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Abstract

Measurement of recombination mechanisms provides critical feedback on the mate-

rial quality of semiconductors. Strained layer type-II superlattices (T2SLs) have seen

a recent increase in interest as they possess intriguing properties making them prime

candidates for use as infrared detectors. As T2SL-based detectors approach the

performance of industry-standard Hg1−xCdxTe photodetectors, measurement of the

carrier lifetime is becoming increasingly important. A comparison of the lifetime mea-

surement techniques time-resolved photoluminescence, frequency-modulated photo-

luminescence, time-resolved microwave reflectance, and frequency-modulated con-

ductance is made. Although photoluminescence-based measurement techniques are

more common in literature, it is shown that the microwave reflectance-based measure-

ment technique is able to probe lower carrier densities and, therefore, more accurately

measure minority carrier lifetime in low-doped samples.

In addition to the lifetime measurement comparison, using a multiple harmonic
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approach based on the frequency-modulated photoconductivity method, the recom-

bination mechanisms are measured in an InAs/InAs1−xSbx T2SL at a temperature

of 100 K. The second harmonic of the generated carrier density is dependent on the

high-injection recombination mechanisms and not the minority carrier recombina-

tion, enabling accurate extraction of parameters governing high-injection recombi-

nation. From these measurements, it is found that the Shockley-Read-Hall lifetime

is 3.47 µs ±100 ns, the radiative recombination is 1× 10−10 cm3s−1, and the Auger

recombination coefficient is 2.29× 10−26 cm6s−1, agreeing well with the more-readily

used time-resolved microwave reflectance measurement. With this approach, char-

acterization can be performed using basic laboratory equipment without the need of

high-end laser systems or fast electronics.

The minority carrier lifetime (τMC) and equilibrium electron concentration (i.e.

the doping level, n0) are both important values that directly determine diffusion

current in infrared photodetectors utilizing n-type absorbing regions. Here, time-

resolved microwave reflectance measurements are used to non-destructively measure

both of these values in mid-wave infrared InAs/InAs1−xSbx type-II superlattices with

varying n-type doping levels between 2×1014 cm−3 and 2×1016 cm−3. The measured

data are analyzed using carrier recombination theory to determine the doping level

ranges where Shockley-Read-Hall (SRH), radiative, and Auger recombination limit

τMC . The optimal doping level, which minimizes dark current, is experimentally

determined and corresponds to the electron density at which τMC switches from

SRH limited to Auger limited behavior. A comparison of two InAs/InAs1−xSbx

photodetectors of different equilibrium electron densities demonstrates a decrease in

dark current for a doping level near the optimal n0τMC product.
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Chapter 1

Introduction

1.1 Infrared Radiation

In the early 1800’s Sir Frederick William Herschel made his improbable discovery of

infrared radiation. While measuring the temperature of different spectral regions of

sunlight refracted from a prism, Herschel, using the edges of the visible spectrum as

the control, discovered the highest temperature was recorded just past the visible

red light. The discovery of what Herschel described as calorific rays, now commonly

known as infrared radiation, was the first instance of recorded proof of light beyond

the visible spectrum. Flash forward two centuries and the infrared spectrum has

found a home in many different technological applications such as telecommunica-

tions, spectroscopy, and thermal imaging to name a few.

1



Chapter 1. Introduction

1.2 Infrared Spectrum

The spectral absorption of Earth’s atmosphere plays a significant role in the propa-

gation of infrared radiation as it severely limits the transmission of particular wave-

lengths. These limitations, mostly due to molecular and chemical absorption, reduce

the useful distance light may travel. For example, Fig. 1.1 shows the atmospheric

transmission of 2−16µm light for a 15 cm path length in Albuquerque, New Mexico,

a relatively dry climate at an elevation of roughly 5,300 feet. It can be seen that spe-

cific regions of high transmission exist, known as atmospheric windows. These win-

dows determine specific spectral infrared regions known as the near-infrared (NIR)

consisting of 0.75-1.4 µm, short-wavelength infrared (SWIR) consisting of 1.4-3 µm,

mid-wavelength infrared (MWIR) consisting of 3-8 µm, long-wavelength infrared

(LWIR) consisting of 8-15 µm, and the far-infrared (FIR) consisting of 15-1000 µm.

The NIR region has a broad spectrum of uses that includes NIR spectroscopy, cur-

rently one of the fastest growing analytical methods in pharmaceutical technology

[1]. The SWIR region is most known for its use in telecommunications, namely the

particular wavelength λ = 1.55µm. The MWIR region is where blackbody radiation

peaks for hot objects (e.g. rockets) making this a very appealing region for detection.

The LWIR region is where peak blackbody emission resides for objects near room

temperature, such as humans, making this another appealing region for detection.

The FIR region is another region with largely varying applications, one such appli-

cation is for rotational-mode molecular spectroscopy [2]. The major focus in this

dissertation will be on the characterization of material designed for use as a medium

for high-performance detection in the MWIR and LWIR regions. These spectral re-

gions present technological challenges with potential for further development, which

2



Chapter 1. Introduction

will be discussed further in the following sections.

Figure 1.1: Atmospheric transmission in the infrared region
(λ = 2− 16µm) for a 15 cm path length in Albuquerque, New
Mexico, a relatively dry climate at an elevation of roughly 5,300
feet. The MWIR and LWIR regions are shown.

1.3 Infrared Photodetection

Infrared photodection has seen vast development in the past century resulting in

its use in many different sensing and imaging applications. Of these applications,

achieving minimal dark current is especially challenging in photodetectors designed

for the MWIR and LWIR regions due to obstacles arising from material quality and

small-bandgap energies. There are many different types of materials used for detec-

tion in these regions, such as, to name a few, InSb, HgCdTe, and PbSe. The industry

standard for detection in these regions is HgCdTe, mainly due to its compositional

spectral coverage (Eg = 1-24 µm) and crystalline quality which helps contribute to

lower dark currents [3]. The dominance HgCdTe holds in the infrared detection field

3



Chapter 1. Introduction

Figure 1.2: Blackbody radiance for various temperatures. Peak
emission for a 300 K and 700 K object is 12.23 µm and 5.24
µm, respectively.

didn’t happen overnight, in fact, it has taken nearly 60 years of research and pro-

duction for HgCdTe detectors to be where they are today. This prolonged effort in

development has taken LWIR HgCdTe detectors to the point where minority carrier

lifetime is intrinsically limited [4], meaning further development in HgCdTe based

detectors for the LWIR region may be limited. To continue development of infrared

sensing, new material systems must be considered, such as strained-layer type-II

superlattices (T2SL).
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Chapter 1. Introduction

1.4 Strained Layer Type-II Superlattices

The first published proposal for a semiconductor superlattice (SL) was by Esaki and

Tsu in the early 1970’s [5]. This proposal was based around changes in doping or

composition which would create a one-dimensional periodic potential (i.e. superlat-

tice). As the periodicity of the potential is brought to small thicknesses, the wave

function of the two materials will begin to interact. The overlap of the wavefunction

will allow and inhibit specific bands, thus, inducing mini-bands of allowable energy

levels, shown in Fig. 1.3, which are dependent on the composition of the superlat-

tice. The resultant bandstructure of the superlattice allows for many unique physical

parameters such as a bandgap energy that is smaller than the constituent materials

which can be engineered to a specific wavelength of interest. Such constraints of

growth (i.e. abrupt compositional change), lend the growth of T2SLs to the III-V

material system very well due to the excellent control of composition and closely

lattice matched material systems, namely the 6.1 Å family (InAs, GaSb, InAsSb,

and AlSb). An added benefit is the availability of closely lattice matched wafers,

such as GaSb.

The unique material characteristics possessed by T2SLs have sparked much in-

terest in not only the detector community, but the laser [6] and LED [7], [8] fields.

In 1977, Sai-Halasz and Esaki proposed the first T2SL, based on InAs/GaSb [9],

which was shown experimentally a year later [10]. In 1987, Smith and Mailhoit pro-

posed using the InAs/GaSb T2SL as an infrared detector [11]. Due to the interaction

of electrons and holes as a result of tunneling through barriers, T2SLs offer larger

electron and hole effective masses compared to conventional bulk material such as

5
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HgCdTe. The larger effective masses will likely reduce tunneling currents in T2SL

detector designs, which is a major contributor to dark current in HgCdTe. Due to

the inherent strain and inhibited bands, it was predicted that the Auger lifetime

of T2SL would be competitive with HgCdTe [12]. Later on, it was shown exper-

imentally by Youngdale et al. that the InAs/Ga(In)Sb T2SL displayed an Auger

lifetime of over two orders of magnitude greater than HgCdTe [13]. These promising

results and theory have led to the further development of T2SLs for detector applica-

tions as they show the possibility of III-V superlattice-based detectors outperforming

HgCdTe detectors.

Figure 1.3: Band diagram of several periods of a generic T2SL.
The solid curves represent bulk conduction and valence bands.
The dashed curves represent the superlattice conduction and
valence band found from the edges of the mini-bands.
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1.4.1 InAs/GaSb Superlattice

Over the past two decades, the InAs/GaSb material system has seen the most atten-

tion for application in T2SL-based detectors as they have been theorized to surpass

the dark-current performance of HgCdTe detectors [12]–[14]. The extensive effort in

development of this material system has seen the application of InAs/GaSb SLs in

focal plane arrays in the MWIR [15], [16] and the LWIR [17] regions, with single

detectors being background limited up to 180 K [18]. Although the performance of

these devices is approaching the performance of HgCdTe devices [4], this material

system has been limited by parasitic Shockley-Read-Hall (SRH) defects resulting

in short minority carrier lifetimes. For example, studies of InAs/GaSb T2SL in

the MWIR have shown minority carrier lifetimes in the range of 80-100 ns [19]–[22]

and in the LWIR 10-30 ns [20], [23]–[25]. A study investigating carrier lifetimes of

InAs/GaSb T2SL with varying GaSb thickness as well as bulk growth of InAs and

GaSb has suggested a native defect associated with GaSb could be the cause of the

relatively short minority carrier lifetimes [21]. Due to the limitations set by the in-

trinsic SRH lifetime on InAs/GaSb, new material systems are seeing more interest

for T2SL incorporation in detectors designs, such as InAs/InAsSb.

1.4.2 InAs/InAsSb Superlattice

As an alternative to the InAs/GaSb system, InAs/InAsSb T2SLs have been proposed

as a Ga-free material system with hopes of longer minority carrier lifetimes. This

T2SL still retains similar characteristics to the InAs/GaSb SL, such as bandgap

tuning throughout the MWIR and LWIR regions [26] and reduction in Auger re-

7
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combination as compared to HgCdTe. Studies on the minority carrier lifetime of

InAs/InAsSb T2SLs in the MWIR region have shown minority carrier lifetimes on

the order of 2.3× 10µs [22] and in the LWIR region minority carrier lifetimes of 412

ns [27]. High-injection studies of carrier recombination have shown Auger recombi-

nation in LWIR InAs/InAsSb to be on the order of 10−25cm6/s, roughly an order

of magnitude less than HgCdTe [28]. As a result of these studies showing improved

minority carrier lifetime and comparable Auger recombination to InAs/GaSb, the de-

tector community has shown excitement in the InAs/InAsSb T2SL leading to recent

investigations in vertical transport properties [29], [30] and basic radiation studies

[31], again showing promise for the InAs/InAsSb T2SL as an infrared detector.

1.5 Type-II superlattice detector design

Three main mechanisms contribute to dark current in infrared photodiodes, thus

limiting device performance. The dark current of a photodiode can be described as

[32]

Idark = IGR + Idiff + Isurf , (1.1)

where IGR is the current associated with carriers generated from SRH traps in the

depletion region, Idiff is the current associated with carriers being thermally gener-

ated, and Isurf is the current associated with surface states. Not only does working

in the III-V’s offer better material quality, but it also opens up the door for the

incorporation of different materials into detector design. The inclusion of these dif-

fering materials allows for creative device structures that better mitigate dark current

mechanisms. Basic T2SL photodiode designs have been shown, however due to SRH

8
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generation in the depletion regions the dark current in these devices is rather high

[33], [34]. Designs to suppress these dark current mechanisms have been shown and

include the M-structure [35], [36], the W-structure [37], [38], and the nBn structure

[32]. Of these designs the nBn structure, shown in Fig. 1.4, has recently seen the

most attention due to the simplicity of its design and dark current performance,

which theoretically eliminates surface current and greatly reduces SRH generation

currents [39]. The nBn detector design consists of a n-type contact, a barrier region,

and an n-type absorber. For the nBn structure the generation-recombination current

and diffusion current, with the assumption that the diffusion length is longer than

the absorber thickness, are described as [4], [32]

JGR =
niWdep

τSRH
, (1.2)

Jdiff =
n2
iWabs

n0τMC

, (1.3)

where ni is the intrinsic carrier density, q is the electron charge, Wdep is the depletion

width, τSRH is the SRH lifetime of minority carriers, Wabs is the thickness of the

absorber, n0 is the electron doping, and τMC is the minority carrier lifetime. Due to

the reduction of the depletion region, JGR has been greatly reduced leaving diffusion

current as the dominant dark current mechanism. It should be noted from Eq. 1.3,

that the diffusion current is inversely proportional to the product of the electron

doping density and minority carrier lifetime of the absorber region. This character-

istic will be investigated in a later chapter of this dissertation showing the relation

of lifetime measurements to predicted dark-diffusion current.

9
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Figure 1.4: Band diagram of ideal nBn detector structure under
biased operating conditions. The design consists of an n-type
absorber, barrier region, and n-type contact. The barrier re-
gion blocks majority carrier flow making this a minority carrier
device. Excited electron-hole pairs in the absorber region are
allowed to flow through device.

1.6 Organization of Dissertation

The main focus of this dissertation is to show proper carrier lifetime measurement

techniques and how to implement these measurements into material quality predic-

tions. Chapter two will give a background of semiconductor physics with a focus

on non-equilibrium charge carrier dynamics. Chapter 3 will give a background of

carrier lifetime measurement techniques with an emphasis on an extension of the

frequency modulated photoconductivity method. This extension, which looks at the

generation of a second harmonic, will prove worthy of consideration for future life-

time measurement approaches. Chapter 4 shows a study of 14 different InAs/InAsSb

10
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T2SL samples of varying doping density. This study will show correlation between

measurement theory and device dark current data.
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Chapter 2

Background

In the materials world you have conductors, insulators, and semiconductors. A

conductor has free electrons allowing current to flow. These types of materials are

used for electrical connection between systems, something as simple as household

wiring or as complex as integrated circuits. Insulators are materials that do not

have free electrons and therefore do not conduct electricity. A common insulator of

day-to-day use would be the rubber on a power or USB cord. The semiconductor

sits in the middle of the conductor and insulator, as it doesn’t necessarily possess

the characteristics of either, yet it can be engineered to resemble one or the other

under specific circumstances. The ability to be engineered for specific applications

will be shown to be a product of the crystal structure of the semiconductor. The

most common and well known semiconductor is Silicon due to its importance in

the electronics industry. Although Silicon is the backbone of almost every electronic

device, it does lack characteristics for some applications, such as an indirect bandgap.

Where silicon falls off due to this characteristic, the III-V’s (i.e. GaAs) pick up due
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to direct bandgaps and other unique characteristics. In this chapter we will take a

look at basic semiconductor physics and work towards the complexity of the strained

layer type-II superlattice (T2SL) to build a base for the carrier lifetime analysis to

come in the following chapters.

2.1 The wave equation

The basic understanding of the discrete energy levels possessed by semiconductors is

necessary before devolving into recombination theory. In this section we start from

Schrödinger’s wave equation to evaluate an electron in a potential barrier and work

our way towards semiconductor band structure theory.

In the early 1900’s some of the most elegant and renowned theories of physics

were born. One of these was the concept of wave-particle duality which states that

every object can be described in terms of waves and not only particles. Quantum-

scale objects, such as atoms or electrons, are best described by this principle. Many

well known physicists, such as Einstein, Bohr, Plank, and de Broglie, put much effort

into this concept helping lead Schrödinger to formulate wave-mechanics in 1926. The

nonrelativistic Schrödinger’s wave equation is given by

−h̄
2m
∇2Ψ(r, t) + V (r, t)Ψ(r, t) = jh̄

∂

∂t
Ψ(r, t), (2.1)

where Ψ(r, t) is the wave function, V (r, t) is the potential function, and m is the

mass of the particle. For an atomic orbital of a hydrogen-like particle the potential
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of the electron to proton can be described by Coulomb’s law

V (r) =
−e2

4πε0r
, (2.2)

where e is the electron charge and ε0 is the permittivity of free space. From separation

of variables the time-independent Schrödinger equation for the hydrogen-like particle

can be written as

∇2Ψ(r, θ, φ) +
2m0

h̄
(E − V (r))Ψ(r, θ, φ) = 0, (2.3)

where m0 is the mass of the electron. Assuming the time-independent wave function

can be written as

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), (2.4)

using separation-of-variables the solution to Eq. 2.3 can be found through only a

few pages of derivations. The solution reveals three quantum numbers, generally

described as n, l, and m, which is a result of the electron being bound to a finite

region of space. The quantum numbers l and m are found from the θ and φ terms.

The remaining quantum number, n, is found from the radial term. The energy of

the electron may be described as

En(n) = − m0e
4

(4πε0)22h̄2n2
, (2.5)

where n is the principle quantum number as described earlier. From Eq. 2.5, it is

seen the energy takes a quantized form dependent on n. It should also be noted that

the energy is negative, meaning that the electron is bound to a finite region of space
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due to it’s interaction with the nucleus of the atom. The wave function of the ground

state (n = 1, m = 0, and l = 0) is found to be

Ψ1,0,0(r) =
1
√
πa

3
2
0

e
−r
a0 , (2.6)

where a0 is the Bohr radius. The radial probability of the electron state is

P1,0,0(r) =
4r2

a3
0

e
−2r
a0 . (2.7)

Fig. 2.1 shows the radial probability density function of the ground state, it can

be seen that the most probable location of the electron is at the Bohr radius. The

higher order quantum terms become very interesting to solve and analyze, however

these are out of the scope of this dissertation. If the reader is so obliged, Refs. [1]

pertains to much finer details from the previous section and are recommended for

further reading.

2.2 Band structure theory

Fig. 2.1 shows the radial probability density function of two hydrogen atoms spaced

by 6a0. It is seen that the probability of the two electrons overlap, meaning that

the wavefunctions of the electrons will interact with each other causing a splitting of

energy states. This splitting can be explained by the Pauli exclusion principle. Now,

imagine that the atom is sitting in a GaAs crystal lattice where the atomic density

is on the order of 5 × 1022cm−3, obviously there will be a considerable amount of

wavefunction overlap in this setting. A general theoretical approach to simulate a

21



Chapter 2. Background

Figure 2.1: The radial probability density function for the
ground state of the one electron atom (Hydrogen atom), black
curve. The blue curve is the probability density function of an-
other one electron atom at a distance of 6a0 from the origin. It
can be seen that the probability density functions of the spaced
atoms overlap, leading to a splitting of energy states.

period potential is the Kronig-Penny model, which assumes the wave function will

take the form of a Bloch function [2]. The resultant form of the wavefunction for a

one-dimensional setting is

Ψ(x, t) = u(x)ej(kx−(E/h̄)t), (2.8)

where u(x) is a periodic function and k is the wavevector. For a one-dimensional

periodic potential with E < V0 (shown in Fig. 2.2), which applies to an electron

bound to the crystal structure, the solutions to E and k are realized when the
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Figure 2.2: The one-dimensional periodic potential function
used for the Kronig-Penney model.

following equation is satisfied

cos(ka) = F =
α2 − β2

2αβ
sinh(αb)sin(β(a− b)) + cosh(αb)cos(β(a− b)), (2.9)

where

α =

√
2m(V0 − E)

h̄
, (2.10)

and

β =

√
2mE

h̄
. (2.11)

The solution to Eq. 2.9 becomes interesting when the barrier width approaches zero

and the barrier height approaches infinity, yet the product of the two remains finite.
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This will simplify Eq. 2.9 to

cos(ka) = F = P
sin(βa)

βa
+ cos(βa), (2.12)

where

P =
mV0ba

h̄2 . (2.13)

It can be seen from Eq. 2.12 that the solution to the righthand side (RHS) of the

equation will only exist, or be bound, to the range of ±1. Solving for energy, E, as a

function of k we find the solution in Fig. 2.3, which shows the existence of particular

allowed energy bands, as well as disallowed bands. These allowed bands are the basis

of the semiconductor energy bands, namely the conduction and valence bands.

Figure 2.3: E versus k diagram for the reduced-zone represen-
tation.
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In a semiconductor, an electron may be excited by an external force, such as a rise

in temperature or absorption of a photon, and leave the ground state (valence band)

to an excited state (conduction band). Because the semiconductor must conserve

charge, the process of the electron being excited from the valence band creates an

electron hole, or commonly known as a hole. The hole is a state where an electron

could exist and maintains a net positive charge. The process of exciting an electron

and hole is commonly called creating an electron-hole pair. A generic direct-gap

semiconductor band structure as a function of wavevector (k) can be seen in Fig. 2.4.

In this example, The conduction band minimum is directly above the valence band

maximum. The the valence band is comprised of a heavy hole band, a light hole band,

and a split off band. The heavy hole and light hole bands get their names from the

effective mass of holes occupying their bands. The effective mass is essentially used

to simplify the model of a free particle in a specific band structure. The effective

mass is described as

1

m∗
=

1

h̄2

d2E

dk2
, (2.14)

where m∗ is the effective mass of either the hole in the valence bands or an electron in

the conduction band. The total effective mass in the valence band takes into account

both the heavy and light hole,

mh = (m
3
2
HH +m

3
2
LH)

2
3 , (2.15)

where mHH is the heavy hole mass and mLH is the light hole mass. The split-off

band has an offset from the heavy and light hole bands, because of this offset the

split-off band is generally fully occupied. However, the split-off band can interact in

Auger processes which will be described in more detail later on in this chapter. The
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bandgap energy (Eg), which is the minimal amount of energy it takes to excite an

electron out of the valence to the conduction band, is the energy difference of the

conduction and valence bands at k = 0.

Figure 2.4: Energy band diagram of a generic direct-gap semi-
conductor. A conduction band, heavy-hole band, light-hole
band, and a split-off band are shown. The bandgap energy
of the semiconductor is found from the difference of the con-
duction band minimum and valence band maximum.
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2.3 Semiconductor in equilibrium

For a semiconductor in thermal equilibrium at a temperature T , the probability of an

electron occupying an electronic state at an energy of E is given by the Fermi-Dirac

distribution function

f(E) =
1

e
E−Ef
kBT + 1

, (2.16)

where kB is the Boltzmann constant and Ef is the Fermi energy level (also know

as the chemical potential). For a temperature T = 0 the probability of an electron

filling a state above the Fermi energy is zero. At an infinitely large energy level, the

probability of occupation is also zero. These two specific cases make physical sense.

For large temperatures, T � 0, the Fermi-Dirac equation shows a probability of 0.5

for ene. Similarly, the probability of an electron not occupying an electronic state is

given by

1− f(E) =
1

e
Ef−E
kBT + 1

, (2.17)

this can also be described as the likelihood of a hole occupying a state in the valence

band.

The density of allowed electronic states in the conduction band is written as

gc(E) =
4π(2m∗e)

3/2

h3

√
E − Ec, (2.18)

which is valid for E ≥ Ec. Likewise, the density of allowed states for holes in the

valence band is written as

gv(E) =
4π(2m∗h)

3/2

h3

√
Ev − E, (2.19)
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which is valid for E ≤ Ev. From Eq. 2.16, Eq. 2.17, Eq.2.18, and Eq. 2.19, the

distribution of electrons can be written as

n(E) = gc(E)f(E), (2.20)

and the distribution of holes can be written as

p(E) = gv(E)(1− f(E)). (2.21)

To find the concentration of electrons in a semiconductor, Eq. 2.20 must be integrated

over all energies above the conduction band,

n0(E) =

∫ ∞
Ec

gc(E)f(E)dE. (2.22)

This integration will lead to the thermal-equilibrium electron concentration to be

n0(E) = Ncexp(
−(Ec − EF )

kBT
), (2.23)

where EF is the fermi energy level and Nc is the effective density of states function

in the conduction band,

Nc = 2(
2πm∗ekBT

h2
)3/2. (2.24)

A similar procedure is done to find the thermal-equilibrium hole concentration,

Eq. 2.21 must be integrated over all energies below the valence band,

p0(E) =

∫ Ev

−∞
gv(E)(1− f(E))dE. (2.25)
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This integration leads to

n0(E) = Npexp(
−(EF − Ev)

kBT
), (2.26)

where Nv is the effective density of states function in the valence band,

Nv = 2(
2πm∗hKBT

h2
)3/2. (2.27)

2.3.1 Intrinsic Carrier Concentration

An intrinsic semiconductor has the same number of electrons and holes, meaning all

of the electrons in the conduction band have been excited from the valence band

leaving a vacancy, or hole. This is otherwise known as an undoped semiconductor,

such that no carriers have been introduced to the semiconductor from impurities or

dopants. In this case, the intrinsic carrier density squared can be written as

n2
i = NcNvexp(

Eg
kBT

). (2.28)

Or otherwise written as

n2
i = np. (2.29)

2.3.2 Extrinsic Carrier Concentration

An extrinsic semiconductor contains dopant atoms, either electron or hole contribu-

tors, that perturb the semiconductor from its intrinsic state. These dopant atoms will
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create electron and hole concentrations that are different then the intrinsic carrier

density. From Eq. 2.28 the intrinsic carrier density is written as

n2
i = n0p0. (2.30)

This fairly simple equation plays a large role in the fundamental physics of semicon-

ductors.

2.3.3 Excess Carrier Concentration

For a semiconductor with carriers excited into the conduction band the electron

carrier density is described as

n = n0 + ∆n, (2.31)

where ∆n is the excess carrier density. Assuming that ∆n = ∆p (it is assumed that

electron-hole pairs are created), the hole concentration is described as

p = p0 + ∆n. (2.32)

2.4 Carrier recombination

As we have seen in the previous sections, electron-hole pairs can be excited by many

different events. The particular excitation of interest here is absorption of a photon

causing an electron to be excited to the conduction band, thus, creating an electron-

hole pair. Once excited into an above ground state, the excited pair will have a
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certain lifetime, or recombination rate, before the electron recombines with a hole.

This mechanism is known as the recombination process and results in a recombi-

nation rate, or carrier lifetime. There are three main categories of recombination

processes; Shockley-Read-Hall (SRH) recombination, radiative recombination, and

Auger recombination [3], [4]. The instantaneous recombination rate takes all three

of these mechanisms into account and is expressed as

R = RSRH +Rrad +RAuger, (2.33)

where RSRH is the SRH recombination term, Rrad is the radiative recombination

term, and RAuger is the Auger recombination term. These mechanisms will be dis-

cussed in the following section. The relation of the carrier density to recombination

is expressed as

d∆n

dt
=
d∆p

dt
= −R = −∆n

τ
, (2.34)

where τ is the instantaneous carrier lifetime. The lifetime is a function of other

parameters, such as ∆n. The derivation of these equations will be addressed in

Chap. 3. The lifetime of each individual recombination mechanism is expressed as

τ−1 =
R

∆n
, (2.35)

Another well known recombination process is surface recombination, however this is

more related to device physics and will not be discussed in detail here.
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Figure 2.5: Shockley-Read-Hall recombination process. The
electron and hole are captured by a trap state.

2.4.1 Shockley-Read-Hall Recombination

SRH recombination takes place through the capture of one carrier, either an electron

or hole, via recombination centers. These recombination centers are due to impurities

(i.e. defects in the crystal) and the density of centers is dependent on the density of

impurities, meaning the higher quality of material the lower number of recombination

centers. The recombination center energy level will sit within the bandgap energy

of the semiconductor. Four different processes can occur from the recombination

center, an electron can be trapped, an electron can be emitted, a hole can be trapped

(resulting in an elimination of the electron-hole pair), or a hole can be emitted. An

electron can only be captured by the trap if the defect does not already have an

electron occupying it. A hole can only be captured if the trap state is occupied by

an electron. An example of the SRH recombination process is shown in Fig. 2.5.
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The SRH recombination rate is [3]

RSRH =
σhσeνthNt(np− n2

i )

σe(n+ nie
Et−Ei
kBT ) + σh(p+ nie

Ei−Et
kBT )

, (2.36)

where νth is the thermal velocity of an electron, σe and σh are the capture cross

sections of the recombination center for electrons and holes, NT is the concentration

of recombination centers, and ET is the energy of the trap level. Dividing Eq. 2.36

by σhσeνthNT with the following definition of the SRH lifetime for electrons

τ−1
e0

= νthσeNT , (2.37)

and for holes,

τ−1
h0

= νthσhNT , (2.38)

the SRH recombination can be described with associated electron and hole lifetimes

as

RSRH =
np− n2

i

τh0(n0 + ∆n+ nie
Et−Ei
kBT ) + τe0(p0 + ∆n+ nie

Ei−Et
kBT )

. (2.39)

For an n-type material (n0 � p0), Eq. 2.39 can be simplified to

RSRH =
∆nn0 + ∆n2

τh0(n0 + ∆n) + τe0(∆n)
. (2.40)

The majority of material analyzed in this dissertation is doped n-type, therefore

Eq. 2.41 will be the standard SRH recombination hereon. From Eq. 2.35 the SRH

lifetime of an n-type semiconductor with a trap energy level near mid-bandgap is
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expressed as

τ−1
SRH =

n0 + ∆n

τh0(n0 + ∆n) + τe0(∆n)
. (2.41)

In the case of low-injection, n0 � ∆n, τSRH = τh0 , meaning all of the trap centers

are occupied by an electron leaving the SRH hole lifetime as the limiting factor. For

high injection, ∆n � n0, the SRH electron lifetime will be the limited mechanism

(τSRH = τe0).

2.4.2 Radiative Recombination

Figure 2.6: Radiative recombination process. The electron re-
combines with a hole in the valence band, emitting a photon.

Radiative recombination is due to the recombination of an electron and hole

which results in the emission of a photon, as shown in Fig. 2.6. The rate of radiative

recombination is described as [4]

Rrad = B(np− n2
i ), (2.42)

where B is the radiative recombination coefficient. For n-type material, Eq. 2.42 can
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be simplified to

Rrad = B(∆nn0 + ∆n2). (2.43)

The radiative lifetime for n-type material is described as

τ−1
rad = B(n0 + ∆n). (2.44)

In the case of a direct-gap semiconductor, the radiative recombination rate can

be calculated by

B =
1

n2
i c

2h̄3

∫ inf

0

ε(Eλ)α(Eλ)E
2
λ

eEλ/kBT − 1
dE, (2.45)

where ε is the permittivity and α is the optical absorption, which for a direct-gap

semiconductor with parabolic bands has the form [5]

αdirect =
23/2

3µ

m0e
2

h̄2 [
memh

m0(me +mh)
]3/2(1 +

m0

me

+
m0

mh

)(
Eλ − Eg
m0c2

)1/2, (2.46)

where E is the photon energy and µ is the index of refraction. Combining Eq. 2.45

and Eq. 2.46 the radiative recombination can be found as [4]

B =
(2π)3/2

3

h̄e2

m2
0c

2
µ(

m0

me +mh

)3/2(1 +
m0

me

+
m0

mh

)
E2
g

(kBT )3/2(m0c2)1/2
, (2.47)

The major take away from Eq. 2.47 is that as T → 0 the radiative lifetime will

approach zero. As the temperature rises from zero, the lifetime will have a E2
g/T

3/2

dependence until eventually intrinsic effects dominate. However, in physical semi-

conductors Auger recombination will begin to dominate at these high temperatures,

resulting in a lesser carrier lifetime than that of the radiative.
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2.4.3 Auger Recombination

Figure 2.7: Auger recombination process. The Auger-1 process
is shown on the left which includes two electrons and one hole.
The Auger-7 process is depicted on the right which includes two
holes and one electron.

An Auger recombination process is a three-body process that requires either two

electrons and one hole or two holes and one electron plus the emission or absorption

of a phonon, therefore this is a nonradiative process. These processes can be seen

in Fig. 2.7. The Auger 1 process is dependent on two electrons and one hole and

the Auger 7 is dependent on 2 holes and one electron. For the Auger 1 process, the

band-to-band Auger recombination process is characterized by the coefficient [6]–[9]

Cn =
8(2π)5/2e4m0

h̄3

(me/m0)|F1F2|2n0(kBT/Eg)
3/2

εinf
0 (1 + µ)1/2(1 + 2µ)

× e−
1+2µ
1+µ

Eg
kB/T , (2.48)

where µ = me/mh, εinf is the high frequency dielectric constant, |F1F2| is the Bloch

function overlap between states involved in the recombination, or scattering, process.
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For intrinsic material, relatively small values of ∆n, the Auger lifetime reduces to

[6], [9]

τ iAuger ≈
ni

2Cn
(2.49)

For the Auger 7 process, which includes an electron recombining with a hole resulting

in the energy exciting a hole from the light-hole band to the heavy-hole band, can

be related to the Auger 1 process by [10]

RA7 =
RA7

γ

n

p
, (2.50)

where γ is dimensionless constant. The total Auger recombination rate is written as

RAuger = Cn(np− n2
i )n+ Ch(np− n2

i )p. (2.51)

From Eq. 2.51 the Auger lifetime can be written as

τ−1
Auger =

Cn(np− n2
i )n+ Cp(np− n2

i )p

∆n
(2.52)

Eq. 2.52 can then be simplified to

τ−1
Auger = Cn(n0 + p0 + ∆n)n+ Cp(n0 + p0 + ∆n)p. (2.53)

The two scenarios of most interest are large n-type doping, n0 � ∆n, and high-

injection levels, ∆n � n0. In the case of large doping the n0 term will dominate,

and the Auger lifetime will take the from

τ−1
Auger ≈ Cnn

2
0. (2.54)
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For high-injection levels the ∆n term will dominate and Auger lifetime will take the

form

τ−1
Auger ≈ Cn∆n2 + Cp∆n

2. (2.55)

Therefore, to correctly determine the influence of Auger recombination in a material,

Figure 2.8: Simulated carrier lifetime as a function of excess
carrier density for samples of varying electron doping using
published values of MWIR InAs/InAsSb T2SL [11]. The re-
combination parameters used were A−1 = 10µs, Br = 1× 10−10

cm3s−1, and Cn = 1.9× 10−26 cm6s−1. The doping values used
were n0 = 1×1014 cm−3 (upper left), n0 = 1×1015 cm−3 (upper
right), n0 = 1× 1016 cm−3 (lower left), and n0 = 1× 1017 cm−3

(lower right).

information on Cn and Cp must be known. To analyze these two components, studies
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of minority carrier lifetime of samples with varying doping density (n0 and p0) have

been performed on various samples [12]–[16]. However, information for Auger hole

recombination (Cp) in InAs/InAsSb T2SLs is lacking. Therefore, in this dissertation

it is assumed that γ → inf, meaning the Auger recombination is entirely due to the

Auger 1 process. With this assumption Eq. 2.53 is simplified to

τ−1
Auger ≈ Cn(n0 + ∆n)2. (2.56)

2.4.4 Total carrier recombination

The total carrier lifetime of a semiconductor takes each recombination mechanism

into account and can be written as

τ−1(n) = τ−1
SRH + τ−1

rad + τ−1
Auger (2.57)

From equations Eq.2.39, Eq. 2.44, and Eq. 2.55, Eq. 2.57 can be expanded as

τ−1(∆n) =
n0 + ∆n

τh0(n0 + ∆n) + τe0(∆n)
+B(n0 + p0 + ∆n) +Cn(n0 + p0 + ∆n)2. (2.58)

In the case of an n-type doped material, Eq. 2.58 can be simplified to

τ−1 =
n0 + ∆n

τh0(n0 + ∆n) + τe0(∆n)
+B(n0 + ∆n) + Cn(n0 + ∆n)2. (2.59)

Solving for the minority carrier lifetime, or the low-injection limit (∆n→ 0), Eq. 2.59

is simplified to

τ−1
MC = τ−1

h0
+Bn0 + Cnn

2
0. (2.60)
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From Eq. 2.59 and Eq. 2.60, it can be seen that, in general, the carrier lifetime

will have three different regimes; the very high-injection regime (∆n � n0), the

moderate high-injection regime (∆n ≈ n0), and the low-injection regime, also known

as the minority carrier regime, (∆n → 0). The very high-injection regime is most-

likely dominated by Auger recombination as this is dependent on the excess carrier

density squared (∆n2). Recombination in the moderate high-injection and minority

carrier regime will be dependent on many different factors depending on the doping

and recombination mechanisms. These factors are more easily explained by curves

pertaining to different material parameters.

Fig.2.8 shows the carrier lifetime as a function of excess carrier density for a

InAs/InAsSb T2SL at 100 K, with recombination characteristics from Ref. [11].

The recombination parameters used were A−1 = 10µs, Br = 1 × 10−10cm3s−1, and

Cn = 1.9 × 10−26cm6s−1. The upper-left plot resembles a partially doped sample,

n0 = 1 × 1014cm−3, a level that would represent a not-intentionally-doped (nid)

sample. For this doping density the minority carrier lifetime is limited by SRH re-

combination and the high-injection regime is dominated by Auger recombination. At

the excess carrier density of 1 × 1015cm−3, the lifetime is partially limited by each

recombination mechanism. This could lead to difficulties of accurately measuring

the radiative recombination mechanism. The upper-right plot represents the lifetime

characteristics of a slightly-doped sample, n0 = 1× 1015cm−3. The minority carrier

lifetime in this scenario comprised of all three recombination mechanisms with SRH

recombination making the greatest impact. The lower plots are for a moderately

doped sample, n0 = 1 × 1016cm−3, and highly-doped sample, n0 = 1 × 1017cm−3.

For these doping levels the carrier lifetime is limited by Auger recombination in both
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the minority carrier and high-injections regimes. These examples resemble physical

measurements that will be shown in the following chapter.
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Carrier lifetime measurement

techniques

Carrier lifetime analysis can provide vital information on the quality of semiconduc-

tor material and how well that material will perform in use for specific applications.

For example, the minority carrier lifetime can be directly related to dark-diffusion

currents in a photodetector [1], [2] and other minority-carrier devices. There are

many different carrier lifetime measurement techniques. For a direct-gap semicon-

ductor, measurement of photoluminescence has generally been the most practical

and straightforward. However, as the bandgap energy of the semiconductor is re-

duced, or the wavelength of emitted photoluminescence is increased, the detectivity

of detectors associated with sensing that emission decrease, thus, limiting capabili-

ties. For example, performing photoluminescence measurements on GaAs is easily

accomplished do to the availability of highly sensitive detectors [3]. Whereas, per-

forming the identical measurements on material with MWIR and LWIR bandgap
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energy becomes increasingly hard due to the reduction in photodetectors. A more

universal approach to measuring the lifetime is monitoring change in conductance

of the sample using a microwave radiation probe. The purpose of this chapter is to

provide background and examples of various lifetime techniques, along with some

discussion of pros and cons of each approach.

Figure 3.1: Photoluminescence spectra from a MWIR
InAs/InAsSb T2SL at 100 K. The 5.03 µm and 3.79 µm peaks
correspond to the InAs/InAsSb superlattice and InAsSb lattice
matched to GaSb cap, respectively.

Initial efforts were focused on photoluminescence measurements. As material

quality has improved, these lifetime measurement techniques have transitioned to

microwave reflectance measurements. For comparison, a MWIR InAs/InAs0.66Sb0.34

T2SL was measured by each lifetime measurement technique described in the follow-

ing sections. The sample is grown using molecular beam epitaxy on a 3 inch n-type
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doped GaSb substrate with a (100) orientation. The sample consists of a barrier

region, the T2SL, a second barrier region, and an InAsSb lattice matched to GaSb

cap. The barrier regions help confine carriers generated in the T2SL to help limit re-

combination to the T2SL. The T2SL region consists of 750 periods of unintentionally

doped 4.07 nm InAs/ 1.29 InAs0.66Sb0.34. The T2SL bandgap energy was approxi-

mately 5 µm. The bandgap was found by photoluminescence measurements, shown

in Fig. 3.1. The photoluminescence measurement consisted of a modulated 785 nm

laser to inject carriers in the sample and a step-scan Jasco 6300 FTIR to measure the

spectral response of the emitted photoluminescence. The photoluminescence spectra

is shown in Fig. 3.1, the 5.03 µm and 3.79 µm peaks correspond to the InAs/InAsSb

superlattice and InAsSb lattice matched to GaSb cap, respectively.

3.1 Rate Equation

The temporal differential equation relating the carrier density to generation, recom-

bination, and diffusion is known as the time-dependent drift diffusion equation and

is expressed as

∂∆n(x, t)

∂t
= G(t) +D∇2∆n(x, t)− ∆n(x, t)

τ
, (3.1)

where G is the generation term and D is the minority electron diffusivity. Making

the assumption that the temporal and spatial variables of excess carrier density can

separated, the excess carrier density can then be described as

∆n(x, t) = f(t)g(x). (3.2)
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Substituting Eq. 3.2 into Eq. 3.1 and combining like terms, the diffusion equation

becomes

1

f(t)

df(t)

dt
+

1

τ
−G(t) = D

∇2g(x)

g(x)
= C, (3.3)

where the left-hand side of the equation contains the time dependent terms and

the right-hand side contains the spatial terms. For the samples under test in this

dissertation, it is assumed that the diffusion term is negligible due to the small

diffusion of carriers in the unbiased device (flat-band). In other words, the ambipolar

transport of carriers is small compared to the spot size of injected carriers, therefore

diffusion does not have large impact on Eq. 3.1. The generation term is subject to the

injected carriers. For a pulsed measurement, the generation term can be simplified

to the impulse function. For steady-state measurements, the generation term will

take the form of a time dependent equation. These two scenarios will be further

expanded upon in the following sections.

From Eq. 2.35, the recombination term is given as

R =
∆n

τ
, (3.4)

where τ is the carrier lifetime. From Eq. 2.57, Eq. 3.4, and Eq. 3.1, the differential

equation pertaining to carrier density is written as

d∆n

dt
= G(t)−∆n[A+Bn+ Cn2], (3.5)

where A represents the SRH lifetime (A = τ−1
SRH), B is the radiative recombination

coefficient, and C is the Auger recombination coefficient. In the following sections,

Eq. 3.5 will be used for explanation of particular measurement techniques, namely
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time-resolved and frequency modulated approaches.

3.2 Time-resolved photoluminescence

Figure 3.2: Basic setup of photoluminescence-based measure-
ments, consisting of two F1 parabolic mirrors to collimate and
focus the emission of the sample under test.

Time-resolved photoluminescence (TRPL) utilizes a pulsed laser to excite electron-

hole pairs that then recombine. The recombination process will be dependent on the

Shockley-Read-Hall, radiative, and Auger recombination, as described in the pre-
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vious chapter. The carriers that radiatively recombine will emit photons. These

photons are temporally measured using a photodetector of appropriate cutoff wave-

length. The measured photoluminescence lifetime will be representative of the carrier

lifetime. Generally, the pulse width of the excitation laser will be much smaller than

the lifetime of the sample under test. If not, measurement of the carrier lifetime,

in general, will be skewed, however it may still be possible to measure the minority

carrier lifetime if the pulse width to lifetime ratio is small enough.

The photoluminescence intensity is described as [4]

IPL(n) = B(np− n2
i ). (3.6)

For an n-type material, Eq. 3.6 can be simplified to

IPL(n) = B(∆nn0 + ∆n2). (3.7)

Eq. 3.7 shows two distinct regions of photoluminescence dependence on excess carrier

density, above and below the doping level. The significance of this can be better ex-

pressed by assuming that the excess carrier density will have a temporal exponential

decay such that

IPL(t) = B(n0∆ne
t
τ + ∆n2e

2t
τ ). (3.8)

Due to the non-linear dependence, for injected carrier densities near and greater than

the doping density, the measured response will be proportional to the actual carrier

lifetime. Therefore, a calibration of the injected carrier density to photoluminescence

signal must be performed. Although this was not performed for TRPL measurements

in this dissertation, a thorough explanation of the calibration method is shown in the
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Chap. 3.4. Although it is possible to measure the higher order recombination terms

using TRPL, the most straightforward use is for measurement the minority carrier

lifetime. To obtain the minority carrier lifetime you may inject carriers at levels

less than the background doping, resulting in measurements directly relating to the

minority carrier lifetime of the material. Another option is to fit the tail of the decay,

however, this becomes a somewhat arbitrary practice, therefore decreasing the pump

excitation to the point of single exponential decay is the best practice for obtaining

the minority carrier lifetime. For low-doped materials, injecting carriers at these low

levels while maintaining sufficient signal to noise becomes quite challenging.

For a more thorough explanation of the photoluminescence signal dependence

on excess carrier density, Eq. 3.7 and Eq. 3.5 were numerically solved using recom-

bination characteristics based on published InAs/InAsSb T2SL recombination [5].

For pulsed excitation, assuming impulse response of injected carriers, Eq. 3.5 can be

written as

d∆n

dt
= −∆n[A+Bn+ Cn2], (3.9)

where the initial condition of the differential equation is set to the injected carrier

density (i.e. n(t = 0) = ninj = ∆n(t = 0)). The numerical solution to Eq. 3.9

provides the temporal response of the carrier density for a given injected carrier

density. For this example the recombination parameters used were A−1 = 5µs,

B = 1 × 10−11cm3s−1, and C = 1.5 × 10−26cm6s−1 and the doping density of the

sample was set to n0 = 1 × 1015cm−3 Fig. 3.3 shows the temporal response of the

excess carrier density found from numerically solving Eq. 3.9 for an injected carrier

density of 1× 1017cm−3. To show non-linear correlation between excess carrier den-

sity and photoluminescence, the time derivative of the photoluminescence intensity,
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Figure 3.3: Time-resolved photoluminescence of an
InAs/InAsSb MWIR T2SL at a temperature of 100 K,
black curve. The dashed-red curve is an exponential fit to the
tail of the photoluminescence decay.

B(d∆nn0 + ∆n2)/dt, divided by the time derivative of the carrier density, d∆n/dt,

is also shown. From where the quotient 1, the temporal position were the photo-

luminescence decay directly represents the carrier lifetime is approximately 20 µs.

This position corresponds to an excess carrier density of 3× 1013cm−3. Reaching in-

jected carrier density this low while maintaining photoluminescence signal becomes

extremely challenging. For comparison to other techniques, the minority carrier life-

time of a MWIR InAs/InAsSb T2SL was measured using TRPL. The setup consisted

of two F1 parabolic mirrors, the first to collimate and the second to focus the pho-

toluminescence from the sample, a cryogenically cooled InSb detector to sense the
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Figure 3.4: Time-resolved photoluminescence of an
InAs/InAsSb MWIR T2SL at a temperature of 100 K,
black curve. The dashed-red curve is an exponential fit to the
tail of the photoluminescence decay.

emitted photoluminescence, and a 1535 nm pulsed laser to optically inject carriers

in the sample. This laser wavelength will also inject carriers in the cap, however

the lifetime of the cap is on the order of 100 ns and will not influence the minority

carrier lifetime of the T2SL. A 2.4 µm longpass filter was used to block the pump

beam from the InSb detector. The photoluminescence decay is shown in Fig. 3.4. An

exponential fit to the tail of the photoluminescence decay is used to find the minority

carrier lifetime of the T2SL. A minority carrier lifetime 3.47µs is found.
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3.3 Frequency modulated photoluminescence

Frequency modulated photoluminescence (FMPL) utilizes steady-sate carrier gen-

eration with small-signal modulation to investigate the carrier lifetime at specific

carrier densities. For FMPL, the generation term is written as

G = GDC +GAC cos(ωt), (3.10)

where GDC is the steady-state generation value and GAC is the frequency modulated

term. Inserting Eq. 3.10 in Eq. 3.1 where the recombination term is denoted by

Eq. 3.4 gives

d∆n

dt
= GDC +GAC cos(ωt)− ∆n

τ
, (3.11)

where τ is the carrier lifetime. Eq. 3.11 is the common description of the differen-

tial equation pertaining to carrier density of the FMPL method. Assuming τ is a

constant, the equation can be analytically solved giving

∆n(t) = τGDC + τ
GAC√

1 + τ 2ω2
cos(ωt− φ), (3.12)

where φ = arctan(1/τω). From this equation it is seen that the modulated excess

carrier density term will be dependent on the modulation frequency and carrier

lifetime. The steady-state excess carrier density is dependent on the steady-state

generation term and lifetime. Therefore, the carrier lifetime as a function of excess

carrier density may be probed. The AC term of the photoluminescence intensity is

IPLAC ∝
τGAC√
1 + τ 2ω2

. (3.13)
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As the modulation frequency is swept, the AC term will begin to roll-off. From this

roll-off the carrier lifetime at the specific steady-state carrier density may be either

calculated or fit. Using the 3dB point of the AC roll-off, the carrier lifetime is found

to be

τ =
1

2π

√
3

f
, (3.14)

where f is the modulation frequency. The steady-state carrier density is found from

the product of the DC generation and carrier lifetime.

nDC = τGDC . (3.15)

An example of data taken using this method is shown in Fig. 3.5. This data was

taken using a 1625 nm laser as the pump. The photoluminescence was captured using

two F1 parabolic mirrors to collimate emission and then focus onto a cryogenically

cooled InSb detector. A 2.4 µm longpass filter was used to block the pump laser

from the detector.

Although the signal to noise ratio of the FMPL method is increased by the

reduction in the system bandwidth, measuring the lifetime of some lower doped

samples (n0 ∝ 1014cm−3) has remained challenging. This method does, however,

remain relevant for higher doped samples where the minority carrier lifetime can be

resolved at higher steady-state carrier densities.

Another attribute of the frequency-modulated method is the assumption made to

reach Eq. 3.11, which is the carrier lifetime is not dependent on carrier density. The

full description of the carrier density using frequency modulated carrier generation
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Figure 3.5: Frequency modulated photoluminescence data of
the InAs/InAsSb T2SL sample for varying DC generation levels.
The sample was cryogenically cooled to 100 K.

is

d∆n

dt
= GDC +GAC cos(ωt)−∆n[A+Bn+ Cn2]. (3.16)

This equation cannot be solved analytically and must be approached numerically.

A quick observation of Eq 3.19 shows higher order terms pertaining to the carrier

density term, which could lead to higher harmonic terms being generated from the

single-frequency modulated generation term. Through numerical simulations it has

been shown that for small-signal modulation (GDC � GAC) these higher harmonic

terms do not play a large roll even when the steady-state carrier density is larger

than the doping level. However, for large modulation (GDC ∝ GAC) the higher order

terms do affect the carrier density. These aspects are looked at in-depth in Chap. 4.
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3.4 Carrier lifetime measurements via microwave

reflectance

An alternative to photoluminescence-based lifetime measurements is to measure a

change in conductivity by reflection of microwave radiation. This measurement tech-

nique is independent of the bandgap energy of the material under test. Therefore, it

is a more versatile approach to measuring lifetime of material systems with largely

varying bandgap energies, such as InAs/InAsSb T2SLs.

3.4.1 Time-resolved microwave reflectance

Similarly to TRPL, time-resolved microwave reflectance (TMR) utilizes a pulsed

laser to excite electron hole pairs in the T2SL. The excess charge creates a change of

conductivity of the T2SL, which results in a change in reflection of continuous-wave

microwave radiation. Therefore, the recombination of charge carriers can be tempo-

rally monitored by measuring the change in power of reflected microwave radiation

after optical excitation.

An advantage of TMR is the carrier lifetime decay curve is dependent on the

excess carrier density and conductivity, whereas, for example, the photoluminescence

decay curve has a squared dependence on excess carrier densities above doping levels

(Eq. 3.6. This advantage makes measuring the minority carrier lifetime and higher-

order recombination terms, such as Auger recombination, more straightforward. In

order to resolve these recombination terms, a calibration of excess carrier density to

signal level must be made.

56



Chapter 3. Carrier lifetime measurement techniques

Figure 3.6: Time-resolved microwave reflectance of an InAs /
InAsSb MWIR T2SL at a temperature of 100 K.

Figure 3.7: Block diagram of microwave apparatus used for
time-resolved microwave reflectance and frequency-modulated
conductance.
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As an example for this section, a InAs/InAsSb MWIR T2SL sample is used for

lifetime characterization via TMR, photoluminescence spectra shown in Fig. 3.1.

The TMR setup consists of a tunable optical parametric oscillator which provides

pulses of 5 − 10ns FWHM at a repetition rate of 1 kHz. The wavelength of choice

for this measurement was 3.7µm to provide a relative uniform distribution of carriers

in the absorber. At this wavelength the absorption coefficient of the T2SL absorber

is approximately 3600 cm−1 [6]. The measured 1/e radius of the pump beam was

2.75mm. The pump energy is controlled using a ZnSe polarizer. The pump beam

illuminates the backside of the sample, because the substrate consists of n-type doped

GaSb absorption at 3.7 µm is relatively low, roughly 10 cm−1. A 94-GHz Gunn

diode is used to source the continuous-wave microwave radiation and is directed to

the sample using a conical horn antenna. The microwave radiation probes from the

front side of the sample. The combination of a backside pump and frontside probe

allows the horn antenna to be brought close to the sample for maximum collection of

reflected signal. Using a circulator, the microwave radiation is launched and collected

by a conical horn antenna. The collected radiation is sent to a microwave detector

by a circulator. The sample is placed in a low-vibration cryostat and cooled to a

temperature of 100 K. The setup diagram can be seen in Fig. 3.7.

When carriers are optically excited by the pump beam, t = 0, a hot distribution

of electron-hole pairs throughout the T2SL absorber is generated, which perturbs the

T2SL into a nonequilibrium state. These generated carriers then cool, or relax, to

the band edges of the T2SL altering the conductivity. This change in conductivity is

probed by microwave radiation. The conductivity decays for varying injected carrier

densities are shown in Fig. 3.6. For large concentrations of injected carriers the initial
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signal decays relatively fast, due to higher order recombination mechanisms such as

Auger. Further in the decay, for example t = 10000ns, the decay rate resembles

that of a single-exponential decay which relates to the characteristics of the minority

carrier lifetime. For small concentrations of injected carriers the decay rate is single

exponential, which looks linear on a log plot, due to the injected carrier density

being dominated by low density recombination terms (i.e. minority carrier lifetime),

in this case SRH. To properly resolve the influence of specific recombination terms,

a calibration of the signal as a function of excess carrier density is performed.

Figure 3.8: Peak reflected microwave signal as a function of
injected carrier density, at 100K (black squares). The peak
signal is taken shortly after zero time. The blue curve is a best
for to the data.

Fig. 3.8 shows a calibration curve fit to the peak signal from reflected microwaves

as a function of injected carrier densities, ninj. This calibration curve is used to
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determine the excess carrier density at a specific reflected microwave signal (ninj =

∆n(t = 0)). Using this calibration the temporal response of the excess carrier density

can be found. Essentially, the signal can now be converted to ∆n(t) to permit more

refined analysis. At large ∆n the lifetime is short, whereas at small ∆n the lifetime

is considerably longer. This is due to the differing recombination terms. To resolve

the carrier lifetime from these curves, the temporal response of the carrier density

was converted to instantaneous lifetime using

τ−1 = − 1

∆n

d∆n

dt
. (3.17)

The resulting instantaneous carrier lifetime with associated lifetime fit is shown in

Fig. 3.9. The lifetime is fit using the carrier lifetime equation describing the recom-

bination of a n-type semiconductor as discussed in Chapter 2,

τ−1 =
n0 + ∆n

τh0(n0 + ∆n) + τe0(∆n)
+B(n0 + ∆n) + Cn(n0 + ∆n)2. (3.18)

By injecting a broad spectrum of carrier densities, multiple recombination character-

istics can be found from fitting, such as SRH, radiative, Auger, and doping density.

It is found that the SRH lifetimes are 3.51µs and 4.08µs for the hole and electron

trapping lifetimes, respectively, the radiative recombination coefficient is found to be

4.58× 10−11 cm3s−1, the Auger recombination coefficient is found to be 1.88× 10−26

cm6s−1, and the doping is fit to be 4.39× 1014cm−3.

Using a least squares regression approach for fitting of the instantaneous lifetime,

the error in fit, or confidence bound, is found using the resulting covariance matrix.

For the fit shown in Fig. 3.9, the 95% confidence interval for the SRH hole lifetime is
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3.42 - 3.60 µs, 3.7 - 4.46 µs for the SRH electron lifetime, 4.21− 4.56× 10−11 cm3s−1

for the radiative recombination coefficient, 1.87− 1.89× 10−26 cm6s−1 for the Auger

recombination coefficient, and 3.9 − 5.2 × 1014cm−3 for the electron doping level.

The spread in confidence in the SRH hole lifetime is due to the spread in data at

low excess carrier densities. The relatively small spread in confidence of the Auger

coefficient is due to the low noise data at high excess carrier densities. The similar

spread in confidence of the SRH electron lifetime, radiative coefficient, and doping

level is due to all three parameters impacting the recombination rate at moderate

excess carrier density levels. Simply put, small variations in these three parameters

can statistically satisfy fitting of the instantaneous carrier lifetime which leads to a

larger confidence bound.

3.4.2 Frequency modulated conductance

A common method of measuring carrier lifetime in silicon photovoltaics [7], [8], fre-

quency modulated photoconductivity (FMP) is a very competitive method of measur-

ing the lifetime at a specific carrier density. As was described in Frequency modulated

photoluminescence, the carrier density is described as

d∆n

dt
= GDC +GAC cos(ωt)−∆n[A+Bn+ Cn2]. (3.19)

For the case of small modulation (GDC � GAC), Eq. 3.19 can be numerically solved,

showing that these higher order recombination terms do not impact the carrier den-

sity response. However, for large modulation (GDC ∝ GAC) these higher order

recombination terms (the Auger and radiative recombination) do begin to impact
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Figure 3.9: Carrier lifetime as a function of excess carrier den-
sityfor a n-type doped MWIR InAs/InAsSb T2SL at a temper-
ature of 100 K. The black circles correspond to the instanta-
neous carrier lifetime. The dashed red, dashed-dotted orange,
and dashed-dot-dot green curve correspond to the SRH, radia-
tive, and Auger lifetimes, respectively. The dashed bright green
curve corresponds to the total lifetime.

the carrier density and can be seen in higher harmonic terms of the modulation

frequency. This becomes a very interesting method to analyze the recombination

mechanisms in an non-trivial way, which is the focus of Chapter 4.

In general, the method of choice is small modulation. For this method, the carrier

density can be described as

∆n(t) = τGDC +
τGAC√
1 + τ 2ω2

cos(ωt− φ), (3.20)

where φ = arctan(1/τω), which is analogous to FMPL. For more detail on the
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Figure 3.10: Frequency response data of the InAs/InAsSb T2SL
sample for varying DC generation levels. The sample was cryo-
genically cooled to 100 K.

derivation of this equation, please refer to the Chap. 3.3.

Fig. 3.10 shows the frequency response of an InAs/InAsSb T2SL at a temperature

of 100 K measured by frequency-modulated photoconductance. In this measurement,

the pump was a 1625 nm laser with a 1/e spot size of 1.2 mm. The microwave

apparatus is the same as in TMR, shown in Fig. 3.7. These frequency responses

correspond to excess carrier densities that correlate to the minority carrier lifetime,

nDC = 4.26×1013−1.52×1014 cm−3. At low frequency values the response is relatively

flat. When the frequency is swept to greater than 20 kHz the modulation response

begins to roll-off. The 3dB point of the three curves is found to be approximatley 80

kHz resulting in lifetime values of 3.31 µs, 3.28 µs, and 3.44 µs, from lowest carrier
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density to highest.
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Chapter 4

Measurement of recombination

mechanisms using multiple

harmonics

Type-II strained-layer superlattices (T2SL) are receiving increased interest as mid-

wave infrared (MWIR) and long-wave infrared (LWIR) detector absorbers due to

their potential Auger suppression[1], [2] and ability to be integrated into complex

device structures.[3] Although HgCdTe based detection systems still excel in device

performance, T2SLs are seeing comparable dark currents.[4], [5] The two T2SLs com-

monly reported for detector applications are InAs/Ga1−x Inx Sb and InAs/In As1−x

Sbx. Flatte et al.[6] proposed that longer minority carrier lifetimes in InAs/GaSb su-

perlattices would lead to a surpassing of HgCdTe dark current performance. However,

these lifetimes have yet to be achieved with some studies suggesting the existence

of a native-defect associated with GaSb that limits the carrier lifetime.[7], [8] These
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limitations have led to further research into Ga-free materials. One such material is

InAs/InAs1−xSbx, which has shown long minority carrier lifetimes, τ ∼10 µs, ren-

dering it promising for use as an infrared (IR) detector.[9], [10] As InAs/InAs1−xSbx

Figure 4.1: An instructive approach to analyzing the first and
second harmonic of the recombination rate, Eq. 4.1c, where
the excess carrier density is represented as Eq. 4.3 with γ = 2,
A−1 = 3.5µs, B = 2×10−10cm3s−1, and C = 1.9×10−26cm6s−1.
The inset shows the ratio of the second harmonic to the first as
a function of steady-state excess carrier density.

T2SL growth has been further developed, the minority carrier lifetime has increased

and background doping density has decreased.[11] This progression has created a

challenge for standard pulsed excitation time-resolved photoluminescence (TRPL)

measurements. In TRPL, the measured minority carrier lifetime is accurate at ex-

cited carrier levels below the majority carrier background doping level. At carrier

densities above the background doping (high-injection), the lifetime is more chal-
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lenging to obtain due to the dependence of carrier density on photoluminescence

(PL) intensity. Another widely-used technique, known as frequency modulated pho-

toluminescence (FMPL), uses DC carrier generation with small-signal modulation to

measure carrier lifetime.[12]–[14] FMPL has the advantage of using a lock-in amplifier

to improve the signal to noise ratio. However, this technique is still dependent on the

capture of photoluminescence from the T2SL and requires relatively large incident

fluence levels to reach large carrier densities in order to properly probe high-injection

recombination. As the bandgap energy of the material under test is pushed to longer

Figure 4.2: Numerical simulation results of Eq. 4.1a represented
by the 2nd harmonic divided by the 1st harmonic. The curves
shown were found by simulation the following values: A−1 =
3.5 µs, B = 1× 10−10 cm3s−1, C = 2.29× 10−26 cm6s−1, black
line, A−1 = 3.5 µs, B = 1 × 10−10 cm3s−1, C = 0.5 × 10−26

cm6s−1, red line, and A−1 = 3.5 µs, B = 2.5 × 10−10 cm3s−1,
C = 2.29× 10−26 cm6s−1, blue line.
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IR wavelengths, the detectivity of associated detectors used for capturing the emit-

ted PL decreases, thus, limiting the capabilities of PL based lifetime measurements.

A more sensitive technique is to measure changes in conductivity induced by ex-

cited electron-hole pairs by monitoring changes in reflection of microwave radiation.

Measurement techniques based on microwave probes of photoconductivity have been

shown on an assortment of different materials[15], [16], including T2SL materials in

the very long-wave infrared[17], LWIR[18], and MWIR[19] regions. Here, we will use

microwave radiation to investigate two recombination regimes: a steady-state carrier

generation with small-signal modulation, known as frequency modulated photocon-

ductivity (FMP), and a large-modulation generation (LMG) where the pump mod-

ulation amplitude is on the order of the steady-state pump generation. We analyze

second harmonic terms of the excitation frequency in LMG to extract information

on radiative and Auger recombination, as the higher order harmonic terms are solely

dependent on the high-injection recombination. These measurement techniques are

then compared to results obtained from time-resolved microwave reflectance (TMR).

4.1 Simulations

The differential equation describing time dependent carrier density is defined by

Eq. 4.1a where the carrier generation, G, is described by Eq. 4.1b, the recombination

rate, R, is described as Eq. 4.1c, γ is the ratio of DC generation to AC modulation

(γ = GDC/GAC), ω is the angular frequency, t is time, A is the Shockley-Read-Hall

(SRH) recombination rate, B is the radiative recombination coefficient, and C is the

69



Chapter 4. Measurement of recombination mechanisms using multiple harmonics

Auger recombination coefficient

d∆n

dt
= G−R, (4.1a)

G(t) = G0(1 +
cos (ωt)

γ
), (4.1b)

R(n) = ∆n(A+Bn+ Cn2). (4.1c)

The carrier density is described as n = n0 + ∆n, where n0 is the doping density

and ∆n is the excess carrier density. Generally, the generation term is written

as G = G0 + G1 cos (ωt), where G0 is the static generation constant and G1 is

the modulation generation constant. Here, we have chosen to incorporate γ in the

generation term as the DC to AC ratio will play a pivotal role in the signal level of

the generated second harmonic. Assuming the excess carrier density is in a region

dominated by SRH recombination, the carrier lifetime, τ , will be approximately equal

to A−1. For this special case Eq. 4.1a may be analytically solved giving

∆n(t) = G0τ +
G0

γ
√

1 + (ωτ)2
cos (ωt− φ), (4.2)

where φ(ω) = arctan((τω)−1). As the modulation frequency is swept, the AC signal

will have a roll-off proportional to ∆nAC(ω) ∝ G0

γ
√

1+(ωτ)2
. From the AC roll-off, the

carrier lifetime of the material under test can be found. For low frequencies (ω �
√

3
τ

)

and small-signal modulation (γ � 1) the excess carrier density can be described as

∆n(t, ω) = nDC +
nDC
γ

cos (ωt), (4.3)

70



Chapter 4. Measurement of recombination mechanisms using multiple harmonics

Figure 4.3: Measured ratio of 2nd/1st harmonic, grey circles.
The blue line plot is a fit to the measured data via shooting-
method from simulation results. Values obtained from the
fit are A−1 = 3.47 µs ±100 ns, B = 1 × 10−10 cm3s−1,
C = 2.29×10−26 cm6s−1. The inset shows the frequency roll-off
of microwave signal for three different static carrier densities
that reside in the Shockley-Read-Hall limited lifetime region.
The carrier lifetime found from these measurements was 3.47
±0.1 µs.

where nDC is the steady-state excess carrier density, nDC = G0τ . For instructive

purposes, inserting Eq. 4.3 into Eq. 4.1c it can be shown that multiple harmonics

directly relating to radiative and Auger recombination are present in this simplified

picture of the recombination term. By separating the higher order cosine terms, it

is also apparent that the second harmonic will be related to the first harmonic by

a factor of 1
γ

and the carrier density, as shown in Fig. 5.1. Taking the ratio of the

second harmonic divided by the first harmonic at various carrier density levels, it
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can be seen that the quotient asymptotically approaches a value that is dependent

on B and C to a constant dependent on γ, inset of Fig. 5.1. However, for situations

where this restriction condition is not met, (i.e. recombination is not dominated by

SRH processes) Eq. 4.1a cannot be easily solved. Therefore, determination of the

influence of the radiative and Auger recombination must be performed numerically.

Numerical simulations were performed to validate using the second harmonic with

relation to the first harmonic as a means of measuring the recombination coeffi-

cients, A, B, and C. Eq. 4.1a was numerically solved to obtain the carrier density

dynamics using various generation values (as given by Eq. 4.1b) and recombination

mechanisms (as given by Eq. 4.1c). The simulation was performed in two regimes.

First, large γ values were examined (γ � 1) to numerically solve for steady-state

carrier density as a function of the static generation level, standard FMP. The sim-

ulation sweeps the generation modulation frequency and measures the AC roll-off of

the numerical solution. From the 3dB point of the AC roll-off, the carrier lifetime

at a specific static generation value can be calculated. From the carrier lifetime

and generation value, the steady-state carrier density can be analytically solved and

compared to the simulated temporal response acquired from the numerical solution.

These steady-state carrier densities, in relation to the static carrier generation term

(G0), are used as the steady-state carrier density for the LMG simulation. This is

done because the LMG sweeps through relatively large carrier densities, yet the cen-

ter point will be the referenced carrier density. Second, large modulation (γ ≈ 1) at

a single frequency below AC roll-off (ω �
√

3
τ

) was investigated at various steady-

state carrier densities. The simulated temporal solution is analyzed using lock-in

amplifier theory to calculate the first and second harmonics. The results are then

compared as a function of steady-state carrier density. Fig.5.2 shows results of sim-
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ulation of various recombination coefficient parameters. Distinct differences exist in

the slope of the harmonic ratio vs. carrier density, demonstrating the viability of this

technique for proper characterization of the recombination mechanisms of T2SL and

other materials with similar recombination properties.

4.2 Sample and methods

To verify the performance of both the FMP and LMG approaches, measurement

of recombination mechanisms of an InAs/InAs1−xSbx T2SL were performed. The

sample was grown by molecular beam epitaxy (MBE) on an n-doped GaSb substrate.

The structure consisted of a 100 nm AlAsSb cladding, the T2SL layer, 100 nm

AlAsSb cladding, and capped with 70 nm of InAsSb. The AlAsSb cladding layers

confine the photo-generated carriers in the absorber region to help prevent unwanted

recombination processes in the substrate and surface. The T2SL absorber layer

consists of 750 periods of slightly doped 4.07 nm InAs and 1.29 nm InAs1−xSbx. The

bandgap energy of the T2SL was measured from PL taken at 80 K and found to be

246 meV. A low-vibration cryostat was used to cool the sample to 100 K. Carriers

were generated in the absorber region using a 1625 nm electrically modulated laser.

The modulation of the pump beam was referenced using an InGaAs photodiode. The

incident pump power was controlled using two nanoparticle linear film polarizers in

series. The first polarizer was used to attenuate power and the second polarizer was

held constant to ensure a consistent Fresnel reflection for all incident powers. The

microwave radiation was sourced using a 95-GHz Gunn diode and was launched and

collected using a conical horn antenna. The reflected microwave signal was directed
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to a detector using a circulator and analyzed using a Zurich HF2LI Lock-in amplifier.

4.3 Results

Figure 4.4: Carrier lifetime as a function of excess carrier den-
sity for a n-type doped mid-wave infrared InAs/InAs1−xSbx
type-II superlattice at a temperature of 100 K. The black
curve corresponds to the instantaneous carrier lifetime found
from time-resolved microwave reflectance measurements. The
dashed, short-dashed, and dash-dotted curves correspond to the
individual lifetimes of the various carrier recombination mech-
anisms found from fitting of the instantaneous carrier lifetime.
The purple circles correspond to single-point carrier lifetime
values measured using frequency modulated photoconductivity.

To calculate the steady-state carrier density for a particular incident laser fluence

(G0), the carrier lifetime was measured for a range of steady-state injected carrier
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densities by means of FMP, inset of Fig. 4.3. Aligning with the procedure done

in simulation, the carrier density associated with the incident laser fluence is used

as a steady-state carrier density calibration in the large modulation measurement.

The harmonics were measured using LMG at f = 1.2 kHz. Fig. 4.3 shows the

resulting ratio of the second harmonic to the first harmonic at steady-state carrier

densities calculated from the FMP. A shooting-method fit, found from simulating

various recombination mechanisms, to the collected data provides the recombination

coefficients, A−1 = 3.47 µs ±100 ns, B = 1 × 10−10 cm3s−1 and C = 2.29 × 10−26

cm6s−1. The measured recombination coefficients using the LMG approach are in

close agreement with TMR measurements performed on the sample under test.

The TMR measurement utilizes a 5 ns pulsed 3.7 µm laser to optically inject

carriers into the T2SL layer. The resulting carrier recombination is probed using

continuous-wave 95-GHz radiation reflected from the sample. TMR data were col-

lected and analyzed as described by Ref. [18]–[21]. The instantaneous lifetime data

were fit using an equation that takes into account SRH, radiative, and Auger recom-

bination as[19]

τ−1 = A+B(n0 + ∆n) + C(n0 + ∆n)2. (4.4)

The carrier lifetime as a function of excess carrier density and fit to data is shown

in Fig. 4.4. Fitting of the instantaneous carrier lifetime provides recombination

coefficients of A−1 = 3.72 µs, B = 1.5 × 10−11 cm3s−1, and C = 1.95 × 10−26

cm6s−1 and a doping density of n0 = 2.59×1015 cm−3. For comparison, the lifetimes

measured by frequency modulated carrier generation for specific steady-state carrier

densities, which are included in the LMG calibration, are included in Fig. 4.4. These

single-point lifetime measurements match well with the TMR data showing viability
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of both the FMP and LMG approaches.

4.4 Conclusion

Frequency modulated photoconductivity, both small-signal (FMP) and large modu-

lation (LMG), probed by microwave reflectance was used to measure recombination

mechanisms in an InAs/InAs1−xSbx T2SL by measuring the second harmonic induced

from single-frequency modulated carrier generation. It was shown through simula-

tion and measurement that the ratio of the second to the first harmonic of generated

carrier density provides a viable means of measuring the recombination mechanisms

due to the characteristic of it being solely dependent on the high-injection recom-

bination mechanisms. The results found from modulated photoconductivity agree

with the commonly used time-resolved microwave reflectance approach. Significant

advantages of this technique are the ability to probe at lower carrier densities to fit

Auger recombination, the requirement of basic telecom lasers, and the use of phase

sensitive detection to increase signal-to-noise of the system.
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Chapter 5

Effects of electron doping on

InAs/InAsSb carrier lifetime

The following chapter was originally published as: E.A. Kadlec et. al,Effects of elec-

tron doping level on minority carrier lifetimes in n-type mid-wave infrared InAs/In

As1−x Sbx type-II superlattices, Appl. Phys. Lett., vol. 109, no. 26, 261105, (2016)

5.1 Introduction

The minority-carrier lifetime (τMC) and the electron doping density (n0) are crucial

parameters that determine the performance of infrared (IR) photodetectors.[1], [2]

For a diffusion current-dominated photodetector the dark current is inversely pro-

portional to the product n0τMC , and described as[3]

Jdiff = q
n2
iW

n0τMC

, (5.1)
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where ni is the intrinsic carrier density, q is the electron charge, and W is either the

absorber thickness or hole diffusion length, whichever is shorter. It can be seen from

Eq. 5.1 that high doping levels and long minority carrier lifetimes would minimize

diffusion current. However, since τMC is dependent on multiple carrier recombination

mechanisms, all of which scale differently with n0, there is a value of n0 that minimizes

dark diffusion current.

As HgCdTe (MCT) photodetector performance has shown limited progress in

recent years,[4] new materials become imperative for the continual growth of IR de-

tection. Through recent advancements, type-II superlattices (T2SLs) have shown

potential for use as photodetectors. Auger suppression in InAs/Ga1−xInxSb super-

lattices has been theorized and shown experimentally to be significant enough to

surpass the dark current performance of MCT.[5]–[7] However, this material system

has been limited by parasitic Shockley-Read-Hall (SRH) defects resulting in short

minority carrier lifetimes.[8]–[10] Due to the limitations of this native parasitic de-

fect, other T2SL materials have been investigated, such as InAs/InAs1−xSbx. Long

τMC values have been achieved in InAs/InAs1−xSbx T2SL structures[11]–[13] show-

ing potential for use in IR detectors. A previous study by Höglund et al.[14] has

presented the n0τMC product over the doping range of 1.2× 1015 cm−3 - 4.5× 1015

cm−3 in InAs/InAs1−xSbx T2SLs. However, a systematic study over a much larger

doping range is still lacking. The study presented in this Letter investigates car-

rier lifetimes in mid-wave infrared (MWIR) InAs/InAs1−xSbx T2SLs over the doping

range 2 × 1014 cm−3 - 2 × 1016 cm−3 to determine the optimum n0τMC product.

Dark current in two InAs/InAs1−xSbx photodetectors of different doping (2 × 1014

cm−3 and 7.5× 1015 cm−3) are shown, demonstrating a reduction in dark current by
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optimizing the doping level.

Figure 5.1: Instantaneous carrier lifetime as a function of
excess carrier density for three n-type mid-wave infrared
InAs/InAs1−xSbx type-II superlattice samples at a temperature
of 125 K. The equilibrium electron concentrations (i.e. the net
doping level) and carrier lifetimes are determined from fits to
the lifetime data (black curves).

5.2 Sample and Method

We first conduct a survey of not intentionally doped (nid) and intentionally doped

MWIR InAs/InAs1−xSbx T2SL material grown at Sandia National Laboratories with

100 K bandgap energies between 215 meV (5.76 µm) and 250 meV (4.96 µm). From

this list, samples are screened based on both τMC and n0. The samples with the

longest lifetimes at a particular doping level have been kept, as these present current
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limiting performance, resulting in the fourteen samples reported here. All samples are

grown using molecular beam epitaxy on slightly n-type GaSb substrates. Absorber

regions are approximately 4 µm thick. Appropriate cladding layers are present in

all structures to ensure the measured minority carrier lifetimes are reflective of the

narrow-bandgap T2SL region and not of carrier leakage into the substrate or surface

recombination. In order to achieve doping above nid levels, either Si or Te are used

as intentional n-type dopants. No significant effect on the resulting minority carrier

lifetime is observed between the use of the two different dopants, and we do not

differentiate between samples with Si or Te doping in this Letter. Compositions for

the InAs1−xSbx alloy layer of the T2SL structure range from approximately 30% to

50% Sb.

Minority carrier lifetimes and doping levels are measured using the time-resolved

microwave reflectance (TMR) apparatus described by Olson et al.[2] This appara-

tus utilizes a 5 ns pulsed IR laser to optically inject charge carriers into the T2SL

absorbing layer of the sample under test. For these measurements substrate side

illumination at the wavelength of 3.7 µm with a e−1 radius of 2.7 mm was used.

The resulting carrier recombination decay is probed by 95 GHz continuous-wave

microwave radiation reflected from the sample. The instantaneously excited car-

rier density is directly related to the reflected microwave power at a particular time

through the change in sample conductivity that arises when the T2SL is perturbed

from equilibrium. TMR data are collected and analyzed in the manner described

previously by Ref. [2], [15], [16], resulting in carrier lifetimes as a function of excited

carrier density (∆n).

Representative lifetime data from three T2SL samples of different doping levels
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are shown in Fig. 5.1. All data presented are taken at 125 K and fit using an equation

that takes into account SRH, radiative, and Auger recombination as[2]

τ−1 = τ−1
SRH +

Br

φ
(n0 + ∆n) + Cn(n0 + ∆n)2, (5.2)

where τSRH is the SRH lifetime, Br is the intrinsic radiative recombination coeffi-

cient, φ is the photon recycling factor, and Cn is the electron Auger recombination

coefficient. It is assumed that the Auger-1 recombination process dominates over the

Auger-7 process.[2], [15] For n-type doping, the SRH lifetime dependence on ∆n and

n0 is

τ−1
SRH =

n0 + ∆n

τp0(n0 + ∆n) + τn0∆n
, (5.3)

where τp0 and τn0 are the characteristic hole and electron SRH lifetimes.[17] Note, the

doping level is explicitly taken into account in the fitting of the carrier lifetime data.

Using Eqs. 5.2 and 5.3 to fit the measured carrier lifetime data allows for accurate

determination of τSRH , the ratio Br/φ, Cn, and n0. The minority carrier lifetime is

found using Eq. 5.2 with ∆n� n0.

More conventional carrier density measurement methods do exist, such as ca-

pacitance voltage (C-V) and Hall measurements.[18] However, these require device

fabrication steps in order to make electrical contact to the material. C-V measure-

ments in particular can also be highly dependent on the device architecture and

geometry, and can be effected by parasitic capacitances. Extracting carrier con-

centrations from C-V data relies on accurate knowledge of the material’s dielectric

constant, which is not well known for T2SLs. [2], [16] Here, since we measure carrier

lifetimes with very high fidelity at excited carrier densities both greater than and
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Figure 5.2: Measured minority carrier lifetimes as a function of
doping density at a temperature of 125 K. The solid black curve
is the best fit to data where τ−1

MC = τ−1
SRH1

+τ−1
SRH2

+τ−1
rad+τ−1

Auger.
The dashed, short-dashed, and dashed-dotted curves corre-
spond to the individual lifetimes of the various carrier recom-
bination mechanisms that have been identified to contribute to
the total minority carrier lifetime. τSRH1 is identified as the SRH
lifetime associated with a native defect present in the T2SL ma-
terial system and τSRH2 is an SRH lifetime that scales with the
intentional doping level.

much less than the net doping level, accurate extraction of the doping level can be

made from fitting carrier lifetime data. Uncertainty in the extracted doping level

using this technique is dependent on the calibration of the initial optically injected

carrier densities, which rely on accurate measurements of the pump energy and spot

size, the superlattice absorption coefficient, and the assumption that every photon

absorbed by the T2SL creates an electron-hole pair. This technique also requires

the Auger recombination rate to be within a range where doping density has enough
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influence to be measurable. For example, if the Auger rate is too small then the

doping level will have little significance on the carrier lifetime leading to difficulty in

extraction. The absorption coefficients in this work are calculated using 14-band k·p

software (SLKdp, QuantCAD LLC). The estimated error in doping levels extracted

from these high-fidelity lifetime data is approximately a factor of 2, which is similar

to expected errors from such methods as C-V analysis. TMR also has the benefit of

being completely non-contact and non-destructive, and does not require additional

fabrication. For the three T2SL samples presented in Fig. 5.1, the extracted dop-

ing levels from lifetime fitting are 1.6 × 1015 cm−3, 4.0 × 1015 cm−3, and 8.4 × 1015

cm−3 with corresponding minority carrier lifetimes of 5.73 µs, 1.69 µs, and 0.68 µs,

respectively.

5.3 Results

Repeating the described fitting procedure for the fourteen different T2SL samples

in this study, a relationship between minority carrier lifetime and doping density is

found, shown in Fig. 5.2 where the uncertainty in the minority carrier lifetime mea-

surement is represented by the symbol size. In order to quantitatively investigate

the dependence that τMC has with n0, these data are analyzed using carrier recom-

bination theory involving SRH, radiative, and Auger recombination. The minority

carrier lifetime can be written as[19]

τ−1
MC =

∑
i

τ−1
SRHi

+ τ−1
rad + τ−1

Auger, (5.4)
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where τSRHi is the SRH lifetime for the i-th defect level, τrad is the radiative lifetime,

and τAuger is the Auger lifetime. Typically, when considering nid material, it is

realistic to assume a single SRH defect level,[2] however this may not necessarily be

the case for intentionally doped T2SLs. Previous work by Olson et al.[19] assumed a

unique SRH defect level associated with the intentional dopant and found this SRH

level to be approximately 70±10 meV into the T2SL bandgap, compared to 130±20

meV for the native SRH defect center. Thus, we assume that there are two unique

SRH defect levels with associated SRH lifetimes for this analysis; one from the native

defect that is independent of the doping level (τSRH1) and a second created by the

intentional dopant atoms (τSRH2) that is dependent on the doping level.

The SRH lifetime is a complicated function of characteristic lifetimes and various

carrier densities. However, at 125 K, the majority electron concentration is the

largest carrier density and τSRH = τp0 , for the case of n-type material with low

injection. With these considerations, Eq. 5.4 becomes

τ−1
MC = τ−1

p01 + τ−1
p02 +

Br

φ
n0 + Cnn

2
0 (5.5)

where τp01 corresponds to the SRH lifetime of the native defect and τp02 corresponds

to the defect created by the intentional dopant. While τp01 is considered independent

from the doping level (since the associated trap concentration is determined by factors

other than the doping concentration), it is assumed τp02 scales with n0. In general,

τp0 = (σpνpNt)
−1 (5.6)

where σp is the hole defect capture cross-section, νp is the hole thermal velocity, and
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Nt is the trap density. The simplest case for τp02 is to assume uncompensated doping,

and that every dopant atom creates an SRH recombination center, so that Nt = n0.

Prior to fitting the data in Fig. 5.2, the intrinsic radiative recombination coefficient

is fixed based on results from Ref. [2], which calculates Br = 1.01 × 10−10 cm3/s

and provides experimental evidence that φ = 15 for similar MWIR InAs/InAs1−xSbx

T2SLs. The thermal hole velocity used is 2 × 107 cm/s, determined using a k·p-

calculated density-of-states heavy hole mass of 0.157m0. With these parameters,

the measured minority carrier lifetime data are best represented using τp01 = 10

µs, σp2 = 1.7 × 10−18 cm2, and Cn = 1.6 × 10−26 cm6/s. The Auger coefficient is

consistent with those experimentally measured in MWIR InAs/InAs1−xSbx T2SLs of

similar bandgap and composition.[20] The exact T2SL structure has been shown to

slightly effect Auger resonances,[20] so because this sample survey includes a range of

alloy compositions, the Auger coefficient reported here can be considered an average.

Eq. 5.5 shows the dependence that minority carrier lifetime has with doping level,

and highlights the importance of identifying not only the limiting carrier recombina-

tion mechanism, but also the optimal doping level. For instance, combining Eq. 5.1

with an Auger-limited minority carrier lifetime (i.e. τMC ≈ 1/(Cnn
2
0)) causes the

diffusion current to increase with greater doping level, as shown in Fig. 5.3 by the

decrease in n0τMC associated with the Auger component. It is readily observed that

the ideal doping density for minimizing dark diffusion current is n0 ' 2.5×1015cm−3,

the doping level at which n0τMC reaches a maximum. The individual recombination

components identified in Fig. 5.2 have also been translated into Fig. 5.3 to highlight

where each mechanism limits the n0τMC product. This maximum in the experimen-
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Figure 5.3: Product of n0τMC as a function of doping density at
a temperature of 125 K. The solid black curve is a best fit to the
data using the same fit parameters as in Fig. 5.2. The colored
curves correspond to the individual carrier recombination mech-
anism that make up the total n0τMC product. SRH1 and SRH2

correspond to the SRH recombination associated with native
defects and defects created by intentional dopants, respectively.

tal n0τMC product coincides with the transition point from being limited by native

defects (SRH1) to Auger recombination. Clearly, the native defects are a hindrance

to attaining larger n0τMC products at doping levels lower than n0 = 2.5×1015 cm−3.

Continued efforts to mitigate native defects in InAs/InAs1−xSbx T2SLs are therefore

warranted. A secondary limitation arises from the intentional dopants and τSRH2 ,

which would begin to limit the n0τMC product if the native defects are mitigated.

However, little is known about how dopants are assimilated into the T2SL structures.

Continued research is necessary to verify that intentional dopants do, indeed, create
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SRH recombination centers in the T2SL materials.

For doping levels greater than n0 = 2.5× 1015 cm−3, Auger recombination is the

limiting mechanism. Previous studies on the effects of layer thickness and alloy com-

position in MWIR InAs/InAs1−xSbx T2SLs indicate that only minor suppression of

Auger recombination is possible while still attaining an approximate 5.2 µm bandgap

and keeping strain balanced,[21] suggesting that further improvement of n0τMC at

higher doping levels may prove difficult for this wavelength range. Improvements in

the Auger recombination will likely require additional materials to be used in the

formation of the SL structure, such as the recent demonstration of InGaAs/InAsSb

superlattices,[22] in order to provide greater versatility in manipulation of the elec-

tronic band structure to suppress Auger resonances.

Fig. 5.4(a) shows dark current as a function of bias voltage at various temper-

atures for two MWIR InAs/InAs1−xSbx photodetectors. One has a nid absorber

(2× 1014 cm−3) and the second is intentionally doped at a level of 7.5× 1015 cm−3.

Both have 4 µm thick T2SL absorbing layers of similar bandgap energies, 231 meV

for the nid sample and 219 meV for the doped sample at 100 K. The minority carrier

lifetime was measured to be 9.93 µs for the nid sample and 0.97 µs for the higher

doped sample at 125 K. Minimal variation in the minority carrier lifetime and doping

level within the temperature range of 100 - 200 K has been shown previously.[2], [19]

The doping levels have been confirmed using the TMR analysis described here. All

other device structure layers are nominally the same. Arrhenius plots are shown in

Fig. 5.4(b) for a voltage of -0.2 V. Experimental data is compared to generalized

temperature trends of diffusion current (Jdiff ∝ T 3e−Eg/kBT ).[15] The nid sample

shows slight differences with this temperature trend, which are most likely due to
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Figure 5.4: (a) Dark current as a function of bias voltage for two
MWIR InAs/In As1−x Sbx photodetectors of different doping
levels, for temperatures of 160 to 200 K in steps of 20 K, 225
K, and 250 K. The lowest curves for each sample correspond
to 160 K and the highest curves to 250 K. Negative voltages
correspond to reverse bias. (b) Arrhenius plots for a bias of
-0.2 V. The solid curves correspond to temperature trends of
diffusion current.

contributions of generation-recombination (G-R) current. An in-depth analysis of

G-R current in InAs/InAs1−xSbx T2SLs can be found in Ref. [23].

The diffusion current component of the dark current, which is dominant at tem-

peratures above 160 K for each sample, is shown to be suppressed in the higher doped

T2SL. The n0τMC product of the two presented samples are 7.27×109 cm−3s for the

higher doped sample and 2× 109 cm−3s for the nid sample. Taking into account the

difference in ni of the two samples due to differences in bandgap energy at 200 K, the

calculated diffusion current ratio is 1.8 while the measured ratio is 2, demonstrating
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a close agreement.

5.4 Conclusion

In summary, time-resolved microwave reflectance was used to extract both minority

carrier lifetimes and doping levels for MWIR InAs/InAs1−xSbx T2SLs over a range

of doping levels. The minority carrier lifetime is found to be dominated by Auger

recombination at high doping concentrations, n0 > 2.5 × 1015 cm−3, and Shockley-

Read-Hall recombination through native defects at low doping concentrations, n0 <

2.5 × 1015 cm−3. We do not find that radiative recombination impacts the carrier

lifetime significantly. For optimal reduction in dark diffusion current the n0τMC

product must be at a maximum, which was found at a doping level of n0 ' 2.5 ×

1015cm−3. This maximum lies at the transition between SRH limited behavior from

native defects at lower doping levels and Auger recombination at higher doping levels.

Depending on the targeted doping level, further reduction in dark diffusion current

(greater n0τMC products) will require mitigation of native SRH defects or suppressing

Auger recombination through engineering of the electronic band structure.

Sandia National Laboratories is a multi-program laboratory managed and oper-

ated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpora-

tion, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. This work was supported by the U.S. Depart-

ment of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and

Engineering Division.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The importance of non-invasive (i.e. non-contact) carrier lifetime measurements is

demonstrated in this dissertation through the investigation of recombination mecha-

nisms and doping density of an InAs/InAsSb MWIR T2SL. Three main topics were

presented: a comparison of common lifetime measurement techniques based on both

photoluminescence and microwave reflectance, an extension of the frequency modu-

lated technique to large modulation, and using time-resolved microwave reflectance

measurements to probe doping density and lifetime to predict device performance.

6.1.1 Common Lifetime measurement comparison

Carrier lifetime analysis can provide vital information on the quality of semicon-

ductor material and how well that material will perform in use for specific appli-
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cations. For example, the minority carrier lifetime can be directly related to dark-

diffusion currents in a photodetector [1], [2]. There are many different carrier lifetime

measurement techniques. For direct-band semiconductors, photoluminescence-based

measurements tend to be the most popular as these are most conducive to optical

labs [3]–[6]. Another method of lifetime measurement is to probe the decay with mi-

crowave radiation, which has no dependence on the bandgap energy of the material

under test. This method has shown great promise for use in both MWIR and LWIR

InAs/InAsSb T2SL lifetime measurements [2], [7]–[9].

A brief comparison of photoluminescence and microwave reflectance-based life-

time measurement techniques was show in Chapter 3 of this dissertation. This com-

parison revealed that although photoluminescence-based lifetime measurement sys-

tems are more common in literature, microwave reflectance-based systems do out-

perform them in both sensitivity and flexibility (i.e. is not bandgap dependent).

The time-resolved microwave reflectance setup shown in this dissertation obtained

sensitivities of ≈ 1013 − 1014 cm−3, roughly an order of magnitude better than the

photoluminescence-based systems. It should be noted, however, that photolumines-

cence is still a viable means of measuring carrier lifetime.

6.1.2 Frequency modulated large-modulation technique

A common method of lifetime measurement, known as frequency-modulated continu-

ous wave or optical modulation response, uses a DC laser with a small AC modulation

to generate carriers. The frequency of the modulation is swept resulting in an AC

roll-off of modulated carriers. This roll-off, which is proportional to the carrier life-
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time, can be measured by photoluminescence or probed by microwave reflectance,

as shown in Chapter 3. The steady-state carrier density is found from the product

of the DC generation term and carrier lifetime found from the AC roll-off. A major

limitation of this method is investigating large carrier densities, which are needed to

properly measure Auger recombination. At first glance, one would think the easi-

est way to reach large carrier densities is to focus the laser spot size, however the

spot size is eventually limited by carrier diffusion, thus, limiting carrier density. A

way to investigate Auger recombination is to use large modulation, instead of the

more-common small modulation.

In Chapter 4, the frequency modulated technique was investigated by numeri-

cal simulation showing that higher harmonic terms resultant of radiative and Auger

recombination are generated in the carrier density. It was shown that these terms

are more prevalent with large modulation than small modulation. Recombination

mechanism measurements using a large modulation generation were made on an

InAs/InAsSb T2SL. The results matched simulation and agreed with the more-

readily used TMR method. As a bonus, these measurements also showed that the

small modulation technique can serve as a excellent measurement of minority carrier

lifetime.

6.1.3 Predicting device performance

Time-resolved microwave reflectance was used to extract both minority carrier life-

times and doping levels for MWIR InAs/InAs1−xSbx T2SLs over a range of doping

levels. The minority carrier lifetime is found to be dominated by Auger recombina-
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tion at high doping concentrations, n0 > 2.5 × 1015 cm−3, and Shockley-Read-Hall

recombination through native defects at low doping concentrations, n0 < 2.5× 1015

cm−3. We do not find that radiative recombination impacts the carrier lifetime sig-

nificantly. For optimal reduction in dark diffusion current the n0τMC product must

be at a maximum, which was found at a doping level of n0 ' 2.5× 1015cm−3. This

maximum lies at the transition between SRH limited behavior from native defects

at lower doping levels and Auger recombination at higher doping levels. Depend-

ing on the targeted doping level, further reduction in dark diffusion current (greater

n0τMC products) will require mitigation of native SRH defects or suppressing Auger

recombination through engineering of the electronic band structure.

6.2 Future Work

6.2.1 Vertical transport

The InAs/InAsSb T2SL has received increased attention due to the long minority

carrier lifetimes showing potential for use as a LWIR detector material. Localization

in the vertical transport measurements has recently been revealed and is hypothesized

to be due to nanoscale fluctuations in the InAsSb alloy layers, as well as the indi-

vidual atoms of the Sb that have diffused into the InAs layer during growth. These

features are highlighted in the atomic scale cross-sectional STM image in Fig. 6.1(e).

Although this technologically important material system has seen recent elevated

investigation, to date there has only been a single vertical transport measurement

performed [10]. Unlike in-plane transport, which can be similar to that of bulk ma-
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Figure 6.1: (a) Schematic of the T2SL HBT epitaxial growth
structure. (b) Enlarged view of the T2SL layers with the axes
defining the transport directions: x, y are the in-plane directions
and z is the vertical direction. (c) 18 K photoluminescence
from the HBT structures demonstrating the long-wave infrared
bandgap energy of the T2SL layers. (d) Electrical schematic of
the T2SL HBT device in the common-base configuration with
the various current identified [10]. (e) Anion image from large-
area STM survey of superlattice periods [11]

terial, vertical transport is significantly different from bulk charge transport due to

the presence of the naometer scale and periodic potential wells along the growth axis

[12], [13]. Conventional transport measurements such as Hall effect can suffice for

in-plane diagnostics, however vertical transport is much more challenging. A unique

approach to the measurement of vertical transport would be to use InAs/InAsSb

T2SL based heterojunction bipolar transistor (HBT) devices [10]. HBTs are a mi-

nority carrier transport device and provide an ideal platform with which to study
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fundamental transport properties in these narrow-bandgap semiconductors. A di-

agram of the proposed device can be seen in Fig. 6.1(a) with the resulting carrier

dynamics shown in Fig. 6.1(d). A recent study by Wood et. al [11] has shown

antimony cross-incorporation in the InAs layer of the superlattice (Fig. 6.1(e)).

6.2.2 Radiation effects

Recent studies of the effects of 63 MeV proton radiation on InAs/InAsSb T2SLs

have shown degradation of quantum efficiency (QE) and rise in dark current with

increased dose of proton radiation [14]. It was suggested from these results that

the effects were due to decreases of the minority carrier lifetime as a result of the

proton radiation. A more recent study has investigated the minority carrier lifetime

as a function of 68 MeV proton radiation dose [15]. The results of this study have

shown that the minority carrier lifetime does indeed decrease with increase proton

radiation due to the introduction of SRH trap centers induced from proton radiation

damage. The results of these two studies suggest proton radiation negatively affects

the material quality, as would be predicted. As a continuation of these studies,

an in-situ measurement of carrier lifetime as a function of radiation dose and time

post radiation should be made. Results from these measurements could provide

information of predicted performance for in-the-field devices.
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