ⌘.

significantly better performance for medium e↵ect sizes and low missingness and no

di↵erence for large e↵ect sizes and low to medium missingness.

2.7 EHR Application Results

We designed the deep autoencoder following a hyper-parameter search for di↵erent

network configurations, such as depth (from 1 to 3 hidden layers), number of encoding

units (10, 40, 60, and 100), hidden units for each layer (50, 200, and 500), and cost

function (cross-entropy and mean squared error). A 3-layer architecture of 200, 200

and 40 hidden units with mean squared error as the cost function resulted in a 1%

absolute reconstruction error, which was the minimum encoding size that yielded the

desired reconstruction error. Out of all the Echocardiography studies used to train

the deep-autoencoder, we extracted the compressed feature vector of 41,647 studies

that fit the eMERGE criteria for HF.

We conducted a clustering analysis using K-means on the encoded space. We

varied the number of clusters from 2 to 100 and fit a Cox Proportional Hazards

Regression model to explain survival time of each patient for each cluster number.

The results suggest that the di↵erence in median survival between the highest and
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Figure 2.3: Kaplan Meier curves for the Highest and Lowest risk clusters compared
to HFrEF and HFpEF for (a) 2, (b) 10, (c) 30, and (d) 50 clusters.

lowest risk groups in the proposed categorization monotonically increased beyond

the clinical classification di↵erence that was only 4.5 months (31.8 vs 36.3), see Fig.

2.3.

Given the clinical value of the extracted phenotypes, we visualized the encoded

space (40 dimensions) in a 2-dimensional space using t-distributed stochastic neigh-

bors embedding (t-SNE), see Fig. 2.4. We color coded raw features on top of the

learned representation and visually assessed what features were most useful for sep-

arating the clusters. For example, Fig. 2.4a shows that the aortic root diameter and
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ICD code I-25 clearly discriminate the patients into large clusters.

2.8 Discussion

We proposed and evaluated a clustering pipeline tailored for complex EHR data

by comparing performances of commonly used techniques. We found two pipelines

that outperform other alternatives: 1) MICE imputation + LLE feature reduction; 2)

MICE imputation + Z-score normalization + DAE feature reduction. Both pipelines

are robust to missingness (up to 60%), uninformative noise and large numbers of

redundant features, while LLE performs slightly better at smaller e↵ect size. Also, we

applied the found methodology to large scale EHR data and found a larger separation

in survival for the automatically found clusters compared to clinical classification.

This is the first study to present an unsupervised homogenization pipeline designed

for EHR clustering.

2.8.1 Pipeline Optimization

Normalization

EHR data are heterogeneous, containing both categorical and continuous variables

at di↵erent scales. Normalization is recommended to reduce the variance among

variables. Most previous studies [28, 42, 43] normalized EHR variables to a range

of (0, 1), however, as shown in Table 2.2, the best normalization method is closely

related to the feature reduction method. For example, for DAE and DnAE, Z-score

normalization results in the best performing pipelines, while no normalization is

necessary for LLE. This is reasonable since, unlike DAE and other distance-based

algorithms, neighbor-based algorithms, such as LLE, eliminate the need to estimate
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distance between objects.

Imputation

Given the wide array of measurements that can be obtained from patients, missing

data are common, and it is impossible that every patient has every possible test and

measurement. Physicians evaluate the cost-benefit of each test and may not request

a particular test if the result will not be informative for the diagnosis or treatment.

We evaluated a spectrum of imputation techniques that could induce di↵erent levels

of artificial similarity. The simulation results favored MICE for all feature reduction

methods except ISOMAP. Consistent with our studies, MICE has also shown good

performance for life-history/EHR datasets in previous studies [44, 45].

The main assumptions of MICE are that other non-missing values are predictive

of the missing ones (redundancy) and that the data are missing-at-random. EHR

data satisfies the redundancy assumption, for example, age, sex, and height are

known to be good predictors of aortic root diameter [46]. White et al. [47] note that

MICE is sensitive to departures from the missing-at-random assumption. However,

such assumptions can be relaxed as long as the dataset contains enough complete

samples to build reliable predictive models. Theoretically, EHR data is likely to

follow a missing not at random over a missing at random mechanism, as there is

likely a reason for missing values (e.g. patients health, physicians recommendation,

socioeconomic status). However, the true pattern of missingness is likely influenced

by both MAR and MNAR. Hence, MICE can still be applied given an abundance of

data.
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Feature Reduction

The EHR contains many redundant pieces of information. For example, body mass

index can be easily computed from height and weight. Thus, it is necessary to re-

duce the redundancy to extract e↵ective (and possibly latent) features from this

high dimensional dataset. Our simulation results show that among the di↵erent fea-

ture reduction methods, pipelines with DAE and LLE show the highest accuracy.

Moreover, LLE outperforms DAE by 0.05-0.12 at medium e↵ect size and high un-

informative noise. This suggests that LLE might be better at detecting granular

phenotypes that have more overlapped samples (1-5%, corresponding to an e↵ect

size of 4-5). Additionally, another benefit of using LLE is that no normalization to

input data is needed, as discussed above.

DAE is computationally more e�cient at O(nm) where n is the number of sam-

ples and m is the number of features. Here, we note that LLE requires O(m log(k) ·

n log(n)), where k denotes the number of neighbors for LLE. Once the network is

trained, the weights can be applied to a new dataset with minimal computation, while

LLE computes and sorts distances to all neighbors. Thus, considering the large-scale

nature of the EHR data, DAE might be a better choice when used to make predic-

tions for future patients. Recent studies deep auto-encoders have demonstrated their

ability to identify meaningful representations of EHR data [42, 43]. Miotto et al. first

proposed the use of deep autoencoders for EHR data and called its representation

“Deep patient” [42]. They demonstrated its utility by assessing the probability of

patients developing various diseases and showing improvement in classification scores

for 76,214 patients and 78 di↵erent diseases. Similarly, Beaulieu-Jones et al. reported

improved classification scores for amyotrophic lateral sclerosis diagnosis in clinical

trials using 10,723 patients [43]. These are promising results which demonstrate the

potential of the proposed pipeline with DAE to utilize EHR data to identify granu-

lar disease phenotypes, and to ultimately facilitate precise diagnoses, risk prediction
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and treatment strategies. Moreover, while these previous studies have shown the

promise of DAE, this is the first study to validate and design the entire pipeline for

clustering. Finding novel, previously hidden features within EHR and identifying

granular phenotypes from hundreds of Echocardiography measurements requires a

large and comprehensive training dataset. The machine learning and clustering al-

gorithms need to see examples of many di↵erent patients and their images in order

to uncover the complex relationships that exist between their features and outcomes.

The training performed on the presented dataset, with more that 400,000 studies,

o↵ers an opportunity to make precise predictions of outcomes and optimal therapies

for subsequent patients. Yet, its potential is hampered by the inherent complexity

and heterogeneity of EHR data.

2.8.2 EHR Application

The first complication is the missingness present in the dataset. We identify a spec-

trum of imputation techniques that could induce di↵erent levels of artificial similarity.

Place-holders or median imputation induce the most similarity whereas predictive

models, such as KNN [48] and MICE [31], induce the least similarity. The simulation

results favors MICE when paired with deep-autoencoders. Moreover, MICE has also

shown good performance for life-history/EHR datasets [44, 45].Thus, we use MICE

to conduct imputation.

The main assumptions of the MICE model is that other non-missing values are

predictive of the missing ones (redundancy) and that the data is missing-at-random.

EHR data is redundant, for example, age, gender, and height are known to be good

predictors of aortic root diameter [46]. White et al. [47] note that MICE is sensitive to

departures from the missing-at-random assumption. However, such assumption can

be relaxed as long as the dataset contains enough complete samples to build reliable
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predictive models. Since EHR is not missing-at-random, we only keep measurements

with at least 10% (40,000 studies) of valid samples and discard the rest.

The next complication in EHR data is its heterogeneity, which consists of a mix-

ture of continuous and categorical data. We propose the use of deep-autoencoders

for homogenization. Recent developments in deep auto-encoders have demonstrated

their ability to identify meaningful representations of EHR data [42, 43]. Miotto et al.

first proposed the use of deep autoencoders for EHR data and called its representa-

tion “Deep patient” [42]. They demonstrated its utility by assessing the probability

of patients developing various diseases and showing improvement in classification

scores for 76,214 patients and 78 di↵erent diseases. Similarly, Beaulieu-Jones et al.

reported improved classification scores for amyotrophic lateral sclerosis diagnosis in

clinical trials using 10,723 patients [43]. In contrast, we validate the practical use

of the encoded representation by extracting phenotypes based on patient similar-

ity in the compressed representation and assessing what truly matters to patients

and clinicians: Are the extracted phenotypes useful for predicting outcomes such as

mortality, hospitalizations, or the success of di↵erent therapies?.

The e�ciency of an autoencoder can be determined by the number of encoding

units necessary to reach a desired reconstruction error (< 1%), see Fig. 2.5. Since the

number of encoding units is typically inversely related to the reconstruction error,

the optimal autoencoder is defined as the network with the least number of encoding

units (minimum dimensionality) that meets the given error constraint. In that sense,

autoencoders with multiple layers, deep-autoencoders, have been shown to be more

e�cient than shallow autoencoders [32].
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2.9 Conclusion

The unsupervised deep learning analysis of EHR data from patients with HF showed

superior risk stratification compared to the current paradigm of HFpEF vs HFrEF,

see Fig. 2.3. The survival regression score comparison suggested a larger separation

on automatically derived classes of patients. This approach may lead to more refined

diagnosis and management of patients with HF.

In summary, we propose an unsupervised homogenization pipeline to fully inte-

grate all components of EHR data for clustering patients. After MICE imputation,

both LLE with raw features and DAE with z-score normalization show good cluster-

ing results. While LLE marginally outperformed DAE in several direct comparisons,

the computational e�ciency of DAE in evaluating new observations based on large-

scale EHR data (as is desired for precision medicine approaches) provides an im-

portant advantage. Future studies are required to evaluate and compare the two

pipelines in real clinical scenarios with large-scale EHR data.
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(a)

(b)

(c)

(d)

Figure 2.4: t-SNE visualization of 60 encoding units from Autoencoder. In each row,
the left two plots are 2D-density plots for each category in the right plot, where each
dot is a patient with Heart Failure. The same visualization is colored by (a) the
Aortic Root diameter, (b) Left Ventricular Ejection Fraction, (c) Hypertension, and
(d) Ischemic heart disease.
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Figure 2.5: Error distribution for Autoencoder with 2 layers (500 hidden units each)
and 60 encoding units

0 4 16 64 128 256
1oLse

3
4

5
6

8
10

E
ffe

ct

.05 .08 .11

.03 .09 .07 .09

.03 .07 .06 .05 .07

.02 .01 .01

.01

LLE - DAE

(a)

0.0 0.2 0.4 0.6 0.8
0LssLng

3
4

5
6

8
10

E
ffe

ct

.05 .04 .05

.03 .04

.03 .02

LLE - DAE

−0.08

−0.04

0.00

0.04

0.08

(b)

Figure 2.6: Interaction experiments for (a) E↵ect size vs Noise, and (b) E↵ect size
vs Missingness. The gray areas denote where neither method scored above 0.8, the
white areas denote no significant di↵erence between score means. The colored areas
denote significant di↵erences between LLE and DAE.
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Echocardiography Video

Processing

Imaging is critical to treatment decisions in most modern medical specialties and

has also become one of the most data rich components of electronic health records

(EHRs). For example, during a single routine ultrasound of the heart (an echocar-

diogram), approximately 10-50 videos ( 3,000 images) are acquired to assess heart

anatomy and function. In clinical practice, a cardiologist realistically has 10-20

minutes to interpret these 3,000 images within the context of numerous other data

streams such as laboratory values, vital signs, additional imaging studies (radiog-

raphy, magnetic resonance imaging, nuclear imaging, computed tomography) and

other diagnostics (e.g. electrocardiogram). While these numerous sources of data

o↵er the potential for more precise and accurate clinical predictions, humans have

limited capacity for data integration in decision making [49]. Hence, there is both

a need and a substantial opportunity to leverage technology, such as artificial in-

telligence and machine learning, to manage this abundance of data and ultimately

provide intelligent computer assistance to physicians [50, 51, 52, 53].
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Automatic video analysis has remained a challenge to date, from its transmission

in clinical settings [54, 55], to its compression for a more e�cient storage [56], and

its use [57, 58]. An example of video analysis system for clinical use is a motion and

deformation model for carotid artery plaques [59, 60], where engineered features of

the plaque such as texture [61, 62, 63] were used to predict a stroke event. Another

example is the detection of lesions from diabetic retinopathy [64], among others.

More recently, “deep” learning (deep neural network; DNN) technologies such

as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNN),

Dropout Regularization, and adaptive gradient descent algorithms [12]; in conjunc-

tion with massively parallel computational hardware (graphic processing units), have

enabled state-of-the-art predictive models for image, time-series, and video-based

data [65, 66]. For example, DNNs have shown promise in diagnostic applications,

such as diabetic retinopathy [67], skin cancer [68], pulmonary nodules [69], cere-

bral microhemorrhage [70, 71], and etiologies of cardiac hypertrophy[72]. Yet, the

opportunities with machine learning are not limited to such diagnostic tasks [50].

Prediction of future clinical events, for example, is a natural but relatively unex-

plored extension of machine learning in medicine. Nearly all medical decisions rely

on accurate prediction. A diagnosis is provided to patients since it helps to establish

the typical future clinical course of patients with similar symptoms, and a treatment

is provided as a prediction of how to positively impact that predicted future clini-

cal course. Thus, using computer-based methods to directly predict future clinical

events is an important task where computers can likely assist human interpretation

due to the inherent complexity of this problem. For example, a recent article in

216,221 patients demonstrated how a Random Forest model can predict in-hospital

mortality with high accuracy [18]. Deep learning models have also recently been used

to predict mortality risk among hospitalized patients to assist with palliative care

referrals [73]. In cardiology, variables derived from electronic health records have
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been used to predict two-to-five year all-cause mortality in patients undergoing coro-

nary computed tomography [74, 75], five-year cardiovascular mortality in a general

clinical population, and up to five-year all-cause mortality in patients undergoing

echocardiography [24].

Notably, these initial outcome prediction studies in cardiology exclusively used

human-derived, i.e. “hand-crafted” features from imaging, as opposed to automat-

ically analyzing the raw image data. While this use of hand-crafted features is im-

portant, an approach that is unbiased by human opinions and not limited by human

perception, human ability in pattern recognition, and e↵ort may be more robust.

That is, there is strong potential in an automated analysis that would leverage all

available data in the images rather than a few selected clinical or clinically inspired

measurements. Furthermore, the potential benefit of this approach for echocardio-

graphy may be enhanced by the added availability of rich temporal (video) data.

DNNs make this unique approach possible. However, using video data also increases

technical complexity and thus initial e↵orts to apply deep learning to echocardiog-

raphy have focused on ingesting individual images rather than full videos [20].

In this chapter, we show that a DNN can predict 1-year mortality directly from

echocardiographic videos with good accuracy and that this accuracy can be improved

by incorporating additional clinical variables from the electronic health record. We

do this through a technical advance that leverages the full echocardiographic videos

to make predictions using a three-dimensional DNN. In addition to this technical

advance, we demonstrate direct clinical relevance by showing that the DNN is more

accurate in predicting 1-year mortality compared to two expert physician cardiolo-

gists.
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Figure 3.1: Examples of raw (left) and annotated (right) videos.

3.1 Image Collection and Preprocessing

An echocardiography study consists of several videos containing multiple views of the

heart. Two clinical databases, Philips iSite and Xcelera, contained all echocardio-

grams collected at Geisinger. We used DCM4CHEE (version 2.0.29) and AcuoMed

(version 6.0) software to retrieve a DICOM file for each echocardiography video.

The retrieved DICOM files contained an annotated video (for example, which was

marked with the view name) and a raw video when the equipment was configured

to store it. Without loss of generality, we used raw videos for all analyses. The raw

video contained only the beam-formed ultrasound image stored in a stream of bytes

format (see Figure 3.1), whereas the annotated video contained artificial annotations

on top of the raw video we linearly interpolated all raw videos to 30 frames per

second.

Along with the video data, the DICOM file included tags that labelled the view

as to which specific image orientation was acquired. These view tags had slight

variations across studies for the same type of view. For example, an apical four

chamber view could be tagged as “a4”, “a4 2d”, or “ap4”. We visually inspected
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samples of each unique tag and grouped them into 30 common views (see Table A.1).

Since each video from a view group could potentially have di↵erent dimensions, we

normalized all videos from a view to the most common row and column dimensions.

We cropped/padded each frame with zeros to match the most common dimensions

among the view group. We ultimately retrieved Philips-generated DICOM files with

raw videos, view labels and excluded any videos that lasted less than 1 second.

3.2 Electronic health record data preprocessing

The EHR contained 594,862 echocardiogram studies from 272,280 unique patients

performed over 19 years (February 1998 to September 2018). For each study, we

extracted automatic and physician reported echocardiography measurements (n =

480) along with patient demographic (n = 3), vitals (n = 5), laboratory (n = 2), and

billing claims data (n = 90; International Classification of Diseases, Tenth Revision

(ICD-10), codes from patient problem lists). For measurements taken outside of the

Echocardiography study, such as fasting LDL, HDL, blood pressure, heart rate, and

weight and height measurements, we retrieved the closest (before or after) within a

six-month window.

All continuous variables were cleaned from physiologically out of limit values,

which may have been caused by input errors. In cases where no limits could be

defined for a measurement, we removed extreme outliers that met two rules: 1)

Value beyond the mean plus or minus three standard deviations and 2) Value below

the 25th percentile minus 3 interquartile ranges or above the 75th percentile plus 3

interquartile ranges. The removed outlier values were set as missing.

We imputed the missing data from continuous variables in two steps. First,

we conducted a time interpolation to fill in missing measurements using all available

studies of an individual patient, i.e., missing values in between echocardiography ses-
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sions were linearly interpolated if complete values were found in the adjacent echocar-

diograms. Then, to conduct Multiple Imputation by Chained Equations (MICE) [47]

and complete the entire dataset, we kept 115 of 480 echocardiography measurement

variables with more than 10% non-missing measurements.

We coded the reported diastolic function in an ordinal fashion with -1 for normal,

0 for dysfunction (but no grade reported), and 1, 2 and 3 for diastolic dysfunction

grades I, II, and III respectively. After imputation of the continuous measurements,

we imputed the missing diastolic function assessment by training a logistic regression

classifier to predict the dysfunction grade (-1, 1, 2, or 3) in a One-vs-All classifier

framework using 278,160 studies where diastolic function was known.

Following imputation, we retained the physician reported left ventricular ejec-

tion fraction (LVEF) plus 57 other independent, non-redundant echocardiography

measurements (i.e., excluding variables derived from other measurements; n = 58

echocardiography measurements in total).

We calculated the patients age and survival time from the date of the echocardio-

gram. The patient status (dead/alive) was based on the last known living encounter

or confirmed death date, which is regularly checked against national databases in

our system. We present a list and description of all 158 EHR variables used in the

proposed models in the Table A.2.

3.3 Data pruning

The image collection and preprocessing resulted in 723,754 videos from 31,874 studies

performed on 27,028 patients (an average of 22.7 videos per study). We linked the

imaging and EHR data and discarded any imaging without EHR data. For a given

survival experiment (3, 6, 9, and 12 months), we also removed studies without enough

35



Chapter 3. Echocardiography Video Processing

Figure 3.2: Number of patients for experiments that required 3, 6, 9, and 12 months
follow-up (as indicated in the Extended Data Table 2) with the proportion of dead
patients (shaded bar).

follow up. After that, we kept a single study per patient by randomly sampling one

study per patient. This ensured that images from a single patient would not appear

multiple times throughout training, validation, and testing groups.

We needed at least 600 patients (300 alive, 300 deceased), as indicated by a

sample size calculation using the Pearson Chi-square test, to estimate and compare

prognostic accuracy between the model and the two cardiologists. We assumed a

10% di↵erence in accuracy between machine and cardiologist (80% vs 70%), 80%

power, a significance level of 5%, and an approximate 40% discordancy. This was

calculated using Power Analysis Software (PASS v15). Thus, we randomly sampled

300 studies of patients that survived and 300 that died within the set experiment

threshold for each view, and set these aside from the valid samples to later compare

the performance of the machine against two independent cardiologists. Only the

parasternal long axis view (representing the best performing model and the cardi-

ologists preference for the most comprehensive single view) was ultimately used for

the cardiologist comparison. The total number of valid samples for each experiment

and view is shown in Table A.3, and Figure 3.2.
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We excluded parasternal long mitral valve, parasternal long pulmonic valve, short

axis apex zoom, short axis mid papillary zoom, parasternal long lax, apical 3 zoom,

and apical 2 zoom views, as they did not have enough available samples to run the

experiments.

3.4 Model selection

For Echocardiography video classification, we explored four di↵erent architectures:

1) A time-distributed two-dimensional Convolutional Neural Network (2D CNN)

with Long Short-Term Memory (LSTM), 2) a time-distributed 2D CNN with Global

Average Pooling (GAP), 3) a 3D CNN and 4) a 3D CNN with GAP. For simplicity,

we abbreviate the four candidate architectures: 2D CNN + LSTM, 2D CNN + GAP,

3D CNN, and 3D CNN + GAP.

The 2D CNN + LSTM consisted of a 2D CNN branch distributed to all frames

of the video. This architecture was used for a video description problem [76], where

all frames from a video belonged to the same scene or action. Since all frames of the

echocardiography video belong to the same scene or view, it is correct to assume that

the static features would be commonly found by the same 2D kernels across the video.

This assumption was put in practice for echocardiography view classification [77].

The LSTM layer aggregates the CNN features over time to output a vector that

represents the entire sequence.

The 2D CNN + GAP approach exchanged the LSTM layers for the average CNN

features as a time aggregation of frames. The GAP layer provides two advantages.

It requires no trainable parameters, saving 1008 parameters from the LSTM layers,

and enables feature interpretation. The final fully connected layer after the GAP

would provide a weighted average of the CNN features, which could indicate what

sections of the video weighted more in the final decision. The 3D CNN approach
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aggregates time and space features as the input data flows through the network.

3D CNNs have also shown successful applications for video classification. As

opposed to the 2D CNN approach, 3D CNN incorporates information from adjacent

frames at every layer, extracting time-space dependent features.

The 3D CNN approach would replace the Flatten operation for a GAP layer. In

a similar fashion to the 2D CNN + GAP approach, the GAP layer would reduce the

number of input features to the final Dense layer, thus the reduction of the number

of parameters from 641 to 17; while enabling the traceback of the contributions of

video features.

We defined the convolutional units of the 2D and 3D CNNs as a sequence of 7

layers in the following composition: CNN layer, Batch Normalization, ReLU, CNN

layer, Batch Normalization, ReLU, and Max Pooling (see Figure 3.3). All kernel

dimensions were set to 3 and Max Pooling was applied in a 3 x 3 window for 2D

kernels and 3 x 3 x 3 for 3D kernels.

A detailed description of the number of parameters for the 2D CNN + LSTM

architecture is shown in Table 3.2, 2D CNN + GAP is shown in Table 3.3, 3D CNN

is shown in Table 3.4, and 3D CNN + GAP is shown in Table 3.5. We applied

all four candidate architectures to all the identified echocardiography views with a

1-year mortality label, and the 3D CNN showed consistently the best performance,

see Figure 3.4.

Similarly, we assessed the performance gain at di↵erent image resolutions. We

reduced the video resolution by factors of 2, 3, and 4. No consistent significant

loss in performance was observed across all views, see Figure 3.5. Thus, we decided

to conduct all experiments with a resolution reduction by a factor of 4 to reduce

computational cost. To incorporate EHR data into the prediction, we trained a

three-layer multi-layer perceptron (MLP) with 10 hidden units at each layer. Then,
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Figure 3.3: Neural network architecture for mortality prediction from echocardiogra-
phy videos and electronic health record (EHR) data. The convolutional layer (Conv)
is shown on the top box with a solid outline and the tabular layer (Tab) is shown in
the bottom box with a dashed outline. The convolutional layer consists of Convolu-
tional Neural Networks (CNN), Batch Normalizations (Batch Norm.), rectified linear
units (ReLU), and a three-dimensional Maximum Pooling layer (3D Max Pool). The
tabular layer consists of a fully connected layer (Dense) with sigmoid activations and
a Drop Out layer. The input video dimensions were 150 x 109 x 60 pixels, and the
output dimension of every layer are shown.

we concatenated the last 10 hidden units with the CNN branch, see Figure 3.3.

3.4.1 E↵ect of adding optical flow inputs

Optical flow velocity maps have been shown to be informative along with the orig-

inal videos for classification tasks [78]. Thus, we computed the dense optical flow

vectors of the echocardiography raw videos using the Gunnar Farnebacks algorithm

as implemented in the OpenCV (version 2.4.13.7) software library. We set the pyra-

mid scale to 0.5, the number of levels to 3, and the window size to 5 pixels. The

vectors were then converted to color videos where the color indicated direction (as

in the HSV color space) and the brightness denoted amplitude. This resulted in an
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Figure 3.4: AUCs of one-year mortality predictions across all views with four di↵erent
neural network architectures: 2D CNN + Global Average Pooling (GAP; dark gray),
2D CNN + Long Short-Term Memory (LSTM; light gray), a 3D CNN + GAP (light
blue), and 3D CNN (dark blue).

image video that was fed to the neural network model through an independent 3D

CNN branch along with the raw video. As seen in Figure 3.6, this combination of

the optical flow video to the raw video did not yield consistently improved model

performance compared with models using the raw video alone. Therefore, we did

not use optical flow for the final study analyses.

Figure 3.5: AUCs of one-year mortality predictions across all views with di↵erent
levels of reduced resolution ranging from native (x1) to 4-fold (x4). Note that full
native resolution training was only done for select views due to the computational
time required to complete the experiment at this resolution.
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Figure 3.6: One-year mortality prediction performance ranking for all echocardiog-
raphy views using only the raw video (blue) versus the raw video with optical flow
features (gray).

3.5 Training Procedure

We used the RMSProp [79] algorithm to train the networks with LSTM coupling,

and AdaGrad [14] for the 3D CNN architectures. Each iteration of the 5-fold cross

validation contained a training, validation, and test set. The training and test sets

were sampled such that they had the same prevalence of alive patients, but the

validation set was sampled with a balanced proportion. The validation set comprised

10% of the training set.

As we trained the DNN, we evaluated the loss (binary cross-entropy) on the

validation set at each epoch. If the validation loss did not decrease for more than 10

epochs we stopped the training and reported the performance, in AUC, of the test

set. We set the maximum number of epochs to 1000 and kept the default training

parameters as defined by the software Keras (version 2.2). Training always ended

before the maximum number of epochs was reached.

Since the prevalence of each patient class is imbalanced ( 16% deceased patients),
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we set the weights for each class as follows:

wi =
Total Number of Samples

2(Number of Samples in class i)

All training was performed in an NVIDIA DGX1 platform. We independently fit

each fold on each of the 8 available GPUs. The main experiment, shown in Figure

3.4, took a total of six days to complete.

3.6 Cardiologist Survey Dataset

We set a 600-patient survey used to compare the accuracies of the cardiologists and

the model, as described in the data pruning section, was intentionally balanced with

respect to mortality outcomes (300 dead and 300 alive at one year) in order to ensure

adequate power to detect di↵erences in performance. The cardiologists were blinded

to this distribution at the time of the review. We note that this balance is not reflec-

tive of typical clinical outcomes, particularly in a primary or secondary care setting,

in which the base rate for 1-year survival is much higher. Hence, we cannot claim that

this survey comparison between cardiologists and the model, as implemented, repre-

sents prediction in a realistic clinical setting. We do note, however, that the realistic

clinical survival base rate was represented in the model training/testing sets, just as

in the conditioning experiences of the cardiologists (consistent with their preference-

high specificity for deathin over-estimating 1-year survival). Thus, the model was

not advantaged in this regard by learning to expect this di↵erent outcome. Instead,

rather than prediction informed by clinical base rates, our comparison sought to eval-

uate the true discriminative abilities and accuracies of the cardiologists compared to

the machine.
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Figure 3.7: Interface of the web application developed for cardiologists to predict
survival one year after echocardiography

3.6.1 Software for cardiologist survey

We deployed a web application with the interface shown in Figure 3.7. The applica-

tion required the cardiologist to input their institutional credentials for access. We

showed the 10 EHR variables and the two versions of the video, raw and annotated.

The application then recorded the cardiologist prediction as they clicked on either

the “Alive” or “Dead” buttons.
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3.6.2 Statistical analysis: Machine vs Cardiologists

The cardiologists responses were binary, and the Machines response was continuous.

We set 0.5 as the threshold for the Machines response prior to performing the final

comparison experiment. Since all responses were recorded for the same samples, we

conducted a Cochrans Q test to assess whether the three responses where significantly

di↵erent in the proportion of correctly classified samples.

3.7 Results and Discussion

Ultimately, we utilize a fully 3D Convolutional Neural Network (CNN) design in

this study. CNNs are neural networks that exploit spatial coherence in an image

to significantly reduce the number of parameters that a fully connected network

would need to learn. CNNs have shown promise in image classification tasks [12],

even surpassing human abilities [80]. Details of additional model architectures at-

tempted (including a time-distributed 2D CNN + long short term memory network

[LSTM] [81, 82, 83, 84]) are described in the methods.

We first collected 723,754 clinically acquired echocardiographic videos (approxi-

mately 45 million images) from 27,028 patients that were linked to at least 1 year

of longitudinal follow-up data to know whether the patient was alive or dead within

that time frame. Overall, 16% of patients in this cohort were deceased within a year

after the echocardiogram was acquired. Based on a power calculation detailed in the

methods, we separated data from 600 patients for validation and comparison against

two independent cardiologists and used the remaining data for 5-fold cross-validation

schemes.

During the acquisition of an echocardiogram, images of the heart and large blood

vessels are acquired in di↵erent two-dimensional planes, or “views”, that are stan-
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dardized according to clinical guidelines [85]. We generated separate models for each

of the 21 standard echocardiographic views and showed that the proposed models

were able to accurately predict 1-year survival using only the raw video data as

inputs (Figure 3.4). The chosen 3D CNN architecture (AUC range: 0.695-0.784)

outperformed the 2D CNN + LSTM architecture (AUC range: 0.703-0.752) for most

views. In both cases, the parasternal long-axis (“PL DEEP”) view had the best

performance. This result was in line with clinical intuition, since the PL DEEP view

is typically reported by cardiologists as the most informative “summary” view of

overall cardiac health. This is because the PL DEEP view contains elements of the

left ventricle, left atrium, right ventricle, aortic and mitral valves, and whether or

not there is a pericardial or left pleural e↵usion all within a single view.

These results were relatively insensitive to image resolution (no significant dif-

ference was observed between models using full native resolution images (400 x 600

pixels) and reduced resolution images (100 x 150 pixels); see Figure 3.5). Similarly,

adding derived optical flow velocity maps [78] to the models along with the pixel

level data did not improve prediction accuracy, see Figure 3.6.

Next, we investigated the predictive accuracy of the models at additional survival

intervals, including 3, 6, 9, and 12-month intervals after echocardiography. The

models generally performed better at longer intervals, but AUCs for all cases were

greater than 0.64 (Figure 3.8).

We then added select clinical (“EHR”) variables from each patient including age,

tricuspid regurgitation maximum velocity, heart rate, low density lipoprotein [LDL],

left ventricular ejection fraction, diastolic pressure, pulmonary artery acceleration

time, systolic pressure, pulmonary artery acceleration slope, and diastolic function.

These 10 variables have previously been shown to contain >95% of the power for

predicting 1-year survival in 171,510 patients [24] and their addition improved accu-

racy to predict 1-year survival for all echocardiographic views, with AUCs ranging
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Figure 3.8: Mortality prediction performance for echocardiographic videos alone at
3, 6, 9 and 12 months for all views. The error bars denote one standard deviation
above and below the average across 5 folds.

from 0.79-0.82 (compared to 0.70-0.78 without these 10 EHR variables).

Next, we developed a software platform (see section 3.6.1) that we used to display

an echocardiographic video of interest along with the 10 select EHR variables to

two independent cardiologist echocardiographers who were blinded to the clinical

outcomes. The cardiologists assessed whether each of 600 patients (independent test

set extracted randomly from the original dataset of parasternal long axis views and

not used for training of the machine) would be alive at one year based on the data

presented. The final trained model (trained in all but these 600) was also applied to

the same independent test set.

The overall accuracy of the model (75%) was significantly higher than that of the

cardiologists (56% and 61%, p = 4.2 x 10�11 and 6.9 x 10�7 by Bonferroni-adjusted

post-hoc analysis, Figure 3.9a. We found that the cardiologists tended to overesti-

mate survival likelihood, yielding high specificities (97% and 91%, respectively) but

poor sensitivities (16% and 31%, respectively) while the model, by design, balanced

sensitivity and specificity (both 75%). Moreover, as demonstrated in Figure 3.9b,

the operating points for the individual cardiologists fell within the envelope of the

model’s receiver operating characteristic curve (as opposed to falling at a di↵erent
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(a) (b)

Figure 3.9: Cardiologists vs Machine performance for 1-year mortality prediction
from the survey dataset of 600 samples with balanced prevalence. The left plot (a)
shows the accuracy in bars and sensitivity (red) and specificity (green) as triangles.
The right plot (b) shows the operating points of the cardiologists as orange dots, the
Receiver Operating Characteristic curve for the machine performance in blue, and
the machine operating point as a blue dot.

point on the same curve), suggesting inferior predictive performance in this task.

Beyond the limited inputs selected for the clinical expert comparison, we sought to

further characterize the model performance unconstrained by data input limitations.

That is, we completed additional experiments permuting the input combinations

of structured data (none, limited set [top 10 EHR variables], full set [158 EHR

variables, as described in methods]) and echocardiography videos (none, single view,

all 21 views). Models without videos were trained using all available data in our

structured echocardiography measurement database (501,449 valid studies), while

the models with videos were trained with all videos available for each view, ranging

from 11,020 to 22,407 for single videos and 26,428 combined. In all cases, the test

set was the 600 patients held out for the clinical expert comparison.
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Table 3.1: AUC scores for each data modality combination of EHR and Echo video
data on the 600 left out studies used to compare to the cardiologists. No video
models were trained on all available studies, whereas Single Video and All Videos
were trained on a subset where video data were available. The No EHR variables
and No Video cell denotes a random guess.

No Video Single Video All Videos
(⇠500K samples) (⇠22K samples) (⇠27K samples)

No EHR 0.532 0.801 0.839
Limited EHR 0.786 0.824 0.843
Full EHR 0.851 0.825 0.858

Table 3.1 shows that all videos combined with the full EHR variable set had the

highest AUC in the held out test set of 600 studies, demonstrating the potential to

further enhance the performance of the already clinically superior model. Several

general trends were also noted. First, a single video view out-performed a model

that included 10 EHR variables as input. Second, multiple videos had higher perfor-

mance than single videos. Third, the learning curves (Figure 3.10) for multi-video

predictions demonstrated that, despite having access to a massive dataset (26,428

echocardiographic videos), more samples would likely result in even higher perfor-

mance for multi-video predictions. In contrast, the performance of the full EHR

data-only model, which was consistently less than the full EHR plus videos model,

was beginning to plateau. Hence, our novel multi-modal DNN approach, inclusive

of echocardiography videos, provides enhanced performance for this clinical predic-

tion task compared to what can be achieved using EHR data alone (inclusive of

hand-crafted features derived by humans from the videos).

3.8 Conclusion

Here we demonstrated the potential for DNNs to help cardiologists predict a clinically

relevant endpoint, mortality after echocardiography, using both raw video data and
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Figure 3.10: Learning curves for the full (158) EHR variables model compared to
the full EHR variables plus videos. The AUC is reported on the 600 patient set as
a function of training set size, ranging from 10 to the maximum number of datasets
available for the given data inputs, which was 501,449 for the EHR variables and
26,428 for the Full EHR+videos.

relevant clinical data extracted from the electronic health record. For training the

DNN, we leveraged a massive dataset of 723,754 clinically-acquired videos of the

heart consisting of 45 million images. We showed that the ability of our DNN to

discriminate 1-year survivaleven with limited model inputssurpassed that of trained

cardiologists, suggesting that these models can add value beyond a standard clinical

interpretation. To our knowledge, no prior study has demonstrated the ability to

train a deep neural network to predict a future clinically-relevant event directly

from image pixel-level data. Additional experiments demonstrated opportunities to

achieve further significant performance gains by incorporating more EHR variables,

simultaneously using all echocardiography views, and leveraging more data for model

training.

We chose 1-year all-cause mortality as a highly important, easily measured clin-
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ical outcome to demonstrate feasibility for this initial work. Importantly, all-cause

mortality is a well-defined endpoint without the bias that can be introduced into

endpoints such as cardiovascular-specific mortality, and it can easily be extracted

from an EHR that is validated against national death index databases. Moreover,

mortality prediction is highly relevant for numerous applications in cardiology, as

evidenced by the multitude of clinical risk scores that are currently used clinically

(Framingham [7], TIMI [86], and GRACE [87] scores, etc).

3.9 Future work

Future research will be needed to evaluate the performance of these models to predict

additional clinically relevant outcomes in cardiology, such as hospitalizations or the

need for major procedures such as a valve replacement.

Though these data had inherent heterogeneity since they were derived from a

large regional healthcare system with over 10 hospitals and hundreds of clinics, ad-

ditional data from other independent healthcare systems will be required to assess

generalizability. Future work should be able to further improve accuracy by com-

bining multiple videos into a single model, including Doppler based videos. Thus,

methodology and architecture have been developed while feasibility and significant

potential have been demonstrated for extracting predictive information from medical

videos. With the ongoing rate of technological advancement and the rapid growth

in electronic clinical datasets available for training, neural networks will augment

future medical image interpretations with accurate predictions of clinical outcomes.
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Table 3.2: Low-parameter 2D CNN + LSTM with 4,237 trainable parameters
Layer # Parameters Description

Input - 109x150x60 video
L1: Conv1+ReLU 40 4 2D feature maps
L1: Conv2+ReLU 148 4 feature map groups
L1: Batch norm. 8 Normalize feature maps
L1: Max Pool - 3x3 max-pooling
L2: Conv3+ReLU 296 8 feature map groups
L2: Conv4+ReLU 584 8 feature map groups
L2: Batch norm. 16
L2: Max Pool - 3x3 max-pooling
L3: Conv5+ReLU 584 8 feature map groups
L3: Conv6+ReLU 584 8 feature map groups
L3: Batch norm. 16
L3: Max Pool - 3x3 max-pooling
L4: Conv7+ReLU 584 8 feature map groups
L4: Conv8+ReLU 584 8 feature map groups
L4: Batch norm. 16
L4: Max Pool - 3x3 max-pooling
L5: LSTM 544 8 hidden units
L6: LSTM 208 4 hidden units
Dense+ReLU 20 4 hidden units
Output+Sigmoid 5 1 output unit
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Table 3.3: Low-parameter 2D CNN + GAP with 3,477 trainable parameters
Layer # Parameters Description

Input - 109x150x60 video
L1: Conv1+ReLU 40 4 2D feature maps
L1: Conv2+ReLU 148 4 feature map groups
L1: Batch norm. 8 Normalize feature maps
L1: Max Pool - 3x3 max-pooling
L2: Conv3+ReLU 296 8 feature map groups
L2: Conv4+ReLU 584 8 feature map groups
L2: Batch norm. 16
L2: Max Pool - 3x3 max-pooling
L3: Conv5+ReLU 584 8 feature map groups
L3: Conv6+ReLU 584 8 feature map groups
L3: Batch norm. 16
L3: Max Pool - 3x3 max-pooling
L4: Conv7+ReLU 584 8 feature map groups
L4: Conv8+ReLU 584 8 feature map groups
L4: Batch norm. 16
L4: Max Pool - 3x3 max-pooling
L5: GAP 0 Global average Pooling
Output+Sigmoid 17 1 output unit

52



Chapter 3. Echocardiography Video Processing

Table 3.4: Low-parameter Dyadic 3D CNN with 14,309 trainable parameters. For
the dimension of the 3D CNN architecture, refer to Fig. 4.2.

Layer # Parameters Description

Input - 60x109x150 video
L1: 3D CNN 1 112 4 3D feature maps
L1: Batch norm. 8 Normalize feature maps
L1: 3D CNN 2 436 4 3D feature maps
L1: Batch norm. 8 Normalize feature maps
L1: Max Pool - 3x3x3 max-pooling
L2: 3D CNN 3 872 8 3D feature maps
L2: Batch norm. 16 Normalize feature maps
L2: 3D CNN 4 1,736 8 3D feature maps
L2: Batch norm. 16 Normalize feature maps
L2: Max Pool - 3x3x3 max-pooling
L3: 3D CNN 5 3,472 16 3D feature maps
L3: Batch norm. 32 Normalize feature maps
L3: 3D CNN 6 6,928 16 3D feature maps
L3: Batch norm. 32 Normalize feature maps
L3: Max Pool - 3x3x3 max-pooling
Flatten - Vectorization
Output+Sigmoid 641 1 output unit
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Table 3.5: Low-parameter Dyadic 3D CNN + GAP with 13,685 trainable parameters.
For the dimension of the 3D CNN architecture, refer to Fig. 4.2.

Layer # Parameters Description

Input - 60x109x150 video
L1: 3D CNN 1 112 4 3D feature maps
L1: Batch norm. 8 Normalize feature maps
L1: 3D CNN 2 436 4 3D feature maps
L1: Batch norm. 8 Normalize feature maps
L1: Max Pool - 3x3x3 max-pooling
L2: 3D CNN 3 872 8 3D feature maps
L2: Batch norm. 16 Normalize feature maps
L2: 3D CNN 4 1,736 8 3D feature maps
L2: Batch norm. 16 Normalize feature maps
L2: Max Pool - 3x3x3 max-pooling
L3: 3D CNN 5 3,472 16 3D feature maps
L3: Batch norm. 32 Normalize feature maps
L3: 3D CNN 6 6,928 16 3D feature maps
L3: Batch norm. 32 Normalize feature maps
L3: Max Pool - 3x3x3 max-pooling
L4: GAP - Global Averga Pooling
Output+Sigmoid 17 1 output unit
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Multimodal Interpretable Risk

Prediction

The adoption of Electronic Health Records (EHR) in medicine has facilitated the

collection of massive amounts of clinical data which can be used to develop highly

accurate risk models that physicians can use to guide medical decision making. To

take full advantage of the available EHR data, these models, similar to a physician,

need to be able to handle multiple modalities as inputs and explain its decisions. For

example, both tabular data such as laboratory measurements and pixel data from

clinical images should be readily incorporated. This basic framework is shown in

Fig. 4.1.

As documented in [24, 88, 89, 90], precision medicine can benefit greatly from

development of these risk models. The proliferation of these models has prompted

scrutiny from the medical community, which demands clinical validity and inter-

pretability to improve usefulness [91] and inclusion of all relevant predictors (or,

conversely, explanation when a relevant data input is excluded) [92]. Moreover, the

recent European General Data Protection Regulation (https://eugdpr.org/) states
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• Age: 74
• Male
• BMI: 25
• LDL: 90
• Non-smoker

Risk
Score

To
ta

l
Ag

e
BM

I
Ec

ho

Ot
he

r
LD

L

Figure 4.1: General framework for multi-modal risk assessment. EHR data and
cardiac ultrasound videos are input to the risk assessment system. We emphasize the
use of separable non-linear models where we look at contributions from each modality
and each feature separately and also within the joint multi-modal framework. The
mortality risk assessment is used to inform treatment.

that individuals who have decisions made about them by algorithms have a right to

know the basis of the decision and the factors that influenced this decision. Thus,

any medical risk model should be interpretable and facilitate understanding of the

various contributions of di↵erent inputs towards the overall risk assessment.

When only using tabular EHR data, clinical interpretability is well supported by

linear models. Some examples of clinical adoption of linear models are the Framing-

ham risk score [23], which yields a score for the risk of developing a cardiovascular

disease within ten years, and the Seattle Heart Failure score [8], which predicts 1-,

2-, and 3-year mortality in patients with Heart Failure.

The coe�cients of a multivariate linear predictor can be used to assess feature

importance based on its magnitude, and the e↵ect directionality based on its sign.

Unfortunately, the performance of linear models can be limited. As described in

[24], non-linear models such as random forests outperform linear models for predict-

ing mortality risk using EHR data. While not as direct as linear models, there are

also approaches to support explanations for non-linear methods. As an example, for

ensemble methods based on decision trees (e.g., Random Forests), we can rank the
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input features based on the proportion of samples that appear at each decision node

where each feature is used. Currently, methods to support clinical interpretability

include building a single tree with multivariate decision nodes [93], extracting an op-

timal tree with a minimum performance cost [94], and an indirect method that o↵ers

recommendations for transforming true negative instances into positively predicted

ones [95]. However, the ability to expand such interpretable models to more robust,

multi-modal frameworks—capable of ingesting all the diverse and heterogeneous el-

ements of EHR data, such as digital images and videos—has been challenging. To

date, no such model has been developed.

A major challenge in developing interpretable multi-modal models for clinical use

is that non-interpretable deep learning methods dominate research on data such as

medical images [16, 67, 96] and tabular EHR data [17]. To particularly highlight the

capabilities of deep learning in medical imaging analysis, such methods have been

used in ultrasound video analysis for frame labeling tasks such as segmentation of

certain chambers of the heart (the left ventricle) [19, 20], fetal standard image plane

and orientation detection [21, 22], and echocardiography video classification tasks, as

in chapter 3. Given this success, there is clear need to explore/develop interpretable

frameworks that are compatible with deep learning models.

4.1 Low Number of Parameters Networks

The rapid rise of deep learning methods has also been associated with the develop-

ment of lower-parameter neural network systems that can also deliver better perfor-

mance than previously considered methods. To demonstrate the trend, we consider

some of the most popular successful classifiers. In 2012, AlexNet used 60M parame-

ters to achieve a top-5 test error rate of 15.3% for the ILSVRC-2012 competition [2].

In 2016, the updated version of the Inception architecture used about 25M parame-
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Table 4.1: Comparison of Parameters/Cases ratio of di↵erent ImageNet models: (i)
AlexNet [2], (ii) Inception V3 [3], (iii) DenseNet [4].

Deep Learning Network Pars/Cases Percentage Ratio

AlexNet 60M/1.2M 5,000%
Inception V3 25M/1.3M 1,923%
DenseNet-201 20M/1.3M 1,538%
Low-Comp. 2D CNN 4,237/31,278 14%
Low-Comp. 3D CNN 14,309/31,278 46%

ters to achieve a top-5 test error rate of 5.6% for the same competition [3]. In 2017,

DenseNet-201 used 20M parameters model to achieve 6.34% accuracy on the same

dataset and thus match the performance of a 101-layer ResNet with more than 40M

parameters [4].

We introduce low-parameter convolutional neural network architectures with a

small number of layers to process cardiac ultrasound videos. To keep the number of

parameters low, for the 2D CNN, we stacked two LSTM output layers, as suggested

in [97], for capturing the temporal dependencies in the data. Then, for the 3D CNN,

we introduce a dyadic approach where the number of 3D feature maps doubles for

each ConvNet (4, 8, 16). As a result, to recognize the low number of parameters

that we are considering here, we note that the number of parameters divided by the

number of cases is just 14% for our 2D CNN and 44% for our 3D CNN. In comparison,

for the same ratio, AlexNet is at 5,000%, the latest inception model is at 1,900% that

only drops to 1,538% for DenseNet-201 (see Table 4.1). Furthermore, the proposed

CNN architectures use a small number of layers to support better interpretability,

since the complexity of interpreting the feature maps increases with the number of

filters and layers.

The proposed CNN architectures represent optimal representations that were

obtained through extensive experimentation. We refer to chapter 3 for details of our

approach. More specifically, we investigated the use of di↵erent image resolutions,
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the addition of optical flow feature maps, and alternative echocardiography video

views. We have found the parasternal long axis view to be optimal.

4.2 Interpretability and Explainability

Interpretation of deep learning models remains a challenge. Some e↵orts to interpret

deep learning models, documented in section VI of [17], are maximum activation,

imposing constraints, qualitative clustering, and a mimic learning method that ap-

proaches deep learning performance using a gradient boosting tree. Unfortunately,

maximum activation is impractical for global interpretations since there is a very

large number of internal neurons that can be maximized. Imposing constraints can

limit the search space and help interpretability. As we shall see, we will also impose

non-negativity constraints to resolve ambiguities.

Early e↵orts to provide feature importance in neural network models have been

reported by Gevrey et. al in [98]. In classical stepwise selection, feature importance

is assessed based on performance changes. More directly, we can use the partial

derivative of the output with respect to a specific input feature to assess their linear

dependency. In this case, a positive partial derivative implies that an increase in the

input feature value will also result in an increase in the output. On the other hand,

a negative partial derivative indicates that an increase in the feature will result in a

reduction of the output.

For image analysis applications, two additional approaches have been introduced.

First, for convolutional neural network (CNN) based methods, we can look at the

output images from each layer to understand how the CNN performs feature extrac-

tion at di↵erent levels. Second, more recently, there is an e↵ort to explain CNNs

that perform semantic segmentation. The basic approach described in Fully Convolu-

tional Networks (FCN) [99], SegNet [100], and U-net [101], is to use an auto-encoding
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structure that predicts class labels of each pixel by using a transposed version of a

traditional CNN architecture. Yet, large scale semantic labeling of big datasets, such

as those available in the EHR, is intractable.

Other approaches focus on building around a non-interpretable model to provide

explanations. Local Interpretable Model Explanations (LIME) [102], builds local

interpretable models that capture the behavior of the network for small variations

of a given input and provides feature ranking by presenting the coe�cients of an ap-

proximated linear model. The Anchor framework [103, 104] improves the precision

of LIME with if-then rules that represent local su�cient conditions for the net-

work to make the prediction. Model Agnostic Globally Interpretable Explanations

(MAGIX) [105] LIME for global explanations also in the form of if-then rules.

Both the partial derivative and the LIME approaches cannot provide global de-

scriptions of the input e↵ects. To understand this problem, we note that local linear

models can vary significantly from sample to sample. Hence, when using LIME or

partial derivatives, there is a need to specify all of the inputs and then fit the local

linear model to the specific patient.

MAGIX addresses the issue of global explainability, but it requires categorization

of all input variables into bins with pre-defined cut-o↵ intervals. Unfortunately,

by binning the input variables, MAGIX may cause a classifier to lose granularity

and accuracy potential. Furthermore, it is clear that patient response to disease

progression is best modeled using continuously varying input parameters. In our

proposed approach, we model both continuous and large-scale e↵ects.

While explanations are a step forward to interpretability, inherently interpretable

models are still desired in high stakes decisions such as the prediction of clinical out-

comes [25]. Interpretable models can be based on applying or extending classical

models, such as Generalized Additive Models [106]. The basic idea is to design in-
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herently interpretable models which once trained, yield inter-modality feature impor-

tance, feature response functions, and intuitive interpretations. Logistic regression is

the standard example in this category. We extend this classical logistic regression ap-

proach to a multi-modal framework with polynomial transformations on continuous

input variables and multi-modal training. The coe�cients of the logistic regression,

the polynomial coe�cients, and parameters from other modalities are all trained

concurrently. Here, we acknowledge that the use of sigmoid activation functions in

deep learning systems also represents an extension of logistic regression. However,

the use of a large number of layers in deep learning systems makes interpretabil-

ity impossible. In contrast, our proposed approach remains fully interpretable and

leads to dramatically improved performance rates with a small number of parame-

ters. In fact, as we shall show in our results, our proposed approach out-performs

logistic regression and approximates the performance of advanced non-linear models

(Random Forests and XGBoost) by achieving better performance at small number of

input features. Moreover, our approach enables us to rank features across di↵erent

modalities (e.g., time-series, image and video, and tabular data).

Our basic approach is to consider polynomial transformations of each scalar input

factor separately and then use a simple weighted sum to combine their contributions

(along with other inputs, including video, binary, or continuous variables) for pre-

dicting mortality risk. This approach has several advantages. First, we can use the

weights to assess the importance of each scalar factor. Second, we can provide an

independent global assessment of the contribution of each scalar factor. Third and

most importantly, by building models based on the ranked factors, the proposed ap-

proach can achieve excellent classification performance with just a small number of

factors. Furthermore, in terms of classification performance, the proposed approach

out-performs linear regression while approximating the performance of non-linear

and non-interpretable approaches.
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4.3 Experimental Setup

Here, we demonstrate the value of this approach by applying it to several di↵erent

types of multi-modal input datasets with the goal of predicting the risk of 1-year

mortality after echocardiography. We utilize three di↵erent sets of input variables:

(i) clinical data (CD) only (e.g. age, sex, diagnoses and laboratory values) (ii)

numeric variables derived from echocardiography videos, which we call echocardiog-

raphy video measurements (EVM), and (iii) Echocardiography Video (EV), that is

pixel data from the parasternal long axis view. By considering models that utilize

di↵erent variable inputs, we can investigate the contributions of each modality sepa-

rately. For example, by comparing predictions derived using EVM only against the

results from video analysis, we establish that EV is more e↵ective than EVM for risk

assessment, even with a single video out of more than 20 that are typically acquired

during a session and used to derive the “EVM” inputs). On the other hand, we also

establish that risk assessment based on multiple modalities significantly outperforms

predictions based on any single modality. Furthermore, multi-modality feature rank-

ing provides a quantitative assessment of how features from each modality contribute

to optimal risk assessment.

4.4 Interpretable Neural Network

We present the overall architecture of the proposed model in Fig. 4.2, with 100 scalar

variables from clinical data (CD), 58 Echocardiography Video Measurements (EVM),

measured from the video data by clinicians or technologists, and a Echocardiography

Video (EV) from the parasternal long axis view. The model infers from the input

data to produce a risk score that represents the likelihood of mortality within a year

of the echocardiography study.
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In order to integrate clinical features from multiple modalities, we di↵erentiate

between categorical factors (e.g., sex), continuous clinical factors (e.g., age), and a

video risk factor. Here, we emphasize the special importance of clinical factors that

have played a traditional role in diagnosis as opposed to a video risk factor that does

not have a clear and well understood clinical interpretation within the context of a

risk model. Furthermore, to assess the e↵ects of the di↵erent modalities, we construct

models based on three di↵erent sets of variables. First, we consider single modality

models based on: (i) CD only (ii) EVM only, and (iii) an EV from parasternal long

axis view, which does not include any other measurements. Second, we consider a

hierarchy of multi-modal models starting from CD with EVM, and then adding the

results from video analysis as well.

We consider polynomial transformations applied to each scalar factor separately

as given by:

P (Xs) = [p1(x1), p2(x2), . . . , pr(xr)]
T

and similarly for P (Xv), where p(xi) = �(v0 + v1xi + v2x
2
i + v3x

3
i + ...) defined in

p : [�1, 1] ! [0, 1].

We use a weighted sum of the contributions from each polynomial based on:

W
T
s P (Xs) = w1p1(x1) + w2p2(x2) + · · ·+ wrpr(xr) (4.1)

that satisfies

Ws = [w1, w2, . . . , wr], 8wi � 0, (4.2)

and similarly for W
T
v Xv. Here, we require positive weights to eliminate any model

ambiguities in the direction of e↵ect in pi(xi) since wipi(�xi) = wi � wipi(xi).

For binary variables, we simplify W
T
b Pb(Xb) = W

T
b Xb and remove the non-

negative constraint for Wb.
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For each modality, we consider a sigmoid for modeling the risk likelihood. We

thus have that the CD scalar and EVM models are given by:

ms(Xs) = �(W T
s P (Xs) + bs) (4.3)

mv(Xv) = �(W T
v P (Xv) + bv) (4.4)

where bs, bv represent bias terms, and �(.) represents the sigmoid function �(x) =

1/(1 + exp(�x)). We use a binary cross-entropy cost function to train the di↵erent

models and learn the polynomial weights, coe�cient weights, and bias terms.

For the hierarchical, multi-modality models, we consider the original scalar model

(ms(Xs)), a second model that also considers EVM: msv(.), and the full multi-

modality model: msV (.). To simplify the notation, we use the same weight variables

to define msv(.) and msV (.) as given by:

msv(Xs, Xv) = �(W T
s P (Xs) +W

T
v P (Xv) + bsv) (4.5)

msV (Xs, Xv, V ) = �(W T
s P (Xs) +W

T
v P (Xv) + w

T
V V + bsV ) (4.6)

where bsv, bsV represent bias terms, and the weights Ws,Wv, wV will need to be

learned for the new models.

4.4.1 Feature Importance

We provide interpretation of the proposed methodology based on separability that

allows comparisons among the multi-modal input features, whether scalar, binary

or video. We begin with interpreting the contributions of scalar features. We then

proceed with looking at the relative importance of the di↵erent features within the

di↵erent models.

Each scalar feature contributes to the overall mortality risk through its corre-
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sponding coe�cient weight that is then input to a logistic regression layer,

ms(Xs) =
1

1 + exp (�W T
s (P (Xs) + bs))

(4.7)

that gives a risk score. Since we are using the logistic regression �(.), from

�(logit(pmort)) = pmort,

where pmort represents the event probability, we have:

W
T
s P (Xs) + bs = logit(pmort)

= log

✓
pmort

1� pmort

◆
(4.8)

where pmort/(1�pmort) represents the odds ratio for the event. We say that the prod-

uct W T
s P (Xs)+ bs represents the log-odds of a mortality event [107]. To understand

the risk contribution for the i-th feature, we exponentiate both sides of eq. (4.8) to

eventually derive:

Odds-ratio = C · exp(wipi(xi)) (4.9)

where C represents contributions from the rest of the features. From eq. (4.9), we can

see how the weight magnitude can be used to quantify specific feature contributions

to the odds ratio. We will refer to eq. (4.9) in the results.

We rank the importance of each feature by simply ranking the corresponding

weights: |w|(1) � |w|(2) � · · · � 0. Here, it is important to note that eq. (4.9)

describes the contribution of each factor over the entire range of possible values,

while being invariant to the input scales. The scale invariance is given by the �(.)

applied to each polynomial transformation.

Large-scale changes can be described by looking at the change from exp(wipi(xi))

to exp(wipi(xi +�xi)) where �xi is used to describe a large change in xi.
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4.4.2 Direction of e↵ect

Since binary variable pass directly to an uncostrained coe�cient, the sign of the

coe�cient would indicate the direction of e↵ect. Then, as described in eq. (4.9), a

change from 0 to 1 in the binary input results in an odds ratio change of exp(wi). If

wi > 0 then exp(wi) > 1 shows an increase in risk odds. Conversly, if wi < 0 then

0 < exp(wi) < 1 shows a decrease in risk odds.

For continuos variables, pi(xi) describes the relation between input, xi, and its

contribution to risk relative to the coe�cient wi. Similarly to a binary variable, the

range of p(·) is [0, 1], thus the constrained wi > 0 will determine the increase in risk

as p(·) increases.

The lowest risk for each variable can be then determined by

x
(0)
i =arg min

xi

pi(xi)

subject to � 1  xi  1

(4.10)

Equivalently, the maximum risk is defined as

x
(1)
i =arg max

xi

pi(xi)

subject to � 1  xi  1

(4.11)

The polynomial defined in the domain of x, [�1, 1], will have a range of [0, 1],

same as a binary variable. Thus, the coe�cient now indicates a unit increase in p(·)

instead of a unit increase in x as a standard Logistic regression would show.

4.4.3 Multimodal Assessment

To understand the contributions from the EVMs, we rely on the joint interpretation

of our hierarchical models: ms(.),msv(.),msV (.). As long as the di↵erent models con-
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tribute information associated with the label, we expect the performance to follow the

hierarchy with msV (.) giving the best results, followed by msv(.), and then either of

ms(.), mv(.), or mV (.). The relative improvement in performance can be attributed

to the added information in each model. Thus, the performance improvement of

msv(.) over ms(.) is directly attributed to the inclusion of EVM. Similarly, a perfor-

mance improvement of msV (.) over msv(.) implies that the video analysis system is

extracting important features that are currently not fully described by the EVM in-

cluded in msv(.). Here, we note that a substantial improvement of msV (.) over msv(.)

may imply that the current clinical EVM are incomplete. On the other hand, the

lack of a substantial improvement may be due to the fact that the video processing

system was unable to provide new information that could surpass the standard EVM

that we are already making, on the context of one-year mortality prediction. In the

case of redundant information, the coe�cients of redundant inputs could lean to the

super set variable. Moreover, potential lack of improvement in this scenario could

also be due to the fact that we are only including one video out of an average of 20-40

videos acquired per clinical echocardiography due to computational limitations.

Beyond performance improvements, we look at changes in weights and weight

rankings to assess the importance of each feature from each modality. Performance

changes reflect contributions from each modality as a whole, while weight rankings

reflect the relative importance of each feature against all others. The presence of

high-ranking features from all modalities implies that each modality is making a

significant contribution. Further, the relative rankings also matter. For example,

the presence of video that ranks higher than echocardiography measurements implies

that the video score contains information already given by EVM but within a simpler,

single number. Similarly, weight rank changes between models can o↵er strong clues

about the inter-relationships between clinical factors and di↵erent modalities.
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4.4.4 Training, Validation, and Testing

To estimate the performance of the di↵erent models, we performed 5 independent

runs. For each run, the dataset was broken into a training set, a validation set, and

the test set. We train over the training and validation sets. We report the results

over the 5 test sets.

For each run, we used 80% of the dataset for training and validation and the

remaining 20% for testing. Within the 80% reserved for training and validation, we

used 10% (8% of the original dataset) for validation and the rest for fitting. The

training and test sets had the same prevalence of dead vs alive, see Table 4.2. For

the validation set, we used a balanced proportion of 50% for each class of Table 4.2.

We normalize each feature by mapping its minimum value to -1 and the maximum

value to +1 on the training set using:

xi,nor = 2 · xi �min(xi)

max(xi)�min(xi)
� 1 (4.12)

Then, we apply eq. (4.12) to the validation and test sets with the minimum and

maximum values found on the training set.

To account for sample imbalance, we weigh the error contributions based on the

number of samples in each class as in:

ith Class Error Weight =
Total number of samples

2(Number of samples in class i)

Thus, we weight the error of the < 1 year class by 3.14, and the � 1 year by 0.59.

Over the training set, we use the RMSProp optimization method [79] to mini-

mize the binary cross-entropy loss. We trained for a maximum of 10,000 epochs with

early stopping if there was no reduction in the validation set loss over 100 consecu-

tive epochs. We implemented all the experiments in Tensorflow (version 1.13). All

training was performed on an NVIDIA DGX-1 platform with 8 V100 32GB GPUs.
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Table 4.2: Demographics table of 31,278 EHR samples.

Survival
< 1 year � 1 year

Count 4,977 26,301
Male (%) 50 56
Smoker (%) 65 59
Age (years) 73 ± 13 63 ± 16
Heart Rate (bpm) 81 ± 16 73 ± 14
EF (%) 51 ± 14 55 ± 10
LDL (mg/dL) 85 ± 32 93 ± 32
Diastolic Press. (mm[Hg]) 66 ± 14 72 ± 13
Systolic Press. (mm[Hg]) 124 ± 23 131 ± 21

4.5 Dataset

This retrospective study was approved by the Geisinger Institutional Review Board

and performed with a waiver of consent.

4.5.1 Electronic Health Records

At the time of the study, Geisinger’s echocardiography database contained 594,862

studies from 272,280 unique patients performed over 19 years (February 1998 to

September 2018). Each study included patient identifiers, date, and a findings re-

port. Geisinger’s Phenomics Initiative database has modeled these study data into

tabular format with human-derived echocardiography measurements, where each row

represents a sample and columns the measurement type. Multiple patient encounters

were treated independently.

We retrieved the closest (before or after) fasting LDL, HDL, blood pressure, heart

rate, and weight measurements that were not taken at the time of the Echocardiogra-

phy study within a six-month window. When no measurement was available in that
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time window, we set the variable as missing. We included International Classification

of Diseases codes (tenth revision) for diseases of the circulatory system, chronic kid-

ney disease, dyslipidemia, and congenital heart defects, were formatted as indicator

variables that indicated positive diagnosis at the time of echocardiography.

All measurements were cleaned from physiologically out of limit values, which

may be caused by input errors. In cases where no limits could be defined for a

measurement, we removed extreme outliers that met two rules: 1) Value beyond the

mean plus or minus three standard deviations and 2) Value below the 25th percentile

minus 3 interquartile ranges or above the 75th percentile plus 3 interquartile ranges.

The outlier values were set as missing.

To support our models, we also needed to deal with missing values. We filled in

the missing data with two steps. First, we conducted a time interpolation to fill in

missing measurements using all available studies of an individual patient, i.e., missing

values in between echocardiography sessions were linearly interpolated if complete

values were found in adjacent echocardiography studies acquired before and after the

study with a missing value. Then, we kept 115 out of the 480 measurements because

they were the most commonly measured with less than 90% missing values. This

enabled us to conduct a robust Multiple Imputation by Chained Equations (MICE)

[31].

After imputation of the continuous measurements, we imputed the missing dias-

tolic function (which is either normal, abnormal or graded from 1 to 3 in severity)

assessment by training a logistic regression classifier (One-vs-All) using 278,160 stud-

ies where diastolic function was known. We coded the reported diastolic function in

an ordinal fashion with -1 for normal, 0 for dysfunction (but no grade reported), and

1, 2 and 3 for diastolic dysfunction grades I, II, and III, respectively. We calculated

the patient’s age and survival time from the date of the echocardiogram. The pa-

tient status (dead/alive) was based on the last known living encounter or confirmed
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death date, which is regularly checked against national death index databases in our

system.

While imputation does create artificial measurements, its e↵ect has been found

minimal both by a independent study [108] and with a Random Forest classifier

in [24].

4.5.2 Echocardiography videos

An Echocardiography study consists of typically 20–40 ultrasound videos containing

multiple views of the heart and vessels with di↵erent orientations. We refer to chapter

3 for details in the video extraction and view labeling procedure.

From the echocardiography exams, we kept only the parasternal long axis view

since 1) this view is regarded as the most useful view by cardiologists due to being

able to capture a large part of the heart’s anatomy in a single view, 2) in chapter

3, this view gave the best performance for predicting the risk of one-year mortality ,

and 3) including additional videos remained computationally challenging because of

the ratio of available samples vs number of parameters to train.

We linearly interpolated all raw videos to a time resolution of 30 frames per

second. We then cropped/padded each video to 60 frames (2 seconds).

4.5.3 Clinical and Video Data Merge

We linked the clinical data (CD) and imaging data, and discarded any unlinked data.

We gathered 31,278 videos from 26,793 patients. We limited our video sample size

from the 594,862 studies available due to storage and time limitations. The CD

variables were age, smoking status (ever smoked), sex, diastolic pressure, systolic
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pressure, heart rate, height, weight, low-density lipoprotein (LDL), and high-density

lipoprotein (HDL). Finally, we removed patients with less than 1 year of follow-up

and randomly selected a single study per patient. Refer to Table 4.2 for a summary

of the merged dataset.
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Frame 1 Frame 60

…

109 x 150 x 60

50 x 36 x 20 x4

16 x 12 x 6 x 8

5 x 4 x 2 x 16

ConvNet1

Patient

Physician/Technician

Echocardiography 
Video 

Measurements

Clinical 
Data

INNEVM INNCD

ConvNet2

ConvNet3

640 

Risk Score

Σ
Σ

58 100 

58 100 

1 

Figure 4.2: Data flow from input to risk score calculation for the proposed multi-
modal system. The input is based on an Echocardiography exam and other clinical
information (height, weight, etc.). The physician/technician then reads and gener-
ates measurements from the video and clinical data from the patient’s exam. The
output of the 3D CNN video analysis system is connected directly to the final layer of
the model. The measurements and clinical data are transformed with the proposed
Interpretable Neural Network (INN) which learns 3rd order polynomial transforma-
tions that can then contribute to the final risk score. ConvNet[1,2,3] are described
in Table 3.4.
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4.6 Results and Discussion

We begin with a discussion of the most significant features in section 4.6.1. We then

proceed with a discussion of risk models for individual features in section 4.6.2.

We provide an example of our proposed interpretable neural network in section

4.6.3 and a comparison of the di↵erent models in section 4.6.4.

4.6.1 Significant features

We summarize the results for the most significant features for the di↵erent models in

Table 4.3. As expected for a survival model, age dominates all other features in the

basic CD model. Age still dominates even after considering measurements derived

from the videos (CD+EVM), and it is the second most important feature after EV in

the full model. Heart rate, weight, diastolic pressure, and systolic pressure complete

the top 5 clinical factors that produced the highest prediction weights. These clinical

features are well known and strongly support the interpretability of our results.

From the EVM (without analyzing the video), the top 4 most important variables

(Ejection Fraction, Tricuspid Reg MV, End Systolic Volume, and Left Ventricular

dimension at end-diastole) are, statistically, equally important. When combining

EVM with clinical data (CD + EVM), Tricuspid Reg MV was the only remaining of

the top 5 EVM variables. Here, in terms of contributions to the mortality risk, we

note that the Tricuspid Reg MV measures the maximum velocity of blood flowing

backwards from the right ventricle into the right atrium, which is an indirect measure

of pulmonary artery systolic pressure and thus a marker of pulmonary hypertension.

Pulmonary hypertension is highly correlated to mortality, as previously discussed in

detail in [24], and thus this further supports clinical interpretability of the model.

For the combined model, the video analysis system was the most significant fea-
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ture. Unfortunately, it is di�cult to provide a clinical interpretation of exactly what

is being measured by the video analysis system. In our analysis of video outputs from

the lower levels, we have found that the first layers extract granular features, while

the subsequent layers show more focused and sparse maps . To show this, we present

sample results from the all features maps generated by L1, L2, L3, and the Flatten

layers in 4.3 from one of the test videos. The output images from Fig. 4.3b vary

significantly. In the top row of Fig. 4.3b, we can see the extraction edges, blurred

versions of the input image, and an edge that highlights part of the trajectory of the

mitral valve. In the second row, we see several maps highlighting the right ventricle

walls. The third row shows more simple and agglomerated bright regions, possibly

highlighting key anatomical regions. Finally, the last row shows he static vector

that summarizes the entire video. All feature maps were normalized in intensity

independently.

4.6.2 Risk model assessment for individual features

We present risk models for the most relevant clinical features, see Table 4.3, in the

single modality models for CD and EVM in Fig. 4.4.

We begin with the age factor as a predictor in the CD+EVM model (see Fig.

4.4a). It is clear that mortality increases with age as evidenced by the histogram

di↵erences between the two populations (survivors versus non-survivors). In fact,

with a weight coe�cient of 3.2 (see Table 4.3), we have a 24-fold increase in the odds

ratio (probability of dying within a year), when going from an age of 18 to 110. The

risk function appears to follow a near linear trend from 40 to 80.

Increased heart rates lead to significant risk increases as shown in Fig. 4.4b.

Since these measurements are taken from patients at rest, a low resting heart rate

may indicate a physically active and therefore generally healthier person, whereas a
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high rate may be a marker of arrhythmias and/or heart failure.

Extreme low weight gave the highest risk in Fig. 4.4c. From low to average

weight, we observe that the risk also drops sharply. The risk drops to the lowest

value for patients with weight higher than 250 kilograms. The trend from average to

high weight, while appearing to be counter-intuitive, is compatible with the “obesity

paradox” noted in multiple prior studies (see [109]). An additional possible explana-

tion is that low weight is a high risk factor for short term (<1 year) mortality and

high weight may have a higher association with longer term mortality.

We have decreasing risk trends for larger values of systolic and diastolic pressure

(see Figs. 4.4d and 4.4e). Though lower blood pressure being associated with higher

risk is counterintuitive, two explanations are plausible. First, a high blood pressure

does not lead to 1-year mortality but rather leads to long-term cumulative e↵ects

such as renal and heart failure that result in longer-term increased mortality. Second,

low blood pressure may be a marker of cardiac decompensation. Full understanding

of this trend will require further study and also accounting for many medications

known to a↵ect blood pressure.

A mixed trend is observed for the left ventricular ejection fraction (EF) in Fig.

4.4f. It is important to recognize that the majority of the patients fall within the non-

linear trend region. It would be a big mistake to suggest a linear trend for the entire

ejection fraction region. Here, we note that the EF is the percentage of blood that

leaves the heart chambers during contraction. From a minimum risk at 65%, the odds

ratio indicates a two-fold increase in risk at an EF of 10% or lower, and a 56% risk

increase for an EF of 85% or higher. For low risk cases, the EF risk function agrees

with standard clinical interpretation and the current American Heart Association

guidelines (reviewed as of May 31, 2017) for a normal EF, which is between 50% and

70%. Increased risk with high EF may be a marker of a hyperdynamic heart failure

with preserved ejection fraction or additional pathologic factors known to elevate EF
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such as mitral regurgitation or concentric hypertrophic remodeling (either genetic or

acquired secondary to hypertension).

We have a strong, positive trend for increases in the Tricuspid Reg MV (see Fig.

4.4g). Based on our prior discussion on the Tricuspid Reg MV, this trend is clearly

to be expected and compatible with pulmonary hypertension being strongly linked

to mortality.

From Fig. 4.4h, we can see that higher values of the aortic insu�ciency decel-

eration slope demonstrate the relationship between severity of aortic valve regurgi-

tation/insu�ciency and mortality [110]. On the other hand, from Fig. 4.4i, we see

a counter-intuitive trend for the left ventricular internal dimension that suggests a

lower value is associated with a higher risk of death, which is opposite of what is ex-

pected [111]. However, the histograms in Fig. 4.4i show little di↵erence between the

surviving and non-surviving populations. Hence, it is not a surprise that this feature

was not found to be significant and the trend likely is spurious. From Fig. 4.4j,

we observe that the left ventricular end systolic volume, which is a better marker of

ventricular size than the LV internal dimension described above, follows the expected

trend of worsening mortality for higher values.

Table 4.4: Normalization parameters for eq. (4.13). The minimum and maximum
values are used for normalizing the input so that it varies between -1 and +1. The
transformation equation is described in eq. (4.12).

Units Min Max

Age Years 18.0 106.4
Heart Rate (HR) Bpm 6.0 245.0
Weight (Wt) Kg 30.4 307.5
Diastolic Pressure (DP) mmHg 7.0 178.0
Systolic Pressure (SP) mmHg 4.0 261.0
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4.6.3 A fully interpretable Neural Network based on the

top-5 clinical data features

To further demonstrate the interpretability of the proposed approach, we provide the

full risk assessment model for the top-5 clinical features. From Table 4.3, recall that

the top-5 clinical factors are: age, weight, heart rate, diastolic pressure, and systolic

pressure. Here, we note that a patient with a weight scale and a blood pressure

monitor can actually monitor all of these factors continuously at home.

To compute the risk, we begin by standardizing each factor in the range of -1 to

+1 using equation (4.12). For completeness, we provide the min and max values in

Table 4.4. We then compute the risk using:

Risk = �
�
4.1 · �(�0.3 + 1.5 · Age� 1.9 · Age2 + 4.7 · Age3)+

2.5 · �(1.8 + 3.7 · HR+ 3.5 · HR2 + 3.7 · HR3)+

1.3 · �(�2 + 1.8 · Wt� 1.5 · Wt2 + 3.2 · Wt3)+

1.5 · �(�3.2 + 4.2 · DP� 5.3 · DP2 � 5 · DP3)+

1.0 · �(�2 + 8.6 · SP� 12.4 · SP2 � 6.1 · SP3) + 1
�

(4.13)

where Age, HR, Wt, DP and SP refer to the normalized versions of age, heart-rate,

weight, diastolic pressure, and systolic pressure respectively, and �(x) = 1/(1 +

exp(�x)) is the sigmoid function.

While slightly di↵erent than this reduced model, we refer to Fig. 4.4 for the plots

of how each polynomial term a↵ects the full model. Again, we emphasize the unique

ability of the proposed approach to capture the global e↵ects of each factor while

the full model equation of (4.13) captures the combination of the top-5 features put

together.

From equation (4.13), we can see that the non-linear e↵ects are very significant.

The non-linear coe�cients for the second and third order terms are significantly
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higher than zero and cannot be captured by a linear regression model. On the other

hand, it is also important to note that due to the fact that we are constraining each

factor to �1  x  1, the second, third, and higher polynomial terms are dominated

by the linear term: x  x
2  x

3  . . . . Thus, our approach is a generalization

of linear regression where we allow linear dependencies to dominate. As discussed

earlier, for some factors (e.g., ejection fraction in Fig. 4.4f), a linear model would be

highly inappropriate. The simple model represented by equation (4.13) achieves an

AUC area of 0.76 compared to the optimal value of 0.83.

4.6.4 Model results

In this section, we provide comparisons across di↵erent modalities and di↵erent clas-

sifiers. We also present our results for multi-modality classification.

To demonstrate the performance of the proposed interpretable network, refer to

Fig. 4.5. In Fig. 4.5, we present the AUC as a function of the number of input

features for all classifiers. For both CD and EVM, we can see that the Logistic

Regression classifier gave the worst performance. Furthermore, the proposed in-

terpretable neural network (INN) approach closely follows the results of powerful

non-linear and non-interpretable classifiers (Random Forests and XGBoost).

For classifiers based on all features, a summary of the results is given in Table

4.5. From the results, it is clear that the interpretable neural network performs sig-

nificantly better than logistic regression while approximating the results of Random

Forests and XGBoost. In fact, we have found no statistical di↵erence between the

proposed interpretable neural networks and XGBoost or Random Forests.

In terms of single-modality classifiers, the proposed low-parameter dyadic 3D

CNN outperformed all other classifiers for the human crafted EVM, which is derived

from multiple other videos besides the parasternal long axis view (see Table 4.5).
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Furthermore, the 3D CNN performed significantly better than the 2D CNN classifier

as it is clearly documented in Table 4.6. Overall, the combination of the 3D CNN

with the interpretable neural network over CD and EVM gave the best overall results

with an average AUC of 0.83.

A slightly di↵erent performance for the combination of CD+EVM was reported

in [24]. We determined that the source of this di↵erence relates to the specific

subset of patients included in this analysis (selected based on the availability of the

raw echocardiography videos). While the exact cause of the bias is unknown, we

do note that our current population, compared to that of [24], did exhibit several

demonstrable di↵erences in features, such as 1) increased prevalence of dead patients

within a year (16% vs 12%); 2) larger proportion of patients with mild Tricuspid

(33% vs 26%) and Mitral (33% vs 25%) Regurgitation; and 3) larger percentages of

patients with diagnoses of chronic kidney disease (19% vs 13%), hypertension (54%

vs 47%) and heart failure (16% vs 13%).

Also, the proposed approach replicates 5 of the top 10 features reported as most

important in [24], for the equivalent of the CD+EVM in this study. The top 10

features in [24] are age, tricuspid regurgitation maximum velocity (Tricuspid Reg

MV), heart rate, LDL, pulmonary artery acceleration time, systolic pressure and

diastolic function. The proposed approach replicates Age, Tricuspid Reg MV, heart

rate, systolic and diastolic pressure.

The advantage of the proposed interpretable neural network approach comes

from its ability to describe non-linear relationships for di↵erent factors and across

modalities. As it is clear from the examples in Fig. 4.4, there are strong non-linear

relationships between risk and its dominant clinical factors. Furthermore, it is clear

that such non-linear relationships cannot be captured using linear regression models

and cannot be easily explained by other non-linear models such as XGBoost and

Random Forests.
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Table 4.5: Models performances in percent AUC units. For each method and
data combination, we present the average AUC and standard deviation based on 5
independent runs. We use the term Interpretable Neural Network (INN) to refer to
the proposed method. The CD input does not include EVM or Video features.

INN Logistic Random XGBoost
Input (proposed) Regression Forest

Single Modality

CD 79.7 (0.6) 79.2 (0.7) 80.5 (0.4) 80.5 (0.7)
EVM 76.2 (1.1) 74.1 (1.5) 76.5 (1.2) 76.8 (1.2)
EV 78.6 (0.7) – – –

Multiple Modalities

CD+EVM 82.3 (0.6) 81.2 (0.6) 81.3 (0.8) 82.4 (0.7)
CD+EVM+EV 83.0 (0.4) – – –

Table 4.6: Performance of 2D and 3D CNN video models in percent units for single
and multi-modality inputs.

Model IMNN + IMNN +
Input 2D CNN + LSTM 3D CNN

Echo Video (EV) 73.4 (1.9) 78.6 (0.7)
CD+EVM+EV 81.7 (0.8) 83.0 (0.4)

4.7 Conclusion

This chapter introduces interpretable models for risk assessment in clinical scenarios

that demand multi-modal data inputs. Through the use of separable, non-linear

models, we are able to quantify the contributions of individual clinical factors to the

overall risk. The approach allows us to visualize complex non-linear relationships

between changes in each factor and other non-linear models. Overall, the proposed

interpretable models matched the performance of more complex non-linear methods

and thus demonstrate significant potential for expanding the use of neural networks

in medicine.
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In future work, we will investigate the di↵erent hyper-parameters of our proposed

interpretable neural network approach. More specifically, the polynomial degrees

for each feature input needs to be verified with nested cross-validation approaches.

Unfortunately, given the large size of our dataset, such extensive experimentation

has proven to be computationally prohibitive. On the other hand, the fact that

the performance approximates non-linear classifiers implies that significantly higher

order polynomial methods need not be considered.

The proposed 3D CNN architecture proved to be very e↵ective for processing

echocardiography videos. The 3D CNN classifier outperformed human crafted EVMs.

For multi-modal risk assessment, the 3D CNN dominated (higher normalized coef-

ficient) than CD and EVM sub-classifiers. Yet, compared to modern classifiers, the

3D CNN uses a relatively low number of trainable parameters.

The code for implementing the proposed methodology is provided in the DISIML

package [112] on http://github.com/alvarouc/disiml. We used the TabiMISO

class for the tabular data experiments and the VideoSISO class for the video branch.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.4: Full model risk functions (blue) with normalized histograms of survivors
(light green) and non-survivors (red orange). When the two histograms overlap, the
histograms appear light brown. Risk function for (a) Age in years, (b) heart rate
in beats per minute, (c) weight in kilograms, (d) diastolic and (e) systolic blood
pressure in mm Hg, (f) left ventricular ejection fraction in percent, (g) Tricuspid
regurgitation maximum velocity in cm/s., (h) aortic insu�ciency deceleration slope
(AI dec slope) in cm/s2, (i) left ventricular internal dimension at end-diastole in
cm, and (j) left ventricular end systolic volume in ml. The uncertainty in the risk
functions are derived from the 5 results across the 5 runs.
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Figure 4.5: AUC performance as a function of the number of the most signifi-
cant input features for clinical data (left) and echocardiography video measurements
(right) for Logistic Regression (LR), Random Forest (RF), XGBoost (XGB), and the
proposed method (INN).
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Conclusion and Future Work

We explored and developed methods for EHR data analysis with two approaches,

unsupervised and supervised. For the unsupervised model, we did not include the

patient survival time information to the model. For the supervised model, we set the

labels as indicators of patients that did not survive a year beyond the Echocardiog-

raphy study.

The unsupervised model labeled patients with similar latent space representa-

tions. After a survival analysis of the groups, we found that each group obtained

significantly di↵erent survival patterns. We then sort the risks of each group, based

on the median time of survival and discovered that even a 2-cluster model separated

the patients with a larger di↵erence in survival the clinical classification (preserved

and reduced Ejection Fraction), which is based in a single Echocardiography mea-

surement.

We then explored the predictive value of Echocardiography videos. We designed

four models as combinations of 2D CNNs with LSTMs, 3D CNNs, and GAP layers.

We concluded that the best performing model was a 3D CNN model. The best

predictive performance can be attained with all views and all Echocardiography
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derived measurements (AUC = 0.85). Furthermore, we showed promise of increading

the perfomance ability even further with learning curves experiments, which doesn’t

show signs of performance convergence at 30,000 samples.

Finaly, we developed a multimodal and interpretable neural network that yielded

similar performance as other non-interpretable models for risk prediction from EHR

data and is able to incorporate Echocardiography videos. The proposed model

learned independent polynomial transformations that described the influence of each

variable. The interpretations showed to be clinically consistent and also revealed

unexpected trends that require further research.

5.1 Limitations and Future Research

A limitation of the multimodal study was the lack of video samples, which resulted in

dropped performance (around 30,000) to match previous results with larger sample

sizes (>300,000). The experiments of performance vs sample size, see Fig. 3.10, show

evidence that the model could benefit from more samples. As the computational and

storage resources become available, I expect to conduct this experiments with sample

sizes near 300,000 echocardiography studies.

In the proposed software, I implemented the ability to incorporate selected or

all interaction terms. We expected the interaction of variables such as height and

weight, and LDL and HDL, to show significance but none was observed. There

was no performance gain and it could only match the performance of the model

without interaction terms. I also controled the interaction activation with l1 and

l2 regularization terms, but the model solution was in favor of a model with no

interaction terms, where the interaction coe�cients were all significantly smaller

than the regular coe�cients. This imposes limitation to the model which would not

be able to detect interactions in problems where it is critical. We suggest to manually
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identify such interaction with apriori knowledge and handcraft those features.

The software allows for di↵erent polynomial order for each input. This creates an

inmmense hyper-parameter search. To simplify the search, I imposed the same order

to all inputs and relied on the smallest polynomial order that allowed for monotonical

and non-monotonical functions (order 3). For future work, a regularization constrain

in the polynomial coe�cients may allow a large polynomial order to be reduced

based on the influence of each coe�cient. This may eliminate the need for a hyper-

parameter search.

Currently, a clinical trial in Geisinger is exploring the ability of black-box models

to predict one-year mortality on patients with Heart Failure. The model contains

“care gaps” as inputs. Care gaps can be understood as treatments, for example a

care gap for the flu shot is an indicator variable of whether the patient has taken

a flu shot in the current flu season. The proposed model could weight the relative

e↵ects of a care gap versus other actionable inputs, such as weight or smoking status,

which may allow the exploration of combined treatments.

Lastly, I should seek for an external validation through cross-institution collab-

oration. This would test the generalizability of our models, especially considering

inherent biases of a Geisinger clinical setting, such as the 95% Caucasian population.

5.2 Conclusion

Interpretability is mostly desired for high stakes decision problems. The design of

interpretable models allows for auditing and monitoring of the models. I developed

an interpretable model with a multi-modal extension that is able to compete in

performance with state-of-the-art non-interpretable models. The transparency and

interpretability of the model prohibits its secret commercialization. Thus, it will
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enable us to gain physician and patient trust to machine learning, which in turn will

facilitate the proliferation of open tools to hospitals around the world.
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Supplementary Tables

Table A.2: Description of all variables extracted from

the electronic health records. *MOD = modified ellip-

soid, **el = (single plane) ellipsoid, LV = left ventricu-

lar, IV = inter-ventricular. 1�10 Selected EHR variables

previously reported as the top 10 predictors of 1-year

mortality. *Hot encoded for severity levels 0,1,2,3. Dias-

tolic function coding -1: Normal, 0: abnormal (no grade

reported), [1,2,3]: grade I/II/I

EHR VARIABLE UNITS DESCRIPTION

Demographics

1 Age1 years At the time of study

2 Sex 0: Female,

1: Male

3 Smoking status 0: No, Ever smoked

1: Yes
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Vitals

4 Height cm

5 Weight kg

6 Heart rate3 bpm

7 Diastolic blood

pressure6 mm Hg

8 Systolic blood

pressure8 mm Hg

Laboratory

9 LDL4 mg/DL Low-density lipoprotein

10 HDL mg/DL High-density lipoprotein

Echocardiography measurement

11 LVEF5 % Physician-reported left ven-

tricular ejection fraction

12 AI dec slope cm/s2 Aortic insu�ciency decelera-

tion slope

13 AI max vel cm/s Aortic insu�ciency maxi-

mum velocity

14 Ao V2 VTI cm Velocity-time integral of dis-

tal to aortic valve flow

15 Ao V2 max cm/s Maximum velocity of distal to

aortic valve flow

16 Ao V2 mean cm/s Mean velocity of distal to aor-

tic valve flow

17 Ao root diam cm Aortic root diameter

18 Asc Aorta cm Ascending aortic diameter
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19 EDV MOD*- sp2 ml LV end-diastolic volume: api-

cal 2-chamber

20 EDV MOD*- sp4 ml LV end-diastolic volume: api-

cal 4-chamber

21 EDV sp2-el** ml LV end-diastolic volume: api-

cal 2-chamber

22 EDV sp4-el** ml LV end-diastolic volume: api-

cal 4-chamber

23 ESV MOD*-sp2 ml LV end-systolic volume: api-

cal 2-chamber

24 ESV MOD*-sp4 ml LV end-systolic volume: api-

cal 4-chamber

25 ESV sp2-el** ml LV end-systolic volume: api-

cal 2-chamber

26 ESV sp4-el** ml LV end-systolic volume: api-

cal 4-chamber

27 IVSd cm IV septum dimension at end-

diastole

28 LA dimension cm Left atrium dimension

29 LAV MOD*-sp2 ml Left atrium volume: apical 2-

chamber

30 LAV MOD*-sp4 ml Left atrium volume: apical 4-

chamber

31 LV V1 VTI cm Velocity-time integral: proxi-

mal to the obstruction

32 LV V1 max cm/s Maximum LV velocity: prox-

imal to the obstruction
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33 LV V1 mean cm/s Mean LV velocity proximal to

the obstruction

34 LVAd ap2 cm2 LV area at end-diastole: api-

cal 2-chamber

35 LVAd ap4 cm2 LV area at end-diastole: api-

cal 4-chamber

36 LVAs ap2 cm2 LV area at end-systole: apical

2-chamber

37 LVAs ap4 cm2 LV area at end-systole: apical

4-chamber

38 LVIDd cm LV internal dimension at end-

diastole

39 LVIDs cm LV internal dimension at end-

systole

40 LVLd ap2 cm LV long-axis length at end-

diastole: apical 2-chamber

41 LVLd ap4 cm LV long-axis length at end-

diastole: apical 4-chamber

42 LVLs ap2 cm LV long-axis length at end

systole: apical 2-chamber

43 LVLs ap4 cm LV long-axis length at end

systole: apical 4-chamber

44 LVOT area M cm2 LV outflow tract area

45 LVOT diam cm LV outflow tract diameter

46 LVPWd cm LV posterior wall thickness at

end-diastole

47 MR max vel cm/s Mitral regurgitation maxi-

mum velocity

94



Appendix A. Supplementary Tables

48 MV A point cm/s A-point maximum velocity of

mitral flow

49 MV E point cm/s E-point maximum velocity of

mitral flow

50 MV P1/2t max-vel cm/s Maximum velocity of mitral

valve flow

51 MV dec slope cm/s2 Mitral valve deceleration

slope

52 MV dec time s Mitral valve deceleration time

53 PA V2 max cm/s Maximum velocity of distal to

pulmonic valve flow

54 PA acc slope9 cm/s2 Pulmonary artery accelera-

tion slope

55 PA acc time7 s Pulmonary artery accelera-

tion time

56 Pulm. R-R s Pulmonary R-R time interval

57 RAP systole mm-Hg Right atrial end-systolic

mean pressure

58 RVDd cm Right ventricle dimension at

end-diastole

59 TR max vel2 cm/s Tricuspid regurgitation maxi-

mum velocity

60 AVR 0/1⇤ Aortic valve regurgitation

61 MVR 0/1⇤ Mitral valve regurgitation

62 TVR 0/1⇤ Tricuspid valve regurgitation

63 PVR 0/1⇤ Pulmonary valve regurgita-

tion

64 AVS 0/1⇤ Aortic valve stenosis
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65 MVS 0/1⇤ Mitral valve stenosis

66 TVS 0/1⇤ Tricuspid valve stenosis

67 PVS 0/1⇤ Pulmonary valve stenosis

68 Diastolic function10 -1,01,2,3,4 Physician-reported diastolic

function

Diagnosis codes

69-71 I00, I01, I02 Acute rheumatic fever

72-76 I05, I06, I07, I08, I09 Chronic rheumatic heart dis-

ease

77-82 I10, I11, I12, I13,

I15, I16

Hypertensive diseases

83-88 I20, I21, I22, I23,

I24, I25

Ischemic heart diseases

89-91 I26, I27, I28 Pulmonary heart disease and

diseases of pulmonary circu-

lation

92 I30 Acute pericarditis

93-106 I31, I32, I33, I34,

I35, I36, I37, I38,

I39, I43, I44, I45,

I49, I51

Other forms of heart disease

107 I40 Acute myocarditis

108 I42 Cardiomyopathy

109 I46 Cardiac arrest

110 I47 Paroxysmal tachycardia

111 I48 Atrial fibrillation

112 I50 Heart failure
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113-121 I60, I61, I62, I63,

I65, I66, I67, I68, I69

Cerebrovascular diseases

122-131 I70, I71, I72, I73,

I74, I75, I76, I77,

I78, I79

Diseases of arteries, arterioles

and capillaries

131-140 I80, I81, I82, I83,

I85, I86, I87, I88, I89

Diseases of veins, lymphatic

vessels, and lymph nodes

141 I95 Hypotension

142-144 I96, I97, I99 Other and unspecified disor-

ders of the circulatory system

145-149 E08, E09, E10, E11,

E13

Diabetes mellitus

150-156 Q20, Q21, Q22, Q23,

Q24, Q25, Q26

Congenital heart defect

157 E78 Dyslipidemia

158 N18 Chronic kidney disease
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Table A.3: Number of valid samples after setting 600

studies aside for the final test comparison to the 2 cardi-

ologists.

VIEW

GROUP/MONTHS

3 6 9 12

Apical 2 19,334 19,328 19,323 19,316

Apical 3 19,392 19,388 19,384 19,376

Apical 4 18,755 18,749 18,745 18,737

Apical 4 Focused to RV 21,192 21,186 21,181 21,173

Apical 5 18,438 18,431 18,426 18,419

Parasternal Long Axis 22,426 22,420 22,415 22,407

Parasternal Long Ascending

AORTA

21,700 21,694 21,688 21,681

Parasternal Long RV Inflow 21,544 21,538 21,534 21,528

Parasternal Long Zoom Aor-

tic Valve

21,657 21,650 21,645 21,637

Parasternal Short Aortic

Valve

21,875 21,870 21,865 21,857

Parasternal Short Pulmonic

Valve and Pulmonary Artery

21,614 21,609 21,605 21,596

Parasternal Short Tricuspid

Valve

13,385 13,379 13,375 13,370

Short Axis Base 21,541 21,535 21,530 21,523

Subcostal 4 Chamber 20,768 20,763 20,758 20,751

Subcostal Hepatic Vein 11,033 11,029 11,024 11,020

Subcostal Inter-Atrial Sep-

tum

19,402 19,399 19,394 19,387
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Subcostal IVC with Respira-

tion

20,510 20,505 20,499 20,492

Subcostal RV 20,263 20,259 20,254 20,247

Suprasternal Notch 18,382 18,378 18,372 18,365

Short Axis Mid Papillary 21,801 21,796 21,791 21,783

Short Axis Apex 21,870 21,864 21,859 21,851
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Table A.1: View labels found in DICOM tags for the corresponding view type. The
view tag in bold indicates the abbreviation used for the view type.

VIEW TYPE VIEW TAGS

Apical 2 a2, ap2 2d, a2 2d, a2 lavol, la 2ch
Apical 3 a long, ap3 2d, a3 2d
Apical 4 ap4, ap4 2d, a4 2d, a4 zoom, a4

lavol, la ap4 ch
Apical 4 focused to rv rv focus, rvfocus
Apical 5 a5, ap5 2d, a5 2d
Parasternal long axis pl deep, psl deep
Parasternal long ascending aorta pl ascao, asc ao, pl asc ao
Parasternal long mitral valve pla mv
Parasternal long pulmonic valve pl pv, pv lax
Parasternal long rv inflow pl rvif, rv inf, rvif 2d
Parasternal long zoom aortic valve pl av ao, av zoom
Parasternal short aortic valve ps av, psavzoom, psax av
Parasternal short pulmonic valve and pul-
monary artery

ps pv pa, ps pv, psax pv

Parasternal short tricuspid valve ps tv, ps tv 2d, psax tv
Short axis apex sax apex
Short axis base lv base
Short axis mid papillary sax mid, sax
Subcostal 4 chamber sbc 4 ch, sbc 4, sbc 4ch
Subcostal hepatic vein ivc hv, sbc hv
Subcostal inter-atrial septum ias, sbc ias, ias 2d
Subcostal ivc with respiration ivc resp, sbc ivc, ivc insp,ivc snif,

ivcsni↵, sni↵
Subcostal rv sbc rv
Suprasternal notch ssn, ssn sax
Parasternal long lax lax
Short axis mid papillary lv mid
Short axis apex lv apex
Apical 3 zoom ap3
Apical 2 zoom ap2
Short axis base sax base
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