
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Spring 5-11-2018

Optimization of Supersingular Isogeny
Cryptography for Deeply Embedded Systems
Jeffrey Denton Calhoun
University of New Mexico - Main Campus

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Calhoun, Jeffrey Denton. "Optimization of Supersingular Isogeny Cryptography for Deeply Embedded Systems." (2018).
https://digitalrepository.unm.edu/ece_etds/420

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalrepository.unm.edu%2Fece_etds%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/420?utm_source=digitalrepository.unm.edu%2Fece_etds%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Jeffrey Denton Calhoun
 Candidate

 Electrical and Computer Engineering

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 James Plusquellic , Chairperson

 Marios Pattichis

 Manel Martinez-Ramon

Optimization of Supersingular Isogeny
Cryptography for Deeply Embedded

Systems

by

Jeffrey D. Calhoun

B.S., Computer Engineering, University of New Mexico, 2016

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2018

ii

Dedication

Dedicated to those I love and everyone else, even though it might not be

appreciated.

iii

Acknowledgments

I would like to thank my friends and colleagues, Donald Owen and Andrew
Targhetta, for their mentorship and support in this research. I would also like
to thank my adviser, Jim Plusquellic, for his helpful suggestions and timely feed-
back. Finally, thanks to friends, family, and everyone else who helped out along
the journey.

iv

Optimization of Supersingular Isogeny
Cryptography for Deeply Embedded

Systems

by

Jeffrey D. Calhoun

B.S., Computer Engineering, University of New Mexico, 2016

M.S., Computer Engineering, University of New Mexico, 2018

Abstract

Public-key cryptography in use today can be broken by a quantum computer

with sufficient resources. Microsoft Research has published an open-source library

of quantum-secure supersingular isogeny (SI) algorithms including Diffie-Hellman

key agreement and key encapsulation in portable C and optimized x86 and x64

implementations. For our research, we modified this library to target a deeply-

embedded processor with instruction set extensions and a finite-field coprocessor

originally designed to accelerate traditional elliptic curve cryptography (ECC). We

observed a 6.3-7.5x improvement over a portable C implementation using instruc-

tion set extensions and a further 6.0-6.1x improvement with the addition of the

coprocessor. Modification of the coprocessor to a wider datapath further increased

performance 2.6-2.9x. Our results show that current traditional ECC implemen-

tations can be easily refactored to use supersingular elliptic curve arithmetic and

achieve post-quantum security.

v

Contents

List of Figures ix

List of Tables x

Glossary xi

1 Introduction 1

2 Related Work 4

3 Evaluated Microarchitectures 8

3.1 Embedded Core with Instruction Set Extensions 9

3.2 Embedded Core with Coprocessor 10

4 Underlying Mathematics 15

4.1 Overview of SI Operations . 15

4.2 SI Diffie-Hellman (SIDH) . 17

vi

Contents

4.3 SI Key Encapsulation (SIKE) . 18

5 Implementation and Optimizations 20

5.1 Algorithm Optimizations . 20

5.2 ISE Optimizations . 22

5.3 Coprocessor Optimizations . 27

6 Methodology 29

7 Experimentation and Results 31

7.1 Fp and Fp2 Arithmetic Evaluation 32

7.2 Elliptic Curve Arithmetic Evaluation 33

7.3 SIDH Evaluation . 34

7.4 SIKE Evaluation . 36

7.5 Code Size . 37

7.6 FPGA Implementation . 38

8 Conclusion 39

8.1 Future Work . 40

A Supporting Data 42

B Supporting Algorithms 46

vii

Contents

References 48

viii

List of Figures

3.1 Pete with Monte . 11

3.2 The Finite-Field Arithmetic Unit of Monte 12

4.1 Supersingular Elliptic Curve Isogeny Algorithm Computational

Hierarchy . 16

7.1 Millions of Clock Cycles vs. Field Size of SIDH Algorithms 34

7.2 Millions of Clock Cycles vs. Field Size in Log Scale Across Archi-

tectures . 36

7.3 Millions of Clock Cycles vs. Field Size of SIKE Algorithms 37

ix

List of Tables

3.1 Core ISEs . 10

3.2 Monte Instructions . 12

6.1 GNU Make Options for x86/x64 30

7.1 Field Math Cycle Count . 33

7.2 EC Operation Cycle Count . 33

7.3 CPU Time of Finite-Field Arithmetic for Alice’s SIDH Key Gen-

eration on PeteMonte64 . 35

7.4 SI Library Code Size (kB) . 37

7.5 Hardware Resource Usage . 38

A.1 Field Math Cycle Count . 43

A.2 EC Operation Cycle Count . 44

A.3 SIDH Cycle Count - cc * 103 . 44

A.4 SIKE Cycle Count - cc * 103 . 45

x

Glossary

abelian group a group that satisfies commutativity

cryptography the study of techniques for secure communication in the

presence of adversaries

elliptic curve a smooth, projective, algebraic curve with points that

form an abelian group

field a set of elements on which addition, subtraction, multi-

plication, and division are defined

finite field a field that contains a finite number of elements

group a set of elements and an operation that satisfies closure,

associativity, identity, and invertiblity

hardware acceleration the use of computer hardware to perform a function more

efficiently than is possible in software

isogeny a group homomorphism and rational map

xi

Chapter 1

Introduction

Over the last decade, the convergence of multiple technologies including com-

munications, real-time analytics, and machine learning has evolved the vision of

the Internet of things (IoT). Experts predict that the IoT will consist of nearly

30 billion devices and reach a global market value of $7.1 trillion by 2020 [9].

These devices will have a range of applications such as environmental monitor-

ing, home and building automation, transportation, and medical and healthcare.

Because IoT device data is currently following cryptographic standards and using

encryption in end-to-end scenarios [26], post-quantum cryptography for embedded

devices will be necessary in the years to come.

The last few years have seen a tremendous surge in the study of post-quantum

cryptography. This is mainly due to the ongoing development of quantum comput-

ers and their ability to compromise currently used cryptographic protocols. The

problem with current public-key algorithms is that their security relies on one of

three hard mathematical problems: the integer factorization problem [23], the dis-

crete logarithm problem [5], or the elliptic curve discrete logarithm problem [19].

Shor’s algorithm can solve the integer factorization problem in polynomial time on

1

Chapter 1. Introduction

a quantum computer [25], which is substantially faster than the sub-exponential

runtime of the most efficient known algorithm running on a classical computer

[1]. Furthermore, quantum polynomial time algorithms for solving the hidden

subgroup problem over finite abelian groups have been shown [6] to weaken the

discrete logarithm and elliptic curve discrete logarithm problems.

In 2006, Rostovtsev et al. created a key agreement algorithm that relies on

the difficulty of computing isogenies between ordinary elliptic curves with the

aim of making it quantum-resistant [24]. While the best known classical algo-

rithm for solving this problem requires exponential time [7], its quantum variant

has been shown to recover keys in sub-exponential time [2]. In 2011, De Feo et

al. improved upon the work of Rostovtsev and created what is believed to be a

quantum-resistant key agreement algorithm whose security is based on the hard-

ness of finding isogenies between supersingular elliptic curves [13]. This algorithm

has the advantages that it can be built on top of many of the same primitives al-

ready in use for elliptic curve Diffie-Hellman and that it breaks the abelian group

structure, thus making it secure against the quantum attack on the hidden sub-

group problem. Currently, there are no known polynomial time algorithms that

can solve this problem and the best known quantum and classical algorithms are

both exponential time [4]. In 2016, Costello et al. of Microsoft Research released

an open-source library1 of SI Diffie-Hellman (SIDH) and key exchange (SIKE)

algorithms.

For our research, we modified this open-source library to target a deeply em-

bedded system with instruction set extensions and a reconfigurable finite-field

coprocessor originally designed to improve the performance of traditional elliptic

curve cryptography (ECC) [28]. It is our intent to showcase how SI algorithms

can be improved using these ECC optimizations. Furthermore, we modify the

1https://github.com/Microsoft/PQCrypto-SIDH

2

Chapter 1. Introduction

pre-existing coprocessor to use a wider datapath and show the performance im-

provement achieved.

The contributions of this paper are:

• Evaluation and optimization of SI algorithms on a deeply embedded system

across the p503, p751, and p964 primes

• Evaluation of instruction set extensions and a reconfigurable finite-field co-

processor developed for traditional ECC applied to SI algorithms, showing

6.3-7.5x and 38.7-45.3x speedups over portable C code, respectively, with

the highest speedups at larger prime sizes

• Modification of finite-field coprocessor from 32- to 64-bit datapath, showing

additional 2.65-2.95x speedup

• Resource usage of optimized embedded system on 2 different FPGA plat-

forms

• Comparison of optimized embedded system against 32- and 64-bit x86 sys-

tem, showing comparable performance on a cycle-by-cycle basis

3

Chapter 2

Related Work

In 2016, Costello et al. created an open-source library containing SIDH algorithms

and defined two different primes: p503 and p751. The library is implemented in

portable C as well as hand-tuned x86-64 (x64) assembly. The implementation

is notable because it uses constant-time algorithms for all operations, making it

resistant to timing and cache-timing side channel attacks. Results showed a 3x

speedup compared to other non-constant-time implementations at the time. Fur-

thermore, the finite-field arithmetic routines are algorithmically optimized to take

advantage of common processor architectures - data is accessed sequentially to

improve cache performance, bit-wise operations are used for constant-time oper-

ations, and loops are unrolled for improved branch prediction at the cost of code

size. Running on an Intel Haswell processor, the SIDHp751 algorithm was capable

of generating ephemeral public keys in 46 million cycles for Alice and 52 million

cycles for Bob, and shared secret computation took 44 million and 50 million

cycles, respectively [3]. While Costello et al. evaluate SIDH on a desktop/server

grade processor architecture with aggressive out-of-order execution, our work eval-

uates SIDH on a resource limited embedded architecture with different levels of

hardware acceleration.

4

Chapter 2. Related Work

Also in 2016, Koziel et al. investigated the efficiency of implementing SIDH on

an A8 and A15 processor with NEON SIMD extensions. Their studies produced

three new primes: p512, p768, and p1024. They discovered that affine coordi-

nate operations were faster in ARM devices than the Projective coordinates used

by Costello et al. Optimized assembly routines resulted in a 2x speedup over

a portable C implementation and were nearly 3x faster than other ARMv7 im-

plementations using the NEON extensions. Although the A8 and A15 are 32-bit

processors, they still fall into a higher performance category than the processor we

evaluate in this work. For example, the A8 is a dual-issue superscalar architecture,

and the A15 is a dual-issue out-of-order architecture. Furthermore, the NEON ex-

tensions fall into the Single Instruction Multiple Data (SIMD) class of data-level

parallelism, whereas we utilize a dedicated accelerator for finite-field arithmetic.

Koziel also presented a constant-time hardware implementation of SIDH synthe-

sized to a Virtex-7 FPGA. Hardware datapaths can be designed to take advantage

of a heavily parallelized workload in Fp2 , which forms the foundation of SI oper-

ations. By further replicating these arithmetic logic units, the computation of

large-degree isogenies was improved by 2x over the fastest SIDHp751 implemen-

tation at the time. The hardware implementation of SIDHp751 was capable of

generating ephemeral public keys in 10.6 and 11.6 milliseconds and compute the

shared secret key in 9.5 and 10.8 milliseconds for Alice and Bob, respectively

[18, 17]. This implementation is faster than ours in terms of raw performance

at the expense of large area (26-56k flops, 192-470 DSP blocks) and being tied

to a specific field size after synthesis. Our design is lighter weight (4.6-6k flops,

1-17 DSP blocks) and has the benefit of being software-configurable for any of the

proposed SI fields.

In 2017, Jalali et al. performed a rigorous study of different implementations

of SIDH on a 64-bit A57 processor for 125- and 160-bit quantum security levels.

Their optimized assembly routines resulted in a 5x speedup over other portable

5

Chapter 2. Related Work

ARMv8 implementations. Though experiments showed using affine coordinates is

more efficient in the final round of SIDH, it was concluded that Projective coordi-

nates showed better overall performance over the entire protocol. Specifically, over

larger finite-fields, Projective formulas show much better performance over affine

formulas [11]. The A57 is a superscalar, out-of-order core targeting the mobile

device market, and although it has SIMD extensions, Jalali et al. found that they

could achieve higher performance multiplication using the normal 64-bit datapath

without utilizing the SIMD extensions.

With the help of Jao in 2017, Costello et al. expanded the library to include

a SIKE algorithm and p964 was defined. At the time of this writing, optimized

implementations for p964 are not included in the library. The SIKE protocol uses

many of the same functions as SIDH and three hash functions instantiated with

the SHA-3 derived function cSHAKE256 [15], and was submitted to NIST as part

of the post-quantum cryptography standardization effort. Running on an Intel

Skylake processor with hand-tuned x64 assembly, the SIKEp751 algorithm was

able to generate an ephemeral public key in 31 million cycles and key encapsulation

and decapsulation took 50 million and 54 million cycles, respectively. In addition

to the software, a SIKE accelerator was written in VHDL and synthesized to a

Virtex-7 FPGA. Results showed a total key encapsulation mechanism (KEM) time

of 33.35 milliseconds. The same SIKE accelerator was synthesized using TSMC 65-

nm CMOS standard technology and CORE65LPSVT standard cell library. This

implementation resulted in a KEM time of 18.87 milliseconds [12]. While the SIKE

accelerator drastically improved the performance of the algorithm, it is designed

specifically for a single prime. Our implementation strikes a balance between

performance and area by using a small coprocessor to target the routines that

contribute most to computation time.

Later in 2017, Yoo et al. presented the first supersingular elliptic curve isogeny

6

Chapter 2. Related Work

digital signature algorithm. They have an open-source library1 containing portable

C code as well as hand-optimized x64 assembly. Interestingly, the library employs

the functions written by Costello et al. for finite-field arithmetic. Running on

an Intel Xeon processor with optimized assembly routines, the digital signature

algorithm using p751 took 123 million cycles to generate an ephemeral public key,

57 billion cycles to sign, and 37 billion cycles to verify. A significant fraction of

the cost incurred by the signing algorithm can be computed offline, in which case

the signing algorithm only needs to compute a hash function [30].

1https://github.com/yhyoo93/isogenysignature

7

Chapter 3

Evaluated Microarchitectures

For our work, we chose to evaluate SIDH and SIKE on an ultra-low energy em-

bedded platform, representative of a microarchitecture one might find in an IoT

device. The baseline processor has a 32-bit datapath similar to a PIC32 but has ad-

ditional Instruction Set Extensions (ISEs) for accelerating traditional ECC. The

fully-accelerated microarchitecture marries the baseline processor with a copro-

cessor specifically designed for finite-field arithmetic. The RTL for the embedded

platform was obtained from Targhetta et al. [28] who refer to the processor core

as “Pete” and the finite-field arithmetic coprocessor as “Monte.” The following

sections will describe in detail the evaluated microarchitectures, along with the

modifications we made in order to support the larger field sizes found in the SI

algorithms.

8

Chapter 3. Evaluated Microarchitectures

3.1 Embedded Core with Instruction Set Exten-

sions

The microarchitecture of Pete is a traditional 5-stage, in-order, RISC pipeline

with a 32-bit datapath. The integer multiplication unit lies outside of the pipeline

and uses special result registers in addition to the 32 general purpose registers.

Dedicated instructions move data between the result registers and the general pur-

pose registers, allowing multiplication to happen in parallel with other instructions

flowing through the pipeline. This facilitates an energy-efficient, multi-cycle 32x32

multiplication unit that employs a single 16x16 parallel multiplier instead of in-

stantiating a single-cycle, fully parallel multiplier. Even with a tightly nested

multi-precision multiplication loop, the extra latency of multiplication can be hid-

den with loop maintenance and data movement instructions.

On top of the base processor design, Targhetta et al. extended the multiplica-

tion unit to support integer multiply-accumulate, overflow accumulation, addition

direct to the accumulator, and shift accumulator operations. Accumulating in-

structions take one more cycle than a non-accumulating instruction. These ISEs,

adapted from the work of Groβschädl et al., use the special result registers as an

accumulator and were shown to increase the performance of non-constant time

traditional elliptic curve algorithms by a factor of 1.30 to 1.43 and energy effi-

ciency by a factor of 1.28 to 1.41 [8, 28]. In short, the ISEs allow intermediate

computation to remain within the accumulator, and consequently, improve the

efficiency of multi-precision addition and product-scanning multiplication.

Several instructions tailored to support binary fields — GF (2m) — are also

part of the architecture but were not used for this work. In keeping with the

theme of targeting a pre-existing design intended for use with traditional ECC,

none of the ISEs were modified, and the binary field-specific instructions were

9

Chapter 3. Evaluated Microarchitectures

Table 3.1: Core ISEs
Format Operation Latency (cycles)

maddu rs, rt {Ov,Hi, Lo} ← {Ov,Hi, Lo}+ rs ∗ rt 5
m2addu rs, rt {Ov,Hi, Lo} ← {Ov,Hi, Lo}+ 2 ∗ rs ∗ rt 5
addau rs, rt {Ov,Hi, Lo} ← {Ov,Hi, Lo}+ rs+ rt 3
sha {Ov,Hi, Lo} ← {0, Ov,Hi} 1

not removed from the RTL. In addition to the multi-cycle multiplication unit, a

small 2-bit counter branch predictor is included and functions primarily as a loop

predictor for the tightly nested arithmetic loops present in many cryptographic

algorithms.

The ISEs and their operations are detailed in Table 3.1 with respective la-

tencies. This instruction set extended architecture formed the baseline for our

implementation of the SI algorithms. Table 3.1 does not include the normal suite

of signed and unsigned integer multiplication/division instructions and GF (2m)

extensions that are also present in the core. These ISEs will be used in Algorithms

3, 4, 5, and 9 to accelerate multi-precision and finite-field arithmetic detailed in

Chapter 5.

3.2 Embedded Core with Coprocessor

In addition to the core ISEs, Targhetta et al. also designed a coprocessor tai-

lored for prime finite-field arithmetic. The coprocessor, colloquially referred to as

“Monte,” is depicted in Figure 3.1. The microarchitecture is implemented as a

multi-processing system such that the coprocessor shares memory with the micro-

processor, reducing potential performance bottlenecks common amongst bus-style

accelerators. Coprocessor instructions are fetched and partially decoded by Pete

and then forwarded to Monte via the coprocessor interface. Within Monte, copro-

10

Chapter 3. Evaluated Microarchitectures

Figure 3.1: Pete with Monte
The processor core with the prime finite-field coprocessor and shared memory.
W represents the machine width of Monte. Our work evaluates W = 32 and

W = 64.

cessor instructions are queued, enabling Pete to continue with the higher-level com-

putation while Monte works on the lower-level field math. At the center of Monte

is a Finite-Field Arithmetic Unit (FFAU) that computes three multi-precision op-

erations over prime finite-fields: addition, subtraction, and Montgomery multipli-

cation. Operand and result buffers store intermediate field elements and a Direct

Memory Access (DMA) engine allows the transfer of field elements between the

internal buffers and the shared memory. To allow the overlap of data movement

with computation, Monte uses a double buffering scheme for both operands and

results.

The coprocessor instructions and their operations are detailed in Table 3.2.

Monte follows the simple load-store model in which computation takes place on

field elements within the buffers, and separate instructions for loading and stor-

ing field elements to and from memory are provided. The first three instruc-

tions in Table 3.2 handle the loading of input operands and the prime into the

operand buffers. The next three instructions are the computation instructions,

and the Store is for storing the result back into memory. Algorithm 1 illustrates

the assembly routine that coordinates finite-field addition using the coprocessor.

11

Chapter 3. Evaluated Microarchitectures

Table 3.2: Monte Instructions
Format Description Operation

cop2lda rt Load A into operand buffer OpBuff[A] ← Mem[GPR[rt]]
cop2ldb rt Load B into operand buffer OpBuff[B] ← Mem[GPR[rt]]
cop2ldn rt Load N into operand buffer OpBuff[N] ← Mem[GPR[rt]]
cop2mul Modular multiplication ResultBuff ← A ∗B mod N
cop2add Modular addition ResultBuff ← A+B mod N
cop2sub Modular subtraction ResultBuff ← A−B mod N
cop2st rt Store result to memory Mem[GPR[rt]] ← ResultBuff
cop2sync Coprocessor 2 Sync Stall until Monte is idle
ctc2 rt,rd Move to control register cop2CR[rd] ← GPR[rt]

Figure 3.2: The Finite-Field Arithmetic Unit of Monte
Our work evaluates W = 32 and W = 64.

Subtraction and multiplication assembly routines are similar. There is no im-

plicit synchronization between the microprocessor and the coprocessor; all data

synchronization is performed through a cop2sync instruction that stalls the micro-

processor until the coprocessor is idle. The coprocessor is configured at runtime

with constants needed for Montgomery domain computation and with constants

that set the correct field size for multi-precision computation. The last instruction

in Table 3.2 is used for this configuration.

Figure 3.2 provides a zoomed in view of the FFAU, which is the primary

datapath within Monte. Notable features include a 32-bit multiply-add unit, buffer

address generation logic, and a microcoded control unit. The multiply-add unit

is a 3-stage pipelined arithmetic unit that in multiplication mode performs the

12

Chapter 3. Evaluated Microarchitectures

following computation: Result = OpA ∗ OpB + OpC + Carry, such that carry

is the upper 32-bit result from the previous operation. Note that the throughput

of the multiply-add unit is one operation per cycle, meaning a multiply-add can

start on every clock cycle but takes 3 clock cycles to complete. This type of

design lends itself nicely to multi-precision multiplication. In addition mode, the

multiply-add unit performs the following computation: Result = OpA + OpB +

OpC + Carry. The address generation logic blocks are simple, dedicated units

for loop maintenance within the tightly nested multi-precision computations. The

microcoded control unit orchestrates the arithmetic unit and address generation

logic to carry out the Coarsely Integrated Operand Scanning (CIOS) Montgomery

multiplication algorithm [16] in addition to modular addition and subtraction. It

should be noted that Monte’s datapath and control unit were specifically optimized

for the CIOS algorithm because modular multiplication is the primary operation to

optimize for any cryptographic scheme based on elliptic curves. This has to do with

the number of invocations of multiplications of O(n2) complexity, as compared to

O(n) for addition and subtraction.

Algorithm 1 Field Addition using Monte, c = a+ b mod n

Input:a, b ∈ Fp, n = Fp

cop2ldA a . load A operand buffer from pointer a using DMA
cop2ldB b . load B operand buffer from pointer b using DMA
cop2ldN n . In practice, ldN is omitted here; n is pre-loaded at initialization
cop2add
cop2stC c . store result from buffer to pointer c using DMA

Crucially, all Monte operations are constant-time by virtue of the way they

are implemented in microcode. Algorithm 2 is a pseudocode representation of the

internals of the coprocessor as it processes a cop2add instruction. This algorithm

is constant-time because it unconditionally processes the prime value subtraction

and only selects a buffer that contains the correct result. Previous work did not

construct higher-level constant time algorithms that used Monte, but this work

13

Chapter 3. Evaluated Microarchitectures

does as detailed in Chapter 5.

Algorithm 2 Constant-Time Modular Addition Using Monte

Input:a, b ∈ Fp, n = Fp

x← a+ b . Add operands into the first buffer
{borrow, x′} ← x− n . Subtract the modulus into the second buffer
if borrow then . a+ b < n, select the first buffer

c← x
else . a+ b ≥ n, select the second buffer

c← x′

end if

For our research, the architecture of Monte was only initially modified to in-

crease the size of the operand buffers to a suitable size for the p964 extension field.

The change needed to enable this functionality was sizing the operand buffers such

that they were ≥ 384 bytes in size - enough to hold a, b, and n operands up to

1024 bits in size. Note that the previous work using Monte only sized operand

buffers for up to a 521-bit field, the largest prime field standardized by NIST for

traditional elliptic curve cryptography [22]. In subsequent work, we increased the

datapath width to 64 bits wide to further accelerate the larger field sizes required

for the SI algorithms. The modifications required for the 64-bit datapath were

minimal. The FFAU core, the coprocessor top level buses, and the configuration

registers were extended to 64 bits. We did not modify any microcode or control

logic.

14

Chapter 4

Underlying Mathematics

In this chapter we first give a brief description of the underlying operations used

in SI algorithms. Next we will “zoom in” and discuss some of the optimizations

that can be made to the algorithms. We will then provide a high-level description

of the SIDH and SIKE protocols. Our contributions to the finite-field arithmetic

implementation are discussed in Chapter 5, but here we provide the context for

their use in the class of SI algorithms.

4.1 Overview of SI Operations

For traditional ECC, the primary computational burden is scalar point multiplica-

tion over a single elliptic curve, while for SIDH and SIKE the primary computation

is a large-degree isogeny from one supersingular elliptic curve to another. Figure

4.1 illustrates the computational hierarchy of the protocols, showing that large-

degree isogenies are computed using many small-degree isogeny evaluations along

with scalar point multiplications. Finally, scalar point multiplications and small-

degree isogenies are evaluated using finite-field arithmetic. The primary takeaway

15

Chapter 4. Underlying Mathematics

Figure 4.1: Supersingular Elliptic Curve Isogeny Algorithm Computational Hier-
archy

here is that, like traditional ECC, SIDH and SIKE are built on top of finite-field

arithmetic. Our measurements in Table 7.3 show that, even for highly acceler-

ated architectures, 89-94% of the key generation computation time is spent in

finite-field arithmetic routines. Thus, we can apply many of the same hardware

acceleration techniques used for traditional ECC to SIDH and SIKE. The question

our research attempts to answer is: “how well do these techniques carry over?”

The implementation operates over finite-field Fp2 with a characteristic of the

form p = `eAA `
eB
B f ± 1, where `A and `B are small primes and f is a cofactor such

that p is prime. A Montgomery curve Ea,b/Fp2 is a special form of an elliptic curve

and is defined to be the set of points P = (x, y) of solutions in Fp2 to the equation

by2 = x3 + ax2 + x, as well as the point at infinity ∞. An isogeny φ : E1 → E2 is

a group homomorphism from E1 to E2, and isogenies of Montgomery curves can

be efficiently computed using elliptic curve point arithmetic. The j-invariant of

the Montgomery curve defined by the implementation is computed as j(Ea,b) =

256(a2−3)3
a2−4 [3, 12, 13].

The computational burden of the SIDH and SIKE protocols is in the Mont-

gomery ladder and large-degree isogeny calculations. Let {P,Q} be two points

in Ea,b and {m,n} be two random integers both less than `e. The SI protocols

require computation of a random point mP + nQ in the kernel of the isogenies.

16

Chapter 4. Underlying Mathematics

This is equivalent to P + (m−1n)Q, which can be efficiently computed using the

double-and-add technique. The downside to using this standard technique is that

it is vulnerable to simple power analysis (SPA) and is non-constant time. To avoid

SPA and timing side channels, the significantly slower Montgomery ladder is used

to compute the point. De Feo et al. optimized the Montgomery ladder routine to

take advantage of the fact that, on each iteration, the values xQ, (x + 1)Q, and

P + xQ are stored for x equal to the leftmost bits of m−1n. By using differential

addition of points on a Montgomery curve, the ladder can be made comparable in

efficiency to double-and-add on twisted Edwards curves. Costello et al. implement

LADDER3PT : (x(P), x(Q), x(Q − P), a,m) → x(P + mQ) as specified by De

Feo [13, 3].

The SI protocols also require calculation of φ : E0 → En, where φ = φn−1◦· · ·◦

φ0 is a large-degree isogeny composed of a chain of n isogenies. Let φi : Ei → Ei+1,

then Ei+1 and the isogeny φi can be computed using Vélu’s formulas [21]. De Feo

et al. provide a detailed description of the computational structure of the large-

degree isogeny and define a well-formed strategy to reduce the number of scalar-

point multiplications and isogeny evaluations needed. Costello et al. generalized

this further with a MAGMA1 script that computes the optimal strategy given the

weights of computing a scalar point multiplication versus evaluating an isogeny

[13, 3].

4.2 SI Diffie-Hellman (SIDH)

The protocol fixes Montgomery curve E0/Fp2 : y2 = x3 + x and bases {PA, QA}

and {PB, QB} as public parameters. To compute her public key, Alice chooses two

secret integers mA, nA < `eAA and computes RA using the LADDER3PT function.

1http://magma.maths.usyd.edu.au/magma/

17

Chapter 4. Underlying Mathematics

Her secret key is computed as φA : E0 → EA with kernel RA, and her public key is

EA together with the image points {φA(PB), φA(QB)}. Bob goes through the same

process with the A and B subscripts swapped. Alice and Bob must send two sets

of information to ensure non-commutative isogenies. This property makes SIDH

different from other Diffie-Hellman-like key agreement protocols, but this property

is what breaks the abelian group structure. To compute the shared secret, Alice

uses her secret integers and Bob’s public key to compute φ′A : EB → EBA whose

kernel is the point φB(RA). Bob computes EAB in the same way. Because EAB and

EBA are isomorphic, Alice and Bob can compute a shared secret as the common

j-invariant j(EAB) = j(EBA) [3].

4.3 SI Key Encapsulation (SIKE)

SIKE allows Alice to encrypt a secret key before sending to Bob. The SIKE

protocol uses the same public parameters used in SIDH for elliptic curve and

isogeny calculations. The protocol also fixes n ∈ {192, 256, 320} to represent the

length of random bitstrings and hash outputs. Let G be a function that hashes

a random bit string m ∈ M = {0, 1}n concatenated with a public key pk. The

function F is used as a key derivation function (KDF) on the j-invariant. H is

used to derive the k-bit shared key K from a random bit string m and ciphertext

c. All three hash functions are instantiated with the NIST-specified function

cSHAKE256 [12, 15].

Here we’ll focus on the public-key encryption (PKE) scheme used by the pro-

tocol, which uses the operations already established for SIDH. First, let’s assume

that Alice and Bob have each already generated a public-private key pair offline.

Alice will compute the common j-invariant using Bob’s public key and her own pri-

vate key. Alice can now encrypt message m and produce ciphertext c1 = F (j)⊕m.

18

Chapter 4. Underlying Mathematics

Alice sends the pair (c0, c1) to Bob, where c0 represents Alice’s public key. Bob

is able to decrypt the ciphertext and retrieve the message m = c1 ⊕ F (j) after

computing the j-invariant [12].

The key encapsulation mechanism (KEM) can be built by applying a transfor-

mation to the PKE. Once again, we will assume that both Alice and Bob have each

generated ephemeral keys. Alice will now choose a value for m and generate the

(c0, c1) pair to send to Bob as she did using PKE. However, rather than deriving

c0 from her private key, Alice will derive it from the random value G(m||pk). The

shared secret can be computed using H(m||(c0, c1)). Upon receipt of (c0, c1), Bob

can decrypt the message in the same manner as PKE to retrieve m′. Assuming

there are no errors, Bob can compute the same shared secret using H(m′||(c0, c1)).

With the shared secret, Bob can decrypt any messages Alice may have sent [12].

19

Chapter 5

Implementation and

Optimizations

Because SIDH and SIKE are composed of elliptic curve and isogeny operations

built on top of finite-field arithmetic, the use of ISEs and a finite-field coprocessor

should naturally improve the performance of the protocols. In this chapter, we

give an overview of the algorithmic optimizations incorporated in the SI library,

then describe how we modified the library to use instruction set extensions and

the coprocessor.

5.1 Algorithm Optimizations

Costello et al. wrote the library to use fast constant-time algorithms for elliptic

curve operations. Constant time in this context means that the execution time of

an algorithm is not dependent on the input. Therefore, no secret information is

leaked under a timing or cache-timing attack.

20

Chapter 5. Implementation and Optimizations

One design decision that led to improved performance was in the selection of

the finite-field characteristic. For efficient isogeny calculations, the parameters

`A = 2, `B = 3, f = 1 were used by the implementation. The parameters eA, eB

were carefully chosen such that the difference between Alice and Bob’s order was

minimized (2eA ≈ 3eB) in order to balance the computational cost of the protocols.

This proved to be convenient for the 4-isogeny calculations because eA
2
≈ eB. Ad-

ditionally, for p503, p751, and p964, the bit length is slightly less than a multiple of

64 which causes there to be a number of zero bits at the top of the most significant

word. In order to improve the performance of the constant-time implementation,

an additional bit of the most significant word is used to allow intermediate re-

sults in the range [0, 2p). A constant-time modular correction routine is used to

move a Fp term into the range [0, p). The primes chosen have a form that fa-

cilitates fast modular reduction. The Montgomery reduction [20] residue for an

input a < pR can be computed using c = (a+p(ap′ mod R))
R

for Montgomery con-

stants R and p′ = −p−1 mod R. The special primes result in p′ − 1 containing

approximately n
2

zero words in the lower half, where n is the length of the prime

in words. These zero words cut the number of multiplications in the reduction

algorithm in half. A Comba-based algorithm that separates the multiplication

from the modular reduction was used, which allowed the multiplication routine

to be implemented using Karatsuba. All these optimizations drastically improve

the performance of the modular multiplication which, as seen in Table 7.3, is the

largest bottleneck in elliptic curve arithmetic. In the case of p751, the modular

reduction showed a speedup of 1.85x when applying these optimizations to the

algorithm [3].

In traditional ECC, a widely-used technique involves avoiding inversions by

working in Projective space (X : Y : Z). The implementation uses these same

optimizations, but also works projectively with curve coefficients. Ea,b can also be

written as EA:B:C : By2 = Cx3 + Ax2 + Cx such that a = A
C

and b = B
C

. The j-

21

Chapter 5. Implementation and Optimizations

invariant can then be computed as j(EA:B:C) = 256(A2−3C2)3

C4(A2−4C2)
, which does not depend

on the B coefficient. Using projective space in conjunction with Montgomery

curves leads to efficient point arithmetic that allows computation dependent only

on (X : Z), and new isogeny arithmetic that depends only on (A : C). Using these

optimizations, only one inversion is required when generating ephemeral public

keys or computing the shared secret. Field inversions can be easily implemented

using the binary GCD algorithm, which is not constant-time. Alternatively, by

capitalizing on Fermat’s little theorem and exponentiation by squaring, a constant-

time inversion can be performed. This method is approximately 9x slower than

using binary GCD, but was reported to have less than a 1% impact on the overall

latency of SIDH [3].

Other optimizations to the elliptic curve and isogeny algorithms include an

efficient Montgomery point tripling function used in the construction of large-

degree isogenies, a 4-isogeny function that was found to be faster than computing

a pair of 2-isogenies, and the use of base-field and trace-zero subgroups reduce

the size of the public parameters. The implementation strikes a balance between

efficiency and simplicity of design [3]. Our research leverages the implementation

of these high level routines when executing the protocol. Next, we discuss our

contributions to the finite-field arithmetic.

5.2 ISE Optimizations

Multi-precision integers are represented as an array of unsigned integers. Each

integer is the size of a processor word (32 bits on Pete), and multi-precision integer

routines operate on these word-sized data. Using the extended instruction set, we

were able to perform multi-precision integer addition and subtraction in fewer

data movement operations with the addau instruction (see Table 3.1). Algorithm

22

Chapter 5. Implementation and Optimizations

3 shows the multi-precision addition function specific to Pete using a pseudocode

representation.

Algorithm 3 Multi-precision Addition

procedure MpAdd(a,b,c,n) . c = a+ b, where n is the array length in words.
ACC ← 0 . Clear the accumulator.
for i in 0 to n− 1 do

ACC ← ACC + ai + bi . Using the addau instruction.
ci ← ACCLO . Move data out of the accumulator into c.
Shift ACC . Using the sha instruction.

end for
return ACCLO . Carry out bit (0 or 1).

end procedure

Though ISEs do not make provisions for a subtract accumulator instruction, we

can still accelerate subtraction and reduce the number of data movement instruc-

tions by using the addau instruction. By taking advantage of two’s complement

representation for negative integers, we can compute a− b = a+ (−b). Algorithm

4 shows the multi-precision subtraction function specific to Pete. This function

is constant-time as the if-else statement can be implemented as a bit-wise XOR

operation.

Algorithm 4 Multi-precision Subtraction

procedure MpSub(a,b,c,n) . c = a− b, where n is the array length in words.
ACC ← 1 . Load the accumulator with 1.
for i in 0 to n− 1 do

ACC ← ACC + ai + bCi . bCi denotes the one’s complement of bi.
ci ← ACCLO . Move data out of the accumulator into c.
Shift ACC . Using the sha instruction.

end for
if ACCLO = 1 then

return 0
else

return 1
end if . If-else statement can be implemented with bit-wise XOR.

end procedure

23

Chapter 5. Implementation and Optimizations

Multi-precision multiplication is not as straightforward, with a larger trade

space of potentially optimal algorithms. The optimized x64 implementation of

SIDH written by Costello et al. uses the Karatsuba method for fast multi-precision

multiplication in software, but this proved to be inefficient in a constant-time

implementation using our hardware. Karatsuba trades one multi-precision mul-

tiply of quadratic complexity for additional additions and subtractions of linear

complexity. Using our hardware and the maddu instruction, the multi-precision

multiplications required by Karatsuba could be performed quickly. However, the

instructions needed to move the data into and out of the accumulator created a

“hiccup” in the dataflow of the algorithm. Instead, we settled on using a product

scanning algorithm [10] that allowed us to keep the result stored in the accumula-

tor. This led to fewer data movement operations, allowed us to write tight loops

efficiently, and showed improved performance over Karatsuba. Algorithm 5 shows

what the multi-precision multiplication algorithm looks like targeted for Pete.

Algorithm 5 Multi-precision Multiplication

1: procedure MpMul(a,b,c,n) . c = ab, where n is the array length in words.
2: ACC ← 0 . Clear the accumulator.
3: for i in 0 to n− 1 do . Lower words of result.
4: for j in 0 to i do
5: ACC ← ACC + ajbi−j . Using the maddu instruction.
6: ci ← ACCLO . Move data out of accumulator into c.
7: Shift ACC . Using the sha instruction.
8: end for
9: end for
10: for i in n to 2n− 2 do . Upper words of result.
11: for j in i− n+ 1 to n− 1 do
12: ACC ← ACC + ajbi−j
13: ci ← ACCLO

14: Shift ACC
15: end for
16: end for
17: c2n−1 ← ACCLO . Store most significant word of result.
18: end procedure

24

Chapter 5. Implementation and Optimizations

For multi-precision squaring, the original library code simply called the MpMul

routine with the input duplicated. Unfortunately, this method misses out on

a slight optimization. Looking at Algorithm 5, if b = a then it follows that

aibj + ajbi = aiaj + ajai = 2aiaj. By using the m2addu instruction, we can

eliminate half of the multiplication instructions. Algorithm 9 shows the squaring

algorithm using the m2addu instruction on Pete.

Up to now we have not discussed the latencies associated with the extended

instructions. For example, the maddu instruction requires five clock cycles to com-

plete. However, because the accumulator and the arithmetic units that act on it

lie parallel to the processor’s regular datapath, instructions that do not use the

accumulator can be overlapped. Therefore, the latency of multi-cycle accumulator

instructions can be hidden behind the pointer increments and memory reads that

prepare the next accumulator operation. This leads to efficient algorithms that

reduce the number of data movement instructions. Algorithm 6 “zooms in” on the

first loop of the MpMul routine (lines 3-9) and shows the interleaving of instruc-

tions. The body of the innermost loop contains one accumulator instruction (line

10) that is allowed to execute in parallel with the other instructions. The pro-

cessor will not stall during execution of this loop. However, once the termination

condition of this loop is met, the processor will continue to the mflo instruction

(line 14) and must stall until the result is ready. In this case, the processor must

stall for only one clock cycle.

Finite field operations can now be built using the multi-precision functions.

Constant-time field addition involves three passes through the operands. The first

pass performs the multi-precision addition, the second pass subtracts the modulus

value, and the final pass performs a constant-time conditional add of either the

modulus value or zero to ensure that the result is in [0, p). Algorithm 7 shows

the constant-time field addition using Pete. This algorithm is still constant-time

25

Chapter 5. Implementation and Optimizations

Algorithm 6 Multi-precision Multiplication in Assembly

1: loop1: . For i in 0 to n− 1 do
2: addu $t0,$a1,$0 . t0← address of a0
3: addu $t1,$a2,$t4 . t1← address of bi
4: addu $t9,$a1,$t4
5: addiu $t9,$t9,4 . t9← loop termination value
6: loop2: . For j in 0 to i do
7: lw $t5,0($t0) . t5← aj
8: lw $t6,0($t1) . t6← bi−j
9: addiu $t0,$t0,4 . Increment a pointer.
10: maddu $t5,$t6 . ACC ← ACC + ajbi−j (5 cycles remaining)
11: addiu $t1,$t1,-4 . Decrement b pointer (4 cycles remaining)
12: bne $t0,$t9,loop2 . If j 6= i go to loop2, otherwise continue (3 cycles

remaining)
13: addu $t2,$a0,$t4 . t2← address of ci (2 cycles remaining)
14: mflo $t1 . t1← ACCLO (stall for 1 cycle)
15: sha . Shift ACC
16: addiu $t4,$t4,4 . Increment i
17: sw $t1,0($t2) . ci ← ACCLO

18: bne $t4,$v1,loop1 . If i 6= n− 1 go to loop1, otherwise continue

despite the if-else statement as the conditional add can be achieved using the

bit-wise AND operator.

All the finite-field functions are implemented using the multi-precision func-

tions. By improving the performance of the multi-precision functions with the

Algorithm 7 Fp Addition

procedure FpAdd(a,b,c) . c = a+ b mod p, where p is intrinsic to the
protocol.

MpAdd(a, b, c, Np) . Np is the length of p in words.
mask = 0−MpSub(c, p, c, Np) . Subtract the prime.
if mask = 0 then

MpAdd(c, 0, c, Np)
else

MpAdd(c, p, c, Np)
end if . Conditional addition of p.

end procedure

26

Chapter 5. Implementation and Optimizations

extended instruction set, the improvements will propagate up into the higher-level

routines.

5.3 Coprocessor Optimizations

Using Monte, the field additions, subtractions, and multiplications are all constant-

time by design of the coprocessor’s microcode and datapath. The double buffer-

ing scheme allows execution of modular arithmetic while simultaneously queuing

operands for the next operation. The prime that defines the finite-field remains

static throughout the protocol, so the Montgomery constant used by Monte and

the prime only need to be loaded at initialization time. This leads to a slight

improvement compared to reloading the prime in each of the software routines.

Because Monte performs modular multiplication using the CIOS algorithm, the

reduction is interleaved with the multiplication. This eliminates the need for a

software modular reduction routine. Additionally, Monte always outputs values

in the range [0, p), so there is no longer a need to call the correction routine.

This drastically improves the performance of the protocol as every aspect of the

finite-field arithmetic is improved. Algorithm 1 shows an example of what the

field math looks like using Monte.

Monte is not capable of natively computing modular division or inversion. In-

stead, inversion is calculated via Fermat’s little theorem using Monte to accelerate

modular exponentiation. Division can be calculated via inversion and multiplica-

tion: x
y

= xy−1. However, the library eliminates as much modular division in

the algorithm as possible, and a fast FpDiv2 is used by the protocols. Using this

algorithm, division can be computed without the need for inversion. Algorithm 8

shows how the division-by-2 algorithm operates.

The algorithm performs finite-field division by 4 by chaining two calls to the

27

Chapter 5. Implementation and Optimizations

Algorithm 8 Divide by 2 ∈ Fp

procedure FpDiv2(a,c) . c = a
2

mod p
if a0 is odd then

MpAdd(a, p, c,Np) . Np is the length of p in words.
else

MpAdd(a, 0, c, Np)
end if . Conditional addition of p.
MpShiftR1(c,Np) . Multi-precision shift-right-by-1 (divide-by-2).

end procedure

FpDiv2 function back-to-back. Though the use of Monte renders instruction set

extensions in the multi-precision functions moot, the MpAdd function used in

FpDiv2 can still be improved. The MpShiftR1 function is trivial to implement

and it does not use ISEs. Using Monte, the performance improvement of using

ISEs becomes a small percentage of the overall improvement. However, because

the multi-precision functions are still required by the underlying operations, the

ISEs can still improve performance.

28

Chapter 6

Methodology

In this chapter we will describe the build process used to collect data for two dif-

ferent implementations provided by the open-source library. One implementation

is portable C compiled into x86 assembly. The other implementation is mixed

C/assembly that is compiled into x64 assembly.

The library comes with a build script that makes compiling for the different

architectures simple. Table 6.1 details the command used to build for the two

provided architectures. We used gcc version 4.4.7 to compile the open-source

library targets. The x86 target compiles portable C code into 32-bit instructions.

The x64 target compiles mixed C/assembly into 64-bit assembly with optimized

routines for the finite-field math. At the time of writing, we did not have a

processor capable of executing the Intel adx (multi-precision add-carry) and mulx

(unsigned multiply without affecting condition codes) instructions. Because these

instructions were new at the time of writing the library, the code allows their use

to be disabled. As a result, our reported numbers for the assembly-optimized x64

will be slower than previous publications. The timing data for x86 and x64 was

gathered on an Intel Xeon 2.9GHz processor with 64GB RAM, 32KB L1D/L1I

29

Chapter 6. Methodology

Table 6.1: GNU Make Options for x86/x64
Architecture Build Command

x86 make CC=gcc ARCH=x86 OPT LEVEL=GENERIC
OPT=-O3 SET=EXTENDED

x64 make CC=gcc ARCH=x64 OPT LEVEL=FAST
OPT=-O3 SET=EXTENDED USE ADX=FALSE
USE MULX=FALSE

cache, 256KB L2 cache, and 2MB L3 cache.

Code for Pete is built using a custom toolchain compiled using crosstools-ng

version 1.22. The Pete compiler is gcc version 5.2.0 and customized to recognize

the extended instruction set. The Pete timing data was gathered on the Pete mi-

croprocessor synthesized to a Zedboard FPGA and represents the portable C code

compiled with our custom toolchain; this served as the baseline to compare our

future improvements against. PeteISE denotes the build for which the finite-field

and multi-precision arithmetic is optimized with the ISEs described in Table 3.1.

PeteMonte32 denotes the build that uses both ISEs and Monte with an unaltered,

32-bit datapath. PeteMonte64 denotes the build that uses both ISEs and Monte

with datapath modifications from 32- to 64-bit.

The cycle counts reported in Chapter 7 were collected by running the tests

contained in the library. The tests are provided to benchmark the various opera-

tions used in the algorithms and check the correctness of the implementations. For

the finite-field and elliptic curve and isogeny benchmarks, the x86 and x64 builds

perform 100,000 bench loops and 100 test loops. For each of the Pete builds we

used 100 bench loops and test loops. Because Pete does not have a data cache, we

saw only small variations between the execution times when looping and decided

that 100 loops was enough to filter out the noise. With 100 test loops, we are able

to show the same level of fidelity as the provided implementations.

30

Chapter 7

Experimentation and Results

In this chapter, we benchmark the implementations over the finite-field arithmetic

functions, elliptic curve and isogeny functions, and finally the SIDH and SIKE

protocols. By showing the benchmark times for p503, p751, and p964, we hope to

showcase the following:

• hardware built to accelerate traditional ECC at the finite-field level can be

easily adapted to accelerate SIDH and SIKE

• well-designed ISEs can accelerate software-only SI implementations with

high payoff for minimal logic

• with a reconfigurable coprocessor, an embedded system can perform com-

petitively with high-end processors

• higher levels of acceleration have a lower scaling factor for larger field sizes

compared to unaccelerated architectures; increasing the security factor on a

system with acceleration has a lower performance penalty than on a non-

accelerated system

31

Chapter 7. Experimentation and Results

7.1 Fp and Fp2 Arithmetic Evaluation

Table 7.1 shows the timing measurements for the p751 finite-field algorithms.

Primes p503 and p964 are omitted for brevity but are included in Table A.1 in

the Appendix. The Pete column represents a portable C implementation com-

piled for the Pete processor. The PeteISE column represents a mixed C/assembly

implementation that uses the ISEs for multi-precision and finite-field operations.

Finally, the PeteMonte32 and PeteMonte64 columns represent mixed C/assembly im-

plementations that coordinate finite-field operations with the coprocessor with a

32- and 64-bit datapath, respectively.

As with ECC, multiplication and squaring are the most significant operations

in the SI algorithms due to their higher computational complexities, e.g. O(n2)

as opposed to O(n) for addition and subtraction. As seen in Table 7.1, the multi-

plication time for the baseline Pete implementation is nearly 3x slower than that

of the x86 build, but the PeteISE multiplication is over 2x and 7x faster than the

x86 and baseline Pete builds, respectively. For Monte, the 32-bit variant is a little

over 2x slower than the optimized x86 64-bit build (x64), but the 64-bit variant

is 1.64x faster than the x64 build. For squaring, only the PeteISE architecture

takes advantage of a separate squaring algorithm facilitated by the accumulator

in conjunction with the m2addu instruction shown in Table 3.1. In such case, we

see up to a 12% reduction over multiplication for p751.

When looking at the extension field level, we see that x64 closes the perfor-

mance gap, i.e. PeteMonte64 GF (p7512) multiplication is only 1.2x faster than that

of x64. The reason for this is that PeteMonte64 does not take advantage of some

mathematical optimizations, such as lazy reduction, at the extension field level.

Instead, the design of the accelerator slightly favors simplicity over efficiency and

reduces the results mod p for every field math operation. This fact also contributes

32

Chapter 7. Experimentation and Results

Table 7.1: Field Math Cycle Count
Op x86 x64 Pete PeteISE PM32 PM64

p751

Fp Add 591 63 1,413 952 79 43
Fp Sub 378 52 977 653 79 43
Fp Mul 23,102 667 75,650 10,164 1,378 406
Fp Sqr † † † 9,075 † †
Fp Red 9,533 268 30,320 5,295 5,317 5,319
Fp Inv 20,788,481 591,978 67,989,937 8,328,377 1,262,795 378,107
Fp2 Add 1,179 117 2,816 1,904 158 86
Fp2 Sub 781 96 1,944 1,308 158 86
Fp2 Mul 61,496 1,831 198,316 25,610 4,649 1,517
Fp2 Sqr 47,065 1,409 153,107 21,594 3,080 1,004
Fp2 Inv 20,870,580 594,527 68,294,317 8,368,154 1,268,626 379,918

† Optimized implementation unavailable

to the smaller buffer sizes within Monte.

7.2 Elliptic Curve Arithmetic Evaluation

Table 7.2 shows the timing measurements for elliptic curve operations over the

GF (p7512) field across the differing architectures. Primes p503 and p964 are

omitted for brevity but are included in Table A.2 in the Appendix.

Table 7.2: EC Operation Cycle Count
Op x86 x64 Pete PeteISE PM32 PM64

p751

2P 344,280 10,615 1,108,823 152,076 25,361 8,417
3P 675,372 20,669 2,175,303 302,112 49,431 16,479
get3isog(P) 281,556 9,497 895,004 142,788 20,899 7,375
eval3isog(P) 344,389 10,609 1,108,810 152,060 25,376 8,420
get4isog(P) 193,859 6,203 625,422 95,316 13,096 4,456
eval4isog(P) 470,043 14,615 1,510,109 206,492 34,962 11,610

33

Chapter 7. Experimentation and Results

7.3 SIDH Evaluation

Figure 7.1 illustrates the clock cycle measurements of the entire SIDH protocol

over each of the primes for the various architectures we evaluated. Further details

of the exact clock cycle timings for each protocol component are included in Table

A.3 in the appendix. It should be noted that we did not include results for p964 on

the x64 target because assembly optimized routines for p964 do not yet exist. Pete

(without ISEs) took 4x the clock cycles of an x86 processor, and nearly 100x that

of an x64 over each of the primes. By redesigning the finite-field operations to use

the ISEs, we saw a speedup of approximately 6x over the portable implementation.

PeteISE showed better performance than that of the x86 build representative of a

32-bit desktop processor.

With the addition of Monte we saw another 7x improvement over that of

PeteISE. This is approximately a 42x speedup over the portable implementation.

Though Monte renders modifications to the field math routines moot, the ISEs

still improved the multi-precision integer routines. After modifying Monte to have

a 64-bit datapath we saw another 2.97-3.17x speedup over the 32-bit datapath.

Close examination of Figure 7.1 shows that the Pete and Monte architectures

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

x86
Pete

PeteISE

x86
Pete

PeteISE

x86
Pete

PeteISE

C
lo
c
k

C
y
c
le
s

*
1
0
6 A Key Gen

A Share
B Key Gen
B Share

p964p751p503

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

x64
PM32

PM64
x64

PM32
PM64

PM32
PM64

C
lo
c
k

C
y
c
le
s

*
1
0
6 A Key Gen

A Share
B Key Gen
B Share

p964p751p503

Figure 7.1: Millions of Clock Cycles vs. Field Size of SIDH Algorithms
x86, Pete running portable C, and Pete with ISEs running assembly optimized
code (left) and x64, Pete with Monte32, and Pete with Monte64 (right). Note x64
assembly optimized code for p964 does not exist and was omitted.

34

Chapter 7. Experimentation and Results

Table 7.3: CPU Time of Finite-Field Arithmetic for Alice’s SIDH Key Generation
on PeteMonte64

GF (p) Operation p503 p751 p964

Addition 12.7% 10.13% 8.35%
Subtraction 8.82% 7.04% 5.8%
Multiplication 68.06% 75.65% 80.49%

Total 89.58% 92.82% 94.64%

scale out to larger key sizes better than the baseline Pete and even slightly better

than Pete with ISEs. In fact, Monte64 scaling is on par with the optimized x64

implementation going from p503 to p751. We expect similar results when we

evaluate p964 on the optimized x64 platform. In order to view the clock cycle

times for p503, p751, and p964 on all platforms, Figure 7.2 plots the results using

a logarithm scale. This demonstrates the significant levels of acceleration provided

by Monte32 and Monte64.

Table 7.3 shows the percentage of time spent in the field math for the imple-

mentation accelerated with Monte64. As shown, even the accelerated field math is

taking up a significant portion of the computation time, which indicates, according

to Amdahl’s Law, that this architecture could possibly benefit from even greater

hardware acceleration. We also see an expected trend of a higher percentage of

field math computation with larger field sizes.

35

Chapter 7. Experimentation and Results

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

503
751

964

C
lo
c
k

C
y
c
le
s

Field Size

x86
x64
Pete
Pete_ISE
Pete w/ Monte32
Pete w/ Monte64

Figure 7.2: Millions of Clock Cycles vs. Field Size in Log Scale Across Architec-
tures

Note x64 assembly optimized code for p964 does not exist and was omitted.

7.4 SIKE Evaluation

Figure 7.3 illustrates the clock cycle measurements of the SIKE algorithms over

each of the primes for the different architectures. Refer to Table A.4 in the ap-

pendix for a full list of our experimental results for SIKE. The improvement factors

for each of the Pete iterations are approximately the same as those observed in

the SIDH protocol. However, of notable importance is the fact that x64 is only

slightly slower than Monte64. In the case of SIKE, the SHA-3 computations are

not accelerated or optimized for Pete, allowing the higher performance x64 to

further close the performance gap.

36

Chapter 7. Experimentation and Results

 0

 10000

 20000

 30000

 40000

 50000

 60000

x86
Pete

PeteISE

x86
Pete

PeteISE

x86
Pete

PeteISE

C
lo
c
k

C
y
c
le
s

*
1
0
6

Key Gen
Encapsulation
Decapsulation

p964p751p503

 0

 200

 400

 600

 800

 1000

 1200

x64
PM32

PM64
x64

PM32
PM64

PM32
PM64

C
lo
c
k

C
y
c
le
s

*
1
0
6

Key Gen
Encapsulation
Decapsulation

p964p751p503

Figure 7.3: Millions of Clock Cycles vs. Field Size of SIKE Algorithms
x86, Pete running portable C, and Pete with ISEs running assembly optimized
code (left) and x64, Pete with Monte32, and Pete with Monte64 (right). Note x64
assembly optimized code for p964 does not exist and was omitted.

7.5 Code Size

Table 7.4 shows the compiled code size of the SIDH and SIKE libraries. The sizes

reported are those of PeteISE. In each case, PeteMonte32 and PeteMonte64 reduce the

sizes by approximately 1kB. The code size of p964 is smaller than that of p751

because of the unoptimized inversion routine used in the case of p964. Rather

than performing aggressive loop unrolling, a small loop is used to perform the

exponentiation by squaring. The main difference between the SIDH and SIKE

libraries is in the cSHAKE256 hash function, which is approximately 11kB in size.

Table 7.4: SI Library Code Size (kB)
Library p503 p751 p964

SIDH 20 22 20
SIKE 32 34 33

37

Chapter 7. Experimentation and Results

7.6 FPGA Implementation

Pete and Monte are designed to be synthesizable to a number of targets. Table 7.5

shows the resources consumed by the various studied architectures on two different

Xilinx parts. Of particular note are the DSP primitive numbers; the Pete core

only uses 1 16x16 multiplier to implement all of its ISA extensions. As the level of

hardware acceleration increases, the DSP numbers scale accordingly. The FFAU

core within the Monte accelerator synthesizes into 4 and 16 primitives in pipelined

32x32 and 64x64 configurations.

Table 7.5: Hardware Resource Usage
Primitive PeteISE PeteMonte32 PeteMonte64 PeteMonte64

Zynq 7Z020 Kintex 7K325T

LUTs 4685 5403 6074 6603
FFs 2944 3426 3700 3802
BRAM36 33 43 47 46
BRAM18 1 3 1 0
DSP 1 5 17 17

38

Chapter 8

Conclusion

We analyzed the new class of SI algorithms on a deeply-embedded processor and

compared it to 32- and 64-bit x86 implementations representative of a desktop

processor. After first compiling a constant-time portable C version of the open-

source SI library, our results showed that a single key generation took over a billion

cycles on Pete over all the primes analyzed. By modifying the finite-field and multi-

precision routines to use the ISEs, we saw an improvement of 6.3-7.5x compared

to the portable C implementation. With the addition of Monte32, results showed

a 38.7-45.3x speedup over the portable C implementation. After upgrading to

Monte64, the performance improved another 2.65-2.95x over using Monte32. Each

of these improvements maintained constant-time algorithms. Monte64 showed

better performance than an optimized 64-bit x86 implementation on a cycle-by-

cycle basis.

Our design is unique in that Monte is small and completely reconfigurable in

software. That is, it can be tailored for each prime extension field at initialization

time and does not require resynthesis. This contrasts the SIDH and SIKE acceler-

ators that others developed [17, 12], which are capable of achieving speed records

39

Chapter 8. Conclusion

at the cost of a large area and inflexibility of design.

The ISEs and Monte were originally designed to optimize traditional ECC.

Though we made some modifications to the design of Monte, we showed the per-

formance improvements the original ECC optimizations had on the SI algorithms.

We believe current ECC implementations could be redesigned to use the quantum

secure SI algorithms and still leverage existing optimizations.

8.1 Future Work

The extension of prior work using Pete and Monte from traditional ECC algo-

rithms to SI algorithms was natural considering the similarity of the underlying

mathematics. However, most constructions submitted to the NIST PQC project

are not based on SI or ECC. As such, we should study the application of the ex-

isting architectures to other proposed algorithms. Additionally, we should study

whether modifications to or new instructions and accelerators can help make PQC

algorithms practical in the embedded domain.

Given the substantial performance increase observed in scaling the Monte dat-

apath from 32 to 64 bits, it would be interesting to explore how a similar scaling

of the Pete multiplication/accumulator logic would affect performance. As noted

earlier, Monte does not take advantage of the form of the primes for the SI algo-

rithms. Modification of microcode to take advantage of the reduced computation

allowed by the primes might be possible and should be explored.

As attacks and security estimates are refined, it is likely that the proposed

primes and fields defining specific security levels will change. Because the Pete

and Monte architectures are designed with agnosticism to the prime values, we

should keep up to date with the latest proposed values, such as faster, smaller

40

Chapter 8. Conclusion

primes less than p503 or larger, more secure primes greater than p964.

In addition to SIDH and SIKE, other SI-based cryptosystems have been pro-

posed, such as SI variants of the Digital Signature Algorithm [14, 27, 12]. Because

these algorithms are based on the same mathematics, we believe that the ISEs and

coprocessor optimizations can be applied to them in a similar manner. Exploring

the performance of these algorithms in an embedded system context should prove

interesting.

Finally, we’d like to gather energy and power measurements of SI algorithms.

Many embedded applications are energy- and power-limited and we’d like to marry

the fields of post-quantum security with ultra-low energy computing. The existing

instructions and coprocessor architecture were shown to be efficient across the

range of existing ECC security levels [29] (NIST p192 - p521 [22]), but we have not

yet explored how energy scales with SI prime sizes or how the trades of datapath

size vs power and energy apply to acceleration of SI algorithms.

41

Appendix A

Supporting Data

42

Appendix A. Supporting Data

Table A.1: Field Math Cycle Count
Op x86 x64 Pete PeteISE PM32 PM64

p503

Fp Add 415 51 955 648 55 31
Fp Sub 258 47 663 445 55 31
Fp Mul 11,963 390 34,361 5,161 666 210
Fp Sqr † † † 4,677 † †
Fp Red 5,055 165 13,845 2,670 2,696 2,696
Fp Inv 6,431k 229,513 20,944k 2,908k 417,670 134,582
Fp2 Add 719 90 1,902 1,296 110 62
Fp2 Sub 445 77 1,318 893 110 62
Fp2 Mul 28,163 1,041 90,347 13,076 2,369 857
Fp2 Sqr 21,534 841 69,928 11,187 1,568 568
Fp2 Inv 6,457k 206,928 21,082k 2,928k 420,565 125,565

p964

Fp Add 792 † 1,867 1,256 103 55
Fp Sub 524 † 1,287 861 103 55
Fp Mul 41,135 † 133,125 16,816 2,347 666
Fp Sqr † † † 14,862 † †
Fp Red 16,732 † 53,249 8,794 8,820 8,822
Fp Inv* 71,852k † 232,926k 27,431k 4,410k 1,183k
Fp2 Add 1,582 † 3,726 2,513 206 110
Fp2 Sub 1,047 † 2,566 1,725 206 110
Fp2 Mul 108,719 † 348,400 43,071 7,697 2,369
Fp2 Sqr 83,087 † 268,643 35,298 5,104 1,568
Fp2 Inv* 72,033k † 233,461k 27,496k 4,150k 1,186k

k Clock cycles in thousands
* Algorithm does not employ loop-unrolling
† Optimized implementation unavailable

43

Appendix A. Supporting Data

Table A.2: EC Operation Cycle Count
Op x86 x64 Pete PeteISE PM32 PM64

p503

2P 157,895 5,385 507,458 79,085 13,041 4,817
3P 309,550 10,613 996,409 157,612 25,479 9,463
get3isog(P) 130,564 5,020 416,680 77,963 11,115 4,403
eval3isog(P) 157,762 5,356 507,441 79,068 13,048 4,816
get4isog(P) 89,362 3,256 288,430 50,853 6,824 2,600
eval4isog(P) 215,282 7,290 691,240 107,408 17,986 6,642

p964

2P 607,931 † 1,943,241 251,371 41,777 13,041
3P 1,188,971 † 3,810,556 497,593 81,319 25,479
get3isog(P) 489,670 † 1,554,552 227,366 33,755 11,115
eval3isog(P) 607,640 † 1,943,228 251,362 41,800 13,048
get4isog(P) 340,409 † 1,091,817 152,981 21,416 6,824
eval4isog(P) 826,787 † 2,646,206 341,737 57,570 17,986

† Optimized implementation unavailable

Table A.3: SIDH Cycle Count - cc * 103

Op x86 x64 Pete PeteISE PM32 PM64

p503

A Public Key 404,077 15,141 1,290,674 201,914 33,433 12,534
B Public Key 454,014 15,394 1,422,263 225,263 36,753 13,848
A Shared Key 328,001 11,335 1,052,815 164,620 27,114 10,181
B Shared Key 373,884 13,001 1,201,573 190,536 30,952 11,686

p964

A Public Key 3,233,546 † 10,425,433 1,350,260 224,892 70,923
B Public Key 3,463,766 † 11,168,205 1,457,806 239,759 75,866
A Shared Key 2,707,163 † 8,730,791 1,128,804 187,088 59,004
B Shared Key 2,990,773 † 9,647,917 1,258,500 206,177 65,271

† Optimized implementation unavailable

44

Appendix A. Supporting Data

Table A.4: SIKE Cycle Count - cc * 103

Op x86 x64 Pete PeteISE PM32 PM64

p503

Public Key 442,746 16,533 1,422,268 225,279 36,758 13,853
Encapsulate 730,149 24,969 2,343,805 366,866 60,861 23,028
Decapsulate 775,677 26,616 2,492,566 392,787 64,703 24,536

p964

Public Key 3,472,063 † 11,168,214 1,457,807 239,767 75,875
Encapsulate 5,961,490 † 19,156,714 2,479,541 412,467 130,413
Decapsulate 6,269,328 † 20,073,841 2,609,239 431,559 136,687

† Optimized implementation unavailable

45

Appendix B

Supporting Algorithms

46

Appendix B. Supporting Algorithms

Algorithm 9 Multi-precision Squaring

procedure MpSqr(a,c,n) . c = a2, where n is the array length in words.
ACC ← a20 . Initialize the accumulator.
c0 ← ACCLO . Move data out of accumulator into c.
Shift ACC . Using the sha instruction.
for k in 1 to n− 1 do . Lower words of result.

i← 0
j ← k
while i < j do

ACC ← ACC + 2ajai−j . Using the m2addu instruction.
i← i+ 1
j ← j − 1

end while
if i = j then

ACC ← ACC + a2i
end if
ck ← ACCLO

Shift ACC
end for
for k in n to 2n− 2 do . Upper words of result.

i← k − (n− 1)
j ← n− 1
while i < j do

ACC ← ACC + 2ajai−j
i← i+ 1
j ← j − 1

end while
if i = j then

ACC ← ACC + a2i
end if
ck ← ACCLO

Shift ACC
end for
ACC ← ACC + a2i
c2n−1 ← ACCLO . Most significant word.

end procedure

47

References

[1] Buhler, J. P., Lenstra, H. W., and Pomerance, C. Factoring integers
with the number field sieve. In The development of the number field sieve
(Berlin, Heidelberg, 1993), A. K. Lenstra and H. W. Lenstra, Eds., Springer
Berlin Heidelberg, pp. 50–94.

[2] Childs, A., Jao, D., and Soukharev, V. Constructing elliptic curve iso-
genies in quantum subexponential time. Journal of Mathematical Cryptology
8, 1 (2014), 1–29.

[3] Costello, C., Longa, P., and Naehrig, M. Efficient algorithms for
supersingular isogeny diffie-hellman. In Advances in Cryptology – CRYPTO
2016 (Berlin, Heidelberg, 2016), M. Robshaw and J. Katz, Eds., Springer
Berlin Heidelberg, pp. 572–601.

[4] Delfs, C., and Galbraith, S. D. Computing isogenies between super-
singular elliptic curves over Fp. Des. Codes Cryptography 78, 2 (Feb. 2016),
425–440.

[5] Diffie, W., and Hellman, M. New directions in cryptography. IEEE
Trans. Inf. Theor. 22, 6 (Sept. 2006), 644–654.

[6] Ettinger, M., Høyer, P., and Knill, E. The quantum query complexity
of the hidden subgroup problem is polynomial. Information Processing Letters
91, 1 (2004), 43 – 48.

[7] Galbraith, S., and Stolbunov, A. Improved algorithm for the isogeny
problem for ordinary elliptic curves. Applicable Algebra in Engineering, Com-
munication and Computing 24, 2 (Jun 2013), 107–131.

[8] Groβschädl, J., and Savaş, E. Instruction set extensions for fast arith-
metic in finite fields gf(p) and gf(2m). In Cryptographic Hardware and Em-

48

References

bedded Systems - CHES 2004 (Berlin, Heidelberg, 2004), M. Joye and J.-J.
Quisquater, Eds., Springer Berlin Heidelberg, pp. 133–147.

[9] Hsu, C.-L., and Lin, J. C.-C. An empirical examination of consumer
adoption of internet of things services: Network externalities and concern for
information privacy perspectives. Computers in Human Behavior 62 (2016),
516 – 527.

[10] Hutter, M., and Wenger, E. Fast multi-precision multiplication for
public-key cryptography on embedded microprocessors. In Cryptographic
Hardware and Embedded Systems – CHES 2011 (Berlin, Heidelberg, 2011),
B. Preneel and T. Takagi, Eds., Springer Berlin Heidelberg, pp. 459–474.

[11] Jalali, A., Azarderakhsh, R., Kermani, M. M., and Jao, D. Su-
persingular isogeny diffie-hellman key exchange on 64-bit arm. IEEE Trans-
actions on Dependable and Secure Computing PP, 99 (2017), 1–1.

[12] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes,
J., et al. Supersingular isogeny key encapsulation. NIST Post-Quantum
Cryptography Standardization Round 1 Submissions (Nov. 2017).

[13] Jao, D., and De Feo, L. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Proceedings of the 4th Interna-
tional Conference on Post-Quantum Cryptography (Berlin, Heidelberg, 2011),
PQCrypto’11, Springer-Verlag, pp. 19–34.

[14] Jao, D., and Soukharev, V. Isogeny-based quantum-resistant undeniable
signatures. In Post-Quantum Cryptography (Cham, 2014), M. Mosca, Ed.,
Springer International Publishing, pp. 160–179.

[15] Kelsey, J. Sha-3 derived functions: cshake, kmac, tuplehash, and parallel-
hash. NIST special publication 800 (2016), 185.

[16] Koc, C. K., Acar, T., and Kaliski, B. S. Analyzing and comparing
montgomery multiplication algorithms. IEEE Micro 16, 3 (Jun 1996), 26–33.

[17] Koziel, B., Azarderakhsh, R., and Mozaffari Kermani, M. Fast
hardware architectures for supersingular isogeny diffie-hellman key exchange
on fpga, 12 2016.

[18] Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., and Mozaf-
fari Kermani, M. Neon-sidh: Efficient implementation of supersingular
isogeny diffie-hellman key exchange protocol on arm, 11 2016.

49

References

[19] Miller, V. S. Use of elliptic curves in cryptography. In Advances in Cryp-
tology (London, UK, 1986), CRYPTO ’85, Springer-Verlag, pp. 417–426.

[20] Montgomery, P. L. Modular multiplication without trial division. Math-
ematics of computation 44, 170 (1985), 519–521.

[21] Moody, D., and Shumow, D. Analogues of vélu’s formulas for isogenies
on alternate models of elliptic curves. Math. Comput. 85 (2011), 1929–1951.

[22] NIST. Fips pub 186-4. digital signature standard (dss). National Institute
of Standards and Technology (NIST) (2013).

[23] Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM 21, 2 (Feb.
1978), 120–126.

[24] Rostovtsev, A., and Stolbunov, A. Public-key cryptosystem based on
isogenies. IACR Cryptology ePrint Archive 2006 (2006), 145.

[25] Shor, P. W. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26, 5 (Oct.
1997), 1484–1509.

[26] Sklavos, N., and Zaharakis, I. D. Cryptography and security in in-
ternet of things (iots): Models, schemes, and implementations. In 2016 8th
IFIP International Conference on New Technologies, Mobility and Security
(NTMS) (Nov 2016), pp. 1–2.

[27] Sun, X., Tian, H., and Wang, Y. Toward quantum-resistant strong
designated verifier signature. Int. J. Grid Util. Comput. 5, 2 (Mar. 2014),
80–86.

[28] Targhetta, A. D., Owen, D. E., and Gratz, P. V. The design space of
ultra-low energy asymmetric cryptography. In 2014 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS) (March
2014), pp. 55–65.

[29] Targhetta, A. D., Owen, D. E., Israel, F. L., and Gratz, P. V.
Energy-efficient implementations of gf (p) and gf(2m) elliptic curve cryptog-
raphy. In 2015 33rd IEEE International Conference on Computer Design
(ICCD) (Oct 2015), pp. 704–711.

[30] Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., and Soukharev,
V. A post-quantum digital signature scheme based on supersingular isogenies.
Cryptology ePrint Archive, Report 2017/186, 2017.

50

