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A B S T R A C T

From its beginnings in the 1970s, the medical imaging field of magnetic resonance
(MR) imaging has focussed primarily on the magnitude of the acquired complex
data. With ever increasing magnet field strengths, interest in the phase, or argu-
ment, of complex T⇤

2 -weighted gradient echo MR data has grown. Compared to
magnitude images, phase images provide novel contrast and increased sensitivity
to tissue properties such as magnetic susceptibility.

Several post-acquisition processing methods exploit this sensitivity to suscept-
ibility, notably Susceptibility-Weighted Imaging (SWI) and Quantitative Suscept-
ibility Mapping (QSM). These methods provide greater contrast valuable in the
visualisation of biological structures, such as venous vessels, tumours, haemor-
rhages and subcortical structures. QSM, in particular, may provide the ability to
infer changes in chemical composition, such as iron deposition, which is import-
ant in the progression of several neurodegenerative disorders such as Parkinson’s
Disease and Alzheimer’s Disease.

Phase imaging-based methods such as SWI and QSM operate on processed
phase data. The argument of a complex number is inherently circular, and the
MR phase is often affected by spatially slow varying inhomogeneities. In order
to extract the localised phase contrast required for SWI and QSM, a combination
of phase unwrapping and high pass filtering is necessary. This task is non-trivial,
with several methods having been proposed in the literature.

This thesis investigates the processing and analysis of MR phase imaging, pro-
posing four novel techniques that address boundary artefacts introduced by exist-
ing phase processing methods, correct for inaccurate structural segmentation in
standard SWI at high field strengths, provide optimised contrast images through
the combination of magnitude and phase data, and increase accuracy in magnetic
susceptibility estimation in QSM.
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1
I N T R O D U C T I O N

Magnetic resonance imaging (MRI) is a medical imaging modality that provides
exquisite two-dimensional and three-dimensional images of internal physical
structures and chemical composition, such as soft tissues in biological objects. Of
particular benefit to the medical field is the ability to distinguish between different
tissue types without the use of invasive methods.

Nuclear magnetic resonance (NMR) was discovered in 1946 by Felix Bloch and
Edward Purcell, both of whom were awarded the Nobel Prize in 1952. In the
1970s, Raymond Damadian, Richard Ernst, Paul Lauterbur and Peter Mansfield de-
veloped NMR as a tool for medical imaging. It has since advanced in great strides,
with current technology enabling vast improvements in the contrast and resolu-
tion of MR images, as well as the ability to image structural composition, tissue
fibre directionality, brain function and chemical composition [1]. These advances
are in part due to development in field strength technology with field strengths
of 7 Tesla, 9.4 Tesla and 11.7 Tesla being used and developed in human research
[2, 3] and modified NMR machines of up to 16.4 Tesla assisting in animal imaging
[4].

Among the many benefits of higher field strength is the increased contrast and
resolution in MR phase imaging [5]. Raw MR images are complex valued. Most
MR imaging methods employ the magnitude of these complex values as the in-
tensity of voxels within the image data. MR phase images utilise the argument,
or phase, of the complex values to produce images with contrast and structural
information that is complementary to the magnitude images. For gradient echo
sequences, the phase data is directly proportional to the gyromagnetic ratio of the
excited protons and the magnetic field experienced by the protons, allowing for
a relationship to be drawn between phase values and the inhomogeneity of the
magnetic field, magnetic susceptibility and the chemical composition of tissues.
Several processing methods exploit the relationship between these contributors
and phase data, such as Susceptibility Weighted Imaging [6, 7] and Quantitative
Susceptibility Mapping [8, 9, 10].

The benefit of these methods is particularly apparent in the study of neurode-
generative disorders, as well as the study of cardiovascular physiology. Suscept-
ibility Weighted Imaging is widely used in the clinical environment as a veno-
graphy tool[7, 11], as well as a tool for assessing strokes [12], tumours [13] and
haemorrhages [14]. The increased resolution and contrast associated with greater
field strengths have also lead to interest in imaging smaller structures, such as the
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2 introduction

Stria of Gennari [15, 16]. Quantitative Susceptibility Mapping, with its promise of
quantitative measures of tissue properties and composition, can provide further
insights into changes into physiological change and pathologies associated with
neurological disorders, such as microbleeds associated with stroke [17], iron de-
position associated with Friedrich’s Ataxia and Alzheimer’s Disease [18]. In order
to explore and advance the contributions of MR phase and susceptibility imaging
to biomedicine, the processing and analysis methods need to be developed and
enhanced.

The nature of complex values is such that the argument, or raw phase, is restric-
ted to the range [�p, p). In contrast, the true phase lies in an infinite range such
that the raw phase is considered to be the true phase modulo 2p. The process
of converting raw phase to true phase is known as phase unwrapping and is a
non-trivial task. Furthermore, the true phase is often overwhelmed by large scale
field inhomogeneities. For echo planar imaging-based methods, such as diffusion
imaging and functional MRI, this is advantageous as it provides a means to es-
timate field inhomogeneity-induced artefacts in the MR data [19, 20]. However, it
obscures visualisation of fine details that provide beneficial information about the
composition of local structures. Removal of the large scale inhomogeneities is also
non-trivial, where substantial noise in air-filled spaces affects the estimation of the
field in nearby structures.

The fine structural details in the phase provide novel contrast compared to the
magnitude. While magnitude images feature distinct contrast between different
tissue types, phase images provide clear edge contrast at the interface between
different tissues. The combination of phase contrast with magnitude contrast can
elicit further information and meaningful visualisation of structures. Susceptibility
Weighted Imaging (SWI) is perhaps the most well-known of such methods. It is
able to exploit slight differences in phase contrast to attenuate magnitude images
and reveal structures that are not otherwise visible [6, 7].

Recently, research has focussed on the relationship between magnetic susceptib-
ility and phase. With a theoretical model based in the physics of electromagnetism,
methods have been proposed that seek to estimate voxel-wise magnetic suscept-
ibility values from local phase image data, known as Quantitative Susceptibility
Mapping (QSM). The model assumes the superposition principle applied to mag-
netic field perturbation contributions of each voxel, where each voxel is modelled
as spherical. The system describing this model is both very large and underde-
termined, and thus various methods and approaches have been proposed to over-
come these difficulties [8, 9, 10, 21]. However, these methods are also hindered by
the fundamental assumption that the voxels conform to a spherical model. In fact,
several papers have shown that white matter in the brain is not accurately mod-
elled by spheres, but rather conforms to a cylindrical model of field perturbation.



introduction 3

The background section of this thesis comprises two chapters and presents the
fundamental theory of magnetic resonance imaging and phase imaging:

In Chapter 2, a brief description of magnetic resonance imaging provides an
understanding of the physics and concepts of this imaging modality. The chapter
covers nuclear magnetic resonance, magnetic fields, relaxation, the Bloch equation,
image formation and the gradient echo sequence.

Chapter 3 focuses on the emerging use of phase contrast in MRI, including a
discussion on the physical mechanisms that produce phase shifts, the biological
origins of phase, phase image processing methods and techniques that exploit
phase data to optimise the use of available information, such as Susceptibility
Weighted Imaging and Quantitative Susceptibility Mapping.

The novel works section of this thesis details four methods that enhance and
advance the use of MR phase imaging:

chapter 4 - spatially dependent filtering Processed phase images are
derived from the phase signal by removing the bias field and phase wraps
from the initial data. However, the usefulness of this data has been hindered
by artefacts at the brain/non-brain surface, particularly in cortical regions.
Spatially Dependent Filtering efficiently removes surface artefacts by per-
forming Gaussian filtering with spatially varying parameters of unwrapped
or complex filtered phase images. The proposed method is shown to pro-
duce improved images, revealing underlying structure and detail that are
otherwise obscured by surface artefacts in images produced by traditional
phase processing methods.

chapter 5 - sigmoid-swi Susceptibility Weighted Imaging employs phase data
to attenuate magnitude images, giving rise to novel contrast, particularly
in the presence of venous structures. At higher field strengths, the effects
of localised magnetic susceptibility differences are amplified, leading to in-
creased phase contrast and larger susceptibility artefacts [11, 22]. In SWI,
this can affect the visibility of large vein boundaries, resulting in incorrect
vessel segmentation. The Sigmoid-SWI method is an enhanced SWI method
that employs known phase characteristics to correct the contrast at venous
boundaries. The method is applied to 7T in vivo healthy human data and is
shown to improve the delineation of venous vessels.

chapter 6 - optimised contrast imaging This chapter presents a method
for combining the contrast information from two related images into a single
image. In this case, the two images are the magnitude and phase images
derived from a single complex MR image. The Optimised Contrast Imaging
(OCI) method adopts a novel approach to the combination of the two images:



4 introduction

it fits a Gaussian mixture model (GMM) to the two-dimensional histogram
that represents the distribution of voxels in a magnitude-phase cartesian
plane; the GMM is then manipulated to effect changes in image contrast.
In contrast to the heuristic nature of SWI, the OCI image formation task is
formulated as an optimisation problem in which images with maximal tis-
sue contrast are constructed from the complex-valued data. The method is
validated on 3T and 7T in vivo healthy human data and is shown to produce
improved contrast over three variants of Susceptibility Weighted Imaging.

chapter 7 - diffusion-guided quantitative susceptibility mapping

Quantitative Susceptibility Mapping aims to derive reliable estimates of the
magnetic susceptibility of voxels from magnetic resonance phase data. Mag-
netic susceptibility affects the local magnetic flux density which is directly
proportional to the phase of complex MR gradient-echo imaging data. Cur-
rent methods assume that the total change in flux density due to an object
of arbitrary shape in a vacuum can be estimated by considering the object
to be composed of many very small spheres and summing the change in
flux density produced by each sphere. However, research has demonstrated
that white matter is more accurately characterised using cylindrical mod-
els. Presented here is a diffusion-guided quantitative susceptibility mapping
method for deriving susceptibility maps that combines both spherical and
cylindrical models. This proof-of-principle method uses diffusion-weighted
MRI data to identify voxels best modelled as cylinders and to determine the
orientation of those cylinders. The Diffusion-guided Quantitative Suscept-
ibility Mapping (dQSM) results demonstrated better accuracy and robust-
ness compared to methods based solely on a spherical model, establishing
that heterogenous modelling of susceptibility effects is both possible and en-
hances reliability of quantitative susceptibility maps.
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Part I

B A C K G R O U N D





2
M A G N E T I C R E S O N A N C E I M A G I N G F U N D A M E N TA L S

The phase component of the MR signal is the basis of techniques such as Suscept-
ibility Weighted Imaging and Quantitative Susceptibility Mapping which seek to
derive important information and provide novel contrast from MR data. These
methods are not purely image processing; they are based on the fundamental
physical processes that give rise to the MR signal. Discussed in this chapter is the
origin of the MR signal and how it is harnessed and processed into MR image data.
Also discussed are the processing techniques specific to phase imaging and meth-
ods which utilise phase data to provide valuable information for neuroimaging
research.

2.1 nuclear magnetic resonance

Magnetic resonance imaging exploits the phenomenon of nuclear magnetic reson-
ance, where the nuclei of specific atoms resonate in response to an external mag-
netic field. Atomic nuclei are composed of protons (positively charged particles)
and neutrons (neutrally charged particles). The atomic number of a nuclei refers
to the number of protons, while the atomic mass number refers to the total num-
ber of protons and neutrons. NMR arises due to a property of atoms known as
spin, an angular momentum, J. Its related quantity, the spin quantum number, I,
is determined by the atomic number and atomic mass number:

1. when the atomic mass number is even and the atomic number is also even,
I = 0;

2. when the atomic mass number is even and the atomic number is odd, I 2
{1, 2, 3, . . . };

3. when the atomic mass number is odd, I 2
� 1

2 , 3
2 , 5

2 , . . .
 

.

When the spin quantum number is non-zero, the nucleus is said to be NMR-active.
The most important nucleus in MRI is that of the 1H isotope. It is the most

abundant isotope in the human body due to the high water content in soft tissue.
The 1H nucleus has a spin quantum number of 1/2. It has one proton and zero
neutrons, and thus MRI terminology often refers to “proton spins” and “proton
density”.

11
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The non-zero spin of a nucleus creates a very small magnetic field known as a
magnetic dipole moment, µ, where the relationship to the angular momentum is
given by

µ = gJ. (2.1)

g is the gyromagnetic ratio of the nucleus, a constant whose units are radians
per second per tesla (rad.s�1.T�1). It is more commonly quoted in hertz per tesla
(Hz.T�1) where the symbol ḡ is used and

g = 2pḡ. (2.2)

The magnitude of µ is given by

µ = ḡh
q

I (I + 1) (2.3)

where h is Planck’s constant, 6.6⇥ 10�34 J · s. In the absence of an external field, the
direction of µ is randomly distributed. When an external magnetic field, B0 = B0k,
is applied, µ adopts one of (2I + 1) angles, q, with the applied field where the
relationship is given by

cos q =
mIp

I (I + 1)
. (2.4)

Here, mI 2 {�I,�I + 1, . . . , I � 1, I} is called the magnetic quantum number. For
1
2 -spin nuclei such as 1H, q = ±54�440. The existence of both parallel (+) and anti-
parallel (-) alignment is a quantum model characteristic and is notably different to
the behaviour of a small magnetic field in classical physics, where the small field
will align parallel with the applied field. µz is the component of µ in the direction
k and is defined as

µz = ḡmIh. (2.5)

The transverse component, µxy, is randomly distributed and therefore does not
have a calculable definite value. Furthermore, the external B field induces a torque
on µ, resulting in a rotation of µ about k, known as precession. The frequency of
precession is known as the Larmor frequency, w0, and is given by

w0 = gB0. (2.6)

In MRI, we observe a collection of nucleus spins of a particular type of atom
(e.g. 1H), rather than focussing on a single atom. The collection is known as a spin
system and the sum of the magnetic dipole moments in the spin system gives a
net or bulk magnetisation, M. The effect on net magnetisation due to the B field,
ignoring relaxation effects (to be introduced in Section 2.4), is given by

dM (t)
dt

= gM (t)⇥ B (t) . (2.7)
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When B (t) is static and homogenous, the transverse components µxy are randomly
distributed such that the net transverse magnetisation is zero. The net magnetisa-
tion parallel to the applied field, M0,z, is dependent on the ratio of spins in the
various orientations relative to the applied field direction. This ratio is known
as the Boltzmann distribution. For the 1

2 -spin system, there are two orientations:
where µz is parallel to k, and where µz is anti-parallel to k. The two orientations
are associated with different energy states, where the parallel orientation is the
lower energy state. The ratio is described by the Boltzmann relationship

N"
N#

= exp
✓

DE
KT

◆
, (2.8)

where N"and N# are the number of spins oriented parallel and anti-parallel, re-
spectively, DE = E# � E" is the difference in energy between the two states,
K = 1.38 ⇥ 10�23 JK�1 is the Boltzmann constant, and T is the temperature of
the system. The number of nuclei in the lower energy state is slightly higher than
the number in the higher energy state. This results in a very small non-zero net
magnetisation M0 = M0,zk. It is this net magnetisation, commonly known as the
longitudinal magnetisation, that is manipulated in MRI to give rise to the meas-
ured signals.

2.2 the magnetic fields

In MRI there are several external magnetic fields: the very large static magnetic
field, B0, three smaller gradient fields, Gx, Gy and Gz, and a smaller oscillating
field, B1, termed the radio frequency (RF) excitation field.

The B0 field is a very large static homogeneous field, created by either a resistive,
permanent or superconducting magnet. At the time of writing, the field strength
of human scanners are commonly 1.5T and 3T, with research dedicated scanners
of 7T and 9.4T in existence. Due to the high currents required to produce these
very large field strengths, the magnets are constructed with superconducting wire.

A coordinate system called the laboratory frame of reference is defined with
reference to the MRI scanner or magnet, where the z direction is the direction of
the B0 field. The x and y directions are orthogonal to z. The definition of the x and
y directions are arbitrary, but in the case of typical human MRI scanners, where
the bore is horizontal and cylindrical, the y axis is aligned floor to ceiling and the
x direction is horizontal and perpendicular to the y axis. Facing in the positive z
direction, the x axis increases from right to left.

Three sets of gradient coils are used to create linear gradients in the strength of
the static magnetic field in each of the x, y and z directions:
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B (r) = B0 + G · r (2.9)

where G = Gx + Gy + Gz. The z-component of G is known as the gradient field,
BG,z, and

Gx =
∂BG,z

∂x
,

Gy =
∂BG,z

∂y
,

Gz =
∂BG,z

∂z

are known as the x-gradient, y-gradient and z-gradient, respectively. These mag-
netic fields are time varying and are used to spatially vary the Larmor frequency
of spins by altering the strength of the external field at different locations.

The RF field is used to bring the transverse components of the magnetic dipole
moments, µxy, into phase with each other and to manipulate the direction of the
net magnetisation. It oscillates in such a way that its direction rotates in the x-y
plane:

B1 (t) = Be
1 (t) [cos (wrft + f) x̂ � sin (wrft + f) ŷ] (2.10)

= B1,x (t) + iB1,y (t) (2.11)

= Be
1 (t) e�i(wrft+f) (2.12)

where Be
1 (t) is an envelope function, often a rectangular or sinc pulse, wrf is the

frequency at which the RF field oscillates, and f is the phase of B1 at time t = 0.
Since the rotation is in the x-y plane and the change in net magnetisation, M, given
by (2.7), is proportional to the cross product of M and the applied field (including
the RF field), the effect of the RF field is to induce M to move, or flip, away from
thez-axis and rotate about the z-axis as a spiral on the unit sphere.

2.3 the rotating frame of reference

A rotating frame of reference is introduced to facilitate understanding of the sys-
tem. It is defined such that it rotates about the z axis in the direction of precession
with a frequency w f r. If w f r = wr f , then the RF field appears stationary. If the net
magnetisation is precessing at w0 = wr f , then it also appears stationary within the
rotating frame. However, if inhomogeneities exist in the B field, then the protons
will precess at

w = g (B0 + DB) (2.13)
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where DB is the difference between the B0 field and the field experienced by the
protons. The protons will then rotate off-resonance and appear to rotate in the
rotating frame of reference at w0 = w � w f r.

2.4 the bloch equation and relaxation

Once the RF field has induced a non-zero Mxy, after it is turned off, the net magnet-
isation returns to its equilibrium state, M = Mz,0k, a process known as relaxation.
The change in magnetisation, M, with respect to time is described by the Bloch
equation:

dM
dt

= gM ⇥ B � Mx x̂ + Myŷ
T2

� (Mz � Mz,0) ẑ
T1

, (2.14)

where B is the applied field and T1 and T2 are the relaxation parameters that
describe the longitudinal and transverse relaxation, respectively. Longitudinal re-
laxation occurs as the longitudinal magnetisation, Mz, increases in the positive
z-direction, such that

Mz (t) = Mz,0

✓
1 � exp

✓
�t
T1

◆◆
+ Mz (0+) exp

✓
�t
T1

◆
(2.15)

where Mz (0+) is the longitudinal magnetisation immediately following time t = 0.
Longitudinal relaxation is also known as spin-lattice relaxation, as the excess en-
ergy is dissipated into the surroundings (lattice) of the spins. Transverse relaxation
occurs as the transverse magnetisation decreases to zero and is a result of dephas-
ing caused by two mechanisms. Initially, transverse magnetisation occurs because
spins are rotating in phase about the z-axis, resulting in a non-zero net magnet-
isation in the x-y plane. During relaxation, precession of spins are affected by the
very slight fluctuations of the local magnetic field caused by neighbouring spins.
This results in spins precessing faster or slower than their neighbours and thus
dephasing occurs. This dephasing mechanism is known as spin-spin relaxation,
and is defined by the time constant T2. The governing equation is

Mxy (t) = Mxy (0+) e�t/T2 (2.16)

where Mxy (0+) is the transverse relaxation immediately following time t = 0. The
second dephasing mechanism is defined by the time constant T0

2 and is a result of
larger local magnetic field inhomogeneities caused by environmental factors such
as tissue susceptibility. It is often combined with T2 as

1
T⇤

2
=

1
T2

+
1
T0

2
(2.17)
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Figure 1: Timing profiles for relaxation parameters T1, T2 and T⇤
2 , given by (2.15) and

(2.16).

where the T⇤
2 is the time constant describing a much faster dephasing mechanism

than T2. In general, T1 is much longer than T2, which itself is usually much longer
than T⇤

2 (Fig. 1).
Different tissues have different T1, T2 and T⇤

2 time constants. Magnetic resonance
imaging is carefully synchronised to optimise the difference in signal strength
(and thus image contrast) between tissues based on these time constants, thus
leading to what is termed T1-weighted, T2-weighted and T⇤

2-weighted imaging.
Proton density imaging is yet another contrast method where the image intensities
represent differences in Mz (0), and thus is an indication of the density of 1H
isotopes.

2.5 spin echo sequence

The sequence and timing of the gradient fields and RF pulses determine which
part of the subject is imaged, and what contrast is obtained. Slice select, phase
encoding and frequency encoding steps form the basis of MRI sequences. They
involve the super-position of linear gradient fields to B0. Whilst a gradient is ap-
plied, protons precess at different frequencies proportional to the distance along
the gradient direction. This results in dephasing of the proton spins, where the
accumulation of phase at distance, l, is given by

f (l, t) = gGlt (2.18)

where G is the gradient and t is the time.
During the slice select step, a linear gradient is applied to the B0 field along one

direction, GSS, for a time period of tSS. To simplify explanation, we will assume
the gradient is along the z-direction. Since the Larmor frequency, w, of the protons
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Figure 2: Spin echo sequence. A sinc excitation pulse (RF) is applied in conjunction with a
slice select gradient (GSS) for tSS seconds. This is followed by a negative GSS to
rephase the excited protons. A phase encoding gradient (GPE) is applied for tPE
seconds. A second sinc pulse and slice select gradient is applied at TE/2 seconds
to induce a 180� flip. Subsequent to the 180� pulse, the protons rephase, inducing
the signal echo which is recorded by the analog-digital converter (ADC). Note
that the gradients illustrated display an idealised zero ramp time.

is proportional to the strength of the applied field, the precessional frequency of
protons will increase along the z-axis as the applied field strength increases.

w (z) = g (B0 + GSSz) . (2.19)

An RF pulse can then be tailored to excite protons at a particular z-position, thus
selecting a slab, or “slice”, perpendicular to the z-axis. The central frequency of the
RF pulse, w, determines the centre of the slice. Increasing the gradient strength, or
decreasing the RF pulse bandwidth reduces the thickness of the slice. The excita-
tions are assumed to occur instantaneously at t = 0. For tSS/2 seconds following
excitation, the slice select gradient, GSS remains on and the excited protons deph-
ase. The time that the RF pulse is applied, tp, and the RF pulse power determine
the flip angle, a, induced in the net magnetisation,

a =
Z tp

0
gBe

1 (t) dt. (2.20)

For spin echo sequences, the RF pulse is tailored such that a 90� flip angle is
induced. Immediately following the positive slice select gradient and RF pulse, a
negative slice select gradient is imposed in order to rephase the dipole moments.

The phase encoding step involves the addition of either the x or y gradient, GPE

on the B0 field over a short time period. During this time, the Larmor frequency of
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protons will differ along the gradient direction. When the gradient is turned off,
the protons resume precessing at equal Larmor frequencies to each other, how-
ever they will now have a phase shift that is dependent on their position along
the phase encoding gradient direction. Protons that were precessing faster will
lead those that precessed slower. Thus the position of the proton along the phase
encoding axis is encoded as the phase of its precession.

As time progresses, dephasing occurs in the x-y plane due to T2 and T0
2 mech-

anisms. This leads to a loss of transverse magnetisation. While it is not possible to
counteract the dephasing due to the random nature of T2, it is possible to coun-
teract the T0

2 dephasing by applying a 180� RF pulse in conjunction with a repeat
of the slice select gradient. Assuming the net magnetisation immediately follow-
ing the 90� pulse is parallel to the rotating frame of reference axis y0, then the
excited protons will have accumulated a phase angle of wt relative to y0 at time
t. Applying the 180� RF pulse along y0 will flip the transverse magnetisation such
that the phase angle will be �wt. Following the 180� RF pulse, rephasing occurs,
that is, the phase angle decreases towards zero, and transverse magnetisation ac-
cumulates. When coherence is achieved, a signal echo occurs, called the spin echo.
The time between the excitation and the echo is the echo time, TE. Since the echo
is induced by the 180� pulse, the time to rephase is equal to the time allowed for
dephasing. That is, the 180� pulse is applied at TE/2 seconds after the excitation
pulse. During the time between the excitation and the echo, relaxation occurs and
the echo time can be tailored to weight the contrast in the image according to the T1

or T2 relaxation parameters. For multiple excitations, T1 relaxation occurs during
the time between successive excitations, called the repetition time (TR). Thus, the
TR affects the magnitude of the longitudinal magnetisation that is excited in the
subsequent excitation. The TR can therefore also be tailored to weight the contrast
according to T1.

The frequency encoding step involves the addition of the third B0 gradient. If
the phase encoding step utilises the y gradient, the frequency encoding step will
employ the x gradient. Again, the Larmor frequency is altered by the gradient. In
this step, the position of the proton along the frequency encoding axis is encoded
as the frequency of its precession. To prepare for the echo, a negative gradient,
GFE,d, is applied for tFE,d seconds to dephase the protons. It is then followed by a
positive gradient, GFE,r, applied for tFE,r seconds, such that

GFE,dtFE,d =
GFE,rtFE,r

2
, (2.21)

causing the protons to rephase, giving rise to the recordable signal, a time-varying
electromagnetic wave. This signal induces a current in a receiver coil which is
recorded with an analog-to-digital converter (ADC) that is switched on for the
duration of the rephasing frequency encoding gradient, tFE,r.
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2.6 gradient echo sequence

The spin echo sequence eliminates the effects of T0
2 dephasing and therefore it is

not suitable for producing T⇤
2 -weighted images. In this instance, gradient echo se-

quences are employed, where the primary mechanism by which the echo occurs
is the inversion of the gradients. Prior to the echo, a negative gradient is applied
along the frequency encoding direction, inducing a dephasing of the spins (Fig.3).
The gradient is then reversed in polarity, inducing not only a spatial dependence
in the Larmor frequencies of the spins, but also a rephasing and subsequent sig-
nal echo. In comparison to the 90� flip angle of the spin echo sequence, the flip
angles in gradient echo sequences can be much smaller. The low flip angle allows
a reduced relaxation delay and shorter TR, therefore reducing the acquisition time.

Figure 3: 2D gradient echo sequence diagram. A sinc excitation pulse (RF) is applied in
conjunction with a slice select gradient (GSS) for tSS seconds. This is followed
by a negative GSS to rephase the excited protons. A phase encoding gradient
(GPE) is applied for tPE seconds. The signal echo is primed by applying a neg-
ative frequency encoding gradient (GFE) for tFE,d seconds in order to dephase
the protons. During the positive GFE, protons rephase, inducing the signal echo
which is recorded by the analog-digital converter (ADC). Note that the gradients
illustrated display an idealised zero ramp time.

2.7 k-space and image formation

The recorded signal is an integration of the signal from all the excited spatial
locations

S (t) µ
Z

V
M (r, t) exp [iDf (r, t)] d3r (2.22)



20 magnetic resonance imaging fundamentals

where
Df (r, t) = �g

Z t

0
DB (r, t) dt (2.23)

is the accumulated phase shift at spatial location r and time t. The change in mag-
netic field, DB (r, t), is determined by the applied gradient, spatial location and
field inhomogeneities such as T0

2 effects. Assuming that the field inhomogeneities
are much smaller than changes induced by the applied gradient, we have

DB (r, t) = G (t) · r.

In T⇤
2 -weighted gradient echo imaging, the position r is independent of time, as-

suming negligible flow or diffusion of water molecules, or other protons. It can
therefore be taken outside the integral in (2.23) and simplified, giving

Df (r, t) = k (t) · r (2.24)

where
k (t) = �g

Z t

0
G (t) dt.

Substituting (2.24) into (2.22), we have

S (t) µ
Z

V
M (r, t) exp [ik (t) r] d3r

which resembles the Fourier transform

F (k (t)) µ
Z

V
f (r) exp [ik (t) r] d3r.

Therefore, at time t, the signal S (t) is the intensity of the Fourier transform of the
magnetisation M (r, t) at the point k (t) in Fourier space, or “k-space”. Manipu-
lating the gradients G and the time t allows for signals at different points within
k-space to be acquired. This is known as traversing k-space, where the phase en-
coding step is used to select the position along the ky axis by applying the gradient
Gy for a period of time, and the frequency encoding step is used to traverse a line
along the kx direction. The phase encoding and frequency encoding steps are re-
peated in order to fill k-space. Performing a 2D inverse Fourier transform on the
acquired k-space data produces the complex-valued MR image.

The described technique for 2D slice acquisition can be extended to 3D volume
acquisition. Increasing the bandwidth of the RF pulse during the slice select step
allows for a wider slab, or volume, to be excited. Phase encoding is performed in
both the y and z directions, producing a 3D k-space traversal. The complex-valued
3D image is then computed by performing a 3D inverse Fourier transform on the
k-space data. One advantage of 3D acquisitions is the increased resolution in the
3rd, or slicing, dimension.
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Traditionally, the magnitude of the complex values in the MR image have been
utilised as the intensity of MR images. These are called magnitude images where
the voxel intensities are proportional to the net magnetisation, M (r, t) in Eq (2.22),
where t is the echo time, TE. In T⇤

2 -weighted gradient echo images, the phase of
the complex numbers can be used to derive phase images, where the phase is pro-
portional to the precessional frequency of protons. In Chapter 3, we explore phase
images in more detail: in particular, the origins of phase, processing methods and
techniques that utilise phase data to enhance the information content of images.





3
M R P H A S E I M A G I N G

Much attention has been given in recent years to MR phase images, particularly be-
cause of an increased contrast-to-noise ratio (CNR) at higher field strengths. While
the true nature and source of the phase and related artefacts are not fully under-
stood, it is generally accepted that the greater sensitivity to magnetic susceptibility
is a significant contributor to the increased CNR [1, 2]. It is also this sensitivity that
has sparked interest in using phase imaging to study neurodegenerative diseases
such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis [3, 4, 5, 6, 7].
Even though the contrast between grey matter (GM) and white matter (WM) is
variable across the brain, even disappearing in some instances [8, 9], studies have
demonstrated that the contrast is seven to nine fold greater than in magnitude
images for T2*-weighted gradient echo (GRE) sequences [3, 8]. Other studies have
shown little difference in contrast compared to that of the magnitude image for
the same sequence [10]. The heterogeneity of WM and GM in phase images is also
striking and has been attributed to microvasculature, myelin, iron content [8] and
microstructural orientation [11, 12]. Appearance of veins is particularly well en-
hanced, although Hammond et al reported a narrower appearance of the veins in
phase images compared to magnitude images [3], a phenomenon also mentioned
in a study of multiple sclerosis patients [4]. Neither study offered an explanation
for these observations. Nevertheless, phase imaging has shown great potential for
structural imaging in its enhanced contrast and structural delineation.

In this chapter we present the basic electromagnetism theory that describes the
phase of the complex MR signal and explore the biological origins of the phase.
We also detail processing steps required to extract structural detail from the phase
data and established post-processing techniques that employ phase to modify con-
trast and information in MR images.

3.1 electromagnetism

The phase angle of T⇤
2 -weighted GRE data is understood to be a combination of

the effects of chemical exchange processes between water and macromolecules and
the effects of magnetic susceptibility on the magnetic B field experienced by the H1

nuclei [1, 2, 13]. In order to comprehend the mechanisms behind the susceptibility
of tissues and their effect on the phase angle, some understanding of the physics
of electromagnetics is required.

23
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Newcomers to the field of magnetism are often confounded by the concepts
of magnetic field intensity (or strength), H, and magnetic flux density, B, most
notably because the term “magnetic field” is regularly used interchangeably for
both. Magnetic field intensity, H, can be considered to be the “magnetic field” pro-
duced by an external source regardless of the material (or lack thereof) within that
field, such as the field created by the superconducting magnet of an MRI machine
without consideration for the presence of a subject within the machine. The SI unit
of H is ampere per metre (A/m). Magnetic flux density, B, is measured in the SI
unit Tesla (T) and refers to the induced “magnetic field” that is proportional to
the summation of the H field and the magnetisation, M, of the material (or lack
thereof) within the H field. In the presence of an H field, material can respond by
creating its own additional magnetic field intensity, a concept known as magnet-
isation. The relationship between the H field and the magnetisation, M, for linear
materials is given by

M = cH (3.1)

where the susceptibility, c, is a unitless property of the material and denotes the
degree to which a material is magnetised in the presence of an external magnetic
field intensity, H. In the context of MRI, “magnetic field” almost always refers to
the magnetic flux density, B, as is indicated by the use of B0 and B1 to refer to the
static magnetic field and the smaller oscillating magnetic, or RF, field. In human
imaging, susceptibility values are very small, of the order of �10�5 [14].

The relationship between magnetic flux density, B, magnetic field intensity, H,
and magnetisation, M, is given by

B = µ (H + M) (3.2)

where the permeability (H/m), µ, is also a property of the material and refers to
the resistance (or assistance) of material (or free space) to the flow of a magnetic
field through it.

An important permeability constant is the permeability of free space, µ0, which
denotes the relationship between B and H in a vacuum:

B = µ0H. (3.3)

The permeability of free space is the constant 4p ⇥ 10�7 H/m (henrys per metre).
Relative permeability, µr, is the unitless ratio between the permeability of a

material, µ, and the permeability of free space, µ0:

µr =
µ

µ0
. (3.4)
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Magnetic susceptibility, c, is related to relative permeability, µr, as follows:

c = µr � 1. (3.5)

Materials are often classified in terms of their relative permeability, of which the
following terms apply: paramagnetic, diamagnetic and ferromagnetic.

Paramagnetic materials contain atoms with unpaired electrons. These atoms
have a permanent magnetic moment. In the absence of an external magnetic field
these atoms will be randomly distributed and will therefore tend to cancel each
other out to produce a negligible bulk magnetisation. In the presence of an external
magnetic field, the magnetic moments will align with the applied field producing
a bulk magnetisation in the direction of the applied field. This has the effect of
strengthening the magnetic field both within and outside of the material, com-
pared to the field in the absence of the material. The relative permeability, µr, of
paramagnetic materials is therefore larger than 1.

All atoms, regardless of the number of electrons, have an induced diamagnetic
effect in the presence of a time-varying external magnetic field. The motion of the
electrons is affected by the field in the same way that a current is produced in
a wire by a time-varying magnetic field (Faraday’s Law). In contrast to paramag-
netism, diamagnetism induces a bulk magnetisation in an anti-parallel direction
to the applied magnetic field. The strength of diamagnetism is weak compared
to paramagnetism. However when atoms have paired electrons, paramagnetism is
negligible and diamagnetism is dominant. Diamagnetic materials have a relative
permeability, µr, smaller than 1.

Ferromagnetic materials, such as iron, nickel, cobalt, gadolinium and dys-
prosium, comprise of domains within which the atoms are aligned with each
other and produce a strong magnetic field regardless of the presence of an ex-
ternal field. In the presence of an external field, these domains align with the field
to produce a very strong magnetic field. The alignment is known as ’magnetic
saturation’. Provided the temperature is below a critical point, the Curie temper-
ature, the magnetisation is permanent and remains after removal of the external
field. Ferromagnetic materials thus have a relative permeability, µr, much greater
than 1.

3.2 the origins of mr phase

An MR image of the brain (for example) created purely by using the phase angle
of the measured complex signal without post-processing has very little resemb-
lance to the structure of the brain. In fact it is primarily representative of B0 field
inhomogeneities, often with lines of sharp intensity changes due to phase values
wrapping about the �p/p border (Fig. 4a). Once phase is unwrapped (Fig. 4b)
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and the background inhomogeneities (low frequency changes) are removed (Fig.
4c), the detailed phase image (Fig. 4d), or high frequency variations, are evident.
These are the localised phase variations, the source of which is still in contention,
as previously mentioned.

(a) (b)

(c) (d)

Figure 4: Phase processing: the (a) raw phase image, demonstrating �p/p phase wraps,
is (b) unwrapped, then (c) spatially high-pass filtered. The filtered image is sub-
tracted from the unwrapped image to produce the (d) final phase image

The phase angle in MRI complex data arises because protons do not precess at
the exact same frequency. In phase sensitive MRI acquisitions, the contribution of
the absolute B0 and gradient field strength to the frequency is implicitly removed
during the signal detection and image reconstruction steps. The frequencies of
proton precession are affected by microscopic differences in B0, such as those pro-
duced by tissue susceptibility and frequency shifts caused by microscopic chemical
exchange processes between free water and macromolecules [13]. Tissue susceptib-
ility alters the B0 field by inducing magnetisation in the tissue at the microscopic,
or sub-voxel, level. Such differences give rise to the observed difference in intensity
value in MRI phase images [8].

Human brain tissue, such as grey matter and white matter, is largely composed
of water. Water is diamagnetic and has a susceptibility value of �9.05 ⇥ 10�6 at
body temperature (37

�C) [15]. While human tissue is also diamagnetic, with sus-
ceptibility values within ±20% of that of water, that is, between �11.0 ⇥ 10�6

and �7.0 ⇥ 10�6, it is incorrect to assume that the high water percentage is solely
responsible for its diamagnetic value. Paramagnetic molecules or ions, such as oxy-
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gen or ferritin, can theoretically cancel the diamagnetic effect of hundreds or thou-
sands of water molecules [15]. However, paramagnetic materials are very rarely
present in concentrations large enough to significantly alter the magnetism of tis-
sue, and when so, are usually a sign or symptom of a pathology. Measurement of
the susceptibility of biological tissues is considerably challenging, due to their rel-
atively small values and the heterogeneous nature of tissues. In MRI, brain tissue
is often assumed to be similar to water [16] and therefore the value �9.05 ⇥ 10�6

is used in calculations. This assumption was supported by susceptibility measure-
ments of ex vivo rat cortex [17], and a very recent study by Peprah et al. [18], who
measured ex-vivo fixed rat brain tissue susceptibility in the range �9.51 ⇥ 10�6 to
�8.99 ⇥ 10�6, although changes in tissues following death, the effects of fixation,
and other possible differences between live and dead tissues on susceptibility have
not been explored.

The relatively large contrast between brain tissue and venous vessels in phase
images can be attributed to the susceptibility effects of the deoxygenated blood, or
more precisely, the presence of deoxyhaemoglobin. Deoxyhaemoglobin molecules
are slightly paramagnetic, with a susceptibility of approximately 0.15 ⇥ 10�6 [15].
They reside within red blood cells which, given the concentration of water com-
pared to deoxyhaemoglobin molecules, have a susceptibility of �6.52 ⇥ 10�6. The
susceptibility of deoxygenated whole blood with a hematocrit of 0.45 varies due
to varying levels of red blood cells in the volume, but nevertheless has a suscept-
ibility of approximately �7.9 ⇥ 10�6 for a normal adult human. Since this value is
less diamagnetic than brain tissue, the B0 field will be stronger in the location of
veins, thus leading to a more negative phase value compared to that of brain tissue
[19]. While the susceptibility of venous vessels has only a small difference from
the assumed susceptibility of brain tissue, it is enough to form distinct contrast in
phase images.

Despite the common assumption that the intensities in phase images are a result
of the tissue’s susceptibility, it is apparent from several studies that the magnetic
susceptibility of biological material on its own cannot account for the measured
phase contrast [8, 13, 20, 21]. Not only does the shape of the biological object af-
fect the magnetisation, but so does its orientation [15, 22]. It is well known that
for long cylindrical objects, such as veins, a magic angle with respects to the B0

field’s direction exists at which the susceptibility has no effect on the intensity
in the phase image, and the object ceases to have enhanced phase contrast [23].
Studies support the theory that a correlation exists between iron content in grey
matter and phase shift, yet the hypothesised relationship does not accurately pre-
dict phase contrast where iron is not present, such as in white matter [20, 21]. It
has been suggested that these discrepancies arise as a result of the lower water
content and high lipid content in white matter [20]; however Duyn et al [8] have
also demonstrated that these alone cannot account for the phase shifts measured
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in white matter. Grey matter is known to have higher vasculature density than
white matter, yet an examination of the effects of deoxyhaemoglobin in grey mat-
ter reveals that deoxyhaemoglobin content alone cannot be responsible for the
observed phase shifts [8]. Furthermore, in the literature encountered that seeks to
study the relationship between tissue susceptibility and phase, the possible spatial
shift of signal in the image domain due to susceptibility differences has not been
explored. The change in frequency, D f , associated with a change in susceptibility,
Dc, is given by D f = 1

3 . f0.Dc [20, 24], where f0 is the operating frequency. At 7T,
f0 = 298 MHz and the typical bandwidth is approximately 30 Hz [8]. For an equi-
valent change in frequency, D f = 30 Hz, due to susceptibility, the expected Dc

is 3 ⇥ 10�7, which is approximately the susceptibility range of brain tissues [18].
It is therefore possible that spatial shifts in the image may occur in some tissues,
accounting for the noticeable heterogeneity at boundaries between grey matter,
white matter and blood vessels. Without more extensive ground-truth knowledge
of the susceptibility and chemical composition of tissues being imaged, we may
not be able to conclusively state the extent of the role tissue susceptibility has in
defining phase contrast.

An alternative source of phase contrast was suggested by Zhong et al [13], who
proposed that phase contrast is a result, in part, of microscopic chemical exchange
processes between free water and macromolecules. Macromolecule concentration
has a close relationship with T1 and T2 spin relaxation times via exchange between
bulk tissue water and hydrophilic groups on the surface of macromolecules. Des-
pite these exchange processes being fast, of the order of 10�10 seconds, they can
still result in small phase shifts in the water resonance. The amount of shift is de-
pendent on the concentration and type of macromolecules, therefore it is logical
to conclude that the differing macromolecule environments of grey matter (GM)
versus white matter (WM) would have an effect on the intensity in MRI phase im-
ages. Zhong et al demonstrated that not only is there a linear relationship between
macromolecule concentration and phase shift, but that it is sufficient to explain the
observed GM/WM phase contrast in some regions of the brain [13].

Both theories of the origin of phase contrast fail to provide an explanation for
phase shifts in all areas of the brain, particularly in the cerebrospinal fluid (CSF)
and the Stria of Gennari. CSF contains very little deoxyhaemoglobin, iron or my-
elin, and in comparison to GM and WM, it has very low concentrations of macro-
molecules [13]. Its susceptibility is assumed to be very close to that of water, yet
phase images show that its phase shift is far closer to that of WM. The Stria of
Gennari, known through histology studies to be high in myelin content in com-
parison to surrounding GM, has a phase-derived frequency much higher than GM
which, itself, is higher than the adjacent WM [8]. The basic notion that magnetic
susceptibility and macromolecule presence affects phase shifts in MRI is sound;
however, the complexity of the brain, from the chemical composition in not only
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different tissues, but different locations, to the intricate structural shapes, hampers
efforts to fully understand the source of phase contrast.

3.3 phase unwrapping and filtering

The creation of phase images from complex MRI data that clearly depict the struc-
tural details of the brain necessitates the removal of background field inhomogen-
eities. While these inhomogeneities are low in spatial frequency they are much
larger in amplitude relative to that of the structural details. The range of these
phase values often extend beyond 2p, creating distinct contrast lines in the im-
age where the phase values wrap about the �p/p threshold. Thus, creation of
phase images requires not only the removal of the low frequency fluctuations, but
also correction of the phase wrapping. The most common methods of phase wrap
elimination are homodyne filtering [23, 25] and phase unwrapping algorithms in
image space [26].

Homodyne filtering involves the division of the original complex image by a
low pass filtered version of the same complex image, resulting in a high-pass
filtered image. The drawback to this method is the trade-off between high-pass fil-
tering and removal of phase wraps. If the filtering is too aggressive, low frequency
details specific to anatomical structure and not inhomogeneities may be removed.
Conversely, if the filtering is too conservative, removal of phase wraps may remain
incomplete.

Phase unwrapping algorithms [27, 28, 29] tackle the phase wrap problem in
image space and, unlike homodyne filtering, have the advantage of preserving all
spatial frequencies. The algorithms are based on the interpretation of the phase
unwrapping challenge as the search for the value n for every voxel, where the true
phase, fT, is equal to the wrapped phase, fW , plus n multiples of 2p:

fT = fW + 2pn. (3.6)

If the true phase of all voxels is within 2p of the true phase of all its neighbours,
then the phase unwrapping problem is trivial. However this is not always the
case. Algorithms have to identify when phase unwrapping is required and when
the true change in phase is greater than 2p. Incorrect decisions will result in ob-
vious artefacts, such as streaking in the image. Laplacian-based phase unwrap-
ping algorithms, in particular, are increasing in popularity [29]. These algorithms
demonstrate robustness to noise and compute faster than most methods. How-
ever, the reliability is reduced in the presence of noise and large gradients, such as
at the border of the brain. The drawback to phase unwrapping algorithms arises
as a result of the steep transition between a region of no signal (i.e. background
or air-filled cavities) and a region with signal. At these interfaces, the change in
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(a) (b) (c)

Figure 5: The (a) wrapped, (b) unwrapped and (c) filtered phase image demonstrating
artefacts at the edge of the brain.

phase can be several multiples of p. The subsequent low pass filtering (to remove
the slow fluctuating background field inhomogeneities) results in poor quality at
these borders (Fig. 5c). Thus while algorithm-based unwrapping of phase images
is able to more effectively maintain spatial frequencies than homodyne filtering in
the centre of the brain, the loss of quality at the border restricts the usability of
these images for study of the cortical layers.

Rauscher et al [26] addressed the disadvantages of homodyne filtering and
phase unwrapping algorithms by developing an algorithm which is a hybrid of
both methods. The algorithm seeks to circumvent the trade-off in homodyne filter-
ing by applying a phase unwrapping algorithm to the low-pass filtered version of
the complex image. This eliminates the need in the homodyne filtering method to
increase the threshold in the low pass filter to a level where all phase wraps are re-
moved. The phase images processed by Rauscher et al’s method show significant
improvement in the quality of the image near the brain-background border. Never-
theless, this method is limited to situations where the high frequency fluctuations
do not, themselves, result in phase wraps. Although these situations are quite rare
in MRI phase imaging, they could, theoretically, be resolved by performing an
additional phase unwrapping step on the high-pass filtered image.

Homodyne filtering [23, 25], phase unwrapping [27] and the hybrid [26] al-
gorithms all rely on information from neighbouring voxels to unwrap each voxel.
Recently, Feng et al [30] proposed a phase unwrapping algorithm, CAMPUS,
which unwraps voxels individually based on a multi-echo acquisition. By acquir-
ing multiple echoes, with a very short echo spacing, the evolution of the phase for
each voxel can be observed. The first echo serves as a reference point from which
the change in phase in subsequent echoes is calculated. Assuming the phase at
each voxel does not evolve faster than ±p between adjacent echoes, CAMPUS
is able to correctly resolve the phase in regions of high gradients where previ-
ously mentioned methods struggle. The MR sequence employed is a 3D bipolar
gradient echo sequence with flow compensation in all three directions for the first
echo, flow compensation in the readout direction for the other odd echoes, and no
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(a) (b)

Figure 6: Susceptibility-weighted imaging (a) negative and (b) positive phase masks.

flow compensation for the even echoes. This combination of flow compensation
allows for the phase effects of flow to be eliminated, however it necessitates the
implementation of what is currently a non-standard sequence. As such, although
CAMPUS promises greater accuracy and reliability of phase images, it cannot be
applied to data acquired with conventional standard sequences available on MR
scanners, particularly in the clinical environment.

3.4 phase and magnitude combination

The most well-known and commonly utilised MRI technique that combines in-
formation from both phase and magnitude is Susceptibility Weighted Imaging
(SWI) [23, 31]. SWI uses the relative phase values to attenuate voxels in the mag-
nitude image. A negative mask is created using the phase image by setting positive
phase values to unity (or 1) and linearly rescaling the range [�p, 0] to the range
[0, 1].

f�m =

8
><

>:

p+f
p , f < 0

1, f � 0
(3.7)

where f�m is the negative phase mask and f is the phase of the voxel. Similarly, a
positive mask is defined as

f+m =

8
><

>:

1, f < 0

p�f
p , f � 0

(3.8)

where negative phase values are set to unity and the range [0,+p] is linearly
scaled to [0, 1].
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The magnitude image is multiplied by the mask n times to attenuate the voxels
of negative phase, where n has been found to produce optimum contrast when it
is between 3 and 5 [31].

s = r ( fm)
n . (3.9)

Here, s is the SWI image intensity, r is the magnitude of the voxel and fm is f�m or
f+m .

The method was originally devised as a technique for suppressing peripheral
veins in angiograms where contrast agents had enhanced both arteries and veins
in the magnitude image [23]. Though the arteries and veins are indistinguishable
in the magnitude image, the effects of deoxyhaemoglobin in venous blood results
in veins parallel to the field having a more negative phase value than arteries. Thus
the phase image could be used to attenuate the voxels in the magnitude image that
represents venous vessels. This work led to the usage of SWI as a method for MR
venography [32, 33]. It has also been applied in applications such as tumour and
lesion identification, stroke assessment, haemorrhage detection and quantification
of iron content [34, 35, 36, 37].

Abduljalil et al [9] evaluated a different method to combine the information from
phase images with magnitude images. Having noted reduced GM/WM contrast in
magnitude images and increased GM/WM contrast in phase images acquired with
gradient echo sequences, they sought to determine whether the phase contrast
could be used to increase the contrast in the magnitude image. They proposed
to achieve this by multiplying the magnitude image by the phase image 2-3 times,
without performing the SWI mask transformations. Their results, however, showed
little added benefit compared to the phase image.

Fripp et al [38] took a different approach to combining information from phase
and magnitude images. Rather than create a new contrast image, they used the
information in both images to perform segmentation of the bones in the knee
joint based on texture details. The algorithm involves training a Support Vector
Machine (SVM) using features extracted from manually segmented images, then
using an Active Snake Model (ASM) to segment the image based on classifications
produced by the SVM. The algorithm performs well, with the combined phase and
magnitude information providing better classification and ultimately improved
segmentation.

While this thesis is focussed on the use of phase in structural MRI, it is worth
noting that functional MRI (fMRI) studies have also investigated the benefits of
utilising the full complex data rather than just magnitude [39, 40]. In traditional
fMRI, activation maps are created based on intensity changes in the magnitude
as a result of the fluctuation in deoxyhaemoglobin concentration that is linked
to neural activity. If the signal-to-noise ratio (SNR) in the magnitude image is
low, there is an increased chance of incorrectly labelling voxels as active [40]. By
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including the deoxyhaemoglobin effect in phase in the assessment of activation,
the chance of incorrectly labelling a voxel in the activation map is reduced. Rowe et
al [40] demonstrated that at high SNR, the accuracy of fMRI activation maps based
on complex data is comparable to those based solely on magnitude data . However
at low SNR, complex-based activation maps performed better than magnitude-
only maps. It may therefore be possible to increase the resolution in fMRI studies
while maintaining the reliability of the data by combining the phase information
with magnitude.

3.5 quantitative susceptibility mapping

The combination of Eqs (2.6) and (2.23) provides the relationship between the
phase image intensity and the change in magnetic flux density in a given voxel

f (r) = �g (r) .DB (r) .TE. (3.10)

Since DB is dependent on magnetic susceptibility, c, it is theoretically possible to
derive voxel-wise magnetic susceptibility estimates from the phase information, a
recent area of research known as Quantitative Susceptibility Mapping (QSM).

Attempts to quantify susceptibility using magnetic resonance imaging can be
traced back to the 1980’s when the susceptibility differences associated with large
abnormal pathologies, such as haematomas and tumours, were shown to produce
contrast on phase images [41, 42, 43]. Further efforts were made in the 1990’s to
derive bulk susceptibility values from the phase data, primarily focussing on large
objects with known morphology, such as the liver, and assuming uniform suscept-
ibility within. Various methods, such as finite element and Fourier-based convolu-
tion, were used to model the observed magnetic B field perturbations induced by
arbitrarily-shaped objects [44, 45, 46, 47, 48]. In particular, the Fourier-based con-
volution method assumed a spherical model for the susceptibility elements. This
spherical model of susceptibility effects extended into the area of field estimation
[49, 24, 50], where the model was used to predict field perturbations due to arbit-
rary susceptibility distributions, rather than uniform susceptibility distributions
over arbitrary shapes. At the same time, Li and Leigh [51] demonstrated using
a numerical phantom that an arbitrary susceptibility distribution could be calcu-
lated from known B field perturbation data by solving a large linear system using
a singular value decomposition method. Unfortunately, the scaling of the method
was limited by exponential increases in computation and memory requirements.
Advances in high field MR technology led to increased phase contrast [8], from
which field perturbation maps with intricate structural detail could be calculated.
This allowed for the susceptibility derivation paradigm as a linear system with
voxels modelled as spheres to prevail.
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Current QSM methods model the relationship between the change in B field and
susceptibility as

DB (r) = (Dc ⌦ FS) (r) (3.11)

where DB (r) is the change in B field at voxel r (the field map), Dc is the change in
susceptibility, ⌦ is the convolution operation and FS is the spherical model kernel
based on the change in B induced by a sphere. Implied in this model is, as previ-
ously mentioned, the assumption that the spherical model is valid for all voxels.
Furthermore, these current methods ignore the effects of chemical exchange on
phase. Due to characteristics of the spherical kernel, the system described by (3.11)
is under-determined and presents a challenge to which several approaches to
QSM have been proposed: thresholded k-space kernel methods [52, 53, 54], calcu-
lation of susceptibility through multiple orientation sampling (COSMOS) [55] and
regularisation-based methods [56, 57, 58, 59]. While these methods have achieved
varying degrees of success in the estimation of susceptibility, the fundamental
assumptions that all voxels can be modelled as spheres and that the effects of
chemical exchange are negligible are limited, with research suggesting that the ef-
fects of these assumptions are not insubstantial [13, 60, 61, 12, 62, 63, 64, 11, 65, 66].
In Chapter 7, we explore the appropriateness of the spherical model and present a
new method of QSM that incorporates spherical and cylindrical modelling in the
estimation of magnetic susceptibility.
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N O V E L R E S E A R C H





4
S PAT I A L LY D E P E N D E N T F I LT E R I N G

a method for removal of phase distortions at the cortical sur-
face

Ideally, processing of wrapped phase data should maximise retention of struc-
tural detail, eliminate the bias field and avoid artefacts at the surface of the brain.
Surface artefacts appear as intensity inhomogeneities in the processed phase im-
ages, often obscuring underlying structural detail. They are a result of insufficient
estimation, during phase processing, of the large phase changes contributed by
the bias field and susceptibility differences at air-tissue and bone-tissue interfaces.
The ability of phase processing methods to address these requirements has a direct
effect on post processing techniques such as SWI [1, 2] and susceptibility mapping
[3, 4, 5].

This chapter presents a spatially dependent filtering method that adjusts filter
parameters according to a voxel’s location while performing computationally effi-
cient filtering of the phase unwrapped or complex filtered phase images. Our aim
is to remove surface artefacts with higher computational efficiency than the hy-
brid method. The method is applied to 3T cortical and 7T cortical and subcortical
data and is shown to substantially improve removal of surface artefacts, thus en-
hancing the usefulness and reliability of phase data for visual interpretation and
phase-dependent image processing techniques.

4.1 background

Generating phase images relies on image processing methods beyond calculating
the phase angle of the complex data. Processing of phase images is confounded
by two characteristics of the phase data: (i) phase wrapping, where the true, or
unwrapped, phase angles, fU , are wrapped into the interval [�p, p), such that

fU = \C + 2pK (4.1)

where \C means the argument of the complex values, C, and K is a map of voxel-
wise integer values representing the wrapping order; and (ii) a background field,
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fB, comprising surface artefacts and bias field, which tend to be spatially slowly
varying compared to the sought after information contained in the local field, fL,
where

fU = fB + fL. (4.2)

Removal of the phase wraps and the background field is undertaken using either
complex, or homodyne, filtering [6] or phase unwrapping followed by subtraction
of the estimated background field [7].

Phase unwrapping techniques are applicable to several fields ranging from MRI
[8, 9, 10] to Synthetic Aperture Radar Interferometry [11, 12]. The techniques re-
quire precise detection of phase wraps and effective handling of singularities [12].
As robust phase unwrapping methods tend to have long computation times, ef-
forts have been made to increase their computational efficiency [13, 14].

Several methods have been proposed for the estimation and removal of the
background field. High pass filtering [7] is achieved by subtracting a low pass
filtered (LPF) unwrapped phase data from the original unwrapped phase data:

fLPF
L = fU � LPF (fU) . (4.3)

This phase processing method produces artefacts near the cortical surface of the
brain, since the intensities of non-brain voxels are included in the background field
estimate. Polynomial fitting [15] involves the estimation of the bias field by fitting
n-th order polynomials to the data. A higher order n allows better estimation of
the field, particularly the higher gradients near the cortex, however they may also
incorrectly estimate the bias field near large structures. Spherical mean estimation
[16] exploits the physical property that fields produced by sources outside of a
volume of interest (VOI) are harmonic throughout the VOI and therefore satisfy
Laplace’s equation

r2B = 0. (4.4)

Fields due to sources within the VOI are not harmonic, and therefore the Laplace
operator can theoretically be used to separate the external, or bias, field from the
internal, or local, field. Outside of the brain, phase values are zero and therefore
the field is unknown. Here, application of this method will fail, leading to incor-
rect bias field estimation near the cortex. Dipole fitting [17, 18] seeks to estimate
the bias field by assuming that it can be modelled by dipoles positioned at each
voxel outside of the brain. A brain mask is defined and the optimal arrangement of
dipoles outside of the brain is determined, such that the net magnetic field effect
of those dipoles approximates the phase-derived magnetic field inside the brain.
The accuracy of this method is particularly sensitive to the brain mask, particu-
larly near the cortex where high field gradients exist. In subsequent publications
that use this method [19, 20], significant erosion of the mask at the cortex is appar-
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ent, suggesting that the method is inadequate at estimating the bias field in the
peripheral voxels.

Complex filtering takes a different approach to the task of unwrapping phase
and removing the background field. The local field is computed as

fCOM
L = \C �\LPF (C) (4.5)

where the low pass filtering operation is applied to the complex data. This method
avoids singularity problems, has less surface artefact and is faster to compute com-
pared to the high pass filtering method. However, compromises must be made
between information retention, requiring a larger image space filter size, and
phase wrap removal, requiring a smaller image space filter size [21].

Although complex filtering produces less surface artefact than high pass fil-
tering methods, further processing is required to remove remaining artefact. At-
tempts have been made at removing these inhomogeneities from unwrapped
phase data by deriving better estimates of the background field and surface arte-
fact. One method, aimed specifically at SWI applications, employs local field gradi-
ents to measure the severity of the inhomogeneities and applies these measure-
ments to the creation of the SWI phase mask in order to suppress the effects
of large inhomogeneities [22]. Another method uses geometrical models derived
from the magnitude data to calculate estimations of inhomogeneities induced by
susceptibility differences at air-tissue interfaces [23]. While the methods give some
benefit in removing surface artefact, the primary aim of both methods is to remove
the effects of inhomogeneities in medial areas of the brain and so limited attention
is given to assessing their effectiveness in the peripheral areas of the brain.

Recently, a hybrid method was proposed for processing wrapped phase data
and reducing the surface artefacts in phase images [24]. This method combines
phase unwrapping and complex filtering to better estimate and remove the back-
ground field as follows

fHYB
L = fU � (\LPF (C))U . (4.6)

The method was shown to improve on traditional phase processing with regards to
removal of the surface artefacts; however, limitations exist in areas of steep phase
gradient.
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4.2 method

4.2.1 Spatially dependent filtering method

The brain mask, M, is derived from the magnitude image using thresholding to
initialise the mask and active contours [25] to optimise the mask, such that,

M ij =

8
><

>:

1, foreground voxel

0, background voxel
(4.7)

where subscripts ij denote the ij-th voxel, and sufficient separation between brain
voxels and skull voxels, both spatially and in intensity, avoids the need for fur-
ther skull stripping methods. The active contours algorithm evolves the boundary
defined by the initial mask based on segmentation of the image, with soft con-
straints on curvature of the boundary. It is a more reliable method than intensity
gradient active contour methods in noisy images, or where blurred edges occur.

The proximity map, P, indicates the proximity of the voxel to the brain surface
and is derived by applying a 2D Gaussian filter to the mask,

Pij = (Fs,2s ⇤ M)ij M ij (4.8)

where the symbol ⇤ represents the convolution operation and Fs,2s is a Gaussian
filter of standard deviation s voxels. The second subscript, 2s, indicates the filter
kernel extends to ±2s voxels in both dimensions. Larger kernel sizes increase
computation time, but also capture more of the Gaussian duty. 2s, equivalent to
95.5% of Gaussian duty, is chosen as a compromise between filter kernel size and
percentage of Gaussian duty. The values of P reside in the interval [0,1] and the
standard deviation, s, is chosen to ensure removal of the background field while
maintaining the detail in the local field.

The alpha map, a, represents spatially dependent standard deviations which are
computed as

aij = s
⇣

Pn
ij

⌘

2
M ij (4.9)

where exponentiation is element-wise.
⇣

Pn
ij

⌘

2
indicates that Pn

ij is rounded to two
decimal places, giving a maximum of N=101 unique values in a. The exponent n is
calculated so that the Gaussian filter defined by aij is large enough to incorporate
values from the adjacent voxels, and small enough to effectively estimate surface
artefact. A constraint is therefore imposed such that aij = 1 when proximity Pij =
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0.5. That is, when a voxel’s neighbourhood is equally split between brain and
non-brain voxels. From Eq. (4.9),

1 = s0.5n. (4.10)

The exponent n is thus given by

n =
� log s

log 0.5
. (4.11)

We define A = {a1, . . . , aN} as this set of unique values in increasing order, such
that a1 = min (A) and aN = max (A).

An index map, X, relates aij to A, such that

X ij = k, where aij = ak. (4.12)

A set of low pass filtered images, F = {f1, . . . , fN}, is constructed from A,
where fk is derived using only brain voxels identified by the mask, M, and stand-
ard deviation ak in the filtering calculation:

fk =
Fak ,2s ⇤ (f · M)

Fak ,2s ⇤ M
. (4.13)

Here, f is the phase image obtained by either the phase unwrapping method, fU ,
or the complex filtering method, fCOM

L . Division and multiplication are element-
wise operations.

The spatially dependent filtered background field estimate, fSDF
B , is constructed

from the F image set and index map, X:

fSDF
B,ij = fk,ij, where k = X ij. (4.14)

The spatially dependent filtered phase image containing the detail in the local
field, fSDF

L , is computed by
fSDF

L = f � fSDF
B . (4.15)

4.2.2 Simulated data

A simulated phase dataset was created to illustrate the spatially dependent fil-
tering method. The ground truth data comprised zero phase disc of radius 40

voxels embedded in a 101 ⇥ 101 matrix size image (Fig. 7a). The voxel dimen-
sions were chosen as 0.2 ⇥ 0.2 ⇥ 0.2 mm3. Fine structural detail was simulated
by the addition of three vertical lines of width 1 voxel and phase value 0.1 radi-
ans. The background phase was zero radians. A bias field was simulated using a
linear ramp ranging vertically from 0 to 0.2 radians, while surface artefacts were
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assumed to be caused by air tissue interfaces external to the brain [18] and were
thus simulated by placing four magnetic dipole moments around the exterior of
the disc (Fig. 7b). The change in phase at r0 due to a dipole at r, Dfd (r

0, r), was
calculated as

Dfd
�
r0, r
�
= �gTEDB

�
r0, r
�

(4.16)

where DB (r0, r) is the change in magnetic flux density outside the dipole, given
by [26] as

DB
�
r0, r
�
=

µ0

4p

1
|r � r0|3

 
3

m (r0) · (r � r0)2

|r � r0|2
�
r � r0

�
� m

�
r0
�
!

. (4.17)

The parameters used are typical of data acquisitions at B0 field strength of 3T:
g = 42.58 MHz, TE = 45 ms, µ0 = 4p ⇥ 10�7. m (r0) is the magnetic dipole mo-
ment, given by

m (r) = 4pac (r) H0 (4.18)

where a is the volume of the voxel, c = �9.05 ⇥ 10�6 is the susceptibility of water
and H0 = B0/µ0 is the magnetic field intensity, with direction as indicated in Fig.
7a. The ground truth phase, bias field and surface artefacts were summed to create
the simulated phase image (Fig 7c). Spatially dependent filtering was applied with
a standard deviation s = 20 voxels.
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Figure 7: Simulated phase data: (a) The ground truth (rads) was combined with (b) a
bias field and surface artefacts (rads) to produce (c) a simulated phase image.
Spatially dependent filtering involved creation of (d) the proximity map, (e) the
alpha map and the N individual low pass filtered (LPF) phase images, illustrated
here using the (f) smallest and (g) largest alpha values. The LPF phase images
were combined to produce (h) the spatially dependent filtered background field
estimate (rads), which was subtracted from the simulated data to produce (i) the
local field image (rads). The difference between the local field image and the
ground truth is shown in (j) (rads).
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4.2.3 Experimental Data

3T data was acquired from a healthy human volunteer using a Siemens TIM
Trio 3T system with a Siemens 12 channel Head Matrix Coil (Siemens Medical
Solutions, Erlangen, Germany) using the following imaging parameters: axial 2D
Gradient Recall Echo, T⇤

2 -weighted imaging with TE = 45 ms, TR = 1000 ms,
flip angle = 45�, slice thickness = 2.5 mm, FOV = 240 ⇥ 180 mm2, image
matrix size = 448⇥ 384. The magnitude data was reconstructed using SENSE. The
wrapped phase data was reconstructed using a phase optimised SENSE method
[27].

7T data was acquired from a healthy human volunteer (male, aged 27) on
a 7T Siemens system (Siemens Medical Solutions, Erlangen, Germany) with an
8-channel transmit-receive head coil (Neuroscience Research Institute, Incheon,
South Korea) using the following parameters: axial 2D gradient echo (GRE),
T⇤

2 -weighted imaging with TE = 21.6 ms, TR = 750 ms, flip angle = 30�,
bandwidth = 30 Hz per pixel, slice thickness = 2 mm, FOV = 256 ⇥ 224 mm2,
matrix size = 1024 ⇥ 896. Spatial resolution was 0.25 ⇥ 0.25 ⇥ 2 mm3. A total of
17 slices were acquired. The total scan time was 11.5 min. The magnitude and
wrapped phase data were reconstructed using the optimised complex reconstruc-
tion method [27].

4.2.4 Comparison of artefact removal

A 3T axial slice, a 7T superior axial slice and a 7T inferior axial slice were selected
for comparison of the phase processing methods (Fig. 8a). Five phase images, fLPF

L ,
fCOM

L , fHYB
L , fSDF,UP

L and fSDF,COM
L were produced for each slice. In construction

of each phase image, filter types and sizes were chosen in accordance with the
published studies and based on heuristic assessment of the bias field removal and
image contrast in the output. In constructing (4.3), unwrapping was achieved us-
ing the FUN method [28]. The low pass filtering operation involved convolution
in image space with a 2D Gaussian kernel with standard deviations, s, of 5, 10

and 10 voxels for the 3T, 7T superior and 7T inferior axial slice data, respectively.
A kernel size extending to ±2s in both dimensions was used in each case. fCOM

L
was constructed using the complex filtering method (4.5), where the low pass fil-
tering of the complex data was achieved using multiplication in k-space with a 2D
Gaussian kernel with standard deviation 15, 50 and 20 for the 3T, 7T superior and
7T inferior axial slice data, respectively. For the hybrid method (4.6) phase image,
fHYB

L , unwrapping was achieved using the FUN method, and low pass filtering
involved multiplication in k-space with a 2D Hamming window of size 80⇥80,
100⇥100 and 125⇥125, for the 3T, 7T superior and 7T inferior axial slice data,
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respectively. Brain masks were derived from the magnitude data (Fig. 8b), as de-
scribed above in Spatially dependent filtering method. fSDF,UP

L was constructed by
applying the spatially dependent filtering method to the unwrapped phase data
using the same filter kernel size and standard deviation parameter, s, as for the
construction of fLPF

L . fSDF,COM
L was constructed by applying the spatially depend-

ent filtering method to the previously obtained complex filtered phase images,
fCOM

L . In applying the spatially dependent filtering method, standard deviations
of 25, 5 and 15 voxels were used for the 3T, 7T superior and 7T inferior axial slice
data, respectively. The processed phase images were multiplied by the brain mask
to improve visualisation of the brain surface voxels.

a b c d

3T

7T
superior
aspect

7T
inferior
aspect

Figure 8: The (a) magnitude image was used to derive the (b) binary foreground/back-
ground mask, (c) medial cortical region of interest and (d) lateral cortical region
of interest.

The phase images were quantitatively compared by selecting two regions of in-
terest (ROI) comprising predominantly grey matter (GM): (i) a medial cortical ROI
unaffected by surface artefacts (Fig. 8c); and (ii) a lateral cortical ROI representing
areas affected by surface artefacts (Fig. 8d). The premise of this quantitative com-
parison is that voxels in the lateral cortical areas have a similar phase intensity
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distribution to those in the medial cortical areas. For each image, the mean and
standard deviation of voxel intensities were calculated for the two ROIs. The abil-
ity of each method to remove surface artefact was quantified as the absolute shift
in mean

Dµ = |µl � µm| (4.19)

and the intensity spread ratio
Rs =

sl
sm

where µ is the mean and s is the standard deviation and subscripts l and m
represent the lateral and medial ROIs, respectively. A smaller Dµ and an Rs closer
to 1 indicate less surface artefact in the image.

All computations were undertaken and timed using MATLAB on a PC with
Intel Core Duo 3.16GHz processors and 8 GB RAM.

4.3 results

4.3.1 Application of spatially dependent filtering method to simulated data

The steps of the spatially dependent filtering method are exemplified by applic-
ation to the simulated dataset. The proximity map, P (Fig 7d), shows decreasing
proximity values from the centre to the edge of the disc. These values are trans-
lated into decreasing values in the alpha map, a (Fig 7e). A low pass filtered
phase image calculated using the smallest alpha value (f1, Fig 7f) demonstrated
the ground truth vertical lines, surface artefacts and bias field. In contrast, filter-
ing using the largest alpha value (fN = 37, Fig 7g), demonstrated only the bias
field. The spatially dependent filtering combination of the low pass filtered phase
images estimated the bias field and surface artefacts (Fig 7h) with only minor evid-
ence of the ground truth local detail (vertical lines) appearing near the surface. The
estimated local phase image (fSDF

L , Fig 7i) accurately replicates the ground truth.
Inconsistencies that were insignificant relative to the original artefact appear close
to the surface in the difference image (Fig 7j). Line profiles along the central ver-
tical line (Fig 40) demonstrated the greater accuracy in the SDF method compared
to standard gaussian filtering.

4.3.2 Comparison of artefact removal: 3T axial slice

The standard Gaussian filtered unwrapped phase image (Fig. 10c) displayed pro-
nounced artefact at the cortical surface. An artefact caused by the presence of
a singularity in the wrapped phase data is apparent in the left anterior surface
of the brain. There was also a noticeable remaining bias field artefact that could
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Figure 9: Line profile along central vertical line in simulated data. The black line indicates
the ground truth. The blue line is the SDF result for s = 20, as illustrated in Fig.
7i. Also shown are profiles for standard gaussian high pass filtering using s = 5
(solid red line) and s = 20 (dashed red line).

not be removed without compromising the contrast in the image. The complex
filtered phase image (Fig. 10d) did not show evidence of the bias field artefact and
the surface artefacts were reduced, including the singularity artefact. The hybrid
method (Fig. 10e) was similarly successful at removing the large bias field. Spa-
tially dependent filtering of the unwrapped phase image (Fig. 10f) produced the
same results as the standard Gaussian filter method in the medial cortical ROI. The
removal of surface artefacts was noticeably improved by the spatially dependent
filter method. In particular, when applied to the complex filtered phase image (Fig.
10g), the method produced the lowest intensity spread ratio (Table 1), suggesting
it is the most effective at removing surface artefact.

4.3.3 Comparison of artefact removal: 7T superior axial slice

The standard Gaussian filtering method applied to the unwrapped phase image
(Fig. 11c) was successful at removing the bias field in the central region of the
foreground, although artefacts remain at the cortical surface. Steep gradients in
the phase data, such as at the anterior surface, could not be successfully removed
using the complex filtering method without compromising the contrast within the
medial region of the brain. The remaining surface artefact in the complex filtered
phase image is more prominent than in the standard Gaussian filtered image, yet
the intensity spread ratio score (Table 1) suggests otherwise. The hybrid method
(Fig. 11e) produced an image with visibly reduced surface artefact compared with
the previous methods. The spatially dependent filtering method applied to the
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Figure 10: 3T axial slice phase data (rads) in (a) wrapped and (b) unwrapped stages. Phase
images constructed using (c) standard Gaussian filtering of the unwrapped
phase image, (d) complex filtering, (e) the hybrid method, and spatially de-
pendent filtering applied to the (f) unwrapped phase data and the (g) complex
filtered phase image. Row 2 shows magnifications of the region indicated in
image (c1).

unwrapped phase image (Fig. 11f) and complex filtered phase image (Fig. 11g)
demonstrated improvement in reduction of the surface artefact compared to the
standard Gaussian filtering, complex filtering and the hybrid methods. Fine struc-
tural detail at the cortical surface, such as venous vessels, were visible in the spa-
tially dependent filtering images which remain obscured in the other images. The
reduction in shift in mean and intensity spread ratio scores for the spatially de-
pendent filtering images compared to the other three methods support the visually
identified results (Table 1).

4.3.4 Comparison of artefact removal: 7T inferior axial slice

The standard Gaussian filtered phase image (Fig. 12c) demonstrated substantial
contrast within the medial cortical areas although there were noticeable surface
artefacts. The complex filtering method (Fig. 12d) improved on the artefact re-
moval, but lacked the contrast visible in the standard Gaussian filtered image. The
hybrid method (Fig. 12e) produced similar internal contrast; however, while the
removal of surface artefact visually appears comparable to the complex filtering
method, the intensity spread ratio score (Table 1) is significantly worse, as a result
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Figure 11: 7T superior axial slice phase data (rads) in (a) wrapped and (b) unwrapped
stages. Phase images constructed using the (c) standard Gaussian filtering of
the unwrapped phase image, (d) complex filtering, (e) the hybrid method, and
spatially dependent filtering applied to the (f) unwrapped phase data, and (g)
complex filtered phase image. Row 2 presents magnification of the region in-
dicated in image (c1).
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Figure 12: 7T inferior axial slice phase data (rads) in (a) wrapped and (b) unwrapped
stages. Phase images constructed using (c) standard Gaussian filtering of the
unwrapped phase, (d) complex filtering, (e) the hybrid method, spatially de-
pendent filtering of the (f) unwrapped phase data, and (g) complex filtered
phase image. Row 2 presents magnification of the region indicated in image
(c1).

of the remaining artefacts in the anterior surface of the brain. Spatially dependent
filtering of the unwrapped phase image (Fig. 12f) maintained the contrast in the
central region apparent in the standard Gaussian filtered image, while the reduc-
tion of surface artefacts was improved. Intricate structural detail was revealed in
areas populated in other images by high intensity artefacts. Spatially dependent
filtering also improved on the complex filtered phase image (Fig. 12g).

4.3.5 Computation time

Computational efficiency was below one minute for all methods (Table 2). Pro-
cessing times for the 7T images were considerably slower than the 3T images.
Complex filtering proved to be the fastest of all methods with <1 second com-
putation times. For the methods requiring phase unwrapping, the unwrapping
stage was the most time consuming. The hybrid method and spatially depend-
ent filtering of the unwrapped phase image had comparable times. In comparison
to these two methods, the spatially dependent filtering method of the complex
filtered phase image had similar computational efficiency for the 3T data and was
substantially faster for the 7T.
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4.4 discussion

Spatially dependent filtering is a post-processing procedure that can be applied
to both unwrapped phase images and complex filtered phase images. Like other
adaptive filtering techniques, it exploits spatial variations in structural features of
the data to optimise the filtering parameters for localised requirements. Adapt-
ive methods have been used in MRI for various applications such as providing
localised noise estimation in magnitude images [29], preserving edges during de-
noising [30] and aiding in image segmentation [31]. The computational cost of
adaptive methods is well noted and techniques have been proposed that address
this issue by optimising both hardware configuration [32] and algorithm design
[29]. The spatially dependent filtering method proposed here capitalises on prior
knowledge of differences between brain and non-brain voxels to improve removal
of surface artefact, and on the symmetry of the Gaussian filter to avoid lengthy
iterations and optimise computational efficiency.

The spatially dependent filtering method, employing higher frequency filtering
near the surface and lower frequency filtering towards the centre of the brain,
is a compromise between maintaining fine structural detail and estimating the
bias field and surface artefacts. The effectiveness of the spatially dependent filter-
ing method was demonstrated in the simulation dataset. The differences between
ground truth and the estimated local phase image are present at the surface of
the brain, where changes due to structural detail are not explicitly distinguished
from surface artefact. However, the results on the 3T and 7T datasets demonstrate
that more structural detail is preserved by spatially dependent filtering compared
to the standard Gaussian filtering of unwrapped phase, complex filtering and the
hybrid method.

Applied to unwrapped phase images, spatially dependent filtering has identical
performance to the standard Gaussian filtering method in the medial cortical re-
gion of the brain due to equivalent filter parameters being applied in this region.
The results of the two filtering methods differ in voxels close to the brain/non-
brain surface. While the standard filtering method filters both brain and non-brain
voxels without altering the filter size, the spatially dependent filtering method fil-
ters using only brain voxels, and decreases the filter size to compensate for the
reduced neighbourhood of voxels that have similar signal intensities and noise
levels. As a result, spatially dependent filtering demonstrates substantial image
improvement with removal of surface artefacts compared to the standard Gaus-
sian filtered image without compromising on the filtering performance elsewhere
within the image.

Complex filtering introduces less surface artefact than the standard Gaussian
filtering of unwrapped phase images, but this can be at the cost of contrast within
the medial region of the brain (see Section 3.3). The spatially dependent filtering
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method efficiently removes the remaining surface artefacts, with only minor loss
of contrast elsewhere in the image. Compared to spatially dependent filtering of
the unwrapped phase image, spatially dependent filtering of the complex filtered
phase image is generally more effective at producing images with minimal artefact
near the brain/non-brain surface, while spatially dependent filtering of the un-
wrapped phase image maintains greater contrast within the medial cortical areas
of the brain.

The hybrid method produces images with fewer surface artefacts compared to
standard Gaussian filtering of unwrapped phase images and the complex filtering
method. As with the phase unwrapping and complex filtering methods, the suc-
cess of the hybrid method is dependent on the properties of the original phase
data. Unlike the complex filtering method it does not suffer from residual phase
wraps in the final image. However, as with all methods reliant on phase unwrap-
ping, it is still subject to singularity problems. Nevertheless, spatially dependent
filtering demonstrates greater efficacy in removing surface artefact compared to
the hybrid method, as well as comparable or improved retention of contrast in the
medial cortical areas of the brain.

The shift in mean and intensity spread ratio metrics provide a measurement
of the surface artefact in the images. While the trends in the measures mostly
reflect the visual assessments of the three images, the metrics are not infallible.
In comparing the hybrid method phase image to the complex filtered phase im-
age for the 7T slices, the discrepancy between the metric scores and the visually
assessed improvement demonstrates the metrics’ sensitivity to small, but not insig-
nificant, areas with steep intensity gradients. In these sections, the complex filter-
ing method retains the phase wraps, limiting the data range to [�p, p), while the
phase unwrapping steps in the hybrid method allow the data to extend beyond
this range.

The demonstrated ability of the spatially dependent filtering method to remove
surface artefact and reveal underlying structural detail has direct benefit for ap-
plications such as venography and cortical grey matter segmentation. In the lateral
cortical regions of the brain, venous vessels are now visible allowing for improved
reliability of venography in these areas. The improved grey matter definition also
allows for greater accuracy in analysis and segmentation of cortical surfaces and
cortical folding. Since the effect on contrast in the medial subcortical regions of
the brain is negligible, there is only benefit to gain in using spatially dependent
filtering in place of the traditional methods of phase processing.

The computation was acceptably fast for all methods. The computational effi-
ciency of phase unwrapping is greatly influenced by the choice and implement-
ation of algorithm, image size and number of residues and phase wraps, but it
is uniformly slow in comparison to the complex filtering method which does not
require phase unwrapping. Following the initial processing of the phase data, the
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efficiency of the spatially dependent filtering method is predominantly influenced
by the number of unique values in a, which determines the number of iterations
of (4.13). Rounding of the Gaussian filtered binary mask (4.8) ensures that the
maximum number of iterations is 101. The efficiency of this algorithm is further
enhanced by the implementation of the brain voxel constraint in a single equation
(4.13) without the need to iterate through each voxel to determine the neighbour-
ing brain voxels. Compared to the hybrid method, the spatially dependent filtering
method is marginally faster.

Spatially dependent filtering is a versatile method and can be easily applied to
3D datasets by using 3D filters. The principles behind the method allow for the
use of other symmetrical averaging filter kernels, such as mean filters and Ham-
ming windows. The exponentiation in (4.9) can be modified by altering the base
and exponent to effect steeper or milder gradients in the a map. In applications
where phase unwrapping is confined to specific regions of interest (ROI), spatially
dependent filtering can be applied by using the binary mask defining the ROI in
place of the brain/non-brain mask.

4.5 conclusion

The accuracy of information in local field phase images is crucial not only for
interpreting the images, but also for processing methods that rely on the phase
information, such as SWI and susceptibility maps. Spatially dependent filtering is
shown to be an effective method of removing artefact at the cortical surface. The
method is computationally efficient and versatile enough to be used with differ-
ent symmetrical averaging filter kernels and in region specific phase unwrapping
applications. It has been shown to produce more reliable phase information than
standard Gaussian filtering of unwrapped phase images, complex filtering and the
hybrid method, and reveals underlying structure and detail that remain obscured
by other methods.
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5
S I G M O I D - S W I

a correction method for venous vessel boundary delineation at

high field

Negative phase mask SWI [1, 2] is a popular MR imaging method for veno-
graphy. The magnetic susceptibility of venous blood and partial volume effects
lead to negative phase values that are exploited by SWI. At higher field strengths,
the effects of localised magnetic susceptibility differences are amplified, leading to
increased phase contrast and larger susceptibility artefacts [3, 4]. For larger veins
that are oriented perpendicular to the direction of the main field, the susceptibility
difference between the vein and surrounding tissue causes dipolar changes in the
magnetic field immediately outside the vein. The field changes result in increased
phase in the plane perpendicular to the main field, decreased phase in the direc-
tion parallel to the main field and magnitude attenuation. In SWI, this can affect
the visibility of the large vein boundaries, resulting in incorrect vessel segmenta-
tion, as will be demonstrated. This chapter presents Sigmoid-SWI, a modification
to the SWI phase mask that corrects the vessel boundaries by using the increased
phase outside the vessel to amplify the attenuated magnitude.

5.1 theory

Venous vessels can be modelled as long cylinders whose effects on the surround-
ing magnetic field is described by [5]

DB (r, q) =
Dc

2
sin2 (b)

⇣ a
r

⌘2
cos (2q) B0, (5.1)

where Dc is the difference in susceptibility between the cylinder and the surround-
ing tissues, b is the angle between the cylinder and the direction of the main B field,
a is the radius of the cylinder and B0 is the strength of the main B field (Fig. 13a). r
and q are coordinates of a point r in the plane normal to the cylinder axis, where r
is the distance from the cylinder axis to r and q is the angle between the direction
of the main B field and r (Fig. 13b). In axial slices, where the vein is perpendicular
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to the main B field, q = p
2 and b = p

2 , the magnitude of DB is greatest and DB
opposes the direction of the main B field.

(a) (b)

Figure 13: Parameter definitions for deriving the change in B field outside (a) a cylinder
perpendicular to the main field and (b) the change in phase produced by this
cylinder.

The phase,
f = �gDB.TE, (5.2)

where g = 2.67513 ⇥ 108 rad.s�1T�1 is the gyromagnetic ratio of the 1H proton
and TE is the echo time, implies that, in an axial slice, voxels surrounding veins
perpendicular to the B0 field will have positive phase. The product gDB describes
the shift in Larmor frequency resulting from the cylinder. At B0 = 7 T, typical
acquisition bandwidth per voxel is 30 Hz, corresponding to DB ⇡ 0.7 ⇥ 10�6 T.
The susceptibility of deoxygenated blood in venous vessels is Dc ⇡ 1.6 ppm [6].
The largest field shifts occur in the voxels adjacent to the vein, that is, rA = a + w,
where w is the width of a voxel. Substitution of these values into (5.1) results
in a

a+w = 0.37. The minimum vein radius required to produce a frequency shift
large enough to cause a one voxel spatial shift of protons at position

�
rA, p

2
�
, and

therefore substantially affect the magnitude intensity, is Rmin = a
w = 0.58, where

Rmin is a fraction of the voxel width.
SWI is calculated voxel-wise from the magnitude and phase data as

S (v) = r (v) F (v)n (5.3)
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where S (v) is the intensity in the SWI image of voxel v, r (v) is the magnitude of
the voxel, n is an exponent, typically chosen as n = 4 [1], and F (v) is the phase
mask. The positive phase mask is defined as

F+ (v) =

8
><

>:

1, f (v) < 0

p�f(v)
p , f (v) � 0

(5.4)

and the negative phase mask is defined as

F� (v) =

8
><

>:

p+f(v)
p , f (v)  0

1, f (v) > 0
(5.5)

where f (v) is the phase intensity of the voxel. A negative shift will occur in the
phase of voxels containing veins provided the spatial resolution in the direction of
the main B field is lower than the resolutions in the transverse plane [7]. Although
the shift may be visually imperceptible in the phase image, the SWI method is
successful at increasing the visibility of veins of subvoxel diameter. However, the
attenuation in the magnitude image due to veins parallel to the main B field and
having radius larger than Rmin is not addressed by SWI. This signal loss in voxels
surrounding the veins results in blurred vessel edges and a widened appearance
of veins. Without correction of the attenuation, overestimation of vessel width will
occur.

5.2 method

Figure 14: Comparison of (blue) SWI phase mask, F4
�, and (red) sigmoid-SWI phase mask,

FS.

Our proposed modified phase mask, FS (v), compensates for the attenuation of
the magnitude surrounding large veins while maintaining the general contrast of
conventional SWI. This is achieved by applying a sigmoid filter to voxels whose
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phase is less than zero and/or whose magnitude is less than the local gaussian
average of non-brain voxels:

FS (v) =

8
><

>:

2
1+e�kf(v) , f (v)  0 or r (v) < rt (v)

1 , otherwise
(5.6)

where k = 2.15 is a constant chosen such that FS simulates F4
� when f (v)  0

(Fig. 14). rt (v) is the local average intensity of brain voxels in the magnitude data,
calculated as

rt (v) =
✓
(r · M) ⇤ G

M ⇤ G

◆

v
(5.7)

where r is the magnitude map, M is a brain/non-brain mask where the value
0 indicates non-brain and 1 indicates brain, G is a Gaussian window kernel, ·
indicates voxel-wise multiplication and ⇤ indicates the convolution operation. The
modified phase mask has a similar attenuation profile to the F4

� when phase is
negative, but demonstrates amplification properties when phase is positive and
the magnitude is below rt (Fig. 14).

5.2.1 Experimental data

MRI data of a healthy male volunteer (age 27) was acquired on a 7T Siemens sys-
tem with an 8 channel transmit-receive head coil (Neuroscience Research Institute,
Incheon, South Korea). Axial T2*-weighted gradient echo (GRE) images were ac-
quired with TE = 21.6 ms, TR = 750 ms, FA = 30

�, bandwidth = 30 Hz per pixel,
slice thickness = 2mm, FOV = 256 ⇥ 224 mm2 , matrix size = 1024 ⇥ 896, spatial
resolution was 0.25 ⇥ 0.25 ⇥ 2 mm3, a total of 17 slices and total scan time of 11.5
min. Magnitude and wrapped phase data were reconstructed using the optimised
complex reconstruction method [8]. Phase was unwrapped using PhUN [9] and
background field removed using a spatially dependent filtering method (Chapter
4 and [10]). The Gaussian window kernel in (5.7) was set to 50 voxels wide with a
standard deviation of 10 voxels. The brain/non-brain mask was calculated using
active-snake contours [11].

Line profiles from the magnitude, phase, SWI, and sigmoid-SWI image were
taken from three regions of interest (ROI) containing vessels oriented perpendic-
ular to the main field. True vessel boundaries were localised at the transitions
between positive and negative phase. In the SWI and sigmoid-SWI image, the in-
tensity mean along the line profiles was calculated, excluding voxels designated
as vessels in the phase profile. The apparent vessel boundaries in the SWI and
sigmoid-SWI were then localised at the transitions below and above their respect-
ive means.
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5.3 results and discussion

The effects of the high field strength on magnitude and phase intensity surround-
ing large veins is visible in the acquired data (Fig 15a and 15b). The magnitude
image demonstrates attenuation in voxels immediately surrounding large veins
that are oriented perpendicular to the main magnetic field, while the phase im-
age demonstrates higher phase values surrounding these veins, as seen in the line
profiles in Fig. 16.

The true vessel width, as derived from the phase, is 3 voxels for the yellow ROI
and 4 voxels for the blue ROI (red vertical lines, Fig. 16). The estimation of the
vessel width assumes that phase values within the voxel will be negative and im-

(a) (b)

(c) (d)

Figure 15: (a) Magnitude, (b) phase (in rads), (c) SWI and (d) sigmoid-SWI. ROIs are out-
lined in yellow, blue and pink. The main magnetic field is directed out of the
page.
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(a) (b)

Figure 16: Line profile comparisons for the (a) yellow ROI and (b) blue ROI outlined in
Fig. 15. Line profiles are shown for (M) magnitude, (P) phase, SWI, and (S-SWI)
sigmoid-SWI. Red vertical lines indicate the true boundary of the vessel, as de-
lineated by phase information. Arrows in the line profiles indicate vessel width,
derived as positions where the intensity crosses zero in the phase image and
the mean intensity outside the vein in the SWI and sigmoid-SWI, as indicated
by the vertical positioning of the arrows.

mediately outside the voxel will be positive, a result of the susceptibility effects
described by (5.1). The estimation does not take into account partial volume ef-
fects which are difficult to model, due to the quadratic nature of the change in B
field, the non-linearity of phase averaging, the anisotropy of the voxel dimensions
and the unknown positioning of the vessel with respects to the voxel limits. Nev-
ertheless, it is reasonable to assume the vessel border will occur within the region
comprising adjacent positive and negative phase voxels.

The SWI image (Fig 15c) demonstrates attenuated values immediately outside
the veins. The line profiles (Fig. 16) demonstrate weaker vessel edges compared to
the phase profile. Estimation of the boundary of the vessels from the SWI data is
complicated by these gradients. Venography derived from SWI employ minimum
intensity projection (mIP) techniques under the assumption that vein voxels have
lower intensities than non-venous voxels. A similar assumption is made in this
chapter for localising the boundary of the vessels: vein voxels are assumed to have
an intensity below the mean of non-venous voxels. Using this assumption, vessel
widths of 5 and 7 voxels are derived for the yellow and blue ROIs, respectively
(Fig 16, green arrows), and are 2 and 3 voxels greater than the phase-derived
vessel widths.

The sigmoid-SWI image (Fig 15d) is overall similar to the SWI. However, on
closer examination, the sigmoid-SWI produces more accurate vessel delineation,
as follows. The sigmoid-SWI line profiles (Fig. 16) have steeper gradients than the
SWI profiles and corrected vessel widths are 3 and 4 voxels for the yellow and
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(a) (b)

Figure 17: Comparison of (a) sigmoid-SWI using threshold, rt, and (b) sigmoid-SWI with
no thresholding (i.e. rt = •)

blue ROIs, respectively (Fig 16, purple arrows), in agreement with vessel widths
derived from the phase.

The implementation of the local average threshold, rt, ensures that the sigmoid-
SWI image maintains the general contrast of SWI. Omitting the threshold and
applying the sigmoid filter over all voxels results in intensity increases in voxels
with positive phase (Fig 17). These high intensity areas suggest changes in the
structure or composition of the tissue; however, they are a result of the dipolar
nature of phase. Inclusion of the threshold avoids these misleading artefacts and
ensures recognisable contrast akin to conventional SWI.

The effectiveness of sigmoid-SWI is limited in situations where the absolute
change in B field is large enough that phase differences greater than p occur
between adjacent voxels. An example of this is demonstrated in Fig. 18. In the
raw phase data, these shifts wrap to produce a phase difference less than p (light
blue arrows), thus obscuring the true location of the large phase difference. De-
termining the positioning of these shifts is one of the difficulties faced by phase
unwrapping algorithms. Information can sometimes be gathered from the mag-
nitude, where an assumption is made that the structures that have differing mag-
netic susceptibility properties also have different relaxation properties, and their
boundaries can therefore be determined by changes in magnitude intensity. This
assumption is normally valid in the case of veins bordering grey or white matter,
as the T⇤

2 contrast has been demonstrated to increase with higher field strengths
[4]. However, if the changes in the B field are large enough, the magnitude signal
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Figure 18: Line profiles for the pink ROI in Fig 15. The (M) magnitude image shows low
signal and SNR in the vicinity of the large vein. The (Praw) raw phase image is
wrapped such that true phase gradients greater than p appear as small phase
shifts (light blue arrows). The determination of the location of these gradients
(red arrows) in the (P) unwrapped phase image dictates the vessel boundaries
and directly affects the results in the (SWI) susceptibility-weighted image and
the (S-SWI) sigmoid-SWI image.

and signal-to-noise ratio (SNR) can decrease to a level where structural informa-
tion is indistinguishable from noise and the assumption is no longer valid, as is
demonstrated in Fig. 18. In this example, the estimated location of the large phase
gradients and thus the vessel width cannot be validated, given the low magnitude
signal. The estimation results in zero intensity voxels in the SWI and sigmoid-SWI
where the vessel is deemed to be located. Non-vessel voxels located near the vessel
boundary are attenuated in the SWI image and demonstrate amplified intensity
in the sigmoid-SWI image. Since the magnitude intensity and SNR of these voxels
is very low, the sigmoid-SWI method has amplified the noise. Translation of the
vessel boundaries from the unwrapped phase to the sigmoid-SWI image still oc-
curs, and therefore the effectiveness of the sigmoid-SWI method in delineating the
vessels in these situations relies on the accuracy of the phase unwrapping method
used.

5.4 conclusions and future works

The results in this chapter have demonstrated that while SWI clearly shows the
location of veins, the vein boundaries are blurred in larger vessels due to the atten-
uation in the magnitude image. The proposed sigmoid-SWI technique successfully
corrects the delineation of the veins, while preserving SWI values within the ves-
sel.
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6
O P T I M I S E D C O N T R A S T I M A G E S

enhanced image contrast from mri magnitude and phase data

While several studies have explained and quantified biophysical mechanisms
of magnitude and phase image contrast [1, 2], the combination of the magnitude
and phase information, forming a single image volume with increased contrast,
has been largely the purview of Susceptibility Weighted Imaging (SWI) [3, 4, 5].
The popularity of SWI [6, 7, 8, 9, 10, 11] and its inclusion in clinical studies is
due to its simplicity, and its ability to enhance vasculature while not losing mag-
nitude contrast. Variations on SWI have been proposed in the literature, such as
the method proposed by Abduljalil et al[12] that utilises both negative and posit-
ive phase intensities in mask creation. The underlying fact remains, however, that
SWI and its variants are heuristic schemes, rather than algorithms that are the res-
ult of a mathematically constructed optimisation able to guarantee desired image
properties.

This chapter presents the Optimised Contrast Image (OCI) method, which pro-
duces an image volume with optimised tissue contrast, based on the distribution
of voxel intensities in the magnitude-phase domain. The OCI method is based on
a Gaussian mixture model classification of tissue classes, which weights the pro-
jection of magnitude-phase intensity vectors onto an optimised image projection
axis. A tuning parameter in the OCI method enables a variety of contrast to be pro-
duced, from images with intra-class contrast emphasised, to those with enhanced
inter-class contrast. The OCI method is compared to positive and negative mask
SWI and an adaptation of Abduljalil’s method, in application to 3T and 7T cortical
sections. The results presented demonstrate the flexibility of OCI in producing
improved contrast and preservation of structural detail from the magnitude and
phase images.
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6.1 theory

6.1.1 The projection framework for magnitude-phase combination

Prior to presenting details of the Optimised Contrast Image method, we define
a projection framework that formalises notions of image formation from two-
dimensional data, and which will assist comparison between methods.

Let r denote magnitude, f denote phase, and v =
⇥ r

f

⇤
the two-dimensional

intensity vector. A projection maps v onto a given axis; the magnitude image is
a projection of v onto the magnitude axis, and similarly the phase image is the
projection of v onto the phase axis. The projection axis need not be restricted to
either the magnitude or phase axis however, but can be a line in any direction.
Let the unit vector û denote the projection axis that makes an angle qû with the
magnitude axis,

û =

2

4cos qû

sin qû

3

5 .

Projection of a two-dimensional data vector, v, onto axis û results in projected
image intensity v · û, where · denotes the dot product of two vectors.

The reduction of magnitude and phase data to a single image intensity dimen-
sion can be more than a straight-forward projection. A transformation, T, may
remap vectors v prior to projection,

T

0

@

2

4r

f

3

5

1

A =

2

4r0

f0

3

5 .

Let s : R2 ! R denote the complete mapping associated with transformation
and projection (see Fig. 19),

s(v; T, û) = T(v) · û.

Trivially, for magnitude and phase images,
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Figure 19: The projection framework, denoting the transformation, T, and projection onto
axis û of the two-dimensional data vector v.

6.1.2 The Optimised Contrast Image method

The Optimised Contrast Image (OCI) method is an algorithm that determines an
optimised projection axis, ûoci, and transformation, Toci, for the projection from
complex-valued MRI signal intensities to scalar-valued image intensities, such
that contrast is maximised in the output image. Contrast can be selected to be
within tissue types, between tissue types or a weighted combination of the two.
The OCI procedure is based on a bivariate Gaussian mixture model (GMM) classi-
fication of the magnitude-phase intensity distribution into a pre-selected N tissue
classes defined by mean vectors, F = {µ1, . . . , µN}, and corresponding covariance
matrices, Y = {S1, . . . , SN}. The classes are ordered by mean magnitude intensity
such that r1  r2  ...  rN (see Fig. 20).

In projection framework notation, the OCI method is defined by

s(v; Toci, ûoci) = Toci(v) · ûoci, (6.1)

Toci(v) = v +
N

Â
k=1

pk(v) ||µk � µk,oci|| ûoci. (6.2)

Here pk(v) is the probability (normalised likelihood) of the intensity vector, v,
belonging to the kth mixture class. The optimised projection axis, ûoci, and shifted
class mean vectors, Foci = {µ1,oci, . . . , µN,oci}, are determined via optimisation of a
cost function that weights intra- and inter-class contrast in the resultant image,

J(a, û, F, Y) = aJinter(û, F, Y) + (1 � a)Jintra(û, F, Y), (6.3)

via a tuning parameter, 0  a  1.
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Figure 20: The OCI method.

Before defining the contrast cost functions, Jinter and Jintra, definitions of ellipse
shadow functions and associated measures are required. Let Ek denote the covari-
ance ellipse formed by the kth GMM tissue class that is centred at µk, with extent
defined by two standard deviations of the covariance matrix Sk. We firstly define
the shadow function, SE(r, û, µk, Sk), to be the indicator function formed by the
perpendicular projection of Ek onto the axis û (see Fig. 20a),

SE(r,û, µk, Sk) (6.4)

4
=

8
>>><

>>>:

1, if 9c : r

2

4 cos qû

sin qû

3

5+ c

2

4 sin qû

cos qû

3

5 2 Ek

0, otherwise

.

The length of the kth shadow function is given by

lSE(û, µk, Sk)
4
= arg max

r

h
SE(r, û, µk, Sk) = 1

i

� arg min
r

h
SE(r, û, µk, Sk) = 1

i
, (6.5)

and can be mathematically calculated by considering an ellipse centred at the
origin with axis lengths a and b and rotated an angle q from the magnitude axis,
where

a = 2
p

l1, b = 2
p

l2, q = \ê1.
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l1 and l2 are the eigenvalues of the covariance matrix S and ê1 is the eigenvector
associated with l1. The points, Q, on the ellipse are given by

Q =

2

4cos q � sin q

sin q cos q

3

5

2

4a cos t

b sin t

3

5 , 0  t < 2p.

The distance, L, of the projection of the vector from the origin to the point Q onto
û is given by

L = Q · û =

2

4cos q � sin q

sin q cos q

3

5

2

4a cos t

b sin t

3

5 ·

2

4cos qû

sin qû

3

5 (6.6)

= a cos t cos(qû � q) + b sin t sin(qû � q). (6.7)

lSE is given by twice Lmax, the maximum of the magnitude of L, which occurs
when dL

dt = 0.

dL
dt

= �a cos(qû � q) sin t + b sin(qû � q) cos t

= 0
sin t
cos t

=
b sin(qû � q)
a cos(qû � q)

t = tan�1 b sin(qû � q)
a cos(qû � q)

. (6.8)

Substituting (6.8) into (6.6) gives

Lmax =

����a cos(qû � q) cos
✓

tan�1 b sin(qû � q)
a cos(qû � q)

◆

+b sin(qû � q) sin
✓

tan�1 b sin(qû � q)
a cos(qû � q)

◆���� (6.9)

Using the trigonometric identities

cos
⇣

tan�1(x)
⌘

=
1p

1 + x2
, and (6.10)

sin
⇣

tan�1(x)
⌘

=
xp

1 + x2
(6.11)

(6.9) becomes

lSE = 2

��������

a2 cos2(qû � q) + b2 sin2(qû � q)

a cos(qû � q)

r
1 + b2 sin2(qû�q)

a2 cos2(qû�q)

��������

= 2

������
a cos(qû � q)

s

1 +
b2 sin2(qû � q)
a2 cos2(qû � q)

������
. (6.12)
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The range spanned by the union of all ellipse shadow functions is

rSE(û, F, Y)
4
= arg max

r

h N

Â
k=1

SE(r, û, µk, Sk) 6= 0
i

� arg min
r

h N

Â
k=1

SE(r, û, µk, Sk) 6= 0
i
. (6.13)

Similarly, we define the shadow overlap function, SO(r, û, F, Y), to be the in-
dicator function formed by intersection of the ellipse shadow functions of two or
more ellipses (see Fig. 20b),

SO(r,û, F, Y)

4
=

8
>>><

>>>:

1, if 9k 6= k0 : SE(r, û, µk, Sk) =

SE(r, û, µk0 , Sk0) = 1

0, otherwise

(6.14)

The combined length of the disjoint intervals comprising the overlap shadow is
denoted by lSO(û, F, Y).

The lengths of the ellipse shadows gives a measure of intra-class contrast, as the
width of the ellipse shadows determines the intensity variability within a tissue
class. Similarly, the length of the overlap shadow provides a measure of inter-class
contrast; less overlap between ellipse shadows results in greater contrast between
tissue classes. Thus we define the intra- and inter-class contrast cost functions to
be

Jintra(û, F, Y)
4
=

N
Â

k=1
lSE(û, µk, Sk)

rSE(û, F, Y)
, (6.15)

Jinter(û, F, Y)
4
=

lSO(û, F, Y)

rSE(û, F, Y)
. (6.16)

The optimisation is solved in a two-step procedure. Firstly, the optimal projec-
tion axis is calculated such that the intra-class contrast is maximised,

ûoci = arg max
û

Jintra(û, F, Y) (6.17)

s.t. µk = µk0 8k, k0 = 1, . . . , N (6.18)
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where the constraints align the means of all classes. Secondly, the optimal mean
shifts are determined by

Foci = arg max
F

J(ûoci, F, Y) (6.19)

s.t. µk+1,oci · ûoci � lSE(ûoci, µk,oci, Sk)

� lSE(ûoci, µk+1,oci, Sk+1)

 µk,oci · ûoci  µk+1,oci · ûoci for k = 1, , ..., N � 1.

The constraints ensure that the ordering of classes in the magnitude direction is
retained and that adjacent classes are not shifted beyond a maximum separation
between their means, defined to be the sum of two standard deviations for both
classes. Note that in order for the OCI algorithm to be robust to outlier intensities,
the magnitude and phase data are scaled such that the mean plus or minus two
standard deviations maps to the interval [0, 1].The OCI procedure is summarised
in the following three steps.

Algorithm 6.1 Optimised Contrast Image algorithm

1. Estimate N-class Gaussian mixture model fit to magnitude-phase data.
Output: F, Y, pk(v).

2. Solve contrast optimisation (6.17)–(6.19) for a chosen a.
Output: Foci, ûoci.

3. Project magnitude-phase data onto ûoci via (6.1)–(6.2).
Output: Optimised Contrast Image

6.1.3 Susceptibility Weighted Imaging (SWI)

In the projection framework, SWI consists of a non-linear intensity transformation,
according to either a negative mask,

T�
swi(v) =

8
>>>>>><

>>>>>>:

2

4r
⇣

p+f
p

⌘n

f

3

5 , f < 0

2

4r

f

3

5 , f � 0



84 optimised contrast images

   
 

 

 

 

 

 

Phase, φ

f sw
i(φ

)n

 

 

⇡ 0 ⇡
0

0.2

0.4

0.6

0.8

1

n=1

n=2

n=3

n=4

(a)

   
 

 

 

 

Phase, φ

f d
m

m
(φ

)n

 

 

⇡ 0 ⇡
-50

0

50

100

(b)

   
 

 

 

 

 

 

Phase, φ

f d
m

m
(φ

)n

 

 

⇡ 0 ⇡
0

0.5

1

(c)

Figure 21: Effect of the mask on magnitude intensities for (a) SWI, (b) DMM without
normalisation of the phase and (c) DMM with normalisation of the phase.

or a positive mask,

T+
swi(v) =

8
>>>>>><

>>>>>>:

2

4r

f

3

5 , f < 0

2

4r
⇣

p�f
p

⌘n

f

3

5 , f � 0

SWI projects image intensities onto the magnitude axis, thus

ûswi =

2

41

0

3

5 .

6.1.4 Direct Multiplication Method (DMM)

Contrast information in one half of the phase spectrum is always omitted in SWI:
the positive phase values when negative masks are used, and vice-versa. Abduljalil
et al. [12] proposed a method similar to SWI which utilises the full phase spectrum,
with projection transformation and axis given by

Tabd(v) =

2

4r
⇣

f+p
2p

⌘n

f

3

5 ,

ûabd =

2

41

0

3

5 .

The use of the phase image with no further manipulation presents a problem,
however. If the number of times the mask is applied, n, is odd, voxels with negative
phase values will be severely attenuated (Fig 21b). If n is even, the effect will
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always be accentuation rather than attenuation, and there will be no distinction
made between negative and positive phase angles.

We propose an adaptation of the method, which will be referred to as the Direct
Multiplication Method (DMM). The phase is normalised by translating and scaling
the range [�p, p] to the range [0, 1] (Fig 21c), thus eliminating the problem present
in the original method. The optimal value, n⇤, for voxel attenuation producing
image contrast is dependent on the range and distribution of values in the phase
image. For a range of normalised phase values [fmin, fmax], the optimal n occurs
when the difference in the corresponding magnitude transformation component
is greatest and n is restricted to values greater or equal to 1. Let

g(n) =
✓

fmax + p

2p

◆n
�
✓

fmin + p

2p

◆n
.

The optimal n is found by turning point analysis,

dg(n)
dn

= ln
✓

fmax + p

2p

◆✓
fmax + p

2p

◆n

� ln
✓

fmin + p

2p

◆✓
fmin + p

2p

◆n
= 0,

giving a value of n⇤, not to be restricted to integer values,

n⇤ =

ln

 
ln( fmax+p

2p )
ln
⇣

fmin+p
2p

⌘

!

ln
⇣

fmin+p
fmax+p

⌘ .

6.2 methods

6.2.1 Data Acquisition

3T cortical phase and magnitude images of a healthy human volunteer were ac-
quired using a Siemens TIM Trio 3T system with a Siemens 12 channel Head
Matrix Coil (Siemens Medical Solutions, Erlangen, Germany) using the follow-
ing imaging parameters: axial 2D Gradient Recall Echo, T⇤

2 -weighted imaging
with TE = 45 ms, TR = 1000 ms, flip angle = 45�, slice thickness = 2.5 mm,
FOV = 240⇥ 180 mm2, image matrix size = 384⇥ 448. The magnitude image was
reconstructed using SENSE. The phase image was reconstructed using a phase
optimised SENSE method [13] and unwrapped using 2D complex filtering with a
standard deviation of 10 k-space voxels.

7T data of a healthy male volunteer (age 27) were acquired on a 7T Siemens sys-
tem (Siemens Medical Solutions, Erlangen, Germany) with an 8-channel transmit-
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receive head coil (Neuroscience Research Institute, Incheon, South Korea) using
the following parameters: axial 2D gradient echo (GRE), T⇤

2 -weighted imaging
with TE = 21.6 ms, TR = 750 ms, flip angle = 30�, bandwidth = 30 Hz per pixel,
slice thickness = 2 mm, FOV = 256 ⇥ 224 mm2, matrix size = 1024 ⇥ 896. Spatial
resolution was0.25 ⇥ 0.25 ⇥ 2 mm3. A total of 17 slices were acquired. The total
scan time was 11 min 30 s. The magnitude and phase images were reconstruc-
ted using the optimised complex reconstruction method [13]. The phase wraps
and background inhomogeneities were removed using 2D complex filtering with
a standard deviation of 10 k-space voxels.

6.2.2 Contrast quantification

Quantitative analysis of contrast was achieved by calculation of image intensity
ranges over selected line profiles through the images, and entropy calculation. All
image intensities were normalised to the range [0, 1]. Line profile voxel intensities
were normalised such that

s0(v) =
s(v)� min (s(v))

max (s(v))� min (s(v))

where min (s(v)) and max (s(v)) are the minimum and maximum intensities of
all voxels in the image.

Entropy, E, was calculated using

E = �
N

Â
i=1

p(xi) log2 p(xi)

where p(xi) is the histogram-based probability of the voxel intensity lying in the
interval [xi � dx

2 , xi +
dx
2 ) and dx = xi � xi�1. Outlier intensities above and below

three standard deviations of the mean are mapped to 1 and 0 respectively, and
background voxels are ignored.

6.3 results

6.3.1 3T images

Figure 22 presents the results applied to the 3T cortical slice. The magnitude im-
age shows distinct inter-class contrast (Fig. 22a), while the phase image displays
greater intra-class contrast (Fig. 22b). This visual evaluation is supported quantitat-
ively by the GMM classification (Fig. 22c), which demonstrates greater separation
of class means in the magnitude direction compared to the phase direction, but
larger standard deviations in the phase direction compared to the magnitude direc-
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tion. The GMM provided distinct classification of tissue classes (Fig. 22c-d), with
the 1st (green) class representing predominantly white matter (WM) voxels, the
2nd (red) class representing predominantly grey matter (GM) voxels and the 3rd
(light blue) class representing predominantly cerebrospinal fluid (CSF) voxels. The
4th (blue) class has a much larger standard deviation than the other classes and
represents not only background voxels, but voxels on the periphery of the brain
that have high magnitude intensity and/or very high or low phase intensities.
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Figure 22: Cortical slice at 3T: (a) magnitude image, (b) phase image, (c) 4-component
GMM ellipses indicating the covariance of each class, (d) classification of voxels
into tissue classes.
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A series of OCI results are presented in Fig. 23a-d for varying tuning parameter
a values. The effect of a on inter-class and intra-class contrast is observable in the
OCI images. As expected, high intra-class contrast is demonstrated at a=0, through
to high inter-class contrast image at a=1.

The large covariance of the 4th tissue class and outlying voxel intensities attrib-
uted to this class affected the overall contrast in the a = 0 image. A rescaling of
the a=0 OCI image (Fig. 23b), in which the full grey-scale spans the three standard
deviation intensity range, demonstrates the intricate detail contained in the image.
This OCI result resembles an inverted phase image, where the inversion is a result
of the constraint on class intensity ordering (6.19).
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Figure 23: OCI images: (a) a=0, (b) a=0 with the full grey-scale spanning the range defined
by µ ± 3s, (c) a=0.5, and (d) a=1.

The positive mask SWI image (Fig. 24a) demonstrates greater inter-class contrast,
particularly at tissue borders, compared to the negative mask SWI image (Fig. 24b),
the magnitude image (Fig 22a) and the phase image (Fig 22b). In comparison to
the OCI images, it is most similar to the a=1 image, although inter-class contrast is
greater in the OCI image. The DMM image (Fig. 24c) does not display significant
improvement in contrast compared to the magnitude image and is visually the
least effective method.
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Figure 24: SWI with (a) positive mask (n=4), (b) negative mask (n=4) and(c) DMM
(n=1.44).

Line profiles, taken across a several sulci (Fig. 25a-b), highlight the difference in
contrast between the magnitude, phase, positive mask SWI and OCI a=1 images
(Fig. 25c). The magnitude demonstrates larger intensity variation between GM and
WM regions compared to the phase. The SWI profile is similar to the magnitude
profile, with some diminution of the peak heights. OCI combines the contrast
profiles of the magnitude and phase. It has the largest inter-class variation of the
four profiles, demonstrates steep gradients at the GM/WM borders, maintains
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both the intra-class features of the phase profile and the high intensity peaks of
the magnitude profile.
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Figure 25: Line profiles from the 3T images. The rectangle in the (a) magnitude image
indicates the location of the line. (b) displays the sections of each image that
are plotted. The (c) plots show the profiles for the (M) magnitude, (P) phase, (S)
SWI positive mask and (O) a = 1 OCI.

OCI retains more information, as quantified by entropy (Table 3); the a = 1
OCI image returned the highest entropy value across all images. The OCI a = 0.5,
SWI and magnitude images have comparable entropies, varying by 1.6% of the
magnitude entropy. The entropy of the a = 0 OCI is 43% higher than that of
phase, implying that while the image does resemble the phase, information from
the magnitude has been incorporated. The DMM entropy is the second lowest and
the phase entropy is the lowest at 37.5% lower than the magnitude entropy.
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Table 3: Entropies for the 3T images.

Image Entropy
OCI a = 1 4.83

SWI+ 4.50

OCI a = 0.5 4.49

SWI� 4.46

magnitude 4.43

OCI a = 0 4.15

DMM 3.56

phase 2.77

A comparison of the histograms of voxels in each class (Fig. 26) illustrates the
increase in distances between the distribution means as a tends from 0 to 1. At
a = 0, the standard deviation of each class is narrow compared to the full intensity
range [0, 1], but wide when considered as a proportion of the standard deviation of
all voxels, a result of outlying voxels affecting the intensity range of the image. As
a tends towards 1, the standard deviation of each class decreases as a proportion of
the standard deviation of all voxels, indicating a reduction in intra-class contrast.
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Figure 26: Histograms depicting the separation of class distributions as a varies from (a)
0 to (b) 1 in the 3T OCI images.

6.3.2 7T images

The cortical 7T magnitude and phase images (Fig. 27) demonstrate different con-
trast patterns, with the phase image showing more detail than the magnitude
image. The magnitude image (Fig. 27b) demonstrates a small difference in intens-
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ity between GM and WM. The GM/WM border definition is poor, particularly
in the top half of the image. In contrast, the phase image (Fig. 27c) displays dis-
tinct GM/WM border definition which is not always observable in the magnitude
image. The venous structures are also more clearly visible in the phase image.
The GMM classification (Fig. 27d-e) resulted in a 1st (blue) class that predomin-
antly represents venous vessels but also low magnitude intensity GM voxels, 2nd
(green) and 3rd (red) classes representing WM and GM respectively, and the 4th
(cyan) class composed of CSF and high magnitude intensity WM voxels.
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Figure 27: Cortical section at 7T: (a) position of section, (b) magnitude image, (c) phase
image, (d) 4-component GMM ellipses indicating the covariance of each class,
(e) classification of voxels into tissue classes.

The OCI images (Fig 28) show increasing inter-class contrast as a tends towards
1. The a = 0 image demonstrates high intra-class contrast and resembles an in-
verted phase image with bright venous vessels in the GM, although the vessels
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in the WM in the lower left quadrant are not visible. As a tends towards 1, the
vessels in the GM become less prominent, while, at a = 0.5, the vessels in the WM
are visible. At a = 1, the GM/WM border in the top right quadrant becomes less
distinct than at lower a, however the detail in the lower half of the image becomes
clearer, with greater GM/WM contrast and more visible vessels in the WM. The
large venous vessel between the GM/GM border in the lower right quadrant is
visible in all OCI images, with the GM/CSF border also retaining visibility.
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Figure 28: OCI images at 7T: (a) a=0, (b) a=0.5, and (c) a=1.

The SWI images accentuate different features within the image. The positive
mask SWI (Fig. 29a) delineates tissue borders clearly and displays intensity con-
trast between the GM and WM. Veins and tissue borders are more visible in the
negative mask SWI (Fig. 29b) compared to the magnitude image (Fig 27b), al-
though the tissue borders lack distinct delineation. The voxels around and includ-
ing the large vessel between the GM surfaces are particularly attenuated in the
negative mask SWI. The low intensity voxels in the magnitude and phase images
combine to create a wide dark band that hides the edge profile visible in the
phase image (Fig 27c). In comparison to the contrast effects of the SWI method,
the DMM image (Fig. 29c) does not demonstrate significant improvement over the
magnitude or phase image.
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Figure 29: SWI with (a) positive mask (n=4), (b) negative mask (n=4) and (c) DMM
(n=1.43).
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Figure 30 displays line profiles across the large vessel in the lower right quadrant
of the images. The magnitude and phase profiles indicate a one voxel variation in
the location of the GM/CSF border, although the profiles are in agreement regard-
ing the positioning of the CSF/vein border. The delineation of the large vessel in
the OCI image retains not only the visibility of the vessel, but also the definition of
the GM/CSF border. In comparison positive mask SWI profile demonstrates that
the definition of the GM/CSF border around the large vessel is lost although the
vessel remains visible. The negative mask SWI profile indicates a GM/CSF border
corresponding to the magnitude image, while the contrast at the CSF/vein border
is lost.

Figure 30: Line profiles from the 7T images. The location of the line is indicated in the
(a) magnitude image and the relevant sections of each image are shown in
(b). The (c) plots show the profiles for the (M) magnitude, (P) phase, (S-) SWI
negative mask, (S+) SWI positive mask and (O) a = 1 OCI. The vertical lines
represent the magnitude (solid) and phase (dashed) CSF/GM boundary, and
the magnitude (dash-dotted) and phase (dotted) CSF/vessel boundary.

The entropy (Table 4) of the phase image is 33% lower than that of the mag-
nitude. All OCI images have greater entropies than the magnitude, ranging from
1.1% higher at a = 0 to 10.1% higher at a = 1, the highest of all the image entrop-
ies. The entropies of the negative and positive mask SWI are 3.8% and 1.6% higher
than the magnitude. The DMM has an entropy 18.1% lower than the magnitude.
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Table 4: Entropies for the 7T images.

Image Entropy
OCI a = 1 6.74

SWI� 6.35

OCI a = 0.5 6.30

SWI+ 6.22

OCI a = 0 6.19

magnitude 6.12

DMM 5.01

phase 4.08

The histograms of classified voxel intensities (Fig. 31) demonstrate a widen-
ing distance between class means and narrowing of the standard deviations with
increasing a, indicating that the inter-class contrast increases and the intra-class
contrast reduces as a increase.
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Figure 31: Histograms depicting the separation of class distributions as a varies from (a)
0 to (b) 1 in the 7T OCI images.

6.4 discussion

The OCI method is a classification-based contrast enhancement method based on
a Gaussian mixture model representation of the bivariate image data. We have
demonstrated that the OCI method is flexible and effective in combining phase
and magnitude information, producing images with greater intra- and inter-class
contrast and clearer border definition compared to the DMM and SWI methods.
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The success of the OCI method relies on the representation of the data by a
GMM. Each class in the GMM should be representative of one specific structure
or tissue type, therefore the number of classes in the model should equal the num-
ber of distinct structures. Modelling of too few classes will restrict the methods
ability to enhance inter-class contrast at high a, while too many classes will in-
crease the methods sensitivity to noisy voxels. The covariances of the individual
Gaussian distributions greatly influence the ability of the OCI method to enhance
the contrast in the image. If the covariance of one class is considerably larger than
the other classes, it will dominate the grey-scale range. At low a, this would cause
a reduction in the intensity range of the other classes relative to the full extent of
the grey-scale, thus reducing intra-class contrast in the smaller classes. The dom-
inance of the large class also increases the sensitivity of the overall image contrast
to outlying voxel intensities. At high a, the large class will continue to dominate
the full contrast range and will result in reduced inter-class contrast for smaller
adjacent classes. The remaining parameters combine with the covariance to the
determine the weighting of class shifts attributed to each voxel. If the GMM para-
meters result in the majority of voxels being predominantly weighted to the same
class, then the OCI method will have little effect in enhancing either intra-class or
inter-class contrast.

The tuning parameter a weights the intra- and inter-class contrasts in the image.
At low a, intra-class contrast dominates over inter-class contrast. Given the tend-
ency in MRI for the phase image to have greater intra-class contrast than inter-class
contrast compared to the magnitude image, the a = 0 OCI is expected to resemble
the phase image, which has been observed in our results. As a tends towards 1,
greater emphasis is placed on inter-class contrast and the results indicate an in-
creased contrast between the different classes. At a = 1, the optimisation is no
longer dependent on the intra-class contrast. Without the constraint placed on the
separation of shifted means in (6.19), the shifts could tend towards •, resulting in
a highly quantised image.

The OCI method inherently reduces noise as a increases. The weighting of shifts
avoids the amplification of noisy voxels that can result from hard classification.
Furthermore, the separation of classes as a tends towards 1 effectively reduces
the standard deviation of the class relative to the standard deviation of all voxels,
thus reducing the noise within each class. Nevertheless, the OCI method does not
seek to distinguish between noise and ‘true’ signal intensity variation. Therefore,
given data where the majority of intensity variation is attributable to noise, the OCI
method would treat the variation as intra-class contrast and effect an amplification
of the noise, particularly at low a.

The OCI method performs well compared to other methods at combining mag-
nitude and phase data to produce an optimised contrast image. The entropies of
the SWI and higher a OCI images are similar and higher than both the magnitude
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and phase images, implying that both methods successfully combine information
from the magnitude and phase to produce images with greater overall contrast.
The entropy, however, is not dependent on the spatial variation of intensities and
therefore does not give indication of the level of intra-class contrast or delineation
of class borders. These are apparent in the line profiles, which indicate a greater
degree of intra-class contrast and clearer delineation between classes in the higher
a OCI images compared to all other images.

The OCI method demonstrates applicability in GM/WM contrast enhancement
and in venography. Of the three SWI-based methods, DMM is the least successful
at producing an image with contrast that is enhanced over the magnitude or the
phase image. The positive mask method is the most successful of the SWI methods
at enhancing GM/WM contrast, while the negative mask method demonstrates its
applicability in the area of venography.

The contrast pattern in the positive mask SWI images are similar to the con-
trast patterns in the OCI a = 1 images. Both methods prove useful in enhancing
GM/WM tissue contrast. At 3T, distinct contrast is apparent between tissue classes
in the magnitude image. The GM/WM contrast is reflected in both the positive
mask SWI and OCI images, although the OCI images demonstrate clearer edge-
definition and enhancement of CSF, which appears attenuated in the positive mask
SWI image. At 7T, the tissue contrast enhancement is again apparent, although to
a lesser degree than at 3T due to the low contrast in the original magnitude data.

The negative mask SWI method produced images with distinctly different con-
trast patterns to the OCI. The overall effectiveness of SWI as a venography method
is demonstrated in the 7T images, with small venous vessels appearing throughout
the image. Similar vessels appear in the OCI a = 1 image, although the pattern
of vessels differs. In situations where low magnitude intensity exists alongside
low phase intensity, the results have demonstrated that discrepancies in border
definition can occur. Using negative phase as a measure of the presence of ven-
ous vessels, a notion that forms the basis of the SWI method, OCI is shown in
the 7T data to faithfully represent the vessel width, while the negative mask SWI
overestimates the width of the vessel.

6.5 conclusion

The ability of the proposed OCI method to optimise for a chosen combination of
intra- and inter-class contrast makes it a valuable tool for visualising structural
details in MRI data. The method is classification-based and can be compared to a
segmentation method based on bivariate classification. However, the projection of
voxels onto an optimised axis and the soft classification of voxels implemented by
the weighted shifts allows for the production of an image which not only depicts
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the segmentation, but also retains the localised detail in the original data. We have
demonstrated the improvement in contrast and edge definition provided by OCI
over three variants of SWI.
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7
D I F F U S I O N - G U I D E D Q U A N T I TAT I V E S U S C E P T I B I L I T Y
M A P P I N G

In recent years, there has been an increased interest in the area of quantitative sus-
ceptibility mapping (QSM). Magnetic susceptibility is a unit-less constant which
describes the rate at which magnetisation occurs in matter, such as biological tis-
sue, in response to an applied magnetic field. This magnetisation presents as per-
turbations in the B field which are proportional to phase intensities in MR phase
data. Having reliable estimates of susceptibility can help in the analysis of the
chemical composition of tissues. In particular, the ability to quantify iron content
is of clinical importance, as changes in iron deposition within specific areas of the
brain are known to be biomarkers of neurodegenerative diseases, such as Freid-
rich’s Ataxia, Alzheimer’s and Parkinson’s diseases [1, 2].

7.1 background and theory

Beginning in the 1980s, attempts have been made to quantify susceptibility from
MRI data. Contrast in phase images were shown to be related to susceptibility
differences associated with large abnormal pathologies, such as haematomas and
tumours [3, 4, 5]. During the 1990s, methods such as finite elements and Fourier-
based convolution were used to model the observed magnetic B field perturbations
induced by arbitrarily-shaped objects of uniform susceptibility [6, 7, 8, 9, 10] and
arbitrary susceptibility distributions [11, 12, 13, 14]. In 2004, Li and Leigh [15]
demonstrated that the inverse could be achieved, where an arbitrary susceptibility
distribution could be estimated from known B field perturbation data by solving
a large linear system using a singular value decomposition method. However, the
scaling of the method was limited due to exponential increase in computation and
memory requirements.

Advances in high field MR technology have led to increased phase contrast [16],
from which field perturbation maps with intricate structural detail can be calcu-
lated. With this increase contrast, spherical model-based susceptibility derivation
has prevailed. Several approaches to the problem have been proposed: threshol-
ded k-space kernel methods [17, 18, 19], calculation of susceptibility through
multiple orientation sampling (COSMOS) [20] and regularisation-based methods
[21, 22, 23, 24].

103



104 diffusion-guided quantitative susceptibility mapping

The primary reason for the variety of approaches to the QSM problem is the
ill-posed nature of the inverse of the linear system:

DB (r) = Dc (r)⌦ FS (r) (7.1)

where DB (r) is the change in B field at voxel r (the field map), Dc is the change
in susceptibility and FS is the spherical model kernel based on the change in B
induced by a sphere. The Fourier-based convolution QSM methods [17, 18, 19,
20, 21, 22, 23, 24] employ the convolution theorem to reduce the computational
expense of the problem:

DB (r) = FT�1
⇣
fDc (k) · eFS (k)

⌘
(7.2)

where eX denotes the Fourier transform of the function X, FT�1 is the inverse Four-
ier transform and · represents voxel-wise multiplication. The Fourier transform of
FS (r) is commonly applied using the continuous Fourier transform, giving

eFS (k) =
1
3
� k2

z
k2

x + k2
y + k2

z
(7.3)

where k =
�
kx, ky, kz

�
are cartesian coordinates in the Fourier domain. In 3D k-

space, there exists two cones where eFS (k) = 0, defined when k2
z

k2
x+k2

y+k2
z
= 1

3 (Fig.

32). From (7.2), one can see that where eFS (k) = 0, the value fDc (k) can take on any
value without affecting DB (r). As such, there are an infinite number of solutions
to (7.2) and thus the linear system is ill-posed.

The data, DB, and the estimated susceptibility map, Dc, are discretised repres-
entations of real world values. To compute the voxel-wise multiplication in (7.2),
eFS (k) is discretised by evaluation at the k coordinates that correspond to the array
representation of fDc. Implicit in this is the assumption that either the discretised
continuous Fourier transform of FS (r) approximates the discrete Fourier trans-
form of FS (r), or that fDc (k) is the discretised continuous Fourier transform of
Dc (r) and the inverse discrete Fourier transform correctly inverts a continuous
Fourier transform. Analytically, this holds true as the array dimensions approach
infinity. However, QSM is a computational method and thus the array dimensions
never approach infinity. As such, error is introduced by this mismatch of Fourier
transforms, which could affect results, given the ill-posed nature of the system.

The thresholded k-space division (TKD) method [17] seeks to overcome the ill-
posed nature of the system by placing a minimum threshold on

���eFS (k)
���. Any
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Figure 32: Zero cones in k-space spherical model kernel.

absolute value below this threshold is set to the threshold value. Eq. (7.2) is then
rearranged into a division,

Dc (r) = DFT�1

 
fDB (k)
eFS,thr (k)

!
, (7.4)

using the thresholded k-space kernel, eFS,thr (k). DFT�1 refers to the inverse discrete
fourier transform. This method has a demonstrated ability to resolve susceptibil-
ity values from field maps. However the susceptibility values are sensitive to the
threshold and the maps are often marked by cross-shaped artefacts [17]. A similar
method sets fDB (k) = 0, at points where

���eFS (k)
��� is below a threshold [19]. The res-

ults also demonstrated cross-shaped artefacts when applied to a dataset acquired
at a single orientation. Li et al [18] proposed a thresholded k-space method where
the approximate first-order derivative of (7.1),

fDB (k) +
2
⇣

k2
x + k2

y

⌘
kz

⇣
k2

x + k2
y + k2

z

⌘2 · fDc (k) ⇡ 0, (7.5)

is applied when
���eFS (k)

��� falls below the threshold. This method demonstrated
marked improvement in avoiding the cross-shaped artefacts apparent in the
thresholded method. However, it was also noted that the derived susceptibility
values in white matter were highly dependent on the orientation of the white
matter microstructure relative to the main B field direction.

An alternative to thresholding is to define a cost function based on the linear
system and solve for Dc by minimising the cost. The cost function involves a reg-
ularisation term, such as the L1 or L2-norm of Dc [21]. The Morphology Enabled
Dipole Inversion (MEDI) method [22, 23] employs a regularisation term that adds
a penalty to high gradients in the susceptibility map where the gradient in the
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magnitude is low. The cost function, formulated in matrix-vector representation,
is

l kW0 (DB � FDSDØ)k2
2 + kW1r (DØ)k1 (7.6)

where k·k1 is the L1-norm, k·k2 is the L2-norm, W0 and W1 are weighting matrices,
r is the gradient operator and FDS is the matrix representation of the convolution
with FS. Although the notation is in matrix form, FDS is computed by employ-
ing the convolution theorem with the continuous Fourier transform of FS. l is a
parameter that controls the cost of the regularisation term kW1r (DØ)k1 relative
to kW0 (DB � FDSDØ)k2

2. W0 is defined as a diagonal matrix corresponding to a
binary mask such that

W0 =

8
><

>:

0, for a background voxel where Dc is known to be zero

1, for a foreground voxel.
(7.7)

W1 is defined as a diagonal matrix corresponding to a binary mask such that

W1 =

8
><

>:

0, |rr| > 5sBG

1, otherwise
(7.8)

where r is the MR magnitude data, |rr| is the magnitude of the gradient of r and
sBG is the standard deviation of the background noise in r.

Eq. (7.6) is minimised for a range of l values, and the chosen solution is that
which corresponds to

kW0 (DB � FDSDØ)k2
2 ⇡ # (7.9)

where # is less than the expected noise level. When l is too low, the system be-
comes under-regularised and cross-shaped artefacts appear in the susceptibility
maps. When l is too high, the system becomes over-regularised and the suscept-
ibility maps are over-smoothed [22].

The current gold standard method is the COSMOS method [20]. It requires three
field maps where the object being imaged is oriented at three different angles to
the main B field direction. By including the information from the three acquisi-
tions, the linear system becomes over-determined. Theoretically, the angles that
produce the most accurate susceptibility map are 0�, 60� and 120� [20]. These
angles are impractical for human scanning when imaging the head. However, smal-
ler angles of < 50� for back-front rotation and < 34� for left-right rotation have
been achieved [24]. The COSMOS susceptibility maps do not suffer from the cross-
shaped artefacts and have demonstrated relatively accurate susceptibility values
on a gadolinium phantom.
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All the methods described are based on a spherical model of the effects of sus-
ceptibility on the B field. He and Yablonskiy [25] have demonstrated, however,
that white matter does not conform to the spherical assumption and a cylindrical
model is more appropriate. Structurally, white matter consists of bundles of the
myelinated axons of neurons, long thin fibres that are intuitively better charac-
terised as cylinders than spheres. He and Yablonskiy considered the cylindrical
nature of white matter at the nanometre-scale, suggesting that incorporating a
cylindrical Lorentz cavity rather than the spherical Lorentz cavity into the formu-
lation of (7.3) would better explain the observed frequency differences between
white matter and grey matter. Lee et al [26] further investigated the susceptibil-
ity effects of white matter and concluded that anisotropic susceptibility is a more
appropriate model for the observed field perturbations. Recent research into the
effects of white matter microstructure on T⇤

2 relaxation support these findings,
where the orientation of white matter fibres to the main field were found to affect
phase and R⇤

2 (= 1/T⇤
2 ) [27, 28, 29]. These later findings, and the method proposed

in this chapter, consider the cylindrical effects on the micro- and millimetre scale.
To address the shortcomings of the spherical kernel in modelling the susceptib-

ility effects of white matter, we investigated the feasibility of a single acquisition
method that employs both the spherical and cylindrical models of susceptibility
effects. We present a proof-of-principle method that uses diffusion weighted ima-
ging to determine the direction of white matter fibres, applying the cylindrical
model to identified white matter voxels and the spherical model to all other voxels.
Since the method employs multiple kernels, the linear system is no longer a con-
volution and must therefore be solved in the spatial domain. The memory and
computational requirements associated with this approach presents an additional
challenge which we address using high performance computing and algorithmic
techniques.

7.2 method

7.2.1 Diffusion-guided quantitative susceptibility mapping

In our proposed method, we remove the assumption that the spherical model is
suitable for all voxels and apply a mix of cylindrical models with varying ori-
entations and the spherical model depending on the voxel tissue class. We can
therefore no longer apply the convolution theorem and solving for susceptibility
must be achieved in the spatial domain. The spatial domain problem is presented
as a large linear system

Ax = b (7.10)
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where A represents the superposition of the changes in flux density induced by
voxel-sized spheres and cylinders. Vectors x and b represent the susceptibility
map, Dc, and field map, DB, respectively. Voxel positions in the data matrix are
enumerated such that each row in x and b has a one-to-one correspondence with
a voxel position. The element Am,n, at row m and column n of A, describes the
effects on voxel m induced by a cylinder or sphere at voxel n.

Diffusion weighted imaging (DWI) is an MRI technique that exploits the thermal
motion, or diffusion, of water molecules to affect the contrast in acquired images.
In biological tissues, H1 nuclei are primarily bound within water molecules. The
diffusion of these molecules is restricted by their microstructural environment,
such as the axons of the neurons of which white matter is comprised. By applying
linear field gradients to cause dephasing and rephasing along a specific direction,
we can measure the amount of diffusion between the dephase and rephase along
that direction. Repeating this for multiple different directions provides the data to
calculate a tensor model of the diffusion characteristics at each voxel, known as
diffusion tensors.

The diffusion tensors provide information on the most suitable susceptibility
model (spherical or cylindrical) for each voxel. Tensor-based fractional anisotropy
(FA) measures indicate how uni-directional the diffusion is, where high FA corres-
ponds to diffusion occurring along a single direction and low FA corresponds to
diffusion occurring equally in all directions. We therefore chose a threshold, TFA,
such that voxels with an FA value below the threshold are modelled as spheres of
volume equal to the volume of the voxel, while all other voxels are modelled as
segments of infinitely long cylinders. The primary eigenvectors, V1, of the tensors
define the directions for the cylinder axes. The elements of A are therefore given
by

Am,n =

8
><

>:

Fs (rm � rn) , if FA (n) < TFA

Fc (rm � rn) , if FA(n) � TFA

(7.11)

where rm and rn are the position vectors of voxels m and n, respectively. Fs is the
spherical model kernel defined in image space,

Fs (r) =

8
><

>:

B0
4p

⇣
3 cos2 q�1

r3

⌘
, r > 0

0, r = 0
(7.12)

where r is the length of vector r , and Fc is the cylindrical kernel defined in image
space,
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Fc (r) =

8
>><

>>:

B0
6
�
3 cos2 b � 1

�
, r = 0

P (r) 1
2p B0

1
|r�(r·ĉ)ĉ|2

sin2 b

 
2
✓

r·b̂�(r·ĉ)(b̂·ĉ)
|r�(r·ĉ)ĉ||b̂�(b̂·ĉ)ĉ|

◆2
� 1

!
, otherwise,

(7.13)
where b is the angle between the cylinder axis, ĉ, and the direction of the main
B field, b̂ (full derivation of these functions are in the Appendix). We introduce
a proportionality function, P (r), to facilitate discretisation of the analytical 2D
cylindrical kernel. It is defined as

P (r) =
(2a � r · ĉ)2 (a + r · ĉ)

4a3 (7.14)

where a = 0.47 provides the optimal discretisation of the kernel (see Appendix).
A is a square matrix where the number of rows and columns is determined by

the number of voxels in the data. For typical images, the number of voxels is in
the range of 1 to 10 million, resulting in a matrix of the order of 1012 elements.
Hence, finding the solution x, given A and b, requires numerical and algorithmic
techniques to minimise the error in the result.

We use the Landweber algorithm [30] to solve the linear system in (7.10). It is
an iterative method given by

xn+1 = xn � tA0 (Axn � b) (7.15)

where xn denotes the value of x at the nth iteration, t is the step size and A0

denotes the transpose of A. All elements of x0 are initialised to zero. For (7.15) to
converge, we need

0 < t <
2

max lA0A
(7.16)

where max lA0A is the largest eigenvalue of A0A [31]. As t approaches 2
max lA0A

, Eq.
(7.15) converges faster. However, explicitly calculating 2

max lA0A
is computationally

expensive. Instead, a value of t = 0.15 is applied, which was heuristically determ-
ined to be adequate using small scale simulations. The Landweber algorithm does
not require explicit formation of matrix A, which could be prohibitively large, even
for a supercomputer. Instead, the element-by-element multiplications involved in
Axn and A0y, where y = Axn � b, are computed by calculating the elements of A
immediately before being required for computations, thereby avoiding the need
to store the values in memory.

We regularise the system in (7.10) using a second order derivative, the Laplacian
operator. While regularisation using a first order derivative will favour uniform
intensities, the Laplacian operator favours uniform gradients. It is therefore more
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effective in edge preservation and does not make assumptions about the uniform-
ity in the susceptibility map relative to the magnitude data [23]. The regularisation
is incorporated into (7.15) as follows

xn+1 = xn � t
�
kA0 (Axn � b) + (1 � k)L0Lxn

�
(7.17)

where L is the matrix representing the convolution of a 3 ⇥ 3 ⇥ 3 Laplacian oper-
ator defined as

L (x, y) =

2

6664

2

6664

0 3/96 0
3/96 10/96 3/96

0 3/96 0

3

7775

2

6664

3/96 10/96 3/96

10/96 �1 10/96

3/96 10/96 3/96

3

7775

2

6664

0 3/96 0
3/96 10/96 3/96

0 3/96 0

3

7775

3

7775

(7.18)
The weighting parameter 0  k  1 determines the relative costs associated with
the regularisation term.

Outside of the object, the total susceptibility is assumed to be uniform with
Dc = 0. This is a result of the removal of low frequency fluctuations during the
pre-processing of the phase data. Enforcing a xn ⌘ Dc (rn) = 0 solution in vector
x is achieved by eliminating the corresponding elements from the vector x and
corresponding columns from the matrix A. This has the advantage of reducing the
computations required to solve (7.10).

We will refer to this method as Diffusion-Guided Quantitative Susceptibility
Mapping (dQSM).

7.2.2 Computation and method comparison

Solving the linear system in Eq. (7.10) is computationally expensive and requires
the use of a supercomputer to produce results in a feasible computation time. The
computations were executed on an IBM BlueGene/Q, using 4096 processors with
an allocation of 4TB of RAM. dQSM was applied to three numerical phantoms and
a mouse dataset described in section 7.2.3. The same algorithm was also applied
using only the spherical model kernel to observe the effects of the inclusion of
the cylindrical model while excluding the effects produced by the different cost
functions, (7.17) and (7.6), the use of the Fast Fourier Transform algorithm, and
the use of the continuous Fourier transform (as opposed to the discrete Fourier
transform) of the spherical model kernel. We will refer to this as Spherical Model
Quantitative Susceptibility Mapping (sQSM). Due to limitations in time allocation
on the BlueGene/Q, sQSM was only applied to the numerical phantom with zero
noise and the mouse dataset.

The less computationally intensive MEDI calculations were performed on an
Apple Macbook Pro with an Intel Core i7 dual core (2.7 GHz) CPU and 8GB of
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MEDI sQSM dQSM

Voxel modelling spherical spherical spherical and
cylindrical

Numerical
convolution
calculation

convolution
theorem (Fourier

transforms)

explicit
calculation in
image space

explicit
calculation in
image space

Convolution kernel discretised
continuous

fourier transform
in k-space

discretise image
space

discretise image
space

Regularisation L1 norm of first
order derivative

L2 norm of
second order

derivative

L2 norm of
second order

derivative

Table 5: Methodological differences between MEDI, sQSM and dQSM.

RAM. The MEDI method was applied to the three numerical phantoms and the
mouse dataset. A comparison of methodological differences between MEDI, sQSM
and dQSM is summarised in Table 5.

Quantitative noise and mean susceptibility comparisons were performed on the
resultant images. Comparison of the voxels within the cylinders and spheres was
conducted using signal-to-noise ratio (SNR) measurements. Since susceptibility
maps contain both negative and non-negative numbers, the SNR was defined as

SNR =
RMS

s
. (7.19)

where RMS is the root mean square of the Dc voxel intensities and s is the stand-
ard deviation of the noise. The SNR of the Dc = 0 voxels, that is, the voxels
outside of the cylinders and spheres, is considered an unreliable measure, as the
ideal Dc signal of zero would result in zero SNR regardless of the noise. For these
voxels, we compared the standard deviation of noise instead of SNR. Noise is
traditionally calculated in MR contexts by evaluating the standard deviation in
background (air) regions outside the imaged object. However, the results demon-
strated spatially large inhomogeneities. To separate these from the noise, high pass
filtering was performed before the standard deviation of the background voxels
was calculated.

7.2.3 Data simulation, acquisition and phase processing

Numerical phantom data

Numerical phantoms with known susceptibilities were created. The dimensions
of the phantom datasets were 50 ⇥ 140 ⇥ 80 voxels. Each dataset contained four
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cylinders and four spheres with susceptibilities of 1⇥ 10�7, 2⇥ 10�7, 3⇥ 10�7 and
4 ⇥ 10�7. The main magnetic field was chosen to be along the z-direction and of
strength B0 = 4.7T. The cylinders were oriented along the x-axis and therefore
perpendicular to the main magnetic field. The radius of the cylinders and spheres
were 5 voxels. The DB map was created by superimposing individual DB maps
for each cylinder and each sphere. To calculate the individual DB maps, a true
susceptibility map of dimensions 50 ⇥ 140 ⇥ 80 was created with a single cylinder
or sphere positioned in the equivalent position of the multiple cylinder/sphere
DB map. The voxel-wise susceptibility values were calculated such that

Dc =

8
>>>><

>>>>:

DcCyl/Sph, voxel completely enclosed in cylinder/sphere

0, voxel completely outside cylinder/sphere

DcAin, voxel straddles the boundary of the cylinder/sphere

(7.20)

where Ain is the proportion of the voxel area inside the cylinder/sphere. The
individual DB maps were calculated by convolving the susceptibility map with the
spherical or cylindrical model kernel. In order to compare the robustness of the
methods to noise, three versions of the dataset were created with noise standard
deviations of 0, 0.05 and 0.10 radians.

The V1 map was created using the cylinder axis (1, 0, 0) for the cylinder voxels,
and zeros (0, 0, 0) otherwise. The FA map was 1 for cylinder voxels and 0 other-
wise. The binary foreground/background mask was set such that the outermost
voxels of the dataset were defined as background and all internal voxels defined
as foreground.

To simulate a magnitude image, m (r) (used in the MEDI method) we used a
normalised true susceptibility map to compute W1 in (7.6). The normalisation was
calculated such that

m (r) =

8
>>>>>>>><

>>>>>>>>:

0, Dctrue (r) < µ � 2s

Dctrue (r)�(µ�2s)
4s , µ � 2s  Dctrue (r)

 µ + 2s

1, Dctrue (r) > µ + 2s

(7.21)

where Dctrue is the true susceptibility intensity and µ and s are the mean and
standard deviation, respectively, of Dctrue . The weighting matrix W1 was then
defined as

W1 =

8
><

>:

1, |rm (r)| = 0

0, otherwise
(7.22)
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where r is the gradient operator.
For dQSM and sQSM processing, a value of k = 0.75 was used.
MEDI was also applied for comparison. To create the matrix W0 in (7.7), we

used the true susceptibility distribution in place of the magnitude, r. The value
l = 1 was determined to be the optimal value as it was the highest l that resulted
in an image displaying no cross-shaped artefacts.

Experimental mouse brain data

Fixed mouse brain MRI data was acquired on a 4.7T Bruker with Avance III
electronics and BGA12S-HP gradient set with a maximum gradient strength of
660mT/m. A 2 channel cryogenically cooled surface coil was used for transmit
and receive. T⇤

2-weighted imaging and diffusion weighted imaging (DWI) data
were acquired with identical matrix sizes of 192 ⇥ 128 ⇥ 96 and resolutions of 100

⇥ 100 ⇥ 100 µm3.
The T⇤

2 data was acquired using a 3D EPI sequence with TR=1000ms, TE=100ms
and flip angle = 30

�. The data was reconstructed using the complex SENSE re-
construction method [32]. FSL Brain Extraction Tool was used to create a mask
with manual correction. The phase data was unwrapped using FSL Prelude in 3D
mode and using the mask. The unwrapped phase data was then filtered using the
Spatially Dependent Filtering method of Chapter 4 and [33]. The field map was
calculated from the filtered phase data, f (r), using the relationship

DB (r) =
�f (r)

gTE
. (7.23)

The DWI data was acquired using an EPI-DWI sequence with TR = 2500ms, TE
= 65ms, shots = 2, d = 3ms, D = 14ms, 46 directions, 4 B0 images and b-value=1700

s/mm2. The total scan time was 6 hours 40 mins. The data was reconstructed using
a complex SENSE reconstruction method. The reconstructed DWI data was then
processed using the FSL tool DTIFIT [34] to return the single tensor estimates.

The image volume size was further reduced to 145 ⇥ 114 ⇥ 70 by eliminating
axial, sagittal and coronal slices that did not contain brain voxels. For dQSM, a
FA threshold of 0.2 was determined based on visual inspection of the FA and V1

data. FSL FLIRT was used to register a B0 image with the T⇤
2 image. The calculated

affine transformation was then used to register the FA and V1 maps to the T⇤
2 map.

For dQSM and sQSM processing, a value of k = 0.25 was used.
For MEDI the same criteria for determining l as was used for the numerical

phantom. A value of l = 0.02 was determined to be optimal.
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7.3 results

7.3.1 Comparison of spherical and cylindrical kernels

The accuracy of the spherical and cylindrical kernels at estimating the change in
B field was confirmed using numerical computations. A susceptibility map for a
cylinder of water in a vacuum was created. The susceptibility map was convolved
with the spherical and cylindrical kernels and compared to theoretical values for
the change in B field (Fig. 33). As the length of the cylinder in the susceptibility
map increases, the error in the computed estimates decreases (Fig. 34). The error
in the spherical kernel-derived DB map is greater than in the cylindrical kernel-
derived DB map for the calculated ratios and appears to asymptote towards the
error of the cylindrical kernel-derived DB map. Since data used in dQSM is dis-
crete and finite in dimensions, it is reasonable to assume that the cylindrical kernel
will provide more accurate results than the spherical kernel regardless of the ra-
dius or length of the cylindrical structures.
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(a) (b)

(c) (d)

(e) (f)

Figure 33: Cross-sectional profile of change in B field along z direction due to an infin-
itely long cylinder. Theoretical values are compared to values computed by
convolving spherical and cylindrical kernels with the susceptibility map where
the ratio of length to radius of the cylinder in the susceptibility map is (a-f) 2,
4, 8, 16, 32 and 64.
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Figure 34: Cylinder length/radius ratio effects on mean error in the spherical and cyl-
indrical kernel derived change in B field maps.

7.3.2 Numerical Phantom Results

The zero noise numerical phantom comprised a true susceptibility map (Fig. 35a)
and the derived DB map (Fig. 35b). The estimated susceptibility maps exhibited
obvious artefacts for the methods employing only the spherical kernel. The MEDI
method (Fig. 35c) produced large regions in the background voxels of low sus-
ceptibility relative to susceptibilities in the spheres and cylinders. The sQSM map
(Fig. 35d) also demonstrated attenuated regions, but at different locations to those
in the MEDI derived maps. The artefacts presented as hypointense areas in the
lower portion of the cross-sectional image near the sphere; however, in the coaxial
image, these artefacts appear to originate from the ends of the cylinders. The sus-
ceptibility map derived using dQSM exhibited much less artefact. Some artefact
was apparent, also stemming from the ends of the cylinders, however the artefact
was not as severe as for the other two methods.

MEDI demonstrated better noise reduction than dQSM (Fig. 36). The standard
deviation of the background noise is comparable between the two methods for the
numerical phantom results based on 0.05 radian noise (Fig. 37a). The discrepancy
between the standard deviation of the visual appearance of noise is due to the
intensity contrast range in the images. When the phase noise is doubled, the back-
ground noise in the MEDI map decreases while the noise in the dQSM map scales
with the doubling of the noise in the phase (Fig. 37b). In the sphere and cylinder
voxels, the SNR is higher in the MEDI maps when the phase noise is 0.05. In the
maps derived from the phase with noise of 0.10, the SNR was lower in the MEDI
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(a) (b)

(c) (d)

(e)

Figure 35: Susceptibility maps derived from a numerical phantom with zero noise, each
showing (left) cross-sectional and (right) coaxial views. The (a) true susceptib-
ility map was used to derive the (b) DB map. Susceptibility maps were then
calculated using (c) MEDI (l0 = 1), (d) sQSM, and (e) dQSM. The top row
objects in the images are cylinders, the bottom row are spheres. The true sus-
ceptibilities of the cylinders and spheres are, from left to right, 4e�7, 3e�7, 2e�7

and 1e�7.
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(a) (b)

(c) (d)

(e) (f)

Figure 36: Noise with standard deviations of (a,c,e) 0.05 radians and (b,d,f) 0.1 radians
was added to a numerical phantom containing four cylinders (top row) and
four spheres (bottom row) of susceptibility (left to right) 4e�7, 3e�7, 2e�7 and
1e�7. Susceptibility maps were derived from (a,b) DB maps using (c,d) MEDI
and (e,f) dQSM.

maps for the spheres, but higher in the cylinders. It was noted that the voxels on
the edges of the spheres and cylinders which are not regularised by the MEDI
method had very large noise characteristics.

Both dQSM and sQSM were significantly more accurate at calculating the
susceptibility values compared to the MEDI method (Fig. 38). dQSM produced
mean susceptibility values within 0.15 ⇥ 10�7 of the true value for the spheres
and cylinders. In comparison, sQSM produced mean susceptibility values within
0.80⇥ 10

�7 of the true value for the spheres and cylinders. The MEDI method was
the least accurate, with susceptibility values 1.1⇥ 10�6 below that of the true value
for the spheres and cylinders. While the increase in cylinder susceptibilities in the
MEDI-derived maps correspond linearly to the increase in true susceptibility, the
susceptibilities of the spheres do not have a linear correspondence.

The MEDI calculations took approximately 2 hours to run on a dual core 2.7GHz
processor. In comparison, dQSM computations took between 169 and 275 minutes
on a 4096 BlueGene/Q core allocation.
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(a)

(b)

Figure 37: Noise characteristics of MEDI and dQSM results on numerical phantoms with
(a) 0.05 and (b) 0.10 radians of phase noise. Noise in background voxels was
evaluated using the standard deviation while noise in the foreground was eval-
uated using an SNR measure for voxels in the spheres (S1-4) and cylinders
(C1-4) where susceptibilities are 4 ⇥ 10�7, 3 ⇥ 10�7, 2 ⇥ 10�7 and 1 ⇥ 10�7 re-
spectively.

Figure 38: Comparison of estimated susceptibility values (y axis) inside the cylinders and
spheres with true susceptibility value (x axis).
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7.3.3 Fixed mouse brain

The MEDI method required a very low regularisation weighting parameter of
l = 0.02 to ensure artefacts were avoided in the susceptibility map (Fig. 39d).
While this provided results with apparent structural contrast, the method was
unable to resolve the dipole effects surrounding the white matter, as illustrated by
the line profiles in Fig. 40.

The susceptibility maps derived using dQSM and sQSM presented with some
artefacts. These methods were more successful than MEDI at resolving the white
matter values, as can be seen in the line profiles (Fig. 40). sQSM produced large
shadows (arrows, Fig 41e) that do not have corresponding structures in the mag-
nitude image. These shadows are absent in the dQSM map (Fig. 41f). Susceptibility
differences in the central region of the brain (rectangle, Fig. 41f) reflect structure
seen in the magnitude image (rectangle, Fig. 41a). This structure does not appear
in the maps derived only using the spherical model.

7.4 discussion

The susceptibility maps estimated from the numerical phantoms of cylinders and
spheres demonstrated both the ability of each method to accurately determine the
susceptibility of objects and the artefacts that remain in the maps. The methods
employing just the spherical kernel (MEDI and sQSM) produced substantial arte-
facts in the derived susceptibility maps, attributed to the inaccuracy in applying
a spherical model to cylindrical structures. This explanation is supported by the
relatively minimal artefact in the dQSM maps. The minor artefacts that appear in
the dQSM maps appear to originate from the ends of the cylinders. A plausible
reason for these artefacts is a discrepancy between the simulated susceptibility
distribution of the cylinders and that which would realistically occur. That is, real
susceptibility properties at the ends of these cylinders would not conform to an
abrupt change from an infinitely long cylindrical structure to a spherically struc-
tured medium, as has been simulated here. Also of note is the large spatial extent
to which these artefacts appear relative to their suggested origin. This was a result
of convolution, where the error in the susceptibility of one voxel propagates to
an error in the subsequently calculated DB values of neighbouring voxels. While
the linear system solving algorithms were designed to minimise this error, they
rely on an accurate model of the system. Where the system does not accurately
model the data, such as when spherical model kernels were applied to cylindric-
ally structured tissues, the system introduced errors which were then propagated
by the convolution calculations.
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(a) (b)

(c) (d)

(e) (f)

Figure 39: Axial slice of the fixed mouse brain, showing (a) magnitude image, (b) DB map,
(c) diffusion tensors weighted by FA, and susceptibility maps derived by (d)
MEDI, (e) sQSM and (f) dQSM.
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(a)

(b) (c)

Figure 40: The (a) magnitude image was used to identify line profiles in the white matter.
The pink line corresponds to (b) and the blue line corresponds to (c), where the
plots follow the lines in an anti-clockwise direction.
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(a) (b)

(c) (d)

(e) (f)

Figure 41: Coronal slice of the fixed mouse brain, showing (a) magnitude image, (b) DB
map, (c) diffusion tensors weighted by FA, and susceptibility maps derived by
(d) MEDI method, (e) sQSM and (f) dQSM.
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dQSM performed poorer in the presence of noise. MEDI and dQSM use differ-
ent regularisation methods to minimise the error, being a first-order and a second
order operation, respectively. They also employ different weightings on the reg-
ularisation parameter. MEDI’s first-order regularisation is expected to result in
better noise reduction, however the application of the magnitude gradient-based
map results in unreliable susceptibility estimates in voxels at the border between
structures. The decrease in noise in the MEDI susceptibility map in response to
increased phase noise is counter-intuitive. The interaction between the system fi-
delity term and regularisation term, combined with iterative optimisation meth-
ods, could produce the results seen here, particularly given the substantial weight-
ing that needed to be placed on the smoothing regularisation in order to avoid
the cross-shaped artefact. The second order regularisation employed by dQSM
aimed to address this problem while maintaining an acceptable level of noise. The
smoothed mouse maps and noisy phantom maps suggest that optimisation of the
regularisation weighting parameter, k, in the dQSM method is required to achieve
the optimal SNR. Unfortunately, the computational expense of dQSM prohibits an
extensive search for optimal k.

A comparison of the two methods based only on the spherical model, MEDI
and sQSM, highlights the significant difference in results for what is fundament-
ally the same model of the physical interactions between the tissue susceptibil-
ities and the applied magnetic field. Not only do the methods produce differ-
ent mean susceptibility estimates, but the location of artefacts is very different.
The major differences between the two approaches are: 1) the use of the discrete
image-space kernel versus the discretised CFT-derived k-space kernel, 2) the use
of a first-order versus second-order regularisation term, and 3) the computation of
the A0 (Ax � b) terms explicitly versus fast Fourier transforms. Investigating how
these differences affect the numerical modelling of the system is an interesting
topic within which improvements to QSM methods may lie.

The susceptibility maps of the mouse brain further demonstrated the advant-
ages and limitations of the methods. dQSM and sQSM performed significantly
better than MEDI at resolving white matter structures. The ability of the sQSM to
produce similar estimates of white matter values compared to dQSM is unsurpris-
ing given that both methods produced relatively accurate estimates of the cylinder
susceptibilities in the numerical phantom. However, as was apparent in the numer-
ical phantom results, large artefacts, appearing as hypointense regions, occurred
in the sQSM maps that were not present in the dQSM maps. This suggests that
dQSM has an enhanced ability to produce accurate estimates of susceptibility in
regions outside of, but within proximity of cylindrical structures. Further evidence
in support of this ability is the presence of the subcortical structure in the dQSM
and magnitude image, but not in any other maps, including the diffusion tensor
map that indicates the presence of white matter.
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While dQSM produced more accurate susceptibility maps than the MEDI
method, the computational expense is far greater than that of the MEDI method.
The very large difference in computational expense is due to the application of the
convolution theorem in the MEDI method. The fast Fourier transform algorithm
employed in the MEDI method has a computational efficiency of O (N log N) op-
erations per iteration. Since dQSM does not involve a true convolution, i.e. the
choice of kernel is spatially dependent, it is restricted to longer computations in
the spatial domain, having a computational efficiency of O

�
N2� operations per it-

eration. Although dQSM is more accurate than methods involving only a spherical
kernel, the computation time is prohibitively long for most research requirements,
let alone clinical applications. This highlights the need for further research into
faster algorithms to solve this particular large scale linear system. Recently, a GPU
acceleration of the dQSM algorithm was implemented, with significant decreases
of computation time for the mouse dataset from 16 hours on 4096 BlueGene/Q
CPU cores to a projected 1.1 hours on 16 Kepler K10 GPUs [35].

The current gold standard approach to QSM is the COSMOS method, requiring
multiple acquisitions at different orientations to the main B field. Multiple acquis-
itions are not ideal clinically and may not be feasible due to patient discomfort
and setup times. As such, only single acquisition approaches were evaluated in
this chapter. To extend dQSM to multiple orientations, one has to consider not
only the spherical kernel, but the multiple arbitrarily oriented cylinder kernels.
For spherically modelled voxels, three COSMOS-type acquisitions will address
the under-determined nature of the spherical kernel by ensuring that all points in
k-space have a non-zero value for at least one of the acquisitions. This is achieved
by ensuring that the zero cones do not overlap. The cylindrical kernel is also under-
determined. In k-space, there also exists points where the kernel is zero, presenting
as a cross-shape on the kernel (Fig. 42). At least two acquisitions are required to
compensate for the under-determined kernel, however the orientations must be
such that the zero voxels do not overlap. The requirements on the three COSMOS
orientations are sufficient to meet this criterium, regardless of the orientation of
the cylinder. Therefore it is possible to apply a multiple orientation approach to
dQSM.

7.5 conclusion

The results of dQSM presented in this chapter suggests greater accuracy in suscept-
ibility estimation compared to methods based solely on a spherical model, partic-
ularly in the presence of structurally cylindrical tissues such as white matter. The
major disadvantage is the very long computation time, which makes the method,
as described here, infeasible for everyday research and clinical applications. It is,
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Figure 42: Fourier transform of the cylindrical kernel, showing the plane normal to the
cylinder axis.

however, a proof of concept demonstrating that a mixed model provides a more
accurate approach to QSM and that further investigation into optimising dQSM
numerical implementation is warranted.

7.6 appendix

The analytical expression for the change in the magnetic B field induced by a
sphere and by a cylinder are well-known and mathematical derivations, with vary-
ing degrees of detail, have been published [36, 37]. The Lorentz Sphere correction
to the change in B field due to a sphere has also been published. Here, we provide
a complete, detailed derivation of change in B field induced by a sphere as well as
a detailed derivation of the change in B field due to a cylinder. We also perform
the Lorentz correction for both expressions and formulate the discrete convolution
kernels required for the dQSM computations.

The following mathematical notations are employed:

x̂ , ŷ , ẑ unit vectors defining a cartesian coordinate system

r̂ , q̂, f̂ unit vectors defining a spherical coordinate system

r̂ , f̂ , ẑ unit vectors defining a cylindrical coordinate system

r = (x , y , z) position vector in image space in cartesian coordinates. x, y and z
are the projections of r on x̂, ŷ and ẑ, respectively.

r = (r , q , j) position vector in image space in spherical coordinates. r is the
length of the position vector, q is the angle between r and ẑ, and j is the
angle between r and x̂.
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r = (r , j , z) position vector in image space in cylindrical coordinates. r is the
distance from the z axis, j is the angle between r and x̂ and z is the projection
of r̂ on ẑ.

k =
�

k x , ky , kz
�

position vector in k-space defined in cartesian coordinates

H , H vector describing the magnitude and direction of the magnetic field intens-
ity, magnitude of the magnetic field intensity

B , B vector describing the magnitude and direction of the magnetic flux density,
magnitude of the magnetic field intensity

H 0 , B0 magnetic flux density and field intensity of the external applied magnetic
field

c magnetic volume susceptibility

µ magnetic permeability

FS , FC 3D kernel describing the effects on the magnetic flux density induced by a
sphere (S) or a cylinder (C)

A1 The change in B field induced by a sphere

The spherical model of the influence of magnetic susceptibility, c, on magnetic
flux density, B, is derived as the change in B due to a sphere of homogeneous
and isotropic susceptibility1 exposed to an external uniform magnetic field, B0.
The coordinate system is defined such that the centre of the sphere is located at
the origin and the ẑ is parallel to the direction of B0. The sphere has radius a. The
susceptibility inside and outside the sphere is denoted by cin and cout, respectively.
The outside medium is considered to extend to ±• in all directions.

The magnetic field intensity, H, is a vector field describing the direction and
intensity of the magnetic field at any given point and is related to the magnetic
flux density according to

B = µH (7.24)

where µ is the magnetic permeability of the medium. Its relation to susceptibility
is given by

µ = (1 + c) µ0 (7.25)

where µ0 = 4p ⇥ 10−7 H.M�1 is a constant known as the permeability of free space.
To facilitate our derivations, we define a scalar field, W, such that

H = �rW (7.26)

1 Note that the term susceptibility will be used to refer to magnetic susceptibility, as distinct from
electric susceptibility.
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where r is the gradient operator defined in cartesian coordinates as

r f =
∂ f
∂x

x̂ +
∂ f
∂y

ŷ +
∂ f
∂z

ẑ, (7.27)

in spherical coordinates as

r f =
∂ f
∂r

r̂ +
1
r

∂ f
∂q

q̂+
1

r sin q

∂ f
∂j

ĵ, (7.28)

and in cylindrical coordinates as

r f =
∂ f
∂r

r̂ +
1
r

∂ f
∂j

q̂+
∂ f
∂z

ẑ. (7.29)

Since the relationship to H is a gradient function, constant offsets in W can be
ignored, that is

W = f (x, y, z) + c ⌘ f (x, y, z) .

Conditions

Let Win be the scalar potential inside the sphere and Wout is the scalar potential
outside the sphere. We derive below the following conditions on Win and Wout:

1. For r < a, r2Win = 0, and for r > a, r2Wout = 0.

2. For r � a, Wout = �H0r cos q.

3. For all r, W must be finite.

4. For r = a, µin
∂Win

∂r = µout
∂Wout

∂r .

5. For r = a, ∂Win
∂q = ∂Wout

∂q .

Condition 1: Laplace’s equation.

Combining (7.24),(7.26) and Maxwell’s second equation,

r · B = 0 (7.30)

the following condition can be derived

r · (µH) = 0

r · (µ(�rW)) = 0

�µr ·rW = 0

r2W = 0. (7.31)
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This is Laplace’s equation and is applicable, though independently, to both the
scalar potential inside and the scalar potential outside the sphere. Thus,

r2Win = 0 (7.32)

and
r2Wout = 0. (7.33)

Condition 2: magnetic field is equal to the applied field far from the sphere.

Let H0 denote the field far away from the sphere. When r � a, the influence of
the sphere on the magnetic field is negligible, such that

�rWout = H0

gives
∂Wout

∂x
x̂ +

∂Wout

∂y
ŷ +

∂Wout

∂z
ẑ = �H0ẑ.

Thus, Wout is a function of z only, and

dWout

dz
= �H0

Wout = �H0z.

Since z = r cos q,
Wout = �H0r cos q. (7.34)

Condition 3: W must be finite.

If W is infinite, r2W would be undefined. Since r2W = 0, W must therefore be
finite.

Condition 4: at the sphere’s surface, the normal component of the magnetic flux density is
continuous

Consider a cylinder with closed surfaces at the ends (a pillbox) whose axis is
normal to the surface of the sphere. If the lateral surface of the pillbox is very
small, the only contributions to the magnetic flux density, B, through the surface
of the pillbox will be through the surfaces at the ends of the cylinder, Sin and Sout.
Let the components of B that are normal to the ends of the pillbox be Bn,in and
Bn,out. If the area, A, of the ends of the pillbox is also considered small, then from
Maxwell’s second equation in the integral form

I

S
B.dS = 0,
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we have

�
I

Sin

Bn,in.dS +
I

Sout
Bn,out.dS = 0

Bn,in.A � Bn,out.A = 0

Bn,in = Bn,out

or, by (7.24),

µinHn,in = µoutHn,out.

From (7.26) and (7.28),

Hn,in = �∂Win
∂r

,

Hn,out = �∂Wout

∂r
,

and so,

µin
dWin

dr
= µout

dWout

dr
. (7.35)

Condition 5: at the sphere’s surface, the tangential components of magnetic field intensity
inside and outside the sphere are equal

Consider a small rectangular closed loop that crosses the sphere’s surface and
lies in a plane normal to the sphere’s surface and parallel to ẑ. The sides of the
rectangle normal to the sphere’s surface are negligibly small compared to the sides
of the rectangle parallel to the sphere’s surface. These parallel sides, Lin and Lout,
are very small, such that H is uniform over their lengths, DL. Using Maxwell’s
fourth equation, and noting that the sphere’s surface contains no free currents or
charges, I

H.dL = 0

gives Z

Lin

Ht,in.dL �
Z

Lout
Ht,out.dL = 0,

where the subscript t denotes a tangential component of H along the sides of the
rectangle. Thus,

Ht,inDL � Ht,outDL = 0,

Ht,in = Ht,out.

Since the rectangle is parallel to ẑ and lies on the surface of the sphere, (7.26) and
(7.28) give

Ht,in =
1
r

∂Win
∂q
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and
Ht,out =

1
r

∂Wout

∂q
.

Thus

1
r

∂Win
∂q

=
1
r

∂Wout

∂q
,

∂Win
∂q

=
∂Wout

∂q
. (7.36)

The general solution to Laplace’s equation in spherical coordinates

Laplace’s equation (7.31) in spherical coordinates is

r2W =
1
r2

∂

∂r

✓
r2 ∂W

∂r

◆
+

1
r2 sin q

∂

∂q

✓
sin q

∂W
∂q

◆
+

1
r2 sin2 q

∂2W
∂j2 .

= 0. (7.37)

The solution is derived by separating the independent variables, r, q and j. The
scalar potential can be written as

W = R (r)Q (q)F (j) . (7.38)

Substituting this into (7.37), we have

1
r2

∂

∂r

✓
r2 ∂ (RQF)

∂r

◆
+

1
r2 sin q

∂

∂q

✓
sin q

∂ (RQF)
∂q

◆
+

1
r2 sin2 q

∂2 (RQF)
∂j2 = 0.

Rearrangement and multiplication by r2

RQF yields

1
R

d
dr

✓
r2 dR

dr

◆
+

1
Q

1
sin q

d
dq

✓
sin q

dQ
dq

◆
+

1
F

1
sin2 q

d2F
dj2 = 0. (7.39)

Let

1
R

d
dr

✓
r2 dR

dr

◆
= p (7.40)

1
Q

1
sin q

d
dq

✓
sin q

dQ
dq

◆
+

1
F

1
sin2 q

d2F
dj2 = �p. (7.41)

Separation of variables is again applied to the second equation,

1
Q

sin q
d
dq

✓
sin q

dQ
dq

◆
+

1
F

d2F
dj2 = �p sin2 q. (7.42)
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While ẑ is defined by the direction of the applied magnetic field, the positioning
of x̂ and ŷ are arbitrary. Therefore, for W to be invariant with respects to the
definition of the coordinate system,

F (j) = E (7.43)

where E is a constant. Thus,

1
F

d2F
dj2 = 0. (7.44)

Substituting (7.44) into (7.42), we have

1
Q

sin q
d
dq

✓
sin q

dQ
dq

◆
+ p sin2 q = 0.

To solve this, we use a change of variables, w = cos q and therefore dq
dw = �1

sin q , and
rearrange to form the Legendre Differential Equation,

sin q
d
dq

✓
sin q

dQ
dq

◆
+
�

p sin2 q
�

Q = 0,

� sin2 q
d

dw

✓
� sin2 q

dQ
dw

◆
+
�

p sin2 q
�

Q = 0,

�
1 � w2� d

dw

�
1 � w2� dQ

dw

�
+
⇥
p
�
1 � w2�⇤Q = 0,

�
1 � w2� d2Q

dw2 � 2w
dQ
dw

+ n (n + 1)Q = 0,

where we have substituted p = n (n + 1). The solutions to this equation are known
as the Legendre polynomials,

Qn (cos q) =
1

2nn!
dn

d (cos q)n
�
cos2 q � 1

�n . (7.45)

The first few solutions are

Q0 (q) = 1,

Q1 (q) = cos q,

Q2 (q) =
1
2
�
3 cos2 q � 1

�
, (7.46)

where successive solutions have increasing powers of cos q. (7.40) is expanded to
give the Euler equation,

r2 d2R
dr2 + 2r

dR
dr

� n (n + 1) R = 0



7.6 appendix 133

which has the solution
Rn (r) = Cnrn + Dn

1
rn+1 . (7.47)

The solution of (7.38) is then

W = R (r)Q (q)F (j)

=
•

Â
n=0

✓
Cnrn + Dn

1
rn+1

◆
Qn (q) E. (7.48)

Since Cn and Dn are unknown constant coefficients, we can let E = 1. Expanding
the n < 2 terms, we have

W = C0 + D0
1
r
+ C1r cos q + D1

1
r2 cos q +

•

Â
n=2

✓
Cnrn + Dn

1
rn+1

◆
Qn (q) .

Applying condition 2: Wout = �H0r cos q where r � a

When r approaches •, the 1
rn+1 terms in (7.48) approach zero and

Wout,r!• = Cout,0 + Cout,1r cos q +
•

Â
n=2

Cout,nrnQn (q) .

Since Wout = �H0r cos q when r ! • and referring to (7.46), we can see that only
the n = 1 term has a first order cos q term. Therefore

Wout,r!• = Cout,1r cos q

and

Cout,n =

8
><

>:

�H0, n = 1

0, otherwise.
(7.49)

Applying condition 3: W must be finite

When r = 0, the 1
rn+1 terms approach •. Since W must be finite,

Din,n = 0, for all n. (7.50)

To summarise,

Win = Cin,0 + Cin,1r cos q +
•

Â
n=2

Cin,nrnQn (q) ,

Wout = �H0r cos q + Dout,0
1
r
+ Dout,1

1
r2 cos q +

•

Â
n=2

Dout,n
1

rn+1 Qn (q) .
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Applying condition 4: µin
dWin

dr = µout
dWout

dr where r = a

We substitute (7.49) and (7.50) into (7.48), then let r = a

µin
∂

∂r
Win

����
r=a

= µin
∂

∂r

"
Cin,0 + Cin,1r cos q +

•

Â
n=2

Cin,nrnQn

#

r=a

= µin

"
Cin,1 cos q +

•

Â
n=2

Cin,nnan�1Qn

#
, (7.51)

µout
∂

∂r
Wout

����
r=a

= µout
∂

∂r


�H0r cos q + Dout,0

1
r
+ Dout,1

1
r2 cos q

+
•

Â
n=2

✓
Dout,n

1
rn+1

◆
Qn

#

= µout


�H0 cos q � Dout,0

1
a2 � 2Dout,1

1
a3 cos q

+
•

Â
n=2

✓
Dout,n (�n � 1)

1
an+2

◆
Qn

#
. (7.52)

Equating coefficients of terms independent of q, we have

Dout,0 = 0.

Equating coefficients of first order cos q terms, we have

µinCin,1 = �µout

✓
H0 + 2Dout,1

1
a3

◆
. (7.53)

Applying condition 5: ∂Win
∂q = ∂Wout

∂q for r = a

Differentiating with respect to q and letting r = a, we have

∂

∂q
Win

����
r=a

=
∂

∂q

"
Cin,0 + Cin,1r cos q +

•

Â
n=2

Cin,nrnQn

#

r=a

= �Cin,1a sin q +
•

Â
n=2

Cin,nan ∂

∂q
Qn, (7.54)

∂

∂q
Wout

����
r=a

=
∂

∂q

"
�H0r cos q + Dout,1

1
r2 cos q +

•

Â
n=2

✓
Dout,n

1
rn+1

◆
Qn

#

= �H0a sin q + Dout,1
1
a2 sin q +

•

Â
n=2

✓
Dout,n

1
an+1

◆
∂

∂q
Qn. (7.55)

Equating coefficients of sin q, we have

Cin,1a = �H0a + Dout,1
1
a2 .
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Combining with (7.53),

�a
µout

µin

✓
H0 + 2Dout,1

1
a3

◆
= �H0a + Dout,1

1
a2 ,

H0 + 2Dout,1
1
a3 =

µin
µout

Ho �
µin
µout

Dout,1
1
a3 ,

Dout,1

✓
2
a3 +

µin
µout

1
a3

◆
= H0

✓
µin
µout

� 1
◆

,

Dout,1 = H0a3
✓

µin
µout

� 1
◆✓

2 +
µin
µout

◆�1

= H0a3
✓

µin � µout

2µout + µin

◆
,

Cin,1 = H0

✓
µin � µout

2µout + µin
� 1
◆

= H0

✓
�3µout

2µout + µin

◆
.

Cin,0 is a constant and can be ignored, as previously mentioned,

Cin,0 = 0.

The remaining coefficients to be determined are those corresponding to n � 2.
Equating coefficients of ∂

∂q Qn in (7.54) and (7.55),

Cin,nan = Dout,n
1

an+1 , where n � 2

) Cin,n = Dout,n
1

a2n+1 . (7.56)

Equating coefficients of Qn (n � 2) in (7.51) and (7.52),

µinCin,nnan�1 = �µoutDout,n (n + 1)
1

an+2 ,

Cin,n = �µout

µin
· n + 1

n
· 1

a2n+1 Dout,n. (7.57)

Equating (7.56) and (7.57),

Dout,n = �µout

µin
· n + 1

n
· Dout,n,

Dout,n

✓
1 +

µout

µin
· n + 1

n

◆
= 0.

Hence,
Dout,n = 0,

and
Cin,n = 0.
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With the substitutions of coefficients, µ = µo (1 + c) and r cos q = z, our scalar
functions are

Win =
�3 (1 + cout)

3 + 2cout + cin
H0z, (7.58)

Wout = �H0z +
cin � cout

3 + 2cout + cin
a3H0

r cos q

r3 . (7.59)

Equations for the field induced inside the sphere

The magnetic field intensity, H in, inside the sphere can be obtained from (7.58)

H in = �rWin

=
3 (1 + cout)

3 + 2cout + cin
H0.

The magnetisation, M in, is then derived as follows

M in = cinH in

=
3cin (1 + cout)
3 + 2cout + cin

H0.

and the magnetic flux density inside the sphere, Bin, is

Bin = µinH in

=
3 (1 + cout) (1 + cin)

3 + 2cout + cin
B0.

Equations for the field induced outside the sphere

The magnetic field intensity, Hout, outside the sphere can be obtained from (7.59)

Hout = H0 +
cin � cout

3 + 2cout + cin
a3H0

✓
�r r cos q

r3

◆

= H0 +
cin � cout

3 + 2cout + cin
a3H0

✓
2

cos q

r3 r̂ +
sin q

r3 q̂

◆

= H0 +
cin � cout

3 + 2cout + cin
a3H0

✓
2
(ẑ · r̂)

r3 r̂ +
(ẑ · r̂) r̂ � ẑ

r3

◆

= H0 +
cin � cout

3 + 2cout + cin
a3H0

✓
3 (ẑ · r̂) r̂ � ẑ

r3

◆
.

The equality sin qq̂ = (ẑ · r̂) r̂ � ẑ follows from ẑ = (ẑ · r̂) r̂ � sin qq̂, illustrated in
Fig. 43.
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Figure 43: Illustration of the derivation of sin qq̂ = � (ẑ · r̂) r̂ + ẑ

The magnetisation is

Mout = coutH0 +
cout (cin � cout)
3 + 2cout + cin

a3H0

✓
3 (ẑ · r̂) r̂ � ẑ

r3

◆
,

and the magnetic flux density, B0, outside the sphere is

Bout = (1 + cout) B0 +
(1 + cout) (cin � cout)

3 + 2cout + cin
a3B0

✓
3 (ẑ · r̂) r̂ � ẑ

r3

◆
.

The first term is the applied field and the magnetisation induced in the outside me-
dium due to its own susceptibility. The second term is the change in the magnetic
field induced by the sphere.

A2 The change in B field induced by a cylinder

We will now derive the changes in the magnetic flux density due to an infinitely
long cylinder of radius a. We define ẑ as parallel to the axis of the cylinder. Later,
we will generalise the equations for arbitrary cylinder axis orientations. The ap-
plied magnetic field, H0, makes an angle b with the cylinder axis (in this instance,
ẑ) and is parallel to the x-z plane. In cylindrical coordinates, it is defined as

H0 = H0 (sin bx̂ + cos bẑ) . (7.60)

Conditions that must be satisfied

The boundary conditions are similar to those that must be satisfied for the spher-
ical derivation. We list them here, but will not derive them again.

1. Laplace’s equation: For r < a, r2Win = 0 and for r > a, r2Wout = 0.
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2. For r � a, Wout = �H0 (x sin b + z cos b).

3. For all r, W is finite.

4. For r = a, ∂Win
∂j = ∂Wout

∂j .

5. For r = a, µin
∂Win

∂r = µout
∂Wout

∂r .

6. For r = a, ∂Win
∂z = ∂Wout

∂z .

Solving condition 1: Laplace equation in cylindrical coordinates

The Laplace equation in cylindrical coordinates is

r2W =
1
r

∂

∂r

✓
r

∂W
∂r

◆
+

1
r2

∂2W
∂j2 +

∂2W
∂z2 = 0.

We define the scalar potential as W (r, q, z) = R (r)F (j) Z (z), thus

1
r

∂

∂r

✓
r

∂ (RFZ)
∂r

◆
+

1
r2

∂2 (RFZ)
∂j2 +

∂2 (RFZ)
∂z2 = 0.

We separate variables by multiplying both sides by r2

RFZ ,

r
R

d
dr

✓
r

dR
dr

◆
+

1
F

d2F
dj2 +

1
Z

d2Z
dz2 = 0. (7.61)

The positioning of the origin along the axis of the cylinder is arbitrary, therefore
W must be independent of z and ∂2W

∂z2 = 0,

d2Z
dz2 = 0

) Z = Gz + H.

Substituting back into (7.61), we then let

r
R

d
dr

✓
r

dR
dr

◆
= �n2,

1
F

d2F
dj2 = n2.

For n = 0

r
d
dr

✓
r

dR
dr

◆
= 0,

R = C0 + D0 ln r;
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and

d2F
dj2 = 0

) F = E0 + F0j.

For n > 0

r
d
dr

✓
r

dR
dr

◆
+ n2R = 0,

R = Cnrn + Dn
1
rn ;

and

d2F
dj2 � n2F = 0,

F = En cos nj + Fn sin nj

where both the rn and 1
rn solutions of R must be explicitly included since r � 0.

Combining all the solutions, we have

W = RFZ

= (C0 + D0 ln r) (E0 + F0j) (Gz + H)

+
•

Â
n=1

✓
Cnrn + Dn

1
rn

◆
(En cos nj + Fn sin nj) (Gz + H) .

We know that F must be cyclic, therefore n must be an integer and F0 = 0. We
expand the terms, set the constant term to zero, and rename the coefficients:

W = D0z + E0 ln r + F0z ln r (7.62)

+
•

Â
n=1

Cnrn (En cos nj + Fnz cos nj + Gn sin nj + Hnz sin nj)

+
•

Â
n=1

Dn
1
rn (En cos nj + Fnz cos nj + Gn sin nj + Hnz sin nj) .

Applying condition 2: for r � a, Wout = �H0 (x sin b + z cos b)

Since x = r cos f,

Wout = �H0 (r cos j sin b + z cos b) . (7.63)
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Equating like terms between (7.62) and (7.63) and considering r ! •, we have:

Dout,0 = �H0 cos b,

Eout,0 = 0,

Fout,0 = 0.

For n = 1

Cout,1E1 = �H0 sin b,

Fout,1 = 0,

Gout,1 = 0,

Hout,1 = 0.

For n � 2
Cout,n�2 = 0.

For n � 1, 1
rn ! 0. Substituting these constants back into (7.62)

Wout = �H0z cos b � H0r cos j sin b

+
•

Â
n=1

Dout,n
1
rn (Eout,n cos nj + Fout,nz cos nj

+Gout,n sin nj + Hout,nz sin nj) . (7.64)

Applying condition 3: W must be finite

When r = 0, ln r ! • and 1
rn ! •. Therefore, to ensure W is finite,

Ein,0 = 0,

Fin,0 = 0,

Din,n�1 = 0.

Substituting into (7.62),

Win = Din,0z +
•

Â
n=1

Cin,nrn (Ein,n cos nj + Fin,nz cos nj

+Gin,n sin nj + Hin,nz sin nj) . (7.65)
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Applying condition 4: for r = a, ∂Win
∂j = ∂Wout

∂j

Using the expressions in (7.64) and (7.65) and substituting r = a,

∂Wout

∂j

����
r=a

= H0a sin j sin b +
•

Â
n=1

Dout,n
1
an (�Eout,nn sin nj

�Fout,nzn sin nj + Gout,nn cos nj + Hout,nzn cos nj) ,

∂Win
∂j

����
r=a

=
•

Â
n=1

Cin,nan (�Ein,nn sin nj � Fin,nzn sin nj

+Gin,nn cos nj + Hin,nzn cos nj) .

We apply the equality ∂Wout
∂j = ∂Win

∂j and equate the coefficients,

Dout,1Eout,1 = H0a2 sin b + Cin,1Ein,1a2,

Dout,n�2Eout,n�2 = Cin,n�2Ein,n�2a2n,

Dout,n�1Fout,n�1 = Cin,n�1Fin,n�1a2n,

Dout,n�1Gout,n�1 = Cin,n�1Gin,n�1a2n,

Dout,n�1Hout,n�1 = Cin,n�1Hin,n�1a2n. (7.66)

Applying condition 5: for r = a, µin
∂Win

∂r = µout
∂Wout

∂r

Using the expressions in (7.64) and (7.65) and substituting r = a,

µin
∂Win

∂r

����
r=a

= µin

•

Â
n=1

Cin,nnan�1 (Ein,n cos nj + Fin,nz cos nj

+Gin,n sin nj + Hin,nz sin nj) ,

µout
∂Wout

∂r

����
r=a

= �µoutH0 cos j sin b + µout

•

Â
n=1

Dout,n
�n
an+1⇥

(Eout,n cos nj + Fout,nz cos nj + Gout,n sin nj + Hout,nz sin nj) .
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We apply the equality µin
∂Win

∂r = µout
∂Wout

∂r and equate coefficients,

Cin,1Ein,1 =
µout

µin

✓
�H0 sin b � Dout,1Eout,1

1
a2

◆
,

Cin,n�2Ein,n�2 =
µout

µin

✓
�Dout,n�2Eout,n�2

1
a2n

◆
,

Cin,n�1Fin,n�1 =
µout

µin

✓
�Dout,n�1Fout,n�1

1
a2n

◆
,

Cin,n�1Gin,n�1 =
µout

µin

✓
�Dout,n�1Gout,n�1

1
a2n

◆
,

Cin,n�1Hin,n�1 =
µout

µin

✓
�Dout,n�1Hout,n�1

1
a2n

◆
.

Combining these expressions,

Dout,1Eout,1 =
µin � µout

µin + µout
H0a2 sin b,

Dout,n�2Eout,n�2 =
µout

µin
(�Dout,n�2Eout,n�2) ,

Dout,n�1Fout,n�1 =
µout

µin
(�Dout,n�1Fout,n�1) ,

Dout,n�1Gout,n�1 =
µout

µin
(�Dout,n�1Gout,n�1) ,

Dout,n�1Hout,n�1 =
µout

µin
(�Dout,n�1Hout,n�1) .

Thus,

Dout,n�2Eout,n�2

✓
1 +

µout

µin

◆
= 0,

giving
Dout,n�2Eout,n�2 = 0.

Similarly,

Dout,n�1Fout,n�1 = Dout,n�1Gout,n�1 = Dout,n�1Hout,n�1 = 0,

and therefore

Cin,1Ein,1 = � 2µout

µin + µout
H0 sin b,

and

Cin,n�2Ein,n�2 = Cin,n�1Fin,n�1 = 0,

Cin,n�1Gin,n�1 = Cin,n�1Hin,n�1 = 0.
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Substituting these coefficients into (7.64) and (7.65), we have

Wout = �H0z cos b � H0r cos j sin b +
µin � µout

µin + µout
H0a2 sin b

1
r

cos j, (7.67)

and

Win = Din,0z � 2µout

µin + µout
H0 sin b (r cos j) . (7.68)

Applying condition 6: for r = a, ∂Win
∂z = ∂Wout

∂z

Differentiating (7.67) and (7.68) with respects to z and substituting r = a,

∂Wout

∂z
= �H0 cos b,

∂Win
∂z

= Din,0,

we have
Din,0 = �H0 cos b.

Substituting µin = µ0 (1 + cin), µout = µ0 (1 + cout) and x = r cos j, our scalar
fields are

Win = �H0z cos b � 2 (1 + cout)
2 + cin + cout

H0x sin b,

Wout = �H0z cos b � H0x sin b +
cin � cout

2 + cin + cout
H0a2 sin b

1
r2 r cos j.

Expressions for the field induced inside the cylinder

The magnetic field intensity inside the cylinder is

H in = �rWin

= H0 cos bẑ +
2 (1 + cout)

2 + cin + cout
H0 sin bx̂.

The magnetisation inside the cylinder is

M in = cinH in

= cinH0 cos bẑ +
2cin (1 + cout)
2 + cin + cout

H0 sin bx̂.

The magnetic flux density inside the cylinder is

Bin = µinH in

= (1 + cin) B0 cos bẑ +
2 (1 + cin) (1 + cout)

2 + cin + cout
B0 sin bx̂.
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Expressions for the field induced outside the cylinder

The magnetic field intensity outside the cylinder is

Hout = �rWout

= H0 cos bẑ + H0 sin bx̂ +
cin � cout

2 + cin + cout
H0a2 sin b

✓
�r1

r
cos j

◆

= H0 +
cin � cout

2 + cin + cout
H0

a2

r2 sin b (cos jr̂ + sin jĵ)

= H0 +
cin � cout

2 + cin + cout
H0

a2

r2 sin b (cos j (cos jx̂ + sin jŷ)

+ sin j (� sin jx̂ + cos jŷ))

= H0 +
cin � cout

2 + cin + cout
H0

a2

r2 sin b (cos 2jx̂ + sin 2jŷ) .

The magnetisation outside the cylinder is

Mout = coutHout

= coutH0 +
cout (cin � cout)
2 + cin + cout

H0
a2

r2 sin b (cos 2jx̂ + sin 2jŷ) .

The magnetic flux density outside the cylinder is

Bout = µ0 (1 + cout) Hout

= (1 + cout) B0 +
(1 + cout) (cin � cout)

2 + cin + cout
B0

a2

r2 sin b (cos 2jx̂ + sin 2jŷ) .

A3 Lorentz sphere correction

The Lorentz sphere correction accounts for the difference between the macroscopic
magnetic flux density and the flux density experienced by the nucleus, which is
indirectly measured in MRI. The correction requires DBLorentz = � 2

3 µ0M to be
added to the macroscopic magnetic flux density, B.

The magnetic flux density experienced by a nucleus inside a sphere is

BS,in =
3 (1 + cout) (1 + cin)

3 + 2cout + cin
B0 �

2
3

µ0


3cin (1 + cout)
3 + 2cout + cin

H0

�

=

✓
1 +

cout (1 + cin)
3 + 2cout + cin

◆
B0,
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and outside a sphere is

BS,out = (1 + cout) B0 +
(1 + cout) (cin � cout)

3 + 2cout + cin
a3B0

✓
3 (ẑ · r̂) r̂ � ẑ

r3

◆

�2
3

µ0


coutH0 +

cout (cin � cout)
3 + 2cout + cin

a3H0

✓
3 (ẑ · r̂) r̂ � ẑ

r3

◆�

=
⇣

1 +
cout

3

⌘
B0 +


(cin � cout) (3 � cout)

3 (3 + 2cout + cin)

�
a3B0

✓
3 (ẑ · r̂) r̂ � ẑ

r3

◆
.

The corresponding equations for a cylinder are

BC,in = (1 + cin) B0 cos bẑ +
2 (1 + cin) (1 + cout)

2 + cin + cout
B0 sin bx̂

�2
3

µ0


cinH0 cos bẑ +

2cin (1 + cout)
2 + cin + cout

H0 sin bx̂
�

=
⇣

1 +
cin
3

⌘
B0 cos bẑ

+

⇣
1 +

cin
3

⌘ 2 (1 + cout)
2 + cin + cout

�
B0 sin bx̂, (7.69)

and

BC,out = (1 + cout) B0 +
(1 + cout) (cin � cout)

2 + cin + cout
B0

a2

r2 sin b ⇥

(cos 2jx̂ + sin 2jŷ)� 2
3

µ0 [coutH0

+
cout (cin � cout)
2 + cin + cout

H0
a2

r2 sin b (cos 2jx̂ + sin 2jŷ)
�

=
⇣

1 +
cout

3

⌘
B0 +

⇣
1 +

cout

3

⌘ cin � cout

2 + cin + cout
⇥

B0
a2

r2 sin b (cos 2jx̂ + sin 2jŷ) . (7.70)

A4 Superposition theory and the convolution kernels

Magnetic flux density due to magnetic susceptibility distribution behaves accord-
ing to the superposition principle when considered on a macroscopic scale [38].
At position r, the total change in B field is equal to the sum of the changes at that
point induced by the susceptibility of structures at all points in space,

DB (r) = Â
r0

Dc
�
r0
�

F
�
r � r0

�
(7.71)

where F (r � r0) is a three dimensional kernel function describing DB induced by
the structure at r0 and Dc is the susceptibility of that structure.
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In MRI, only the changes in the direction of the applied B field are reflected in
the phase data, from which DB is calculated. During the processing of the phase
data, slow varying fluctuations are removed. This effectively removes the constant
terms from the B equations.

The spherical model convolution kernel

The first order approximation of DB induced by a sphere is

DBS,out (r) ⇡ Dc

3
a3B0

✓
3 cos q � 1

r3

◆
,

DBS,in (r) ⇡ 0,

where Dc = cin � cout, c ⌧ 1, only the component of B in the direction of the
applied B field is retained and the constant

�
1 + cout

3
�

B0 term is subtracted.
In the context of susceptibility mapping, we can ensure that image data is ac-

quired with isotropic voxel size and with the z or 3rd image dimension aligned to
the main B field. We apply the spherical model convolution kernel to cubic voxels
by equating the volume of the sphere with the volume of a voxel,

4pa3

3
= d3

a3

3
=

d3

4p

where d is the side length of a voxel. We redefine the units of r as voxel side
lengths, that is r ) rd,

DBS,out (r) = Dc
B0

4p

✓
3 cos2 q � 1

r3

◆
.

Applying the superposition principle, we obtain

DBS,out (r) = Â
r0

Dc
�
r0
�

FS
�
r � r0

�

where

Fs (r) =

8
><

>:

B0
4p

⇣
3 cos2 q�1

r3

⌘
, r > 0

0, r = 0

is the spherical model convolution kernel.
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Cylindrical model convolution kernel

The component of BC,in in the direction of the B0 field is the dot product of (7.69)
and the unit vector of (7.60):

BC,in =
⇣

1 +
cin
3

⌘
B0 cos2 b +

⇣
1 +

cin
3

⌘ 2 (1 + cout)
2 + cin + cout

�
B0 sin2 b

= B0 +
cin
3

B0 cos2 b +

⇣
1 +

cin
3

⌘ 2 (1 + cout)
2 + cin + cout

� 1
�

B0 sin2 b

= B0 +
cin
3

B0 cos2 b +


cout � cin

2 + cin + cout
+

2cin (1 + cout)
3 (2 + cin + cout)

�
B0 sin2 b

⇡ B0 +
cin
3

B0 cos2 b +


cout � cin

2
+

cin
3

�
B0 sin2 b

=

✓
1 +

cout

3
� cin � cout

6

◆
B0 +

cin � cout

2
B0 cos2 b

=
⇣

1 +
cout

3

⌘
B0 +

cin � cout

6
B0
�
3 cos2 b � 1

�
. (7.72)

The component of BC,out in the direction of the B0 field is given by

BC,out =
⇣

1 +
cout

3

⌘
B0 +

⇣
1 +

cout

3

⌘ cin � cout

2 + cin + cout
B0

a2

r2 sin2 b cos 2j

⇡
⇣

1 +
cout

3

⌘
B0 +

cin � cout

2
B0

a2

r2 sin2 b cos 2j. (7.73)

We arrive at the first order approximation of DB induced by a cylinder by con-
sidering the elimination of the first term in (7.72) and (7.73) as a result of the bias
field removal during phase processing:

DBC,in (r) ⇡ Dc

6
B0
�
3 cos2 b � 1

�
,

DBC,out (r) ⇡ Dc

2
B0

a2

r2 sin2 b cos 2j.

The convolution kernel is a 3D cubic array centred on a cylinder at angle b to
the main field. The cylinder has a cross-sectional area equal to the cross sectional
area of one voxel, that is

pa2 = d2,

a2 =
d2

p
.

where a is the radius of the cylinder and d is the side length of an isotropic voxel.
Again, we redefine the units of r as voxel side lengths, that is r ) rd. Only kernel
elements located within the plane normal to the cylinder and intersecting the
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central element are non-zero. For ease of reading, we shall call this the cross-
sectional plane. The contributions of these voxels to DB are given by

DBC,in (r) =
Dc

6
B0
�
3 cos2 b � 1

�
,

DBC,out (r) =
Dc

2p
B0

1
r2 sin2 b cos 2j.

Applying the superposition principle, we have

DBS,out (r) = Â
r0

Dc
�
r0
�

FC
�
r � r0

�

where

FC (r) =

8
><

>:

B0
6
�
3 cos2 b � 1

�
, r = 0

1
2p B0

1
r2 sin2 b cos 2j, otherwise.

(7.74)

For an arbitrary cylinder axis, ĉ, redefinitions of the variables r and j need to be
considered. r was defined in cylindrical coordinates as the distance between r and
ẑ. However, with an arbitrary cylinder axis, r is redefined as the distance from r
to ĉ:

r = |r � (r · ĉ) ĉ| . (7.75)

j is redefined as the angle between the projections of r and the direction of the B0

field, b̂, onto the plane normal to ĉ:

cos j =
(r � (r · ĉ) ĉ) ·

⇣
b̂ �

⇣
b̂ · ĉ

⌘
ĉ
⌘

|r � (r · ĉ) ĉ|
���b̂ �

⇣
b̂ · ĉ

⌘
ĉ
���

=
r · b̂ � (r · ĉ)

⇣
b̂ · ĉ

⌘
� (r · ĉ)

⇣
b̂ · ĉ

⌘
+ (r · ĉ)

⇣
b̂ · ĉ

⌘

|r � (r · ĉ) ĉ|
���b̂ �

⇣
b̂ · ĉ

⌘
ĉ
���

=
r · b̂ � (r · ĉ)

⇣
b̂ · ĉ

⌘

|r � (r · ĉ) ĉ|
���b̂ �

⇣
b̂ · ĉ

⌘
ĉ
���
.

Applying the trigonometric identity cos 2j = 2 cos2 j � 1, we have

cos 2j = 2

0

@
r · b̂ � (r · ĉ)

⇣
b̂ · ĉ

⌘

|r � (r · ĉ) ĉ|
���b̂ �

⇣
b̂ · ĉ

⌘
ĉ
���

1

A
2

� 1. (7.76)
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Combining (7.74) with (7.75) and (7.76), the cylindrical model convolution ker-
nel for an arbitrary cylinder axis is

FC (r) =

8
>><

>>:

B0
6
�
3 cos2 b � 1

�
, r = 0

1
2p B0

1
|r�(r·ĉ)ĉ|2

sin2 b

 
2
✓

r·b̂�(r·ĉ)(b̂·ĉ)
|r�(r·ĉ)ĉ||b̂�(b̂·ĉ)ĉ|

◆2
� 1

!
, otherwise,

(7.77)

for analytical convolutions where only points within the cross-sectional plane are
non-zero.

For numerical computations discretisation of points in the 3D kernel occurs.
When the cylinder axis is not parallel to either the x, y or z axes, the discrete
points of the kernel will rarely coincide with the cross-sectional plane. In order to
calculate a numerical kernel that approximates the analytical kernel, we consider
each voxel in the kernel as a sphere of radius a and define a slab that is 2a wide
and parallel to and centred on the cross-sectional plane. The volume of the sphere
that intersects with the slab (Figure 44) is given by

VSC (r) =
ph (r)2 (3a � h (r))

3
.

h is the height of the intersecting region and is determined by the position vector
r and the cylinder axis

h (r) = 2a � r · ĉ

where ĉ is a unit vector representing the cylinder axis. The proportion of VSC to
the total volume of the sphere, VS = 4pa3

3 , is

P (r) =
VSC (r)

VS

=
ph (r)2

3
(3a � h (r))

3
4pa3

=
(2a � r · ĉ)2 (a + r · ĉ)

4a3 . (7.78)

The cylinder model kernel is numerically defined as:

F (r) =

8
>><

>>:

B0
6
�
3 cos2 b � 1

�
, r = 0

P (r) 1
2p B0

1
|r�(r·ĉ)ĉ|2

sin2 b

 
2
✓

r·b̂�(r·ĉ)(b̂·ĉ)
|r�(r·ĉ)ĉ||b̂�(b̂·ĉ)ĉ|

◆2
� 1

!
, otherwise

The parameter a was optimised by convolving the numerical kernel with a
known susceptibility map and comparing the resulting DB map with the theor-
etical DB map. Seventeen cylinder axes were distributed over an area of the unit
sphere representing a range of angles that would result in different discretisation
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Figure 44: Intersection of sphere with slab

profiles (Fig. 45a). For each cylinder axis, a numerical phantom consisting of a
single cylinder of susceptibility 4 ⇥ 10�7 was created. The theoretical DB map was
calculated using (7.77). Numerical kernels were created for a range of a values.
Each kernel was convolved with the numerical susceptibility map and the stand-
ard deviation of the difference between the result and the theoretical DB map was
calculated. The optimum a value is that with the lowest mean standard deviation
across the seventeen cylinder axes, determined to be a = 0.47 (Fig. 45b).
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(a)

(b)

Figure 45: Optimising parameter a. (a) Positioning of the seventeen cylinder axes (denoted
by blue dots) on the unit sphere for optimising parameter a in (7.78). (b) Mean
of the standard deviation of the difference between derived and theoretical DB
maps for varying a.
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8
C O N C L U S I O N

MR phase imaging provides novel contrast and information for better visualisation
and quantification of tissue structures. Its contribution to the biomedical imaging
field has moved from being a means to enhance and correct other MR imaging
data, such as for bias field estimation, EPI field map correction, fMRI and in par-
ticular, susceptibility-weighted imaging, to being an imaging modality in its own
right, as well as providing the basis of the important and promising field of quant-
itative susceptibility mapping. This change in emphasis is due to the increased
resolution and contrast brought about by advances in high field MR technology.
While these benefits present opportunities for further exploiting the information
within phase, they are accompanied by artefacts and complications in phase im-
ages that were insignificant at lower fields. This thesis has presented four novel
methods for processing and utilising phase data to improve estimation and inter-
pretation of the information contained within.

Phase unwrapping and filtering play an integral part in eliciting important in-
formation from the phase of MRI data. These processing steps are non-trivial,
where the operations are complicated by high gradients in the true phase. Gradi-
ents greater than 2p per voxel are especially difficult to resolve, since their posi-
tion within the image become obscured by phase wrapping. Various unwrapping
methods have been proposed that address high gradients to varying degrees of
success. The most commonly used methods, such as homodyne filtering[1, 2], FSL
PRELUDE [3] and FUN [4], assume some level of coherence in the phase of neigh-
bouring voxels. This assumption is not always valid, particularly in regions of
high gradients and noise. The recently proposed CAMPUS method [5] seeks to
unwrap the phase through voxel-wise observation of the accumulation of phase
at subsequent multiple echoes. It therefore does not rely on assumptions of spatial
coherence and is a fast method compared to PRELUDE and FUN.

With the exclusion of homodyne filtering-based methods, these phase unwrap-
ping methods do not remove the spatially slow varying bias fields. Current meth-
ods for bias field removal include high pass filtering [6], polynomial fitting [7],
spherical mean estimation [8] and dipole fitting [9, 10]. These methods show vary-
ing degrees of success at removing high gradient fields, resulting in brain phase
images with unreliable data near the cortical surface. In Chapter 4, the Spatially
Dependent Filtering (SDF) method was proposed for correcting these surface arte-
facts. The method is computationally efficient and versatile in the choice of base
filter kernel. It is not limited to correcting errors at the cortical surface; it can be
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applied to any arbitrary region where adjacent regions have different intensity
characteristics that would otherwise introduce errors during the filtering process.
Compared to traditional methods of removing bias fields from phase, SDF has
been shown to produce more reliable phase information and reveal intricate de-
tails that remain obscured by other methods. For SWI and QSM applications, this
improvement in surface information will provide for better visualisation of surface
vessels, as well as more accurate estimation of magnetic susceptibility values, par-
ticularly at high field applications where surface artefacts are more pronounced.

Susceptibility weighted imaging is arguably the most common application for
phase data in the clinical environment. High field technologies provide improved
contrast in phase images, and in turn, improved visualisation of structures in SWI,
such as venous vessels. However, susceptibility-induced artefacts are also ampli-
fied at high field and lead to blurring of vein boundaries in the image. In worst
cases, the delineation of these vessels is affected to the extent that the width of
the vessel is overestimated. In Chapter 5 we presented a modification to the tra-
ditional SWI method that corrects for these errors. The Sigmoid-SWI method was
shown to successfully correct delineation of the venous vessels, while preserving
SWI values within the vessel and the general appearance of the SWI image. The
corrections associated with Sigmoid-SWI are not restricted to venous vessels, but
theoretically correct for any structure where large magnetic susceptibility differ-
ences induce a change in field that is large enough to attenuate the magnitude of
the MR signal. This advantage is particularly significant at higher fields, where
the effects of susceptibility differences are enhanced.

While SWI is a popular method that combines magnitude and phase, the tech-
nique is heuristic, where the parameter n is adjusted according to the best achiev-
able contrast in the image. While it was suggested that n = 4 is sufficient for
venography at 1.5T, other values of n may be optimal at higher field strengths or
for different applications. In Chapter 6, we presented the Optimised Contrast Ima-
ging (OCI), for rigorous combination of magnitude and phase information. The
method is a non-heuristic classification and optimisation-based method that has
the ability to manipulate intra- and inter-class contrast, making it a valuable tool
for visualising structural details in MRI data. Unlike SWI, it is not restricted to
axial acquisitions of anisotropic voxel dimensions. The method demonstrates im-
proved contrast and edge definition over three variants of the SWI method, and
reveals structural detail not apparent in either the magnitude or phase. Although
negative phase mask SWI is well-suited for venography studies, other applications,
such as structural segmentation, would benefit from OCI’s ability to delineate and
discriminate structures. As well, its application to isotropic data allows for mul-
tiple viewing aspects. The method is not specific to magnitude and phase, and
in fact can be applied to any two contrast images of the same structure, such as
magnitude and susceptibility maps. The principles behind the method can also be
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extended to three or more contrast images. Thus OCI is a novel method for visu-
alising multiple voxel-wise characteristics in a single two or three-dimensional
image.

The recently emerged field of Quantitative Susceptibility Mapping (QSM) prom-
ises new ways to study the composition of tissues and track changes in the
brain, particularly in relation to neurodegenerative disorders. There are sev-
eral published methods that address the ill-posed mathematical nature of the
QSM problem; however, the methods incorrectly assume a spherical model of
susceptibility-induced field changes for all tissues and ignore the contribution of
chemical exchange processes between water and macromolecules to the phase. The
Diffusion-Guided Quantitative Susceptibility Mapping (dQSM) method presented
in Chapter 7 addresses the inaccurate characterisation of white matter voxels with
spherical models of magnetic field perturbations. The method demonstrates im-
proved estimation of magnetic susceptibility values; however, it is disadvantaged
by very long computation times. This makes the method, as implemented in this
thesis, infeasible for normal research environments and clinical applications. It is,
however, a successful proof-of-concept warranting investigations into algorithmic
and computational optimisations. Recently, this algorithm has been implemented
on GPUs, with a 16⇥ speed up on 16 Kepler GPUs compared to 4096 CPU cores.

8.1 future work

It is arguable that the foreseeable future of MR phase imaging is QSM, where
the dipolar nature of phase images has been eliminated and the intensity val-
ues have a specific physical meaning. QSM has specific problems that still re-
quire a reliable solution: the ill-posed nature of the system, the modelling of
susceptibility-induced field changes and the phase contributions of chemical ex-
change processes. The ill-posed nature has been addressed by several methods;
however, none presents a reliable solution for all situations. The multiple orient-
ation acquisitions of COSMOS is infeasible in a clinical environment, while the
assumptions of coherence between the gradients in the magnitude and the sus-
ceptibility map in the MEDI method may not always be valid. Due to the ill-posed
nature of the system, the choice of regularisation and linear solving algorithm
have a significant impact on the solution. While dQSM provides a means to more
accurately model the susceptibility-induced field changes, the field lacks a reliable
susceptibility and diffusion phantom model to verify dQSMs results. The compu-
tational demands of the method also make it infeasible in the clinical environment.
Further algorithmic development of this method and the increased availability of
GPU architecture will address this issue. The chemical exchange processes have
been demonstrated to have a significant effect on phase; however, a method of
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eliminating these effects from the phase data has not been proposed. It is envis-
aged that the answer to this problem lies in specific MR acquisition sequences,
rather than computational analysis. With solutions to these three problems, QSM
promises to become a valuable and important tool in biomedical imaging, provid-
ing the means to study non-invasively the composition and compositional changes
of both normal and diseased biological tissues.
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