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Abstract

The purpose of this thesis is to show the development of an aerial testbed based

on the Robot Operating System (ROS). Such a testbed provides flexibility to control

heterogenous vehicles, since the robots are able to simply communication with each

other on the High Level (HL) control side. ROS runs on an embedded computer

on-board each quadrotor. This eliminates the need of a Ground Base Station, since

the complete HL control runs on-board the Unmanned Aerial Vehicle (UAV).

The architecture of the system is explained throughout the thesis with detailed

explanations of the specific hardware and software used for the system. The imple-

mentation on two different quadrotor models is documented and shows that even

though they have different components, they can be controlled similarly by the

framework. The user is able to control every unit of the testbed with position,

velocity and/or acceleration data. To show this independency, control architectures

are shown and implemented. Extensive tests verify their effectiveness. The flexibility
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of the proposed aerial testbed is demonstrated by implementing several applications

that require high-performance control.

Additionally, a framework for a flying inverted pendulum on a quadrotor using

robust hybrid control is presented. The goal is to have a universal controller which

is able to swing-up and balance an off-centered pendulum that is attached to the

UAV linearly and rotationally. The complete dynamic model is derived and a con-

trol strategy is presented. The performance of the controller is demonstrated using

realistic simulation studies. The realization in the testbed is documented with mod-

ifications that were made to the quadrotor to attach the pendulum. First flight tests

are conducted and are presented.

The possibilities of using a ROS based framework is shown at every step. It has

many advantages for implementation purposes, especially in a heterogeneous robotic

environment with many agents. Real-time data of the robot is provided by ROS

topics and can be used at any point in the system. The control architecture has been

validated and verified with different practical tests, which also allowed improving the

system by tuning the specific control parameters.

vi



Contents

List of Figures xi

List of Tables xvi

Glossary xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 System Overview 7

2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 MARHES Testbed . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 AscTec Hummingbird . . . . . . . . . . . . . . . . . . . . . . . 8

vii



Contents

2.1.3 QAV250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Vicon System . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Odroid XU4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Modeling of the Quadrotor 21

3.1 Kinematics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Dynamic Model of a Quadrotor . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Newton-Euler Approach . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Linearized Model . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Applications 34

4.1 MAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Velocity Estimator . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.4 Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 ASAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



Contents

4.3 System Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Inverted Pendulum on a Quadrotor 48

5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Energy Control . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 LQR Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Linear Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Rotational Pendulum . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.3 Reduce Swinging . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusions, Contributions and Improvements 74

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



Contents

Appendices 78

A Graphs for Trajectory Tracking a Figure Eight 79

B Gazebo Simulation 84

C Picture Sequence of Gazebo Simulation 86

References 89

x



List of Figures

1.1 Drawing of the MARHES testbed with quadrotors in the Vicon mo-

tion capture area. The UAV in the front is able to go out of the

Vicon area by getting position information from a camera. . . . . . . 3

2.1 Heterogenous MARHES Testbed with a variety of humanoid, ground

and aerial robots in the Vicon motion capture area. . . . . . . . . . 8

2.2 AscTec Hummingbird quadrotor with Odroid XU4 microprocessor

on top of it and Vicon markers attached. . . . . . . . . . . . . . . . 9

2.3 QAV250 frame based quadrotor with Odroid XU4 microprocessor on

top of it and Vicon markers attached. The Odroid is secured by a

custom design and 3D printed part. . . . . . . . . . . . . . . . . . . 11

2.4 Schematic of the Vicon system and its setup in the laboratory. . . . 13

2.5 Vicon equipment for setup and view of Tracker software. . . . . . . . 14

2.6 Odroid XU4 microprocessor from Hardkernel. . . . . . . . . . . . . . 15

2.7 Publish/Subscribe concept of topics by nodes in the Robotic Oper-

ating System [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xi



List of Figures

3.1 Schematic diagram of the quadrotor aerial vehicle. The world frame

{A} shown in black and the body frame {B} shown in green with

their related axes. The distance from the origin of the world frame

to the origin of the body frame is shown by r in red. The system

characteristics are symbolized in light blue. . . . . . . . . . . . . . . 22

3.2 Overview of the closed loop control architecture implemented and

parts where the different controllers are running. . . . . . . . . . . . 32

4.1 Heterogeneous robot system consisting of aerial and ground units.

Cloud resources to optimize the mission. . . . . . . . . . . . . . . . . 36

4.2 Control schematic for waypoint following of AscTec Hummingbird.

The asctec mav framework controllers are bypassed and only used

to send angles and thrust references to the LL attitude controller. . 37

4.3 Waypoint following results for AscTec Hummingbird on-board build

in controller vs. custom linear controller. . . . . . . . . . . . . . . . 38

4.4 Waypoint following results for AscTec Hummingbird on-board build

in controller vs. custom linear controller. . . . . . . . . . . . . . . . 39

4.5 Comparison of the velocity estimator algorithms explained. . . . . . 40

4.6 Quadcopter approaching different ground vehicles. In the blue region

it tries to hover over the base station, in the red region it follows a

stationary Kamigami Dash robot, and in the green region it tries to

follow a moving Kamigami Dash robot. . . . . . . . . . . . . . . . . 41

4.7 ASAP project. The idea of vehicle detection, tracking and neutral-

ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 System overview of the implementation. . . . . . . . . . . . . . . . . 44

xii



List of Figures

4.9 x vs. y graphs of figure eight trajectory tracking at different speeds . 46

4.10 Experimental results of Scenario 1 for the implementation of the

reachability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Experimental results of Scenarios 2 for the implementation of the

reachability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Schematic diagram of the quadrotor with the pendulum (red), pen-

dulum arm extension (Yellow) and counterweight (blue) attached to

it. The world frame {A} shown in gray and the body frame {B}

shown in green with their related axes. The distance from the origin

of the world frame to the origin of the body frame is shown in red.

The system characteristics are symbolized in light blue. . . . . . . . 49

5.2 Block Diagram of the Control Schematic . . . . . . . . . . . . . . . 54

5.3 Stability analysis of the hybrid controller. . . . . . . . . . . . . . . . 60

5.4 Responses of the states to balance the pendulum with LQR control.

First graph shows the y position of the quadrotor, second graph

shows the pitch angle of the quadrotor and the last graph shows the

pendulum angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Responses of the states to balance the pendulum with heading change

of the quadrotor. First graph shows the heading angle yaw of the

quadrotor and the last graph shows the pendulum angle. . . . . . . 63

5.6 Responses of the states to reducing the swing of the pendulum. First

graph shows the y position of the quadrotor, second graph shows the

pitch angle of the quadrotor and the last graph shows the pendulum

angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



List of Figures

5.7 Translational position and rotational angle of quadrotor and pendu-

lum for linear swing-up and balancing. . . . . . . . . . . . . . . . . . 67

5.8 Translational position and rotational angle of quadrotor and pendu-

lum for rotational swing-up and balancing. . . . . . . . . . . . . . . 68

5.9 Quadcopter with attached pendulum. Custom designed and printed

parts to cover Odroid XU4, hold markers, attach the pendulum to

quadrotor and attach pendulum to ball bearing. . . . . . . . . . . . 70

5.10 Linear position control of quadrotor with pendulum attached. . . . . 71

5.11 Rotational position control of quadrotor with pendulum attached. . 72

A.1 Position vs. time graphs for trajectory tracking figure eight with gain

k=0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Position vs. time graphs for trajectory tracking figure eight with gain

k=1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Position vs. time graphs for trajectory tracking figure eight with gain

k=1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4 Position vs. time graphs for trajectory tracking figure eight with gain

k=2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.1 Control tree of Gazebo simulation with all control nodes and used

topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.1 Picture sequence of swing-up and balancing simulation the linear

pendulum on a quadrotor in Gazebo. . . . . . . . . . . . . . . . . . 87

xiv



List of Figures

C.2 Picture sequence of swing-up and balancing simulation the rotational

pendulum on a quadrotor in Gazebo. . . . . . . . . . . . . . . . . . 88

xv



List of Tables

2.1 ROS Distributions since December 31, 2012. Additionally, informa-

tion about the compatibility with Ubuntu versions and end of date

for their support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xvi



Glossary

A World frame

B Body frame

r Distance between world and body frame

ARB Orientation of body frame with respect to the world frame

xA, yA and zA Position of quadrotor origin in world frame

φ, θ and ψ Quadrotor Euler angles in world frame

xB, yB and zB Position of quadrotor origin in body frame

p, q and r Rotational angles in body frame

T1, T2, T3 and T4 Thrust of each of the four motors

Lq Distance between quadrotor origin and motor

ξ Position vector of quadrotor in inertial frame

η Attitude vector of quadrotor in inertial frame

q Vector containing linear and angular position of quadrotor in inertial

frame

xvii



Glossary

vA Linear velocity vector in inertial frame

ν Angular velocity vector in body frame

I Inertia matrix

Ixx, Iyy and Izz Inertia’s around xB, yB and zB, respectively

Tf Collective thrust from the four rotors

τxB , τyB , τzB Moment created by motors around xB, yB and zB, respectively

ρ Air density

Ct Aerodynamic coefficient

Cd Moment coefficient of the blade

rb Blade radius

ω Rotational speed of propeller

kt Force constant

km Moment constant

Mi Moment created by i-th motor

MB Moment matrix including the moments acting on the quadrotor

u Control matrix

mq Mass of the quadrotor

f Non-conservative forces applied to the quadrotor

Ω̂ Skew-symmetric matrix

xviii



Glossary

g Earth gravity constant

Kp, Ki and Kd Tunable proportional, integral and derivative control gains, respec-

tively

e Error between desired and actual value

vx Velocity of x

Ts Sampling time

ax0, ax1, ax2 and ax3 Polynomial coefficients for x

k Gain for trajectory tracking speed

xL Position vector of pendulum

ω Angular velocity in body frame

Le Distance from quadrotor origin to pendulum pivot

Lp Pendulum length

{S−} Suspension point reference frame

{S+} Reference frame always parallel to {B}

T Kinetic Energy

Vp Potential Energy

Ip Pendulum Inertia

L Lagrangian

α Pendulum angle

E Energy

xix



Glossary

J Quadratic cost function

K Control matrix

Q Performance index matrix

R State cost matrix

V1 and V2 Lyapunov function candidates

xx



Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles are becoming more popular, due to their capabilities.

There is an infinite amount of possibilities where these semi-autonomous or fully-

autonomous systems can assist humans to reduce time, improve quality or decrease

danger. Possible applications are search and rescue, delivery, environmental moni-

toring, photography, etc. As they become more advanced and less expensive they

also emerge into the educational sector, especially as control examples.

The quadrotor is one of the more popular unmanned aerial vehicles, due to its

vertical take-off and landing capabilities, hovering flight and simple control. As a

result many research groups use them as part of their testbed [2–5]. Its model has

been well researched by different groups across the world [6–8], where the quadrotors

are modeled in an x-configuration or plus-configuration. Attitude low level controllers

have been developed to show reliable results while performing aggressive maneuvers

[9, 10].
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Chapter 1. Introduction

A common way to control the quadrotors is to have a ground control station, but

this has the disadvantage that it lacks flexibility. The GS has to be communicating

with the unmanned aerial vehicle (UAV) at all times, which requires that it be within

communication range.. This makes the process of going from an indoor motion

capture environment to a more realistic outdoor environment difficult. Additionally

a communication delay is introduced, since the position feedback has to first go to

the GS and then the GS sends control inputs to the quadrotor.

The purpose of this thesis is to develop a flexible high performance on-board

control architecture for aerial vehicles in the Multi-Agent, Robotics, Hybrid, and

Embedded Systems (MARHES) Laboratoy at the Univeristy of New Mexico. The

goal is to have an on-board microprocessor interfaced with different vehicles in order

to perform various applications, which then can be implemented reliably with mini-

mum effort. Previosly the quadrotors in the MARHES testbed have been controlled

off-board using LabView [11] or on-board using an Intel Edison microprocessor [12].

Eliminating the GS in the architecture will decrease the position feedback delay to

make the UAVs more robust and high performance. A picture of the marhes testbed

can be seen in Figure 1.1. The architecture makes it possible to replace the Vicon

position feedback with camera position information which allows the quadrotor to

fly outside the restricted area.

ROS has been evolving over the last several years as the robotic communication

system of choice on the Ubuntu operating system. It has capabilities which have not

been seen before. It is developed by specialists in different robotic exercises and can

be used without charge by the community. It lifted robotic implementations to a

whole new level. There are ROS packages for almost every robot or sensor, which can

be easily manipulated and used in its node/topic environment, to implement basic to

extraordinary applications. Due to its capabilities it is part of almost every robotic

research laboratory and many industrial application [13–15]. Additionally it offers

2



Chapter 1. Introduction

the open-source physical simulator Gazebo, which offers detailed models of almost

every robot. The controllers can be implemented and tested in Gazebo and copied

almost one to one to the real system, which makes the whole process faster and safer.

The smaller, lighter and faster microprocessors, like Odroid, Rasperry Pi or Nvidia

Jetson allow for the on-board use of Ubuntu and ROS resources. This makes the

robot more interesting due to its advanced capabilities of on-board processing and

elimination of a GS, if desired.

Figure 1.1: Drawing of the MARHES testbed with quadrotors in the Vicon motion
capture area. The UAV in the front is able to go out of the Vicon area by getting
position information from a camera.

1.2 Problem Statement

The main goal of this thesis is to implement a real-time high performance control

architecture for UAV’s. To achieve this, a ROS based high level architecture has to

3



Chapter 1. Introduction

be implemented for an on-board microprocessor. This allows for independence of the

vehicle type. It is possible to use an AscTec AutoPilot or Pixracer flight controller

with any kind of configuration of the body, as long as the attitude controller is

accordingly tuned and the high level controllers are similar. The interface setup

allows for extraction and use of real-time data from the quadrotor or motion capture

system at any point. The quadrotor must be able to be controlled with position,

velocity and/or acceleration commands.

To achieve this goal, certain subgoals have to be met along the process. A model

of a rigid body quadrotor is derived. Linear position control has been developed and

implemented. The control has to demonstrate that it is able to takeoff, land, hover,

follow waypoints, follow velocities and track trajectories. The ROS framework has

to be able to interface with MATLAB and execute trajectories that were developed

in Matlab. It also has to fly in a stable manner, even with off-centered balance.

It will be evaluated with different applications that were developed to demonstrate

the flexibility of the vehicle. A framework for a flying inverted pendulum will be

developed and shown in Gazebo, to explore the possibility of implementing it in the

MARHES laboratory.

1.3 Related Work

In the past few years, the quadrotor has become more popular and has been well

studied in papers that show many types of stabilization techniques, controllers and

models. The nonlinear model, which assumes a rigid body configuration has been

derived using Newton-Euler formalism or Lagrangian [6]. This work describes in

detail the dynamic model of a x-configuration quadrotor with all forces, moments,

inertias, etc., that act on it. The difference between a x-configuration and plus-

configuration is in the control matrix [7]. Usually the low level controller is stabilizing

4



Chapter 1. Introduction

the attitude. It can be seen that there is a tendency towards PD, PID controllers or

nonlinear controllers. All three variations have proven to be good solutions and can

be used in aggressive maneuvers [16, 17].

Different applications of quadrotors have been exploited. As an example, loads

have been modeled hanging from the aerial vehicle to reduce swinging [18]. Agile

adaptive control is implemented to correct the switch in the center of mass. These

systems can be used in aerial transportation. It has been simulated and tested in the

MARHES Testbed. Additionally quadrotors could be used for carrying information

between ground agents. Many micro robots could be implemented in order to take

pictures or collect information about the environment. The quadrotors could be

used in this environment to collect the data from the ground-robot via an optical

link and relay it to a home station [19]. A lot of research has been devoted to

reachability analysis, where the quadrotor or a group of quadrotors could catch a

potential threat [20, 21].

Additionally, a quadrotor could be used as an aerial Segway or flying taxi. A

model of an inverted pendulum on a quadrotor would be needed for this type of

application, which has been done for a linear and rotational inverted pendulum.

Swing-up and balancing controllers have been developed for both cases, where it is

usual to swing-up the pendulum with an energy controller and balance it with an

LQR controller [22–25]. Researchers at ETH Zurich have already implemented flying

inverted pendulums, which are balanced in the center of the quadrotor. The UAV’s

are able to balance the pendulum as well as throw and catch it from one quadrotor

to another, respectively [26, 27]. For the throwing maneuver an optimal path of the

quadrotor to the pendulum launch is derived, as well as an optimal catching instant.

The simulation and experiments have been published and demonstrated in the Flying

Machine Arena.

All the work that is presented in this sections show the ability and flexibility of
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Chapter 1. Introduction

quadrotors. A desire to have a general architecture which can be used for various

applications to simplify the implementation process as well as the performance can

be seen.

1.4 Organization of this Thesis

In the following chapter the different hardware and software used throughout the the-

sis is presented. It includes detailed descriptions of vehicles, their sensors, the motion

capture system, on-board microprocessor and the Robotic Operating System. Their

characteristics and advantages/disadvantages will be shown. In Chapter 3 the model

of the quadrotor will be derived using Newton-Euler formalism. The differences be-

tween a x-configuration and plus-configuration will be explained. Additionally, it

will describe the ROS architecture and implementation of the on-board microproces-

sor. Chapter 4 shows different applications that demonstrate the flexibility of this

architecture. Chapter 5 will show the development of a control strategy that will be

able to swing up and balance a flying inverted pendulum in a linear and rotational

manner. It includes the model, controllers for swing-up and balancing, stability

analysis using Lyapunov, Gazebo implementation and preliminary implementation

results. Chapter 6 will be a conclusion and discussion of future possibilities of the

framework.
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Chapter 2

System Overview

2.1 Hardware

2.1.1 MARHES Testbed

The heterogeneous MAHRES Testbed at the University of New Mexico consists

of a variety of different ground and aerial vehicles. The ground rovers are three

TurtleBot2 [28], five Pioneer 3-AT [29] and ten TXT-1 body based monster trucks

[30]. Additionally there are currently two different bio-inspired crawling robots,

the OctoRoACH [31] and five miniROaCHes [32], which are a modification of the

Kamigami Dash robot. The flying robots used in the MARHES testbed are three

AscTec Hummingbirds [33], seven Pixracer based quadrotors with QAV250 frame and

a custom made Pixracer based multirotor. Furthermore, two humanoid Baxter [34]

robots are part of the laboratory. For exact position feedback a Vicon MX [35]

motion capture system is used. A safety net is installed in the testbed area for

security reasons. The MARHES laboratory, with a majority of the robots, can be

seen in Figure 2.1. Odroid XU-4 [36] or Nvidia Jetson TK1 [37] are used as on-board
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Chapter 2. System Overview

microprocessors for the aerial vehicles, whereas the miniRoACHes are developed with

a Raspberry Pi Zero W [38] as the on-board computer.

Figure 2.1: Heterogenous MARHES Testbed with a variety of humanoid, ground and
aerial robots in the Vicon motion capture area.

2.1.2 AscTec Hummingbird

The AscTec Hummingbird quadrotor is typical vehicle used in research due to its

advanced capabilities, open-source software and extensive resources that are provided

by research groups on-line. The UAV can be seen in Figure 2.2. Designed for research,

it has the capability of high performance flight maneuvers and, due to its design, is

easy to repair [33]. It is designed to fly in a plus configuration, which means that the

front extends along one of the arms, which can be seen by the orange tape attached

in the picture.

It comes with the Ascending technologies AutoPilot, which is able to run Low-

Level(LL) attitude control loops including the process of collected sensor data with
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data fusion at 1000Hz. It is possible to run custom High-Level controllers on the

provided High-Level(HL) processor, however for this thesis the HL processor is only

used to interface the Odroid-XU4 microprocessor and pass the desired inputs to the

LL controller. The board can be interfaced with GPS provided by AscTec for outdoor

implementations. For safety, AscTec is providing several emergency modes that

can be essential to rescue the vehicle before a disaster happens. The HL processor

provides a serial interface which is used to get information from radio receivers,

XBee receivers or other serial interfaces. For this thesis it will communicate with

the Odroid to implement position, velocity or acceleration control at a bau drate of

921600.

Figure 2.2: AscTec Hummingbird quadrotor with Odroid XU4 microprocessor on
top of it and Vicon markers attached.

The Hummingbird uses specific Electronic Speed Controllers(ESC) and motors

developed for it. This guarantees flawless interfacing with the AutoPilot. The motors

are designed for improving efficiency as well as maneuverability in combination with

the ESC’s. The 1000kV motors paired with the 12 inch propellers only need 100W
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per motor. This implementation makes it possible to reach flight times of up to 30

minutes if there is no payload attached to the quadrotor. Each motor is able to

approximately generate 5N of maximum thrust. The maximum takeoff weight for

the quadcopter is given to be 710g, and having a weight of 510g it allows for 200g

of extra payload that can be attached safely. The batteries used for the UAV are

3s Lipo batteries, which are light but also less powerful than higher cell batteries.

The 3 Cell batteries provide a voltage of 12.6V when they are fully charged. The

batteries used for this thesis have a rating of 1800mAh.

Additionally, the body structure is very lightweight, which also helps to increase

efficiency as well as a agility. The core of the hummingbird is made out of three levels

of carbon fiber plates for stiffness and weight reduction. These levels are connected

by four magnesium structures which add stability to the frame. The arms are made

out of two carbon fiber plates which are connected through a layer of balsa wood.

This makes them structurally stiff, but the main advantage is that the wood layer

makes them extremely light weight. The diameter from motor to motor is 36.5mm

which makes it a Mini Rotorcraft Unmanned Aerial or Aircraft System(RUAS) [39].

2.1.3 QAV250

The QAV250 based quadrotor has been developed as part of a project with Sandia

Laboratories. It was developed to have a small UAV with extensive maneuverability

and payload capacities. The vehicle has been built from scratch, which allowed for

a variety of components to choose from to produce the best output. It can be seen

in Figure 2.3. It flies in a x-configuration.

For the flight controller, the PixRacer is used due to its compatibility with ROS

and its extensive resources [40]. It is able to communicate with the on-board com-

puter over USB. Its attitude controller is running at 400Hz, whereas it is getting

10



Chapter 2. System Overview

Accelerometer, Gyroscopic and Magnetometer updates at 4000Hz. One of the main

advantages is that it is compatible with OneShot ESC protocol. This increases the

flight performance, because the Flight Controller(FC) and ESC synchronize their

loop-time, which eliminates the error of reused PWM signals without OneShot. Fur-

thermore, the signal sent from FC to ESC is shorter, 125us-250us compared to 1ms-

2ms. With OneShot protocol comes a feature called Active Braking, this will actively

brake the motor when the speed is supposed to be decreased by applying reversed

voltage, instead of applying less volts and waiting until the desired propeller speed is

reached. These factors lead to a increase in quadrotor response, which adds stability,

agility and maneuverability. Additionally, it has several telemetry, GPS and radio re-

ceivers that work with almost all equipment that is used in the Radio Controlled(RC)

vehicle sector. Its small footprint (32mmx32mm) allows it to be implemented in small

body frames.

Figure 2.3: QAV250 frame based quadrotor with Odroid XU4 microprocessor on top
of it and Vicon markers attached. The Odroid is secured by a custom design and 3D
printed part.

The ESC used to convert the FC signals to motor outputs are Lumenier F390
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30A, which come with OneShot and Active Breaking capabilities, when configured

on the FC side. They withstand 30A continuous and 40A burst for 10 seconds. Its

powerful F390 chip allows for fast response. Cobra 2205 size motors with 2500kV

were choosen due to their quality and extreme thrust generation. Their advanced

bearings allow almost frictionless rotation. In combination with 5 inch propellers

and 16V they are able to produce 1.5kg thrust per motor. The combined maximum

thrust of 6kg is an advantage, since the complete quadrotor weights approximately

820g with battery it is able to handle securely an additionally 3kg payload.

The Lumenier QAV250 frame is a two level x-type frame. It has a motor to motor

diameter of 250mm. The 3k carbon fiber structure adds stiffness to the quadrotor

in addition to being light-weight. The design allows the quadcopter to withstand

even strong impacts. Considering the size, weight and payload capability it can be

counted as a small-scale RUAS [39].

2.1.4 Vicon System

The MARHES laboratoy Vicon system is used for position and orientation feedback

for the aerial vehicles. The high precision, fast update rate, simple setup, friendly user

interface and extensive resources make it a perfect research resource to implement,

test and tune control algorithms. It consist of 8 cameras and an MX Giganet which

collects all of the camera feedback and interfaces a computer running Vicon Tracker

software on Windows 7 Operating System(OS) [35]. It delivers high-precision vehicle

data with an error down to 0.5mm in the position and 0.5deg to the rotation at

an update rate of up to 225Hz. The Bonita cameras operate at 240 frames per

second(fps). The cameras have red LED’s which are reflected by the markers, as seen

in Figure 2.2 and 2.3, to get feedback of a predefined object. The setup schematic

of the Vicon area can be seen in Figure 2.4. In the picture the Ethernet connections
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are shown by the solid lines and the Wifi connection can be seen by the dotted line.

Figure 2.4: Schematic of the Vicon system and its setup in the laboratory.

The Tracker software is the interface between the computer and the MX Giganet.

First the cameras have to be calibrated using the Vicon Wand seen in Figure 2.5a.

Next the user is able to set the origin with the same wand, where the long end marks

the x-axis. The coordinate system follows a East-North-Up system, which means

that z is up, y to the left and x is to the front. The markers have to be attached

on the robots next in an asymmetric order, so that Vicon is able to see differences

between the agents. It is then possible to create a model in the Tracker software,

which can be published to the network. Every robot that is connected to the same

router via Ethernet or wireless is able to run ViconStream code, which is provided

for Windows, Ubuntu and MAC OS by Vicon. A picture of the virtual created room

in Tracker can be seen in Figure 2.5b and a close range view of the created Vicon
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(a) Vicon Wand to setup
the Vicon area.

(b) Vicon area showing the
created area, each of the
cameras and 2 objects.

(c) Close look at an object
in the tracker software.

Figure 2.5: Vicon equipment for setup and view of Tracker software.

model in the real-time position and orientation tracking system is seen in Figure

2.5c. It shows a close range view of the object created with the markers and the

origin for this object. The position and orientation of this origin is the published by

Vicon, and it is possible to manipulate the origin of an object if needed.

2.1.5 Odroid XU4

The Odroid XU-4, which can be seen in Figure 2.6, has been chosen due to its

enhanced capabilities and small size [36]. Some relevant characteristics given by the

developer are

• CortexTM-A15 2Ghz and CortexTM-A7 Octa core CPUs

• 2Gbyte LPDDR3 RAM PoP stacked

• eMMC5.0 HS400 Flash Storage

• 2 x USB 3.0 Host, 1 x USB 2.0 Host

• Size : 83 x 58 x 20 mm
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Figure 2.6: Odroid XU4 microprocessor from Hardkernel.

• Linux Kernel 4.9 LTS

The 64 bit memory bandwidth processor in combination with the 2Gb RAM

gives enough calculation power to run advanced programs, especially for an on-board

computer. Similar microprocessors are significantly less powerful, as an example the

Odroid is approximately 7 times faster than the latest Raspberry PI 3. For this thesis

32gb eMMC cards are used, which are approximately 4 times faster than high quality

MicroSD cards. The storage makes it possible to use Lubuntu 14.04 as the operating

system with a desktop version of ROS. The serial connector gives the ability to

connect the Odroid XU4 with the AscTec AutoPilot board and the USB 3.0 port is

used to connect to the Pixracer FC. In both cases, one of the USB 3.0 port is used for

the WiFi adapter to get fast high precision Vicon position and orientation updates

from the Router. The small footprint of the microprocessor makes it possible to fit

it on small quadrotor bodies. Parts to mount the Odroid on the different multirotor

bodies have been designed and printed. The light weight of 38 grams does not add

a lot of payload to the UAV’s, which makes it a reasonable choice.
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2.2 Software

2.2.1 ROS

The Robotic Operating System has become the standard for robotic research. It is

an open source free of charge meta-operating system [41]. It combines the following

services

• operating system

• hardware abstraction

• low-level device control

• message-passing between processes

• package management

The robot framework additionally provides libraries to obtain, build, write and run

code. The communication infrastructure is the main advantage of ROS. It makes

it as simple as possible to use different robots or sensors and interface them with

each other. It is a node and topic system. Nodes are essentially Python Code or

C++ programs downloaded or specifically built by the users which can subscribe or

publish to different topics. As soon as a topic is published each node has the ability

to subscribe to it. This concept can be seen in Figure 2.7. The ROS Message Types

are predefined or custom messages, which define the format of how the information is

published. There are basic messages which are efficient and well arranged, however

advanced users can also create their own message types if needed.

ROS was designed to interface with Ubuntu, which is used as a typical research

operating system, due to its capabilities and the fact that it is free of charge. Over the
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Figure 2.7: Publish/Subscribe concept of topics by nodes in the Robotic Operating
System [1]

years there have been several distribution versions of ROS. A table of ROS version,

their Ubuntu compatibility and end of support date can be seen in Table 2.1. The

ROS version used throughout the thesis is ROS Indigo Igloo. It has the advantage

that it is mainly made for Ubuntu 14.04, which is a Long Term Support version of

Ubuntu that added security to the project. Ubuntu 14.04 also has a light version,

called Lubuntu which interface with the Odroid-XU4. The user has the ability to

install different versions of ROS, which are the Full Desktop, Desktop, Bare-Bones

and Individual package version. The difference between them are essentially the

amount of packages that come predefined with them, which correlates to the storage

amount needed for the version. Whereas on a ground station one would install

the Full-Desktop version, for the on-board computer, the desktop version has been

chosen. It ensures that not to much of the 32gb memory storage of the Odroid

XU4 eMMC card is used and is still sufficient. Additionally, specific packages are

needed later on they can be installed manually, so there is no real drawback of using

a lighter version other than the compiling time for ROS packages may take longer,

due to initially missing packages.

For the communication between the Odroid XU4 and AscTec AutoPilot the

asctec mav framework ROS package is been used. This package is supported up
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ROS Version Ubuntu Version End of Support

Lunar Loggerhead 17.04(Zesty),16.10(Yakkety)& 16.04(Xenial) May 2019

Kinetic Kame 16.04(Xenial) & 15.10(Wily) April 2021

Jade Turtle 15.04(Wily), 14.10(Utopic) & 14.04(Trusty) May 2017

Indigo Igloo 14.04(Trusty) & 13.10(Saucy) April 2019

Hydro Medusa 13.04(Raring), 12.10(Quantal) & 12.04(Precise) May 2015

Groovy Galapagos 12.10(Quantal), 12.04(Precise) & 11.10(Oneiric) July 2014

Table 2.1: ROS Distributions since December 31, 2012. Additionally, information
about the compatibility with Ubuntu versions and end of date for their support.

to ROS Indigo. It provides communication at baud rates of 921600. Additionally,

IMU data fusion at 1kHz has been implemented in the package and is able to be

used for the attitude control. These state estimations are provided in custom ROS

messages which can be used to implement controllers on the platform. The frame-

work allows to send positions, velocities or accelerations to the quadrotor. Positions

and velocities are in the world frame which is provided by the Vicon system. For the

acceleration, the user sends a normalized thrust value (0 to 1), roll and pitch in body

frame in rad and the heading in rad
s

. It connects via serial communication. Since the

Odroid has a 1.8V logic and the AutoPilot board has a 3.3V logic, a simple voltage

level converter board is used to make communication possible. For The PixRacer

FC, the mavros package is used. It is developed for px4 based flight controllers, like

PixHawk, PixHawk Mini and PixRacer. The advantages of this package are the ex-

tensive resources and number of people involved in the project. It is possible to send

motion capture or vision position data to the ROS package and fuse it with the IMU

data with the desired trust in the on-board and off-board data. The quadrotor can

be controlled in various ways by sending linear and rotational positions, velocities

and/or accelerations to the PixRacer. An Extended Kalman Filter (EKF) provides

state estimation. The motion capture system is using the Vicon SDK in combi-

nation with a lightweight communications and marshaling package to optimize the

high-bandwidth communication.
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Additionally ROS provides a physical simulator which is called Gazebo [42]. Fea-

tures of Gazebo are

• Dynamics simulation - high performance physics engines

• Advanced 3D graphics - realistic rendering of environment

• Sensors and noise - model sensors with noise

• Plugins - ability to develop custom plugins for robot, sensor and environmental

control

• Robot models - many existing robots have already been modeled and are avail-

able

• TCP/IP transport - ability to run simulation from remote servers

Since Gazebo is embedded in ROS, it uses the same structure. This makes it

a useful tool, because the controllers can be created, implemented and tested in

a close to real world scenario and taken to the real robot in similar fashion. These

advantages lead to the use of the simulator for a specific application presented in this

thesis. The simulation will consider an inverted pendulum on a quadrotor and has

been completely tested in Gazebo. The rotors simulator package has been used to

get an exact replica of the AscTec Hummingbird with all its characteristics [43]. This

eliminated the need of designing the quadrotor from zero in Gazebo. A pendulum

has been modeled and attached to the quadrotor with all characteristics and inertias.

The cascade control strategy has been implemented and is explained later on in the

thesis.

Additionally a new ROS version is currently under development. Even though

new distributions of ROS are continuously developed, there were some disadvantages

that are so deep in the ROS core that a new version called ROS 2 is being developed.
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This new version is focusing on improving support for multiple Data Distribution

Service(DDS) middleware implementations. It is being tested for more Operating

Systems, including Windows 10. It also tries to implement more programming lan-

guages. All these changes are an effort to improve the system and further adapt

to the robotics community, which has changed since ROS 1 was first introduced in

2007.
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Modeling of the Quadrotor

For the quadrotor model certain assumptions have to be made. The first assumption

is that the quadrotor is symmetrical and has a rigid body structure with 6 Degrees

of Freedom (DOF) [6, 16, 44, 45]. 3 DOF for translation and 3 for orientation. Ad-

ditionally, the propellers are also assumed to be a rigid body. The thrust and drag

created by the propellers are proportional to the square of the rotational propeller

speed. The center of mass (COM) of the quadrotor lies at the center of its body

frame.

3.1 Kinematics Model

The schematics of the model can be seen in Figure 3.1. The world frame {A} has the

reference axes xA, yA and zA. It can be noticed that zA is going out of the world or

up. The Euler angles which define the rotation around the axes are defined as follows,

φ is the angle around the x-axis, θ is the angle around the y-axis and ψ is the angle

around the z-axis. The body frame {B} of the the quadrotor is attached to its COM

and has the reference axes xB, yB and zB. The axes xB is pointing toward propeller
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one and represents the front of the quadrotor, yB is pointing toward propeller two

and zB i pointing upwards. The distance between these two coordinate frames is r,

where r can be expressed as r = [x y z]T .

Figure 3.1: Schematic diagram of the quadrotor aerial vehicle. The world frame {A}
shown in black and the body frame {B} shown in green with their related axes. The
distance from the origin of the world frame to the origin of the body frame is shown
by r in red. The system characteristics are symbolized in light blue.

The multirotor inputs for the four motors are represented as T1, T2, T3 and T4.

T1 and T3 are rotating counter-clockwise, whereas T2 and T4 are rotating clockwise.

The distance between the center of mass of the quadrotor and the motors is shown

by Lq.

The rotational matrix ARB defines the orientation of the body frame to the world

frame, which is needed due to the fact that some states of the dynamic model are
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measured in the world frame (i.e. gravitation and quadrotor position), and some

are measured in body frame (i.e. thrust created by propellers) [44]. The rotation

sequence used for this thesis will be Z-Y-X or 3-2-1. The quadrotor orientation is

described by roll (φ), pitch(θ) and yaw(ψ), so that the rotational matrix ARB(ψ, θ, φ)

looks as follows

ARB =


cθcψ sθsφcψ − cφsψ cψsθcφ+ sφsψ

cθsψ sθsφsψ + cφcψ sψsθcφ− sφcψ

−sθ sφcθ cφcθ

 . (3.1)

It can be noted that s is the sine function and c is the cosine function. Additionally

it can be said that ARB is orthogonal.

3.2 Dynamic Model of a Quadrotor

The position of the quadrotor COM is defined in the inertial frame by ξ and the

attitude is expressed by η, so that the vector q accommodates the linear and angular

position in the inertial frame

ξ =


xA

yA

zA

 ,η =


φ

θ

ψ

 ,q =

ξ
η

 . (3.2)

The body dynamics of the quadrotor are represented by vA, which represents the

linear velocity in inertial frame and ν, which represents the angular velocity in body

frame.

vA =


ẋA

ẏA

żA

 ,ν =


p

q

r

 , (3.3)
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where p, q and r represent the angular velocities in the fixed body frame. The

inertia matrix for the quadrotor is defined as follows

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 . (3.4)

The inputs to the system are the four forces created by the motors [46]. The first

input is the collective thrust represent by Tf .

Tf =
4∑
i=1

Ti (3.5)

The force created by a single rotor can be described as follows.

Ti =
1

2
ρACtr

2
bω

2
i = ktω

2
i (3.6)

where ρ represents the air density, Ct is the aerodynamic coefficient, A is the blade

area, rb is the blade radius, kt represents the force constant and ω is the rotational

speed of the blade. With the help of equation (3.6) it is possible to rewrite equation

(3.5) to

Tf = kt

4∑
i=1

ω2
i (3.7)

The second and third input into the system represent the torques around the x

and y body axis created by the difference of motor speeds. The moment, which is

force multiplied with the distance, around the body axis xB and yB can be described

as follows
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τxB = T2Lq − T4Lq

= ktω
2
2Lq − ktω2

4Lq

= ktLq(ω
2
2 − ω2

4)

(3.8)

τyB = T3Lq − T1Lq

= ktω
2
3Lq − ktω2

1Lq

= ktLq(ω
2
3 − ω2

1).

(3.9)

The fourth input describes the moment around the z body frame axis. It is is

calculated by addition/subtraction of the individual moments created by each rotor.

The moments created by each motor can be described as follows

Mi =
1

2
ρACdr

2
bω

2
i = kmω

2
i . (3.10)

The moment created by the i-th motor is described by Mi, Cd represents the

moment coefficient of the blade and km describes the moment constant. This equation

helps to represent the moment around zB which looks like

τzB = M2 +M4 −M1 −M3

= kmω
2
2 + kmω

2
4 − kmω2

1 − kmω2
3

= km(ω2
2 + ω2

4 − ω2
1 − ω2

3).

(3.11)

It is known that u4 is the weakest input, due to the fact that the moment constant

km is usually smaller than the force constant kt. Combining equation (3.5), (3.8),

(3.9) and (3.11) one can develop a matrix, which includes the forces and moments

acting on the quadrotor by its inputs, which looks as follows
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MB =


Tf

τxB

τyB

τzB

 =


kt
∑4

i=1 ω
2
i

ktLq(ω
2
2 − ω2

4)

ktLq(ω
2
3 − ω2

1)

km(ω2
2 + ω2

4 − ω2
1 − ω2

3)

 . (3.12)

This can be redefined into the inputs for the system, where Tf is u1, τxB represent

u2, τyB defines u3 and τzB is u4. This allows to express the control matrix u as follows.

u =


u1

u2

u3

u4

 =


kt kt kt kt

0 ktLq 0 −ktLq
−ktLq 0 ktLq 0

−km km −km km




ω2
1

ω2
2

ω2
3

ω2
4

 . (3.13)

3.2.1 Newton-Euler Approach

Using Newton-Euler formalism, the equations of motion for the translational and

rotational motion can be derived. The translational change is described in world

frame, whereas the rotational motion is described in body frame [45]. The external

forces applied to a rigid body can be described by the following equations

ξ̇ = vA (3.14)

mqv̇A = f (3.15)

Ṙ = RΩ̂ (3.16)

Iν̇ = −ν × Iν + τ. (3.17)

Equation (3.15) describes Newton’s first law applied to the body frame, where f

described the non-conservative forces applied to the quadrotor and mq denoted the
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quadrotor mass. The following equation describes the law to achieve the derivative to

the rotational matrix, with respect to time, where Ω̂ represents the skew-symmetric

matrix. Equation (3.17) is used to calculate the moments around the body axis. The

non conservative forces can be separated in gravitational and translational forces, so

that f = ARBTf −mqgξz, and equation (3.15) becomes

mqv̇A = ARBTf −mqgξz. (3.18)

The translational forces of equation (3.18) were calculated using the statement

ARBTf , where Tf = [0 0 kt
∑4

i=1 ω
2
i ]
′ = [0 0 u1]

′ according to the input matrix

represented in Equation (3.13), so that they can be represented as follows

ARBTf =


cθcψ sθsφcψ − cφsψ cψsθcφ+ sφsψ

cθsψ sθsφsψ + cφcψ sψsθcφ− sφcψ

−sθ sφcθ cφcθ




0

0

u1



=


(cψsθcφ+ sφsψ)u1

(sψsθcφ− sφcψ)u1

(cφcθ)u1

 .
(3.19)

The gravitational forces only act on the altitude or z component, so that

mqgξz = mqg


0

0

1



=


0

0

mqg

 .
(3.20)

With equation (3.19) and (3.20) the non conservative forces for the translational

motion can be rewritten as
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ẍA =
(cψsθcφ+ sφsψ)u1

mq

, (3.21)

ÿA =
(sψsθcφ− sφcψ)u1

mq

, (3.22)

z̈A =
(cφcθ)u1
mq

− g. (3.23)

For the rotational motion we can rewrite equation (3.17) to
Ixx 0 0

0 Iyy 0

0 0 Izz




ṗ

q̇

ṙ

 = −


p

q

r

×

Ixx 0 0

0 Iyy 0

0 0 Izz




p

q

r

 +


τxB

τyB

τzB



=


qrIyy − rqIzz

rpIzz − prIxx

pqIxx − qpIyy

 +


u2

u3

u4



=


qr(Iyy−Izz)+u2

Ixx

rp(Izz−Ixx)+u3
Iyy

pq(Ixx−Iyy)+u4
Izz

 .

(3.24)

For small angle assumptions of the vehicle it can be assumed that there is a

relation between the rotational angles in body frame and the rotational velocity in

world frame which is φ̇ ≈ p, θ̇ ≈ q and ψ̇ ≈ r [47]. This assumptions makes it

possible to rewrite equation (3.24) which becomes

φ̈ =
Iyy − Izz
Ixx

θ̇ψ̇ +
u2
Ixx

, (3.25)

θ̈ =
Izz − Ixx
Iyy

φ̇ψ̇ +
u3
Iyy

, (3.26)

ψ̈ =
Ixx − Iyy
Izz

θ̇φ̇+
u4
Izz

. (3.27)

With equation (3.21), (3.22), (3.23), (3.25), (3.26) and (3.27), which describe the

translational and rotational motion of the quadrotor, the complete model can be

built, which looks as follows
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ẍA =
(cψsθcφ+ sφsψ)u1

mq

, (3.28)

ÿA =
(sψsθcφ− sφcψ)u1

mq

, (3.29)

z̈A =
(cφcθ)u1
mq

− g, (3.30)

φ̈ =
Iyy − Izz
Ixx

θ̇ψ̇ +
u2
Ixx

, (3.31)

θ̈ =
Izz − Ixx
Iyy

φ̇ψ̇ +
u3
Iyy

, (3.32)

ψ̈ =
Ixx − Iyy
Izz

θ̇φ̇+
u4
Izz

. (3.33)

The collective thrust is described by u1 and the roll, pitch and yaw moments are

represented by u2, u3 and u4, respectively. The under-actuated system has can move

in 6 degrees of freedom with 4 control inputs.

3.2.2 Linearized Model

For linear control it is important to bring the model into state space represen-

tation. First the system has to be linearized around the hovering point, which

means that u1 = mg. The states for the linearized model are chosen as follow

x = [xA ẋA yA ẏA zA żA φ φ̇ θ θ̇ ψ ψ̇]T . The linearized state space representa-

tion follows the common model, which looks as follows.

ẋ = Ax+ Bu, (3.34)

y = Cx+ Du, (3.35)

where A is the state matrix, B the input matrix, C the output matrix and

D the feed-through matrix. The linear system has the advantage that simple and

systematic controllers can be applied which still give excellent outputs. The following

equilibrium points have been chosen
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x1 = xA = 0

x2 = ẋA = 0

x3 = yA = 0

x4 = ẏA = 0

x5 = zA = 0

x6 = żA = 0

x7 = φ = 0

x8 = φ̇ = 0

x9 = θ = 0

x10 = θ̇ = 0

x11 = ψ = 0

x12 = ψ̇ = 0

u1 = mg

u2 = 0

u3 = 0

u4 = 0.

The equilibrium points secure that the system will operate reasonably within a

certain operating range around them. It has to be kept in mind that the system

will behave as simulated only in a certain range around these points. Applying these

equilibrium points to the linearized matrices gives the following matrices

A =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −g 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 g 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0



, (3.36)
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B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
mq

0 0 0

0 0 0 0

0 1
Ixx

0 0

0 0 0 0

0 0 1
Iyy

0

0 0 0 0

0 0 0 1
Izz



, (3.37)

C =



1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0


(3.38)

and

D = 0. (3.39)

The inertias of the quadrotor are specific to the model and can easily be applied

to the matrices. The mass of the quadrotor is also model specific. The earth gravity

constant g is used which is -9.81m
s2

.
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3.3 System Architecture

In an actual system, the implementation looks a little bit different than the model.

Unless direct motor control is implemented, it is usual to use a cascade control

architecture. Normally a LL controller is controlling the attitude of the quadrotor

and a HL controller is implementing position, velocity, acceleration or similar control

that fits the specific needs. A generic control structure for the system of this thesis

can be seen in Figure 3.2.

The two different systems have their own FC, which can be interfaced with the

HL control implemented in this thesis. For the AscTec the LL controller running

the attitude and altitude control loop is the AscTec AutoPilot. For the QAV250

frame base quadrotor, the PixRacer acts as attitude controller. Both come with

their own advantages which are mainly the attitude control loop speed of 1kHz on

the AscTec and the flexibility to use electromechanical components for the PixRacer.

The attitude controller is utilized to stabilize the quadrotor. Both FC are interfaced

by the Odroid XU4, which is the HL controller. The HL side of the control is

completely implemented using ROS.

Figure 3.2: Overview of the closed loop control architecture implemented and parts
where the different controllers are running.

The implemented architecture makes it possible to generate an input signal on-

board the quadrotor, which can directly send its generated desired inputs to the

asctec mav framework or the mavros framework on the different UAV’s. These
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desired inputs could be positions, velocities and/or accelerations. The respective

HL controllers will ensure that these points are met and send roll and pitch angles,

heading velocity and thrust values to the LL control. Additionally, it is possible to

bypass these HL control algorithms and implement your own which sends directly

desired roll and pitch angles, yaw velocity and a normalized thrust value. The

attitude controller converts these desired orientation inputs into control inputs for

the motors. Additionally, the altitude controller is converting the desired thrust in

the collective thrust input into the motors. The motor inputs are sent to the motors

and converted to thrust and momentum created by each individual motor. The

motor inputs with specific dynamics are producing the outputs of the system that

will be captured using sensors. The Vicon sensor will be used as a feedback for the

HL side of the controls. It gives feedback about the position and orientation of the

object created. This feedback can be used to estimate the velocity and accelerations

of each state. It can be said that the Vicon sensor can easily be replaced by GPS or a

camera using simultaneous localization and mapping algorithms. IMU is used for the

attitude control. It feeds the rotational velocity and linear acceleration back to the

PixRacer or AscTec AutoPilot. The inputs to the FL controllers could come from

mapping, trajectory generation, obstacle avoidance, etc. algorithms. Additionally it

is possible to add more sensors like Sonar, IR, laser, etc. for specific applications.
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Applications

The main purpose for this framework was to be as flexible as possible for different

applications. The ROS framework has to be designed to work with multiple het-

erogeneous robots and communicate with them. The two main projects that the

quadrotors are used for are the Micro Autonomous Systems and Technology(MAST)

and Aerial Suppression of Airborne Platforms (ASAP) project implemented by the

MARHES laboratory. The focus and implementation of these projects will be dis-

cussed.

4.1 MAST

4.1.1 Introduction

For the MAST project, the MARHES lab is developing a system which is able to ef-

fectively deploy and coordinate a network of heterogeneous robots, as seen in Figure

4.1. The idea is to be able to use small and cheap universal ground robots that map

specific information of an area and send it via an optical link to aerial vehicles. The
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aerial vehicles can sufficiently get information from multiple ground robots and bring

it to a home station which would act as a cloud. Using the strength of node of the

whole system makes it possible to overcome limitations of specific robots. The cloud

is then powerful enough to use this information and extract what it needs. Such a

framework would be helpful in situations like surveillance of complex environments,

search and rescue, localization of targets, etc. The advantage of having an optical

link between the ground robots and aerial robots is that it has a robust high com-

munication rate. An optical link can only be jammed if the intruder is physically

between the transmitter and receiver, which makes it interesting for security applica-

tions. As ground robots, the Kamigami Dash robots have been modified so that they

have ROS on-board a Raspberry Pi zero. They are equipped with cameras and will

take pictures of the environment. When their internal storage is full the quadrotor

will fly above them and extract the data. The quadrotor will then fly to a ground

station, which will represent the cloud and upload the data, so that it will be able to

go back and get more information as soon as it has uploaded all data to the ground

station. For this application, the quadrotor has to be able to do waypoint navigation

and hover above an object to transmit and receive data. The quadrotor used for

this application is the AscTec Hummingbird due to its advantage of superior flight

time of up to 20 minutes. First the waypoint architecture will be discussed. Then a

velocity estimator for the controller is implemented and tested before the results of

the implemented linear control are presented.

4.1.2 Architecture

For the waypoint navigation, a position control which sends roll and pitch angles,

yaw velocity and a normalized thrust reference directly to the LL controller has

been developed. It is a PID controller and the schematic can be seen in Figure 4.2.

The Odroid XU4 is still used as microprocessor running the HL controller with the
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Figure 4.1: Heterogeneous robot system consisting of aerial and ground units. Cloud
resources to optimize the mission.

asctec mav framework ROS package. The desired x and y values are given to the

PID controller, which sends a reference to the transform node. The transform block

will, depending on the heading, send the desired roll and pitch angles to the FC. The

desired heading is sent to the PID algorithm and a reference heading velocity will be

sent to the attitude control. The height control is controlled similarly, however the

desired thrust value will be a normalized number between 0 an 1, which is converted

by the LL altitude control in collective thrust created by the quadrotor. The reason

to bypass the internal position control provided by asctec mav framework is that the

provided position control was not agile and precise enough. It is designed for outdoor
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environments with GPS feedback, so the focus was on robustness and reliability.

Using Vicon as position feedback gives less noise with higher precision.

Figure 4.2: Control schematic for waypoint following of AscTec Hummingbird. The
asctec mav framework controllers are bypassed and only used to send angles and
thrust references to the LL attitude controller.

The PID controllers for each state look as follows

xr = Kpxex(t) +Kix

∫ t

0

ex(τ)dτ +Kdx
dex(t)

dt
, (4.1)

yr = Kpyey(t) +Kix

∫ t

0

ey(τ)dτ +Kdx
dey(t)

dt
, (4.2)

ψ̇d = Kpψeψ(t) +Kiψ

∫ t

0

eψ(τ)dτ +Kdψ
deψ(t)

dt
, (4.3)

thrustd = Kpzez(t) +Kiz

∫ t

0

ez(τ)dτ +Kdz
dez(t)

dt
, (4.4)

,where xr, yr, ψ̇ and thrustd are the inputs into the system. xr and yr are a

reference that goes into the transform, and the transform calculates the desired roll

and pitch that go to the LL controller. Kp, Ki and Kd are the tunable control gains.

The error is shown by e.
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Figure 4.3: Waypoint following results for AscTec Hummingbird on-board build in
controller vs. custom linear controller.

4.1.3 Velocity Estimator

The velocity estimator has been used for the derivative part of the PID control

algorithm. Different methods have been taken into account which are the Two-Point

Derivative, Three-Point Derivative and Al-Alaoui Derivative [48]. These derivatives
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Figure 4.4: Waypoint following results for AscTec Hummingbird on-board build in
controller vs. custom linear controller.

can be calculated as follows

Two-Point : vx =
x(k)− x(k − 1)

Ts
, (4.5)

Three-Point : vx =
x(k + 1)− x(k − 1)

2Ts
, (4.6)

Al-Alaoui : vx = −1

7
vx(k − 1) +

8(x(k)− x(k − 1))

7Ts
, (4.7)
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where x and vx are the position and velocity, respectively. It can be noticed that the

two point estimator is a linear estimation between two points, this works very well

if there is no noise in the system. Even though the Vicon system provides reliable

feedback, a small amount of noise is amplified in the velocity. This can lead to

problems, especially with small step sizes. The three point derivative is less affected

by noise due to the fact that it is taking linear measurements of 2 time steps. The

real-time implementation problem is that it requires a future measurement. The

Al-Alaoui velocity estimation is taking the previous measurement into account. The

comparison of the estimators in the real implementation can be seen in Figure 4.5.

Figure 4.5: Comparison of the velocity estimator algorithms explained.

It can be seen that the three-point estimator is ahead by one time step. This

is due to the fact that the estimation takes future measurements into account. The

two-point and Al-Alaoui estimator perform similarly, whereas it can be noted that

the spikes of the Al-Alaoui algorithm has higher peaks. Taking this into account,

it has been decided that the Two-Point estimation is the best one for the real-time

implementation and will be used for the PID position control.
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4.1.4 Demo

As explained before, there will be one or more quadrotors in the demo. The UAV’s

are supposed to transport information from ground robots to a ground station. The

quadrotor performance has been tested and the ROS framework has been imple-

mented and tested. To be able to go from agent to agent, the UAV gets the position

feedback of the ground robots. The results of the test can be seen in Figure 4.6.

It shows the quadcopter switching between ground agents. In the blue region it is

Figure 4.6: Quadcopter approaching different ground vehicles. In the blue region it
tries to hover over the base station, in the red region it follows a stationary Kamigami
Dash robot, and in the green region it tries to follow a moving Kamigami Dash robot.
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trying to hover over the ground station, to get information from the Kamigami Dash

robots. Then it moves towards the first stationary Kamigami, which is shown by

the red region. When it received all the information it needed it goes to the next

Kamigami, which is shown by the green region. This Kamigami is moving and the

quadrotor is following it. When it receives all of the information it needs from the

ground robot it flies back to hover over the ground station, where it can upload all

the data it has collected. It can be seen that the quadrotor is able to switch between

ground units, and is able to hold position reliably if the ground robot is not moving.

If the ground robot is moving, it hovers above it with some position latency, however

it is still performing well enough to be in the region of getting information. The

ROS framework on each node in the system made it simple to communicate between

robots and get information about their status.

4.2 ASAP

4.2.1 Introduction

Due to the increase of personal and commercial aerial vehicles in the last few years,

more research is being conducted on security in possible threat situations. This

includes detection, tracking, and neutralization. The research proposed here works

towards a threat capture system. First, when a threat is detected, forward stochastic

reachability analysis is used to evaluate the exact future probability distribution of

the threat from its current location. This is followed by an optimal control problem

to optimize the capture probability [21]. This novel approach has been developed

and tested in the MARHES lab. The quadrotors used for this experiment is the

QAV250 with on-board microprocessor.
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Figure 4.7: ASAP project. The idea of vehicle detection, tracking and neutralization.

4.3 System Schematic

The control architecture for this project makes use of the implemented position con-

troller included with the ROS packages. This makes the implementation simple and

saves time. Since the reachability analysis is running in Matlab and it needs Mat-

lab functions, the implementation makes use of the new developed Matlab Robotics

Toolbox. This toolbox makes it possible to receive and send ROS messages that

can be integrated in the framework. The system schematic can be seen in Figure

4.8. Matlab is calculating way-points for the pursuer and threat. The polyfit

function is computing trajectory coefficients for a third order polynomial that are

sent to the quadrotors. The quadrotors execute these trajectories on-board and are

able to switch their trajectories for a receding horizon environment in which updated

coefficients get sent continuously.
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Figure 4.8: System overview of the implementation.

4.4 Trajectory Tracking

For the implementation of the project, a trajectory generation based on 3rd order

polynomials has been implemented. This guarantees smooth path generation of way-

points. The coefficients are sent to the quadrotor. The quadrotor is able to execute

the trajectory with respect to time. The xA, yA and zA positions are calculated as

follows

xA = ax0 + ax1td + ax2td + ax3td, (4.8)

yA = ay0 + ay1td + ay2td + ay3td, (4.9)

zA = az0 + az1td + az2td + az3td, (4.10)

where ax0, a1, ax2 and ax3 are the polynomial coefficients to calculate the position

in inertial frame. For yA, x is switched with y and for zA, x is switched with z. The

time duration is represented by td. To test the performance, a figure eight has been

flown. To generate the figure eight, a different control law for the position generation
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has been used which is able to test the system with a difficult trajectory and can be

simplified by changing the gain k. It look as follows

xA = sin(ktd) (4.11)

yA = sin(0.5ktd) (4.12)

zA = 0.2sin(0.25ktd). (4.13)

The results of the test with different gains can be seen in Figure 4.9. This shows a

2D view from above. It can be seen that at a slow speed the quadrotor is following the

trajectory precisely. For k=1.5 and k =2.0 the quadcopter is overshooting, however

it is still able to follow the trajectory. More detailed results of the tests can be seen

in Appendix A. This figure shows each position with respect to time. There it can

be seen that some delay exists in the trajectory following. The position z of the

quadrotor is a little jittery, however it is still able to follow the trajectory. These

tests give promising results and show that the quadrotor is able to follow generated

positions.

4.5 Experimental Results

The framework has been implemented in the MARHES laboratory. It is an open-

loop experiment. The reachability analysis is generating trajectories at the beginning

of the experiment. These trajectory coefficients are sent to the quadrotor which

also triggers a flag that initiates the trajectory execution loop. With the help of a

duration timer, the waypoints along the path are generated at 100Hz and send to the

on-board position controller of the UAV. Two different scenarios have been tested

and evaluated. Their positions have been saved on-board the quadrotor to generate

the results seen in Figure 4.10 and Figure 4.11. The threat can be seen in red. It

is approaching the asset. The pursuer is following the generated trajectory that was
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Figure 4.9: x vs. y graphs of figure eight trajectory tracking at different speeds

generated by the reachability analysis. It captures the threat both times before the

threat can reach the asset. When the pursuer is inside the capture region of the

threat, the quadrotors stop and the test is counted as successful. The results of the

reachability analysis look promising.
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Figure 4.10: Experimental results of Scenario 1 for the implementation of the reach-
ability analysis

Figure 4.11: Experimental results of Scenarios 2 for the implementation of the reach-
ability analysis
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Inverted Pendulum on a

Quadrotor

As part of this thesis a framework for an off-centered inverted pendulum on a quadro-

tor has been developed. The goal is to have a quadrotor which can swing-up and

balance the pendulum in a linear and rotational fashion. A model has been derived

using Lagrangian. It adds the pendulum state to the complete nonlinear model rep-

resentation derived in chapter 3 on page 21. The control design is presented and

discussed. The controllers for each state of the hybrid systems have been developed

and stability of the system has been tested using Lyapunov. After achieving the

LQR gain matrix for the linear and rotational inverted pendulum, as well as the

swing reduction gain matrix Kswing using Matlab, the system has been simulated.

First the balancing maneuver has been simulated in Matlab. The full gazebo imple-

mentation has been developed and shows promising results. First steps of the real

system implementation with preliminary results are shown.
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5.1 Model

The model is following similar notation and assumptions as the one presented in

chapter 3 on page 21. The schematics of the quadrotor model with attached pendu-

lum can be seen in Figure 5.1.

Figure 5.1: Schematic diagram of the quadrotor with the pendulum (red), pendulum
arm extension (Yellow) and counterweight (blue) attached to it. The world frame
{A} shown in gray and the body frame {B} shown in green with their related axes.
The distance from the origin of the world frame to the origin of the body frame is
shown in red. The system characteristics are symbolized in light blue.

In addition to the original picture, the attached pendulum is described by Le,

which is the length of the center of mass of the quadrotor to the pivot point where

the pendulum is attached. The one degree of freedom of the pendulum is described

by α, which rotates around xB. The pendulum angle is zero at the upward vertical

position. The pendulum length is described by Lp. A counterweight is added to

balance the additional weight by the pendulum and erase the moment created around

the COM. Additionally, it allows for the assumption that the COM is not switching
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due to the pendulum. The mass of the pendulum attachment is given by mpand the

counterweight mass is described by mc.

The Lagrangian method is used to derive the model. The position of the pendu-

lum is given by xL =
[
xL yL zL

]T
, respectively. Additionally the angular velocity

vector in body frame is described by ω =
[
ωx ωy ωz

]T
.

As seen in the Figure 5.1 the pendulum is off-centered in the x-axis of the quadro-

tor body frame, so that the suspension point of the pivot can be described as (0, 0, Le)

in {B} [49]. The center of mass of the pendulum will be given by 1
2
Lp. So let us

define le =
[
0 0 Le

]
and lp =

[
0 0 1

2
Lp

]
.

Hence, q and can be defined as,

q =
[
xA yA zA φ θ ψ α

]
. (5.1)

Furthermore, it is possible to describe the position of the COM of the pendulum

in the world frame by

xL = ξ + Rz(ψ)Ry(θ)le
T + RS+

S−Rx(α)lTp . (5.2)

The pendulum angle is defined in an inverted configuration of the suspension

point reference frame, which is represented by {S−}. Whereas {S+} reference frame

is always parallel to {B}. The corresponding matrix is given by

RS+

S− =


1 0 0

0 −1 0

0 0 −1

 . (5.3)

The quadrotor position in world frame is defined by ξ and the pendulum positions

also in world frame are given by xL. The angular velocities of the quadrotor ω and
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the pendulum angle α̇ are given in body reference frame and α̇ is assumed to be in

the suspension point frame {S−}.


xL

yL

zL

 =


xA

yA

zA

 +


cθsψ −sψ cψsθ

sψcθ cψ sψsθ

−sθ 0 cθ




0

0

1
2
Lp

 +


1 0 0

0 −cα sα

0 −sα −cα




0

0

Le

 . (5.4)

Equation (5.4) can be computed and written in full form as follows



ẋA

ẏA

żA

ωx

ωy

ωz

ẋL

ẏL

żL



=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 −sθ 0

0 0 0 0 cφ sφcθ 0

0 0 0 0 −sφ cφcθ 0

1 0 0 0 Lesθcψ −Lecθsψ 0

0 1 0 0 −Lesθsψ Lecθcψ cα

0 0 1 0 −Lecα 0 1
2
Lpsα





ẋA

ẏA

żA

φ̇

θ̇

ψ̇

α̇


(5.5)

which can be presented by

ẋ = J(q)q̇. (5.6)

For the Lagrangian method the potential and kinetic energy has to be calculated.

The kinetic energy of the complete system can be expressed as follows,

T =
1

2
ẋTQMQẋQ +

1

2
ẋTLMLẋL +

1

2
ωT Iω +

1

2
IP α̇

2, (5.7)

or
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T =
1

2
ẋTMẋ =

1

2
q̇TJ(q)TMJ(q)q̇ +

1

2
IP α̇

2. (5.8)

The matrix M = diag([mq,mq,mq, Ixx, Iyy, Izz,mp,mp,mp]). The mass of the

quadrotor is represented by mq and the pendulum mass is represented by mp. The

pendulum inertia is shown by IP and the quadrotor inertia’s are shown by Ixx, Iyy

and Izz about x, y and z axis.

Now that the kinetic energy is calculated, the potential energy calculation is the

next step, It is given by Vp, which looks as follows

Vp = mqgzq +mqg(zQ − L sin θ − L cosα). (5.9)

Since the kinetic and potential energy expressions have been calculated, it is

possible to evaluate the Lagrangian,

L = T − Vp. (5.10)

The Euler-Lagrange equation can be used to calculated the dynamics of the off-

centered pendulum attached to the quadrotor [50],

d

dt
[
∂L
∂q̇

]− ∂L
∂q

= fext, (5.11)

which can be written as,

d

dt
[Wq̇]− 1

2

∂

∂q
[q̇TW]q̇ +

∂V

∂q
= fext. (5.12)

We obtain

Wq̈ + (Ẇ − 1

2

∂

∂q
[q̇TW])q̇ +

∂V

∂q
= fext. (5.13)
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From Equation (5.13), one can obtain the mass, Coriolis and gravitational terms

for the equation of motion of the flying inverted pendulum which looks as follows,

Mq̈ + C(q, q̇)q̇ + G(q) = fext, (5.14)

where W = JT (q)MJ(q) + diag([0, 0, 0, 0, 0, 0, 0, IP ]).

With these equations it is possible to get the complete model of the system.

Additionally, it has to be said that it is assumed that the pendulum mass is so small

that it does not affect the quadrotor. The quadrotor complete nonlinear model can

be written as

ẍA =
(cψsθcφ+ sφsψ)u1
mq +mp +mc

, (5.15)

ÿA =
(sψsθcφ− sφcψ)u1
mq +mp +mc

, (5.16)

z̈A =
(cφcθ)u1

mq +mp +mc

− g, (5.17)

φ̈ =
Iyy − Izz
Ixx

θ̇ψ̇ +
u2
Ixx

, (5.18)

θ̈ =
Izz − Ixx
Iyy

φ̇ψ̇ +
u3
Iyy

, (5.19)

ψ̈ =
Ixx − Iyy
Izz

θ̇φ̇+
u4
Izz

, (5.20)

α̈ =
1
2
mpLpLecαψ̈ + 1

4
mpL

2
pcαsαψ̇2 + 1

2
mpLpgsα + 1

2
mpLpÿAcα

Ip + 1
4
mpL2

p

−Bpα̇.

(5.21)

It should be noted that the pendulum state α̈ is effected by two movements, the

linear acceleration in y and the rotational motion of the quadrotor.
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5.2 Control Design

For the control design of an inverted pendulum on a quadrotor, Energy control will

be used to swing-up the pendulum, and a LQR controller will be used to balance it.

The decision between linear or rotational swing-up and balancing will be decided by

a digital switch. Figure 5.2 shows the dual hybrid control design. For both cases,

energy control will be used to get the pendulum out of its rest state and reach its

upward vertical position with a zero velocity. This makes it easier for the LQR

controller to take over and balance the pendulum in the upward vertical position.

For the switch from energy control to LQR control some boundaries were defined.

The controller switches to balance mode when α is less than ±0.25 radians around

the upward vertical position and has less than 0.4 rad
s

angular velocity. For safety

reasons it is switching back if the angle of the pendulum is more than ±0.35 radians

from the upward vertical equilibrium point.

Figure 5.2: Block Diagram of the Control Schematic
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5.2.1 Energy Control

The energy control that is described here is generating a rotational or linear acceler-

ation, which will be fed into the low level controller. This means that in both cases

the whole nonlinear model is considered. The energy control has been chosen due

to its advantage that the upward vertical pendulum position is reached with zero

rotational velocity, which makes the switch between controllers easier [51]. First, the

potential and kinetic energy of the pendulum is calculated by

E =
1

2
Ipα̇ +

1

2
mpgLp(cosα− 1). (5.22)

The upward vertical position when α = 0 has no energy, so that it can be said

that the desired energy of the pendulum is 0. Different solutions and approaches

have been tested, where the obvious approach is to swing it up as fast as possible,

with the biggest control input possible. This comes with disadvantages like possible

chattering. Therefore different control laws have been implemented, a common one

that avoids chattering looks as follows

u = satumax(k(E − Eo)sign(α̇ cosα)). (5.23)

A control saturation has been implemented by satumax , which saturates umax.

Additionally, a control gain has been presented by k. Tuning this gain is up to the

user and can be customized to the system. A faster switching of the control signal

is achieved by sign(α̇cα)). As explained before, the desired energy Eo is zero. The

actual system energy E, which was calculated using Equation (5.22), will reach zero

with this control law. In the downward vertical position, the control law will be zero

due to sign(α̇cα), so that at the energy control input at this point is defined as mgLp

2
.

All of these tweaks in the control law make it more adjustable in the real system,

and the user has to set umax and k carefully to get the best output. It is obvious
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that bigger numbers bring the pendulum up faster, however there is the possibility

that they make the whole system unstable.

5.2.2 LQR Control

In this section a brief introduction of LQR control is presented. The system needs

to go to a specific set point based on a specific cost of the system. This cost could

be time, energy, fuel capacity, etc. How do we determine an input u(t) to make this

happen? To minimize the quadratic cost which is J;

J =

∫ ∞
0

(xTQx+ uTRu)dt (5.24)

The solution to this equation is an LQR controller, a linear quadratic regulator.

u(t) = −Kx, where K = R−1BTP (5.25)

That minimizes Equation (5.24) and P is the solution to the algebraic ricatti

equation,

ATP + PA−PBR−1BTP + Q = 0 (5.26)

Where the choice for R and Q are dependent on the goals of the minimization

of the system.

LQR for Linear Balancing

For the linear LQR balancing control, the model will be reduced, due to the ability to

decouple the states of the model, to 6 states which are α, α̇, yA, ẏA, φ, φ̇ This makes
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the control easier and clear. The remaining states will be handled by an individual

position controller, so that they can be left out to simplify the calculation. The

model was then linearized around the hovering position and the right constraints and

equilibrium points were applied to the model. The assumption is applied that the

position control of ψ is controlling the heading and it has no effect on the pendulum

for this analysis, since it is suppose to be 0 at all times of the linear balancing. The

linearized model looks as follows

ÿA =
−φu1

mq +mp +mc

, (5.27)

φ̈ =
u2
Ixx

, (5.28)

α̈ =
1
2
mpLpgα + 1

2
mpLpÿA

Ip + 1
4
mpL2

p

. (5.29)

The goal is to balance the pendulum at its upward vertical position, so the equi-

librium point for α has been chosen to be zero. To implement the LQR controller,

the feedback gain matrix, K, must be determined. To do this, the performance index

matrix R, and the state cost matrix Q must be positive definite. They were chosen

as

Q = 20(CT ∗C), (5.30)

and

R = p ∗ [1], (5.31)

where p = 0.2 which allows the system to reach the states faster without er-

ror. The states that are available in the real world implementation by the Vicon

motion capture system are yA, φ and α. Therefore it can be stated that C =

[1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 1, 0]. The matrix K will then be fed back into

the system, so that ẋ = (A−BK)x.
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LQR for Rotational Balancing

Similarly to the linear balancing for the rotational balancing, the model will be

reduced to 4 states which are α, α̇, ψ, ψ̇. This can be assumed since the goal is to

balance α and the pendulum is not effected by the other states in the rotational

setup. Therefore, an independent position controller will handle these states. The

nonlinear system will be linearized. The characteristics of the system and the chosen

equilibrium points have been applied to the linearized state space matrices. For the

pendulum state it is assumed that the linear movement does not affect it. Since this

study wants to balance the pendulum in the upward vertical position, it is important

to choose zero as an equilibrium point for the angle of the pendulum. The linearized

model looks as follows

ψ̈ =
u4
Izz

, (5.32)

α̈ =
1
2
mpLpLeψ̈ + 1

2
mpLpgα

Ip + 1
4
mpL2

p

. (5.33)

The other states want to be driven to zero. The final linear state space represen-

tation has been used to develop an LQR controller that will balance the pendulum

for small angles around the upward vertical position. Similar to the linear balancing,

the goal is to minimize the error and reach the desired states faster. The weights

have been chosen as follows

Q = 20(CT ∗C), (5.34)

and

R = p ∗ [1], (5.35)

where p = 0.2. The resulting static gain matrix K was fed back into the system.
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5.3 Stability Analysis

Lyapunov function is used to determine the stability of the hybrid system. The

system can be seen as a hybrid switch system, due to its switch from energy to LQR

control [52]. The two states are used to achieve different goals, the energy control is

suppose to bring up the pendulum to the upwards vertical position r = 0 and the

LQR controller is suppose to stabilize it. As explained before, it is assumed that

the pendulum weight is so small that it does not affect the quadrotor. To analyze

the stability we let V1 and V2 be Lyapunov function candidates for swinging-up and

balancing, respectively.

V1 =
1

2
E2 + δ, ∀ r ∈ R2 (5.36)

V2 = rTPr, ∀ r ∈ Γ2 (5.37)

where Γ2 is the region in the neighborhood of the equilibrium point. P defines a

positive-definite, symmetric matrix. The design parameter which can be varied is δ.

In the swing-up mode, r ∈ Γ1 = R2\Γ2 where Γ1,Γ2 ⊂ R2 are the regions in

state space. The switching occurs when Vi(r) − Vj(r) = 0, where Γi represent the

current region of operation and i 6= j. It can be stated that equilibrium point is

asymptotically stable if the min(V1, V2) Lyapunov switching sequence is used. This

can also be seen in Figure 5.3.

It can be seen that both Lyapunov functions approach zero, which shows that

the system is stable in the sense of Lyapunov. The energy control brings it close to

the origin and then the LQR control can take over to get the system quicker to the

origin and have a better performance.
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Figure 5.3: Stability analysis of the hybrid controller.

5.4 Matlab

Matlab has been used to simulate the LQR controller designed previously. The

model used for the simulation is the one described in Chapter 3 on page 21. The

gain matrices achieved in Section 5.2.2 on page 56 will be used to calculate u = −Kx

so that ẋ = (A − BK)x. Additionally the swing reduction will be tested, so that

it can be guaranteed the for the experiment. The pendulum will also be able to

stabilize the downward vertical position. This adds stability to the system between

the two modes, and makes it possible to guarantee that the swing up and balancing

maneuvers can be performed from a resting pendulum.

These Matlab results will be essential for the next step, which is the Gazebo
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simulation of the whole system. It will give an understanding of the transformation

point, where the swing- up control can switch to balancing control. This will mostly

depend on the angle of the pendulum. However, as an additional fact it will help

that during the transformation the pendulum is already approaching the uprights

vertical position, so that even though it might switch to the LQR when the pendulum

has a greater angle away from the upward vertical position, its velocity is moving it

already in the right direction.

5.4.1 Linear Pendulum

The simulation results for the linear balancing of the pendulum look promising and

can be seen in Figure 5.4. The first graph shows the y position of the quadrotor

compared to time, the second graph shows the pitch angle compared to time and

the third one shows the pendulum angle compared to time. The system has been

given some initial error, which is 0.4 m in the y position, 0.1 rad as pendulum angle

and 0.1 rad
s

as pendulum angle velocity. It can be seen that the system is stable and

approaches the desired state, which is zero for all states. The pendulum angle is

stabilized first, at around 2 seconds together with the pitch angle of the quadrotor.

The pendulum position has been given less weight in the LQR calculation, which

shows in the result. The result displays this by first balancing the pendulum and

then slowly approaching 0 as the desired y position.

The results for the linear balancing of the pendulum show that it is possible to

balance it. Different runs have been made with different initial conditions to get a

better understanding of the transformation point between the swing-up control and

the balancing control, because that is the critical point of the actual implementation.

Without hitting this point perfectly, the actual implementation will fail and the

quadrotor will not be able to balance the pendulum. The tests have shown that the
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Figure 5.4: Responses of the states to balance the pendulum with LQR control. First
graph shows the y position of the quadrotor, second graph shows the pitch angle of
the quadrotor and the last graph shows the pendulum angle.

quadrotor is fairly comfortable balancing the pendulum when the angle is around

±15 degrees.

5.4.2 Rotational Pendulum

The simulations for the rotary balancing of the pendulum about its upright vertical

position can be seen in Figure 5.5. It can be seen that it is possible for the quadrotor

to balance the pendulum. It also has to be considered that the heading is the weakest

input into to the physical system due to the fact that the moment around z is created

as a result of the moments of each propeller, whereas the moment around x and y of
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the body is created as a result of differences in forces of two propellers. It can be seen

that the pendulum can be balanced. The system has been given a initial condition of

0.19 rad for the yaw angle, 0.1 rad as pendulum angle and 0.1 rad
s

as pendulum angle

velocity. The pendulum is balanced after approximately 1.3 seconds. The heading

is moving aggressively to balance the pendulum and as soon as it is balanced, it is

slowly moving to its desired value of 0 radians.
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Figure 5.5: Responses of the states to balance the pendulum with heading change of
the quadrotor. First graph shows the heading angle yaw of the quadrotor and the
last graph shows the pendulum angle.

The transformation point between the swing-up and balancing control has been

determined to be around ±10 degrees. The smaller range is due to the quadrotor

dynamics, which show that heading control is weaker than the other control inputs.

Multiple simulation runs with different initial conditions have been done to determine
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this result. The results will be used as a reference for the actual system and further

evaluated by the Gazebo simulation, which should give a deeper understanding of

the real system.

5.4.3 Reduce Swinging

The swing reduction control is an important part for the actual system, however it

is less important than the balancing. The positive part about the swing reduction

is that gravity is helping balance the pendulum at its downward vertical position.

The pendulum will naturally go towards the downward vertical position, however

the quadrotor moves accordingly to reduce the swing of the pendulum, so that the

actual system can switch between the two modes and start the swing-up from fresh,

without having to wait until the pendulum does not swing anymore. The results of

the swing reduction simulation with the help of an LQR controller can be seen in

Figure 5.6. The responses shown were simulated with the initial condition of 0.1 m

in the y position, 0.1 rad as pendulum angle and 0.1 rad
s

as pendulum angle velocity.

It can be seen that the system is approaching its desired states in 2 seconds. First

the pendulum angle and pitch angle of the quadrotor reach their desired state at

around 1 second. The pendulum angle is approaching π, which is the downward

vertical position of the quadrotor. After that, the quadrotor reaches the origin y

position of 0 at around 2 seconds. For the swing reduction there has not been a

determined point where the controller switches. The goal is to go from the balancing

into the swing reduction, which can be done due to the fact that the pendulum would

stabilize around π. The quadrotor is only used to reduce the swinging, acting as a

damper and bring the pendulum faster to its vertical downward position.
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Figure 5.6: Responses of the states to reducing the swing of the pendulum. First
graph shows the y position of the quadrotor, second graph shows the pitch angle of
the quadrotor and the last graph shows the pendulum angle.

5.5 Gazebo

For the Gazebo simulation, the existing package rotors simulator has been used

to model the quadrotor to have a model with exact characteristics and inertias [43].

The pendulum, its arm and a counterweight has been added to the model using

xacro programming language, which is used to build Gazebo models. The exact

measurements and inertia’s for the three parts have been calculated and used to

create a model which is as close as possible to the real system. The controllers have

been developed from zero and can be seen in Appendix B. The attitude control is

represented by the Roll pendulum, Pitch pendulum and Yaw pendulum notes seen
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in the figure. For the position control the Altitude pendulum node is holding the

quadrotor at 1m height at any point of the simulation and the X pendulum and

Y pendulum generate an input for the attitude controller so that the pendulum

stays at the origin at any point the position control is enabled. The input goes into

the Transform node, which secures that even at a heading change the desired roll and

pitch angles are achieved. For the linear swing-up control, the EnergieControlLateral

node generates the input for the acceleration controller which controls the roll angle

of the quadrotor. The LQR Lateral node balances the pendulum when it is at its

upward vertical position. The EnergieControlLateral generates the control input

heading acceleration control, which switches to the LQR Rotational control when

the pendulum angle is close to zero. The LQR Reduce Swing control is enabled to

reduce the pendulum swing at the hovering position. All these inputs go into the

Motor Commands pendulum node which is the decision control. It makes sure that

the right topics are used to generate the rotational speeds. The flight modes can be

switched with an XBox controller which is connected via the joy node. When the

rotational speeds are generated, they are published to the gazebo model.

The results for the linear swing-up and balancing can be seen in Figure 5.7. The

first graph shows the position results for the experiment, the second subplot shows

the quadrotor angles and the last shows the pendulum angle. The solid line shows

the swing-up maneuver and the dotted lines show the LQR control. At the beginning

the roll angle goes from -35 to 50 degrees, which is an aggressive maneuver to get

the pendulum swinging. At around 1.4 seconds the pendulum is close to the upward

vertical position, where it switches to the LQR controller. During the whole process

the pendulum is only swinging once, before it gets to the second swing where it is

getting close enough to switch to balancing control. During the LQR control roll

is much smoother, and when the pendulum is stable it slowly brings the quadrotor

with the balanced pendulum to the origin. A time sequence of the experiment can

be seen in Appendix C in Figure C.1. It shows a short part of the movie that has
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been recorded during the simulation. This experiment has also been used for the

graphs which are shown here.
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Figure 5.7: Translational position and rotational angle of quadrotor and pendulum
for linear swing-up and balancing.

The results for the rotational swing-up and balancing are shown in 5.8. It should

be noticed that the position during the rotation of the quadrotor is fluctuating more

than during the linear control. It is getting smoother for the LQR balancing control.

The quadrotor is rotating aggressively during the swing-up and continues rotating

during the balancing control. This is because the heading control is the weakest

control input. The quadrotor is able to balance the pendulum, however it is not

able to hold its yaw at 0 degrees, which acts as a desired value for the controller.

The pendulum needs a little more time and swing before the controller switches. It

needs three swings, before the fourth swing brings the pendulum close enough to the
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upward vertical position to switch to the LQR controller. A time sequence of the

experiment can be seen in Appendix C in Figure C.2. It shows part of the movie that

has been recorded during the simulation. This experiment was also used to generate

the graphs.
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Figure 5.8: Translational position and rotational angle of quadrotor and pendulum
for rotational swing-up and balancing.

In conclusion it can be said that the Gazebo simulation has shown that the

system is implementable. It simulates an exact physical model of the quadrotor with

the attached pendulum. All sensor noise was generated and filtered to estimate the

states. The controllers have proven to be effective and robust enough to handle the

aggressive maneuvers for the swing-up and balancing of the inverted pendulum. All

control inputs have been saturated in the controllers, so that the model has realistic

control inputs, which are actually implementable in the real world system.
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5.6 Implementation

For the implementation, the two different quadrotor models have been tested with the

pendulum attached to it. After testing both models, the QAV250 frame was used due

to its advantage of Oneshot125 capability, payload advantage and maneuverability.

Custom parts have been developed for the quadrotor to increase its visibility by

Vicon and be able to attach the pendulum. The pendulum itself has been build out

of carbon fiber rods, a ball bearing and custom designed and printed parts. The

system with its custom parts can be seen in Figure 5.9. The pendulum has been

designed lightweight by using carbon fiber. The total attachments added 39g to the

810g quadrotor, so that the total system had a weight of 849g with the battery. The

length of the pendulum is 75cm. It is important to notice that the MARHES testbed

area is 2.5m high, so the quadrotor has to be able to hold the altitude since there

is not a lot of room in the vertical direction before the ground or ceiling is touched.

It was not necessary to add a counterweight. The battery had been repositioned

towards the negative on the body x-axis to create a moment around the quadrotor

body origin and counteract the moment that is created by the pendulum. As a result

the battery is bringing the COM back to the origin, for the case that the pendulum is

not swinging. It is known that the COM is moving along the x-axis as the pendulum

is rotating, however the quadrotor LL attitude control is robust enough to take this

into account.

For the implementation a position control has been implemented for the takeoff,

landing and hovering position hold. The linear controllers send velocities to the

quadrotor. For the energy and LQR controllers the y or ψ reference will replace the

position control references. However, the other states will still be controlled by the

position controllers. The digital switch is controlled manually by Xbox controller

which is implemented in the ROS framework and is connected to the control nodes.

The rospackage used for the controller is joy.
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Figure 5.9: Quadcopter with attached pendulum. Custom designed and printed
parts to cover Odroid XU4, hold markers, attach the pendulum to quadrotor and
attach pendulum to ball bearing.

For linear movement the energy control and LQR control are giving the accelera-

tion in y, and for the rotational movement it is giving the heading acceleration. It is

assumed in the model that these states can be decoupled. For this reason, a position

control for y and ψ has been designed. First the pendulum with a linear movement

has been tested and the result can be seen in Figure 5.10. The reference value is

designed by the following control

yA = sin(ktd), (5.38)

where td is the time duration. The duration starts counting when the control is

activated. The results look promising due to the fact that the quadrotor is following
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the reference position. More importantly it can be noticed that x, z and ψ are stable

and stay close to their references. The pendulum is moving as a result of the linear

motion. However, since the controller does not try to get it to the upward vertical

position it stays around its downward vertical equilibrium point. This result looks

promising and gives confidence to take the next step.

Figure 5.10: Linear position control of quadrotor with pendulum attached.

After testing the linear movement with the quadrotor attached, the rotational

movement has been tested. Similarly to the linear position generation a position has

been generated for the ψ position. The position has been generated using
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ψ = 1.5 ∗ sin(ktd), (5.39)

.

The position is amplified by 1.5 due to experimenting and the engineering judg-

ment achieved by the tests. Figure 5.11 shows the results of the test. It can be seen

that x and y are moving when the quadrotor is rotating its heading. The quadrotor

is able to hover around the origin, however its reaction could be improved. The

altitude is stable around 1m. The pendulum angle is moving due to the rotation.

Figure 5.11: Rotational position control of quadrotor with pendulum attached.

The results of the linear and rotational position control give promising results.
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It has been shown that the states can be decoupled. Improvements could be made

in the x and y position when the quadrotor is rotating. It can be seen that the

quadrotor has inputs to the pendulum, however the pendulum is light enough to not

affect the quadrotor. The LL and HL controllers are robust enough to counteract

the change in COM during the movement.
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Conclusions, Contributions and

Improvements

6.1 Conclusions

In this thesis a ROS based framework for quadrotors at the MARHES lab has been

developed. The framework makes the UAV interface user friendly and existing at-

titude and position controllers can be used by the users. Additionally ROS makes

it possible to control multiple UAVs at once. This framework is state of the art for

robotics laboratories and helps to use the aerial vehicles for different applications.

The different hardware and software used for this thesis has been explained in

detail. The quadrotor model has been derived using Newton-Euler approach with

rigid body assumptions. The system architecture shows the implementation of the

framework on two quadrotors with different FC. It demonstrates that even though

the quadrotors have different LL controllers, they can be controlled similarly on the

HL side, which simplifies the implementation of them in a network.
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Two applications are explained that were used to demonstrate the flexibility of

the quadrotor. The MAST and ASAP project make use of the new framework. For

the MAST project a linear position controller has been developed and implemented.

Different velocity estimators have been tested and implemented, the best performing

estimator is used for the position control. A demo has been designed and explained

where the quadrotor hops between different ground vehicles to extract data from

them. For the ASAP project a trajectory generation and implementation algorithm

has been tested and documented. The implementation architecture shows the use of

Matlab in the framework. Tests for an open loop reachability analysis are discussed.

A framework for a pendulum on a quadrotor is presented. It explains the possibil-

ity of swinging-up and balancing a rotational and linear pendulum with a quadrotor

as the actuator. The complete model is derived using Lagrangian. Control algorithms

for the hybrid controller have been developed and tested for stability. First Matlab

is used to calculate the LQR gain matrices which are used in the Gazebo simulation

to demonstrate the system. First steps and tests for a real system implementation

are documented.

6.2 Contributions

The main contributions of this thesis are

• ROS UAV Framework: This thesis developed a framework for on-board mi-

croprocessors on quadrotors which use Robot Operating System. They get

position data from Vicon and it is possible to control them with standard ROS

messages. Additionally it is possible to communicate with them on a ground

station using ROS and/or Matlab’s Robotic Toolbox.

• Architecture: The system is explaining the implementation architecture in de-
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tail. It can be seen that the HL side is similar, even though the LL control side

uses different FC.

• Position Control: A linear position control is implemented. It shows good

results, whereas the focus was on stable flying around the desired position for

the MAST project. This position control will benefit the implementation of

optical communication devices on the quadrotor.

• Trajectory Tracking: Trajectory tracking in the framework of the ASAP project

is implemented. It generates smooth flight paths using 3rd order polynomials

in Matlab. The Matlab Robotics Toolbox has been used to send the trajectory

coefficients to the quadrotor.

• Pendulum on a Quadrotor: A framework for an off-centered pendulum on a

quadrotor has been developed. The model has been derived and a promising

control strategy developed. The simulations show promising results and the

implementation has been discussed.

6.3 Improvements

The quadrotors are limited by the Vicon area that is provided. The framework has

the possibility to switch Vicon position feedback with GPS feedback, so that it is

possible to go outdoors. This would also make it possible to add more agents to the

network of UAV’s.

The LL controllers present some limitations by themselves. It is possible to con-

trol both quadrotors that were developed in the framework via direct motor control.

This could improve the responsiveness and overall output of the system. Much re-

search has been done in ESC protocols. Being able to switch to faster protocols

(Oneshot42, Multishot) or digital protocols (DSHOT150, DSHOT300, DSHOT600,
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DSHOT1200) could improve performance as well as reduce noise between the LL

controller and the ESC.

Different controllers could be implemented in the framework. The control inputs

to the framework could be changed and probably make the quadrotor faster, more

agile and more stable.

Cooperative applications and algorithms could be implemented to test the net-

work ability of the framework.
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Appendix A

Graphs for Trajectory Tracking a

Figure Eight

This results of flying a figure eight trajectory have been documented here. The

quadrotor has been tested at different speeds. The different gains, k, control the

speed of the vehicle. The UAV has been tested for the gains 0.5,1.0,1.5 and 2.

The paragraphs show each position of the quadcopter at specific times and how it

performs against its reference.
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Appendix A. Graphs for Trajectory Tracking a Figure Eight

Figure A.1: Position vs. time graphs for trajectory tracking figure eight with gain
k=0.5
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Figure A.2: Position vs. time graphs for trajectory tracking figure eight with gain
k=1.0
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Figure A.3: Position vs. time graphs for trajectory tracking figure eight with gain
k=1.5
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Figure A.4: Position vs. time graphs for trajectory tracking figure eight with gain
k=2.0
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Appendix B

Gazebo Simulation

The Gazebo simulation has been developed with the help of the rotors gazebo pack-

age developed by students from ETH-Zurich. This has the advantage that the hum-

mingbird quadrotors have exact characteristics, so that the simulation will be as

close as possible to the real world. The pendulum has been added to the quadrotor

with exact measurements and inertia’s. The controllers for every level have been

developed. The control tree can be seen in Figure B.1.
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Appendix C

Picture Sequence of Gazebo

Simulation

The picture sequences taken to display the swing-up and balancing control of the

pendulum has been developed using Gazebo and Matlab. First a video of the com-

plete simulation has been recorded. The video was cut into the rotational and linear

simulation. The video was imported into Matlab and separated into pictures. The

pictures have been converted into a sequence to show the process. The linear swing-

up and balancing can be seen in Figure C.1 and the rotational can be seen in C.2.
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Figure C.1: Picture sequence of swing-up and balancing simulation the linear pen-
dulum on a quadrotor in Gazebo.
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Figure C.2: Picture sequence of swing-up and balancing simulation the rotational
pendulum on a quadrotor in Gazebo.
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