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Abstract

The Discrete Fractional Fourier Transform (DFRFT) has in recent years, become

a useful tool for multicomponent chirp signal analysis. Chirp signals are trans-

formed into spectral peaks in the chirp rate versus center frequency representation,

whose coordinates are related to the underlying chirp parameters via a computed

empirical peak to parameter mapping incorporated into the Santhanam-Peacock

algorithm.

In this thesis, we attempt to quantify the accuracy of the DFRFT approach by

first studying the discretization error sources that arise from the transitioning of

the continuous FRFT to DFRFT. Then, we refine prior work by Ishwor Bhatta

to develop analytical expressions for the chirp rate and center frequency parame-

ters instead of the empirical mapping approach. We further study the extensions

of this refined DFRFT approach using zero padding, spectral peak interpolation,

and chirp-z-transform based zooming. The performance of the refined estimators

is compared versus the Cramer-Rao lower bound and shown to asymptotically

approach the bound.

v



This refined DFRFT approach is then applied to Synthetic Aperture Radar Vi-

brometry data from several vibrating targets and the estimated acceleration infor-

mation and vibration frequencies are shown to be very close to the corresponding

ground-truth accelerometer measurements.
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Chapter 1

Introduction

1.1 Overview

The estimation of the frequency and chirp rate of a chirp signal in a noisy en-

vironment is a fundamental and well-studied problem in signal processing and

communications. Its numerous applications include carrier recovery in a commu-

nication system [1], determination of the object position and speed in radar and

sonar systems[2], estimation of the heart rate of a fetus in biomedicine [3], and

many other. Regardless of the application, poor estimation can lead to inaccurate

results. For example, in communication systems, with a poor carrier frequency es-

timate, the down-converter may not be able to properly demodulate the passband

signal to baseband [1]. In radar applications, a poor estimate of the chirp rate

may cause the system to fail in accurately calculating the position and velocity of

the target [4].

A variety of approaches to the center frequency and chirp rate estimation prob-

lem, distinguished primarily by their estimation accuracy, and computational com-

plexity, have been developed. One of the approaches is based on improving the

Santhanam-Peacock empirical estimation [5] algorithm namely the discrete frac-

tional Fourier transform (DFRFT) approach. We specifically look at the distortion

issues associated with the discretization and provide an operator with improved

1



CHAPTER 1. INTRODUCTION 2

estimation via use of suitable windowing of the eigenvalue spectrum. The issue

with this estimation is its computational complexity as well as its empirical nature.

Another class of approaches are based on FFT due to its connection with the

maximum likelihood estimation (MLE) of frequency and thus chirp rate. The

MLE has very high accuracy because it achieves the Cramer-Rao lower bound

(CRLB), which is the minimum possible error for the estimator, over a range

of signal-to-noise (SNR) values. In this thesis, we improvise the prior work by

Ishwor [19] to develop analytical expression for the parameter estimates instead

of the empirical one. But since we are using centered DFT (CDFT), for even

N , there is no coefficient for zero frequency while computing it. This problem is

solved by shifting the signal to be transformed by a frequency of ±π/N which we

call "half-sample" shift. This shift produces the DC component coefficient from

the CDFT when N is even. We incorporated this shift in the estimator itself in

order to compensate for the shifting of the signal.

Another class of approaches address the shortcomings of the previous estimator

and is refined by zero padding, spectral peak interpolation and chirp-z-transform

based zooming techniques. Several interpolation techniques, zooming factors and

different zero padding length and their effect are studied and compared in terms

of mean squared error (MSE) of the parameter estimates with respect to CRLB.

Finally, we show the combination of these refinements along with the analytical

expressions significantly improve the MSE of the estimates.

We finally apply the improved chirp parameter estimation approach to the prob-

lem of estimating the chirp rate and instantaneous acceleration of a vibrating

target. This approach applied to synthetic aperture radar (SAR) data provides

for acceleration estimation very close to the accelerometer information of these

targets.
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1.2 Fractional Fourier Transform

The fractional Fourier transform (FRFT) is a family of linear transformations

which generalize the Fourier Transform. It can be thought of as the Fourier trans-

form to the nth power, where n need not to be an integer. Thus, it can transform

to any intermediate domain between time and frequency. The FRFT depends on

a parameter α and can be interpreted as a rotation by an angle α in the time-

frequency plane. So, an FRFT with α = π/2 corresponds to the classical Fourier

transform , and an FRFT with α= 0 corresponds to the identity operator. It was

introduced a numbers of years ago in the mathematics literature [6] but appears

to have remained largely unknown to the signal processing community, to which

it may, be potentially useful. Now, it has been shown that there is a close rela-

tionship between the linear chirp signal and the continuous FRFT as the FRFT

of a signal can be interpreted as a decomposition in terms of chirps.

For any real angle α, the α-angle FRFT of a function f(x) is denoted by Fα(u)

and defined by,

Fα(u) =
√

1− j cot(α)
2π exp

(
jπ cot(α)u2

2

)∫ ∞
−∞

Iαf(x)dx, (1.1)

where Iα = exp
(
−j2π

(
csc(α)ux− cot(α)

2 x2
))

.

This is why when α = π
2 , this precisely becomes the definition of the continuous

Fourier transform, and for α = −π2 , it is the definition of the inverse continuous

Fourier transform.

In other words, the FRFT is an integral transform

Fα(u) =
∫

Kα(u,x)f(x)dx, (1.2)
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where Kα(u,x) is the transformation kernel defined as,

Kα(u,x) =



√
1−cot(α)

2π exp(Aα) , if α is not a multiple of π

δ(u−x), if α is a multiple of 2π

δ(u+x), if α+π is a multiple of 2π

, (1.3)

where Aα =
(
x2+y2

2 cot(α)−uxcsc(α)
)
. This kernel is continuous in α, i.e. in

multiples of

lim
α→nπKα = Knπ, (1.4)

Thus, substituting Eq. (1.3) in Eq. (1.2), we get,

Fα(u) =



√
1−cot(α)

2π exp
(

(
u2

2 cot(α)
)) ∞∫
−∞

f(x)exp(Bα)dx, if α = kπ

f(x), if α = 2kπ

f(−x), if α+π = 2kπ

,

(1.5)

where Bα =
(
x2

2 cot(α) +uxcsc(α)
)
and k = integer.

1.3 Discrete Fractional Fourier Transform

The DFRFT generalizes the discrete Fourier transform (DFT) in the same sense

that the continuous FRFT generalizes the continuous Fourier transform. As the

DFT is defined as a linear operator that can be expressed via a matrix vector

multiplication, analogously, the definition of DFRFT is based on a particular set

of eigenvectors of the DFT matrix or well-known eigenvalue-eigenvector decompo-

sition of a matrix. The DFRFT can be generally put in the form as [7],

Aα(x) = W
2α
π (x) = VΛ

2α
π V−1x, (1.6)

where W is a DFT matrix, V is DFT eigenvectors and Λ is a diagonal matrix of

DFT eigenvalues.
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In the case of the regular DFT, these eigenvectors are linearly independent and

orthonormal. So, the inverse of these eigenvector in this case can be replaced by

its hermitian, i.e. DFT matrix W can be written as,

W = VΛVH (1.7)

Substituting this information in Eq. (1.6), we get,

Aα(x) = W
2α
π (x) = VΛ

2α
π VHx. (1.8)

Now, if we evaluate Eq. (1.8) for different value of α = 0, π2 , and 2π we obtain,

A2π = I, Aπ
2

= W, Aπ = W2.

1.4 Discrete Rotational Fourier Transform

A first discussion on DFRFT was introduced by Santhanam and McClellan in [7].

This transform was called rotational to show the fact that it involved rotation in

time-frequency plane.

The formulation of the rotational form of the DFRFT is simple. It is a linear

combination of integer powers of the DFT matrix, the resulting transform does

not quite resemble the continuous version. The expression given in [7] is based

on a grouping of eigenvalues that results in eigenvectors of the DFT that are

linearly independent but form a non-orthogonal basis. The DFT matrix has only

four eigenvalues (1, -1, j, -j) regardless of its size for N ≥ 4 [8]. Therefore we

have repeated eigenvalues for N > 4. This repetitive nature of the eigenvalues

produces several problems. One of the problems is that the DFT has several sets

of orthogonal eigenvectors. For a matrix to have a complete set of orthogonal

eigenvectors, unique eigenvalues [9] is a must but since this is not the case for

DFT, there are multiple sets of orthogonal eigenvectors.

Also, any linear combination of the DFT eigenvectors with the same eigenvalue
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N 1 -j -1 j
4m m+1 m m m-1

4m+1 m+1 m m m
4m+2 m+1 m m+1 m
4m+3 m+1 m+1 m+1 m

Table 1.1: Multiplicities of DFT eigenvalues [7]

are DFT eigenvectors. So, there is ambiguity problem in deciding the eigenvectors

of the DFT. The multiplicities of the eigenvalues of the DFT are shown in Table

1.1. From this table, we can see that the DFT has a non-uniform eigenvalue

distribution when N is a multiple of four.

1.5 Cramer-Rao Lower Bound

To evaluate the performance of the estimators, it is valuable to compare the as-

sociated MSE with respect to the theoretical bounds by Cramer and Rao. This

bound has been calculated before chirps [10], but there are different forms of the

chirp function given in different papers [5]. Here is a summary for the specific

form of the lower bound used in this thesis [5].

The components of the Fisher information matrix for any signal in complex addi-

tive White Gaussian noise (AWGN) is,

Jij = 2
σ2

N−1∑
n=0

(
∂µn
∂Θi

∂µn
∂Θj

+ ∂νn
∂Θi

∂νn
∂Θj

)
, (1.9)

where µn = real(f [n]) and νn = imag(f [n]), are the expected values of real and

imaginary components of the signal. For multicomponent case Θ = [θ1, θ2, ..., θP ]T

and J will have the form:


J11 P12 J13 . . . J1P

J21 P22 J23 . . . J2P
... ... ... . . . ...

JP1 JP2 JP3 . . . JPP


(1.10)
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composed of the block matrices

Jij = 2
σ2

N−1∑
n=0



cij [n] Ajsij [n]m2 Ajsij [n]n Ajsij [n]

−Ajsij [n]m2 AiAjcij [n]m4 AiAjcij [n]m2n AiAjcij [n]m2

−Aisij [n]n AiAjcij [n]m2n AiAjcij [n]n2 AiAjcij [n]n

−Aisij [n] AiAjcij [n]m2 AiAjcij [n]n AiAjcij [n]


(1.11)

where

cij [n] = cos(Φi[n]−Φj [n]) (1.12)

sij [n] = sin(Φi[n]−Φj [n]) (1.13)

Φi[n] = αim
2 +ωin+φi (1.14)

For a single chirp, the inverse of this matrix has a closed form, and the Cramer-Rao

lower bound can be computed as [5]

var{α̂} ≥
(
σ

A

)2 90
N(N2−1)(N2−2) (1.15)

var{ω̂} ≥
(
σ

A

)2 6
N(N2−1) (1.16)

For the multicomponent case, there is no closed form. All the results presented

for the single component case hold approximately for each of the components, as

long as the components are spectrally well separated [11] i.e. if the chirps are

well-separated in frequency, the above bounds hold true.

1.6 Organization of the thesis

In this thesis, we look to quantify the accuracy of the refined Santhanam-Peacock

chirp parameter estimates. We study the different methods and present a improved

accuracy estimator. This thesis is organized as follows:

Chapter 2 is dedicated to minimizing the errors during the discretization of the

continuous FRFT. The eigenvectors, and the basis functions with some properties
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are explained. In this chapter, we also briefly explain the empirical mapping and

invertibility percentage which shows the improvements in the estimates. We plot

the valid mapping region for peak-to-parameter mapping. Finally, we compare

the parameter estimates in terms of MSE over a range of SNR.

In Chapter 3, we introduce analytical expressions for the chirp parameter estima-

tors based on the CDFT and apply different refinements to it such as zero padding,

spectral peak interpolation and CZT zoom-in [12]. A brief introduction to all the

techniques is presented and modifications to the analytical expressions based on

these refinements are also discussed. We compute the MSE over a range of SNR

values for all the techniques and finally combine them for better estimates for a

given signal length.

Chapter 4 presents the application of these new analytical expressions and refine-

ments to the problem of estimating vibrating target parameters in a SAR- based

vibrometry application. We study three different types of vibrating targets and

their unique vibration signatures. We compare the results from our algorithm to

the ground truth measured from the accelerometer attached to the targets.

Finally, in Chapter 5, we conclude our investigation and discuss topics for future

research.



Chapter 2

Effects of Windowing

In this chapter, we first look at the Vargas-Santhanam [20] empirical estima-

tion method which was refined by Santhanam-Peacock by the use of subspace

decomposition [5]. We then focus on the distortion issues, that arise in the tran-

sition of continuous FRFT to DFRFT and incorporate windowing effects into the

QMFD approach [13][17]. We further investigate extensions of the QMFD ap-

proach [13][18][17] in light of these distortion sources, that result in a commuting

matrix and associated eigenvectors with a reduced degree of distortion. We fur-

ther show through simulation results, that a suitable choice of window applied to

the eigenvalue sequence of the discrete operator results in significant improvement

of the invertibility of the underlying peak to parameter mapping and thus, to the

associated MSE of chirp parameter estimates.

2.1 Empirical Estimation & Subspace Decompo-

sition

The DFRFT technique shows promise for multicomponent chirp parameter esti-

mation as it generates peaks for each chirp whose location in the 2D transform

plane corresponding to the specific chirp rate and center frequency. The peak-to-

parameter mapping was first investigated in [20] in a closed-form empirical ap-

9
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proximation of the relationship, however this approximation had significant error

in parameter estimation.

Subspace decomposition techniques in conjunction with the DFRFT provides more

robust and accurate estimation in the presence of noise [37]. This method, how-

ever, causes the peak to be suppressed resulting in lower performance of the sub-

space decomposition. Santhanam-Peacock [5] investigated using different p-norms

for the projection to better accentuate the peaks, and put forward a cross-hairs

method, where subspace decomposition is performed on the thin slices centered

around the peak. In this method, horizontal and vertical projections at the peak

location is calculated using a p-norm

xα = FFT−1||X||rowp = FFT−1
 Kf∑
k=K0

|Xk[•]|p


1
p

(2.1)

xω = FFT−1||X||colp = FFT−1
 Rf∑
k=R0

|X•[r]|p


1
p

(2.2)

The peaks in the projection result in strong frequency content in the signals xα
and xω. This turns the chirp parameter estimation into two separable frequency

estimation problems, which can be easily solved using subspace decomposition.

The use of the 3-norm has a higher noise-floor at high SNR. but less at low SNR.

So, it was selected as a good compromise and for further evaluation.

The subspace decomposition process begins by performing the eigenvalue decom-

position on the estimated covariance matrices Rα and Rω of size (C +M) ∗N ,

where C is the number of chirps in the signal. The eigenvectors corresponding

to the C largest eigenvalues were selected to form signal subspace while M eigen-

vectors are used to form noise subspace. Next, pseudo-spectra is calculated using

min-norm method as

Pmin−norm = 1
|FFT(VVT

1 )|
, (2.3)

where V is the eigenvector matrix and VT
1 denotes a column vector containing

the first element of each eigenvector. Finally, this pseudo-spectra is searched for

largest C peaks.
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2.2 Distortion Sources

As mentioned in 1.3, the kernel of the continuous-time FRFT is

Kα(t,u) =
√

1− j cotα
2π exp

(
j(t2 +u2)cotα/2− jtucscα

)
, (2.4)

The corresponding Mehler’s expansion for the chirped kernel is

Kα(t,u) =
∞∑
k=0

exp(−jkα)hk(t)hk(u), (2.5)

where hk(t) denotes the k-th Gauss-Hermite (G-H) functions. When a chirp signal

with center frequency ω and chirp rate cr for a specific angle αo is used, this kernel

produces a Dirac-impulse for the FRFT

Fαo(u) = exp
(
j

cotαo
2 u2

)√1− j cotαo
2π 2πδ(ωo−ucscαo), (2.6)

where αo = cot−1(−2cr). This chirped kernel is not band-limited and causes dis-

tortion in the discrete versions of the FRFT. Existing commuting matrix methods

for computing the discrete version of the FRFT (DFRFT) [13][14] [15] use a eigen-

value decomposition of the form

Aα(x) = VΛ
2α
π VTx=

N−1∑
k=0

exp(−jkα) vkvTk x, (2.7)

where V is a fully orthogonal basis of DFT or CDFT eigenvectors, obtained from

a commuting matrix, that serves as discrete counterparts of the G-H functions.

2.3 Sources of Discretization Errors

From Eq. (2.5) and Eq. (2.7), we can observe that discretizing the continuous

FRFT, there are following phenomena happening [17]

1. Truncation or windowing of the IIR eigenvalue sequence of the G-H operator
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with a rectangular window of the duration N samples

λω[k] = exp(−jkα)ω[k]

where ω[k] is the N -point boxcar window [16]. This is analogous to the

window based FIR filter design technique, where a IIR impulse response is

approximated with an FIR windowed equivalent or spectral analysis using

the DFT. This will result in spectral distortion of the eigenvalue sequence

Λω(ejw) =W
(
ej(ω−α)

)

where W
(
ejω

)
denotes the discrete time Fourier transform (DTFT) of the

window function [16] used. This produces the narrowest main lobe but has

the smallest main-lobe to side-lobe spectral amplitude ratio which produces

more side-lobes in the DTFT of the windowed eigenvalue sequence. G-

H operator discretization methods discussed so far do not accommodate

windowing effects.

2. Discretization of the G-H functions to yield DFT/CDFT eigenvectors which

results in spectral aliasing in the eigenvectors corresponding to the higher

G-H modes with frequency content at the edges of |ω|< π,

Vk
(
ejω

)
= 1
Ts

∞∑
k=−∞

Hk

(
ω−2kπ
Ts

)
, |ω|< π

where Ts is the sampling period associated with the discretization of the

G-H functions.

Several commuting matrix approaches towards presenting the unitary basis of

DFT/CDFT eigenvectors have been studied [13][14] [15] showing that they are

discrete versions of the G-H operator.
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2.4 QMFD Approach : Diagonal Q and Quasi-

Toeplitz Matrices

First, we focus our attention on the QMFD approach in [13] [18]

Q =
√

2π
N

diag(−m,...,m)

P = WQWH

T = P2 + Q2, (2.8)

where Q and P denote the finite dimensional position and momentum operators

and W denotes the centered version of the DFT

Wrs = 1√
N

exp
(
−j 2π

N
(r−m)(s−m)

)
, 0≤ r,s≤N −1

with m = (N − 1)/2. As shown in Eq. (2.8), for the matrix T to commute with

either version of the DFT or CDFT, the matrix W2 needs to be W2 centro-

symmetric

W2Q2W2 = Q2.

If we require the commutator C = [Q,P] to commute with the DFT, we would

require the matrix Q to be W2 anti-symmetric [13]

W2QW2 =−Q

Here, we specifically focus on the elements of the matrix P

Prs =
N−1∑
l=0

N−1∑
m=0

WrlQlmW∗
ms (2.9)

Substituting the diagonal form of Q into this expression gives

Prs =
√

2π
N

N−1∑
l=0

exp
(
−j 2π

N
(l−m)(r− s)

)
. (2.10)
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Specifically the matrix Q is non-diagonal, is purely imaginary because its elements

are the DFT of an odd function. The matrix Q is also Toeplitz since the matrix

elements depend only on (r−s). In a similar fashion, we can evaluate the matrix

elements of the commuting matrix T via

Trs = 2π
N



N−1∑
l=0

(l−m)2 exp
(
−j 2π

N
(l−m)(r− s)

)
, when r 6= s

(r−m)2 +
N−1∑
l=0

(l−m)2, when r = s

The following symmetries can be inferred from the matrix elements

1. For the diagonal form of the Q matrix with either the DFT or CDFT, the

underlying commuting matrix has almost-Toeplitz symmetry.

2. Only main diagonal elements are different and follow a square law in accor-

dance with the (r−m)2 or the (r−m− 1)2 terms. Non-Toeplitz behavior

of the commuting matrix is a consequence of non-Toeplitz behavior of the

matrix Q.

3. The commuting matrix will also have J-symmetry about r = m along the

diagonal for the CDFT and W-symmetry about r=m+1 along the diagonal

of DFT.

4. The commuting matrix is further positive semi-definite.

This motivates the equivalence of the commuting matrix T to the auto-correlation

matrix of a weakly non-stationary time-series with elements

2π
N

N−1∑
l=0

(l−m−1)2 exp
(
−j 2π

N
(l−m)(r− s)

)
, when r 6= s

2π
N

(r−m−1)2 + 2π
N

N−1∑
l=0

(l−m−1)2 , when r = s

This weakly non-stationary time-series, autocorrelation viewpoint, exposes the

aliasing in the almost-Toeplitz framework, since the quadratic power spectral term

is not band-limited. The conclusion derived from this viewpoint is that the QMFD
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discretization of the non band-limited G-H operator will result in distortion [17].

This distortion manifests as aliasing in the eigenvectors.

The time-series viewpoint also describes the windowing effects on the elements of

the quasi-Toeplitz commuting matrix. Specifically the elements of the Q2 matrix

are windowed with a rectangular window of duration N samples

Q2
ω = ΛωQ2, (2.11)

where Λω is a diagonal matrix with the window samples along the diagonal. We

can affect the eigenvalue spectrum of the commuting matrix by choosing an ap-

propriate window as depicted in Fig. (2.1), where we use a Kaiser window of

duration N = 256 and parameter β = 1.2. This window is chosen over others due

to the degree of freedom that the parameter β affords in the main-lobe to side-lobe

trade-off [17]. This has the effect of smoothing the fluctuations in the eigenvalue

spectrum at the tail end as evident in Fig. (2.2) and expanding the region of the

invertibility of the peak to parameter mapping [19].

In order to further reduce the distortions resulting from the truncation/windowing

of the eigenvalue sequence, we now consider the non-diagonal Q case where the

DFT commuting matrix is forced to possess a linear eigenvalue spectrum.

2.5 QMFD Approach: Non-Diagonal Case

As described in [18], the QMFD method needs to be modified so that the equations

of motion are satisfied in the DFT/CDFT basis. This is because the Q and P

tridiagonal basis corresponds to a diagonal number operator and a diagonal DFT

operator. To obtain the number operator in the DFT/CDFT basis, we perform

similarity transformation via the eigenvectors of the DFT/CDFT obtained from

the previous section. Specifically, the Q and P tridiagonal matrices in the N -
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Figure 2.1: Effect of windowing on the eigenvalue spectrum.

diagonal basis or the DFT diagonal basis [17] are

Qo = 1√
2



0 1 0 0 . . .

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0
√

4 . . .
... ... ... ... . . .



Po = j√
2



0 1 0 0 . . .

−1 0
√

2 0 . . .

0 −
√

2 0
√

3 . . .

0 0 −
√

3 0
√

4 . . .
... ... ... ... . . .


The number operator in the tridiagonal representation is just the diagonal matrix

No = diag(1,3,5,7, ....,2N −1) (2.12)
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Figure 2.2: Peak to parameter mappings for N = 256 : (a) quasi-Toeplitz framework, and (b)
non-diagonal Q formulation. The invertibility percentage of the mappings corresponding to the
two operators are 84.55% and 85.33% respectively.

These quantities in the DFT basis are obtained via similarity transformation using

the DFT eigenvectors V obtained from the previous section

Qnew = VQoVH and Pnew = VPoVH (2.13)

The corresponding number operator in the DFT basis is:

T = PH
newPnew + QH

newQnew = P2
new + Q2

new = VNoVH , (2.14)

where V are the orthogonal DFT eigenvectors obtained via the previous section.

This transformed number operator by construction has a odd integer eigenvalue

spectrum, and its eigenvectors are the DFT eigenvectors. This matrix therefore

commutes with the appropriate DFT:

TW = WT or [W,T] = 0.

The transformed number operator is however, not almost-Toeplitz as in the pre-

vious section but a W2-symmetric matrix corresponding to a non-diagonal Qnew

matrix:

W2TW2 = TW4 = T,
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where we have used the observation that [W,T] = 0. Since the new number

operator was constructed from the eigenvectors from the previous almost-Toeplitz

framework, they carry with them the distortion due to truncation and aliasing.

However, the distortion is reduced because the eigenvalue spectrum is closer to that

of the G-H operator than what was obtained in the previous framework, thereby

reducing one of the sources of distortion [17]. We are specifying the eigenvalue

sequence of the commuting matrix to be the truncated odd numbered spectrum.

We can further reduce the effects of windowing of the eigenvalue sequence by

choosing the window so that the eigenvalue sequence is:

λw[k] = (2k+ 1)w[k], 0≤ k ≤N −1,

where w[k] is an appropriately chosen window [16] that minimizes the effects of

eigenvalue truncation.

Fig. (2.2) compares the peak to parameter mapping underlying both the diagonal

Q approach and the non-Toeplitz framework for N = 256 using the Kaiser window.

There is slight improvement visually as well as in terms of invertibility of the

mapping from 84.55 percent to 85.33 percent. This improvement is due to the

fact that non-diagonal Q case minimizes the effects of eigenvalue truncation[17].

Fig. (2.3)(a) depicts the DFRFT spectra for a chirp signal for different values

of the Kaiser window parameter β. For β = 15 in non-diagonal Q case, we can

observe that there is significant distortion of the peaks arising from truncation.

As can be seen specific values of the β parameter result in steeper slopes on the

peaks of the underlying DFRFT spectrum. From Fig. (2.3)(b,c) we observe that

the slopes of the spectral peaks are much steeper for β = 1.2 than for β = 0.001.

Fig. (2.3)(d) depicts the eigenvalue spectrum corresponding to the different values

of the Kaiser window parameter [17].

Fig. (2.4) depicts the percentage invertibility associated with the Q-windowing

approach, the eigenvalue windowing approach, and the combined windowing ap-

proach using a Kaiser window with parameter β = 1.2. We can see that the

combined windowing approach improves the invertibility of the peak to parameter
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Figure 2.3: Effect of windowing eigenvalue sequence: (a) DFRFT spectrum magnitude for Kaiser
window with N = 256, β = 15, (b) DFRFT spectrum magnitude for Kaiser window with N =
256, β = 0.001, (c) DFRFT spectral magnitude for β = 1.2, and (d) eigenvalue spectrum with
different Kaiser window parameters. Note that we obtain steeper slopes on the peaks of the
DFRFT magnitude spectrum for β = 1.2 and for β = 15 we observe a significant amount of
aliasing.
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Figure 2.4: Invertibility improvement: Percentage of invertible pixels in the peak to parameter
mapping for Q-windowing alone, with a Kaiser window with parameter β = 1.2, for eigenvalue
windowing alone, using a Kaiser window with β = 1.2, and combined windowing using a Kaiser
window with parameter β1,2 = 0.9

mapping compared to other option. Furthermore, we see significant improvement

using the windowing approach for smaller transform sizes N because the distortion

caused by truncation effects for more pronounced in smaller values for N , where

the invertibility approaches 91% for larger matrix sizes N .

Invertibility of the mapping as pointed out in [19], impacts the MSE of the corre-

sponding chirp parameter estimates which is shown in Fig. (2.5). The MSE here

was calculated at each SNR using 1000 chirps of length N = 32 in the safe range

of |α|(N −1) + |ω|= IF < 0.85π.

2.6 Conclusion

In this chapter, we have studied the problem of discretizing the Gauss-Hermite

operator and the two basic sources of distortion: (a) eigenvalue truncation re-

sulting in spectral distortion of the eigenvalue sequence, and (b) sampling of the

eigenfunctions resulting in eigenvector aliasing. We studied two classes of matrices
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Figure 2.5: (a,b) Impact of windowing on the MSE of parameter estimates from the minimum-
norm algorithm, depicting improved invertibility of the underlying peak to parameter mapping
with combined Q-matrix and eigenvalue windowing.

that commute with DFT/CDFT in the context of the QMFD method developed

in [13] in terms of the distortion introduced in discretizing the continuous FRFT.

We studied the quasi-Toeplitz framework where the corresponding Q matrix is di-

agonal and developed a weakly non-stationary time-series viewpoint to show the

distortion due to discretization. We then studied means of minimizing this dis-

tortion by Q windowing. Using an Kaiser-windowed version of the truncated odd

integer valued eigenvalue spectrum, resulted in sharper peaks in the underlying

DFRFT spectra in comparison to the boxcar windowed spectra which eventually

translated to a wider invertibility region for the underlying peak to parameter

mappings. This improvement attained by using windowing is specifically more

pronounced for smaller matrix sizes, where the distortion due to discretization is

more pronounced.

The main issue with this approach is computational complexity when using a

relatively large signal length. The execution time when the signal length N is 512

or higher is not practical for use i.e. it is very time-consuming. So, we looked at

developing analytical expressions for the peak to parameter mapping to avoid this

complexity that are discussed in the following chapter.



Chapter 3

Analytical Expressions for

DFRFT Chirp Parameter

Estimates

In this chapter, we look at the application of the MA-CDFRFT to a linear chirp

signal. We also look different relations between the peak location and the chirp

parameters developed by Vargas-Rubio [20], Peacock [5], and Ishwor [19] and also

propose an improved analytical expression for the peak to parameter mapping in-

stead of empirical estimation that was discussed in previous chapter. We further

look at the various refinements to this estimator such as zero padding, interpo-

lation, and CZT zooming and express the improvement in terms of MSE over a

range of SNR values. Finally, we combine all of the methods for a joint refinement

approach to obtain the minimum possible MSE for the center frequency and chirp

rate parameters separately, in an attempt to get closer or reside on the CRLB.

22
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3.1 Multi-angle Centered FRFT

Vargas-Rubio and Santhanam [20] discussed the multi-angle CDFRFT via a eigen-

value decomposition for the DFRFT matrix as

{Aα}kn =
N−1∑
p=0

vkpvnpe
−pα, (3.1)

where vkp is the kth element of the pth eigenvector. Multiplying Aα by the signal

x[n], we obtain

Xα[k] =
N−1∑
n=0

x[n]
N−1∑
p=0

vkpvnpe
−pα. (3.2)

For the discrete set of angles α = αr = 2πr
N , r = 0,1, .........,N −1

Xk[r] =
N−1∑
p=0

zk[p]Wpr
N , (3.3)

where

zk[p] = vkp

N−1∑
n=0

x[n]vnp. (3.4)

Expressing the transform as a DFT allows us to use a radix-2 FFT algorithm to

compute the CDFRFT. The resulting transform Xk[r] containing the CDFRFT

for these discrete angles is called multi-angle DFRFT (MA-CDFRFT).

It is important to observe that Xk[0] corresponds to the original signal x[n] with k

= n, and Xk[N4 ] corresponds to the CDFT of x[n] when N is a multiple four, since

in this case, αN
4

= π
2 . Fig. (3.1) shows a graphical representation of the arrayXk[r]

to illustrate how the interpretation of index k is dependent on the value of r. For

example, when r = 0, k is interpreted as time and when r = N
4 , k is interpreted as

frequency instead. This interpretation also shows that the upper half of Xk[r] is

nothing but a reversed version of the lower half. So, just by calculating the lower

half, the upper half is known as well.
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Figure 3.1: Graphical representation of Xk [r] that shows how the interpretation of the index k
changes depending on the value of index r [20].

3.2 Linear Chirp Signal

The kernel of the FRFT containing a linear chirp signal is one of the most relevant

properties of the FRFT. So,the MA-CDFRFT can be applied for the estimation of

the chirp parameters of a single-component (complex) signal or multi-component

(real) signal. Usually, a complex chirp signal is of the form

x[n] = Aej(ωon+crm2), 0≤ n≤N −1 and m= n− N −1
2 (3.5)

where cr is the chirp rate and ωo is the center frequency and A is the amplitude of

the signal. Upon application of the MA-CDFRFT to this signal, we obtain a sharp

peak in the chirp rate versus frequency representation as shown in Fig. (3.2). For

the purpose of this thesis, we used cr = 0.001, ωo = π/3 and N = 128. We see the

peak location at the coordinates (86,34). At this coordinate, the magnitude of the

MA-CDFRFT is a maximum. Specifically, we can observe that we actually have

two maxima, because the CDFRFT at α+π is the reversed version of CDFRFT

at α. The location of the other maxima is (42,98).

Similarly, for a multi-component chirp signal of the form

x[n] = A cos(ωon+ crm
2) = A

1
2

(
ej(ωon+crm2) + e−j(ωon+crm2)

)
, (3.6)
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Figure 3.2: Magnitude of the MA-CDFRFT for cr = 0.001, ωo = π/3 and N = 128 and QMFD
basis for complex chirp signal.

where the symbols mean and have same value as in Eq. (3.5). This signal consists

of two linear chirps, one with a positive chirp rate, and another with a negative

chirp rate. Both signal have same center frequency. As shown in Fig. (3.3) , the

magnitude of the transform displays four peaks, two for each signal, and thus it

can be clearly deduced that the signal consists of two linear chirp components.

For our further experiments and for the sake of uniformity, we will use this real

chirp signal and consider the location of the top-left peak all the time.

3.3 Relation between Peak and Parameter

Once the peak locations are obtained, we can apply the peak-to-parameter map-

ping to get the parameter estimates. Rubio-Santhanam [20] derived an empirical

relation between the chirp parameters and the angle α as

cr ≈ 2 tan(α−π/2)
N

+ 1.41 (α−π/2)
N

ω0 = ωp+ 0.85(α−π/2)3, (3.7)
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Figure 3.3: Magnitude of the MA-CDFRFT for cr = 0.001, ωo = π/3 and N = 128 and QMFD
basis for real chirp signal.

where ω0 is the average frequency, and ωp is the frequency at which the peak of

the CDFRFT occurs. This method was used to estimate the parameters if the

angle of the transform at which peak occurred was known.

Peacock and Santhanam [5] derived an expression for the mapping as

α =− π
N

cot
(
kπ

N

)

ω = 2π
N

(
r− N −1

2

)
csc

(
kπ

N

)
. (3.8)

But Ishwor and Santhanam [19] found out that this mapping does not correctly

map the peak locations to the corresponding chirp rate and center frequency. They

modified this peak to parameter mapping expression to correctly map the peak

location as

ĉr =− π
N

cot
(2rpπ
N

)
ω̂c = 2π

N

(
kp−

N −1
2

)
csc

(2rpπ
N

)
, (3.9)

where ĉr is the chirp rate, ω̂c is the center frequency and (kp, rp) is the peak

location. They concluded that using this peak-to-parameter mapping results in
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error of about 0.4% for the QMOD method [19].

However, this estimator does not consider that fact that for an even N , the basis

vectors of the CDFT have a frequency that falls exactly in the middle of the

DFT. This means that when computing the CDFT, there is no coefficient for

zero frequency (average value of the signal), and in some cases this may be an

issue. This problem can be solved by shifting the signal to be transformed by a

frequency of ±π/N [20]. This is achieved by multiplying the signal by a complex

signal ejπn/N . We modified the estimator to incorporate this frequency shift as

ĉr =− π
N

cot
(

2(rp− 1
2)π

N

)

ω̂c = 2π
N

(
kp−

N −1
2 − 1

2

)
csc

(
2(rp− 1

2)π
N

)
,

which results in

ĉr =− π
N

cot
(2π
N

(
rp−

1
2

))
ω̂c = 2π

N

(
kp−

N

2

)
csc

(2π
N

(
rp−

1
2

))
. (3.10)

In other words, we can say that this "half-sample" shift in these expressions is to

account for the shift in the origin of the CDFT frequency measurements when N

is an even integer.

3.4 MA-CDFRFT: Zero padding, Spectral Peak

Interpolation and CZT Zoom

3.4.1 Parameter Estimation via the CDFT and Zero padding

Zero padding is a technique used in spectral analysis for interpolating peaks. It

basically extends the signal or spectrum with zeros. It maps the length of signal

N to M (where M is larger than N) adding equal amount of zeros at both ends of

the signal.
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Definition:

xzeropad(M) = [zeros(M/2) x(N) zeros(M/2)].

For example, if x= [1,2,3,4,5,6] then

xzeropad(10) = [0,0,1,2,3,4,5,6,0,0].

Zero padding allows us to use a longer CDFT, which in turn produces a longer

CDFT result vector. A longer CDFT result has more frequency bins that are more

closely spaced in frequency. This results in a smoother looking spectrum when

plotted with further zero padding. Although this will not help with resolving or

the resolution of and/or between adjacent nearby frequencies, it makes it easier to

visually resolve a single peak at a single isolated frequency that does not have any

significant adjacent signals or noise in the spectrum. The analytical expressions

change when incorporating the zero padding and become:

ĉr =− π

M
cot

(2π
M

(
rp−

1
2

))
ω̂c = 2π

M

(
kp−

M

2

)
csc

(2π
M

(
rp−

1
2

))
, (3.11)

where M is the zero padded signal length. The signal into consideration is a real

multi-component signal is Eq. (3.6) where A is the amplitude, ωc is the center

frequency, cr is the chirp rate and w[n] is AWGN of standard deviation σ. For the

purpose of this thesis, we set the parameters as

N = 128, A= 1, ωc = π/3, and cr = 0.001.

In order to show how zero padding works, we present a numerical example here.

Here, this observation with noise has 128 samples. Applying the MA-CDFRFT

algorithm, the peak location is at (32,43) coordinate. From Eq. (3.11), we get

ω̂c = 1.0311 and ĉr = 0.00060251. If we use a M = 256 point CDFT to estimate

the parameters, the ccordinated of the peak is located at (62,86) and the estimates

are ω̂c = 1.03277 and ĉr = 0.0007537. Further zero padding, i.e. if we use a
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Figure 3.4: Performance of the chirp parameter estimators based on the analytical expression
and zero padding in DFRFT in comparison to the CRLB, obtained by averaging over 200 experi-
ments. The basis of CDFT eigenvectors used in the computation of the MA-CDFRFT spectrum
was the QMFD basis.
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M = 512 point CDFT, the peak is located at (116,172) thus yielding the estimates

ω̂c = 1.0425 and ĉr = 0.000925. There is an improvement in the MSE associated

with both of the analytical expressions with respect to the CRLB as the level of

zero-padding increases or size of CDFT increases. This is a direct consequence of

better peak resolution resulting from spectral interpolation.

Fig. (3.4) depicts the MSE of the center frequency and chirp rate estimates re-

spectively of the zero padding approach as a function of SNR for multiple values

of M , M = 64, M = 128, M = 256, M = 512, M = 2014, and M = 2048. If we

observe the plot, we can see that there is improvement of about 12dB for every

quadruple increase in the length of M . So, theoretically, if we kept on increasing

the size of CDFT or zero padding over M = 2048, the MSE will hit the CRLB

and we can attain the CRLB asymptotically. Finally, according to [33], we can

say that, this estimator is similar to MLE.

3.4.2 Parameter Estimation via the CDFT and Spectral

Peak Interpolation

This is a two stage method to calculate the parameter estimates using three CDFT

samples at the peak. The first stage is to calculated the peak location using 2D

peak estimator. The second stage is to perform a fine search around the peak

obtained from the first stage. This method suggests a nonlinear relation involving

three samples to a real valued fine resolution of the peak, and thus better chirp

parameter estimates.

In the first stage, we calculate the peak locations (r,k). Then, the N-point

DFT of the signal is calculated at these points, Ak = ∑N−1
n=0 x[n] Wnk

N and Ar =∑N−1
n=0 x[n] Wnr

N . Here Ak and Ar denotes the complex valued DFT output. The

peak value in the DFT magnitude spectrum (rp,kp) is expected to be around the

true parameters ωp and crp. Then, we can express the DFT bins where the peak



CHAPTER 3. ANALYTICAL EXPRESSIONS FOR DFRFT CHIRP
PARAMETER ESTIMATES 31

occurs and its immediate left and right neighbors as:

Ak−1 =
N−1∑
n=0

x[n] Wn(k−1)
N ,

Ak =
N−1∑
n=0

x[n] Wnk
N ,

Ak+1 =
N−1∑
n=0

x[n] Wn(k+1)
N .

Similarly, for r axis, we have:

Ar−1 =
N−1∑
n=0

x[n] Wn(r−1)
N ,

Ar =
N−1∑
n=0

x[n] Wnr
N ,

Ar+1 =
N−1∑
n=0

x[n] Wn(r+1)
N .

Now, we use three different interpolation techniques for fine resolution peak loca-

tion estimation.

• Parabolic Interpolation [21]:

δ̂k = (|Ak+1|− |Ak−1|)/(4|Ak|−2|Ak−1|−2|Ak+1|) ,

δ̂r = (|Ar+1|− |Ar−1|)/(4|Ar|−2|Ar−1|−2|Ar+1|) . (3.12)

• Candan Interpolation [22]:

δ̂k = tan(π/N)
π/N

Real{(Ak−1−Ak+1)/(2Ak−Ak−1−Ak+1)},

δ̂r = tan(π/N)
π/N

Real{(Ar−1−Ar+1)/(2Ar−Ar−1−Ar+1)}. (3.13)
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Figure 3.5: Effects of interpolation on the chirp parameter estimates (a,b) comparison of various
forms of peak interpolation with N = M = 128.

• Quinn Interpolation[23]:

α1 = Real(Ak−1/Ak) , α2 = Real(Ak+1/Ak) ,

δ1 = α1/(1−α1) , δ2 = α2/(1−α2),

if δ1 > 0 and δ2 > 0, δ̂k = δ2 else δ̂k = δ1.

And

β1 = Real(Ar−1/Ar) , β2 = Real(Ar+1/Ar) ,

δ1 = β1/(1−β1) , δ2 = β2/(1−β2),

if δ1 > 0 and δ2 > 0, δ̂r = δ2 else δ̂r = δ1. (3.14)

The peak coordinates are then modified as:

kp = k+ δ̂k and rp = r+ δ̂r (3.15)

Fig. (3.5) depicts the MSE of both parameters as a result of applying spectral

peak interpolation approaches on the peak of the signal. In the first case (a,b)

signal of length N = 128 is used. Quinn’s Interpolation produces the best results

for center frequency estimation however for the chirp rate, the improvements are

minimal.
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3.4.3 Parameter Estimation via the CDFT and CZT Zoom

The CZT-based zoom operation produces zooming in the angle or chirp rate vari-

able r and only affects the chirp rate estimator and not the center frequency esti-

mator. There are two ways to apply CZT zoom on the MA-CDFRFT algorithm.

First, the (0,2π) range of the r-axis is zoomed in to (0,α∗ π2 ) where α = 1,2,3, ...

and second, the range is zoomed into the interval (upperlim,upperlim+ π/2).

Here, upperlim is dependent on the zooming factor by,

upperlim= π/2−π/zoom

In the first case, CZT zoom limits the search in the r-axis, thus decreasing the

size of the axis itself which in turn increases the r-index number. In order to

incorporate this change, some modification has to be made in the estimators and

they are:

ĉr =− π

M
cot

( 2π
M ∗ zoom

(
rp−

1
2

))
and

ω̂c = 2π
M

(
kp−

M

2

)
csc

( 2π
M ∗ zoom

(
rp−

1
2

))
, (3.16)

where zoom is the factor by which we zoom into the r-axis. While in the second

case, the starting point of the r-axis is no longer zero, we have to scale back the

peak locations to the (0,2π) range and use the analytical expression to calculate

the parameters. If the peak locations after tge CZT zoom is (r,k) the Eq. (3.10)

can be used after scaling back the locations by,

rp = 1 +
upperlim+ (r−1)∗ 2π

M∗zoom
2π/M and kp = k

In this thesis, we employ the first CZT zoom method. We cannot go beyond

4-times zoom using this method, however, the second method allows us to zoom

beyond that as well. Fig. (3.6) shows the results of applying CZT-based zoom on

the MSE associated with the chirp parameters. We can see that the improvement

is primarily associated with the chirp rate but not the center frequency. There is
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Figure 3.6: (a,b) Effect of CZT-based zoom on the chirp parameter estimates for N = M = 128
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Figure 3.7: (a,b) Effect of zero padding and interpolation combined for N = 128 and M = 512
followed by interpolation

a consistent improvement obtained by increasing the zooming factor in the MSE

of the chirp rate estimates.

3.4.4 Combination of the Refinements

We saw improvement in the MSE plot for all three refinement approaches. Ideally,

combining all the three techniques to form a joint refinement technique would

result in better estimate compared to applying single one of the approach. So, we

experiment with different combinations of these refinement techniques.

First, we look at the combination of zero padding and the spectral peak interpola-

tion technique. As seen in previous case, a chirp length of N = 128 and CDFT size
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Figure 3.8: (a,b) Effect of zero padding and CZT zoom for N = 128 and M = 512 followed by
CZT zoom

of M = 512 produced significant improvement in the MSE so did spectral peak

interpolation technique. Fig. (3.7) shows the MSE of the estimated chirp param-

eters upon applying this combination. The improvement in the MSE for center

frequency is more pronounced compared to the chirp rate for Quinn’s interpola-

tion technique combined with zero padding, as for chirp rate, the improvement is

minimal.

Next, we try various combinations of zero padding and CZT zoom. Again, the

chirp length or signal length is maintained N = 128 and CDFT size of M = 512

and a zooming factor of 2 is taken into consideration. Fig. (3.8) shows the MSE

plots for the chirp parameters after applying this combination. As expected, the

improvement is prominent in the chirp rate parameter as the CZT zoom occurs in

r-axis. The center frequency estimate shows a slight improvement because of the

better r-coordinate obtained after CZT zoom.

The last step is to combine all three techniques, i.e. zero padding followed by CZT

zoom and then spectral peak interpolation on the CZT zoomed peak coordinates.

The N,M and zoom factor are kept the same as above. We have used Quinn’s

interpolation since it resulted in the best performance. Fig. (3.9) shows the MSE

plots for this combination. We can see that there is a vast improvement in terms of

MSE for center frequency parameter using the combination of all three methods.

However, the same is not true for chirp rate, which has the best MSE results for
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Figure 3.9: (a,b) Effect of zero padding for N = 128 and M = 512 followed by CZT zoom and
Quinn’s spectral peak interpolation

combination of zero padding and CZT zoom.

So, we conclude that the combination of zero padding, Quinn’s spectral peak

interpolation technique, and CZT zoom results in the best possible estimate for the

center frequency. The reason is that this combination yields the lowest MSE when

compared with the CRLB. However, for the purposes of chirp rate estimation, the

combination of zero padding and CZT zoom gives the lowest MSE.

To sum up the discussion, Fig. (3.10) shows the MSEs of the chirp parameter esti-

mates using the plain vanilla analytical expressions and the analytical expressions

combined with all the refinements. We can see the vast improvement in terms of

MSE over a range of SNR. These results are obtained by averaging the MSE over

200 experiments.

3.5 Conclusion

In this chapter, we studied the basics of the MA-CDFRFT and its relation with

the linear chirp signal. We saw the results of using a single component chirp

signal as well as multi-component chirp signal as the input to the MA-CDFRFT

algorithm to obtain spectral peaks in the magnitude spectrum. We then studied

the relation between these spectral peak and the chirp parameters i.e. the peak-
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Figure 3.10: Comparision between the vanilla analytical expression and the final analytical
expression with the refinements (a) MSE vs SNR for center frequency (b) MSE vs SNR for chirp
rate

to-parameter mapping . Previous methods based this mapping did not consider

the problems with even N . So, the analytical expressions were modified with a

"half-sample" shift to incorporate the coefficient for zero frequency i.e. average

value of the signal.

We then investigated different refinements to these expressions such as zero padding,

spectral peak interpolation, and CZT zoom. We then combined these refinements

and proposed the best combination for the center frequency and chirp rate esti-

mates separately.



Chapter 4

Application to Real SAR Data

4.1 Introduction

SAR is a ubiquitous remote-imaging technique utilized in many disciplines [24]

[25] [4]. It can be used in all-weather environments since SARs are active sensors

which provide their own illumination, and they work in the microwave spectrum

where the attenuation of electromagnetic waves is low.

It is a form of radar that is used to create two- or three-dimensional images of

objects, such as landscapes. SAR uses the motion of the radar antenna over a

target region to provide finer spatial resolution than conventional beam-scanning

radars. SAR is typically mounted on a moving platform, such as an aircraft or

spacecraft, and has its origins in an advanced form of side looking airborne radar

(SLAR). The distance the SAR device travels over a target in the time taken for the

radar pulses to return to the antenna creates the large synthetic antenna aperture

(the size of the antenna). Typically, the larger the aperture, the higher the image

resolution will be, regardless of whether the aperture is physical (a large antenna)

or synthetic (a moving antenna) – this allows SAR to create high-resolution images

with comparatively small physical antennas.

To create a SAR image, successive pulses of radio waves are transmitted to "il-

luminate" a target scene, and the echo of each pulse is received and recorded.

38
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The pulses are transmitted and the echoes received using a single beam-forming

antenna, with wavelengths of a meter down to several millimeters. As the SAR

device on board the aircraft or spacecraft moves, the antenna location relative

to the target changes with time. Signal processing of the successive recorded

radar echoes allows the combining of the recordings from these multiple antenna

positions. This process forms the synthetic antenna aperture and allows for the

creation of higher-resolution images than would otherwise be possible with a given

physical antenna [26].

An underlying assumption when forming a SAR image is that all targets on the

ground scene are static. Any vibration movement of targets in the range direction

in the ground scene engenders a Doppler shift in the returned SAR signal [27].

This shift causes the vibrating target to manifest as a smearing effect in the

SAR images. This smearing manifests itself as a ghost image surrounding the

vibrating target at the same range line and results in obscuring the actual target

shape [4][28]. This ghost image creates vibration signatures that help in target

identification, retrieve machinery status, and thus detect prohibited activities. In

general, these vibration signatures include transient signals like chirped sinusoids,

and their associated base frequencies and chirp rate.

Normally, the vibration signatures of the sources are altered by its housing struc-

ture which produces difference between the vibration signature of the source and

the vibration signature measured from the exterior. When the concealed vibrat-

ing source is a single frequency component sinusoid, in most cases, the reflected

signature will be attenuated and delayed with respect to the characteristic of the

housing structure. This brings into focus the SNR reduction problem which de-

pends on the frequency of the vibration.

Applying the DFRFT-based technique , we can estimate the acceleration and

center frequency components of the vibrating object [4] [28] [30]. This method is

reliable when both SNR and SCR are above 15 dB [29]. But by combining the

DFRFT technique with subspace filtering [29] and rank reduction techniques [30],

it is possible to relax the requirements to 8 dB and 5 dB respectively.
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4.2 SAR Signal Model

We assume that while forming the SAR images, all the scatters in the ground

scene are static. When this assumption is not satisfied i.e. the target vibrates

in the range direction, the SAR returned signals present a smearing effect along

the azimuth direction. This is primarily due to a vibration-induced time-varying

phase and this can be modeled by using a second-order Taylor expansion of the

SAR phase-history signal in short-time windows. From [4], this approximation

can be stated as

x[n]≈ σ exp
j
φ− 4πfc

c
rd[m] +

(
fyȳ−

4πfcvd[m]
cfprf

)
n− 2πfcad[m]

cf2
prf

n2

+w[n],

(4.1)

where m ≤ n ≤ m+Nw, fc is the RF carrier frequency, c is the speed of light,

fprf is the pulse repetition frequency of the SAR system, w[n] is AWGN, σ is

the target reflectivity (constant), rd[m], vd[m] and ad[m] are the instantaneous

position, speed and acceleration respectively of the target in the range direction,

Nw is the sub-aperture size, ȳ is the average azimuth position of the target, fy
is an imaging factor given by Eq. (4.2), n is the azimuth bin location, and m

is the sub-aperture index. We can see in Eq. (4.1), in a short-time window x[n]

is approximately a chirp signal whose chirp rate is linearly proportional to the

instantaneous vibration acceleration ad[m]

fy = 4πfc
c

V

R0fprf
, (4.2)

where V is the nominal speed of the SAR antenna, and R0 is the distance from

the patch center to the mid-aperture.

4.3 Vibration Estimation

Using the DFRFT technique and the signal model of Eq. (4.1), we can estimate

the instantaneous acceleration of the vibrating object. In this method, the signal
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is first approximated by a chirp signal by applying the DFRFT in successive

overlapping time windows called sub-apertures. In each of these sub-apertures,

we are using the analytical expression to calculate the chirp rate from the peak

locations. The acceleration of the vibrating target is dependent on the chirp rates

estimated at each sub-apertures as

âd[m] =−
cf2
prf

2πfc
ĉr[m], m= 1,2,3, .. (4.3)

where ĉr is the estimated chirp rate at the m-th aperture.

4.4 Description of the Targets

In this chapter, we are estimating the vibration signatures and parameters of

three types of vibrating targets. Each exhibits a different sinusoidal vibrational

behavior. The first is a "top-hat" like chimney reflector, the second target is a

rocking quad-corner reflector and the last one is sliding quad-corner reflector. The

detailed description about the targets, types of motor, and accelerometer used to

study the actual vibration can be found in [31].

4.4.1 Top-hat chimney reflector

This is one of the targets used for the experiment. It is a miniaturized structure

with an exposed chimney, which conceals the vibrating source. The radar cross

section of this target is modeled as a top-hat reflector. This design imitates a

chimney that releases the gases to the atmosphere on the roof of the building.

The motor is placed inside the cylindrical structure. A three-dimensional scheme

of the complete structure is presented in Fig. (4.1).

The measured acceleration of the chimney driven by the actuating motor is pre-

sented in Fig. (4.2). The acceleration signal is noisy though we can distinguish

the main frequency component of 5.56 Hz.
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(a) (b)
Figure 4.1: Graphical design of the top-hat chimney reflector. (a) 3-Dimensional perspective
view , (b) Top-hat chimney reflector [31]

(a) (b)
Figure 4.2: Vibrational signature of the chimney driven by the actuating motor. (a) Instanta-
neous acceleration waveform; (b) corresponding one-sided magnitude spectrum of (a).

4.4.2 Rocking quad-corner reflector

This is the second vibrating target used in the experiment as shown in Fig. (4.1)(a).

The motor is placed on the base of the reflector, which exhibits a rocking movement

when turned on.
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The acceleration measurement of this reflector is presented in Fig. (4.4). The

vibration signature of rocking quad-corner reflector consists mainly of a sinusoidal

waveform of 3.43 Hz.

(a) (b)
Figure 4.3: Targets without no concealed vibrating sources. (a) Rocking quad-corner reflector;
(b) sliding quad-corner reflector [31].

(a) (b)
Figure 4.4: Vibrational signature of the rocking quad-corner reflector driven by the actuating
motor. (a) Instantaneous acceleration waveform; (b) corresponding one-sided magnitude spec-
trum of (a).

4.4.3 Sliding quad-corner reflector

The third vibrating target in this experiment is a sliding quad-corner reflector that

is depicted in Fig. (4.3)(b). The motor makes the quad-corner reflector slide over

the rails.

The measured acceleration of this target is presented in Fig. (4.5). The vibration
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signature of this target consists of a sinusoidal waveform of 1.29 Hz and some

harmonic components.

(a) (b)
Figure 4.5: Vibrational signature of the sliding quad-corner reflector driven by the actuating mo-
tor. (a) Instantaneous acceleration waveform; (b) corresponding one-sided magnitude spectrum
of (a).

4.5 Estimation using the Analytical Expressions

The SAR data was collected from a flight test in collaboration with General Atom-

ics Aeronautical Systems Inc. (GA-ASI). The data were taken of the targets at 4-in

resolution with the Lynx airborne Ku-band SAR system [32]. The system parame-

ters of the Lynx radar for 4-in resolution are detailed in Table 4.1. The separation

between the targets was approximately 100". Fig. (4.6) shows the scheme with

the relative position of the target. Fig. (4.7) shows the SAR image of the ground

scene at 4-in resolution. As we can see in the same figure, the reflections of the

Table 4.1: SAR system parameters for the 4-in resolution data.

Parameter Quantity
Pixel dimension 0.0858×0.0885 m2

Nominal resolution 0.1016×0.1016 m2

Carrier frequency fc = 15 GHz
Length of the synthetic aperture L= 176 m
Plane velocity Va = 98 m/s
Effective pulse repetition frequency f̂prf = 185.43 Hz
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Figure 4.6: Layout of the targets on the ground scene [31].
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(a)
Figure 4.7: SAR image of the ground scene (a) 4-in resolution image

vibrating target presents a ghosting effect due to their movement. Usually, the

size of this smearing effect is directly proportional to the amplitude of the target.
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This is the reason behind the strong reflection for the sliding quad-corner reflector,

medium in the reflection for rocking the quad-corner reflector and the smallest in

the top-hat chimney reflector. Even with the naked eye, the distinction between

the targets can easily be seen by observing the smearing effects.

We now apply DFRFT techniques along with the analytical chirp rate estimator

in order to distinguish the vibration signatures associated with the three vibrating

target. The following parameters are used in the process:

Table 4.2: Parameters employed in the DFRFT-based vibrometry technique.

Target Res. Sub-aperture size (N) M Zoom-in
Top-hat chimney 4-in 32 256 2
Rocking quad-corner 4-in 32 256 2
Sliding quad-corner 4-in 80 256 2

Here, the sub-aperture is the length of the signal in a moving-window. It is then

zero padded to the length M, typically a power of 2, by adding an equal number of

zeros on the either side of the signal. While applying the MA-CDFRFT algorithm,

we also incorporate a zooming factor of 2. We did not use the spectral peak

interpolation technique with this data because as mentioned in previous chapter,

it works best with the estimation of center frequency but not chirp rate parameter.
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Figure 4.8: Estimated vibrational signature of the top-hat chimney reflector driven by the actu-
ating motor. (a) Instantaneous acceleration waveform; (b) corresponding one-sided magnitude
spectrum of (a).
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Fig. (4.8), (4.9) and (4.10) presents the results of applying the DFRFT-based vi-

brometry technique to data of 4-in resolution. Table 4.3 details the parameters

used in the algorithm for producing the results of Fig. (4.7) This technique allows

us to identify the motion associated with the reflection from the targets. It also

helps us differentiate between the targets by studying their instantaneous accel-

eration waveforms and respective magnitude spectrum. The actual acceleration

waveform differs from the estimated one but we can see that their magnitude

spectrum are similar.

Fig. (4.8) shows the estimated instantaneous acceleration and the magnitude spec-

trum of the top-hat chimney reflector. The acceleration waveform is similar to that

obtained from the accelerometer. The frequency component of the highest mag-

nitude corresponds to 5.07 Hz for this target compared to 5.56 Hz measured by

accelerometer.
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Figure 4.9: Estimated vibrational signature of the rocking quad-corner reflector driven by the ac-
tuating motor. (a) Instantaneous acceleration waveform; (b) corresponding one-sided magnitude
spectrum of (a).

Fig. (4.9) presents estimated acceleration waveform and its magnitude spectrum

for the rocking quad-corner reflector target. The waveform is quite similar and so

is the highest frequency component in the magnitude spectrum which is 3.26 Hz

compared to 3.43 Hz read by accelerometer.

Fig. (4.10) shows the estimated acceleration and the magnitude spectrum of the

sliding quad-corner target. The frequency component of the highest magnitude
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Figure 4.10: Estimated vibrational signature of the sliding quad-corner reflector driven by the ac-
tuating motor. (a) Instantaneous acceleration waveform; (b) corresponding one-sided magnitude
spectrum of (a).

corresponds to 1.27 Hz compared to 1.29 Hz measured by accelerometer which

acts as ground truth for the target.

In each case, it should be noted that the quality of the retrieved acceleration

signals depends on how we accurately choose the parameters.

4.6 Conclusion

In this chapter, we studied the basics of SAR imagery and how they are formed.

We also studied three different types of vibrating objects, each with their distinct

vibration signature and acceleration waveforms. We used the analytical expression

for the chirp parameters to calculate the chirp rate for the real SAR data and

thus the underlying instantaneous acceleration from the peak-location obtained

after applying the MA-DFRFT algorithm. The results obtained were very close

to the ground truth that was measured from the accelerometer attached to the

target itself. The limitations of this technique are mainly associated with the

fprf value of the SAR system and sub-aperture size that limits the maximum

measurable frequency and the SNR and SCR that degrades the range-compressed

phase history signal which is the staring point of this estimation technique.
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One major advantage of using analytical expressions is that the complexity of the

approach for computing the estimates and the associated MSE is reduced , since

an empirical mapping for each N need not to be calculated.



Chapter 5

Conclusions and Future Work

In this thesis, we studied the DFRFT based estimation of the chirp parameters

of a real chirp signal in presence of noise. The main objective of this thesis was

to quantify the accuracy of the chirp parameter estimates in terms of MSE over

a range of SNR. First, we studied the distortion issues that arise in the transition

from continuous FRFT to the DFRFT. We also looked at the sources of these er-

rors and minimized the error by incorporating windowing effects into the QMFD

approach. We further investigated extensions of this approach that resulted in a

commuting matrix and associated eigenvectors with a reduced degree of distor-

tion. We then looked at its effect on the parameter estimates in terms of MSE.

We then shifted our focus to the peak-to-parameter mapping. We calculated the

chirp parameter estimates using the peak location obtained from the magnitude

spectrum of the MA-CDFRFT output. We further modified the existing DFRFT

estimator to incorporate the "half-sample" shift. We then introduced various re-

finements to the estimators and finally proposed a combination that works best

for center frequency and chirp rate separately. The next step was to apply the

estimators to SAR vibrometry data. We studied the basics of SAR and the sig-

nal model associated with it. We looked at the three different types of vibrating

targets briefly as well as the vibration signatures obtained from the accelerometer

attached to it, which acts as ground truth measurements. We then compared the

results from these estimators with the ground truth.

50
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The main findings of this thesis can be summarized as;

• Use of appropriate window to the eigenvalue sequence of the discrete oper-

ator results in improvement of the invertibility of the underlying peak-to-

parameter mapping and to the associated Mean Squared Errors of the chirp

parameter estimates.

• Using the Kaiser windowed version of the truncated odd integer valued eigen-

value spectrum results in sharper peaks compared to the underlying DFRFT

spectra in comparison to the boxcar windowed spectra which translated to

a wider invertibility region for the underlying peak-to-parameter mapping.

This improvement is more pronounced for smaller matrix sizes.

• The analytical expressions for the parameter estimates act as an improved

version of the empirical estimator. Also combined with various refinements,

these expressions gives results that are very close to the CRLB. For the

center frequency estimate, the combination of zero padding and spectral

peak interpolation is optimal while for the chirp rate, the combination of

zero padding and CZT zoom is the optimal.

• These analytical expressions can be used with the SAR data. The instan-

taneous acceleration calculated from the chirp rate estimated using these

expressions are very similar to the acceleration measured with accelerome-

ter. Also, the highest frequency component of the magnitude spectrum of

all three vibrating targets is very close to the ground truth.

5.1 Future Work

We have seen that the main bottleneck for this approach is the calculation of the

peak itself. The MSE of the estimates gets very close to the CRLB when the size

of CDFT isM = 2048, however, the eigenvalue decomposition and thus generating

the peak locations for thisM takes a long time. We think that the future extension
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of this thesis could be focused on calculating the efficient way for the eigenvalue

decomposition which will result in faster MA-CDFRFT algorithm.

We also think that using the optimal window function with optimal parameters

can help decrease the discretization errors even more, thus resulting in the much

better estimates. So, extension to this thesis can be done in finding the best

window function with optimal parameter for the lowest possible discretization

error.

Since, the 2D MA-CDFRFT peaks are obtained from the DFT of zk[p] [20], for

the chirp rate, it is a approximation of the MLE [33]. However, this is not the

same case for center frequency. So, we think that, extension of this work can be

done on developing a better approximation of the center frequency parameter.

There are also some other research dimensions that could be considered as exten-

sion of this thesis work other than application to the SAR data. Discrete version

of the fractional sine and cosine transforms [34] has been proposed and significant

progress in the are of image processing can be made. Some other applications

can be in the areas of telecommunications and control systems. This work can be

used in autonomous vehicles using radar to detect position and speed of the cars

around it [35] [36].



Appendix A

Parameter to Peak Mapping

We look at the inverse of the peak-to-parameter mapping i.e. the mapping from

the chirp parameter estimates to the ideal peak locations in the chirp rate vs

center frequency plane. We use Eq. (3.10) to generate the inverse mapping. First,

for the r-index,
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ĉr = cot

(2π
N

(
rp−

1
2

))

⇒tan
(2π
N

(
rp−

1
2

))
=− π

Nĉr
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Nĉr

)
=−tan−1

(
π

Nĉr
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For the k-index,
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From Eq. (A.1) and (A.2), we have the ideal location of the peak. We can see that,

the r-index only depends on the chirp rate, however, the k-index depends on center

frequency as well as chirp rate. In the inverse mapping, the parameter estimates

are dependent on the tan−1
(

π
Nĉr

)
factor but the arctangent is not invertible (not

one-to-one) for all ranges which means that there is going to be a set of values of

(ω̂c, ĉr) for which the peak location is the same and vice versa.



Appendix B

Parameter Estimation using

Analytical expressions and

Subspace Decomposition

Subspace methods for chirp parameter estimation were developed in [37] [5], where

the two dimensional MA-CDFRFT representation is projected into each dimen-

sion using the p-norm using the cross-hair approach and inverse discrete Fourier

transformed slices to yield time-domain quantities. Traditional subspace methods

such as MUSIC, eigenvector, or minimum norm approaches can then be applied

to the transformed projections. Prior work in [5] [38] used the empirical peak to

parameter mappings to estimate the chirp parameter. Here we use the analytical

expressions for the peak to parameter mapping to evaluate the performance of the

subspace approach. We specifically look at the minimum-norm approach which

produced the best results in the empirical mapping application.

To find the peak location from the subspace method, first, the coordinates of

the maximum index along both r-axis and k-axis is calculated. Then, two time-

series, one for chirp rate and another for center frequency are obtained using the

inverse FFT at the maximum location calculated above. These time series are

then projected to R = 2048 subspace points using a 3-norm projection and the

minimum norm approach to obtain the pseudo-spectrum. The maximum value
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Figure B.1: Subspace methods and analytical expressions: (a,b) comparison of the MSE asso-
ciated with the analytical formulas with the min-norm subspace approach with N = M = 128
using a 3-norm projection, L= 128-order correlation matrices and R= 2048-pt FFT within the
subspace method.

in the pseudo-spectrum is sorted to find different peaks. These locations are

then scaled back to the original signal length to get the actual peak location.

Now, this peak location is fed into the analytical expressions in Eq. (3.10) to

calculate the chirp parameter estimates. Fig. (B.1) depicts the application of

the analytical formulas in conjunction with the minimum norm approach. Since,

subspace method gives fine resolution of the peak only, we can see that there is

not much improvement in the MSE of the chirp parameters, instead it appears to

be worse for lower SNR values. This is attributable to the fact that the cross-hair

approach used in the subspace method assumes separable variables, whereas the

estimator in the analytical expressions are inherently coupled.
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