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ABSTRACT 

Predicting the nature of the scattering of short wavelength waves in random interconnected 

networks of large complicated enclosures is routinely encountered in diverse fields such as 

acoustics, wireless communications, and electromagnetic compatibility engineering. The 

Random Coupling Model (RCM), based on wave-chaos, is a statistical model describing the 

scattering of short wavelength electromagnetic waves in large complicated (chaotic) enclosures. 

The Baum-Liu-Tesche (BLT) electromagnetic topology formulation is a hierarchical framework 

based on the multiconductor transmission line (MTL) model for describing the flow of energy 

between different nodes on a network of MTL segments, originally developed to study the 

coupling of electromagnetic waves to aircraft cable bundles. In this research, we fuse the RCM 

with the BLT electromagnetic topology to create the “Statistical Topological Approach Using 

Wave-chaos for Electromagnetic Effects” (STUWEE) tool for predicting the statistics of the 

scattering of short wavelength electromagnetic waves in random interconnected networks of 

chaotic enclosures. In this Dissertation, I provide experimental results demonstrating the 
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existence of wave-chaotic fluctuations in quasi-2D mode-stirred chambers (MSCs), in 

accordance with the RCM, and then show how these fluctuations are affected when considering 

random interconnections of MSCs using the BLT topology model. This work uses the BLT 

electromagnetic topology model to break down the networked cavities and the RCM to study 

statistics within each cavity.  Experimental measurements have validated the fusing of the RCM 

with the BLT electromagnetic topology model for this application. 
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Chapter 1:  Introduction 

Electromagnetic fields exist wherever electrical power is generated, transmitted, or received. 

Electromagnetic fields can also be produced in strong bursts of short wavelength energy caused 

by a rapid acceleration of charged particles in a process that is referred to as the Electromagnetic 

Pulse (EMP). Such a pulse’s origin may be a natural event or man-made, and can occur as 

a radiated electric or magnetic field, or a conducted electric current, depending on the nature of 

the source. 

Our environment is polluted with electromagnetic radiation emitted from various sources, either 

naturally occurring or man-made. Natural occurrences originate from such phenomena as 

lightning, electrostatic discharge (ESD), geomagnetic storms, and so on.  Man-made sources can 

be a consequence of the ubiquitous presence of electromagnetic waves in our environment from 

such sources as wireless data services, radar, and nonnuclear electromagnetic weapons (also 

referred to as high power microwaves – HPM, or intentional electromagnetic interference – 

IEMI).  

In the 1960’s, the testing of a nuclear weapon in the atmosphere produced an electromagnetic 

pulse that caused RF upset in electronic systems. The nuclear detonation created an EMP with a 

frequency spectrum in the MHz range.  Later, HPM weapons were made to produce a similar 

EMP-like effect, albeit in shorter pulses, as narrowband or ultra-wideband sources with their 

frequency spectrum ranging from approximately 300 MHz-10 GHz and even higher.  This is the 

frequency range of interest in this research. EMP or IEMI can couple into closed enclosures (or 

cavities); this interference can be disruptive or damaging to any electronic equipment inside the 

enclosures. 
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The short wavelength electromagnetic radiation couples into a cavity through any apertures or 

gaps between panels of an enclosure; these openings act as slot antennas, helping the 

electromagnetic energy to enter and resonate within the enclosure, causing the enclosure to act as 

a microwave cavity. Therefore, there is an urgent need to study the effects of short wavelength 

electromagnetic radiation on cavities to be able to protect critical electronic equipment inside 

multiple arbitrarily interconnected enclosures and, hence, the motivation for this research. 

1.1 Statistical Approach 

Understanding the interaction of short wavelength electromagnetic energy with arbitrarily 

interconnected complicated cavities is of interest in several branches of physics and engineering. 

The coupling properties of enclosures depend on the details of the shape of the enclosures, the 

size of the enclosures, the structures of the apertures when there are incoming and outgoing 

waves, and the frequency of the radiation. The coupling properties also depend on the internal 

geometry within the enclosures which are extremely sensitive to small changes in the frequency 

of the electromagnetic radiation, shape of the enclosure, and the orientation of the components 

inside. A slight change, such as a simple wire bend, can result in acutely different field patterns 

that require new detailed knowledge that will provide no information about the previous nearly 

identical configuration [1].   

3D numerical analysis using computational electromagnetics has been facilitated by significant 

advances in computer technology. However, when the wavelength of the electromagnetic 

radiation becomes much smaller than the enclosure size of the target system, the computational 

time and CPU resources required for such simulations can be costly. In the limit of short 

wavelength, the electromagnetic field quantities within the enclosure are very sensitive to the 

enclosure shape, the internal object positions, the incident radiation frequency, and the geometry 



 
 

3 

of coupling ports [1]. Furthermore, precise knowledge of all the boundary conditions would also 

be required to accurately perform a deterministic calculation, which is a near impossible feat.  

Therefore, a statistical approach is required that treats the bounded electromagnetic field 

quantities as random variables and the nature of their fluctuations is characterized by suitable 

probability density functions (PDFs). 

In this research, we want to develop a predictive capability that fuses the random coupling model 

(RCM) with the electromagnetic topology model of Baum-Liu-Tesche, a statistical model that 

predicts the scattering wave fluctuation in a single volume, and a transmission line topology that 

studies the energy flow through multiple volumes connected by transmission lines. Combining 

BLT and RCM will enable us to predict the statistics of the scattering of short-wavelength 

electromagnetic waves in randomly interconnected networks of chaotic enclosures.  

 

1.2 Random Coupling Model (RCM) 

The Random Coupling Model (RCM) is based on Random Matrix Theory (RMT) of wave-chaos.  

It is a statistical model describing the scattering of short wavelength electromagnetic waves in 

large wave-chaotic enclosures. The RCM makes statistical predictions of induced voltages and 

currents for objects and components contained inside ray-chaotic enclosures subjected to 

electromagnetic fields. The RCM states that all wave-chaotic systems, regardless of their 

geometric complexities, possess universal statistical properties in their wave-scattering 

fluctuation characteristics that can be described by the statistical properties of ensembles of large 

random matrices; however, there are some system-specific, non-universal aspects of the problem 

that are quantified by means of the complex radiation impedance of the coupling ports in the 

cavity. A coupling port is any way in which an electromagnetic wave can enter or exit the 
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enclosure, or be absorbed within the enclosure. Fig. 1.1 is a schematic overview description of 

the RCM. 

In the RCM, chaotic ray trajectories are assumed.  Unlike the case in traditional chaotic 

dynamics where the governing equation is nonlinear and the time-development of the system is 

highly sensitive to initial conditions, in the RCM the system is linear.  However, the trajectories 

of two adjacent rays diverge exponentially due to the geometry of the cavity.  Hence the notion 

of wave-chaos. 

 

Fig.  1.1. Schematic overview of the RCM [1]. 

1.3 The Baum-Liu-Tesche (BLT) Electromagnetic Topology Model 

The BLT electromagnetic topology model was developed in 1986 to understand RF penetration 

into large and complicated enclosures such as aircrafts, ships, buildings, etc., and then onto cable 

bundles. This effort was motivated by the problem of Nuclear EMP (NEMP) coupling onto wire 
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bundles in aircraft.  NEMP is a consequence of the atmospheric detonation of a nuclear weapon.  

The BLT electromagnetic topology model involves the division of a large complicated 

electromagnetic system into smaller subsystems represented as junctions connected to each other 

using transmission lines to establish an environment that mimics that of large enclosures. The 

BLT electromagnetic topology model is a hierarchical framework based on the MTL model for 

describing the flow of energy between different nodes on a network of MTL segments. 

After a large volume is topologically broken down into smaller sub-volumes, the electromagnetic 

interaction within it is then represented by the BLT equation: 

     % − ' ∙ )	 ∙ + 0 = ' ∙ +. .        (1.1) 

Fig. 1.2. presents a drawing showing the use of the electromagnetic topological approach to sub-

divide a large system (an airplane) into smaller subsystems.  
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Fig. 1.2. Schematic illustrating the electromagnetic topological approach subdividing a system 

into smaller subsystems [2]. 

1.4 Fusing BLT with RCM  

In this research, we fuse the RCM with the BLT electromagnetic topology model to predict the 

statistics of the scattering of short wavelength electromagnetic waves in randomly interconnected 

networks of chaotic enclosures. In this Dissertation, we present experimental results 

demonstrating the existence of wave-chaotic fluctuations in a large 3D mode stirred chamber 

(MSC) and in five quasi-2D MSCs, in accordance with the RCM. The networked quasi-2D 

cavities are used to develop a computational framework that fuses the RCM with the BLT 

electromagnetic topology model. 
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Fusing the RCM with the BLT electromagnetic topology will enable a rapid assessment of the 

electromagnetic coupling within large complicated systems, and their possible impact on 

sensitive electronics. This work uses the BLT electromagnetic topology to break down the 

network of cavities and the RCM to study the statistics within each cavity. 

 

Fig. 1.3. Fusing the BLT electromagnetic topology model with the RCM. 

1.5 Organization of this Dissertation 

The research described in this Dissertation seeks to experimentally validate the fusing of the 

RCM with the BLT electromagnetic technology.  The remainder of this Dissertation is organized 

as follows: 

• Chapter 2 presents an overview of the RCM and experimental results from quasi-2D 

cavities that verify their wave-chaotic nature.  
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• Chapter 3 provides an overview of the BLT electromagnetic topology model. We 

experimentally construct a BLT network that mimics the construction of a facility to test 

our statistical approach validation when comparing BLT topology theoretically and 

experimentally. 

• In Chapter 4 we study the transition from deterministic to wave-chaotic behavior in a 

large 3D chaotic cavity. 

• Finally, Chapter 5 presents a summary of the results discussed in this Dissertation and 

suggests the scope of future work. 
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Chapter 2: Random Coupling Model 

The RCM, introduced by the “chaos group” at the University of Maryland in the early 2000’s, 

focuses on the problem of statistically modeling the scattering of short wavelength 

electromagnetic waves inside irregularly shaped enclosures connected to an external RF source 

by one or multiple ports. The RCM is an approach based on RMT and wave-chaos to predict the 

induced voltages and currents for objects and components inside complicated enclosures when 

subjected to electromagnetic fields. This is achieved by generating a large ensemble of the cavity 

impedance or scattering parameters through a Monte Carlo (MC) simulation and providing 

information on the cavity loss parameter and the complex radiation impedance of the coupling 

ports.  

This study focuses on the limit of electromagnetic waves of high-frequency coupling into 

metallic enclosures of irregular shapes where the wavelengths are very short compared to the 

perimeter of a cavity which causes the waves to go under specular reflection. Therefore, the 

RCM provides solutions for linear wave equations that can be described by ray-chaotic 

trajectories. 

2.1 Radiation Impedance Normalization of One- and Multi-Port Systems 

The RCM characterizes the fluctuations in the impedance and scattering matrices for a ray-

chaotic enclosure coupled to N ports. The cavity scattering matrix  S models the scattering waves 

in the enclosure in terms of a matrix of N×N complex values.  S is the amplitude of N outgoing 

scattered waves (1) for N incoming scattered waves (3) at the location of each port (i.e.	1= '3). 

The impedance matrix Z relates the complex voltages 5 at the 6 driving ports to the complex 

currents % at the N ports through  
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V =ZI.           (2.1)  

The matrices  S  and Z  are strongly varying functions of frequency, and are related through the 

bilinear transformation, 

Z = Z9 1 + S / 1 − S  for one-port, and                  (2.2) 

Z = Z
9

=/>

1 + S 1 − S Z
9

=/>  for multiple-ports,       (2.3) 

where Z9 is an N×N non-complex diagonal matrix whose elements are the characteristic 

impedances of the transmission line input channels at the N driving ports.  ? has a mean part 

given by the radiation impedance  

?@AB = ? .         (2.4)              

According to the RCM, for a wave-chaotic cavity coupled with N ports, the statistical impedance 

matrix consists of the radiation impedance matrix ?@AB and the normalized impedance matrix C, 

as shown in Eq. (2.5) [1] 

Z = i	Im	 Z@AB + Re	 Z@AB

=/>

	z Re	 Z@AB

=/>

.                    (2.5) 

The radiation impedance ?@AB is the impedance that can be obtained from the radiation scattering 

matrix S@AB through Eq. (2.6) 

Z@AB = Z9 I + S@AB / I + S@AB , for one-port, and                 (2.6) 

Z@AB = Z
9

=/>

I + S@AB 	 1 − S@AB

H=

Z
9

=/>, for multiple-ports.                (2.7) 

Once we obtain the radiation impedance we can then obtain the normalized impedance matrix z 

and the normalized scattering matrix	s via 

z = Z − iIm Z@AB / Re Z@AB , for one-port, and      (2.8) 
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       z = Re Z@AB

H=/>

Z − iIm Z@AB Re Z@AB

H=/>

, for multiple-ports.     (2.9) 

Finally, the normalized scattering parameter is given by 

 s = z − 1 z + 1

H=

.      (2.10) 

2.2 Generating Normalized Impedance Matrices from Monte Carlo Simulations 

The normalized impedance C only depends on the loss parameter α, which can be defined as 

 α = 	
K
L

MNO
L
P

 for 2D cavities , and     (2.11) 

 α = 	
K
Q

MNO
Q
P

 for 3D cavities .     (2.12) 

As described in his Ph.D. Thesis, Hemmady [1] derived the normalized impedance from RMT 

and the random plane wave hypothesis, which gives the formula for C for the multi-port case: 

 z = 	
HR

S
	

		TUTU

V

N
L
H	NO

L
MNO

L
HRW

X

YZ=
,                      (2.13) 

where k = 2πf/c is the wavenumber corresponding to the incoming frequency, \] is the 

wavenumber corresponding to a cavity eigenvalue, Δ\]>  is the mean spacing of adjacent 

eigenvalues,	w_ is an N-dimensional Gaussian random column vector with zero mean and its 

covariance matrix is the identity matrix, and α is the dimensionless cavity loss parameter. More 

details on the derivation of C  using the random plane wave hypothesis for the one- and multiple-

port cases is given in Ref. [3] and [4], respectively. Eq. (2.13) can then be evaluated numerically 

using MATLAB. More details on MC simulations can be found in [1]. 
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2.3 Experimental Setup for 2D Cavities for RCM Verification 

We fabricated 5 quasi-2D aluminum cavities. When we describe an enclosure or a cavity as a 

quasi-2D wave-chaotic cavity, we require that its maximum frequency does not exceed c/2d, 

where c is the speed of light and d is the height of the resonator [5]; in other words, the depth of 

the cavity is much smaller than the wavelength of electromagnetic radiation. The depth of our 

quasi-2D cavities does not exceed 8 mm. 

Each cavity acts as a reverberation chamber with a mode stirrer at each corner and in the middle 

to prevent the unwanted localization of electromagnetic fields (Fig. 2.1).  Along with these 

cavities, we fabricated aluminum inserts of different shapes that alter the internal boundary 

condition within each cavity. Fig. 2.1 shows the different internal configurations for a set of 

quasi-2D cavities obtained by using metal inserts to achieve a bow tie shape, a semi-circular 

shape, an elliptical shape, and a bi-elliptical shape. Fig. 2.1 also shows the mode stirrers (shaped 

like crosses) inside each cavity. Each rotation of the mode stirrer yields a different 

electromagnetic field configuration inside the cavities. Each mode stirrer is connected to a 

stepper motor (NI NEMA 23) (Fig. 2.2) for automation using the Arduino board (Fig. 2.3) for 

control. 
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a. Semi-circularly-shaped inserts. 

 

b. Bi-elliptically-shaped insert. 

 

c. Bow tie-shaped insert. 



 
 

14 

 

d. Elliptically-shaped insert. 

Fig. 2.1. Photographs showing the experimental setup of multiple (a.-d.) quasi-2D wave-chaotic 

cavities with different geometry inserts. 

 

Fig. 2.2.  Photograph of a stepper motor connected to a mode stirrer and controlled by an 

Arduino board. 

The MATLAB code instructs the Arduino board to rotate the mode stirrers incrementally in 200 

steps to yield a very large data set from the vector network analyzer (Keysight PNA-X N5247A) 

at each rotation of the mode stirrers.  At each increment of rotation, we precisely extract 100001 

points of complex scattering parameters as a function of frequency; the frequency range we work 

in is 50 MHz to 12 GHz, selected to study the transition from the deterministic regime to the 
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wave-chaotic regime. Therefore, we can generate a large statistical ensemble of cavity scattering 

matrices ' to permit the study of electromagnetic penetration into each cavity. 

Each 2D cavity’s covering lid has 5 different antenna locations (Fig. 2.3). Depending on the 

shape we insert inside the cavity, some of these locations will not be available to use; using the 

available antenna locations, the cavity is then driven by one, two, or three SMA ports, Fig. 2.4. 

The antenna is a PE4099 SMA adapter protruding into the cavity to generate a very large 

ensemble of data, 1x1, 2x2, and 3x3 cavity scattering matrices '.  

 

Fig. 2.3. Photograph of a surface of a quasi-3D cavity and antenna locations. 
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Fig. 2.4. Photograph of a PE4099 SMA adapter (top) used as an antenna (bottom). 

In addition, we use 50 Ω transmission lines of different lengths to connect the cavity to the PNA-

X. 

2.3.1 Experimental Radiation Impedance Normalization Process in One-Port 

Systems 

To validate that our quasi-2D cavities are in fact wave-chaotic we use Dyson’s circular ensemble 

hypothesis to verify the statistical independence of the phase and magnitude of the normalized 

eigenvalues. We validated this hypothesis by decomposing the eigenvalues of the normalized 

super vector a and then grouping the complex eigenvalues into a set λs. We verify Dyson’s 

circular ensemble hypothesis when the quasi-2D cavity is excited through one port, two ports, 

and three ports. 

Using a cavity with no inserts and an antenna protruding into the cavity through one port at 

antenna location 2 specified in Fig. 2.3, and using the vector network analyzer (VNA) we 

connect one port to the cavity and we extract S as a function of frequency.  We then convert the 
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super-matrix 100001×200 of  S into s  to calculate λs using the equations in Section 2.1 to 

verify the existence of chaotic rays through Dyson’s circular ensemble hypothesis.  Fig. 2.5 is an 

example of Dyson’s hypothesis for a frequency range of 10.0-10.5 GHz. Using our 

experimentally-generated data, we calculate the loss parameter to be a=0.7562.   

 

Fig. 2.5. Polar contour density plot of the real part of λs vs. the imaginary part of λs for a one-port 

measurement. 

Using the experimentally determined value of a in a MC simulation of the RMT we generate a 

large statistical matrix of normalized impedances (z), which can then be compared with the 

experimental and theoretical RCM-generated PDFs for the real and imaginary of the eigenvalues 

of the normalized impedance; we see an excellent agreement, as shown in Fig. 2.6 and Fig. 2.7.  
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Fig. 2.6. Comparison of experimental measurements (red) and theoretical simulations (blue) of 

the PDFs of the real part of the eigenvalues of the normalized impedance for a one-port 

measurement. 

 

Fig. 2.7. Comparison of experimental measurements (black) and theoretical simulations (red) of 

the PDFs of the imaginary part of the eigenvalues of the normalized impedance. 
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2.3.2 Experimental Radiation Impedance Normalization Process in Two-Port 

Systems 

A quasi-2D cavity with a bowtie insert and with two antennas protruding into the cavity through 

port one at antenna location 5 and port two through antenna location 3 (antenna locations 

specified in Fig. 2.3) was tested. Using the VNA we connect two ports to the cavity and we 

extract S as a function of frequency. We convert the super-matrix 2×2×100001×200 of S into s  

to calculate λs using the equations in Section 2.1 We verify the existence of wave-chaotic rays 

through Dyson’s circular ensemble hypothesis, as shown in Fig. 2.8.  Fig. 2.8 is an example of 

Dyson’s hypothesis for the frequency range of 10.0-10.2 GHz. Using our experimentally-

generated data, we calculate the loss parameter for this case to be a=1.4052. Given this value of 

a the MC simulation of the RMT generates a large statistical 2×2 matrix of normalized 

impedances (z).  We compare the experimental and theoretical RCM-generated PDFs for the real 

and imaginary parts of the eigenvalues of the normalized impedance (Fig. 2.9 and Fig. 2.10).  

 

Fig. 2.8. Polar contour density plot of the real part of λs vs. the imaginary part of λs for a two-port 

measurement. 
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Fig. 2.9. Comparison of the experimental measurements (red) and theoretical simulations (blue) 

of the PDFs of the real part of the eigenvalues of the normalized impedance for a two-port 

measurement. 

 

Fig. 2.10. Comparison of the experimental measurements (black) and theoretical simulations 

(red) of the PDFs of the imaginary part of the eigenvalues of the normalized impedance for a 

two-port measurement. 
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2.3.3 Experimental Radiation Impedance Normalization Process for Three-

Port Systems 

Measurements were performed using a cavity with an elliptical insert and using 3 antennas 

protruding into the cavity through port one at antenna location 1, port two at antenna location 4, 

and port three at location 5 (antenna locations specified in Fig. 2.3). Using the VNA we connect 

two ports to the cavity and we extract S as a function of frequency. We convert the 3×3×

100001×200 S into s  to calculate λs using the equations in Section 2.1 to verify the existence of 

chaotic waves through Dyson’s circular ensemble hypothesis.  Fig. 2.11 is an example of 

Dyson’s hypothesis for the frequency range 10.1-10.2 GHz. Using our experimentally-generated 

data, we calculate the loss parameter for this case to be a=1.7471.  Given this value of a the MC 

simulation of the RMT generates a large statistical 3×3 matrix of normalized impedance (z). We 

compare the experimental and theoretical RCM-generated PDFs for the real and imaginary of the 

eigenvalues of the normalized impedance in Figs 2.12 and Fig. 2.13. 

 

Fig. 2.11. Polar contour density plot of the real part of λs vs. the imaginary part of λs for a three-

port measurement. 
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Fig. 2.12. Comparison of the experimental measurements (red) and theoretical simulations (blue) 

of the PDFs of the real part of the eigenvalues of the normalized impedances for a three-port 

measurement. 

 

Fig. 2.13. Comparison of the experimental measurements (black) and theoretical simulations 

(red) of the PDFs of the imaginary part of the eigenvalues of the normalized impedance for a 

three-port measurement. 
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We observed for all cavities with different inserts that they become wave-chaotic cavities when 

excited by one port, two ports, and three ports at frequencies of 3.5 GHz and higher, and the loss 

parameter increases as a function of frequency. Fig. 2.14 presents the cavity loss factor as a 

function of frequency for a cavity with a bi-elliptical insert.  We observe that the loss parameter 

increases as a function of frequency; the magenta lines refer to the loss parameter calculated 

using Eq. (2.11) leading to Re[z], and the blue blocks give Im[z]; the cases where only one color 

is shown is where both blocks overlap each other. 

 

Fig. 2.14. Experimental measurements of loss parameter as a function of frequency in a quasi-2D 

cavity with a bi-elliptical insert. 

In these experiments, once we obtain the normalized scattering coefficient s we can 

experimentally validate the statistical predictions for the magnitude and the phase of  s (φs) using 
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the RCM. We can see that at higher frequencies the PDF of φs approaches a uniform distribution 

and at lower frequencies, the PDF of φs is not uniformly distributed. Fig. 2.15 is one example of 

many verifications we performed for one-port measurements. 

 

Fig. 2.15. The PDF of the phase angle φs of the normalized scattering coefficient a. 

We calculate the mean square error (MSE) Ω for the sum of all the P(φs) of all the one-port 

measurements where φs is the phase angle of the normalized scattering parameter (s) (Fig. 2.16) 

using   

      Ω = e φs	 −	
=

>g

>

.     (2.14) 

We found that the MSE for the frequency range 6-12 GHz becomes very small and, therefore, we 

decided to continue our study of wave-chaotic waves within this range.  
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Fig. 2.16. PDF MSE distance as a function of frequency for one-port testing. 

 

Fig. 2.17. PDF MSE distance as a function of frequency for two-port testing. 
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As a conclusion to this section, all of our quasi-2D cavities are ray-chaotic enclosures and the 

RCM is applicable, and we can further use them to create a network of cavities to mimic a real-

world facility. 

2.4 The Radiation Case 

The radiation case involves obtaining coefficients of ' for the excitation port when waves enter 

the cavity and do not return to the port. This condition is achieved by distributing commercial 

microwave absorbers (ECCOSORB® LS-24 and ECCOSORB MCS) along the side walls of the 

cavity, which provides about 40 dB of reflection loss when the frequency is between 6 and 12 

GHz. For this experiment, we use our quasi-2D cavity with semicircular inserts. The first case 

we test for is where there are no absorbers along the boundaries (we call this loss case 0); the 

second case is loss case 1 (where 2 cm long sections of absorber are distributed evenly along the 

perimeter of the cavity and spaced 10 cm apart, as shown in Fig. 2.18); the third case is loss case 

2 (where 2 cm long sections of absorber are evenly distributed along the perimeter of the cavity 

and spaced 5 cm apart, as shown in Fig. 2.19); and the final case is loss case 3 (where absorbers 

are distributed all along the perimeter, as shown in Fig. 2.20).  In all cases, we excited the 

cavities using two ports, port 1 at location 5 and port 2 at location 3. 
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Fig. 2.18. Photograph of the quasi-2D cavity for loss case 1. 

 

Fig. 2.19. Photograph of the quasi-2D cavity for loss case 2. 
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Fig. 2.20. Photograph of the quasi-2D cavity for loss case 3. 

As we increase the amount of absorber material placed inside the cavity, the loss parameter 

increases and the cavities are still chaotic, as shown in Fig. 2.21 and Fig. 2.22. 
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Fig. 2.21. Experimentally obtained PDFs of the imaginary part of the eigenvalues of the 

normalized impedances for all the radiation loss cases. 
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Fig. 2.22. Experimentally obtained PDFs of the real part of the eigenvalues of the normalized 

impedances for all the radiation loss cases. 

We also measure the results of the radiation scattering coefficient '@AB	over the same frequency 

range 6-12 GHz to show the fluctuations introduced into the measurement of '@AB	 due to the 

waves that leave the port and bounce on cavity walls and return to the port. The more we 

increase the absorbers around the walls the fewer are the waves that return. The magnitude of 

'@AB	is shown in Fig. 2. 23.  
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Fig. 2.23. Magnitude of the measured values of 'hij. 
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Chapter 3: The Baum-Liu-Tesche (BLT) Electromagnetic Topology 

Model 

The BLT electromagnetic topology model involves the division of a complex electromagnetic 

problem into smaller problems that are easier to solve [6]. The BLT electromagnetic topology 

model makes excellent use of the “good shielding approximation” principle, which assumes that 

the inner volumes do not interact with the external volumes. Sub-volumes are volumes consisting 

of walls and cables. There are two types of walls: walls with proper shielding that provide 

physical separation between the volumes and walls with not so good shield (e.g. have some 

apertures or wires connected to other walls, will leak energy to other volumes). “A BLT network 

can be seen as a formulation of the electromagnetic coupling existing between the different 

volumes, which compose the entire volume under study” [7]. The BLT electromagnetic topology 

model is a hierarchical framework based on the MTL model for describing the flow of energy 

between different nodes on a network of MTL segments. 

The electromagnetic interaction within the BLT is represented by the BLT equation: 

   % − ' ∙ )	 ∙ + 0 = ' ∙ +. ,                    (3.1)         

where %, ', and ) are the identity, scattering, and propagation super-matrices, respectively. 

[W(0)] and [+.] represent the outgoing and the source waves, respectively. In a BLT network of 

volumes, volumes are described in terms of junctions. Junctions are related to each other through 

tubes, and tubes represent the forward and backward traveling waves through apertures or 

transmission lines. The BLT equation can then be used to calculate the voltage and the current 

responses at each junction in a network’s sub-volume. 

The advantage of using the electromagnetic topology in the frequency domain is that the 

different sub-volumes can be treated independently. The elements of the super-matrices are 
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determined either through numerical methods for computational electromagnetics, or through 

analytic expressions. 

We represent the 2D aluminum cavities as volumes within the BLT network; the junctions are 

represented by the radiation impedances at each port, and the transmission lines are represented 

by the coaxial cables. We want to apply the BLT equation to a network of arbitrarily connected 

cavities by using S derived from the RCM for each cavity so we can directly compute the 

induced currents and voltages.  

 

Fig. 3.1. CAD drawing of five quasi-2D ray chaotic cavities that will be interconnected in an 

arbitrary manner. 

The cavities are either arbitrarily connected or in a cascaded fashion using 50 Ω coaxial 

transmission lines, as we will see later in this chapter. The electromagnetic interaction within the 

network is then represented by a topological network for the three randomly interconnected 

cavities. In this Dissertation, we express each volume in the BLT network via an experimentally-
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generated	', and a numerical simulation-generated ' using MC MATLAB simulations for 

purposes of comparison. 

3.1 Experimental BLT Formulation for Interconnected Cavities 

The BLT formalism requires a geometric description of the problem in order to break it down to 

establish an interaction graph between the volumes and a description of the propagation through 

the interfaces. The first network configuration of BLT we performed was for three cavities 

arbitrarily connected. In this case we are working in the frequency range of 6-12 GHz. 

Cavity A: A quasi-2D cavity with a bowtie-shaped insert that is excited by three ports at location 

3, location 4, and location 5. 

Cavity B: a quasi-2D cavity with an elliptically-shaped insert that is excited by three ports at 

location 1, location 4, and location 5. 

Cavity C: a quasi-2D cavity with a semicircularly-shaped insert that is excited by two ports at 

location 1 and location 5.  

We connected the cavities to each other and to the VNA, as shown as shown in Fig. 3.2. A 

photograph of the set-up is shown in Fig. 3.3. 
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Fig. 3.2. Schematic of the experimental setup for three interconnected cavities forming the BLT 

network topology. 

 

Fig. 3.3. Photograph of the experimental setup for three interconnected cavities. 
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Cavities A and B both have two mode stirrers, and cavity C has three mode stirrers. On all the 

cavities, we have multiple stepper motors rotating so that the mode stirrers move at the same 

time at each rotation. Using an Arduino shield on top of the Arduino UNO processor helped us in 

mounting several stepper motors on the cavity and rotating them simultaneously. All the mode 

stirrers rotate 200 times. At each rendition of the mode stirrer, we extract 100k complex 

scattering parameters ' vs. frequency from the VNA. 

We previously tested each cavity by themselves using the method presented in Chapter 2 for 

RCM applicability. We then generate ' based on the number of ports exciting each cavity, and 

we calculate the loss parameter for each cavity. Cavity A is excited by three ports; therefore, 

Cavity A super-matrix ' has size 3x3x100001x200, Cavity B super-matrix ' has size 

3x3100001x200, and Cavity C super-matrix  ' has size 3x3100001x200. 

We represent the 2D aluminum cavities as volumes within the BLT network; the junctions are 

represented by the radiation impedances at each port, and the transmission lines are represented 

by the coaxial cables connecting the cavities to each other. We want to apply the BLT equation 

to a network of arbitrarily connected cavities by using S experimentally-generated for each 

cavity so that we can directly compute the induced currents and voltages. The corresponding 

BLT topological network for arbitrarily interconnected cavities is shown in Fig. 3.4. J0–J4 

represent the excited voltage source, cavity A, cavity B, cavity C, and the matching resistance, 

respectively. 
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Fig. 3.4. BLT topological network for three randomly interconnected cavities. 

Based on this topological MTL network we can build the electromagnetic interaction represented 

by the BLT equation.  + 1 −+(10) are the outgoing voltage waves and +. 1 −+.(10) are 

the source waves. Thus, the relevant BLT equation is given by:  

   % − ' ∙ )	 ∙

+(1)

+(2)

+(3)

+(4)

+(5)

+(6)

+(7)

+(8)

+(9)

+(10)

= ' ∙ 	

+.(1)

+.(2)

+.(3)

+. 4

+.(5)

+.(6)

+.(7)

+.(8)

+.(9)

+.(10)

,       (3.2) 

where % is the identity matrix (10 by 10) given by 
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   % =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

.        (3.3) 

' corresponds to the measured or RCM-generated cavity scattering matrix. The ' matrix is 

characterized by the incoming and outgoing wave at each junction. ' is generated using a wave 

to wave matrix given by [8] two waves – Wi (incoming wave) and Wj (outgoing wave):  

(Wi, Wj) = 1, if there is a junction J, Wi leaves J and Wj arrives on J 

(Wi, Wj) = 0, otherwise.  

For this BLT configuration, we will use the topological network shown in Fig. 3.4, with 

  (Wi,Wj) 	= 	

0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0

      (3.4) 

and ' becomes 
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            ' = 	

0 0 0 0 0 0 0 0 0 0

'113 0 0 '213 0 0 0 '313 0 0

'123 0 0 '223 0 0 0 '333 0 0

0 0 '331 0 0 '231 0 0 0 '131

0 0 '231 0 0 '221 0 0 0 '211

0 0 0 0 '22v 0 '12v 0 0 0

'133 0 0 '233 0 0 0 '333 0 0

0 0 0 0 '21v 0 '11v 0 0 0

0 0 '311 0 0 '211 0 0 0 '111

0 0 0 0 0 0 0 0 0 0

 .         (3.5) 

 

When using MTLs, the propagation matrix ) represents a piece of cable with uniform cross-

section. The propagation matrix describes the wave propagation at each tube and the cable 

characteristics, where w is the length of the cable connecting the cavities. ) is a diagonal 

symmetric matrix of Wi and Wj when there is propagation to be considered the block in the 

diagonal would be equal to the propagation characteristics and when there is no propagation the 

diagonal elements would be equal to 1.  

 

   ) =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 e
HR
Lxy

z
∗|=

0 0 0 0 0 0 0

0 0 0 e
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Lxy
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∗|=

0 0 0 0 0 0

0 0 0 0 e
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Lxy
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∗|>

0 0 0 0 0

0 0 0 0 0 e
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Lxy
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∗|>

0 0 0 0

0 0 0 0 0 0 e
HR
Lxy

z
∗|}

0 0 0

0 0 0 0 0 0 0 e
HR
Lxy

z
∗|}

0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

.   (3.6) 

 

We insert ' into the BLT equation generated by the RCM and calculate W5, which is S21 

generated by the equation. Also, we insert ' generated experimentally into the BLT equation and 
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calculate W5. Lastly, we measure S21 using two-port measurements established on the entire 

BLT network configuration (see Fig. 3.4) and the results we obtained for the PDFs of S21 in all 

cases were identical. In a nutshell, we perform three tests to validate our results: 

• '	is generated numerically using RMT, then used in the BLT formalism 

• '	is generated experimentally then used in the BLT formalism 

• The BLT formalism is established experimentally for the cavities and ' is measured.  

We have previously validated that the RCM applies to the cavities above 6 GHz in Chapter 2 for 

one-port, two-port, and three-port measurements. Our results show an excellent agreement 

between experimentally and theoretically fusing the RCM with BLT.  Fig. 3.5 results suggest 

that the fusing of the RCM with the BLT electromagnetic topology model accurately reproduces 

the PDF for the measured S21 obtained in the experiment. 

Another network configuration we studied was two interconnected cavities.  

Cavity A: a quasi-2D cavity with a bowtie-shaped insert excited by two ports at location 3 and 

location 5. 

Cavity B: a quasi-2D cavity with an elliptically-shaped insert excited by two ports at location 

1and location 5. 

We connected the cavities to each other and to the VNA. We want to apply the BLT equation to 

the network of connected cavities by using S experimentally-generated for the corresponding 

topological BLT network shown in Fig. 3.6. J0–J3 represent the excited voltage source, cavity A 

and cavity B, the matching resistance.   
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Fig. 3.5. BLT formalism results for three randomly interconnected cavities.  

 

Fig. 3.6. BLT topological network for two interconnected cavities. 
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Based on this topological MTL network we can build the electromagnetic interaction represented 

by the BLT equation.  	+ 1 −+(6) are the outgoing voltage waves, +. 1 −+.(6) are the 

source waves. Thus, the relevant BLT equation is given by: 

    I − S ∙ Γ	 ∙

W(1)

W(2)

W(3)

W(4)

W(5)

W(6)

= S ∙ 	

W�(1)

W�(2)

W�(3)

W� 4

W�(5)

W�(6)

,      (3.7) 

where % is the identity matrix (6 by 6) given by 

 

    % =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

,       (3.8) 

and ' corresponds to the measured or RCM-generated cavity scattering matrix. The ' matrix is 

characterized by the incoming and outgoing wave at each junction 

   ' = 	

0 0 0 0 0 0 0

'113 0 0 '213 0 0 0

'123 0 0 '223 0 0 0

0 0 '111 0 0 '211 0

0 0 '121 0 0 '221 0

0 0 0 0 0 0 0

.    (3.9) 

The propagation matrix ) describes wave propagation at each tube and the cable characteristics, 

and w is the length of the cable connecting the cavities 
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    ) =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 e
HR
Lxy

z
∗|=

0 0 0

0 0 0 e
HR
Lxy

z
∗|=

0 0

0 0 0 0 1 0

0 0 0 0 0 1

.            (3.10) 

In these equations, we use ' generated by the RCM and the expected PDFs should be identical to 

when we use the experimentally-generated ', and the results should be identical to the PDFs of 

the measured ' of the entire interconnected multiple cavity network. (We also measured S 

parameters while all the cavities are connected.) 

We have validated that the RCM applies to the cavities above 6 GHz in Chapter 2 for 1-port, 2-

port, and 3-port measurements. Our results (Fig. 3.7) show good agreement between 

experimentally and theoretically fusing the RCM with the BLT electromagnetic topology model 

for two interconnected cavities. 
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Fig. 3.7. BLT formalism results for two interconnected cavities. 

3.2 Cascaded BLT Configurations   

To further verify the BLT analysis, we studied different network configurations of the 2D 

cavities. One of the configurations is a network of cascaded cavities using the schematic in Fig. 

3.8. The first cavity is excited by a source and power leaking out excites the subsequent cavities. 
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Fig. 3.8. Network model of a chain of coupled cavities. 

The cavities are identical and with bowtie inserts, and all cavities are excited at the same antenna 

locations. The following graphs are results for two cascaded cavities with port 1 connected to the 

antenna at location 3.  Using a transmission line of 62” we connected the antenna at location 5 of 

the first cavity to the antenna at location 3 of the second cavity, and the second cavity is 

connected to the PNA-X through antenna location 5.  

 

Fig. 3.9. BLT formalism results for two cascaded cavities. 
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Similarly, for three identical cascaded cavities, port 1 is connected to the antenna at location 3. 

Using a transmission line of 62” we connected the antenna at location 5 of the first cavity to the 

antenna at location 3 of the second cavity, and we connected the antenna at location 5 of the 

second cavity to the antenna at location 3 of the third cavity.  The last cavity is connected to the 

PNA-X through antenna location 5. 

 

 

Fig. 3.10. BLT formalism results for three cascaded cavities. 

A similar process is used for the setup with four and five cascaded cavities. 
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Fig. 3.11. BLT formalism results for four cascaded cavities. 
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Fig. 3.12. BLT formalism results for five cascaded cavities. 

 

Our results (Figs. 3.9-3.12) show an excellent agreement when fusing RCM with BLT for 

different networks of cascaded cavity configurations. 

 

 

 

 



 
 

49 

Chapter 4: Large 3D Cavity 

In order to study the transition from deterministic to wave-chaotic behavior a large 3D chaotic 

cavity was designed and constructed. The 3D aluminum cavity (Fig. 4.1a) acts as a reverberation 

chamber with paddle-wheel blades. Fig. 4.1b shows the mode stirrer controlled by a LabVIEW 

program that rotates it incrementally in 200 steps.  Each step in the rotation yields different 

electromagnetic field configurations (see Fig. 4.1c). The cavity is connected using two 

transmission lines that connect to a Keysight E5061B VNA. The cavity is driven by two coupled 

ports and is excited using two Hertzian dipole antennas to generate a large statistical ensemble of 

a 2x2 cavity scattering matrix '.  

To generate a very large ensemble of data, the electromagnetic configuration inside the cavity 

changes for each degree rotation as the mode stirrer is incrementally turned. At each increment ' 

is measured as a function of frequency in 100 MHz increments from 300 MHz to 3 GHz; we 

chose this frequency range to enable us to study the transition from the deterministic to wave-

chaotic regime. By rotating the mode stirrer in 200 steps, an ensemble of 320200 cavity 

scattering matrices is obtained at each 100 MHz increment. We use the method described in 

Chapter 2 to generate '. 
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(a) 

 

(b) 

 

(c) 
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Fig. 4.1. (a) Photograph of the experimental setup of a single 3D aluminum cavity. (b) 

Photograph of the mode stirrer inside the cavity. (c) Plot of the correlation between one rendition 

of the cavity vs. other renditions of the cavity as the stirrer is rotated through 360 degrees. 

 

4.1 Experimental Chaos Verification for a Single 3D Cavity 

We verify the existence of wave-chaotic scattering in our 3D cavity in the high frequency limit 

by verifying the statistical independence of the phase and magnitude of the normalized 

eigenvalues of a (Dyson’s circular ensemble hypothesis, previously described).  Fig. 4.2 shows 

the polar contour density plot for {Re[λs], Im[λs]} in the frequency range of 2.7-2.8 GHz where 

the loss parameter of the cavity is 1.6. Using Dyson’s hypothesis, we confirm that our 3D 

aluminum cavity is chaotic above 1.6 GHz. 

Fig. 4.3 presents the PDFs of the real and imaginary parts of the grouped eigenvalues of the 

normalized impedance matrix given the value of Å=1.6 (loss parameter) obtained using 

experimental measurements.  The results agree well with the simulation results from the RCM. 
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Fig. 4.2. Polar contour density plot of real λs vs. imaginary λs. 

 

Fig. 4.3. Comparison of experimental data with results from the RCM. 
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 4.2 3D MSC Experiments for Verification for Deterministic Solutions  

Our aluminum 3D MSC is also extensively used to experimentally verify the deterministic 

solutions for induced electromagnetic fields inside a ray-chaotic enclosure. The 3D cavity has 

been experimentally used to validate the applicability of the hybrid formulation. The hybrid 

formulation is the combination of the RCM and CEM (Computational Electromagnetic Method). 

The goal of the first experiment was to obtain the impedance matrix using finite elements 

method (FEM) for two ports antenna subsystems at lower frequency 800-900 MHz to validate its 

applicability. Fig 4.4 shows the experimental data I obtained to validate the computed S11 and S12 

parameters as a function of frequency. 

 

Fig. 4.4. Comparison of S-parameters obtained by computation and measurement. 

Fig. 4.5 shows the S-parameters I measured using one port when the cavity is excited using an 

X-band waveguide in comparison with the deterministic computational methods obtained by Dr. 

Peng’s group in the frequency range of 9-11 GHz. 
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Fig. 4.5. PDF of |S11| in the single-port case. 

The final results show an excellent agreement between measured and computed data. 
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Chapter 5: Conclusions and Scope for Future Work 

We have created a platform that is a surrogate for a very large enclosure composed of volumes 

described by the BLT topology, and each volume is in accordance with the requirements for the 

RCM to be valid. We have verified that a statistical approach to solving a very large and 

complex electromagnetic problem can be achieved using the statistical models through verifying 

experimental and theoretical results for different network combinations. The combining of the 

RCM and the BLT electromagnetic topology provides the user with a quick tool to calculate the 

statistical distribution of the induced electromagnetic fields within large interconnected cavities. 

Using statistical approaches in solving large complicated problems is highly reliable, more rapid, 

and less expensive than performing a deterministic calculation of the problem. 

This study also comes with few limitation controlled by the behavior of waves inside the ray-

chaotic enclosures. In the low-frequency regime, all the cavities were not sufficiently chaotic 

where the RCM is applicable to produce statistical predictions. RCM is not applicable using 

hybrid systems which are the combination of chaotic, non-chaotic, and scarred modes. The RCM 

is also not applicable when we have an active circuitry with time-varying radiation impedances, 

and when there is a large multimode port which has variable radiation impedance that depends 

on the modes. 

The STUWEE framework considers that every volume in the BLT network is ray-chaotic and 

statistical; therefore, any non-chaotic volume inside the BLT network will have to be accounted 

for using deterministic methods or as future work we can have a statistical method that accounts 

for non-chaotic enclosures. 
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5.1 Creating a STUWEE Simulation Software Tool 

Simulation tools previously created to solve for the BLT topology, such as CRIPTE [10] and IDS 

Ingegneria Dei Sistemi [11], utilized deterministic solutions to the BLT nodes (which require 

detailed information on the interacting cavity volumes). This is where our proposed STUWEE 

code differs from them; we use a statistical treatment for the internal cavity fields based on the 

RCM. We are currently in the process of developing an engineering software tool that fuses the 

BLT electromagnetic topology model with the RCM to provide a fast calculation of the induced 

fields within a large a facility to rapidly assess a complex facility for vulnerability to 

electromagnetic attack. We plan on having an engineering software tool (STUWEE) fully 

developed in MATLAB and Qt. 

Anticipated user inputs for the STUWEE code are: 

• The number of cavities 

• Loss parameter for each cavity 

• The number of ports exciting each cavity. 

Anticipated output for the STUWEE code: 

• The induced currents and voltages within systems of interconnected and complicated 

enclosures. 

5.2 RF and Microwave Effects on Digital Electronics 

As future work, we want to study how the RCM fluctuations induced within a cavity can affect 

digital electronics inside ray-chaotic enclosures. Ultimately characterizing and understanding the 

microcontroller port impedance behavior as a function of instruction will allow us to implement 

a correction factor for this effect.  This, in turn, will enable us to utilize these devices in 

irradiating wave-chaotic cavities and to accurately measure the coupling and ultimately the 
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effects of electromagnetic energy that will lead to a full back box predictive mode of 

electromagnetic interference effects. 

5.3 Formulating a Time Domain Version of the Random Coupling Model 

We are currently performing time domain experiments of multi-path reflections using quasi-2D 

cascaded cavities to test for the wireless communication response research that is being 

performed in the City of Albuquerque. The emulation of realistic wireless channels is performed 

through irregular cavities with high losses [9]. The cavity eigenspectrum can be generated using 

the universal statistical laws of RMT. 

5.4 Formalism of BLT Using a Microwave Circulator 

We will be constructing a network of a different type to further validate the success of the 

RCM/BLT formalism. We first measure the S-parameter of one quasi-2D cavity with no inserts 

when it is excited by four ports. Port 1 of the PNA-X will be connected to the antenna at location 

3, port 2 will be connected to the antenna that will be connected to the antenna at location 4, port 

3 will be connected at location 2, and port 4 will be connected to the antenna at location 1; we 

verify that the cavity is wave-chaotic. Once we confirm the existence of chaotic rays inside a 

cavity excited by four ports, we move to our first experiment. The test setup for the first network, 

Fig. 5.1, will have the antenna at location 2 connected through a 60” long coaxial transmission 

line to the antenna at location 1, rather than port 3 and port 4 respectively with no circulator.   Its 

topological network is shown in Fig. 5.2.  In this case, all five mode stirrers of the cavity are 

rotating at the same time for 200 times, and we measure complex S-parameter as a function of 

frequency per rotation.  

For the second experiment, we repeat the same process as in the first experiment; however, the 

antenna at location 2 will connect to port 1 of a circulator through a 32” long transmission line, 
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and antenna at location 1 will connect to port 2 of the circulator through a 32” long transmission 

line, Fig. 5.3; in this case, the circulator ferromagnetic device is going to regulate the signal flow 

within the cavity. In the second experiment, the wave that enters port 1 of the circulator is going 

to be transmitted through port 2 into the cavity. The circulator provides one path in which the 

waves can travel. This is in contrast with experiment 1 where there was no circulator to regulate 

the waves. Fig. 5.4 shows that the waves, as explained in the BLT topological network, are 

traveling back and forth into and out of the cavity through the transmission line. 

As we have tested before, all our quasi-2D cavities obey Time Reversal Symmetry (TRS); 

therefore, we use the Gaussian Orthogonal Ensemble (GOE) of the random matrices to test the 

measurement of our experiments vs. the BLT electromagnetic topology model with the RCM 

prediction. 

 

Fig. 5.1. Schematic of our experimental setup for a network with no circulator. 
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Fig. 5.2. BLT topological network with no circulator. 
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Fig. 5.3. Schematic of experimental setup for a network with no circulator. 

 

Fig. 5.4. BLT topological network for a network with a circulator. 
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5.5 Data-Driven Discovery of Electromagnetic Topology 

We are using the five quasi-2D cavities to experimentally validate the solutions obtained 

deterministically by Dr. Peng’s group at the University of New Mexico. The goal is to discover 

the topological graph of electromagnetic systems based on data collected in experiments and 

simulations. Key ingredients include a sparse, nonlinear regression to determine the interaction 

channels between graph nodes, and a recursive skeletonization factorization for the 

dimensionality reduction of large datasets. An example of Dr. Peng’s data-driven discovery of 

electromagnetic topology vs. our measurements shows an almost perfect agreement, Fig. 5.5. 

 

 

Fig. 5.5. Data-driven discovery of electromagnetic topology (blue) vs. measurements (red). 

 

Predicting the statistical nature of short wavelength reverberation within random 

interconnections of large and complicated cavities finds applications in several fields of physics 
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and engineering.  In this Dissertation, we have proved the validity of solving complex 

electromagnetic problems in a concise amount of time using two types of successful wave 

scattering models, the RCM and BLT electromagnetic topology model, that describes the 

interaction of short wavelength electromagnetic radiation within complicated enclosures, and the 

interaction of interconnected networks of large and complicated enclosures. 

 

5.6 Additional Reading 

In addition to the references cited in this Dissertation I have provided references to additional 

reading that might guide future research [12-25]. 
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