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Abstract

A solution to the terminal-hitting and first-hitting stochastic reach-avoid problem

for a Markov control process is presented. This solution takes advantage of a non-

parametric representation of the stochastic kernel as a conditional distribution em-

bedding within a reproducing kernel Hilbert space (RKHS). Because the disturbance

is modeled as a data-driven stochastic process, this representation avoids intractable

integrals in the dynamic recursion of the reach-avoid problem since the expectations

can be calculated as an inner product within the RKHS. An example using a high-

dimensional chain of integrators is presented, as well as for Clohessy-Wiltshire-Hill

(CWH) dynamics.
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Chapter 1

Introduction

1.1 Overview

Verification is an established tool to provide assurances that a system will remain

“safe” over some time horizon. Typically, in order to ensure that a system retains

certain “safe” properties over time, the desired system properties are given as con-

straints on the system. For instance, an aircraft may be set to fly within a certain

altitude range, or an autonomous vehicle might be required to remain within a lane

as it drives on the street. A system is considered safe if there exists a control action

that would keep the system within the desired constraints at any given time. How-

ever, under real-world conditions which incorporate system uncertainty, dynamical

systems lose the ability to provide guaranteed assurances of safety. In a realistic

setting, stochastic analysis methods, such as stochastic reachability, can be used as

a verification tool to provide probabilistic assurances of system safety. In general,

stochastic reachability problems are typically posed as: Does there exist a control ac-

tion for which the state will stay within a given constraint set, with at least a desired

likelihood?
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Chapter 1. Introduction

The solution to this problem is typically described using a dynamic program-

ming [3, 4] based solution [1, 29], and significant progress has been made to solve

this problem in a computationally tractable manner. Solutions have been presented

using approximate dynamic programming [6], chance constraints [16, 30], sampling

methods [22, 33, 35], and convex optimization with Fourier transforms [31, 34]. How-

ever, these solutions often suffer from significant limitations in either the computa-

tion efficiency, or on assumptions placed on the system dynamics. In many cases,

assumptions about the dynamics or the nature of the uncertainty of the system are

unrealistic.

In cases such as human-in-the-loop systems, the human has historically been mod-

eled as a disturbance on the system. Systems which incorporate human-in-the-loop

elements have high levels of uncertainty, and models of the human as a disturbance

are either highly simplistic or overly conservative. For example, without an accu-

rate estimate of a human’s driving patterns, an autonomous vehicle has difficulty

predicting the actions of other drivers on the road, leading to overly conservative

estimates in order to ensure safety. Further, human probability models may not

follow a known distribution, and are often data-driven processes that are unable to

be analyzed using traditional stochastic verification techniques.

Similarly, the use of autonomous controllers and learning elements in systems is

rapidly increasing. These systems are resistant to traditional models for control and

formal methods, and verification of these systems may be overly conservative or even

simply inaccurate.

In many cases, assumptions of realistic disturbance models or accurate knowledge

of the system dynamics are unreasonable. Because of this, there is a common need for

a flexible method which allows for model-free representations of dynamical systems

and system uncertainty. Verification methods which allow for these complex, real-

world elements while remaining computationally efficient are required in order to

2



Chapter 1. Introduction

provide assurances that a system will remain safe with a given likelihood.

We propose a method for stochastic reachability analysis based on conditional

distribution embeddings within a reproducing kernel Hilbert space (RKHS). Kernel

methods are an established learning technique [2, 23, 24], which have been used for

data and functional analysis, as well as for analyzing probability measures and their

statistical features. As a nonparametric technique, kernel methods do not suffer

from biases or prior assumptions on the system model, and are computationally effi-

cient because they are historically a convergent, non-iterative learning method [23].

Recently, kernel methods have emerged which capture the features of arbitrary sta-

tistical distributions in a data-driven fashion [9, 25]. These methods broadly enable

nonparametric inference using kernel embeddings of conditional distributions. These

techniques have been applied to several problems involving dynamical systems, such

as providing a solution to classical dynamic programming problems [14], controller

synthesis for partially-observable dynamical system models [19], as well as for esti-

mation of graphical models [27]. The proposed method has several advantages which

are useful for analyzing dynamical systems:

1. Conditional distribution embeddings do not suffer from the curse of dimen-

sionality, which is a significant limitation for dynamical systems of any signif-

icant complexity. Traditional dynamic programming solutions which leverage

discretization approaches, state space limitations, or Monte Carlo methods,

quickly become intractable as the complexity of the system representation in-

creases.

2. Kernel methods take advantage of a high-dimensional feature representation

of system observations. Because kernel methods are primarily data-driven,

they allow for a model-free representation of the system dynamics and the

uncertainty on the system. Because the system representation is model-free, it

avoids many of the limiting assumptions placed on traditional analysis methods.

3



Chapter 1. Introduction

3. Conditional distribution embeddings avoid the issues of numerical quadrature

which typically arise in dynamic programming-based solutions. The solution to

many control problems involves the computation of a high-dimensional integral

in order to obtain an expectation. By using conditional distribution embed-

dings within a reproducing kernel Hilbert space, the evaluation of an expected

value can be computed as an inner product within the RKHS.

4. The proposed method also provides convergence results in the infinite-sample

case, meaning the approximation improves as more observations of the system

are available. The convergence results also include a probabilistic error bound

which determines a confidence bound on the quality of the approximation.

Because of this, we can provide an estimate of the error produced by the

stochastic reachability analysis.

We apply kernel methods to the problem of computing the stochastic reacha-

bility probability measure, which is the expected value of the value function typi-

cally obtained through dynamic programming. The stochastic kernel that captures

the underlying dynamical system (including autonomous or human elements) can

be represented as a conditional distribution embedding within a reproducing kernel

Hilbert space. Because we can capture the statistical features of the stochastic tran-

sition kernel as an arbitrary distribution using observations, the proposed method

for stochastic reachability enables a numerically efficient method for analyzing sys-

tems with a poorly-characterized or unknown disturbance model. This means we

can perform stochastic reachability analysis for systems or environments with hu-

man elements, as well as for systems with autonomous or learning elements, such as

a neural network or learning controller. Furthermore, one of the key features of this

approach is that it is agnostic to system dimensionality, the typical bottleneck for

computational feasibility of the stochastic reachability problem.

We consider two problems for stochastic reachability as outlined in [29]. The

4



Chapter 1. Introduction

first is a safety measure known as the terminal-hitting time problem. This presents

a probability of retaining certain safe system properties and reaching a particular

state. This can, for example, be thought of as a trajectory-planning exercise, where

a system reaches a target state while avoiding obstacles in the environment. Second,

we consider the first-hitting time problem, which is the probability that a system

will reach a target before it violates any safety constraints. An example of the

first-hitting time problem could be to intercept a target before it enters an unsafe

region. Traditionally, stochastic reachability analysis has focused on the computa-

tion of the terminal-time hitting problem, mainly due to the numerical complexity

involved with computing the expectation of the value function in the first-hitting

time problem. Because the proposed method avoids the typical computational in-

tractability involved with computing the expected values within the value functions

for stochastic reachability, we are able to demonstrate the proposed method on both

the terminal-hitting and the first-hitting time problem.

The main contribution of this paper is a conditional distribution embedding ap-

proach to stochastic reachability that enables model-free verification without invok-

ing a statistical approach. This is particularly relevant for systems with black-box

elements, such as autonomous or human-in-the-loop systems, which have previously

been hindered by model assumptions or numerical efficiency.

The paper organization is as follows. Section 1.2 formulates the problem by

representing the system as a Markov control process [29]. This allows us to repre-

sent the system dynamics and underlying system uncertainty as a stochastic kernel.

Section 2 outlines the proposed method for conditional distribution embeddings for

stochastic reachability. Sections 2.2 and 2.4 describe the use of kernel methods to

perform safety verification for the terminal-hitting time problem and first-hitting

time problem as outlined in [29]. In section 3, our approach is demonstrated on

three examples: a double integrator to enable validation with a “truth” model via
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Chapter 1. Introduction

dynamic programming, a high-dimensional integrator model up to 10000-dimensions,

and a spacecraft example using Clohessy-Wiltshire-Hill dynamics controlled by an

open-loop chance-constrained controller as described in [16].

1.2 Problem Formulation

The following notation is used throughout the paper. Set difference is denoted with

the backslash operator so that for sets A and B, the set of all elements of A which

are not in B is denoted as A\B. For some nonempty set A ⊆ B, let 1A : B → {0, 1}

denote the indicator function where 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

1.2.1 Probability Theory

Let Ω denote a sample space and F(Ω) denote the σ-algebra relative to Ω. A proba-

bility measure Pr assigned to the measurable space (Ω,F(Ω)) is defined as the prob-

ability space (Ω,F(Ω),Pr). When Ω ≡ <, the σ-algebra of Ω is denoted as B(Ω),

and is the Borel σ-algebra associated with Ω. A random variable x is a measurable

function on the probability space (Ω,F(Ω),Prx). A random vector x = [x1, . . . , xn]>

of n random variables is defined on the induced probability space (Ωn,F(Ωn),Prx),

where Prx is the induced probability measure. A stochastic process is defined as a

sequence of random vectors {xk : k ∈ [0, N ]}, N ∈ N, where xk are defined on the

probability space (Ωn,F(Ωn),Prx). See [5, 7] for more details.

The expectation operator is denoted as E[ · ], where for some function f ,

Ex∼Prx{ · }[f(x)] denotes the expectation operator with respect to the probability

measure Prx.

6



Chapter 1. Introduction

1.2.2 System Model

Consider a Markov control process H, which is defined in [29] as a 3-tuple,

H = 〈X ,U , Q〉 (1.1)

where X ⊆ <n is the state space of the system, U ⊆ <m is the control space, and

Q is a stochastic kernel Q : B(X ) × X × U → [0, 1], which is a Borel-measurable

function that maps a probability measure Q( · |xk, uk) to each x ∈ X and u ∈ U on

the Borel space (X ,B(X )). Further, let X and U be compact Borel spaces. The

system evolves over a finite horizon k ∈ [0, N ] with inputs chosen from a Markov

policy as defined in [4, 20]. A Markov policy is a sequence π = {α0, α1, . . . , αN−1}

of universally-measurable maps αk : X → U from the state space X to the control

space U . The set of all Markov control policies π is denoted as M.

We also consider a discrete-time stochastic system that can be described as a

Markov control process (1.1), with dynamics given by

xk+1 = f(xk, uk,wk) (1.2)

with state xk ∈ X ⊆ <n, input uk ∈ U ⊆ <m, and disturbance wk ∈ W ⊆ <p.

Let w[ · ] be an i.i.d. Markov process with elements wk defined on the probability

space (W ,B(W),Prw). Given a policy π and the initial state x0 ∈ X , xk is an

n-dimensional random vector defined on the probability space (X ,B(X ),Prx) from

(1.2). The one-step stochastic transition kernel for (1.2), given by T ( · |x, u), is

equivalent to the stochastic kernel Q in (1.1).

1.2.3 Terminal-Hitting Time Problem

The goal of the terminal-hitting time problem, extended from [29, Section 4] as

a specific case of the safety problem defined in [1, Section 4], is to evaluate the

7



Chapter 1. Introduction

probability that a system controlled by some policy π ∈ M will stay within a safe

set K ∈ B(X ) and reach a target set T ∈ B(X ) while avoiding X\K over the time

horizon [0, N ]. Given the control policy π such that uk = αk(x), and the initial

condition x0 ∈ X , let the probability that the state xk will remain within K for all

k ∈ [0, N − 1] and the state xN will be in T at k = N be denoted as

rπx0(K, T ) , Prπx0{xN ∈ T ∧

∀i ∈ [0, N − 1],xi ∈ K}

(1.3)

where the probability measure Prπx0 is uniquely defined by the stochastic kernel Q,

the control policy π ∈M, and the initial condition x0 [4].

By representing rπx0(K, T ) as a multiplicative cost function, it can be expressed

as the expectation [29]

rπx0(K, T ) = E

[(
N−1∏
i=0

1K(xi)

)
1T (xN)

]
(1.4)

The associated terminal-hitting value functions V π
k : X → [0, 1] for k ∈ [0, N ] are

defined as

V π
N(x) = 1T (x) (1.5)

V π
k(x) = 1K(x)

∫
X
V π
k+1(y)Q(dy |x, αk(x)) (1.6)

where x ∈ X . Note that V π
0 (x) = rπx0(K, T ) when x = x0. As shown in [1, 29],

rπx0(K, T ) can be computed via backward recursion.

By expressing V π
k in terms of the expected value of V π

k+1, (1.6) can alternatively

be written [4] as

V π
k(x) = 1K(x)Ey∼Q( · |x,αk(x))

[
V π
k+1(y)

]
(1.7)

From [29, Definition 10], a policy π∗ ∈M is denoted as the maximal reach-avoid

policy in the terminal sense if and only if r∗x0(K, T ) = supπ∈M{rπx0(K, T )} for all

8



Chapter 1. Introduction

x0 ∈ X . The maximal reach-avoid policy in the terminal sense is the control policy

which maximizes the probability Prπx0 in (1.3) for all x0 ∈ X . As in [29, Theorem 11],

we denote the optimal value functions as V ∗k : X → [0, 1], such that

V ∗k(x) = sup
u∈U

{
1K(x)Ey∼Q( · |x,u)

[
V ∗k+1(y)

]}
(1.8)

initialized with V ∗N(x) = 1T (x). Then, the maximal reach-avoid policy in the termi-

nal sense is given by π∗ = {α∗0, α∗1, . . .}, where

α∗k(x) = arg sup
u∈U

{
1K(x)Ey∼Q( · |x,u)

[
V ∗k+1(y)

]}
(1.9)

denotes the optimal maps from X to U for k ∈ [0, N − 1].

1.2.4 First-Hitting Time Problem

The goal of the first-hitting time problem [29, Section 3] is to evaluate the probability

that a system controlled by some policy π ∈ M will reach a target set T ∈ B(X )

before hitting the unsafe set X\K, K ∈ B(X ), during the time horizon [0, N ]. Given

the control policy π such that uk = αk(x), and the initial condition x0 ∈ X , let the

probability that the state xk will hit T before hitting X\K be denoted as

r̄πx0(K, T ) , Prπx0{∃j ∈ [0, N ] : xj ∈ T ∧

∀i ∈ [0, j − 1],xi ∈ K\T }

(1.10)

As shown in [29], by representing (1.10) as a multiplicative cost function, it can

be expressed as the expectation

r̄πx0(K, T ) = E

[
N∑
j=0

(
j−1∏
i=0

1K\T (xi)

)
1T (xj)

]
(1.11)

The associated first-hitting value functions W π
k : X → [0, 1] for k ∈ [0, N ] are given

9



Chapter 1. Introduction

by

W π
N(x) = 1T (x) (1.12)

W π
k(x) = 1T (x) + 1K\T (x)

∫
X
W π

k+1(y)Q(dy |x, αk(x)) (1.13)

W π
0 (x) = r̄πx0(K, T ) (1.14)

where x ∈ X . As in (1.7), W π
k(x), k ∈ [0, N − 1] can be expressed in terms of the

expected value of W π
k+1(x), which is written as [4]

W π
k(x) = 1T (x) + 1K\T (x)Ey∼Q( · |x,αk(x)) [W π

k(y)] (1.15)

From [29, Definition 5], a policy π∗ ∈ M is denoted as the maximal reach-

avoid policy in the first sense if and only if r̄∗x0(K, T ) = supπ∈M{r̄πx0(K, T )} for all

x0 ∈ X . The maximal reach-avoid policy in the first sense is the control policy which

maximizes the probability Prπx0 in (1.10) for all x0 ∈ X . As in [29, Theorem 6], we

denote the optimal value functions as W ∗
k : X → [0, 1], such that

W ∗
k(x) = sup

u∈U

{
1T (x) + 1K\T (x)Ey∼Q( · |x,u)

[
W ∗

k+1(y)
]}

(1.16)

initialized with W ∗
N(x) = 1T (x). Then, the maximal reach-avoid policy in the first

sense is given by π∗ = {α∗0, α∗1, . . .}, where

α∗k(x) = arg sup
u∈U

{
1T (x) + 1K\T (x)Ey∼Q( · |x,u)

[
W ∗

k+1(y)
]}

(1.17)

denotes the optimal maps from X to U for k ∈ [0, N − 1].

1.3 Problem Statement

Consider a set S of M samples of the form S = {(xi′, xi, ui)}Mi=1 such that xi
′,

i = 1, . . . ,M , is drawn i.i.d. from Q according to xi
′ ∼ Q( · |xi, ui).

10
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Problem 1 Without direct knowledge of Q or (1.2), use samples S to construct an

efficient approximation of (1.7) that converges in probability.

Problem 2 Without direct knowledge of Q or (1.2), use samples S to construct an

efficient approximation of (1.8) that converges in probability in order to compute an

approximation of the maximal reach-avoid policy in the terminal sense.

Problem 3 Without direct knowledge of Q or (1.2), use samples S to construct an

efficient approximation of (1.15) that converges in probability.

Problem 4 Without direct knowledge of Q or (1.2), use samples S to construct an

efficient approximation of (1.16) that converges in probability in order to compute

an approximation of the maximal reach-avoid policy in the first sense.

Conditional distribution embeddings provide a solution to the problem of en-

abling computation of the stochastic reach-avoid probability for high-dimensional,

non-Gaussian systems. The unique computational efficiencies afforded by reproduc-

ing kernel Hilbert spaces transforms computation of (1.7), (1.8), (1.15), and (1.16)

into simple matrix operations and inner products.

11



Chapter 2

Conditional Distribution

Embeddings for

Stochastic Reachabilty

2.1 Kernel Embeddings of Conditional Distribu-

tions

For some set X , let HX denote a reproducing kernel Hilbert space [23] with the

kernel KX : X ×X → < over the domain (X ,B(X )), which is a Hilbert space of real-

valued functions on X with inner product 〈 ·, · 〉HX and norm ‖x‖HX = (〈x, x〉HX )1/2.

A reproducing kernel Hilbert space has two important properties [2]:

1. For any x ∈ X , KX (x, · ) : x′ → KX (x, x′) is an element of HX .

2. An element KX (x, x′) of HX satisfies the reproducing property such that ∀h ∈

12



Chapter 2. Conditional Distribution Embeddings for Stochastic Reachabilty

HX and x ∈ X ,

h(x) = 〈KX (x, x′), h(x′)〉HX (2.1)

This means that for any x ∈ X , the evaluation of a function h can be viewed

as an inner product. According to [27], an element KX (x, · ) can also be viewed

as a nonlinear feature map from X to HX , denoted as φX : X → HX , such that

KX (x, x′) = 〈φX (x), φX (x′)〉HX .

In order to compute an approximation of the expected value in (1.7), we im-

plicitly map the stochastic kernel Q into an infinite dimensional feature space us-

ing kernels [14, 25]. We are interested in evaluating the expectation of a function

with respect to the stochastic kernel Q as an inner product within the reproducing

kernel Hilbert space. Given a probability distribution of Prx and positive definite

(p.d.) [8, Definition 4.15] kernel KX : X × X → < over the domain (X ,B(X )), a

distribution embedding of Prx in HX is an element µ ∈HX [14, 28] such that for all

h ∈HX ,

〈µ, h〉HX = Ey∼Prx{ · } [h(y)] (2.2)

Because constructing the feature mapping φX ( · ) and computing

KX (x, x′) = 〈φX (x), φX (x′)〉HX explicitly can be computationally expensive in a high-

dimensional feature space, the inner product can be computed using KX (x, x′) di-

rectly for a KX that is p.d. This is known as the kernel trick [24]. One common

choice of kernel function is the Gaussian kernel,

KX (x, x′) = exp

(
−‖x− x

′‖22
2σ2

)
(2.3)

which is a symmetric, p.d. [28] kernel, where σ is a bandwidth parameter. However,

many functions can serve as kernels, such as Laplacian and quadratic kernels.

Let HX denote the unique reproducing kernel Hilbert space for the state space X

with the p.d. kernel KX : X × X → <. Similarly, let HX×U denote the reproducing

13
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Table 2.1: Reproducing Kernel Hilbert Space Notation

Domain X U X × U
Random Vector x u (x,u)

Realization x u (x, u)

RKHS HX HU HX ⊗HU

Kernel KX ( ·, · ) KU( ·, · ) KX×U( ·, · )
RKHS Element KX (x, · ) KU(u, · ) KX×U((x, u), · )

kernel Hilbert space for X × U with the p.d. kernel KX×U : (X ,U) × (X ,U) → <.

Using HX and HX×U , the goal is to find an element µ : HX×U → HX which repre-

sents the conditional distribution embedding for the stochastic kernel Q. As shown

in [13, 14, 18], by representing the conditional probabilities of Q as functions within

HX , it becomes possible to compute the conditional expectation of any function

in HX as a linear operation, i.e. an inner product with a conditional distribution

embedding.

Following [14, 27, 28], the conditional distribution embedding of the stochastic

kernel Q is given by the element µ(x,u) ∈HX such that ∀h ∈HX ,

〈µ(x,u), h〉HX = Ey∼Q( · |x,u) [h(y)] (2.4)

We can construct an estimate µ̄(x,u) of µ(x,u) [18, 19, 25] from samples S to approxi-

mate (2.4),

〈µ̄(x,u), h〉HX ≈ Ey∼Q( · |x,u) [h(y)] (2.5)

where the estimate µ̄(x,u) is given by the weighted linear combination

µ̄(x,u) ,
M∑
i=1

β̂i(x, u)KX (xi
′, · ) (2.6)

To find the weights β̂i(x, u) ∈ < in (2.6), we first define

βi(x, u) =
M∑
j=1

WijKX×U((xj, uj), (x, u)) (2.7)

14
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where Wij is the (i, j)th element of W , a regularized weight matrix for samples S

given by

W = (G + λMI)−1 (2.8)

where λ is a regularization parameter to avoid overfitting [13, 17]. The matrix G is

the Gram matrix, and is defined such that the (i, j)th element is given by

Gij = KX×U((xi, ui), (xj, uj)) (2.9)

As in [14], we then normalize (2.7) to obtain

β̂i(x, u) =
βi(x, u)∑M

j=1 |βj(x, u)|
(2.10)

such that β̂i(x, u) ∈ [0, 1]. By the reproducing property of KX in HX , ∀h ∈HX , we

can rewrite (2.5) as

〈µ̄(x,u), h〉HX =
M∑
i=1

β̂i(x, u)h(xi
′) (2.11)

This means an approximation of the value function expectation

Ey∼Q( · |x,αk(x))

[
V π
k+1(y)

]
in (1.7) can be evaluated as a linear operation in HX .

2.2 Terminal-Hitting Time Problem

With the conditional distribution embedding µ(x,u), the value functions in (1.7) can

be written as

V π
k(x) = 1K(x)〈µ(x,αk(x)), V

π
k+1〉HX (2.12)

With the estimate µ̄(x,u) (2.6), we obtain the approximation,

V π
k(x) ≈ 1K(x)〈µ̄(x,αk(x)), V

π
k+1〉HX (2.13)

15
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Algorithm 1: Nonlinear Weights β̂

Input: samples S drawn i.i.d. from Q, kernels KX and KX×U , state x, input

u

Output: weights β̂i(x, u)

Compute Gram matrix G using S

W ← (G + λMI)−1

for i← 1 to M do /* compute β */

βi(x, u)←
∑M

j=1WijKX×U((xj, uj), (x, u))

end

for i← 1 to M do /* compute β̂ */

β̂i(x, u)← βi(x, u)/
∑M

j=1 |βj(x, u)|

end

return β̂i(x, u)

We define the approximate value functions V π
k : X → [0, 1], k ∈ [0, N − 1], as

V π
k(x) = 1K(x)〈µ̄(x,αk(x)), V

π
k+1〉HX (2.14)

An approximation for the reach-avoid probability rπx0(K, T ) computed via backward

recursion is described in Algorithm 2, such that

rπx0(K, T ) ≈ V π
0 (x) (2.15)

We now seek to characterize the quality of the approximation and the conditions

for its convergence. As in [11, 12, 28], we define a pseudometric that characterizes

the accuracy of the estimate µ̄(x,u).

Definition 1 (Distance Pseudometric). The distance pseudometric in HX between

the conditional distribution embedding µ(x,u) ∈HX and the estimate µ̄(x,u) ∈HX is

defined as ‖µ(x,u) − µ̄(x,u)‖HX .
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Algorithm 2: Sample-Based Terminal-Hitting Value Function Estimate

Input: samples S drawn i.i.d. from Q, kernels KX and KX×U , policy π,

time horizon N

Output: value function estimate V π
0 (x)

Compute Gram matrix G using S

W ← (G + λMI)−1

V π
N(x)← 1T (x)

for k ← N − 1 to 0 do

Compute β̂i(x, αk(x)) using Algorithm 1

V π
k(x)← 1K(x)

×
M∑
i=1

β̂i(x, αk(x))V π
k+1(xi

′)

end

return V π
0 (x)

It is shown in [9] that if KX is a characteristic, bounded kernel, then ‖µ(x,u) −

µ̄(x,u)‖HX = 0 if and only if µ(x,u) = µ̄(x,u). A kernel is characteristic if the kernel

embedding is injective, meaning the embeddings for any two different conditional dis-

tributions are represented by different elements within the reproducing kernel Hilbert

space. Thus, as ‖µ(x,u) − µ̄(x,u)‖HX converges [14, 26, 27], the estimate converges in

probability to the conditional distribution embedding within HX .

Lemma 1. [14, Lemma 2.2] For any ε > 0, if the regularization prameter λ in (2.8)

is chosen such that λ→ 0 and λ3M →∞, and if |X | <∞ and KX is strictly positive

definite, then

PrS∼Q

{
sup

(x,u)∈X×U
‖µ(x,u) − µ̄(x,u)‖HX > ε

}
→ 0 (2.16)
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Because the conditional distribution embedding estimate converges in probabil-

ity as the number of samples increases according to Lemma 1, ε can be seen as a

probabilistic error bound on the approximation in (2.13).

Proposition 1 (Terminal-Hitting Value Function Convergence). For any ε > 0,

if the regularization prameter λ in (2.8) is chosen such that λ→ 0 and λ3M →∞,

and if |X | < ∞ and KX is strictly positive definite, |V π
k(x) − V π

k(x)| converges in

probability.

Proof: By subtracting (2.14) from (2.12), we define the absolute value function

error Ek(x) at time k,

Ek(x) , |V π
k(x)− V π

k(x)| (2.17)

= |1K(x)〈µ(x,αk(x)), V
π
k+1〉HX−

1K(x)〈µ̄(x,αk(x)), V
π
k+1〉HX |

(2.18)

We can rewrite (2.18) using the parallelogram law and Cauchy–Schwarz to obtain

Ek(x) = 1K(x)|〈µ(x,αk(x)) − µ̄(x,αk(x)), V
π
k+1〉HX | (2.19)

≤ 1K(x)‖V π
k+1‖HX ‖µ(x,αk(x)) − µ̄(x,αk(x))‖HX (2.20)

Since ‖µ(x,αk(x)) − µ̄(x,αk(x))‖HX converges in probability according to Lemma 1,

|V π
k(x) − V π

k(x)| also converges in probability with the probabilistic error bound ε.

�

Using this, the value function approximation in (2.13) converges in probability for

some probabilistic error bound ε as the number of samples increases. By generalizing

to the infinite-sample case, it is possible to define ε as the maximum error on the

reach-avoid probability computed in (2.15).

Corollary 1. For any ε > 0, the error in the reach-avoid probability computed

18
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using Algorithm 2 is given by

|V π
0 (x)− V π

0 (x)| ≤ Nε (2.21)

Proof: By subtracting (2.14) from (2.12), we obtain the absolute value function

error EN−1(x) at time k = N − 1,

EN−1(x) = |V π
N−1(x)− V π

N−1(x)| (2.22)

Using Proposition 1, if the error in the approximate value function is at most ε in

the infinite-sample case, then the error in (2.22) is at most ε for all x ∈ X .

EN−1(x) ≤ ε (2.23)

Because the error in the approximate value function for k = N −1 is at most ε, then

by approximating and recursively substituting V π
k(x) for k < N − 1, the error at

time k is at most (N − k)ε. Thus by induction the error obtained by the backward

recursion in Algorithm 2 is at most Nε,

|V π
0 (x)− V π

0 (x)| ≤ Nε (2.24)

which concludes the proof. �

Thus in the infinite-sample case, we can choose ε > 0 to be arbitrarily small such

that the approximation of the reach-avoid probability rπx0(K, T ) computed using

Algorithm 2 is given by (2.15).
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2.3 Maximal Reach-Avoid Policy

in the Terminal Sense

As in (2.12), we write the optimal value functions V ∗k from (1.8) using the conditional

distribution embedding µ(x,u).

V ∗k(x) = sup
u∈U

{
1K(x)〈µ(x,u), V

∗
k+1〉HX

}
(2.25)

With the estimate µ̄(x,u) from (2.6), we obtain an approximation of (2.25) given by

V ∗k(x) ≈ sup
u∈U

{
1K(x)〈µ̄(x,u), V

∗
k+1〉HX

}
(2.26)

As in (2.14), we define the approximate optimal value functions V ∗k : X → [0, 1],

k ∈ [0, N − 1], as

V ∗k(x) = sup
u∈U

{
1K(x)〈µ̄(x,u), V

∗
k+1〉HX

}
(2.27)

If ᾱ∗k : X → U , k ∈ [0, N − 1] is such that ∀x ∈ X

ᾱ∗k(x) = arg sup
u∈U

{
1K(x)〈µ̄(x,u), V

∗
k+1〉HX

}
(2.28)

then π̄∗ = {ᾱ∗0, ᾱ∗1, . . .} is the approximate maximal reach-avoid policy in the terminal

sense. The approximate optimal reach-avoid probability obtained via back recursion

under policy π̄∗ initialized with V ∗k(x) = 1T (x) is then given by Algorithm 2 as

r∗x0(K, T ) ≈ V ∗0(x) (2.29)

2.4 First-Hitting Time Problem

With the conditional distribution embedding µ(x,u), the value functions in (1.15) can

be written as

W π
k(x) = 1T (x) + 1K\T (x)〈µ(x,αk(x)),W

π
k+1〉HX (2.30)
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Algorithm 3: Sample-Based First-Hitting Value Function Estimate

Input: samples S drawn i.i.d. from Q, kernels KX and KX×U , policy π,

time horizon N

Output: value function estimate V π
0 (x)

Compute Gram matrix G using S

W ← (G + λMI)−1

V π
N(x)← 1T (x)

for k ← N − 1 to 0 do

Compute β̂i(x, αk(x)) using Algorithm 1

V π
k(x)← 1T (x) + 1K\T (x)

×
M∑
i=1

β̂i(x, αk(x))V π
k+1(xi

′)

end

return V π
0 (x)

With the estimate µ̄(x,u) from (2.6), we obtain the approximation,

W π
k(x) ≈ 1T (x) + 1K\T (x)〈µ̄(x,αk(x)),W

π
k+1〉HX (2.31)

We define the approximate value functions W π
k : X → [0, 1], k ∈ [0, N − 1], as

W π
k(x) = 1T (x) + 1K\T (x)〈µ̄(x,αk(x)),W

π
k+1〉HX (2.32)

such that an approximation of the reach-avoid probability r̄πx0(K, T ) computed via

backward recursion is described in Algorithm 3, such that

r̄πx0(K, T ) ≈ W π
0 (x) (2.33)

The approximation converges according to the same logic as in Proposition 2.

Since ‖µ(x,αk(x)) − µ̄(x,αk(x))‖HX converges in probability according to Lemma 1, the
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approximation of the reach-avoid probability r̄πx0(K, T ) converges as the number of

samples increases.

Proposition 2 (First-Hitting Value Function Convergence). For any ε > 0, if

the regularization prameter λ in (2.8) is chosen such that λ → 0 and λ3M → ∞,

and if |X | < ∞ and KX is strictly positive definite, |W π
k(x) −W π

k(x)| converges in

probability.

Proof: The proof follows the logic of Proposition 1. �

2.5 Maximal Reach-Avoid Policy

in the First Sense

As in (2.30), we write the optimal value functions W ∗
k from (1.16) using the condi-

tional distribution embedding µ(x,u).

W ∗
k(x) = sup

u∈U

{
1T (x) + 1K\T (x)〈µ(x,u),W

∗
k+1〉HX

}
(2.34)

With the estimate µ̄(x,u) from (2.6), we obtain an approximation of (2.34) given by

W ∗
k(x) ≈ sup

u∈U

{
1T (x) + 1K\T (x)〈µ̄(x,u),W

∗
k+1〉HX

}
(2.35)

As in (2.32), we define the approximate optimal value functions W ∗
k : X → [0, 1],

k ∈ [0, N − 1], as

W ∗
k(x) = sup

u∈U

{
1T (x) + 1K\T (x)〈µ̄(x,u),W

∗
k+1〉HX

}
(2.36)

If α̂∗k : X → U , k ∈ [0, N − 1] is such that ∀x ∈ X

α̂∗k(x) = arg sup
u∈U

{
1T (x) + 1K\T (x)〈µ̄(x,u),W

∗
k+1〉HX

}
(2.37)
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then π̂∗ = {α̂∗0, α̂∗1, . . .} is the approximate maximal reach-avoid policy in the first

sense. The approximate optimal reach-avoid probability obtained via back recursion

under policy π̂∗ initialized with W ∗
k(x) = 1T (x) is then given by Algorithm 3 as

r̄∗x0(K, T ) ≈ W ∗
0(x) (2.38)
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Numerical Results

We considered a double integrator with a known Gaussian disturbance and compared

the result to the dynamic programming solution for validation. Then, we applied a

disturbance with a Beta(α, β) distribution with shape parameters α = 2, β = 2, in

order to demonstrate the system for non-Gaussian disturbances. Then, a 10000-D

stochastic integrator with a Gaussian disturbance was demonstrated as an example

of a high-dimensional system.

We also demonstrated the method using CWH dynamics, which is a linear-affine

system with a Gaussian disturbance under a chance-affine open-loop controller as

described in [16] in order to demonstrate the method for systems with a fixed policy.

3.1 Implementation

For all problems, we used a Gaussian kernel with σ = 0.1, and chose λ = 1 as

the default regularization parameter for the evaluation. We considered M = 1024

samples drawn i.i.d. from Q to calculate the sample-based estimate of the conditional

distribution embedding µ̄(x,u) using (2.6). For the low-dimensional systems, T =

24



Chapter 3. Numerical Results

Table 3.1: Computation Time

System Problem Dim. [n] N M T CDE DP CC Open

Double Integrator TH 2 3 1024 10201 530 ms 34.12 s –

CWH TH 4 5 1024 10201 2.92 s – 25.32 s

Stochastic Integrator TH 10000 3 1024 1 33.74 s – –

Double Integrator FH 2 3 1024 10201 601 ms – –

CWH FH 4 5 1024 10201 3.29 s – –

Stochastic Integrator FH 10000 3 1024 1 34.27 s – –

10201 points of the form τ = {(xi, ui)}Ti=1 were used in order to evaluate the reach-

avoid probabilities. The sample-based estimates of V π
k : X → [0, 1], k ∈ [0, N − 1]

and W π
k : X → [0, 1], k ∈ [0, N − 1] were computed using Algorithm 2 for a time

horizon of N = 3 for the stochastic integrator and N = 5 for the CWH system.

For the high-dimensional example we restricted ourselves to a single point T = 1 to

evaluate the reach-avoid probability.

We compared the computation time for the method, where possible, to other

existing methods. The results are shown in Table 3.1. The main computational lim-

itation for the conditional distribution embedding (CDE) approach is in computing

the Gram matrix G, which is on the order of O(M3). However, the computational

complexity can be reduced to log-linear time by using a more computationally effi-

cient representation of G, as shown in [15, 21].

3.2 n-D Stochastic Integrator System

The discrete time dynamics of an n-D stochastic integrator are given by

xk+1 = Axk +Buk + wk (3.1)

where A ∈ <n×n and B ∈ <n×m. The disturbance w[ · ] in (3.1) is a Markov process

with elements wk defined on the probability space (W ,B(W),Prw). The distribution
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of Prw is first modeled as a Gaussian distribution with variance Σ = 0.01I such that

wk ∼ N (0,Σ), and then as a Beta distribution such that wk ∼ Beta(2, 2). For

the first-hitting time problem, we also demonstrate the method with an exponential

distribution with parameter λ = 0.5, such that wk ∼ Exp(0.5). In order to verify the

result against a dynamic programming solution for the terminal-hitting time problem,

the control policy π is chosen to be a stationary policy such that π = {α0, α1, . . .}

where α0(x) = α1(x) = . . . = 0.

For the terminal-hitting time problem, we computed the approximate safety prob-

abilities using Algorithm 2 for a time horizon N = 3. The approximate safety prob-

abilities for k ∈ [0, 2] are shown in Fig. 3.2 (a-c). We compared the terminal-hitting

time result with a dynamic-programming based approach using [32], with the error

|V π
0 (x) − V π

0 (x)| shown in Fig. 3.2 (d). The approximate safety probabilities for

k = 0 for the stochastic double integrator with a Beta distribution disturbance are

shown in Fig. 3.2 (e).

Fig. 3.1 shows the computation time in seconds for high-dimensional integrator

systems. The increase in computation time is roughly linear in the dimensionality of

the system because the system dimensionality only appears in the norm of the kernel

function.

For the first-hitting time problem, we computed the approximate safety probabil-

ities using Algorithm 3 for a time horizon N = 3. The approximate safety probabil-

ities for k ∈ [0, 2] are shown in Fig. 3.3 (a-c). The approximate safety probabilities

for k = 0 for the stochastic double integrator with an exponential distribution dis-

turbance are shown in Fig. 3.2 (d). The approximate safety probabilities for k = 0

for the stochastic double integrator with a beta distribution disturbance are shown

in Fig. 3.2 (e).
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3.3 Clohessy-Wiltshire-Hill System

The CWH dynamics are given by

ẍ− 3ωx− 2ωẏ = Fx/md

ÿ + 2ωẋ = Fy/md

(3.2)

We define the state vector as [x,y, ẋ, ẏ] ∈ X ⊆ <4 and input vector as [Fx, Fy] ∈

U ⊆ <2, where U = [−0.1, 0.1] × [−0.1, 0.1]. We discretize the dynamics in time to

obtain the discrete-time system dynamics

zk+1 = Azk +Buk + wk (3.3)

The disturbance w[ · ] in (3.3) is a Markov process with elements wk defined on the

probability space (W ,B(W),Prw). The distribution of Prw is modeled as a Gaussian

distribution with variance Σ = diag(1× 10−4, 1× 10−4, 5× 10−8, 5× 10−8) such that

wk ∼ N (0,Σ), We define the target set T and safe set K as in [10],

T = {z ∈ <4 : |z1| ≤ 0.1,−0.1 < z2 < 0,

|z3| ≤ 0.01, |z4| ≤ 0.01}

(3.4)

K = {z ∈ <4 : |z1| < z2, |z3| ≤ 0.5, |z4| ≤ 0.5} (3.5)

and generate samples using [32] with a chance-constrained open loop controller as

described in [16]. The approximate terminal-hitting safety probabilities for k = 0

are shown in Fig. 3.2 (f). We also computed the approximate first-hitting safety

probabilities for k = 0, which is shown in Fig. 3.3 (f).
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Figure 3.1: System dimensionality [n] vs. average computation time [s] for an n-D
stochastic integrator system.
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Figure 3.2: (a-c) Approximate terminal-hitting safety probabilities for a double inte-
grator system with a Gaussian disturbance over a time horizon N = 3 at (a) k = 2,
(b) k = 1, and (c) k = 0. (d) Error |V π

0 (x)− V π
0 (x)| between the dynamic program-

ming solution and the conditional distribution embedding solution for k = 0 with
M = 1024 samples. (e) Terminal-hitting safety probabilities for a double integra-
tor system with a Beta(2, 2) distribution disturbance over a time horizon N = 3 at
k = 0. (f) Terminal-hitting safety Probabilities for a CWH system with a Gaussian
disturbance and an open-loop, chance-affine controller over a time horizon N = 5 at
k = 0.
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Figure 3.3: (a-c) Approximate first-hitting safety probabilities for a double integrator
system with a Gaussian disturbance over a time horizon N = 3 at (a) k = 2, (b)
k = 1, and (c) k = 0. (d) First-hitting safety probabilities for a double integrator
system with a Exp(0.5) distribution disturbance over a time horizon N = 3 at k = 0.
(e) First-hitting safety probabilities for a double integrator system with a Beta(2, 2)
distribution disturbance over a time horizon N = 3 at k = 0. (f) First-hitting safety
Probabilities for a CWH system with a Gaussian disturbance and an open-loop,
chance-affine controller over a time horizon N = 5 at k = 0.
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Chapter 4

Conclusions & Future Work

In this paper, a sample-based method is outlined to solve the terminal-hitting time

and first-hitting time problem for stochastic reach-avoid calculations with arbitrary

disturbances. The method is demonstrated on a toy problem using an n-dimensional

integrator, and the feasibility of the method is demonstrated for high-dimensional

systems up to ten thousand dimensions. State-of-the-art in this area, as far as the

authors are aware, is ≈ 40 dimensions [31].

Future work includes performing characteristic function analysis for controller

synthesis. Because the characteristic function can be evaluated as an expectation,

the conditional distribution embedding method outlined in 2 can be used to evaluate

the characteristic function as an inner product within the RKHS. Prior work that

leverages the characteristic function for maximally safe controller synthesis [31] could

thus be used to compute a maximally safe policy using established methods.

We would also like to demonstrate the method for autonomous systems with a

neural network controller, discrete-time stochastic hybrid systems, as well as for a

human-in-the-loop system. Until now, systems with autonomous and human ele-

ments have yielded overly conservative safety estimates using traditional verification
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techniques. Because the method outlined above is largely agnostic to the dynami-

cal system model, it could easily be extended to these complex or highly stochastic

systems.
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