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Abstract

Simulation of a Band-Agile Coaxial Backward-Wave Oscillator (BACoRBWO) pro-

duced a device that is tunable to operate in two distinct bands: L-band (1.4GHz) at

1.9GW with an efficiency of 26%, and C-band (4.2GHz) at 1.1GW with an efficiency

of 15%. The device does not perform as expected based on existing literature; how-

ever the end result is not necessarily undesirable. The need for further exploration of

the discrepancies between contemporary literature and our findings notwithstanding,

this device operates well enough of its own accord to merit additional study.
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Introduction

The Backward-Wave Oscillator (BWO) is a High-Power Microwave (HPM) source;

these devices primarily find their use (in the Air Force) in Directed Energy (DE)

weaponry as the component that creates the high-powered Radio Frequency (RF)

waves that disrupt the operation of hostile targets. Low-power (i.e. Watt and kilo-

Watt class) BWOs have been in existence for more than 60 years; they were first

developed for applications that require a very wide tuning range (such as radar jam-

mers) and marketed under the trade name ”Carcinotron”. These typically had an

output power of no more than 1W [1]. The BWOs being actively researched by the

Air Force Research Lab (AFRL) are gigawatt-class HPM sources. Needless to say, to

scale the output power of the technology by 9 orders of magnitude requires a much

larger device, and because this device is so large, it becomes what is known as an

overmoded HPM source. An overmoded HPM source has several electromagnetic

wave modes that can propagate in addition to the desired output; these modes can

interfere with the output and attenuate the power. This is not an insurmountable

problem, however it takes thorough design and simulation work to ensure that only

the proper mode is allowed to resonate and emit from the device.

The US Air Force is interested in the weaponization of this technology; hence

there is a need for a wide array of HPM devices that meet varying criteria such as

power output, frequency output, size, etc that will be effective in different warfare
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scenarios. Because these devices are so complex and interdependent on other compo-

nents, improving the size, performance, or efficiency of any one part can then allow

other parts to be reduced in size, power requirements, etc. This is a top priority for

Air Force DE researchers; less size and weight means that the DE weaponry can be

mounted on smaller and more maneuverable platforms such as planes, ground vehi-

cles, or even missiles and drones. When these devices are more maneuverable, they

are more effective. One device class that is currently of specific interest to the AFRL

is that of a tunable, low-frequency (L-band [1−2GHz]), high-power (> 1GW ) device.

There are several constituent components of an HPM source; first in the chain is

the pulsed power source, this generates a voltage pulse somewhere between 100kV

and 1MV for 30 − 120ns. The pulse generating equipment is often housed in a

transformer oil bath, and because the HPM source must operate in a vacuum, this

necessitates the use of a dividing insulator between the oil and vacuum. This pulse is

then fed to an electron gun, which becomes highly negative and emits high velocity

electrons into the source cavity. Next, the electrons pass through a periodic Slow-

Wave Structure (SWS); this structure acts to decrease the phase velocity of light

inside the BWO [2]. When the electrons encounter this structure, they are travelling

faster than the local phase velocity of light, causing emission of Čerenkov radiation

in their wake (analogous to a sonic boom when an object is travelling faster than the

speed of sound). Čerenkov radiation is an electromagnetic (EM) wave, and it is these

waves that excite the HPM source’s cavity into resonance. The last structure that

is part of the BWO is the mode converter and output waveguide; this converts the

BWO’s resonant mode into waveguide modes that can be radiated. The entire BWO

is contained within a magnetic coil that generates a uniform axial magnetic field on

the order of 1 Tesla, the purpose of which is two-fold. The magnetic field constrains

the electron beam to move axially through the device, rather than letting the beam

wander radially and impact the walls; it also suppresses cyclotron resonances which
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would absorb the generated RF power. Important to note here is the application of

the adjective “Backward-Wave” to this device. The electromagnetic wave we desire

to extract from the BWO travels antiparallel to the electron beam i.e. towards the

cathode. Schemes exist to extract the RF power near the cathode, but these are

hampered by the high static magnetic fields and associated machinery (coils, etc).

The problem is overcome by the use of either a cut-off neck or a tuned reflection

cavity that allows the electron beam to pass uninhibited but reflects the EM waves

of the desired frequency back towards the output waveguide.

From the BWO’s continuous wave, low-power beginnings in the 1950s, it was

largely scientifically neglected until 1970 when John Nation at Cornell University

published his 10MW pulsed version of the tube [3]. His experimental setup utilized a

500kV , 40kA beam in a 1.2T field. The efficiency of this device was 0.05%, something

he acknowledged “probably indicates that much higher power levels are available with

better design.” Four years later, Carmel, in the same lab at Cornell, demonstrated a

500MW BWO operating at 17% efficiency [4]. Much of this improvement came from

elimination of the microwave breakdown in the SWS that Nation experienced. After

these publications, BWO development in the United States languished once again.

However, Soviet scientists saw potential in the device and starting in 1973 began a

continuous stream of research that lasted through the 1990s. The first results by

Kovalev in 1973 at the Lebedev Institute of Physics in Moscow published a 12-15%

efficient relativistic BWO (RBWO) [5]. In 1981 1GW of output power (operating

at 30% efficiency) was surpassed [6] by Ivanov et al. In 1997, the research team at

the Institute of High Current Electronics (IHCE), Russian Academy of Sciences, in

Tomsk, Russia tested an RBWO whose output power was greater than 3GW [7] and

in 2000, they improved the pulse shortening of high energy HPM sources, granting a

four-fold increase in energy-per-pulse [8].
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Frequency tuning of the BWO can be accomplished by either adjusting the beam

energy or by mechanically tuning the dimensions of the device. The original Car-

cinotron was tunable over a frequency range of approximately an octave by adjusting

the beam voltage [1]; RBWOs are tunable in the same manner, but with less band-

width [4]. However, voltage tuning does not translate well to an RBWO because of

the relativistic nature of the device [9]. This therefore leaves mechanical tunability

as the preferred method by which to tune the RBWO. One of the techniques used to

mechanically tune RBWOs is to vary the beam drift length past a cut-off neck. After

the electron gun, but before the slow wave structure, the beam passes this structure,

which pre-bunches the electrons before entry into the SWS. The phase of this mod-

ulation (dependent on the drift distance betwen the reflector and SWS) relative to

the phase of the harmonic wave in the SWS affects the output frequency. In 1996,

Moreland and colleagues tested and simulated a BWO with 4% tuning range using

such a cut-off neck [10]. A similar technique was investigated in 2005 by Kitsanov et

al (again at the IHCE) using a resonant reflector instead of a cut-off neck and finding

a 14% frequency tuning range [9].

The coaxial RBWO (CoRWBO) is an additional refinement of the RBWO. A cen-

ter conductor is added in the SWS which increases the space-charge limiting current

and thus the potential for higher power. Most RBWOs to date have used hollow

SWSs, but a few exceptions have been coaxial, including the earliest RBWO refer-

enced (Nation’s 1970 design) [3, 11]. Work on the CoRBWO began in earnest with

2006-7 work by (then PhD canditate) Dr. Renzhen Xiao at Tsinghua University; her

work numerically solved many relationships for the CoRBWO, including“space-charge

limiting current, dispersion relations, dispersion curves, and coupling impedance” [12].

She found efficiencies of 34 and 37% for these devices using numerical and simulation

methods, respectively. [13].
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Figure 1: Geometry of the BACoRBWO
in Coaxial Configuration.

Figure 2: Geometry of the BACoRBWO
in Hollow Configuration.

Starting in 2009, a group of researchers led by Dr. Xingjun Ge at China’s Na-

tional University of Defense Technology (NUDT) also started developing gigawatt-

class coaxial BWOs [14]; their work was heavily reliant on the earlier work by Xiao.

Ge’s idea was to use a CoRBWO, but instead of altering the beam drift distance in

order to tune, they would mechanically shift the inner conductor towards or further

away from the cathode. In addition to frequency tuning the device, retracting the

coaxial conductor far enough will have another effect - it will cause the device to

change from a coaxial BWO to a hollow BWO, thus shifting the operation band. The

first revision of Ge’s design for this Band-Agile CoRBWO (BACoRBWO) was pub-

lished in 2010 [15]. In that paper, they investigated the effect of changing the inner

conductor’s radius on the output frequency; the researchers found a tunability range

of about 4%. In 2014, they published the results of experiments and simulations of

a BACoRBWO that was tunable by sliding the inner conductor into or out of the

SWS [16]. The geometry of these configurations are re-created in Figures 1 and 2.

The axis of radial symmetry is the x-axis, or, where Radial Length = 0. In order

to transition between the two configurations, the inner conductor is either extended

or retracted from the extractor at the right side of the images. The team found an

operating range of 1.61GHz ± 8.5% (Coaxial) and 2.32GHz ± 2% (Hollow) at 2.0GW

and 1.3GW with efficiencies of 31.7% and 20.6%, respectively.
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The results found by Ge are most interesting because the ability to radiate multiple

bands of RF power from a single device increases its usefulness over a single-band

device. Every potential target of an Air Force DE weapon has a preferred frequency

at which the weapon will be most effective. The advantage to a band-agile and tunable

HPM source then becomes apparent; if a wider range of targets can be disabled or

destroyed by a single device, then that means less cost as well as more operational

flexibility. The objective of this thesis is to propose to the AFRL a design of a Band-

Agile Coaxial Backwards Wave Oscillator capable of operating in multiple bands at

powers greater than 1GW . In order to do this, I intend to replicate the findings in

Ge et al’s 2014 work, failing that, I will explore the behavior and operation of this

device in order to create a working model suitable for the application.
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Methods

The software used to create the simulations was the Improved Concurrent Elec-

tromagnetic Particle In Cell (ICEPIC) program. ICEPIC has been validated using

real-world data and has been used in many publications affiliated with the AFRL

[17, 18]. In essence, a Particle-in-Cell code computes the particle positions and veloc-

ities as well as the field strengths at every time step, for every cell in the simulations.

Depending on the granularity needed for the simulation, these computations can be

quite onerous. However, the AFRL has at its disposal the Department of Defense’s

High Performance Computing (HPC) machines; these allow myriad simulations to be

run in a reasonable amount of time.

The first logical step in creating a band-agile HPM source was to reproduce the

work by Ge that has already been published. Dimensions of Ge’s device were pub-

lished in his 2014 paper[16]; these specifications were used to create a simulation file

for ICEPIC. Two different configurations of the BWO were tested, coaxial (with the

center conductor in place or extended) and hollow (with the center conductor absent

or retracted). In each configuration the beam parameters were forced to the desired

values to ensure consistency. In practice, an electron gun would need to be designed

to emit the desired beam and a voltage pulse would be applied to the electron gun to

emit the beam; however, this design problem is out of the scope of this project. The

initial beam parameters reflected the values used in Ge’s publication, specifically, the
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diode voltage was set to 760kV , the beam current to 9.6kA, and the confining mag-

netic field to 1.1T . With these parameters, the coaxial configuration should oscillate

at 1.61GHz and the hollow configuration should oscillate at 2.32GHz.

The simulations ramped the beam voltage up linearly to the maximum over a 10ns

period. After this, the beam was sustained for another 90ns; this allowed plenty of

time to see the start-up characteristics of the device as well as observe how the device

behaved once competing modes were given time to build up and potentially cause

interference with the signal. Many types of data were collected from the simulations.

These included currents through each part of the device and SWS, power through the

output waveguide broken down by propagation mode, E and B-Field values for every

cell in the simulation and particle positions and velocities for every particle emitted.

ICEPIC, after being sent the dimensions of the object to be simulated, converts

the structure into an array of rectangular prisms; in this case, the grid had a 2mm

resolution in all 3 dimensions. This gridded structure is detailed in Figures 1 and 2

on page 5. The time step is determined at runtime by ICEPIC, and the simulations

created for this paper used time steps of approximately 3-4 picoseconds. Power out-

put was measured from the Poynting flux through the plane of interest (the output

waveguide).

Because the objective of this simulation is the virtual prototype of a band-agile

and tunable HPM source, the nature of the tunability was investigated by varying the

length of the inner conductor (as per the NUDT’s work, see [14, 19, 20, 21, 15, 22, 16]).

The particular length of inner conductor that caused the device to jump from one band

to the other is of interest, as well as the relationship between length and intra-band

tunability. Additionally, because BWOs have traditionally been tunable by voltage

changes [1], the response of the BWO was measured as the voltage was varied over a

wide range, despite assertions made in Kitsanov’s work [9]. This gave an idea of how
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sensitive the device operation is to voltage changes as well as allowed us to explore

theories about how operation of the BWO may be improved or expanded upon.

The electron beam was functionally characterized in two ways, the first of which

was a spatial analysis of the beam’s energy content. At each position of axial length

along the beam path, the kinetic energy of every constituent particle of the beam was

measured and averaged across time points to give a profile of the beam’s per-particle

energy content. From this information, an estimation of the maximum possible RF

emission efficiency for that configuration was computed from the percentage differ-

ence between the leftmost (i.e. closest to the electron gun) particle energy and the

rightmost (closest to the extractor) particle energy. This calculation will give a upper

limit on output efficiency for that specific configuration; not all of this energy given

up by the particles will be emitted from the BWO as useful radiation.

The other tool used to characterize the electron beam was the dispersion diagram

(for an example, see Figures 14 and 15 on page 28). On the y-axis is shown frequency,

in either cycles or radians per unit time, and on the x-axis is shown wavenumber, in

either cycles or radians per unit distance. Wavenumber is defined as the inverse

wavelength. The phase velocity is ω/k, and the group velocity is dω/dk, where ω is

the angular frequency and k is the wavenumber. In order for a backward wave to

form, the group velocity must be negative at the beam interaction point. Also shown

on the dispersion diagram is the “light line”, the plot of an EM waves’ frequency as a

function of wavenumber, where f/k = c, f is the frequency and c is the speed of light

in vacuum, and the “beam line”, the plot of the electron beam’s velocity as a function

of f and k (anywhere from 0.3−0.9c). The dispersion relationship was found through

“cold-cavity” simulations, meaning that there is no electron beam present during the

measurement. In order to increase the spatial resolution to a usable level, the slow

wave structure present in the BACoRBWO was extended to 54 periods (in contrast



Methods 10

to the 5 used for the actual device). The cavity was excited by a 1 Amp signal from

4 antennas at the upstream end of the cavity; they output a signal centered at 3GHz

with a bandwidth of 5GHz. The electromagnetic field response of the device was

then measured for 200ns. The fields were measured along the device, and the two-

dimensional FFT was performed to obtain the intensity of the field as a function of

frequency and wavenumber. Ge’s calculated dispersion curves were compared to the

dispersion relationship found in this thesis, yielding insight into how that design may

be constructed.
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Figure 3: Flowchart detailing the preprocessing, simulation, and post-processing pipeline.
Each processing node displays the name of the script used in that step.
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Automation of Data Processing

and Visualization

An overview of the data processing pipeline is shown in Figure 3 on the previous

page. It is broken into three distinct steps, which are: preprocessing, simulation,

and post-processing. The preprocessing step includes any work done in advance of

running the ICEPIC simulations. Some of these tasks are the programming of the

ICEPIC model and the construction of a regime of simulation permutations that

will be run. The simulation processing group consists of uploading the simulation

files to the supercomputers, enqueueing the simulation jobs to the supercomputer’s

job list, as well as running ICEPIC itself. The post-processing step is where any

data manipulations or calculations take place and where the data is visualized and

summarized into formats that are easily interpreted by the user.

Stand-alone PIC codes (such as ICEPIC) generally do not include any sort of data

visualization tools as part of their packages; as such, the appropriate post-processing

needs to be implemented by the end-user. Post-processing, in this context, should

be taken to mean any form of data manipulation (such as an FFT) or visualization

(such as graphing the aforementioned FFT and saving the resulting image) that is

performed after the simulation is complete. In most cases, ICEPIC records data as

one plain text file for every diagnostic requested in the input file; the timecourse is the
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first column of the file, and the following columns are the recorded data. These data

files can vary quite a bit in size, depending on the type of diagnostic requested, the

measurement precision, and the measurement interval. Different types of diagnostics

will output different amounts of data; for example, a voltage diagnostic will only have

two columns (time and voltage), whereas an E- and B-Field probe will have seven

(time, Ex, Ey, Ez, Bx, By, and Bz). Field and particle diagnostics are the typical

exceptions to the one-file-per-diagnostic rule, simply because the large amount of data

would cause the resulting file to become too difficult to work with. Therefore, these

diagnostics are saved as seperate files for each measurement interval. Because the

data output is computer generated, the format is predictably similar; this allows for

the visualization post-processing to be done in a repeatable manner, which means

that this can then be automated. This becomes important when working with large

numbers of simulations that all need the same processing executed. The team at the

AFRL had already developed some post-processing and automation tools, and around

these a new set of scripts were created in order to automate and streamline the entire

process as well as provide additional functionality.

When discussing simulations being run in ICEPIC, there are two different types

of input files needed; these are generated in the preprocessing step. The actual data

file that ICEPIC uses as its input to initialize the simulation is most often located in

its own unique subdirectory and each file usually has the same name, “ice.dat”. These

files will be referred to in this paper as the ice.dat files. They are usually not directly

created or modified by humans; the process of creating these files is mostly automated

by the ipp.py (usually called ipp) and ndscan3.py (usually called ndscan) scripts.

Both of these scripts were written by Dr. Peter Mardahl at the AFRL, with minor

modifications by the author of this paper. ipp and ndscan use a master simulation

input file, referred to as an “ICEPIC input file”, “input file”, or “.in file”, to orchestrate

the creation of each unique ice.dat file. This abstraction is required because the input



Automation of Data Processing and Visualization 14

files are not written in a format that ICEPIC can interpret; ICEPIC cannot evaluate

variables, loops, or other structures in the input files. In order to ease the creation

process and allow users to quickly change simulation values, ipp was written to convert

a parametrized input file with logic controls (if-then statements, for loops, etc) and

variables into a format readable by ICEPIC by evaluating those variables and logical

control structures into the static ice.dat file. In order to build and run a useful set

of simulations and compare them, a “parameter scan” or “parameter sweep” must be

specified. For example, if a researcher wished to examine the behavior of a BWO with

respect to the strength of the confining magnetic field, several simulations, each with

unique values of magnetic field strength, would need to be run. The way in which

this is done is by specifying a table of parameters (usually named “table.dat” – no

relation to the ice.dat files referred to previously) for use by ndscan that contains the

name of each parameter to change, as well as what values to change those parameters

to. Continuing the previous example, to vary the magnetic field strength from 0.8 to

1.0 Teslas in increments of 0.1 Teslas, the table.dat would include this line: “B Field

B 0.8 0.9 1.0”. The first column, “B Field” is the name of the variable in the input

file that is being scanned over, the second column, “B”, is an abbreviation of the

variable that will be used to give each simulation a unique subdirectory name, and

the remainder of the columns are the values to which the specified variable will be

set. Multiple variables can be specified, and a unique simulation will be created for

every combination of variables possible. ndscan would have created three unique

simulations in the previous example; if another line were added to the table.dat, for

example “Voltage V 700 800”, then 6 unique simulations would be created, one for

each possible combination of the variables “B Field” and “Voltage”.

Once the preprocessing is concluded, there will be a top-level simulation directory,

and under that directory subdirectories containing the ice.dat files for each individual

simulation. This group of simulations, or “job” as it is usually referred to, next
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needs to be submitted to the job queue on a supercomputer. The Department of

Defense’s High Performance Computing machines are structured differently from a

typical desktop computer. Each supercomputer is composed of a number of computing

nodes, each of which contains a number of processing cores. Each node is basically

an independent computer, but the difference is the high-speed interconnects between

the nodes that allow them to act in concert. As an example, the supercomputer

“Conrad” has 1,523 computing nodes, containing 32 processing cores per node, for

a total of 48,736 total available processing cores. Jobs are submitted to the queue,

and based on the job urgency, time required (anywhere from 1 hour to 168 hours),

and processing nodes required (minimum of 1, maximum of 250), the system reserves

compute nodes and schedules a time window for the job to execute. The process

by which this job scheduling request takes place is somewhat complicated and is

very specific to each supercomputer as well as each different research department

requesting supercomputer time. Automating this job queueing process was necessary

to efficiently use the supercomputers; to this end, the craysubmit.py script (referred

to as “craysubmit”) was formulated. This script’s core functionality was adapted

from an existing script (again authored by Dr. Mardahl), but was substantially re-

worked and expanded by this author in support of the work in this paper. In its

totality, craysubmit submits jobs to any supercomputer desired, taking into account

each one’s specialized requirements and restrictions, then it creates the necessary

job submission file (which includes such things as the number of processors required

and hours needed), creates the scripts that actually run the job’s programs (such as

ICEPIC) once they wait in the queue, copies the files needed (other scripts, ICEPIC

files, etc) for the job to the appropriate place on the supercomputer, enqueues the

job, then, once that job is complete, does the same for the next job in the pipeline.

There are three different types of jobs that can be submitted to the supercomputers

by craysubmit. All three require the job submission steps described in the previous
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paragraph. When craysubmit is passed the argument icepic, it submits an ICEPIC

simulation job to the supercomputer, the job runs, and the raw ICEPIC data output

is stored. When craysubmit takes the argument subdirectory, a job to process the

ICEPIC output data into images (or other usable files) is submitted. This is quite

a bit more programmatically complicated than running an ICEPIC simulation; there

are several different graphing and file manipulation scripts that must be executed in

a specific manner. This type of job is done on the supercomputer (and not locally)

for two reasons, the first is that transferring all of the raw ICEPIC data from the

supercomputer to a local machine would take an inordinate amount of time, secondly,

the supercomputer’s speed (even on just one compute node) on these types of file

manipulation jobs are orders of magnitude faster than on a normal computer due to

the extremely fast storage media employed therein. The last type of craysubmit job,

the summary job, is of a similar function and complexity to a subdirectory job; it

creates summary graphs and statistics from the subdirectory job’s output files along

with every ICEPIC simulation that was run previously.

When the craysubmit script is called in ICEPIC mode, the submitted job runs an

ICEPIC simulation for every permutation of the simulation, and, once that is finished,

a craysubmit subdirectory job is “pipelined” onto the job queue. This means that the

subdirectory job is automatically submitted to the queue (without any human in-

tervention) by the craysubmit script after the ICEPIC commands have all finished

running. This is done to save researcher’s time and effort; rather than having to

manually submit new job types once the previous job finishes, the submission is done

automatically in the correct order and format. Once the craysubmit subdirectory job

has gone through the job queue and has begun running, each individual processing

node is controlled by an instance of the script graph_bwo_master.sh. This master

script, in turn, controls one instance of graph_bwo_worker.sh for every processing

core in the node; each of which is assigned to process one specific simulation’s sub-
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directory. The worker script controls all graphing and file manipulation functions for

that subdirectory.

File manipulations (such as FFTs or running averages) and data visualizations

are carried out by a multitude of different script files. There are four AWK scripts

used to perform file manipulations within the scope of the worker script: those are

trimprobe.awk (removes extraneous data from the EB probe files), cropmode.awk (re-

moves extraneous data from TE and TM mode power files), avgcol.awk (returns the

average of a column in a file) , and findmax.awk (returns the max value found in a

column and its location in a file). AWK is used here simply because it is well suited

to file manipulation with very little overhead. The remainder of file manipulations

are carried out by various functions within the MakeGRB.py script, which is a collec-

tion of 36 python functions, all with differing utility. As an example, the function

MakeGRB.dofft performs an FFT on a dataset in a file, then saves that FFT in a

new text file so that it can later be graphed by other functions. A summary of the

file manipulation and data visualization functions in MakeGRB.py is shown in Table 1

on page 19.

Two different programs provided basic data visualization capabilities: the first was

Grace [23], the second was the Matplotlib library for Python [24]. Grace provides a

batch mode program (useful as an interface to automation scripts, in this case BASH

was used) as well as a graphical user interface (GUI) that is useful for tweaking the

final image if needed. Matplotlib is used exclusively from Python scripts and is most

useful in place of Grace when calling external functions in Python would be compu-

tationally or programmatically cumbersome, or, when a pure Python implementation

is desired (usually for portability).

Grace is a graph plotting tool that can be used to graph an arbitrary number of

data sets in two dimensions. Detailing the GUI is outside the scope of this docu-
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ment; batch-mode Grace (i.e. the command-line, non-interactive utility, referred to

as “gracebat” here and by the documentation) will be focused on, as that was the

primary method in which Grace was used. gracebat is simply a way for automated

scripts to interact with Grace without any user input. It can be used with many con-

figuration options; however, for the most part, these command-line options remained

static, each graph’s settings (such as text size, symbol colors, etc) are specified in a

separately written command file. This command file executes the same commands as

the GUI, but in a programmatic, non-interactive way. For example, if, in the GUI,

one was to change the label on the x-axis to “Voltage”, that would be done by right-

clicking the mouse on the axis, finding the appropriate setting, and typing in the

new label string. Behind the scenes, what Grace does is execute the command xaxis

label Voltage. Every such GUI action has a corresponding text command and it is

here (under-the-hood, so to speak) that the Grace automation can take place; these

commands are procedurally generated for each analysis requested. Table 1 contains

several examples of python functions that write these Grace command files.
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Table 1: Summary of File Manipulation and Data Visualization Functions in the Script
MakeGRB.py.

Function Name Brief Description

assigncode Takes a parameter name and value and returns the relative position of

that value among the other values for that parameter in the table.dat

color Creates a user-defined HSV color gradient and returns it in a format

usable by xmgrace

convert_size Converts a size index to a proper size (float) usable by Grace

dofft Performs an FFT on a given data set. The resulting data is saved as a

new file

fileops Calculates the efficiency of a particular simulation and saves that data as

a new file

Get_Timestep Opens the ICEPIC log file (ice.log) and pulls out the simulation’s time

step value

Make_Legends_Subdir Configures plot legends and calls write_sets and mkGRB in order to

configure a plot’s parameters. Used for subdirectory post-processing

Make_Legends_Summary Similar to Make_Legends_Subdir, except only used for summary

post-processing jobs

Make_Point_File Takes a file with one data set and extracts the maximum or average

mkGRB Parses the title of a graph and creates a Grace configuration file

containing the appropriate axis labels and scaling, zoom level, etc

param_extract Creates a coordinated color code, ensuring that the colors, symbols, and

patterns are consistent throughout all ICEPIC simulations

parse_table parse_table opens the table.dat file, parses it, and returns the data in an

array

parse_title Used with mkGRB. Takes a graph title e.g. ”Efficiency vs Time” and outputs

the proper scale factors, labels, tick spacing, etc

part_field_plot Graphs a series of particle images (such as electron position) and field

images, then creates a time-series video from those images

plotgrace Runs Grace to create the desired images

pull_from_icedat Takes a list of parameters and searches the ice.dat file for them and

returns their values

running_mean Calculates the running average over N points of an array

save_leg Mainly used to run the mkGRB function and save the output; contains some

accessory functionality

sort_legend Sorts the legend based on passed parameters

write_and_output Parses the values in the table.dat file and saves each permutation of each

parameter in each subdirectory

writedat Writes a file containing a single data point to be graphed by the function

Make_Legends_Summary

write_points_files Writes a file containing two points (such as efficiency and voltage) to be

graphed by the function Make_Legends_Summary

write_sets Outputs the set characteristics for Grace like symbol, color, pattern, etc
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Results

Simulation of the BACoRBWO started with re-creating the original simulation

done by Ge et al referenced in the introduction. Initial two-dimensional simulation

results were inadequate to properly represent the device1; therefore all simulations

shown were performed in 3D.

To explore the geometry dependent behavior of the BWO, a set of simulations

was created for varying lengths of the inner conductor. The voltage and current were

held to their original values (760kV and 9.6kA), and the inner conductor length was

scanned from 10mm up to 490mm by increments of 10mm. The power and dominant

frequency were measured; the results of this scan are shown in Figure 6 on page 23.

Shown in Figures 4 and 5 on page 23 are the results found for output power for six

different configurations of the BACoRBWO. The solid blue lines on each graph show

the power output using the value for inner conductor length specified in Ge’s 2014

work. The red dashed line shows the maximum power output found by scanning the

simulations over possible values of inner conductor length (see Figure 6 on page 23 for

this scan data). The black triangles mark the original peak power values found by Ge.

Note that the outputs using the original specifications show significantly less power

than that found by Ge and that the dominant frequencies are completely different as

12D simulations did not oscillate at more than 500MW for any frequency or value of inner
conductor length. 3D simulations, however, performed closer to expected values based on
the cited values in Ge’s work.
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well. Finding the optimum length of inner conductor improves power output but does

not change the output frequencies to those expected. Figures 10 and 11 on page 24

show total power output of the device as a function of time in both the coaxial and

hollow operation mode.

Figures 8 and 9 on page 24 show the efficiency of the power output of the BWO as

well as the frequency of that power output as the beam voltage is varied. The voltages

vary from 310kV up to 760kV in increments of 50kV , with the blue dots representing

the lowest voltage, and transitioning up the spectrum to the red dots representing the

highest voltages on the graph. The highest voltages operate the most efficiently, and

the operating frequency of any configuration oscillating in a meaningful way (greater

than 5% efficiency) oscillates at a consistent frequency regardless of voltage. Despite

frequency being on the x-axis (traditionally reserved for the independent variable),

both frequency and efficiency are plotted as a function of changing voltage.The highest

efficiencies of 15% for the coaxial BWO and 26% for the coaxial BWO are produced

at the highest voltage tested (760kV – the value used by Ge’s 2014 work). The

operational frequencies are very stable, only changing bands once the diode voltage

drops below 610kV .

A graph of the beam’s time-averaged kinetic energy per-particle as a function of

distance along the BWO structure is shown in Figure 12 on page 27. The kinetic

energy of an electron at emission from the electron gun is approximately 1.2 ∗ 10−13J

and the average final kinetic energy at impact with the extractor is 0.7 ∗ 10−13J ,

meaning that, at most, 40% of that kinetic energy can be converted into field energy,

assuming no other losses in the BWO.

Two graphs for instantaneous beam velocity were calculated, one for V = 760kV
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(Figure 7 on the next page) and one for V = 660kV (Figure 13 on page 27). The

speed of the particles in the high-voltage graph, for most axial locations, is close to

2.8− 2.9 ∗ 108m/s, or approximately 0.95c. In the low voltage graph, electron speed

was about 2.6 ∗ 108m/s or 0.87c.

Figures 14 and 15 on page 28 show the calculated dispersion curves for the coaxial

and hollow (respectively) BACoRBWO configurations. The dashed line showing vp =

0.95c was derived from the velocity graph, Figure 7 on the following page. The solid

line on the graph shows the dispersion curve estimated from Ge’s work and published

dispersion curves.
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Figure 4: Power Spectrum of the Coaxial-
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Figure 6: Power and frequency as a func-
tion of inner conductor length. The blue
circles show the power and the red trian-
gles show the frequency as the inner con-
ductor length is varied from 10mm up
to 490mm in increments of 10mm. The
band transition length for inner conduc-
tor is a range of values between 330mm
and 390mm; in this range, the output
power drops and the frequency becomes
unstable as different modes compete in
the device.

Figure 7: Instantaneous electron veloc-
ity as a function of distance along the
BWO for a beam voltage of 760kV . Av-
erage electron velocity here is roughly
2.8∗108m/s or 0.93c. Several distinct ar-
eas of deceleration (energy transfer from
electron kinetic energy to fields) can be
seen. This graph also shows that the
electron velocity is, for a minority of the
electrons completely turned backwards;
the apparent reason for this is an accu-
mulation of space charge at the decel-
eration points that is strong enough to
throw some electrons back towards the
electron gun.
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Figure 8: Efficiency and Voltage vs. Fre-
quency (Coaxial Configuration).
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Figure 9: Efficiency and Voltage vs. Fre-
quency (Hollow Configuration).

0 20 40 60 80 100

Time (ns)

0

2

4

6

8

10

P
o

w
er

 (
G

W
)

Power vs Time
for Coaxial Configuration, V=760kV, I=9.6kA

Figure 10: Power Output vs. Time
(Coaxial). Note here the fact that the
power does not at any point reach 0.
This means that a non-transverse mode
is propagating out the waveguide.
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Figure 11: Power Output of the BWO
as a function of time (hollow configura-
tion). The output is noisy, note the low-
frequency, high-power spikes.
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Discussion

Using the exact parameters specified by Ge’s paper, simulation results were dis-

appointing. Figure 4 on page 23 shows that the coaxial configuration of the BWO

oscillated most powerfully at 4.1GHz, with an output power of about 500MW at that

frequency, giving an efficiency of 7%. Of particular note is the unsuppressed signal

at 1.4GHz emitting from the BWO. This indicates that interference between output

modes exists and needs to be addressed. Figure 5 on page 23 shows the hollow con-

figuration’s power output spectrum; it again operates at 500MW and 7% efficiency,

but at 1.4GHz. The fundamental output frequency here is within 15% of the value

found by Ge (1.61GHz) for the coaxial mode; this indicates that our simulation is

not exciting the exact same modes as the reference device, but that at least one of

the same modes exist. Clearly, there is a missing piece of the puzzle.

The graph of power and frequency versus inner conductor length shown in Figure 6

on page 23 shows a fairly stable operating frequency of approximately 1.4GHz from

10mm ≤ L ≤ 320mm, where L is the inner conductor length. When 330mm ≤

L ≤ 390mm, the BWO enters a band transition zone where output power drops and

frequency output becomes unpredictable due to mode competition. From 400mm ≤

L ≤ 490mm the device enters another region of frequency stability, operating at

4.2GHz. The power output stability is very erratic with respect to changes in the

inner conductor’s length; power varies from 100MW up to 2GW as the length of the
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conductor is altered. Irregular output power was seen by Ge; in his paper, the power

output ranged from 1.5GW to 2.5GW which is quite a large range, but not quite as

large as the power output variability seen here. Ge’s published paper uses L = 50mm

and L = 390mm as optimum conductor lengths to excite the two different frequencies,

but note that in these simulations, those two particular values of inner conductor

length provide quite poor output power. Better choices in this particular case might

be 30mm (to operate at 1.4GHz and 1.9GW - 26% efficiency) and 460mm (to operate

at 4.2GHz and 1.1GW - 15% efficiency). This does not answer the question of why

the 2.3GHz output seen by Ge does not manifest, but the device as it stands would

still be considered band-agile, and is therefore still useful.

The graphs of efficiency and operational frequency as a function of voltage (Figures

8 and 9 on page 24) show that the device output is very stable with respect to the

input voltage. The device operates at the same frequency from voltages from 760kV

down to 610kV (albeit at reducing efficiencies), thus giving credence to Kitsanov’s

assertion that voltage tuning is largely ineffective in relativistic BWOs [9] and to the

idea of a mechanically-tunable BWO in general.

A spatial analysis of the beam energy content shows that, as the electrons in the

beam pass through each successive segment of the SWS, they give up kinetic energy

and emit at least some part of that energy as RF power. The graph, Figure 12

on the next page, shows the time-averaged energy of each particle in the beam as

a function of axial distance. The electrons lose about 40% of their energy on their

path through the BWO, and the highest efficiency seen in these simulations was 26%

(for the coaxial configuration). The conclusion, then, is that the electrons lose 14%

of that energy to wasteful ends, of which there are several. The electron velocity

graphs of Figure 7 on page 23 and Figure 13 on the next page show electrons with

highly negative velocities – these electrons have left the confinement of the beam
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Figure 12: The time-averaged kinetic en-
ergy of each particle in the electron beam
as a function of axial distance. The left-
most point is where the beam is emitted
from the electron gun. From this max-
imum, as the electrons travel along the
SWS, they give up their kinetic energy to
the E- and B-fields. A decrease in kinetic
energy of about 40% is seen here.

Figure 13: The instantaneous axial elec-
tron velocity as a function of axial dis-
tance when beam voltage is 660kV . Al-
though the maximum electron velocity
remains fairly constant throughout the
SWS, the range of electron velocities in-
creases drastically (lowering the average
kinetic energy, which is behavior also
seen in Figure 12 as well as Figure 7 on
page 23). Average beam velocity is ap-
proximatly roughly 2.6∗108m/s or 0.87c.
This graph (consistently with Figure 7
on page 23) shows electrons that leave
the beam and get turned back upstream
towards the electron gun, which are not
counted in Figure 12.

and are travelling back upstream towards the electron gun. This is likely due to

a large enough space charge accumulating to completely repel those electrons. The

energy used to accelerate those electrons back upstream would be one source of wasted

energy. Another is the wasted power output in spurious frequencies. Examining

Figures 4 and 5 on page 23 shows non-trivial noise frequencies present in the output

signal. Using as a example Figure 5, there is 2000MW of power in the dominant

frequency, and about 1000MW of power in other frequencies. This means that, since

that particular simulation was found to be 26% efficient, that 50% of that 26% (that

is to say, 13%, which was not included in the 26% efficiency calculation) was waste

energy. The sum of the percentages of useful RF (26%) and waste RF (13%), adds up

to 39%, which accounts for nearly all of the 40% of the kinetic energy that the electrons
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Figure 14: Dispersion Diagram (Coaxial
Configuration).

Figure 15: Dispersion Diagram (Hollow
Configuration).

lost while travelling through the BWO. There are very clearly some improvements to

be made here regarding the wasted RF emission, which seems to be the main source of

inefficiency. The other path to consider when improving the overall efficiency would

be to extract more kinetic energy from the electrons overall, so that even if a large

portion of the energy is still in wasted RF output, there is more total energy to work

with.

The dispersion diagrams for the BWO are shown in Figures 14 and 15. The dotted

line on each graph shows the light line (i.e. where the phase velocity, vp = c), the

dashed line shows the beam line found in these simulations (vp = 0.95c), the solid

line shows the beam line estimated from Ge’s 2009 work on the BACoRBWO and its

dispersion characteristics [20] (vp = 0.7c). The fainter lines illustrate the modes of the

BACoRBWO as simulated in this paper and found by a dispersion analysis (detailed

in the Methods section of this paper). Interesting to note for the coaxial plot is

the fact that the beam line calculated for this device from the ICEPIC simulations

(vp = 0.95c), completely misses the lowest mode on the graph, the“quasi-TEM”mode

referred to by both Ge and Xiao [20, 15, 12]. This is consistent with other results

obtained in this analysis, as the higher velocity beam line first intersects with a strong
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interaction point at just over 4GHz. The first mode that the beam could possibly

interact with is called the “A” mode [20, 15, 12], but the region of the curve where

the interaction would take place is particularly weak so the passes through this mode

as well without exciting the structure, and oscillation takes place in a different mode

even further up the beam line. However, the group velocity at this interaction point

is positive, which means that the RF wave that forms is not a backward wave, but

rather a forward wave. This is not inherently problematic; other tubes, such as the

TWT, operate in the forward wave region, but it does belie the name of Backward

Wave Oscillator. The lower-velocity beam line (i.e. the line estimated from Ge’s

publications) interacts in the quasi-TEM mode at approximately 1.5GHz, this seems

to be within a reasonable deviance of Ge’s frequency of 1.6GHz for this configuration.

The hollow dispersion curves and the low velocity beam line also match up quite well

with Ge’s oscillation at 2.3GHz for hollow operation - however, the measurements

from the hollow BWO simulated here are anomalous. It was found to oscillate at

1.4GHz, but there is not present on the dispersion diagram any such mode that could

cause that frequency to become excited. Considering these conclusions with those

discussed previously regarding voltage tunability of the RBWO, lowering the beam

voltage does not lower the beam velocity enough to make a meaningful difference in

what modes the beam line intersects.

The graphs of power as a function of time for each of the two BWO configurations

are shown in Figures 10 and 11 on page 24. Keeping in mind that the output power is

proportional to the E-field (
−→
E ) cross the B-field (

−→
B ), useful information in the graphs

becomes obvious. When the magnitude of either
−→
E or

−→
B in a transverse direction (X

or Y here) instantaneously crosses 0, the power output in the direction of propagation

(Z here) will then go to 0; the power output of the hollow device shows this behavior,

leading to the conclusion that a transverse mode of some sort is dominant (which

is generally desirable for devices of this type) for the most part, but there is a low
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frequency flutter pushing the power output off of the x-axis slightly. This is indicative

of a poorly suppressed hybrid mode interfering slightly with the transverse mode’s

output, but not enough to completely dominate it. Conversely, the coaxial device’s

power never drops to 0 as it oscillates (i.e. there is a dc offset to the waveform),

meaning that it is operating in a hybrid mode in which there is a Z-component to

both
−→
E and

−→
B . This is not necessarily problematic, as a useable RF signal can still

be obtained, but with reduced efficiency as compared to the transverse wave output

in the hollow device.
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Conclusions

The Band-Agile Coaxial Relativistic Backward-Wave Oscillator described and sim-

ulated in this paper operates with a high degree of frequency stability within two

different bands. There is a large amount of wasted power generated by this device –

about 60% of the electron kinetic energy is left totally unutilized, and about 1/3 of the

electron kinetic energy that gets converted into RF is wasted in production of noise

frequencies in the output, for a maximum efficiency of 26% with ideal parameters.

There are many reasons for why the design published by Ge [16] and the device

described in this paper behave very differently, the first of which is the fact that

these simulations were run in different software packages. ICEPIC and KARAT

have both been validated by real-world testing of devices designed in the softwares,

however, ICEPIC (and one can only assume KARAT, as well) has a near-labyrinthine

collection of configuration options, many of which will very noticeably affect the

simulation results. Without a side-by-side comparison of the two softwares running

the same simulation, the results will be difficult to compare. Another explanation for

the discrepancy is simple oversight on behalf of the submitting institution. Similar

devices have been actively researched and published by the NUDT since 2009 (see

[14, 19, 20, 21, 15]), it is conceivable that an out-of-date figure was included in the

2014 publication, either unintentionally or with the intent of purposeful obfuscation

of the device parameters since such a device might be seen as important to national
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security by the NUDT.

Future work should, first, determine the reason for the discrepancies between this

BACoRBWO and its antecedent device at the NUDT. Exploration of geometrical

modifications could be in order, increasing the periods of the SWS, changing the

beam drift distance, and of course the overall dimensions of the device are viable

options. Once that determination is made, then improvements to the efficiency and

operation of the device can be made – perhaps even the prototyping of a tri-band

BACoRBWO (L, S, and C band) combining the findings here with those made recti-

fying the frequency anomalies.

All that being said, the designed backward-wave oscillator is operable in the L-

band at 1.4GHz and 1.9GW and also in the C-band at 4.1GHz and 1.1GW. Although

the device’s power output spectrum was unexpected based on existing literature and

BWO designs, this particular design will satisfy the AFRL’s requirement for a high-

power multi-band HPM source.
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