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Abstract

The ability to guarantee the safety of autonomously controlled space vehicles is

of great importance to help avoid accidents and ensure mission success. In this

paper we investigate the safety verification of a satellite attempting to maneuver

to a new position while avoiding multiple pieces of debris. We assume that the

satellite, desired rendezvous point, and all debris are near the same circular orbit

with dynamics modeled by Clohessy-Wiltshire-Hill (CWH) equations. We will use

reachability methods to guarantee the satellite is able to reach a desired point while

avoiding all debris. We will first develop a computationally e�cient method for

computing the Reach-Avoid set for a system modeled by CWH dynamics, and then

extend this method to the minimal and maximal reach calculations. We then review a

system decomposition method for computing reach sets in large dimensions and apply

the methods to the debris avoidance problem. Finally, we develop computationally

e�cient methods to compute an under-approximation of the Reach-Avoid set and

present numerical examples for single and multiple debris scenarios.
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Chapter 1

Introduction

The development of autonomous control systems has become more prevalent in a

wide variety of applications including government satellites. The ability to generate

control sequences such that the systems will continue to operate in a safe manner has

also become an important point of research in recent decades. The ability to ensure

the safe operation of a multimillion dollar satellite is a chief concern. The DART

mishap gives an example of the importance of safe controller synthesis for large

scale projects. In this example, the DART satellite, which intended to demonstrate

autonomous rendezvous technologies of space vehicles, missed a critical waypoint.

Because of this, the DART satellite did not transition to its close proximity stage

of the rendezvous process. It instead collided with its rendezvous target at a high

velocity resulting in a NASA designated “Type A” mishap, meaning a NASA mission

failure resulting in a government loss of more than one million dollars [1]. Because of

accidents like this, the ability to guarantee safety of autonomously controlled systems

is of great importance; not only for the monetary costs involved with failures but

also to ensure the systems can continue to perform their required tasks.

One method often used to guarantee the safety of autonomous systems is reacha-
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Chapter 1. Introduction

bility [2]. With this technique, safety is defined by unsafe regions of the state space,

or specific state configurations the controlled vehicle should not enter. For a debris

avoidance problem this region might look like a bounding box around the position

of the debris. Reachability can then give a new region in the state space from which

it is possible for the controlled vehicle to avoid the unsafe region. Additionally, a

region in the state space can be defined as the target. In a rendezvous problem this

might be a bounding box around the position of the rendezvous target vehicle. Under

these classifications reachability can generate a region in the state space from which

it is possible to reach the target. Finally, both of these concepts can be combined

and reachability can generate a region in the state space from which it is possible

to reach the target region while avoiding all unsafe regions; this set is referred to as

the Reach-Avoid set [3], [4]. Applying this technique to a space vehicle rendezvous

problem, coupled with debris avoidance, can lead to a set of states from which the

controlled vehicle will be able to safely reach its rendezvous target while avoiding all

the debris.

In recent years there has been much research into reachability. However, one of

the main issues that still plagues the field is computational constraints due to high

dimensionality of the systems. To find a solution for a system with greater than

three or four dimension becomes intractable. In the past, others have developed

methods for systems which match a specific set of assumptions, or for systems with

unsafe and/or target regions that are defined by specific shapes [7], [8], [9], [10]. The

methods developed for these specific cases can handle systems with larger dimensions.

In more recent months, methods have been developed for computing a single reach

or avoid calculation for a large dimension system by decoupling the system dynamics

and the target or avoid set [18]. This method, referred to as system decomposition,

allows the current computational methods to be applied to the smaller dimension

systems independently, and then reconstructs the larger dimension reach or avoid

2



Chapter 1. Introduction

set through specific combinations of lower dimension reach or avoid sets. While this

method does allow for exact solutions of large dimension systems, it only applies to

specific reach calculations under specific target or avoid set formulations.

In this thesis we apply reachability techniques to the problem of space vehicle

rendezvous with debris. Specifically, we look at a satellite attempting to maneu-

ver to a new region near the same orbit while avoiding a collision with a single, or

multiple, piece(s) of uncontrolled debris near the same orbit. Under the assumption

that all objects are near the same circular reference orbit we utilize the well studied

Clohessy-Wiltshire-Hill (CWH) dynamics to relate the relative positions and veloc-

ities of all objects to one another. We develop a computationally tractable method

to calculate the Reach-Avoid set for the case where a satellite is maneuvering to a

new position while staying outside an unsafe region, referred to as the two-vehicle

problem. Because of the non-convexity of the safe region of the debris avoidance

problem the method developed for the two-vehicle problem can not be directly ap-

plied to the debris avoidance problem. We instead develop two di↵erent methods

to under approximate the full Reach-Avoid set by applying system decomposition

to the multiple debris avoidance problem for one method and to the multiple debris

invariance problem for the other method. The debris invariance method can be im-

plemented using independent calculations for each piece of debris while the debris

avoidance method requires the avoid set to be calculated for all debris at once. The

main contributions of this thesis are: 1) applying system decomposition reachability

techniques to the satellite debris avoidance problem and 2) under approximating the

full Reach-Avoid set for the satellite rendezvous problem with debris avoidance using

independent calculations for reaching the target and avoiding the debris.

3



Chapter 2

Problem Formulation

2.1 CWH Dynamics

The CWH dynamics are a well studied linear time-invariant (LTI) model relating

the six dimensional position and velocity of one spacecraft to another [11], [12], [13].

The vehicle at the origin of the coordinates is ofter referred to as the chief while the

other vehicle is referred to as the chaser. These dynamics assume that both the chief

and the chaser are near the same circular orbit and are used to model close proximity

maneuvers. While the CWH equations do model the full six dimensional system, the

out-of-plane relative position and velocity are decoupled from the in-plane dynamics.

For the purposes of our work we are only interested in the in-plane dynamics and
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Chapter 2. Problem Formulation

thus our four dimensional CWH equations are as follows

ż(t) = f(z, u)

ż(t) = Az(t) + Bu(t)

=

2

666664

0 1 0 0

3!2 0 0 2!

0 0 0 1

0 �2! 0 0

3

777775
z(t) +

2

666664

0 0

1

mc
0

0 0

0 1

mc

3

777775
u(t)

(2.1)

With state z = [x, ẋ, y, ẏ]T 2 R4 representing the relative in-plane position and

velocity of the chaser with respect to the chief. Space vehicles often utilize “on/o↵”

thrusters which can either be fully on or fully o↵. To model this, our control is given

by u = [u
1

, u
2

]T 2 U = {[0, 0]T , [�u
max

,�u
max

]T , [�u
max

, u
max

]T , [u
max

,�u
max

]T ,

[u
max

, u
max

]T}. Finally, we have known constants ! and m
c

representing orbital and

mass constants for the chaser vehicle.

Furthermore, the state transition matrix for the system modeled using CWH

dynamics as a function of time can easily be calculated as follows

� = eAt

=

2

666664

4� 3 cos!t 1

!

sin!t 0 � 2

!

(cos!t� 1)

3! sin!t cos!t 0 2 sin!t

6(sin!t� !t) 2

!

(cos!t� 1) 1 4

!

sin!t� 3t

6!(cos!t� 1) �2 sin!t 0 4 cos!t� 3

3

777775

(2.2)

For our problem we are not concerned with the rendezvous of two space craft, but

instead with simply maneuvering one space craft to another point in a nearby region.

For the purposes of our problem the chief will not represent a second satellite, but

will instead represent a new point in the state space which the chaser is trying to

reach. For the sake of simplicity this point will still be referred to as the chief.
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Chapter 2. Problem Formulation

We now introduce the state z
d,i

= [x
d,i

, ẋ
d,i

, y
d,i

, ẏ
d,i

]T 2 R4 which represents the

relative position and velocity of the ith piece of debris with respect to the chief point.

We will assume that every piece of debris has no control input and therefore under-

goes only autonomous state evolution. Hence, the dynamics for the state evolution

of the debris are given by

ż
d,i

(t) = f
d

(z
d,i

)

ż
d,i

(t) = Az
d,i

(t)

=

2

666664

0 1 0 0

3!2 0 0 2!

0 0 0 1

0 �2! 0 0

3

777775
z
d,i

(t)

(2.3)

We also assume that the every piece of debris considered in our calculation is

near the same circular orbit as the chaser satellite. In this case, the A matrix for the

debris state dynamics is the same as the A matrix for the chaser state dynamics.

2.2 Target and Avoid Sets

To guarantee the safety of the chaser satellite using reachability techniques we must

first define di↵erent sets in the state space. We first define a target set as the set of

states the chaser wishes to reach at some final time T . For our maneuvering problem

we will define the set, Target
z

, as a four dimension bounding box around the chief

point which can be described by the vector inequality z
min

 z  z
max

. The Target
z

set can also be viewed as an infinity-norm around the chief point.

We then define an avoid set as the set of states which the chaser satellite should

not enter for all time over the time horizon. For the debris avoidance problem this set

simply becomes a bounding box around the position of the debris. To di↵erentiate

6



Chapter 2. Problem Formulation

the debris from the target set the avoid sets will be given by the 1-norm around the

position of each piece of debris. However, because the debris is moving, the position

of the debris is not necessarily constant over all time. Hence, our avoid set becomes a

function of time. We then define the set, Avoid
d,i

(s), as the avoid set for the ith piece

of debris at time s. The Avoid
d,i

(s) set should ensure that the chaser does not hit

the debris at any velocity. Ideally, the Avoid
d,i

(s) set will then become a bounding

box around only the position states of the debris. That is x
d,i min

 x
d,i

 x
d,i max

and y
d,i min

 y
d,i

 y
d,i max

, in general, leaving the velocities unbounded. This set

will contain the chaser satellite if it enters the position states of the debris at any

velocity. We also define the union of all the debris avoid sets as

Avoid
d

(s) =
S

q

i=1

Avoid
d,i

(s) (2.4)

Figure 2.1 shows a two dimension representation of the states for the chaser

and an arbitrary number, q, pieces of debris, along with the Target
z

set and the

Avoid
d,i

(s) sets for each piece of debris.

2.3 Reachability Framework

To guarantee the safety of a satellite maneuvering in the presence of debris we will

utilize reachability techniques. Using our previous definitions for the target and

avoid sets we would like to compute the Reach-Avoid set. This will represent the

set of initial conditions for the chaser satellite from which it can reach the target

while avoiding all debris for all time, hence guaranteeing the safety of the satellite.

Additionally, reachability can also provide the specific controller required for the

chaser from the previously generated set of initial states [5], [6]. The following is a

general framework for calculating a Reach-Avoid set.

We begin with a continuous time system of the form ż = f(z, u, v) where z 2 Rn

7



Chapter 2. Problem Formulation

Figure 2.1: Diagram of relative coordinates between Chief, Chaser, and Debris and
Target and Avoid sets

is the state of the system, u 2 Rm is the control input, and v 2 Rp is a disturbance

acting on the system. Let z(t) represent the current state of the system at a time t.

Now define two known sets in the state space as follows, the target set, Target ✓ Rn,

and the avoid set, Avoid ✓ Rn. Both the Target and Avoid sets can be related

to the level sets of two bounded, Lipschitz continuous functions. The function,

l : Rn ! R, will represent the Target and the function, h : Rn ! R, will represent
the Avoid as follows

Target = {z 2 Z | l(z)  0}

Avoid = {z 2 Z | h(z) > 0}
(2.5)

From [3] the ReachAvoid set is defined as

ReachAvoid(t,Target,Avoid) = {z 2 Z | 9u 2 U
[t,T ]

, 8v 2 V
[t,T ]

,

(z(T ) 2 Target) ^ (8⌧ 2 [t, T ] z(⌧) /2 Avoid)}
(2.6)

8



Chapter 2. Problem Formulation

Where u is the control input to the system, v is a disturbance to the system, t

is the initial time, and T is the final time for the time horizon. The ReachAvoid

set can be thought of as a set of initial conditions from which there exists a control

input to the system such that, for all disturbances acting on the system, the state

at the final time T will be inside the Target set while never entering the Avoid set

for any time in the time horizon.

The ReachAvoid set given in (2.6) has a corresponding value function V :

Rn ⇥ [0, T ] ! R given by

V (z, t) = inf
u2U

[t,T ]

sup
v2V

[t,T ]

max{l(z(T ), max
⌧2[t,T ]

{h(z(⌧)}} (2.7)

and has been shown to be the unique viscosity solution of the quasi-variational

inequality given by [3]

max{h(z)� V (z, t), @V

@t

(z, t) + sup
v2V infu2U

@V

@z

(z, t)f(z, u, v)} = 0 (2.8)

with terminal condition V (z, T ) = max{l(z), h(z)}. Finally, the ReachAvoid

set given in (2.6) can be related to the level set of the value function.

ReachAvoid(t,Target,Avoid) = {z 2 Z | V (z, t)  0} (2.9)

The Hamiltonian H for the system is defined as

H(z, p) = sup
v2V infu2U pTf(z, u, v) (2.10)

with costate vector p 2 Rn = @V

@z

. The optimal control and disturbance inputs

become

u⇤(t) = arg inf
u2U sup

v2V H(z, p, u, v) (2.11)

v⇤(t) = arg sup
v2V H(z, p, u⇤, v) (2.12)

9



Chapter 2. Problem Formulation

In this case the controller is acting first and the disturbance can react to the con-

trol input. This will ensure the safety of the vehicle for any value of the disturbance.

In our problem, however, we will not be considering a disturbance and will only be

considering the controlled input.

In addition to the ReachAviod set, reachability analysis can characterize other

useful sets of initial conditions for the system with unique relationships to relevant

target or avoid sets. The following are a few of these sets which will be useful for us

later on. We begin with the minimal Backwards Reach Set (BRS) which is defined

as

Reach[

T

(K) = {x 2 X | 8u 2 U , x(T ) 2 K} (2.13)

and represents the set of states from which for all control input the state at final

time T will be in the set K. The maximal BRS can be defined as

Reach]

T

(K) = {x 2 X | 9u 2 U , x(T ) 2 K} (2.14)

and represents the set of states from which there exists a control input such that

at final time T the state will be in the set K. Furthermore, we can define the minimal

Backwards Reach Tube (BRT) as

Reach[

[0,T ]

(K) = {x 2 X | 8u 2 U , 9s 2 [0, T ], x(s) 2 K} (2.15)

which represents the set of states for which under all control inputs the state will

end up in the set K at some time s in the time horizon. Similarly, we define the

maximal BRT as

Reach]

[0,T ]

(K) = {x 2 X | 9u 2 U , 9s 2 [0, T ], x(s) 2 K} (2.16)

which represents the set of states for which there exists a control such that the

state will be in the set K at some time s in the time horizon. The maximal BRT can

10



Chapter 2. Problem Formulation

be related to the maximal BRS through the following [2].

Reach]

[0,T ]

(K) =
S

s2[0,T ]

Reach]

s

(K) (2.17)

If 8s 2 [0, T ], Reach[

s

(K) 6= ; then the minimal BRT can be related to the

minimal BRS through the following [18].

Reach[

[0,T ]

(K) =
S

s2[0,T ]

Reach[

s

(K) (2.18)

We now define the Viability Kernel as

Viab
[0,T ]

(K) = {x 2 X | 9u 2 U , 8s 2 [0, T ], x(s) 2 K} (2.19)

which is the set of states for which there exists a control input such that the

state remains in the set K for all time in the time horizon. We define the Invariance

Kernel as

Inv
[0,T ]

(K) = {x 2 X | 8u 2 U , 8s 2 [0, T ], x(s) 2 K} (2.20)

which is the set of states for which for all control inputs the state will remain

in the set K for the entire time horizon. The viability kernel can be related to the

minimal BRT by

Viab
[0,T ]

(Kc) =
�
Reach[

[0,T ]

(K)
�
c (2.21)

and the the invariance kernel can be related to the maximal BRT by

Inv
[0,T ]

(Kc) =
�
Reach]

[0,T ]

(K)
�
c (2.22)

In the following sections and chapters of this thesis we will use these sets and

their relations to develop a conservative Reach-Avoid set.
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Chapter 2. Problem Formulation

2.4 Method For Computing Reach-Avoid For the

Two-Vehicle Problem

The current numerical methods for computing the Reach-Avoid set become computa-

tionally intractable as the system dimensions become larger and larger. The amount

of time it takes to calculate the Reach-Avoid set for the four dimension CWH system

becomes unreasonable. In this section, we will develop a computationally tractable

solution for computing the Reach-Avoid set for the four dimension CWH system.

This method is developed for the two-vehicle problem where the chaser satellite is

attempting to reach a target while staying outside and unsafe region in the state

space. This method can be extended to higher dimension systems as well.

We begin with our state state z(t) 2 R4 = [x, ẋ, y, ẏ]T from Section 2.1 with

dynamics, ż(t), the same as in (2.1) with the same control policy u 2 U . Addition-

ally, we will assume there is no disturbance acting on the system. For the sake of

simplicity, we will assume we have a general Target set we would like to reach and a

general Avoid set we would like to avoid, as we did in Section 2.3. We now assume

that we can write the Target and Avoid sets as the following

Target = {z 2 Z | cT
R

z  d
R

}

Avoid = {z 2 Z | cT
A

z > d
A

}
(2.23)

Furthermore, this allows us to write the Avoidc set as Avoidc = {z 2 Z | cT
A

z 

d
A

}. The Target and Avoid sets given in (2.23) can be related to the Target and

Avoid sets defined in (2.5) by letting l(x) = max{cT
R

z  d
R

} and h(x) = max{cT
A

z >

d
A

}. We note that under the assumption our Target and Avoid sets can be written

in the form given by (2.23) we have also assumed that our Target set and Avoidc

sets are convex.

Next, we rewrite the ReachAvoid set from (2.6) for a system without distur-

12



Chapter 2. Problem Formulation

bance and in terms of the Avoidc set.

ReachAvoid(t,Target,Avoid) = {z 2 Z | 9u 2 U
[t,T ]

,

(z(T ) 2 Target) ^ (8⌧ 2 [t, T ] z(⌧) 2 Avoidc}
(2.24)

which has the corresponding value function

V (z, t) = inf
u2U

[t,T ]

max{l(z(T ), max
⌧2[t,T ]

{h(z(⌧)}} (2.25)

given by the unique viscosity solution of the quasi-variational inequality

max{h(z)� V (z, t), @V

@t

(z, t) + inf
u2U

@V

@z

(z, t)f(z, u, v)} = 0 (2.26)

The ReachAvoid for a system without disturbance is still related to its value

function V (z, t) through the relationship given in (2.9). The optimal control for the

system without disturbance is given by

u⇤(t) = arg inf
u2U

@V

@z

(z, t)(f(z, u)) (2.27)

As in Section 2.3 we define the costate of our system as p = @V

@z

. The costate

dynamics are given by

ṗ =

8
<

:
�ATp for

@V

@t
(z, t) = � inf

u2U

@V

@z
(z, t)(f(z, u))

0 for h(z) > 0
(2.28)

With this, if a state is to enter the Avoid set, i.e. h(z) > 0, the evolution of

the costate is stopped. This prevents a state from potentially moving into, and then

out of, the Avoid set. Following the dynamics in (2.1) for f(z, u) and writing the

state and costate as z = [z
1

, z
2

, z
3

, z
4

, ]T p = [p
1

, p
2

, p
3

, p
4

, ]T , the Hamiltonian for the

13



Chapter 2. Problem Formulation

CWH dynamics can then be written as

H(z, p) = inf
u2U pT (f(z, u))

= inf
u2U

✓
p
1

z
2

+ p
2

⇣
3!2z

1

+ 2!z
4

+ 1

mc
u
1

⌘
+ p

3

z
4

+ p
4

⇣
�2!z

2

+ 1

mc
u
2

⌘⌘

= p
1

z
2

+ p
2

⇣
3!2z

1

+ 2!z
4

� u

max

mc
sgn(p

2

)
⌘

+p
3

z
4

+ p
4

⇣
�2!z

2

� u

max

mc
(sgn(p

4

))
⌘

(2.29)

The optimal control input becomes

u⇤
1

= �sgn(p
2

) · u
max

u⇤
2

= �sgn(p
4

) · u
max

(2.30)

We note that the optimal control is a function of the costate and, due to the

signum function, is undefined when p
2

, p
4

= 0. We now develop a method to handle

cases when p
2

p
4

= 0. We first introduce two switching functions given by the

following

s
1

(t)
4
= p

2

(t)

s
2

(t)
4
= p

4

(t)
(2.31)

Then, using the dynamics for the costate given in (2.28), the time derivatives of

the switching functions are given by the following

ṡ
1

= �(p
1

� 2!p
4

)

ṡ
2

= �(2!p
2

+ p
3

)
(2.32)

In the case that s
1

(t) = 0, if ṡ
1

(t) > 0 then at a time, t�, just before t, s
1

(t�) < 0.

We then use this as our choice for the sign of p
2

, since the optimal control is only

dependent on the sign of the costate. We take p
2

(t) < 0 and, from (2.30), the

optimal control becomes u⇤
1

(t) = u
max

. Alternatively, if ṡ
1

(t) < 0 then at a time, t�,

just before t, s
1

(t�) > 0. We then take p
2

(t) > 0 and the optimal control becomes

14



Chapter 2. Problem Formulation

u⇤
1

(t) = �u
max

. We formally define the optimal control when s
1

= 0 or s
2

= 0 as

u⇤
1

= �sgn(p
1

� 2!p
4

) · u
max

for s
1

(t) = 0

u⇤
2

= �sgn(2!p
2

+ p
3

) · u
max

for s
2

(t) = 0
(2.33)

In the event that s
1

= 0 and ṡ
1

= 0, or s
2

= 0 and ṡ
2

= 0, this method is repeated

using the second derivatives of the switching functions s
1

and s
2

. The second time

derivatives of the switching functions are given by

s̈
1

(t) = �!(!p
2

+ 2p
3

)

s̈
2

(t) = �2!(�p
1

+ 2!p
4

)
(2.34)

The optimal control becomes

u⇤
1

= �sgn(!p
2

+ 2p
3

) · u
max

for ṡ
1

(t) = 0

u⇤
2

= �sgn(�p
1

+ 2!p
4

) · u
max

for ṡ
2

(t) = 0
(2.35)

If needed, the method can be repeated for higher derivatives.

We will compute the ReachAvoid set backwards in time, that is, the initial

values for our calculations will represent the desired values for the state of our system

at the final time, z(T ). Clearly, for any state to be in the ReachAvoid set it must

be in the Target and Avoidc sets at the final time T . Hence, the ReachAvoid(T )

is given by the intersection of the Target and Avoidc sets and can be described

by the polytope which satisfies the inequality cT z  d, where c = [ c
R

c
A

] and

d = [ dT
R

dT
A

]T . Furthermore, the ReachAvoid set will only grow from the “usable

part” of the boundary of the final time ReachAvoid(T ) set. Therefore, the initial

ReachAvoid(T ) set can further be constrained by the boundary of its “usable part”

for a specific facet j through the following inequality

@V
j

@z
(Az +Bu⇤)  0 (2.36)

Where V
j

is the value function which corresponds to propagating the jth facet

of the ReachAvoid(T ). More specifically, V
j

is the solution to (2.26) whose final

15
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costate is given by p(T ) = c
j

, or the jth column vector of c. A single facet of

ReachAvoid(T ) is defined as cT
j

z = d
j

where c
j

is the jth column vector in c and

d
j

is the corresponding jth entry of d.

We now have an initial set of states for a given facet j from which the

ReachAvoid set can grow backwards in time. This set can formally be defined for

a given facet j as follows

P
j

=

8
>>>>><

>>>>>:

z

�����

cT
R

z  d
R

cT
A

z  d
A

cT
j

Az  �cT
j

Bu⇤

cT
j

z = d
j

9
>>>>>=

>>>>>;

(2.37)

The ReachAvoid(t) for a facet j can then be computed by taking the vertices

vi
j

(T ) of P
j

and evolving them backwards in time using the dynamics given in (2.1),

(2.28), and (2.26). The convex hull, denoted by conv(·), is then taken of all the

vertices at time t to give the boundary of the ReachAvoid(t).

@ReachAvoid(t) =
[

j

conv
i

�
vi
j

(t)
�

(2.38)

It is important to note that this method takes advantage of the fact that the

ReachAvoid(T ) is convex, the dynamics of the state and costate are switch linear

dynamics, and that the control set is compact.

Ideally, we would like to apply this method directly to the debris avoidance prob-

lem with the Target
z

set as our Target and the Avoid
d

(s) set as our Avoid set.

However, because we have defined our Avoid
d,i

(s) sets as bounding boxes, their

complements, Avoidc

d,i

(s), become non convex sets. Hence, these methods can not

be directly applied to the debris avoidance Reach-Avoid problem. We will, how-

ever, apply these methods for computing the minimal and maximal BRS of a single

Avoid
d,i

(s) set and the Target
z

set. The following subsection outlines the extension

of this method from the full Reach-Avoid set to a single reach set.
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Chapter 2. Problem Formulation

2.4.1 Method for Computing Maximal Reach Set

We begin with the extension of the methods in Section 2.4 to the maximal BRS

given in equation (2.14). For the sake of simplicity, we will assume that we have a

general Target set we are trying to reach which can be written in the form given

in (2.23). We will then compute Reach]

T

(Target). If we take the definition for

the ReachAvoid given by equation (2.6) and make the following assumptions: 1)

There is no Avoid set, and 2) There is no disturbance acting on the system, we

see that the full ReachAvoid set simply becomes the maximal BRS. Furthermore,

applying these assumptions to equations (2.7) and (2.8) we see that the value function

corresponding to the maximal BRS is given by

V ](z, t) = inf
u2U

[t,T ]

l(z(T )) (2.39)

where l(z) = cT
R,z

z � d
R,z

. The value function V ](z, t) is the unique viscosity

solution of the quasi-variational inequality given by

@V

]

@t

(z, t) + inf
u2U

@V

]

@z

(z, t)f(z, u) = 0 (2.40)

Then, from equation (2.12), the optimal control for the maximal BRS is given by

u⇤(t) = arg inf
u2U

@V

]

@z

(z, t)(f(z, u)) (2.41)

We note that the optimal control for this maximal BRS is the same as the optimal

control for the ReachAvoid set without disturbance. Finally, from equation (2.9),

we have the maximal BRS related to the value function, V ], through the inequality

Reach]

T

(K) = {z 2 Z | V ](z, t)  0}.

We again define our costate, p, with dynamics similar to those given in (2.28).

We note that while we still have sets we are trying to avoid, Avoid
d,i

(s), we are

simply calculating a reach set. Unlike in the ReachAvoid set calculation our state

17



Chapter 2. Problem Formulation

evolution will never be halted because there are no constraints to violate in the

reach calculation. Because our state evolution is never halted, our costate never

needs to be “frozen”, therefore, the costate dynamics simply reduce to ṗ = �ATp.

The Hamiltonian for the maximal BRS is the same as that for the full ReachAvoid

set and is given by

H](z, p) = inf
u2U pT (f(z, u))

= inf
u2U

✓
p
1

z
2

+ p
2

⇣
3!2z

1

+ 2!z
4

+ 1

mc
u
1

⌘
+ p

3

z
4

+ p
4

⇣
�2!z

2

+ 1

mc
u
2

⌘⌘

= p
1

z
2

+ p
2

⇣
3!2z

1

+ 2!z
4

� u

max

mc
sgn(p

2

)
⌘

+p
3

z
4

+ p
4

⇣
�2!z

2

� u

max

mc
sgn(p

4

)
⌘

(2.42)

Therefore, the optimal control for the maximal BRS is the same as the the optimal

control for the full ReachAvoid set without disturbance and is given by

u],⇤
1

= �sgn(p
2

) · u
max

u],⇤
2

= �sgn(p
4

) · u
max

(2.43)

As with the optimal control for the full ReachAvoid set, the optimal control

for the maximal BRS is a function of the signum of the costate and is undefined

when p
2

, p
4

= 0. Because of the similarities between the maximal BRS and the

ReachAvoid without disturbance the optimal control for the maximal BRS when

p
2

, p
4

= 0 can be found by following equations (2.31) through (2.35).

We then define the final time polytope for the maximal reach calculation of the

Target set from which the vertices will be evolved backwards in time to create the

maximal BRS. Using the boundary of the usable part given by equation (2.36) the

final time polytope for a single facet of the set is defined by

P ]

j

=

8
>>><

>>>:
z

�����

cT
R

z  d
R

cT
j

Az  �cT
j

Bu],⇤

cT
j

z = d
j

9
>>>=

>>>;
(2.44)
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Where c
j

is the jth column vector of c
R

and d
j

is the jth entry of d
R

. Finally,

we take the vertices v],i
j

(T ) of P ]

j

and evolve them backwards in time according to

the costate dynamics and the CWH state dynamics to achieve the boundary for the

maximal BRS of a Target set given by

@Reach]

t

(Target) =
S

j

conv
i

⇣
v],i
j

(t)
⌘

(2.45)

2.4.2 Method For Computing Minimal Reach Set

We can also extend the methods in Section 2.4 to the minimal BRS of a general

target set Target, with the minimal BRS given by (2.13). In other words, we are

trying to compute the Reach[

T

(Target) set. Following the framework from 2.4.1,

we take the definition for the ReachAvoid set given by equation (2.6) and make the

following three assumption: 1) There is no Avoid set, 2) There is no disturbance

action of the system, and 3) our control input u is represented as the disturbance

v in (2.6). Under these assumptions we see that the full ReachAvoid set simply

becomes the minimal BRS. We again apply these new assumptions to (2.7) and (2.8)

and the corresponding value function for the minimal BRS becomes

V [(z, t) = sup
u2U

[t,T ]

l(z(T )) (2.46)

where l(z) = cT
R

z�d
R

. The value function V [(z, t) is the unique viscosity solution

of the quasi-variational inequality given by

@V

[

@t

(z, t) + sup
u2U

@V

[

@z

(z, t)f(z, u) = 0 (2.47)

Then, from equation (2.12), the optimal control for the minimal BRS is given by

u[,⇤(t) = arg sup
u2U

@V

[

@z

(z, t)(f(z, u)) (2.48)
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Finally, from equation (2.9), we have the maximal BRS related to the value

function V [ through the inequality Reach[

T

(K) = {z 2 Z | V [(z, t)  0}.

We again have our costate p with dynamics ṗ = �ATp because we are only

performing a reach calculation. The Hamiltonian for the minimal BRS becomes

H[(z, p) = sup
u2U pT (f(z, u))

= sup
u2U

✓
p
1

z
2

+ p
2

⇣
3!2z

1

+ 2!z
4

+ 1

mc
u
1

⌘
+ p

3

z
4

+ p
4

⇣
�2!z

2

+ 1

mc
u
2

⌘⌘

= p
1

z
2

+ p
2

⇣
3!2z

1

+ 2!z
4

+ u

max

mc
sgn(p

2

)
⌘

+p
3

z
4

+ p
4

⇣
�2!z

2

+ u

max

mc
sgn(p

4

)
⌘

(2.49)

Therefore, the optimal control for the minimal BRS is given by

u[,⇤
1

= sgn(p
2

) · u
max

u[,⇤
2

= sgn(p
4

) · u
max

(2.50)

As with the optimal control for the full ReachAvoid set and the maximal BRS,

the optimal control for the minimal BRS is a function of the signum of the costate

and is undefined when p
2

, p
4

= 0. Because of the similarities between the minimal

BRS and the ReachAvoid without disturbance the optimal control for the minimal

BRS when p
2

, p
4

= 0 can be found by following the same steps in equations (2.31)

through (2.35).

We then define the final time polytope for the minimal reach calculation of the

Target set from which the vertices will be evolved backwards in time to create the

minimal BRS. Using the boundary of the usable part given by equation (2.36) the

final time polytope for a single facet of the minimal BRS is defined by

P [

j

=

8
>>><

>>>:
z

�����

cT
R

z  d
R

cT
j

Az  �cT
j

Bu[,⇤

cT
j

z = d
j

9
>>>=

>>>;
(2.51)
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Finally, we take the vertices v[,i
j

(T ) of P [

j

and evolve them backwards in time

according to the costate dynamics and the CWH state dynamics to achieve the

boundary for the minimal BRS of a Target set given by

@Reach[

t

(Target) =
S

j

conv
i

⇣
v[,i
j

(t)
⌘

(2.52)
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Chapter 3

Multiple Debris Avoidance

Through System Decomposition

Recent work in [18] has shown a method to compute exact minimal and maximal

BRS for high dimension systems through system decomposition. We can apply these

methods, along with the methods from Sections 2.4.1 and 2.4.2, to generate and

under-approximation of the Reach-Avoid set for the multiple debris scenario. We

note that for each piece of debris, our system increases by four dimensions for full

system dimension of 4q for q pieces of debris. The following methods will demonstrate

how the larger dimension avoid problem can be decomposed into multiple smaller

dimension avoid problems.

3.1 System Decomposition Overview

This section will give a brief overview of the methods developed in [18] and their

main contributions. We begin with a system z(t) which can be partitioned into the
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following

z = (y
1

, y
2

, y
3

)

y
1

2 Rn

1 , y
2

2 Rn

2 , y
3

2 Rn

3

n
1

, n
2

> 0, n
3

� 0

n
1

+ n
2

+ n
3

= n

(3.1)

New subsystems x
1

2 X
1

= Rn

1

+n

3 , x
2

2 X
2

= Rn

2

+n

3 are then created as follows

x
1

= (y
1

, y
3

)

x
2

= (y
2

, y
3

)
(3.2)

It is important to note that, while it is only shown here for two subsystems, this

decomposition can be applied to any number of finite subsystems. These subsystems

are “self-contained subsystems” if the states x
i

evolve independently of each other;

that is
dx

1

dt

= ẋ
1

= f
1

(x
1

, u)

dx

2

dt

= ẋ
2

= f
2

(x
2

, u)
(3.3)

We now define projection and back projection operators to relate states, and

sets of states, from the full system to each of the subsystems and vice versa. The

projection operator for a state z onto a subsystem state space X
i

is defined by

projXi
(z) = x

i

, i = 1, 2 (3.4)

The projection operator for sets S ✓ Z is defined by

projXi
(S) = {x

i

2 X
i

| 9z 2 S, projXi
(z) = x

i

} (3.5)

The back projection of a state x
i

onto the Z state space is defined by

proj�1(x
i

) = {z 2 Z | projXi
(z) = x

i

} (3.6)
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The back projection of a set S
i

✓ X
i

, with abuse of notation, is given by

proj�1(S
i

) = {z 2 Z | 9x
i

2 S
i

, projXi
(z) = x

i

} (3.7)

.

Figure 3.1 shows an example of the inverse projections of lower dimensions sets

into the full dimension. In this example, we will consider our full state z to be two

dimensional consisting of two, single dimension, sub systems represented by y
1

and

y
2

.

Figure 3.1: Example of inverse projections of sub system sets into full dimension sets

The main idea of the system decomposition method is to compute the full dimen-

sion reach set of a target by decoupling both the system dynamics and the target

sets into lower dimension systems. The reach calculation is then performed indepen-

dently on these lower dimension systems and target sets and then the full dimension

reach set is reconstructed through intersections or unions of the lower dimension

reach sets. The main contributions of [18] are the following two statements relat-

ing the full dimension minimal and maximal BRSs to lower dimension minimal and

maximal BRSs under specific assumptions about how the full dimension target sets
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are decoupled into the lower dimensions.

Target = proj�1(Target
1

)
S

proj�1(Target
2

) )

Reach]

T

(Target) = proj�1(Reach]

T

(Target
1

))
S

proj�1(Reach]

T

(Target
2

))

(3.8)

Target = proj�1(Target
1

)
T

proj�1(Target
2

) )

Reach[

T

(Target) = proj�1(Reach[

T

(Target
1

))
T

proj�1(Reach[

T

(Target
2

))

(3.9)

Statement (3.8) says that if our full dimensional target, Target, can be written

as the union of inverse projections of lower dimension targets Target
1

and Target
2

,

then the maximal BRS for the full dimension target is the union of the inverse pro-

jection of lower dimension maximal BRS of the lower dimension targets. In other

words, we can compute the exact full dimension maximal BRS by independently

computing the maximal BRS for the lower dimension subsystems and their corre-

sponding target sets. Hence, the numerical calculations can be performed on the

lower dimension subsystems making computationally tractable solutions possible for

higher dimension systems. Figure 3.2 shows an example of statement (3.8) for a full

state in two dimensions and subsystems in one dimension. It follows the same color

key in figure 3.1 for the full dimension and subsystem targets.

Statement (3.9) is similar, however, it applies to the case where the full dimension

target, Target, is written as an intersection of inverse projections of lower dimension

targets Target
1

and Target
2

. In this case, the minimal BRS can be computed by

taking the intersections of the inverse projections of the minimal BRS for the lower

dimension target sets. Figure 3.3 shows an example of statement (3.9) for a full state

in two dimensions and subsystems in one dimension. It follows the same color key

in figure 3.1 for the full dimension and subsystem targets.
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Figure 3.2: Example of decomposition applied to maximal reach

3.2 System Decomposition Applied to Multiple

Debris Avoidance

We will now apply the methods for system decomposition to the problem of guaran-

teeing the safety of a satellite in the presence of multiple pieces of debris. For this

calculation we are only concerned with the satellite’s ability to avoid all the debris

for all time, and will not be concerned with whether or not it reaches a specific target

at the final time.

We begin by defining a new state z
r,i

= [x
r,i

, ẋ
r,i

, y
r,i

, ẏ
r,i

]T 2 R4 which will rep-
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Figure 3.3: Example of decomposition applied to minimal reach

resent the relative position and velocity of the chaser with respect to the ith piece

of debris. In the z
r,i

coordinate frame the debris is fixed at the origin while the

chaser satellite and chief point move around it. Figure 3.4 shows a two dimension

representation of the z, z
d,i

, and z
r,i

states for a single piece of debris.

Figure 3.4: Diagram of relative coordinates between chief, chaser, and single debris
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The state z
r,i

can be related to the previously defined states z and z
d,i

through

the equation z
r,i

= z � z
d,i

. The state dynamics for the z
r,i

state are then given by

the following

ż
r,i

(t) = ż(t)� ż
d,i

(t)

= Az(t) + Bu(t)� Az
d,i

(t)

= A(z(t)� z
d,i

(t)) + Bu(t)

= Az
r,i

(t) + Bu(t)

(3.10)

We note that under our assumption that the chief, chaser satellite, and every

piece of debris are near the same circular orbit, that the A and B matrices will

be the same for every piece of debris and will also be the same as the A and B

matrices defined in the original CWH equations for the chaser (2.1). We now define

an augmented state ẑ = [z
r,1

, z
r,2

, . . . , z
r,q

] 2 R4q for an arbitrary number q pieces of

debris. The dynamics for the ẑ system are then given by

˙̂z(t) = Âẑ(t) + B̂u(t)

=

2

6666664

A 0 . . . 0

0 A
...

...
. . . 0

0 . . . 0 A

3

7777775
ẑ(t) +

2

6666664

B

B
...

B

3

7777775
u(t)

(3.11)

where ẑ can be decoupled into q independent subsystems each with dynamics

given by (3.10). Following the system decomposition framework our full dimension

system is represented by ẑ and our self-contained subsystems are given by z
r,i

. We

will define the sets in the subsystems we wish to avoid as bounding boxes around

the origin of each z
r,i

subsystem, Avoid
d,i

. The sets Avoid
d,i

are similar to the

previously defined sets Avoid
d,i

(s) except constant in time. The Avoid
d,i

sets are

the lower dimension sets we will perform either maximal or minimal backwards reach

calculations on.

We will now define a full dimension avoid set, Avoid
ẑ

, as either an intersection or
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a union of all the subsystem avoid sets. From (3.8), if we define the full dimension set

as a union of the lower dimension sets we will be required to compute the maximal

BRS. Additionally, from (3.9), if we define the full dimension set as an intersection

of the lower dimension sets we will be required to compute the minimal BRS. At this

point, it is important to remind ourselves that we are interested in guaranteeing the

safety of the satellite. To do so, we must guarantee that the satellite stays outside of

every Avoid
d,i

set for all time. This follows from the definition for the full Reach-

Avoid set in (2.6). Referring back to Section 2.3 we note that only the viability and

invariance kernels characterize a state for all time and hence, we will want to compute

either the Viab
[0,T ]

(Avoidc

ẑ

) or Inv
[0,T ]

(Avoidc

ẑ

). We also note that the viability and

invariance kernels can be related to the minimal and maximal BRTs, respectively.

More specifically, the viability kernel of a set complement is the complement of the

minimal BRT for the original set, and similarly for the invariance kernel and maximal

BRT. Hence, if we define the Avoid
ẑ

set as an intersection of lower dimension sets

we will end up with the viability kernel of the complement of the Avoid
ẑ

set, and

if we define the Avoid
ẑ

set as a union of lower dimension sets we will end up with

the invariance kernel of the complement of the Avoid
ẑ

set.

Let us first try defining the Avoid
ẑ

set as an intersection of lower dimension sets,

that is, Avoid
ẑ

=
T

q

i=1

proj�1(Avoid
d,i

). The complement of the full dimension

avoid set becomes Avoidc

ẑ

=
S

q

i=1

proj�1(Avoidc

d,i

). Because we defined our full

dimension set as an intersection we are required to calculate the minimal BRS, which

will give us the viability kernel Viab
[0,T ]

(Avoidc

ẑ

). Now, let us assume we have a state

¯̂z such that ¯̂z 2 Viab
[0,T ]

(Avoidc

ẑ

). Then, by definition, 9u 2 U , 8s 2 [0, T ], ¯̂z(s) 2

Avoidc

ẑ

; which implies ¯̂z 2
S

q

i=1

proj�1(Avoidc

d,i

). This only guarantees that one

of the subsystem states z
r,i

is outside its respective avoid set for all time, not that

every subsystem state is outside their respective avoid states. Therefore, writing our

full dimension avoid set Avoid
ẑ

as a an intersection of lower dimension sets will not

ensure that the satellite will stay outside all the debris for all time.
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We will now try defining our set Avoid
ẑ

as the union of the lower dimension

sets, Avoid
ẑ

=
S

q

i=1

proj�1(Avoid
d,i

). The complement of the full dimension avoid

set then becomes Avoidc

ẑ

=
T

q

i=1

proj�1(Avoidc

d,i

). We must calculate the maximal

BRS because we have defined our full dimension set as a union, which will lead to

the invariance kernel Inv
[0,T ]

(Avoidc

ẑ

). If we assume we have a state ˜̂z such that

˜̂z 2 Inv
[0,T ]

(Avoidc

ẑ

) then, by definition, 8u 2 U , 8s 2 [0, T ], ˜̂z(s) 2 Avoidc

ẑ

; which

implies ˜̂z 2
T

q

i=1

proj�1(Avoidc

d,i

). This will guarantee that every subsystem state

z
r,i

is also outside their respective avoid sets for all time. Hence, to guarantee the

safety of the chaser satellite for the multiple debris avoidance problem we will define

our full dimension avoid set as

Avoid
ẑ

=
S

q

i=1

proj�1(Avoid
d,i

) (3.12)

We can now continue with the system decomposition method from Section 3.1.

We will utilize the methods from Section 2.4.1 to compute the Reach]

T

(Avoid
d,i

)

set for each subsystem. Our full dimension maximal BRS then becomes

Reach]

T

(Avoid
ẑ

) =
S

q

i=i

proj�1(Reach]

T

((Avoid
d,i

)) (3.13)

We then use (2.17) to relate the full dimension maximal BRT to the full dimension

maximal BRS.

Reach]

[0,T ]

(Avoid
ẑ

) =
S

s2[0,T ]

Reach]

s

(Avoid
ẑ

) (3.14)

Finally, we relate the full dimension maximal BRT to the invariance kernel of the

complement of the full dimension avoid set.

Inv
[0,T ]

(Avoidc

ẑ

) = (Reach]

[0,T ]

(Avoid
ẑ

))c (3.15)

We now have a set in the full 4q dimensions which represents initial conditions for

which, for all control, the chaser satellite is guaranteed not to hit any of the debris for
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the entire time horizon. We were able to compute this set by performing q maximal

reach calculations on the four dimension subsystems, which is computationally feasi-

ble using the methods from Section 2.4.1. We also note that, “as-is”, the invariance

kernel is in the z
r,i

coordinates, but can be translated to the z coordinates relative

to the chief through the linear relationship z = z
r,i

+ z
d,i

. We also recall that this set

will not guarantee the satellite reaches a specified target at the final time.

3.3 Reach-Avoid Under-Approximation Through

System Decomposition

In the previous section we were able to extend the system decomposition method to

the multiple debris avoidance problem, but we did not require the chaser satellite to

also reach a target. In this section we will highlight the issues that prevent extending

the system decomposition methods to calculating the full Reach-Avoid set.

We begin by noting that the system decomposition method applies to a single

target or avoid set in the full state dimension, which is written as either an intersec-

tion or union of the inverse projections of the sub system target or avoid sets. We

will assume that our full dimension state is given in the same manner as in Section

3.2 with the addition of state z; this will account for the chaser reaching the target.

The addition of state z also adds another subsystem with the corresponding Target
z

set. We again note that to guarantee safety we must characterize a state in the full

dimension for all time, implying that we need either an invariance or viability kernel.

Let S represent the full dimension set for which we will be computing an invari-

ance or viability kernel. While the methods from [18] are not directly applied to the

viability or invariance kernel, Section 3.2 shows how the methods can be utilized to

generate these full dimension kernels through minimal or maximal BRTs. We would
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like Viab
[0,T ]

(S) or Inv
[0,T ]

(S) to be an under-approximation of the Reach-Avoid set.

We further note that, to follow the system decomposition method, the set S can be

written in one of two ways

S
1

= proj�1(Target
z

)
T

q

i=1

proj�1(Avoidc

d,i

)

S
2

= proj�1(Target
z

)
S

q

i=1

proj�1(Avoidc

d,i

)
(3.16)

We note that if S is written in the form of S
2

we have the same issues from

Section 3.2 where neither Viab
[0,T ]

(S
2

) nor Inv
[0,T ]

(S
2

) will guarantee that the chaser

satellite remains outside of all debris for all time. For the Viab
[0,T ]

(S
2

) we have

Viab
[0,T ]

(S
2

) = {ẑ 2 Ẑ | 9u 2 U , 8s 2 [0, T ], ẑ(s) 2 proj�1(Target
z

)_

proj�1(Avoidc

d,1

) _ . . . _ proj�1(Avoidc

d,q

)}
(3.17)

Comparing (3.17) to the definition of the full Reach-Avoid in (2.6) we note that

the Viab
[0,T ]

(S
2

) only assures that the state will be in the target or outside a single

piece of debris, not in the target and outside all debris. Furthermore, from (3.17)

we see that the state must be in the target set for all time, as apposed to in the

target set at the final time T . The Inv
[0,T ]

(S
2

) is given by replacing ‘9u 2 U ’ with

‘8u 2 U ’ in (3.17). This change in control policy does not alleviate the issues from

the viability kernel under-approximation and we are left with the same issues trying

to under approximate the full Reach-Avoid set with the invariance kernel.

Figure 3.5 shows a representation of the set S
2

. The top and middle, images show

the avoid complement sets and target sets in green. The bottom left image then shows

the the union of these sets in purple. Clearly, guaranteeing that the satellite remain

in this purple set will not guarantee that it remains outside all debris for all time.

If we were to write the set S in the form of S
1

then the Viab
[0,T ]

(S
1

) would become

Viab
[0,T ]

(S
1

) = {ẑ 2 Ẑ | 9u 2 U , 8s 2 [0, T ], ẑ(s) 2 proj�1(Target
z

)^

proj�1(Avoidc

d,1

) ^ . . . ^ proj�1(Avoidc

d,q

)}
(3.18)
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Figure 3.5: Representation of the S
2

set

While this would ensure that the satellite would stay outside all debris it also

requires the satellite to remain inside the target set for all time. We can write

Inv
[0,T ]

(S
1

) by simply replacing the ‘9u 2 U ’ with ‘8u 2 U ’ in (3.18). Even with this

change, we are still requiring our satellite to remain in the target set for all time.

While this technically is a conservative solution for the full Reach-Avoid set, it is

overly conservative and not useful in a practical sense. Figure 3.6 depicts an example

of the set S
1

in green illustrates why requiring the satellite to remain in this set for

all time would be an overly conservative solution.

We see that there is no way to write a full dimension set S following the system
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Figure 3.6: Representation of the S
1

set

decomposition framework such that the viability or invariance kernel of S will under

approximate the Reach-Avoid in a useful manner. We either end up with a set which

does not guarantee the chaser will be outside all debris for all time, or a set which

requires the chaser to begin and stay in the target set.

34



Chapter 4

Under Approximating the

Reach-Avoid Set

In this chapter we will develop a method for computing a conservative Reach-Avoid

set using independent reach and avoid calculations. For our specific problem we will

be looking at the chaser satellite attempting to reach the chief point and the chaser

satellite attempting to avoid every piece of debris. We will develop two di↵erent

methods which utilize the computationally tractable methods from Sections 2.4.1

and 2.4.2 to compute maximal and minimal BRSs. One method will use the maximal

BRS for the target and the invariance kernel for all debris to under approximate the

Reach-Avoid while the other method will use the minimal BRS for the target and

the viability kernel. We note that in both of these combinations one set is a ‘for all

control’ set while the other set is a ‘there exists control’ set. This is an important

trait which will be leveraged to prove both of their under-approximations of the

Reach-Avoid set.

35



Chapter 4. Under Approximating the Reach-Avoid Set

4.1 Maximal Reach and Invariance Kernel

We begin with the maximal BRS and invariance kernel. We again have a target

set Target
z

and an arbitrary q number of time varying avoid sets Avoid
d,i

(s) for

a given time s. We also note that Avoid
c

d

(s) =
T

q

i=1

Avoidc

d,i

(s). We begin by

computing Reach]

T

(Target
z

) using the methods in Section 2.4.1. This provides us

with the set of states for which there exists a control such that the chaser satellite

will end up in the Target
z

set at final time T . We then begin the computation

for the Inv
[0,T ]

(Avoid
c

d,[0,T ]

) by computing Reach]

s

(Avoid
d,i

(s)). However, there are

two main issues in the way of simply applying Section 2.4.1 to this calculation as

is. We first note that we now have a time varying avoid set, where we previously

assumed a constant avoid set. This can be fixed by allowing the final time polytope

P ]

j

to be time varying. The final time polytope for a single facet of the avoid set

then becomes

P ]

j

(s) =

8
>>><

>>>:
z

�����

cT
R

z  d
R

(s)

cT
j

Az  �cT
j

Bu],⇤

cT
j

z = d
j

9
>>>=

>>>;
(4.1)

By letting d
R

(s) vary with time we are simply accounting for the position of the

debris avoid set at time s.

The second issue we face with the Reach]

s

(Avoid
d,i

(s)) calculation is that the

Avoid
d,i

(s) sets are unbounded. We had initially required that the chaser satellite

not enter the debris for any velocity value, however this leaves us with an unbounded

set in the velocity dimensions. Because the methods we are trying to implement

require the vertices of the final time polytope P ]

j

(s) we will have to bound the

Avoid
d,i

(s) sets. We note that if the chaser satellite enters the position of the

debris at a larger velocity than our selected velocity bounds it will not violate the

constraints, and will be thought of as safe. However, if we bound the avoid sets at

too large of velocity values we will end up with an overly conservative answer which

36



Chapter 4. Under Approximating the Reach-Avoid Set

will be of no practical use. We therefore would like to ensure that for any practical

velocity value of the chaser satellite over the time horizon, the chaser satellite will

not hit the debris. For our case, we will use the maximum and minimum velocity

values form the Reach]

T

(Target
z

) calculation. This says that the chaser satellite

will not hit the debris for any velocity which will also take it to the target.

Finally, with our bounded Avoid
d,i

(s) set and a final time polytope accounting

for the position of the debris, we can compute the Reach]

s

(Avoid
d,i

(s)) set. We

then follow our previous steps to generate the Inv
[0,T ]

(Avoidc

d,[0,T ],i

) set. This will

provide us with the set of states for which for all control will remain in the comple-

ment of the ith piece of debris for all time. We then write Inv
[0,T ]

(Avoid
c

d,[0,T ]

) =
T

q

i=i

Inv
[0,T ]

(Avoidc

d,[0,T ],i

) knowing that for sets K
1

,K
2

, . . . ,K
m

, Inv
[0,T ]

(
T

m

i=1

K
i

) =
T

m

i=1

Inv
[0,T ]

(K
i

). We now have a set of states for which for all control the chaser

satellite will not hit any of the debris.

We then define our conservative Reach-Avoid set for the maximal BRS and in-

variance kernel as

RA](T,Target
z

,Avoid
d,[0,T ]

) = Reach]

T

(Target
z

)
T

Inv
[0,T ]

(Avoid
c

d,[0,T ]

) (4.2)

which represents the set of states for which there exists a control such that the

chaser satellite will reach the target at final time T and, for all control, will not hit

any debris for the entire time horizon.

Theorem 1.

RA](T,Target
z

,Avoid
d,[0,T ]

) ✓ ReachAvoid(T,Target
z

,Avoid
d,[0,T ]

) (4.3)
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Proof.

RA](T,Target
z

,Avoid
d,[0,T ]

) = Reach]

T

(Target
z

)
\

Inv
[0,T ]

(Avoid
c

d,[0,T ]

)

= {z 2 Z | 9u, z(T ) 2 Target
z

}
\

{z 2 Z | 8u, 8s 2 [0, T ], z(s) 2 Avoid
c

d,[0,T ]

}

(4.4)

If z̄ 2 RA](T,Target
z

,Avoid
d,[0,T ]

), then by (4.4), there exists a control u that will

drive the chaser to the target set Target
z

at final time T , and all control policies

should prevent the chaser from hitting all debris for all time. Hence, we have found a

control policy that drives the chaser to the target while avoiding all debris implying

z̄ 2 ReachAvoid(T,Target
z

,Avoid
d,[0,T ]

) by (2.6).

4.2 Minimal Reach and Viability Kernel

Attempting to under approximate the Reach-Avoid set using the minimal BRS for

the target and a viability kernel for all debris proves to be not possible when com-

puting the viability kernel for each piece of debris independently. We run into sim-

ilar issues we faced when trying to compute the viability kernel for multiple pieces

of debris using the system decomposition method in Section 3.2. If we compute

the viability kernel for each piece of debris independently we end up with a set

of states for which there exists a control such that the satellite will not hit that

specific piece of debris. There is no guarantee that it wont hit any other pieces

of debris. Furthermore, intersecting the viability kernels from two di↵erent pieces

of debris does not guarantee that the control policy which avoids one piece of de-

bris is the same control policy which avoids the other piece of debris. In other

words, for sets K
1

,K
2

, . . . ,K
m

, Viab
[0,T ]

(
T

m

i=1

K
i

) 6=
T

m

i=1

Viab
[0,T ]

(K
i

). If a state

z̄ 2
T

m

i=1

Viab
[0,T ]

(K
i

), then 9u
1

, 8s 2 [0, T ], z̄(s) 2 K
1

, and 9u
2

, 8s 2 [0, T ], z̄(s) 2
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K
2

, and . . . , 9u
m

, 8s 2 [0, T ], z̄(s) 2 K
m

. However, there is no guarantee that

u
1

= u
2

= . . . = u
m

which would be required to ensure that the satellite avoids

all the debris.

If it were possible to compute the viability kernel for all debris at once, instead

of separately, then it would be possible to intersect that viability kernel with the

minimal reach to achieve an under-approximation of the Reach-Avoid. However, if

each avoid set is a convex box, we can not say that their unions will also be convex;

and thus, we can not apply the methods from Section 2.4.2 to find the viability kernel

of the intersection of all debris avoid complement sets through the minimal BRSs of

the union of the debris avoid sets.

In general, we can generate a second conservative Reach-Avoid set for multiple

pieces of debris and a single target. We will use a generalized set Avoid
[0,T ]

which

represents the union of all the debris sets we wish to avoid and a general Target set

we wish to reach. We will use the minimal BRS for the target and a viability kernel for

the Avoid
c

[0,T ]

set. We calculate the Reach[

T

(Target) set, the Viab
[0,T ]

(Avoid
c

[0,T ]

),

and define our conservative Reach-Avoid set for the general case of multiple debris

using the minimal BRS and viability kernel as

RA[(T,Target,Avoid
[0,T ]

) = Reach[

T

(Target)
T

Viab
[0,T ]

(Avoid
c

[0,T ]

) (4.5)

This set represents the set of states for which for all control the state will end up

in the target at final time T and for which there exists a control such that the state

can avoid all the debris for all time.

Theorem 2.

RA[(T,Target,Avoid
[0,T ]

) ✓ ReachAvoid(T,Target,Avoid
[0,T ]

) (4.6)
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Proof.

RA[(T,Target,Avoid
[0,T ]

) = Reach[

T

(Target)
\

Viab
[0,T ]

(Avoid
c

[0,T ]

)

= {z 2 Z | 8u, z(T ) 2 Target}
\

{z 2 Z | 9u, 8s 2 [0, T ], z(s) 2 Avoid
c

d,[0,T ]

} (4.7)

If z̄ 2 RA[(T,Target,Avoid
[0,T ]

), then by (4.7), for all control policies the state

will end up in the target set Target at final time T , and there exists a control policy

which should prevent the state from hitting all debris for all time. Hence, we have

found a control policy that drives the state to the target while avoiding all debris

implying z̄ 2 ReachAvoid(T,Target,Avoid
[0,T ]

) by (2.6).

We again note that because Viab
[0,T ]

(
T

m

i=1

K
i

) 6=
T

m

i=1

Viab
[0,T ]

(K
i

), the conserva-

tive Reach-Avoid RA[ does not apply when taking the viability kernel of each debris

independently. However, for a single debris avoidance problem the setAvoid
[0,T ]

sim-

ply becomes Avoid
d

(s). We can then use the methods from Section 2.4.2 to compute

the viability kernel and minimal BRS and generate the under-approximation of the

Reach-Avoid set as RA[(T,Target
z

,Avoid
d,[0,T ]

), for a single piece of debris.
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Examples

We begin our examples by defining the constants for the CWH equations. These will

apply for the dynamics of both the chaser vehicle and the debris for all the following

examples. We have constants, R = 850 + 6378.1 km, G = 6.673 ⇥ 10�11

m3

kg·s2 ,

M = 5.9472 ⇥ 1024 kg, and µ = G·M
1000

3

km3

s2 , such that ! =
p

µ

R

3

1

s , mc

= 150 kg,

and u
max

= 10�3

kg·m
s2 . Where R is the radius of the orbit, G is the universal

gravitational constant, M is the mass of the earth, µ is the standard gravitational

parameter, and m
c

is the mass of the chaser vehicle.

We then define the constraints for the Target
z

set as

cT
R,z

=

2

4 I
4⇥4

�I
4x4

3

5 , d
R,z

=

2

4 x
max

�x
min

3

5 (5.1)

with

x
max

=

2

666664

0.1

0.001

0.1

0.001

3

777775
, x

min

=

2

666664

�0.1

�0.001

�0.1

�0.001

3

777775
(5.2)
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where x
max

and x
min

are in km for the position states and km
s for the velocity

constraints. The constraints for the Avoid
d,i

(s) sets are

cT
R,d

=

2

666666666666666664

�1 0 1 0

1 0 �1 0

1 0 1 0

�1 0 �1 0

0 1 0 0

0 �1 0 0

0 0 0 1

0 0 0 �1

3

777777777777777775

, d
R,d

(s) =

2

666666666666666664

�z
d,i,,x

(s) + z
d,i,y

(s) + �

z
d,i,x

(s)� z
d,i,y

(s) + �

z
d,i,x

(s) + z
d,i,y

(s) + �

�z
d,i,x

(s)� z
d,i,y

(s) + �

ẋ
max

�ẋ
min

ẏ
max

�ẏ
min

3

777777777777777775

(5.3)

Where z
d,i,x

(s) and z
d,i,y

(s) are the x and y positions of the ith piece of debris at

time s and ẋ
max

, ẋ
min

, ẏ
max

, ẏ
min

are the maximum and minimum velocities of the

chaser obtained from the maximal reach calculation of the target.

5.1 Maximal Reach and Invariance Kernel for Sin-

gle Debris

We begin the under-approximation RA] for a single debris by assuming Avoid
d,[0,T ]

= Avoid
d,[0,T ]

. We then begin our calculation of the RA](T,Target
z

,Avoid
d,[0,T ]

)

set with the calculation of the Reach]

T

(Target
z

) set. We construct the P ]

j

polytope

for the Target
z

set and final time T according to the constraints given in (2.44), and

then evolve each vertex of the polytope backwards in time according to (2.1) with

optimal control given by (2.43) and costate dynamics given by ṗ = �ATp.

Because the full system is in four dimension visualization of the reach sets can

be di�cult. To try and make it simpler we will plot projections of the full four

dimension sets onto the x and y position plane. This will give us a set of position
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values which have at least one set of corresponding velocity values such that they

will be in the full four dimension reach set. Figure 5.1 shows a plot of the projection

of the Reach]

T

(Target
z

) for the four position facets for a time horizon of T = 50s.

Figure 5.1: Maximal BRS of the position facets of the Target set, Reach]

T

(Target
z

),
for a 50 second time horizon

We note that the methods being used are calculating the maximal BRS for a

single facet. In other words, the maximal BRS for the x
max

facet are the states for

which there exists a control such that they will end up exactly on the x
max

facet

of the Target
z

set. A state is on the x
max

position facet of the Target
z

set if the

other states, ẋ, y, ẏ are within their respective bounds given in (5.1) and (5.2) and

the state x = x
max

. Similarly for the other position facets. Hence, as mentioned

in Section 2.4, the union of plots for every facet represents the boundary of the full
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maximal BRS set.

We will now compute the maximal BRT for the Avoid
d,[0,T ]

set by computing the

maximal BRS for the Avoid
d

(s) for all time s. However, because these are numerical

examples there will be a discretization of the maximal BRT. For our example the

time step is 0.25s. This can be decreased to increase the fidelity of the discretization,

or increased to decrease the computational time. We give our debris an initial state

of z
d

(0) = [0, 0.03, 0.275, 0]T and let the state autonomously evolve according to

(2.3). The trajectory of the debris over all time can be seen in Figure 5.2.

Figure 5.2: Trajectory of the avoid set of the debris over the time horizon T = 50s
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We then generate the final time polytope P ]

j,d

(s) for each facet and every time s

according to (2.44). We then evolve each vertex of P ]

j,d

(s) backwards in time for the

corresponding time horizon according to the same state dynamics, optimal control,

and costate dynamics as were used for the maximal BRS of the Target
z

set. Figure

5.3 shows the projection of the maximal BRT for the Avoid
d,[0,T ]

set. It represents

the set of states from which there exists a control such that the satellite will hit

the debris at some time within the time horizon T . We also recall that everything

outside of this set represents the set of states for which for all control the satellite

will not hit the debris for all time in the time horizon.

Figure 5.3: Maximal BRT of the avoid set, Reach]

[0,T ]

(Avoid
d,[0,T ]

), for T = 50s
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Finally, Figure 5.4 shows the projection ofRA] set for the position facets onto the

x and y plane in green, the projection of the maximal BRT in orange, the trajectory

of the debris in red, and the projection of the Target
z

set in blue. We interpret the

position values given in the plot of the RA] set (green) as the set of position states

which will have corresponding velocity values such that there exists a control which

will cause them to end up on the position facets of the Target
z

set at final time

T , and for all control the states will not enter the debris for all time over the time

horizon.

Figure 5.4: RA] under-approximation set (green) for single debris, target set (blue),
avoid set trajectory (red), maximal BRT of avoid set, Reach]

[0,T ]

(Avoid
d,[0,T ]

), (or-
ange), all for time horizon T = 50s

Figure 5.5 shows just the projection of the RA] set at the Target
z

set. Compar-
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ing this to the plot of the projection of the Reach]

T

(Target
z

) set in figure 5.1 it is

easy to see the removal of states in the maximal BRT of the debris. The discretiza-

tion of the maximal BRT also becomes more apparent in this plot as you can see the

gaps between each of the maximal BRS for the debris represented as triangles of the

RA] set.

Figure 5.5: RA] under-approximation set (green) for single debris, target set (blue),
for time horizon T = 50s
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5.2 Maximal Reach and Invariance Kernel for Mul-

tiple Debris

The following is an example of the computation of the RA] set for three pieces of

debris. The computation is similar to that for the single debris case and begins with

the calculation of the Reach]

T

(Target
z

) set using the methods from Section 2.4.1.

For this calculation, however, we will be using a time horizon of T = 100s and a

time step of 1s. Figure 5.6 shows the projection of the Reach]

T

(Target
z

) set onto

the x, y plane for the maximum and minimum position facets.

Figure 5.6: Maximal BRS, Reach]

T

(Target
z

), for the maximum and minimum po-
sition facets of the Target for T = 100s
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We note that compared to the maximal BRS for the T = 50s time horizon shown

in Figure 5.1 this maximal BRS for the T = 100s time horizon is larger and further

away from the Target
z

set.

We will now compute the autonomous evolution of each piece of debris using

the dynamics given in (2.3), along with their corresponding maximal BRTs using

the methods from Section 2.4.1. The initial conditions for the debris are z
d,1

(0) =

[�1, 0.03, 0.35, 0]T , z
d,2

(0) = [�1, 0.02,�1.5, 0.02]T , and z
d,3

(0) = [0.75,�0.01,�0.7,

0]T . Figure 5.7 shows the position of each piece of debris in red and the projection

of the maximal BRTs onto the x, y plane for each piece of debris.

Figure 5.7: Multiple avoid set trajectories (red) and corresponding maximal BRTs,
Reach]

[0,T ]

(Avoid
d,i,[0,T ]

), (orange) for T = 100s
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The maximal BRTs for each piece of debris are larger than those for the single

debris case because of the longer time horizon. Similar to the Reach]

T

(Target
z

) set

calculation, the longer time horizon leads to larger BRSs for the debris. Furthermore,

the maximum and minimum velocity values form the Reach]

T

(Target
z

) calculation

will have increased in magnitude due to the longer time horizon. This increases the

bounds on the initial Avoid
d,i

(s) sets which also leads to larger BRTs for the debris.

We then generate the RA] set by intersecting the maximal BRS for the target

with the complement of the maximal BRTs for each piece of debris. Figure 5.8 shows

the projection of the RA] onto the x, y plane in green along with the projection of

the Target
z

set in blue and the maximal BRTs for each piece of debris in orange

and the trajectories of each piece of debris in red.

Finally, Figure 5.9 shows just the projection of theRA] set for the multiple debris

example onto the x, y plane in green, along with the Target
z

set in blue.

5.3 Minimal Reach and Viability Kernel for Single

Debris

This last examples aims to highlight the main di↵erences between the RA] under-

approximation and the RA[ under-approximation. As mentioned in the previous

chapter we can only generate the RA[ set for the single debris case. This following

example will use the same initial condition for the debris as was used in Section 5.1,

z
d

(0) = [0, 0.03, 0.275, 0]T , and the same time horizon of T = 50s and time step of

0.25s. The trajectory for the debris is the same as in Section 5.1 and can be seen

in Figure 5.2. We then compute the minimal BRS of the target, Reach[

T

(Target
z

),

using the methods in Section 2.4.2. Figure 5.10 shows the projection of the minimal

BRS of the target for the maximum and minimum position facets onto the x, y plane.
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Figure 5.8: Projections of the RA] under-approximation set (green), Target (blue),
and maximal BRTs,Reach]

[0,T ]

(Avoid
d,i,[0,T ]

), of avoid sets (orange), and trajectories
of avoid sets (red) for multiple debris example and time horizon T = 100s

We note that, as expected, this set is much smaller than that given in Figure 5.1

for the maximal BRS of the target. Next, we can generate the minimal BRT for the

debris by computing the Reach[

s

(Avoid
d

(s)), 8s 2 [0, T ]. Figure 5.11 shows the

projection of the minimal BRT for the debris onto the x, y plane.

As with the minimal BRS of the target, the minimal BRT of the debris is also

smaller than that of the maximal BRT for the debris given in Figure 5.3. Figures

5.12 shows the projections of the Target
z

set (blue), the minimal BRT of the debris
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Figure 5.9: Projections of the RA] under-approximation set (green) and Target
(blue) for multiple debris example and time horizon T = 100s

(orange), and the RA[ set (green) onto the x, y plane along with the trajectory of

the debris (red); while 5.13 shows just the projection of the RA[ set (green) and the

Target
z

set (blue) onto the x, y plane for a closer view.

5.4 Discussion of Examples

Tables 5.1, 5.2, and 5.3 show the computational times for computing the individ-

ual BRS of the target, the BRTs of the avoid set or each avoid set in the multi-

ple debris case, and the computational time associated with generating the under-
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Figure 5.10: Projection of minimal BRS of the target, Reach[

T

(Target
z

), for the
maximum and minimum position facets for T = 50s

approximation of the full Reach-Avoid set. Table 5.1 shows the computational times

for the RA] single debris example given in Section 5.1, Table 5.2 shows the computa-

tional times for the RA] multiple debris example given in Section 5.2, and Table 5.3

shows the computational times for the RA[ single debris example given in Section

5.3. Each BRS and BRT calculation is a four dimension calculation. The examples

were run in MATLAB 2015b on a computer with a 2.5 GHz quad-core Intel Core i7

CPU and 16 GB of RAM.

The total computational times for generating either the RA] or the RA[ under

approximation, for single or multiple debris, are not fast. However, as previously
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Figure 5.11: Projection of minimal BRT of the avoid set, Reach[

[0,T ]

(Avoid
d,[0,T ]

),
for T = 50s

mentioned, numerical solutions using level-set methods in even a four dimension

system are not possible, so while these computational times are not quick, they are

Table 5.1: Computational times of maximal reach and invariance kernel under-
approximation for single debris example

Maximal
BRS of
Target

z

Maximal
BRT of
z
d

Under-
Approximation

Computational
Time (s)

0.111 258 2.50
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Figure 5.12: Projection of the RA[ under-approximation set (green), target set
(blue), and minimal BRT of avoid set, Reach[

[0,T ]

(Avoid
d,[0,T ]

), (orange), along with
the avoid set trajectory (red) for T = 50s

Table 5.2: Computational times of maximal reach and invariance kernel under-
approximation for multiple debris example

Maximal
BRS of
Target

z

Maximal
BRT of
z
d,1

Maximal
BRT of
z
d,2

Maximal
BRT of
z
d,3

Under-
Approximation

Computational
Time (s)

0.119 128 129 129 12
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Figure 5.13: Projection of the RA[ under-approximation set (green) and target set
(blue) for T = 50s

an improvement. Furthermore, these computational times may be reduced more

through a di↵erent implementation of the code.

Table 5.3: Computational times of minimal reach and viability kernel under-
approximation for single debris example

Maximal
BRS of
Target

z

Maximal
BRT of
z
d

Under-
Approximation

Computational
Time (s)

0.111 133 2.16
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Currently, the code generates an avoid set for each time step in the time horizon.

In the single debris examples this corresponds to a total of 200 avoid sets and in the

multiple debris case there are 100 avoid sets for each piece of debris for a total of 300

avoid sets. For the RA] under-approximation all eight facets will evolve backwards

in time where as only four of the facets will for the RA[ under-approximation. The

code then generates a BRS for each facet of each of these avoid sets for an increasingly

longer time horizon. The time horizon for the avoid set at s = 20s is 20s, the time

horizon for the avoid set at s = 30s is 30s, and so on. If we instead assumed that the

debris was not moving we would only need to evolve one avoid set over the entire

time horizon. Because the dynamics of the system are linear we could then transform

the BRS of the avoid set to the corresponding position of the debris at each time

step. This would dramatically reduce the computational time of the code. While this

more e�cient algorithm was developed, there were discrepancies that arose between

the two algorithms that could not be addressed in time. Furthermore, the large time

di↵erence between the RA] under-approximation and the RA[ under-approximation

for the single debris case is due to the fact that only four facets in theRA[ calculation

evolve backwards in time, opposed to the the RA] calculation where all eight facets

evolve, leading to a shorter computational time for the RA[ set.

In Figures 5.7 and 5.8 we note an irregularity in one of the maximal BRS of the

maximal BRT of the avoid set. We believe this is due to a numerical issue related to

the projection of the full four dimension set onto the two dimension position plane.

Unfortunately, we did not have the time to fully investigate what was causing this

numerical discrepancy or why it only appears to a↵ect just one of the maximal BRSs.
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Conclusion

In this thesis the safe maneuvering of a satellite in the presence of debris was inves-

tigated. Reachability techniques were used to guarantee the safety of the satellite

with respect to the debris while also guaranteeing that the satellite would be able

to reach some new state in its orbit. We assumed that the satellite’s and debris’

positions and velocities relative to another point near the same orbit were modeled

using the LTI CWH equations. We also assumed that the debris had no external

input and underwent only autonomous evolution.

First, a computationally tractable solution for the Reach-Avoid set was generated

for a system under the CWH dynamics. This method was then further extended to

the single maximal or minimal reach problem. Attempting to apply this method

directly to the debris avoid problem proved problematic as the complement of the

avoid sets were no longer convex. We then investigated the extension of system

decomposition reachability techniques to the Reach-Avoid problem. While we found

they could not be directly applied to the full Reach-Avoid problem we were able to

extend them to the multiple debris avoidance problem. While this would guarantee

the safety of the satellite it would not guarantee that we reach any target position.
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Chapter 6. Conclusion

Finally, we developed two under-approximations for the Reach-Avoid set for the

spacecraft rendezvous problem in the presence of debris. This method allowed us to

compute the reach and avoid sets independently and construct a conservative Reach-

Avoid using a combination of those reach and avoid sets. One under-approximation

used the maximal BRS and the invariance kernel for which we could apply our

previous methods for computing the reach set of a system with CWH dynamics

for multiple pieces of debris. The second method used the minimal BRS and the

viability kernel which could not be generated using our reach techniques unless we

only considered a single debris case.
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