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Abstract

A college student’s success depends on many factors including pre-university charac-

teristics and university student support services. Student graduation rates are often

used as an objective metric to measure institutional effectiveness. This work studies

the impact of such factors on graduation rates, with a particular focus on delay in

graduation. In this work, we used feature selection methods to identify a subset

of the pre-institutional features with the highest discriminative power. In particu-

lar, Forward Selection with Linear Regression, Backward Elimination with Linear

Regression, and Lasso Regression were applied. The feature sets were selected in a

multivariate fashion. High school GPA, ACT scores, student’s high school, financial

aid received, and first generation status were found to be important for predicting

success. In order to predict delay in graduation, we trained predictive models using

Support Vector Machines (SVMs), Gaussian Processes (GPs), and Deep Boltzmann

Machines (DBMs) on real student data. The difference in performance among the

models is negligible with respect to overall accuracies obtained. Further analysis

showed that DBMs outperform SVMs in terms of precision and recall for individual
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classes. However, the DBM and SVM implementations are computationally inex-

pensive compared to GPs, given the same resources.
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Chapter 1

Introduction

1.1 Overview

University education aims to impart students with the necessary skills in their chosen

vocation. Its value is undisputed. A natural inclination, therefore, is to judge its

effectiveness. How effective is a university’s methodology in nurturing productive

student growth? As part of a defined curriculum, each university lays out a system

to grade how well students gain the desired skills. Although most curricula are

designed for a four year span, in mind the average six year graduation rate in US is a

mere 60% [35]. This makes the problem of determining of a university’s effectiveness

much more pertinent.

For a large public university, such as the University of New Mexico (UNM), the

task is even more daunting. Large universities are a vast network of interconnected

systems, and therefore singling out a bottleneck is extremely difficult. The ultimate

measure of success is a university’s graduation rate [56, 49, 48, 47, 50]. Universities

proactively try to predict graduation rates. Most studies use this statistic to quali-

tatively assess the factors influencing student progress.
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Chapter 1. Introduction

This work leverages student data to predict graduation delay for a student and

student cohorts (students belonging to the same incoming class). It provides a means

to study the factors that influence the amount of time it takes for a student to

graduate. An essential set of the factors that influence graduation rates is constituted

from student characteristics, i.e. his/her previous record, socio-economic background,

etc. To efficiently roll out initiatives aimed at student success, there is a need to

study, analyze and quantify the factors that have a direct impact on student success.

The challenge is to identify these factors, and engineer solutions based on them,

to produce quantifiable results that could be used to improve student progress at

universities.

Graduation rates are affected by a number of factors that can be grouped under

two categories: pre-institutional factors and institutional factors [25,55]. The former

includes factors such as race, ethnicity, high school preparation and socio-economic

status, while the latter includes factors such as tutoring, advisement arrangements,

competence of instructors and curricular complexity [49, 48]. This is illustrated in

Figure 1.1.

We begin our work by identifying a subset of features that best predict gradu-

ation rates. We employ various multivariate feature selection techniques to select

an optimal subset of features to be used for classification. These selected features

are then used to perform a multi-class classification using three predictive models,

namely DBM, SVM and GPC, with the objective of predicting a delay in graduation.

The rest of this thesis is organized as follows: The remainder of this chapter con-

siders the motivation behind this work and common student characteristics that are

most widely attributed to be the factors that contribute to a student’s success in a

university. Chapter 2 describes in detail the feature selection techniques we used to

find the best subset of features. Chapter 3 discusses the classification algorithms/-

models we used for predicting the delay in student graduation. The procedure used

2



Chapter 1. Introduction

Pre-Institutional 
Experiences           

Post Institutional 
Outcomes           

• Study Habits
• Interaction with Faculty
• Time on Task
• Motivation 
• Other

• Race/Gender
• Family Support
• College Readiness
• Demographics
• Other • First Year Experience

• Academic Support
• Campus Environment 
• Teaching & Learning Approaches
• Other

• Graduation
• Grades
• Employment
• Learning Gains
• Other

Figure 1.1: Student success framework.

for validation of results is discussed at length. The results are discussed using pre-

cision recall metrics for individual classes. Finally, concluding remarks are provided

in the Chapter 4.

1.2 Motivation

According to the report “Performance-Based Funding for Higher Education” [38],

thirty two states in the United States have adopted performance-based funding for

four-year colleges and many other states are in the process of transitioning to this

approach [38]. Some performance indicators used by these states include course

completion, time to degree, transfer rates, the number of degrees awarded, and/or

the number of low-income and minority graduates. These performance indicators

influence institutional ranking and the funding it receives to some extent [1]. Cost

of education is another factor that beckons the need for improving student success

3



Chapter 1. Introduction

metrics. The tuition at four-year colleges has more than doubled over the past three

decades [37] and a delay in graduation results in an increase in debt incurred by the

student.

In a span of 20 years, from 1992 to 2012, the average debt incurred by a student

loan borrower who graduated with a bachelor’s degree more than doubled to a total

of nearly $27,000 [42]. For instance, according to the statistics reported by The

University of Texas at San Antonio (UTSA), the average undergraduate student loan

debt incurred by students who graduated in four years was $19,239. The amount

borrowed increases sharply if students graduating are delayed by two years. The

average debt in this case grows to $26,191. Figure 1.2 represents the average debt

incurred by undergraduate students at UTSA who graduated in 2012-13. Four-year

graduates began as freshmen in 2009-10, while five-year graduates started in 2008-09

and six-year graduates started in 2007-08.

Figure 1.2: Loan indebtedness for 4 years versus 5 or 6 or 6+ years at UTSA [32].

Today, more than 40% of students who start as freshmen at four-year colleges do

not graduate within six years [35]. The student borrowers who default have a median

4



Chapter 1. Introduction

debt of around $8,900 and an average debt of $14,500 [54]. In fact, higher graduation

rates at four-year colleges result in fewer defaults, according to a United States

Department of Education study [13]. This is illustrated in Figure 1.3. Therefore,

it is imperative to focus on student success at universities to help students mitigate

financial burdens before joining the workforce.

Figure 1.3: Higher graduation rates at four-year colleges lowers the default rates [13].

Another statistic that adds to this financial difficulty is the decreasing federal and

state funding at four-year public institutions over the past decade. The federal and

state funding per Full Time Equivalent (FTE) student at public four-year colleges

in the 2003-04 academic year was $7,170 and $8,980 respectively. These numbers

reduced to $6,910 and $7,110 for federal and state funding respectively. This was

compensated by increases in tuition per FTE student from $6,610 in the 2003-04

academic year to $9,740 in the 2013-14 academic year [10]. Such changes increase

student’s burden, particularly if they fail to complete their degree or if they fail to

graduate within six years.

The market requirement of a skilled workforce is growing, with more than 50%

of upcoming jobs requiring a bachelor’s degree or higher. It is estimated that by

2020, around two thirds of all job openings will require postsecondary education or

training [9]. This provides an incentive for universities to graduate a higher number

of competent workers. Thus, improving student success has become a critical task at

5
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many institutions [39]. In addition, compared to their counterparts, college graduates

earn 66% more and have a lower probability of unemployment [36]. Over the course

of a lifetime, an average worker with a bachelor’s degree will earn $1 million more

than a worker without a postsecondary degree [8].

The profile of incoming students is increasingly becoming nontraditional. Many

students no longer enroll in college straight after high school or live on campus and

attend classes full time [16]. Instead, nearly one third of students attend class part

time and around 26% work full time while attending classes. At the present time,

28% of incoming students take care of dependents while enrolled in college and 44%

of the college and university students are 24 years old or older. Furthermore, 18% are

non-native English speakers and about 42% come from families of color [16]. Thus, it

is essential to identify these changing student demographics and characteristics and

understand their effect on graduation rates.

1.3 Pre-institutional Factors

This section discusses the most commonly studied and cited pre-institutional student

characteristics in literature that contribute to a student’s success at postsecondary

institutions. These factors include both educational and socio-economic student

background.

1.3.1 High School GPA and SAT scores

Tables 1.1 and 1.2 show the results reported by the Cooperative Institutional Re-

search Program (CIRP) freshman survey for the entering cohorts of 1994 and 2004.

There is a monotonically increasing relationship between degree attainment and high

school GPA and SAT scores, respectively. In particular, Table 1.1 shows that stu-

6
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% of Students holding
Bachelor’s degrees Within

HSGPA 4 Years 5 Years 6 Years

A/A+ 58.2 75.6 79.3

A- 47.8 66.3 70.6

B+ 35.9 54.7 59.8

B 25.2 43.3 48.7

B- 15.5 30.5 36.6

C+ 9.8 22.4 27.7

C or less 6.3 16.0 21.2

Table 1.1: Four, five and six year graduation rates by high school GPA.

dents with higher high school GPAs tend to graduate sooner than those with lower

high school GPAs. This is also true for students with higher SAT scores.

1.3.2 Gender

Statistics show that, on average, women tend to graduate earlier than men. In the

United States, for example, degree attainment rates for both genders have witnessed

remarkable fluctuations through the years. Figure 1.4 shows that men used to have

higher college degree attainment compared to women up until 2014 [46]. From 2013

back to 1967, the gap in degree attainment between men and women who are 25

years old and older ranged between 1% and 8% with a peak in 1983. In 2013 the gap

went down to 1% with degree attainment at approximately 30% for the two genders.

In 2015, the picture changed. At that time 33% of women 25 years old and older

held a bachelor’s degree or higher compared to 32% of men. This increase in degree

attainment is driven by the increased involvement of women in higher education.

7
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% of Students holding
Bachelor’s degrees Within

SAT score 4 Years 5 Years 6 Years

1300+ 62.2 78.2 81.6

1200—1299 51.9 69.5 73.3

1100—1199 42.9 61.2 65.6

1000—1099 34.8 53.7 58.6

900—999 24.6 44.0 49.9

800-899 17.2 34.1 40.5

Less than 800 10.5 23.9 30.4

Table 1.2: Four, five and six year graduation rate by SAT score.

1.3.3 Ethnicity

Today, incoming first year students in the United States are more diverse than they

were in the past, with a higher number of Hispanic, Black, part-time, older, low

income and other minorities entering college. Furthermore, the graduation rates for

these populations lag behind the more well-to-do white population [2]. According

to the United States Census Bureau population survey statistics, Asian and non-

Hispanic white ethnic groups have a relatively higher percentage of population 25

years old and older with a bachelor’s degree. Although, over the years, the per-

centage of the population 25 years old or older having a bachelor’s degree across all

ethnicities has increased, the relative difference in percentages between these groups

has remained the same, illustrated in the Figure 1.5. As can be seen in Figure 1.5, in

2015 the percentage of Black and Hispanic adults having a bachelor’s degree is under

20%, whereas that for Asians is 54% and that for non-Hispanic whites is 36% [46].

8
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Figure 1.4: Percentage of the population 25 years old and older with a bachelor’s

degree or higher by gender from 1967 to 2015.

1.3.4 Financial

Students from the lowest quartile of family income have a very low bachelor’s degree

attainment rate as compared to those from the top quartile. The percentage of

high school graduates in the lowest quartile continuing to college in 2015 was 62%,

whereas it was 89% for the top quartile. If the continuation range for college in the

year 2015 is considered, it is even worse, with the lowest quartile students at 45%

as compared to top quartile students at 82%. Finally, the percentage gap increases

even further when considering the eventual bachelor’s degree graduation rates. Just

9% of students from the lowest quartile earn a bachelors degree by age 24, compared

to 77% for the top quartile [41]. These statistics show family financial background

to be a significant contributor towards bachelor’s degree attainment.
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Figure 1.5: Percentage of the population 25 years old and older with a bachelor’s

degree or higher by race and hispanic origin from 1988 to 2015 [46].

1.3.5 Family Educational Background

Numerous studies have suggested that first-generation college students are at higher

risk of dropping out of college than their non first-generation counterparts [58]. The

percentage of first-generation students who earn a degree after four years is 27.4%,

which is much less when compared to 42.1% for students who come from families

with parents who have higher education experience [11]. This percentage gap re-

mains consistent even when 6 year graduation rates are considered, as illustrated in

Figure 1.6.

1.4 Institutional Factors

The first-year student characteristics measured in terms of GPA, number of credit

hours and major changes can be very useful features in predicting whether or not a

student eventually graduates [3]. A university typically requires a certain GPA to

10
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Figure 1.6: Weighted four, five and six year graduation rates, by generation in college

[11].

be maintained and a certain number of credit hours to be completed as a condition

for graduating. This implies that students GPA and number of credit hours are

correlated with the eventual timely or delayed graduation of a student.

11



Chapter 2

Feature Selection

2.1 Introduction

Examining and understanding the intrinsic characteristics of the data is generally

the starting point for any machine learning application. Feature selection involves

choosing the best feature subset from a given dataset based on statistical and dis-

criminative properties. Hence, it provides for a better quality feature set, i.e., less

redundant and noisy, to be provided as input to learning algorithms. Feature selec-

tion is particularly useful when there are a large number of features. Most learning

algorithm implementations require that all features be real-valued. However, in most

real world scenarios the data is both categorical and real-valued. A direct translation

of a categorical value set to real values is impractical, since real numbers have a nat-

ural numerical ordering (e.g. 2 > 1 whereas B 6> A). A method commonly employed

to solve this issue is to binarize the set of discrete (categorical) values, i.e., to map

each categorical value to a binary number and treat each digit in this mapped space

as a separate feature. Consequently, this leads to an expansion in the feature space.

One of the most widely used procedures to improve the quality of the feature set,

12
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i.e., to reduce redundancy and noise in the feature set, is dimensionality reduction

[52]. There are several techniques for dimensionality reduction in literature that can

be broadly classified as feature extraction and feature selection. Feature extraction

combines features and projects them into a new feature space with a reduction in the

number of dimensions. Principal Component Analysis (PCA), Linear Discriminant

Analysis (LDA), and Canonical Correlation Analysis (CCA) [52] are a few prominent

feature extraction techniques. Feature subset selection, according to Hall et al. [19],

is the process of identifying and removing irrelevant and redundant information by

selecting a subset of features in order to maximize relevance to the target, such as

class labels [52]. It is also referred to as variable selection, variable subset selection,

and attribute selection in machine learning and statistics literature.

Feature extraction and selection help to improve learning performance, lower

computational complexity, build better generalizable models, and decrease required

storage. Since the dimensions of the feature space are altered after feature extraction,

interpreting features in terms of the original space is difficult [52]. This, however,

is not the case while using feature selection, wherein the original dimensional space

is maintained. Thus, feature selection edges out feature extraction in terms of in-

terpretability [52], but not necessarily in terms of performance. Feature extraction

(transformation) methods can be converted into feature selection methods via sparse

learning techniques such as l1 regularization [33].

In this work, we use real student data, which contains numerous categorical

features, and binarizing them expands the feature space. Hence, we use feature se-

lection on pre-institutional characteristics of university students, in order to improve

the computational efficiency of our model.

13
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2.2 Characteristics of Feature Selection

Typically there are four steps in feature selection: subset generation, subset evalua-

tion, stopping criterion, and result validation [29]. The actions taken in each of these

steps is discussed below:

1. Subset Generation: A search strategy is employed here to select the best

feature subset using some evaluation criterion.

2. Subset Evaluation: In this step the set of features selected in the previous

step are evaluated based on some evaluation criterion.

3. Stopping Criterion: Amongst all the selected subsets, the subset that best

fits the evaluation criterion after the stopping criterion is met, is chosen.

4. Result Validation The selected subset is validated [52].

These processes are illustrated in Figure 2.1.

Figure 2.1: Feature selection steps.

Subset generation is a heuristic search in which a potential subset is defined by

each state for evaluation in the search space. The subset search can be started with

one feature in the set, with a feature added to the set at each step, which is called
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forward selection. Whereas, if the set is initialized with the complete feature set and

features are sequentially removed one at a time, it is termed as backward elimination.

Naturally, the selection of a starting point is essential to this process. The subset

generation process is characterized by successor generation and search organization

[26]. The search starting point is determined in the successor generation phase,

which in turn influences the search direction. To determine the search starting point

at each state, forward, backward, compound, weighting, and random methods may

be considered [12]. Search organization is responsible for the feature selection process

with specific strategies like sequential search, exponential search [34] [40] or random

search [28]. The evaluation criterion can be classified as independent or dependent,

based on whether or not it uses the classification or regression models [29]. The

independent criterion uses intrinsic characteristics of the training data to evaluate

the importance of a feature or feature set, whereas the dependent criterion uses the

training model for feature or feature set evaluation.

A term often used in feature selection literature is feature relevance. A feature

Xi is considered to be strongly relevant if it creates a change in the probability

distribution of the class values when used with the full feature set [19]. On the

other hand, if Xi is not strongly relevant and creates a change in the probability

distribution of the class values when used alongside a subset of the complete feature

set, it termed as weakly relevant. All other features are considered as irrelevant.

2.3 Classification of Feature Selection Algorithms

The feature selection algorithms can be classified as supervised [57,51],

semi-supervised [60,59] or unsupervised [15,31].

Supervised feature selection algorithms can be subclassified as filter methods,

wrapper methods [24], and embedded methods. A filter method uses heuristics based
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on the intrinsic characteristics of the feature set, such as distance, consistency, depen-

dency, or correlation, without the use of any learning algorithm [18]. This prevents

against any bias that the learning algorithm might introduce into the feature selec-

tion process [52]. A wrapper method employs a predetermined learning algorithm to

evaluate the feature set to be selected. Another class of methods, called embedded

methods combine feature search and the learning algorithm into one optimization

problem formulation.

Feature selection via wrapper and embedded methods are specific to a classifier

[33]. Filters, on the other hand, totally ignore the effect of a selected feature subset

on the performance of the induction algorithm [24, 19]. Since wrappers are tuned

to the specific interaction between an induction algorithm and its training data,

they generally outperform the filters [19]. However, wrappers are computationally

intensive. Embedded methods, being a combination of filters and wrappers, are still

relatively time efficient. In this work, we use wrapper and embedded methods for

multivariate feature selection from the pre-institutional features dataset.

2.4 Wrapper Method

The wrapper approach employs, as a subroutine, a statistical re-sampling technique

(such as cross-validation) using the actual target learning algorithm to estimate the

accuracy of the feature subsets [24]. This use of the target learning algorithm comes

from the assumption that the optimal feature subset should have a dependency on the

specific biases and heuristics of the induction algorithm [52]. A generalized wrapper

method performs the following steps, given a predefined learning algorithm:

1. Search This step involves searching for a subset of features.

2. Evaluation In this step, the subset of features selected from the previous step
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is evaluated by the performance of the learning model.

3. Stopping The previous two steps are repeated until a desired quality is reached.

Figure 2.2 illustrates the general framework of feature selection. It involves three

parts: Feature Search, Feature Evaluation, and Induction Algorithm.

Figure 2.2: Generalized wrapper approach for feature selection.

Treating the learning algorithm as a black box, the feature search phase produces

a set of features, which are fed to the feature evaluation phase. The evaluation

phase uses a learning model to assess the performance which is sent back to the

feature search phase to perform the next iteration of feature subset selection. This

is performed until a feature subset with the best performance metric is found. The

resulting learning model is then evaluated on a new validation set.

Suppose the feature space is of size m. Then the search space is of order O(2m). If

m is big, this exhaustive search is not practical. Instead, other search strategies like

hill-climbing, best-first, branch and bound, and genetic algorithms can be used [17].

Table 2.1 lists the different search strategies. In this work, we use the greedy search
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Algorithm Group Search Algorithm Name

Exponential Exhaustive search
Branch-and-Bound

Sequential Greedy forward selection or backward elimination
Best-first

Linear forward selection
Floating forward or backward selection
Beam search (and beam stack search)

Race search

Randomized Random generation
Simulated annealing

Evolutionary (e.g. genetic, colony etc.)
Scatter search

Table 2.1: Search strategies for feature selection.

strategies with linear regression as the predefined learning model for the wrapper.

Greedy search strategies are of two types: forward selection and backward elimina-

tion [52].

2.4.1 Forward Selection

Forward selection starts with an empty set of features. Features are constantly

added to form an increasing set at each iteration based on a selection metric, until a

stopping criterion is met.

2.4.2 Backward Elimination

As opposed to forward selection, backward elimination starts with a full set of fea-

tures. In each iteration a feature is eliminated based on an elimination metric until

a stopping criterion is met.
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2.5 Embedded Method

As a first step, the embedded approach uses a statistical criterion to select numer-

ous candidate feature subsets with a given cardinality (similar to filter methods).

Thereon, the subset with the best evaluation metric value for the learning model is

chosen [29]. Embedded models leverage the computational efficiency of filters and

add sophistication using learning models as in wrappers. The embedded methods

can be classified into the following three types [52]:

1. Pruning Methods At first, the model is trained using the complete feature

set. Thereon, some features are zero weighted in an attempt to eliminate them,

while trying to maintain model performance.

2. Built-in Methods Algorithms such as ID3 [45] and C4.5 [44] have a built-in

mechanism for feature selection.

3. Regularization Models The regularization models use an objective function

to minimize fitting errors, while reducing the feature weights to be very small,

nearly or exactly zero. Thereafter, the features with zero weights are eliminated

[30].

We use a regularization model in our feature selection process. Without loss of

generality, we consider only linear models w, wherein classification of Y can be based

on a linear combination of X [52]. Here, Y denotes the vector of target values and X

denotes the input feature vector. Here, w (weight) is estimated with properly tuned

penalties. Each weight wi ∈ w, corresponds to a feature, fi in the feature set. Only

the features with a corresponding wi 6= 0 are selected.

Mathematically, ŵ is given as:

ŵ = argmin
w

c(w,X) + α · penalty(w) (2.1)
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where c(.) is the classification objective function, penalty(w) is a regularization term,

and α is the regularization parameter controlling the trade-off between the c(.) and

the penalty. Quadratic loss (e.g. least squares), hinge loss (e.g. l1SVM), and logistic

loss are some of the most commonly used classification objective functions. For our

experimentation we used the lasso regularization.

2.5.1 Lasso

Lasso regularization [53] is based on l1 regularization of the coefficient w and defined

as:

penalty(w) =
m∑
i=1

|wi| (2.2)

l1 regularization has the property that it can generate an estimation of w with exact

zero weights. These zero weights correspond to individual features which can be

eliminated.

2.6 Experimental Setup

2.6.1 Dataset Description

The dataset used in our experiments is anonymized real student data from the Uni-

versity of New Mexico. It represents information for nearly two thousand First-Time

Full-Time (FTFT) undergraduate students. Table 2.2 lists pre-institutional student

characteristics that are present in the data.
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Pre-Institutional Features

High School GPA HS GPA on “good” units

Enhanced ACT Reading Passed HS Units Requirement

Enhance ACT Science Reasoning HS Natural Science units

HS Social Science units High School State: ACT Record

Enhanced ACT Composite HS Math units

Age at Matriculation HS Lab Science units

High School: ACT Record HS History units

Gender HS Foreign Language units

Ethnicity HS total English units

Recent HS Graduate HS units of English Composition

Current Residency Status Started in Summer Semester
(on-campus/off-campus)

HS Lack of English HS Lack of Math

HS Lack of Foreign Language HS Lack of Natural Science

HS Lack of Social Science Original Place of Residence

Pell Grant Received Pell Grant Eligible

First in family to go to University
(First Generation)

Table 2.2: Pre-institutional features used in feature selection.

The feature set is a mix of categorical and continuous valued features. Student’s

high school state, original place of residence, and ethnicity are a few examples of

categorical features. During the preprocessing phase, categorical features were bina-

rized and were thus, transformed into multiple binary valued features, based on the

highest number of digits in the binarized space. After binarization, the total feature

space expanded to a set of 56 features from a set of 31 features. Continuous features,
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such as HSGPA, ACT scores, etc. were normalized as follows:

x− µ
σ

Where x represents the set of values for a feature f , µ is the mean of the values of f ,

and σ is the standard deviation of f . This transformation of the values scales them

to unit variance.

For imputation of missing values, we tried three different approaches which are as

follows: replaced the null values of a feature with the mean of that feature, replaced

the null values of a feature with the median of that feature, and omitted the records

that had null values in any of the features. All the three approaches were marginally

different. The results presented in Section 2.7 correspond to the imputation approach

wherein the records having null value for any of the features were omitted.

2.6.2 Feature Selection Methods

We used three feature selection methods, namely forward selection with linear re-

gression, backward elimination with linear regression, and lasso regression. The first

two techniques are wrapper approaches, while the third technique is an embedded

approach.

In the linear regression with forward selection and backward elimination, the R-

squared value was used as the discriminative measure for features to be added to,

or removed from the selected subset for the case of forward selection, or backward

elimination, respectively. For all the three methods, the best feature subset for a

given number of features was assessed using cross-validation mean squared error

(CV-MSE). Additionally, the number of features in the selected subset was varied

from zero to total number of features, i.e. 56. The performance for each number of

features in the subset was gauged using CV-MSE.
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2.7 Results and Discussion

The results for the three feature selection methods are illustrated in Figure 2.3. It

is evident from Figure 2.3, while varying the number of features to be selected in

the final subset, forward selection and backward elimination perform very similarly

in terms of the CV-MSE. However, lasso regression constantly selects a smaller

sized feature subset. Thus, it can be said that the forward selection and backward

elimination outperform lasso regression.

  

Figure 2.3: Number of features in the selected subset vs. the cross-validation mean

squared error for forward selection, backward elimination, and lasso regression.

The minimum CV-MSE obtained with linear regression methods was 0.029 and

using lasso regression yielded a minimum CV-MSE of 0.030. Additionally, the num-
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Forward Selection Backward Elimination Lasso

High School GPA High School GPA High School GPA

Pell Grant Received Pell Grant Received Pell Grant Received

Enhanced ACT Composite Enhanced ACT Composite Enhanced ACT Composite

High School: ACT Record High School: ACT Record High School: ACT Record

First Generation Status First Generation Status First Generation Status

Gender Gender Gender

Original Place of Residence Original Place of Residence Original Place of Residence

HS English Composition units HS English Composition units HS English Composition units

HS Lab Science units HS Lab Science units HS Lab Science units

HS Social Science units HS Social Science units HS Social Science units

HS High School State: ACT Record HS High School State: ACT Record HS High School State: ACT Record

Ethnicity Ethnicity Ethnicity

HS GPA on “good” units HS GPA on “good” units HS GPA on “good” units

HS Lack of Foreign Language HS Lack of Foreign Language HS Lack of Foreign Language

Current Residency Status Current Residency Status Current Residency Status

Recent High School Graduate Recent High School Graduate Recent High School Graduate

ACT Reading

HS Lack of Math

HS Foreign Language units

Table 2.3: Feature subsets selected by the three feature selection methods.

ber of features that give the minimum CV-MSE was 23 using linear regression meth-

ods, but 37 using lasso regression. This further highlights lasso regression’s under-

performance. It should, however, be noted that lasso has considerably better time

performance.

Table 2.3 lists the selected pre-institutional feature subsets for each feature selec-

tion method. As stated earlier, binarization of categorical features expands it into

multiple binary features. The Table 2.3 lists categorical features that have at least

one binarized feature in the selected subset. The forward selection and backward

elimination produce the same feature subset for the minimum CV-MSE values re-

spectively, however, they differ in the binarized columns of the selected categorical

features. The lasso regression selects ACT Reading, HS Lack of Math and HS For-
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eign Language units features in addition to the features selected by the other two

methods. The feature subset selected by Forward selection in combination with in-

stitutional features like semester GPA, semester credit hours, etc. is used to predict

the delay in student graduation. The models used are presented in Chapter 3.
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Classification

According to Tang et al. [52], Classification is the problem of identifying to which

set of categories (sub-populations) a new observation belongs, on the basis of a

training set of data containing observations (or instances), whose category mem-

bership is known. The mathematical learning models that are constructed to solve

this problem are known as classifiers. Duda et al. [14] says that, because a perfect

classification performance is almost impossible, a more general task is to determine

the probability for each of the possible categories. The abstraction provided by the

feature-vector representation of the input data enables the development of a largely

domain-independent theory of classification.

In this work, we used a multi-class classification model, wherein each instance

can have multiple labels associated upon classification, to predict delay in gradu-

ation. The feature set consists of institutional as well as pre-institutional student

characteristics. The pre-institutional features selected by forward selection, as listed

in Table 2.3, were used.
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3.1 Theory

3.1.1 Deep Boltzmann Machines

Deep Boltzmann Machines are machine learning structures composed of multiple

layers of nodes that store latent variables usually called hidden units. The structure

is identical to the one of the multilayer perceptron (see e.g. [20]). Every layer is

usually known as a Restricted Boltzmann Machine (RBM) [22], a structure with a

visible layer of nodes v and a layer of hidden nodes h. A node i in the visible layer

is connected to a node j in the hidden layer through the weight wi,j. A stack of

different Boltzmann machines can be constructed where the hidden nodes of a layer

are the visible nodes of the following one.

Each layer is assumed to be able to store a state that depends on the previous

layer. If the states are binary, a representation of the probability of each node state

can be modeled as a Bernoulli distribution through a sigmoidal function of the state

probabilities of the previous layers. If the used sigmoid is a logistic function, for node

j of layer k, the probability of its state is

p(h
(k)
j |v(k)) =

1

1− e−w
(·,k >)
j v(k)+bj

(3.1)

where v(k) = h(k−1) = are the visible nodes of layer k, corresponding to the hidden

nodes of layer k − 1 and w
(k)
·,j is the j−th row of matrix W(k) connecting the visible

and hidden nodes of layer k.

Conversely, the probability of a visible node i given its corresponding hidden layer

can be also modeled as

p(v
(k)
i |h(k)) =

1

1− e−w
(k)
i,· h

(k)+ci
(3.2)

27



Chapter 3. Classification

where wi,· is the i−th row of matrix W(k)

G. Hinton [23] showed that a DBM can be trained layer-wise in such a way that

every layer represents a representation of the data in the previous layer with a higher

level of abstraction. Specifically, for each layer, one can construct a joint probability

distribution

p(v,h|θ) =
1

Z(θ)
exp (−E(v,h;θ)) (3.3)

where Z(θ) is a normalization factor and

E(v,h;θ) = −
(
v>Wh + v>b + h>c

)
(3.4)

is the energy function [5], where elements of W represents the importance of that

a given visible node i and a given hidden node j are simultaneously active, and the

elements of vectors b and c represents the importance of the activation of each one

of the visible and hidden nodes themselves.

The maximization of function (3.3) can be achieved by gradient descent with

respect to the weights of the model. This training can be given using a greedy

algorithm usually called Contrastive Divergence [23, 21, 6]. The training consists on

a gradient descent with the form

W[n] = W[n− 1] + µE(vh>|xl)− E(vh>) (3.5)

The first expectation of the equation can be computed as follows. Using the input

data xl, compute the hidden state h probability with equation (3.1). Then, set a

value hj = 1 with probability p(h
(k)
j |v(k)) for each node. Compute the average of the

outer product vh>, where v is changed by all available data xl. This is the so called

clamped phase of the training.

Then, in the unclamped phase, all synthesized values of h are used to gener-

ate likewise values of the visible layers using equation (3.2) and compute again the
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average, but this time with synthesized visible data. In the convergence, both expec-

tations tend to be equal. Since these expectations are the cross correlation between

the visible and hidden nodes, in the convergence, both posteriors (3.1) and (3.2) are

maximized at the same time. This means that the probability distributions have the

same properties.

This training can be performed layer by layer, using the available data for the

visible nodes of the first layer and then using the hidden nodes of each layer as inputs

to visible nodes for the next one. Each layer will contain a feature extraction of the

previous layer with increased level of abstraction. For example, if different clusters

representing different classes are present in the input data, this distribution will be

preserved at the output.

When the network is used as a classifier, a supervised backpropagation training

is applied as a fine tuning.

3.1.2 Support Vector Machine

A Support Vector Machines (SVM) use a classification criterion based on the so

called margin maximization. Assuming a classifier based on the sign of the linear

estimator

f(xl) = w>xl + b (3.6)

the SVM idea consists of the minimization of a linear cost over the estimation error

plus a term that maximizes the distance between the so called classification margins,

which are the hyperplanes w>x + b = ±1. This is equivalent to minimize the norm

of the parameter vector w. The corresponding problem can be written as

minw,b‖w‖2 + C
∑
l

ξl

subject to yl
(
w>xl

)
= 1− ξl

(3.7)
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Solving the minimization problem using Lagrange optimization leads to the dual

problem

1

2

∑
l,m

x>l xm +
∑

αm

subject to 0 ≤ α ≤ C

(3.8)

which can be solved using quadratic programming [43]. An important characteristic

of these machines is that they have good generalization properties thanks to the max-

imum margin criteria, which is equivalent to the machine complexity minimization.

Also, nonlinear versions can be constructed by simply changing the dot product in

(3.8) by any positive definite function (often called Mercer’s kernel) [4]. See [7] for a

detailed description of the SVM.

3.1.3 Gaussian Process Classifier

The Gaussian Process (GP) classifier is rooted in the Bayes theory. The underlying

idea of the GP classifier consists of the construction of a Gaussian prior distribution

over the estimation function p(x) = w>x + b, and then constructing a probabilistic

estimator using a sigmoid function that produces a prior

p(y = 1|x) = sigmoid(f(x)) (3.9)

The distribution of the latent variable y corresponding to a test sample, can be

computed by using the posterior over the latent variables p(f |X,y) and then, using

the prior (3.9) a posterior can be computed of the form

p(y = 1|X,y, x) (3.10)

where X,y are the training samples, and x is the test sample. This inference is

in general intractable, but approximation exist that asymptotically tend to an op-

timal solution. Also, kernel versions are straightforwards. See [27] for a detailed

description.
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3.2 Experimental Setup

3.2.1 Dataset

We used the actual student data from The University of New Mexico (UNM) for our

experiment. We used incoming student cohorts for the years ranging from 2006 to

2010. Furthermore, only First-Time Full-Time (FTFT) students, i.e. full-time, first-

time degree seeking undergraduate students, were included in this analysis. This

cohort was particularly chosen so as to have sufficient data for training and also

because this sample will give us the required classification labels for testing and

validation. We chose the following student characteristics, listed in Table 3.1 as our

feature set for the first set of experimentation (we will refer to this as Dataset 1 from

here on).

Feature Set

High School GPA First and Second Semester GPA at UNM

Number of Credit Hours taken by a Student If the student went through a
up to Second Semester at UNM Major/Degree change upto Second Semester

Enhanced ACT Composite HS Lack of Foreign Language

Gender Pell Grant Received

Original Place of Residence Current Residency Status

HS units of English Composition High School: ACT Record

High School State: ACT Record First Generation

Ethnicity HS GPA on “good” units

HS Lab Science units HS Social Science units

Recent High School Graduate

Table 3.1: Dataset 1: Pre-institutional and institutional features used for the first
set of experimentation.

The target values comprised of the following three classes:

1. Class 1: No delay in graduation, i.e. student graduated in four years
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2. Class 2: Delay in graduation of one year

3. Class 3: Delay in graduation of two or more years

The number of students/records in the dataset used for experimentation was

16,174. The first set of experimentation takes the feature subset selected by the

forward selection, as listed in Table 2.3. It further includes institutional features

such as Semester GPA and Credit Hours taken up to the first year at UNM. The

features for the first set of experimentation are listed in Table 3.1. In the next set

of experimentation, features describing institutional characteristics of students were

extended to include their second year at UNM. Accordingly, the following were

added to the earlier feature set for our second set of experimentation (We will refer

to this as Dataset 2 from here on):

• Third and fourth semester GPA at UNM

• Number of credit hours taken by a student up to fourth semester at UNM

Finally, we extend our experimentation to include the institutional characteristics

of students up until the third year at UNM in our feature set. The following were

added to the earlier feature set for our final set of experimentation (We will refer to

this as Dataset 3 from here on):

• Fifth and sixth semester GPA at UNM

• Number of credit hours taken by a student up to sixth semester at UNM

3.2.2 Construction of Deep Boltzmann Machine

Our model consists of the following steps: building a neural network, training the

neural network with DBM trainer, and finally using supervised backpropagation
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trainer as a fine tuning. We used softmax layer in backpropagation for our multi-

class classification.

Constructing the Neural Network

The neural network has been constructed with one input layer, two hidden layers

and an output layer. This is illustrated in Fig. 3.1.

Figure 3.1: Generalized structure of the network used.

The configuration of neurons in each layer for our first set of experimentation is
as follows:
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Input Layer: 27
Hidden Layer 1: 256
Hidden Layer 2: 256

Output Layer: 3

The input neurons and output neurons correspond to the input features and

output targets as mentioned in Section 3.2.1. Furthermore, the input layer size

changes as we add features for our additional two sets of experimentation.

Unsupervised Training

The neural network constructed in the previous step can be seen as a stack of Re-

stricted Boltzmann Machines (RBM) and are trained as explained in Section 3.1

earlier. This phase uses reconstruction, that is, to estimate the probability distribu-

tion of the original input, and thus is a generative process. The training parameters

used in this step, that gave the best performance on cross validating, are as follows:

• learning rate = 0.05

• batch size = 32

• number of epochs for each RBM layer = 10

• activation function = Rectified Linear Units

Finetuning

The supervised backpropagation algorithm was used for fine tuning with the following

parameters (these parameters were chosen as they gave the best results while cross

validating them):
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• learning rate = 0.1

• batch size = 32

• number of epochs = 100

• classification layer = softmax

• dropout rate = 0.1

• activation function = Rectified Linear Units

The results are presented in Section 3.3.

3.2.3 Support Vector Machines

The Support Vector Machine model was implemented for all the three sets of exper-

iments, that is with datasets having varying degrees of institutional characteristics,

as explained in the sections above. The kernel used was the Radial Basis Function.

The best parameters for the SVM model were found out through cross validation.

The cost parameter C was chosen as 100 and the free parameter γ was chosen as

0.1. The accuracy did not show significant variation in iterating the cost parameter

C through 1 to 100 with a step size of 1, but it did vary considerably with free

parameter γ, iterating through values in the range 0.01 to 1 with a step size of 0.01.

The results are presented in Section 3.3.

3.2.4 Gaussian Process Classification

The Gaussian Process model for classification was implemented for all three sets of

experiments, as in the previous methods. Isotropic Radial Basis Function was used
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as the kernel. Herein, the classification is done based on a probabilistic approach,

i.e. class probabilities obtained are translated into classification labels.

Here, the Gaussian process classifier was fitted for each combination of pairs of

target classes, and is trained to do binary classification among each pair. Then, these

binary predictions are combined to result into multi-class predictions.

3.3 Experimental Results

The precision, recall, and F1-score value associated with each of the target classes,

namely no delay (Class 1), one year delay (Class 2), and two or more years delay

(Class 3) in graduation, was calculated from the confusion matrix and averaged over

the iterations of 5-fold cross validation. This is illustrated in Figure 3.2, Figure 3.3

and Figure 3.4. Figure 3.2 shows the comparison of DBM, SVM and GP based

on the aforementioned measures for Dataset 1. Similar comparison has been made

for Dataset 2 and Dataset 3 in Figure 3.3, and Figure 3.4, respectively. Figure 3.5

depicts the comparison of overall mean accuracy of 5-fold cross validation obtained

for all the 3 datasets for each model.

As it can be seen from Figure 3.2, DBM tends to perform much better than SVM

and slightly better than GP for Dataset 1, owing to the low precision, recall and

F1-score values for Class 2 exhibited by SVM and GP. Furthermore, SVM highly

under-performs DBM and GP for Dataset 1, as is clear from the F1-scores and error-

rate values for classes 1 and 2 in Figure 3.2. Though it is interesting to note that the

difference in overall accuracy for all the three models with each other is insignificant,

which can be clearly inferred from Figure 3.5. Figure 3.3 shows that the precision,

recall and F1-score values of individual classes increases for Dataset 2, which reflects

that the addition of more institutional features improves the classification. This is

also reiterated by a noticeable increase in overall accuracy illustrated in Figure 3.5.
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Figure 3.2: Precision, recall, F1-score, and error-rate for each class and each model

for Dataset 1.

Figure 3.3: Precision, recall, F1-score, and error-rate for each class and each model

for Dataset 2.

Comparing the models based on the precision, recall, F1-score, and error-rate values

for each class in Figure 3.3, we find that the models have negligible differences, except

for SVM, which slightly under-performs GP and DBM for classes 1 and 2. Figure 3.4

and Figure 3.5 again reflect the increase in performance for all three models with

the addition of more institutional features in terms of the aforementioned metrics.

According to Figure 3.4, all three models can be said to show almost negligible

differences in performance.
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Figure 3.4: Precision, recall, F1-score, and error-rate for each class and each model

for Dataset 3.

Figure 3.5: Overall accuracy obtained for DBM, SVM, and GP for each dataset.

The comparatively low precision, recall, and F1-score values for class 2 with

respect to class 1 and class 3 for all the 3 datasets can be attributed to some extent

to its low number of records/students in the dataset. Comparing the models based
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on the time for computation, given the same computational resources and dataset,

SVM performs the best and GP performs the worst. Thus, overall DBM can be said

to be more suitable in terms of better classification of each class for each dataset as

compared to SVM, and better in terms of computation time with respect to GP.

3.3.1 Balancing the Classes

As stated above, low precision and recall values for classes 1 and 2 can be because

of their smaller sample size as compared to class 3. A possible way to mitigate this

problem is to take the individual class weights into account.

We weighted SVM’s cost parameter, C, by multiplying it with inverse class fre-

quencies, as follows:

1. for class 1: w1 = n/n1

2. for class 2: w2 = n/n2

3. for class 3: w3 = n/n3

where, n1, n2, and n3 are the class frequencies for classes 1, 2, and 3, respectively.

Figure 3.6 compares the error rate and F1-score for each class for class weighted

(CW) SVM and non class-weighted SVM. It can be clearly seen that the error rate

decreases and F-1 score increases for classes 1 and 2 while using class-weighted SVM.

The error rate values and F1-scores for each class are averaged over 5-folds of cross

validation.
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Figure 3.6: Error-rate and F1-score for each class for class-weighted (CW) SVM and

non class-weighted SVM using Dataset 1.
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Conclusions and Futurework

We presented three feature selection methods, Forward Selection with Linear Re-

gression (wrapper approach), Backward Elimination with Linear Regression (wrap-

per approach), and Lasso Regression (embedded approach). These feature selection

methods were used to choose the best subset, i.e., the feature subset having the

lowest CV-MSE, of pre-institutional features. We used real UNM student data for

our experimentation. The two wrapper approaches had similar performance in terms

of CV-MSE. However, they, had a lower CV-MSE for the best performing feature

subset, compared to that for lasso. High school GPA, ACT scores, student’s high

school, financial aid received, first generation status, and current residency status

were found to be important for predicting success.

We presented three predictive models, DBM, SVM and GP, to predict the no

delay, one year delay, and two or more years delay in student graduations. The

feature subset selected by the forward selection method, combined with institutional

features, semester GPA, semester credit hours, and change in major, up to the first

two semesters, were used to predict the delay in graduation of a student for the

first set of experimentation. We extended our experiments to two more sets, adding
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more institutional features, such as semester GPA and cumulative credit hours to

the earlier dataset. This resulted in a noticeable increase in overall accuracy as more

institutional features were added. In terms of overall accuracy, the difference in

performance between all three models was negligible. DBM performed slightly better

overall than SVM in terms of precision, recall, F1-score, and error-rates for individual

classes, whereas DBM and SVM performed better than GP in terms of computational

time given the same resources. The performance of GP was comparable to DBM

and better than SVM for the individual classes. Furthermore, the comparatively

diminished performance of class 1 and 2, with respect to class 3, can be partially

attributed to their lower percentage in the dataset. This was addressed for the case of

SVM by taking into account the class weights. This resulted in a significant decrease

in error-rates and increase in F1-scores for classes 1 and 2.

The models can predict delay in graduation with overall accuracies in the region

of 68%, 72% and 75% for Dataset 1, 2 and 3 respectively. This suggests that there

exist other pre-institutional and institutional factors that should be included in the

feature set. Furthermore, class weights need to be taken into account for DBMs and

GPs to improve the performance of the underrepresented classes, 1 & 2. These will

be the focus of our future work.
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