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Abstract

Classification of human activity in raw video presents a challenging problem that

remains unsolved, and is of great interest for large datasets. Though there have

been several attempts at applying image processing techniques to video to recognize

human activity in controlled video segments, few have attained a significant degree

of success in raw videos.

Raw video classification exhibits significant challenges that can be addressed

through the use of geometric information. Current techniques employ a combination

of temporal information of the feature space or a combination of Convolutional and

Recurrent Neural Networks (CNN and RNNs). CNNs are used for frame feature ex-

traction and RNNs are then applied for motion vector extraction and classification.

These techniques, which utilize information from the entirety of a frame, attempt to

classify action based on all motion vectors and all objects found in the video. Such

methods are cumbersome, often difficult to train, and do not generalize well beyond

the dataset used.
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This thesis explores the use of color based object detection in conjunction with

contextualization of object interaction to isolate motion vectors specific to an activity

sought within uncropped video. Feature extraction in this thesis differs significantly

from other methods by using geometric relationships between objects to infer con-

text. The approach avoids the need for video cropping or substantial preprocessing

by significantly reducing the number of features analyzed in a single frame. The

method was tested using 43 uncropped video clips with 620 video frames for writing,

1050 for typing, and 1755 frames for talking. Using simple KNN classification, the

method gave accuracies of 72.6% for writing, 71% for typing and 84.6% for talk-

ing. Classification accuracy improved to 92.5% (writing), 82.5% (typing) and 99.7%

(talking) with the use of a trained Deep Neural Network.
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Chapter 1

Introduction

1.1 Overview

Human activity recognition in raw video is a challenging problem that has drawn a

lot of interest, especially around classification tasks involving huge video datasets.

Most current methods have focused on speeding-up previous approaches, methods

by which would otherwise require an impossible amount of human time to manually

classify. However, these classification methods, even when assisted by humans, are

not yet designed to accurately handle video in the wild.

An example of a large video database (several TB worth of raw video at the

time of this writing) is the AOLME video database. The dataset collected for the

AOLME project is an agglomeration of information in raw video that is currently

being analyzed manually. The data were collected for the purposes of understanding

how children learn in situations involving mathematical and programming challenges,

such that teaching methods can be improved to broaden underrepresented student

participation in STEM fields. The information necessary for identifying key features

of the video include the discovery of interactions between the students and their
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Chapter 1. Introduction

facilitators for the purposes of identifying best teaching practices.

Because of the sheer size of the dataset, much of the video will never be fully ana-

lyzed. This being, in part, due to the many hours necessary to manually classify each

video for each individual activity. In these cases, clearly an efficient, accurate classi-

fication tool to aid in the discovery for those researchers such that they could quickly

identify videos bearing certain activities is warranted and could greatly improve the

quality of their results.

1.2 Motivation

The majority of current human activity detection methods require a significant

amount of human time to clip out regions of interest and train a system to cor-

rectly identify actions within each region. Referred to as the ground truth, this

manual labeling of cropped video segments has been used for training for the major-

ity of machine learning classifiers to date. The current thesis focuses on identifying

multiple video activities in raw videos without the requirement for manual cropping

individual video segments prior to automatic classification.

2



Chapter 1. Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Writing (a) v.s Not Writing (b), Typing (c) v.s. Not Typing (d), and
Talking (e) v.s. Not Talking (f)

The thesis focuses on the detection of human video activities that are shown
in Figure 1.1. More specifically, the thesis will consider: writing vs not writing as
seen in Fig. 1.1a and 1.1b, typing versus not typing as seen in 1.1c and 1.1d , and
finally talking versus not talking in 1.1e and 1.1f within a full, uncropped video. In
comparison, more conventional methods would consider the same detection problems
where the video activity has been isolated as demonstrated in Fig. 1.2. On the other
hand, for training purposes, the thesis will consider training on the cropped video
activities. To differentiate between the two database types, we refer to the original

3



Chapter 1. Introduction

videos as raw videos as opposed to the cropped videos.

Figure 1.2: Cropped video sample.

The proposed research presents a novel approach to classification of video activity

which can classify human activity with regards to the contextualized interaction of

a collection of objects which have been identified using color. The method attempts

to better classify human activity by considering the statistics of motion vectors ex-

tracted from regions of interest associated with adjacent objects. The approach is

different from the standard methods that classify human activity through the use of

full-frame methods that cannot be associated with specific objects or motions.

1.3 Thesis Statement

The thesis of this research states that a specific human activity of interest can be

classified in raw video given a combined set of objects identified by means of color,

motion vectors about the primary object, and the use of contextualization algorithms

for each sought activity. The research of this thesis assigns a predicted classifica-

4



Chapter 1. Introduction

tion based on the interactions between the objects, referred to as giving context to

an interaction. A final classification may then be assigned using machine learning

techniques to examine motion vectors within the region of interest which has been

identified. This thesis is focused on the determination that the proposed method

which contextualizes object recognition prior to analyzing motion vectors is a viable

solution for detecting specific individual activities in raw video, and additionally

within other videos unseen by training. Furthermore, this thesis states the provided

method is easily adjustable for identification of activity given various other human-

object interactions by their associated context, and that activity recognition can still

be ascertained given alternate methods of object detection.

1.4 Contributions

The primary contribution of this thesis is to provide a new method for determining

human activity based on the interactions of detected objects in raw videos. Mainly,

the contribution is that the thesis provides a method for a dramatic reduction in

the number of features in activity recognition. The thesis adds locality to the many

RGB+flow methods that are currently considered among the most successful clas-

sification efforts, allowing context to be applied to the exact activity being sought.

Human activities restricted to small regions of interest that were not previously

classifiable by other methods can be analyzed with the proposed method (e.g., dif-

ferentiating between a student playing with a pencil and writing).

1.5 Summary

The remainder of this thesis is divided into five chapters. In Chapter 2 we explore

the current state of the art methods for activity recognition in video, along with

5



Chapter 1. Introduction

their respective datasets, and supply ample comparison to our algorithm. Chapter

3 explores the proposed algorithm in detail, beginning with an overview of the full

model and breaking down the method to individual algorithms. A presentation of

the findings are displayed visually, summarized into tables, and briefly discussed in

Chapter 4. Finally, Chapter 5 continues with a summary discussion of the results and

closes with conclusions and suggested future work. An appendix of code is included

in Chapter 6 for reference.

6



Chapter 2

Background

Video activity classification is an expansive area of study which yearly generates an

enormous amount of interest. Currently there is no generalizable solution, thus there

have been multiple attempts to solve the problem in a way that can be applied outside

of training datasets. Of particular interest are effective algorithms to segment video

that has not been preprocessed in any way for classification of activity. This is made

difficult by the numerous, transient human activities that may take place in any

single video because they cannot be readily separated locally, and sometimes may

be recognized as a motion within a sea of noise. Confounding issues further, with

classified models trained on small clips of single activities of interest, an extremely

computationally expensive comparison of the entire feature space of a set of vectors

to match the trained template is necessary. Again, this fails in the case that an

activity is associated with motions over small regions of interest, though the very

existence of the sought activity could be ascertained with the human eye.

The state of the art explored in the literature review for this thesis focused heavily

on methods of temporal frame differencing, bag of features, RNNs to recursively

learn annotated video, optical flow methods for motion estimation, CNNs for feature

7



Chapter 2. Background

Study Dataset Comments
Two-Stream Convo-
lutional Networks for
Action Recognition in
Videos, 2014 [274]

UCF-101 and HMDB-
51

Combines RGB frame
and flow inputs for
frame by frame recogni-
tion on a new network
combination. 87.0%
on UFC-101, 59.4%
HMDB-51

Beyond Short Snip-
pets: Deep Networks
for Video Classifica-
tion, 2015 [298]

Sports 1 million
dataset, and the UCF-
101 datasets with and
without additional op-
tical flow information

Improved dense trajec-
tory motion estimation
by removing camera
movement by (73.1%
vs. 60.9%) ,(88.6% vs.
88.0%,And (82.6% vs.
73.0%), respectively

Long-term Recur-
rent Convolutional
Networks for Visual
Recognition and De-
scription, 2016 [56]

UCF101 dataset,
AlexNet, CaffeNet

LCRN builds on [274],
applies models to
conventional activity
challenges. Averages
all frames to classify,
RGB: 68.20%, Flow:
77.28%

Real-time Action
Recognition with En-
hanced Motion Vector
CNNs, 2016 [299]

UFC101, ImageNet
and ILSVRC-2012
datasets

Aim to speed up the
RGB-Optical flow
method [274] for use
with realtime video
classification 61.5%
403.2fps

Table 2.1: RGB+Optical Flow Methods

extraction from a single frame along with frame differencing for motion (flow), or

some combination of the above. A summary of current research is provided in Table

2.1. All methods pertain to frame feature classification and optical flow.

Many of the attempts to classify video actions are now using two or more trained

neural networks to make their predictions. The methods pass each frame for feature

extraction through a CNN then form a list of objects, combine with motion estimated

8



Chapter 2. Background

through an RNN or other type of recursive learning network, typically an LTSM

method, then combine the two outputs to make a prediction for the activity based

on learning models or probabilities. One such attempt passed a list of all the activities

the video contained along with the video to train a weakly supervised RNN, making

use of youtube annotations [261].

A method similar to the proposed method feeds RGB data to one trained network

and optical flow data to another finally combining them with an LTSM achieving

87% accuracy on the UFC101 dataset [274]. This research is used as the basis for

many of the following bodies of research. They allow a CNN to classify all objects

in training frames prior to sending the motion vectors for classification, then after

having a classification for every frame give the action a classification.

An example study that used different combinations of neural networks for this

type of classification, such as LTSM instead of RNN, was done by [298] and barely

improved upon the previous method [274]. Their model attempted to classify a video

with only raw frames as well. Their results are interesting to us as when they removed

optical flow they saw only a minor decrease in accuracy which could indicate either

overfitting or the probability models being independent from one another.

More recently a study that builds from [274] simply attempted to speed up the

framerate so that it could be applied in realtime as opposed to waiting for all frames

to be estimated [299]. Some of these models such as in [298] sought ways to improve

the motion vector classification, also seein in [291]. We begin to see a pattern in the

state of the art methods where followup methods do not attempt to compete but to

improve upon the base RGB+flow method.

Methods developed within the last year are looking more toward the use of LTSM

to identify sequences of frames over short time-spans. These are referred to mostly as

temporal frame extraction techniques with segment procedural learning and require

9



Chapter 2. Background

Study Dataset Comments
Recurrent Assistance:
Cross-Dataset Training
of LSTMs on Kitchen
Tasks, 2017 [249]

Breakfast (18.8), 50
Salads (46.86%) ,
and MPII Cooking 2
(41.1%)

68.5% and 94.0% on
HMDB51 and UCF101
respectively, 18.59%
average obtained by
the (best performing)
RGB stream in their
model

Towards Automatic
Learning of Procedures
from Web Instructional
Videos, 2017 [300]

A series of instructional
cooking videos

Segment/label a video
and train a ProcNet
to recognize each frame
based on previous la-
bels; 30.4% precision,
37.1% recall

Weakly Supervised
Action Learning with
RNN based Fine-to-
coarse Modeling, 2017
[261]

Breakfast dataset and
Hollywood extended
dataset

Provide a list of ac-
tivities and allow RNN
to classify each activity
using feature extrac-
tion Accuracy 33.3%,
SotA: 27.7%

Table 2.2: Temporal RNN Methods

an incredible amount of time training machines or large annotated youtube datasets

which can be referenced quickly from Table 2.3. We summarize these works in Table

2.2.

One such study provided an already labeled activity and used an RNN to learn

the activity using objects that were found in the frame, somewhat of a reverse of

the previous case [261]. The paper gave an example of a hand, teabag, and teacup

indicated somebody was making tea. Another method used what they referred to

as ProcNets, or procedural neural networks, as a weakly supervised approach to

learning based on temporal alightment [300]. Here, they use a similar method which

used previous information to determine if the estimate ”made sense”. The example

given was that it isn’t likely that someone is mixing dough if they cracked an egg
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and then two frames later are cracking an egg [249]. Several more studies of LTSM

only approaches both supervised and unsupervised have been reported in [279] and

[137].

Study Dataset Comments
Hollywood Extended
Dataset

937 videos with 16 dif-
ferent actions from 69
movies.

Hollywood Extended
Dataset

MPII Cooking 2 87 unique cooking ac-
tivities with annota-
tions .

MPII Cooking 2

Breakfast Dataset A video dataset con-
taining video of 10 com-
mon breakfast chores
along with annotation.

Breakfast Dataset

UCF-101 101 human action
classes with over
13,000 video clips.

UCF101 Dataset

HMDB-51 A human motion
dataset consisting of 51
human actions.

HMDB-51 Dataset

ImageNet A large image database
specifically for im-
age software research
projects.

ImageNet

YouTube-8M YouTube video IDs and
labels from 4700+ enti-
ties.

YouTube-8M

YouCook 88 cooking videos from
youtube.

YouCook II

Table 2.3: Commonly Used Datasets

The classic approach to training consists of segmenting videos into short clips

which are pre-processed, labeled, and then used as input to a machine learning

model. The fit data is then tested using other clips showing the same activity. These

video clips contain typically only one person performing one action, or are sent after a

11
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machine has been trained with a series of labeled images; there is a massive amount of

object training that must be done in either situation. Training a cascade to recognize

a new object is cumbersome and can take quite a bit of time, and sometimes will

not be enough to recognize the object of interest. Imagenet and other repositories

have readily available feature cascades model zoos which are quite limited in terms of

content, or objects, they are trained to recognize; though, they are rapidly becoming

more diverse. Currently trained object recognition cascades or machines are few and

far between, sometimes not publicly available, and do not necessarily detect objects

related to education, such as a pencil, pen, eraser, or other such writing implements.

These objects are of particular interest in the AOLME video library used in the

testing of this model, so having a way to detect writing implements accurately via

object detection would have been of great value to this research.

Further, review discovered that most all studies used the datasets presented in

Table 2.3 for benchmarking the performance of each presented algorithm. These

datasets are used as points of comparison for classification typically of objects of

different human activities. Though these are the common datasets used, they do not

have models of all objects under review, nor the particular activities being explored,

and they do not provide the scale of data necessary to perform a robust review of the

algorithm presented. The AOLME dataset contains several hours of human activity

in the wild, rather than zoomed on a single action, and have many examples of the

activities we wish to identify. This dataset has an inconsistent number of actions

happening per frame, all of which need to be assigned context in a manner that the

above datasets do not lend well to. Finally, the AOLME dataset has a consistent

color scheme to the data provided (the objects used are all the same make/model),

and as discussed, this algorithm relies on color to find objects, so for this thesis, a

subset of this video database will be used to test the performance of the algorithm.

The AOLME project is an interdisciplinary collaboration between the UNM Col-
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lege of Education and the School of Engineering (see [41]). Some of the earlier

lessons learned in the AOLME project have been summarized in [247]. The AOLME

dataset generated a large video dataset that presents several computing challenges

(e.g., see similar problems in [197]). In research related to the current thesis, Cody

Eilar looked at writing and typing classification using Amazon Web Services [57].

The recent emergence of convolutional neural networks is also of great interest to the

ivPCL lab at UNM because of a long tradition in convolution-based methods (e.g.,

see [40], [37]) and image analysis methods (e.g., see [225], [237], [164], [156]).

2.1 Classification of Human Activity in Video

In review, many current ideas for activity recognition rely heavily on optical flow

motion vectors to determine what is happening in the video clip. In a large video,

where many activities could simultaneously be taking place, this creates an obvious

problem of structural noise in the motion vectors, the obscuration of which causes

extreme difficulty when attempting to hone in on a specific motion. Additionally,

calculating the feature vectors for an entire video is highly computationally expensive,

and in attaining a good set of ground truth data often many different videos are

required.

These issues lend to complicated neural networks being used to quickly facilitate

the learning process. Neural Networks can have significant fallbacks as they are very

prone to overfitting and in many cases perform as ”block boxes”, we simply cannot

tell how they are coming to their conclusion or how they fail. This phenomenon is

referred to as ”unexplainable AI”. In such systems, the problem is that the systems

come to conclusions without being able to explain how the results were achieved.

This, of course, is a significant problem.

Though some of the studies we reviewed inspected various approaches to overcome

13
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these limitations (Temporal learning and speeding up of flow methods for realtime

classification), they still suffer serious fallbacks. When applied to outside datasets,

these methods tend to fail and do not generalize outside of their training dataset.

Though our method also makes use of a neural network, it was not necessary to use

a CNN or RNN to identify objects then learn features. Additionally, the features in

this thesis are made very easy to visualize such that it is possible to inspect exactly

where and how the algorithm fails.

There are many obstacles preventing generalization of activity recognition meth-

ods. High, structural noise motions, as previously mentioned, such as walking will

occlude lower magnitude motions such as writing during background subtraction.

This creates a problem of bleeding when creating blobs about which we are attempt-

ing to classify; the feature space then is nearly impossible to segment in a way such

that each individual motion can be found, much less classified. This is further com-

plicated by illumination variations, which can cause motion to be found in a video

where there is no motion. This also has a great effect on motion vector analysis as

high noise motions can drown out smaller motions. Geometric distortion and locality

of an action in a full frame can also cause significant difficulty with classification.

There are image techniques which classify a image’s scenet based on the relation of

various objects found in its feature space [110]. We draw from this idea and attempt

to generalize it for use in video by coming up with a geometrically invariant object

interaction algorithm based on color. The proposed method removes the difficulty

in determining an action’s existence in different datasets simply by first determining

if an object of interest is present within a certain context. This may be a combina-

tion of objects, such as a plate, a fork, and an up and down motion, or simply an

object itself, e.g. a pencil, being moved around by a human (which is made as an

assumption since pencils cannot move on their own!)

More recently, researchers have been combining depth cameras to help identify
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primary motion and colored object recognition. Since the AOLME dataset was

recorded on a normal camera, we could not employ these methods and thus they

were not pursued further. With regards to object recognition, this is currently done

by using pre-trained CNNs or model zoos, such as AlexNet, to identify and classify

features within a single frame. This is an exhaustively explored method of study with

excellent reported accuracy on common datasets. Here, we note that we choose to

implement the least computationally expensive method, recognition of objects using

color. For the purposes of this research, the objects we wish to classify are primarily

of uniform color. This thesis then follows a similar pattern to the more successful

methods in that we will be combining object recognition with optical flow, though

in a greatly reduced feature space.
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Methodology

Figure 3.1: Overview flowchart.

3.1 Overview of the Approach

We present an overview of the method in 3.1. Initially, we apply color-based seg-

mentation to extract the candidate objects of interest. For each video frame, we

extract motion vectors that are specific to the objects of interest. We then apply

context-based rules to filter and identify components that can be associated with

specific activities. For the specific components of interest, we extract motion vector
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features that are used for activity classification. In what follows, we describe the

various methods that are involved.

3.2 Candidate Region Selection Based on Color

Models

3.2.1 Color Models for Pencils, Table, Paper, Keyboard,

and Faces

The goal of our use of the color models is to determine candidate components that

are further processed based on their relative context. Thus, our use of color models

produces an over-segmentation of the objects of interest. We will later correct the

over-segmentation result by eliminating invalid components based on context.

We develop a color-based segmentation system based on the HSV color space.

Since we are working with single-color objects, the goal was to determine bounds

for each component. Bound selection was done visually using a simple database of

20 examples of pencils, paper, tables, skin regions and keyboards. Here, we found

thresholds that worked on all images at the same time, as verified in the visual display

of all examples. An example is shown in Fig. 3.2. The code for finding pencils can

be found in Appendix A, specifically under A.1, and A.2.

Caution was taken to first visualize the selected colors in the video to confirm

accurate detection. A ROI box was drawn on the frame around each centroid of each

contour that remained after masking. Satisfied with a visual inspection over various

videos from different datasets, we did not further optimize the values for colorspace.

An example of the visual inspection is seen in Fig. 3.4. A flowchart summary of

code is provided in Fig. 3.5.
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Figure 3.2: Masked pencil color (right) v.s. original frame (left).

Collection of Pencils Binary Version

Figure 3.3: Subfigure a shows the collection of pencil variations we see, and b shows
what we wish to achieve after masking and thresholding.
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Figure 3.4: A cropped writing video frame with potential pencil highlighted.
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Figure 3.5: Flowchart displaying the process of extracting colors from a frame.
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3.3 Context-based Processing and Feature Extrac-

tion

The color models provide candidate regions for further processing. The candidate

regions need to be carefully selected and then processed for context by processing

relations between them. Then, a combination of checks is applied to check for inter-

actions between them and motion content. The histograms of motion magnitudes

and orientations are then used as features for further classification. In what follows,

we provide details for each step.

3.3.1 KNN Classifier for Selecting Keyboard and Face Com-

ponents

For keyboard and face detection, our use of the color models provides for initial

candidate regions. Here, we found that these initial candidate regions needed to be

further processed prior to use. We apply morphological filtering to remove minor

regions. We then compute the bounding box for each region, zero-pad, convert to

grayscale (Y component in Y-Cr-Cb), and use bilinear interpolation to resize each

one of them to 128x128. We then use K-nearest neighbor to classify each component

(e.g., keyboard present or not). For the pre-KNN code, refer to A.3 for the keyboard,

A.4 for the table, and A.5 for the skin detection. Figures 3.6 and 3.7 contain several

examples of data used in the KNN training models.

The faces KNN classifier is trained using a collection of 1,700 images from various

videos within our datasets, and labeled 0 or 1 to identify faces versus not faces

respectively. For the keyboard, mouse, and monitor, we used 170 images. Refer to

section 3.4.
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Figure 3.6: A sample of faces that are used to train the face KNN model.

Figure 3.7: A collection of ”Non-Faces” used in training the face KNN model.

3.3.2 Writing

We summarize context-based feature extraction for the writing activity in flowchart

format in Fig. 3.13 and pseudocode format in Fig. 3.14. In what follows, we describe

each step.

For writing, we first use the binary image created by masking the table and take

the bitwise and between the images to preserve only the objects on the table. This

mask is applied to both the paper and the pencil binary images.

The following step uses the binary image of the pencil as input to a find contours

function in opencv, after which we use the moment of each contour and extract each

centroid, and after obtaining the best fitting rectangle, calculate the aspect ratio of

the contour. We check to make sure the aspect ratio and area are appropriate for a

pencil, and then finally, using the centroid, we create a region of interest box around

the pencil.
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We use the dimensions of the region of interest box plus some padding to slice

the paper binary image, effectively cutting out only areas near the pencil, and the

sum of all the pixels remaining are taken. If the sum is greater than zero in this

area, we determine that the pencil is on top of a table and over top of a paper, thus

writing may be present.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 3.8: A collection of figures used in training the keyboard KNN, with keyboard
samples in (3.8a),(3.8b), and (3.8c), and non-keyboards (monitors in in (3.8d), (3.8e)
and mice in (3.8f), (3.8g), (3.8h))
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Figure 3.9: A correctly identified keyboard using KNN

Figure 3.10: A correctly identified face in KNN.
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(a) Binary Paper Image (b) Masked Paper Image

Figure 3.11: Paper detection by color, intermediate steps.

(a) Pencil Binary Image (b) Masked Pencil Image

Figure 3.12: Pencil detection by color, intermediate steps.
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Figure 3.13: Flowchart for confirmation of a pencil’s precense prior to motion vector
extraction.

The final step is to check for motion within the region of interest using the flow

passed to the contextualization function. If a certain motion magnitude threshold

is exceeded, we then extract the motion vectors from this region of interest and

calculate a histogram from them, which is returned by the function and later used

to determine whether the motion is due to writing or not.

Parameter optimization was performed through a visual interface. Here, the effect

of the use of different parameter values is assessed through their impact on the ROI

bounding boxes on a small set of training videos with different geometric angles,

lighting conditions, and settings.
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1 function Context (frame, obj1, obj2, f low, obj names, centers, hist list);
2 if Looking for Pencil,Paper then
3 pencil image �Bitwise And Binary Pencil and Binary Table
4 for All Contours do
5 Check Requirements
6 if Requirements are Met then
7 centroids �Search for nearby Centroid
8 if No Centroid Nearby then
9 centroids �Append Centroid

10 end
11 if Paper is Below Pencil then
12 if Motion is Found then
13 hist list �Calculate and Append Histograms
14 frame �Draw Rectangles

15 end

16 end

17 end

18 end
19 return frame, hist list, centroids

20 end
21 . Function continues...

Figure 3.14: Pseudocode for functon Context() part 1, writing.

3.3.3 Typing

We provide a flowchart summary of the typing activity algorithm in Fig. 3.18 and

provide pseudocode for the typing portion of function Context() in Fig. 3.19. In

what follows, we explain each step.

Typing follows a similar identification method as for pencil detection, except for

the need for an extra step needed to eliminate large gaps between the keyboard and

the monitor. To overcome this, we calculate the convex hull from the contour of the

table, and apply a bitwise and with the threshold image the hull is applied to in
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order to close the holes within the table.

(a) Binary image for keyboard color (b) Binary Image of table with convex hull
applied.

Figure 3.15: Images used as input for masking the background of the keyboard image

(a) Keyboard binary image after masking. (b) Skin regions after color extraction.

Figure 3.16: Figures (a) and (b) display the two components required to determine
if typing may be present.

The contours are found for each of the objects in the keyboard threshold, and

after the centroids are located, we use the ROI to first resize the slice to 128x128
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and fit the cropped grayscale image to the KNN model trained to classify keyboards,

monitors and mice.

Figure 3.17: A keyboard which has been properly found and classified for motion
vector extraction.

If the object is determined to be a keyboard by the model, we then do a check

for hands by slicing the skin image within the ROI box and checking to see if the

remaining pixel value sum is greater than zero. If it is, we then calculate the ap-

pended histogram of the magnitude and phase of the optical flow as done previously.

Again we visually review the resulting ROI boxes as an informal optimization of the

parameters of each of our contexts.
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Figure 3.18: A flowchart representing the steps to extracting the keyboard and dis-
covery of potential typing.
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1 if Looking for ”Keyboard,Table” then
2 table �Calculate Convex Hull of Table Binary Image
3 contours �Bitwise And Table and Keyboard Binary Images
4 for All Contours do
5 Check Requirements
6 if Requirements are Met then
7 centroids �Search for nearby Centroid
8 if No Centroid Nearby then
9 centroids �Append Centroid

10 end
11 keyboard �Fit ROI to KNN
12 if Keyboard is Found then
13 if Hands over Keyboard then
14 if Motion is Found then
15 hist list �Calculate and Append Histograms
16 frame �Draw Rectangles

17 end

18 end

19 end

20 end

21 end
22 return frame, hist list, centroids

23 end
24 . Function continues...

Figure 3.19: Definition for function Context() part 2, typing.

3.3.4 Talking

We provide a flowchart for detecting the talking activity in Fig. 3.22 and provide

pseudocode in Fig. 3.23. In what follows, we summarize each step.

To identify talking, the steps are slightly different. The skin is found using the

same technique as the pencil, first converting the frame to YCrCb space and ex-

tract the range which preserves only areas of color matching the defined minimum
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and maximum. Some additional processing is done in this case to expand the areas

around the extracted region using a gaussian blur before masking the frame, this

includes also using a morphological open operation to remove noise from the similar

colored bookshelves in the background. The blurring extrapolates a larger portion

of the image around the skin area so the contour for evaluation in the KNN is more

likely to contain the full face. Code is provided in appendix for the person object.

Figure 3.20: Correctly identified faces (left) and skin regions that were sent to KNN
(right).

Using the threshold of this masked image, each contour is extracted and the

boxed region about the centroid is resized to 128x128, as with the keyboard, and

then passed to the KNN model. If the area is matched to being a face, we apply the

golden ratio and check only the bottom portion of the face by dividing the height by

1.618 and adding to the y value to get the top y-location of the box. The golden ratio

is commonly used in art and design applications, and is not often used in engineering

practice. Application of this ratio adequately captures the mouth at any angle we are

looking for. This area is checked for motion, and as the other methods, the motion

vectors are calculated into a 1d histogram.
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(a) Initial skin region mask. (b) Mask after filling holes.

(c) Mask applied to skin region. (d) Area of image that is se-
lected by the region.

(e) Resulting KNN output.

Figure 3.21: Process of selecting a region for KNN and the output.
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Figure 3.22: A flowchart representing the steps to identifying a face.

1 if Looking for Talking then
2 person object �PersonDetect()
3 for All Contours do
4 Check Requirements
5 if Requirements are Met then
6 centroids �Search for Nearby Centroid
7 if No Centroid Nearby then
8 centroids �Append Centroid
9 end

10 face �Fit ROI with KNN
11 if face is found then

12 if motion found in
face height

1.618
then

13 hist list �Calculate and Append Histograms
14 frame �Draw Rectangles

15 end

16 end

17 end

18 end
19 return frame, hist list, centroids

20 end

Figure 3.23: Pseudocode for function Context() part 3, talking.
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3.3.5 Feature vectors

The feature vectors are extracted every 3 frames as given in Table 3.1. Specifically,

we calculate probability density functions (PDFs) of the magnitude and angle from

the motion vectors and append them together. Each set of PDFs are separated by the

centroid coordinates. Here, we note that we have a fixed size feature vector for each

object. If a feature vector is missing, then the assumption is that the corresponding

object is missing.

3.4 Classification

We classify feature vectors for object presence. We investigated the use of KNN

and the use of fully-connected deep neural nets (DNN). Different classifiers were

considered as described in the results.

Writing Typing Talking
Inputs Table A.4, Paper

A.1, Pencil A.2
Table A.4, Skin
A.5, Keyboard A.3

N/A

Object Check 40<area<2000 and
aspect ratio >1.2
or <0.5

200<area<8000
and Has 3+
corners

area>1000
and0.5≥aspect
ratio≥1.5

Context Check 1 Pencil within table
region

Keyboard detected
on table

Face is detected

Context Check 2 Pencil near a piece
of paper

Hands inside key-
board bounding
box

Bottom part of
face has motion

KNN Used Yes Yes Color Only

Table 3.1: Context Conditions for Object Recognition
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Results

4.1 Dataset

We summarize the dataset types in Table 4.1 and the size of the dataset in Table

4.2. For model selection and proper reporting of the results, we used nested cross-

validation. We report our final results using tenfold cross validation. Within the

training set, we perform five-fold randomized cross-validation for model selection.

For KNN, we investigated K = 3 to K = 19, the use of both Euclidean and city-

block distance for determining the nearest neighbor, and the use of feature scaling.

Writing Typing Talking
Cropped Train-
ing Video

Positives Only None Positives and Neg-
atives

Raw Training
Video

Negatives Only Yes Some Negatives

Table 4.1: Dataset Video Types
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Talking Typing Writing
No. of Features 1755 1050 620
No. of Videos 14 14 15
FPS 60 26-60 24-60
Video Duration
Range (in Seconds)

5-16 5-24 1-39

Table 4.2: Dataset information for the final training dataset.

4.2 Classification Model Results

4.2.1 Results for Writing

We present two accurate pencil identifications in Fig 4.1, showing that our color +

context model is working correctly in these training cases.

(a) Testing. (b) Training.

Figure 4.1: Subfigures and display correct classification results for the color and
context model of finding a pencil.

We present an example of the KNN correctly classifying writing within a frame

in Fig 4.2. Additionally we present an example of not- writing correctly identified

in Fig 4.4 in unseen video from the AOLME dataset. These images are cropped or

censored for privacy of the study participants.
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Figure 4.2: A correctly classified writing activity.

For writing we achieved a highest accuracy using the DNN model with an ap-

proximate percentage of 92.5% accuracy. The dataset results are above in Table 4.2,

and the remaining results for each classifier are found in Tables 4.3 thru 4.6.

Figure 4.3: Results in an outside unseen video from the AOLME database.
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Figure 4.4: Results from model in an outside unseen video from the AOLME dataset.

Pencil not writing is correctly classified as not writing in Fig 4.4 with noise

correctly classified as not writing; however, misclassified as being a pencil.

4.2.2 Results for Typing

Figure 4.5: Correct keyboard identification.

In Fig 4.5 we see correct identification of a keyboard using the color + KNN +

context model.
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Figure 4.6: Correct classification in outside unseen video from AOLME dataset.

Figure 4.7: Correct classification of typing activity.

Figs 4.6 and 4.7 show the correct classification of typing activity with our model,

with Fig 4.6 being taken from unseen video from the AOLME dataset, and Fig 4.7

coming from our validation dataset.
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Figure 4.8: Correct classification of not typing in difficult case.

Figure 4.9: Correct classification of typing activity in difficult case.

The figures above display correct classification of no typing where movement is

present near a keyboard in Fig 4.8, displaying correct results from our KNN model,

and Fig 4.9 displays the correct classification of typing inside a difficult case where

the monitor is partially occluding the keyboard.
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4.2.3 Results for Talking

(a) Color extraction. (b) Classified face.

Figure 4.10: Subfigures and display correct classification results for the color and
correct KNN results for the face.

In Fig 4.10 we see the two classification precursor steps for identifying talking

successfully retrieved. First is the skin region necessary for finding the face in the

KNN 4.10a, secondly we see the output of the KNN model during training after the

face has been correctly identified in 4.10b.

Figure 4.11: Correct classification of face KNN during validation.
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Fig 4.11 displays correct face locations versus other skin areas being identified

during the validation phase.

(a) No Talking.

(b) No Talking. (c) Talking.

Figure 4.12: Subfigures and display correct classification results for no talking and
talking.
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We present results of our validation set where talking has been successfully iden-

tified in three difficult cases. These cases are considered difficult due to the chances

of laughing or eating being confused with talking.

Figure 4.13: Correct classification of talking activity in difficult case in unseen video.

Finally, we present a difficult classification in unseen raw video from the AOLME

dataset with accurate classification in Fig 4.13.

4.3 Failed Classification Examples

We present several failures of our models. First, we see a failure in the keyboard

classification due to the color of the ledge of the table still being classified as a

keyboard after passing through the KNN. The appearance of skin also confuses the

model.
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Figure 4.14: Incorrect classification of table and legs as keyboard.

(a) Face KNN Failure. (b) Face KNN miss.

Figure 4.15: Subfigures and display incorrect functionality of the face KNN from
skin and blank space.
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Figure 4.16: Classification of a mouse as a keyboard.

We present three more KNN failures in object detection in Fig 4.15 and Fig

4.16, where objects have been misclassified using their respective KNN models. The

features of these models are reviewed with their respective accuracies in Table 4.3.

Keyboard classification accuracy was roughly 84% and faces were approximately 90%

accurate in classification, with most confusing coming from solid areas of skin in the

case of faces, and mice being confused for keyboards in the keyboard model.

Figure 4.17: Table masking issue.
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Figure 4.18: Incorrect masking due to whiteboard.

We present a total failure of object recognition in the two Figures 4.17 and 4.18

, where the masking of the table has been confused by the whiteboard, and the clas-

sifier was passed information that was not actually on a table. This confused the

classifier, which has reported everything as a keyboard.

Figure 4.19: Keyboard classified as mouse.

Additionally, we see another failure in training our KNN where the keyboard is

seen to be a mouse in Fig 4.19. As can be seen in the results Table 4.3 containing

the keyboard confusion matrix, this makes sense as most of our mice were classified
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as being keyboards, indicating we need a better training set for this data.

Figure 4.20: Face missed due to hand on face.

In Fig 4.20, we observe a classification that could not be made with the KNN

model due to a hand being on the chin of the girl on the right. This kind of failure

presents repeatedly in the research, especially in the unseen data. Having hands too

close to faces, or someone else’s arm too close to a face will cause a classification

error as it confuses the KNN model, and additionally violates our area requirement

stated in the previous section.
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(a) Writing Failure. (b) Typing Failure

(c) Talking Failure.

Figure 4.21: Subfigures displaying incorrect classifications from all models.
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We present failures of classification from all three models, which failed in the

KNN and DNN methods. These were not difficult cases but likely had their motion

confused due to a poor training set or otherwise.

Faces Keyboards
No of Positives 1209 75
No. of Negatives 399 25 Monitors, 21 Mice
Accuracy 89.75% 84.0%

Table 4.3: KNN Models for Typing and Talking

Face No Face
Face 233 15

No Face 18 56

Faces

Key Mon Mou
Key 18 0 1
Mon 0 2 0
Mou 3 0 1

Keyboards

Figure 4.22: Confusion matrices for object KNN. Mon stands for Monitor.

Talking Typing Writing
Accuracy 84.62% 70.96% 72.58%
K for KNN 11 18 15

Table 4.4: KNN Results

Talking Typing Writing
Accuracy 52.99% 63.38% 70.16%
K for KNN 11 18 16

Table 4.5: Tensor-flow KNN Results
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T F
T 655 49
F 153 547

Talking

T F
T 108 162
F 84 486

Typing

T F
T 153 74
F 64 102

Writing

Figure 4.23: Confusion matrices for KNN Results.

Talking Typing Writing
Accuracy 99.72% 82.52% 92.47%
Batch Size 100 100 200
Activation
Model

Relu Selu Selu

Neurons 100 50 70
Learning Rate 0.01 0.05 0.05
Hidden Layers 5 5 5
Regularization L1/L2 Max Norm L1/L2 Max Norm L1/L2 Max Norm

Table 4.6: DNN Results

4.4 Discussion

The classification results were found to be surprisingly accurate in some models and

not as accurate in others. In the case of writing, we decided to stop and not further

attempt to optimize the results due in part to a lack of time, but also because we

wished to have a comparison to the models which included the KNN in addition

to color to identify the other objects of interest. This gave us a great point of

comparison to determine if the color of an object is enough to correctly identify a

human activity.

In general, we found that color alone will work well under certain, inordinately

specific circumstances, which include videos that are designed not unlike those in

the most commonly used datasets. In these cases, we realize accurate classification

because there is not much color noise in the background which could be misclassified
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as a pencil. The tabulated activity itself is found to be highly variable upon which

videos are used to train the motion vectors. As many people have many different

writing styles, some writing cannot be accurately classified using the motion vectors

because the pencil will move so little. We see examples above of successful, good,

and failure in the pencil classifier. The DNN model achieved the greatest results in

terms of accuracy; however, often writing was still missed in certain cases, this is

preferable to non-writing being inappropriately classified as writing. This activity

detection model performed more poorly than the other two models.

Typing identification was moderately successful with most issues found in the

classification of the keyboard itself, not unlike the major issues with the pencil model.

Since the keyboard appears as a hole in the table, we had to take the convex hull of

the table shape in an attempt to cover it to create context for the keyboard on the

table. This did not always work due to the position of the monitor. If the monitor

occluded any part of the keyboard, we were not able to ascertain whether a keyboard

was present or not. Additionally, no classification takes place in the situation where

the hull does not cover the entirety of the table region, which occurs when the monitor

blocks both edges of the table. We found often our keyboard was misclassified as a

mouse, and this caused several misclassifications during the training phase. Again,

this was highly variable upon the dataset used for training due to different typing

stylesthose who use the whole hand to type versus hunt and peckand whether the

mouse was placed too closely to the keyboard. This model was found to be more

accurate than the writing model; so long as the keyboard is identified, the typing is

correctly labelled. Again, the DNN outperforms both KNN models.

For talking, we had the fewest errors. The faces were far easier to identify than

the keyboard and thus finding the motion of the bottom half of the face was not

difficult. Due to this, we get an incredibly high accuracy on all our models. There

are some specific problems when the face is not correctly identified, usually as an
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arm or a hand, which are most often classified as not talking, so not much change

is visually observed when reviewing playback unless the debug labels are applied.

This model performed best when applied to unseen datasets that were not used in

training or testing. The DNN performed exceedingly well in this model, though the

KNN accuracies are also quite close.

The vides used in training and testing varied between experiments, the majority

of training being done on a collection of videos specifically recorded for the purposes

of the ECE 633 Advanced Image Processing class at UNM. Some video from the

AOLME dataset were also used in training the classifiers, although we attempted to

reserve as many of these as possible for the purpose of testing unseen video data.

For the writing videos, a cropped dataset were used where each video was cut so

the pencil would be clearly seen in each frame containing writing and raw video was

used for training no writing. This was done so the writing videos would only record

the motions of the pencil and the training set would contain no noise.

For the typing dataset, the full uncut videos were used for training of typing and

no typing, though were specifically selected so that the keyboard was not obscured

by the monitor. This was not realistic in the real-world video thus caused a lot of

classification error when applied to the raw dataset.

For talking, closeups of people talking were used to record motion vectors of the

mouth moving, again uncut video was used to record faces that were not speaking,

but moving around.

When each model is applied to raw datasets we achieved some amount of success,

the greatest of which being seen with talking versus not talking. Since we obtained

extremely high accuracy rates with the talking vs. not talking, this was a somewhat

expected result. It is believed this is due to how people tend to move their heads

when speaking, and hold mostly still while doing anything else, except in the case
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of reading. The other videos seemed to have a variable amount of error with each

model, most of which lasted only a few frames before self-correcting.

Finally, the datasets used for testing and training came from different video

databases, and were capable of correctly identifying the specified motions in different

settings with different actions without editing. This also was somewhat successful

when used on videos obtained from imagenet for writing, which means the model

could potentially generalize with some amount of optimization.
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Conclusions and Future Work

5.1 Conclusions

We conclude that by combining object context with motion vector training, we can

classify human activity within a set of unrelated raw videos with some degree of

accuracy. The method can locate an actions specific location in a busy video in which

many other activities are taking place. There were a few obstacles to increasing the

accuracy in our model which may easily be overcome with an applied amount of

optimization and a far larger and more diverse video training set.

The largest errors to overcome in our model concern appropriate identification

of objects we wish to apply context to before extracting the motion vectors. These

include errors present when objects are the same color or tone as the primary object

we are attempting to locate in a frame. When there is another object that is similar

color resembling one of the interaction objects it confuses the classifier, and simple

movements like a head passing by will cause inaccurate identification of writing. We

attempted to correct this with the keyboard and face by using an additional KNN to

verify we are adding context to the correct object. The extra context does improve
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accuracy, but even with the extra processing it still is not perfect.

The monitor created several problems for us in classification videos as it tended

to block line of sight to many activies we were seeking. This, unfortunately, does

not have a solution as we cannot see through objects. Most of the problems were

seen with typing, since the monitor was often in the way of the keyboard and they

are the same color, so they often blended together when the colors were extracted

for thresholding, therefore we could not accurately locate the keyboard in the frame

in all cases.

Though we obtained a >99.6% classification accuracy using a DNN trained for

talking, we do not trust this number as it seems far too high accuracy of a classifi-

cation rate. We believe this deserves extreme scrutiny in any future study, perhaps

removal of dense vectors which are associated with head movement. The classifica-

tion accuracy averages in the mid 70% for writing and typing activity using KNN

seem far more realistic, and when played back on a raw dataset unrelated to our

training videos, seems to match the amount of errors per frame we see during play-

back. We chose to use the average accuracy in these cases rather than the maximum

accuracies obtained since they were not reproducible after adding to the training set.

Overall, the method is a promising step toward accurate classification of human

activity as it eliminates much of the confusion of action that is seen in current state-

of-the art models by giving a location and context to the objects in a frame. The

generality of the model allows it to be used on more than one dataset, and with some

additional work could potentially serve as the first step in automatic classification

procedures in the future.

Furthermore, we conclude that KNN is not the best classification method for this

type of dataset. Due to the nature of the motions being quite minute in magnitude,

many times motion vectors for a minute action are confused with noise or other
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movements, which lead to misclassification of illumination noise as movement, an

unfortunate side effect of the way dense optical flow operates.

5.2 Future Work

Given more time, we would like to apply a RBF neural network to classify the found

object motion, eliminating the need for cropping video and labelling the motion

vectors. Since RBFs can come up with a classification without this data, it would

facilitate a more robust model. As KNN model performed poorly, a better model for

classification may be a SVM or a Clustering based algorithm with some amount of

dimensionality reduction, and the RBF would be an ideal replacement given those

conditions.

Many issues in our method came from having too much color noise in the frame

being classified as an action when it was too close to other similar objects. Though

we attempted to apply a median blur to each frame to remove some illumination

noise, it could not all be reduced, causing many classification errors. Lucas-Kanade

should be investigated as an alternative to dense optical flow.

Another interesting addition would be to add haar cascades for object recognition

as this would allow for classification of more than a single type of pencil, or single

type of mouse, etc. Our model was highly limited by the fact that we only sought

objects of the same color and having a library of objects to look at could greatly

improve the generalization of the model in the future.

Finally, the application of an AI such as PAL at the end of the DNN classifier, we

could insert a random set of objects and allow the AI to search for the objects that

are found to be interacting with one another, thereby giving it a more appropriate

label. For example, hands sideways pencil could be classified as drawing, or hands,
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keyboard, table can be found as typing. This effectively eliminates the need for

writing complex context functions and the necessitation of labelling video data, since

when linked with an RBF for unsupervised learning, could automatically label the

interactions and activities. This would also help with identifying noisy regions so

that they could more easily be ignored in any future model.
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Python Code for Color Detection

A.1 Paper

#Paper p o r t i o n o f code

def FindPaper ( hsv , frame , an ob j e c t ) :

# Method p r o v i d e s maximum c us t o m i z a t io n o p t i o n s

ke rne l = cv2 . getStructur ingElement ( cv2 .MORPH ELLIPSE,

#i d e a l l y t h e s e w i l l be d e f i n e d by a f i l e t h a t has t h e s e v a l u e s s tored ,

#or more i d e a l l y a f i l e w i l l d e f i n e a l l the code .

mask1 = cv2 . inRange ( hsv , (0 , 0 , 160) , (188 , 20 , 240))

mask1 = cv2 . erode ( mask1 , None , i t e r a t i o n s =2)

mask1 = cv2 . d i l a t e ( mask1 , None , i t e r a t i o n s =2)

mask = cv2 . inRange ( hsv , (0 , 0 , 174) , (180 , 255 , 255))

mask = cv2 . erode (mask , None , i t e r a t i o n s =2)

mask = cv2 . d i l a t e

r e s1 = cv2 . b i tw i s e and ( frame , frame , mask= mask1 )
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r e s2 = cv2 . b i tw i s e and ( frame , frame , mask= mask)

r e s2 = re s2 − r e s1

g r e y f r 2 = cv2 . cvtColor ( res2 , cv2 .COLOR BGR2GRAY)

, thr2 = cv2 . th r e sho ld ( grey f r2 , 210 ,255 ,

cv2 .THRESH BINARY)

thr2 = cv2 . morphologyEx ( thr2 , cv2 .MORPH CLOSE,

. kerne l , i t e r a t i o n s =2)

thr2 = cv2 . morphologyEx ( thr2 , cv2 .MORPH OPEN, ke rne l )

return thr2

A.2 Pencil

#Penc i l p o r t i o n o f code

def FindPenc i l ( hsv , frame , an ob j e c t ) :

t = cv2 . cvtColor ( frame , cv2 .COLOR BGR2YCR CB)

mask2 = cv2 . inRange ( hsv , (13 , 45 , 60) , (30 , 176 , 255))

mask2 = cv2 . erode ( mask2 , None , i t e r a t i o n s =1)

mask2 = cv2 . d i l a t e ( mask2 , kerne l , i t e r a t i o n s =3)

mask2 = cv2 . morphologyEx ( mask2 , cv2 .MORPH CLOSE,

kerne l , i t e r a t i o n s =4)

mask2 = cv2 . GaussianBlur ( mask2 , (11 , 11) , 0)

mask3 = cv2 . inRange ( t , (69 , 125 , 0 ) , (254 , 199 , 105))

mask3 = cv2 . erode ( mask3 , None , i t e r a t i o n s =1)

mask3 = cv2 . d i l a t e ( mask3 , kerne l , i t e r a t i o n s =3)

mask3 = cv2 . morphologyEx ( mask3 , cv2 .MORPH CLOSE,

kerne l , i t e r a t i o n s =4)

mask3 = cv2 . GaussianBlur ( mask3 , (11 , 11) , 0)

r e s = cv2 . b i tw i s e and ( frame , frame , mask= mask3 )
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g r e y f r = cv2 . cvtColor ( res , cv2 .COLOR BGR2GRAY)

, thr = cv2 . th r e sho ld ( g r ey f r , 130 ,240 ,

cv2 .THRESH BINARY)

th2 = PersonObject ( frame )

th2 = cv2 . GaussianBlur ( th2 , (11 , 11) , 0)

th2 = cv2 . d i l a t e ( th2 , kerne l , i t e r a t i o n s =3)

gray = cv2 . cvtColor ( th2 , cv2 .COLOR BGR2GRAY)

, th2 = cv2 . th r e sho ld ( gray , 0 ,255 ,

cv2 .THRESH BINARY)

return thr

A.3 Keyboard

#Keyboard p o r t i o n o f code

def FindKeyboard ( hsv , frame , an ob j e c t ) :

min YCrCb = np . array ( [ 0 , 120 , 127 ] , np . u int8 )

max YCrCb = np . array ( [ 1 4 4 , 255 , 177 ] , np . u int8 )

# Convert image to YCrCb

image YCrCb = cv2 . cvtColor ( frame ,

cv2 .COLOR BGR2YCR CB)

dark r eg i on = cv2 . inRange ( image YCrCb ,

min YCrCb , max YCrCb)

r e s3 = cv2 . erode ( dark reg ion , None , i t e r a t i o n s =2)

r e s3 = cv2 . d i l a t e ( res3 , None , i t e r a t i o n s =2)

r e s3 = cv2 . b i tw i s e and ( frame , frame , mask = re s3 )

g r e y f r 3 = cv2 . cvtColor ( res3 , cv2 .COLOR BGR2GRAY)

, thr3 = cv2 . th r e sho ld ( grey f r3 , 0 , 255 ,

cv2 .THRESH BINARY)
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return thr3 , g r e y f r 3

A.4 Table

#Table p o r t i o n o f code

def FindTable ( hsv , frame , an ob j e c t ) :

min YCrCb = np . array ( [ 1 8 1 , 109 , 127 ] , np . u int8 )

max YCrCb = np . array ( [ 2 5 5 , 135 , 160 ] , np . u int8 )

# Convert image to YCrCb

image YCrCb = cv2 . cvtColor ( frame ,

cv2 .COLOR BGR2YCR CB)

mask = cv2 . inRange ( image YCrCb , min YCrCb , max YCrCb)

r e s2 = cv2 . b i tw i s e and ( frame , frame , mask= mask)

g r e y f r 3 = cv2 . cvtColor ( res2 , cv2 .COLOR BGR2GRAY)

, thr3 = cv2 . th r e sho ld ( grey f r3 , 0 , 255 ,

cv2 .THRESH BINARY)

thr3 = cv2 . morphologyEx ( thr3 , cv2 .MORPH CLOSE,

kerne l , i t e r a t i o n s = 3)

thr3 = cv2 . morphologyEx ( thr3 , cv2 .MORPH OPEN,

kerne l , i t e r a t i o n s = 2)

return thr3

A.5 Skin

def PersonObject ( frame ) :

k e rne l = cv2 . getStructur ingElement ( cv2 .MORPH ELLIPSE,

(11 , 11 ) )

f = np . copy ( frame )
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min YCrCb = np . array ( [ 7 5 , 1 3 8 , 1 1 1 ] , np . u int8 )

max YCrCb = np . array ( [ 1 7 2 , 1 5 5 , 1 2 4 ] , np . u int8 )

min YCrCb1 = np . array ( [ 5 6 , 142 , 110 ] , np . u int8 )

image YCrCb = cv2 . cvtColor ( f , cv2 .COLOR BGR2YCrCb)

imgYCC = cv2 . GaussianBlur ( image YCrCb , (11 , 11) , 0)

# Find reg ion wi th s k i n tone in YCrCb image

s k i n r e g i o n = cv2 . inRange (imgYCC, min YCrCb , max YCrCb)

s k i n r e g i o n 2 = cv2 . inRange (imgYCC, min YCrCb1 , max YCrCb)

s k i n r e g i o n = cv2 . b i tw i s e and ( s k i n r e g i o n , s k i n r e g i o n ,

mask = s k i n r e g i o n 2 )

s k i n r e g i o n = cv2 . morphologyEx ( s k in r e g i on ,

cv2 .MORPH OPEN, ke rne l )

s k i n r e g i o n = cv2 . d i l a t e ( s k i n r e g i o n , None ,

i t e r a t i o n s =10)

s k i n r e g i o n = cv2 . morphologyEx ( s k in r e g i on ,

cv2 .MORPH CLOSE, ke rne l )

s k i n r e g i o n = cv2 . GaussianBlur ( s k i n r e g i on , (29 , 29 ) , 0)

s k i n r e g i o n = cv2 . erode ( s k i n r e g i o n , kerne l2 ,

i t e r a t i o n s =2)

s k i n r e g i o n = cv2 . morphologyEx ( s k in r e g i on ,

cv2 .MORPH OPEN, kerne l ,

i t e r a t i o n s =2)

r e s = cv2 . b i tw i s e and ( f , f , mask=s k i n r e g i o n )

return r e s
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