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ABSTRACT 

 Particle dynamics simulations are used widely in various disciplines such as 

physics, engineering, and biology. To study complex systems consisting of a large 

number of particles, an efficient parallel particle dynamics code is necessary. Several 

such codes exist but each has been designed with specific applications in mind. For 

example, LAMMPS is designed mainly for atomistic modeling, GROMACS for 

biophysics applications, and EMU for peridynamic studies. With the goal of having a 

general purpose parallel particle dynamics code, in 2011, two UNM research groups 

collaborated on the redevelopment and generalization of the pdQ molecular dynamics 

code to jointly accommodate both molecular dynamics and peridynamics [Sakhavand 

2011]. However, pdQ remained domain-specific, using an “#ifdef” coding style to select 

alternative molecular dynamics and peridynamic routes through the code at compile time. 

In addition, due to the data structures used, the implementation of “particle shuffling”, in 

which particles’ neighborhoods change, was challenging in this initial version of the 
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code. Finally, an extensive review of the message passing algorithm used in pdQ 

[Sakhavand 2011] revealed inefficiencies due to the sending of unnecessary messages. 

 In this thesis, we describe the re-architecting of pdQ as pdQ2. pdQ2 is completely 

non-domain-specific in that user files are clearly separated from non-user files and no 

#ifdefs exist in the code. Thus, it operates as a particle simulation engine that is capable 

of executing any parallel particle dynamics model. As in the original pdQ, users can 

customize their own physical models without having to deal with complexities such as 

parallelization, but the ease of extensibility has been significantly improved. This has 

greatly facilitated the implementation of particle shuffling, for example. Finally, the 

message passing is implemented by introducing the concepts of “core” and “skin” which 

define the central processing cube or “procCube”. It is shown that pdQ2 is about four 

times as fast as pdQ using parallel supercomputers. 

 The particle dynamics model of particular interest in this work is peridynamics. 

Peridynamics was proposed by S.A. Silling to overcome deficiencies in the continuum 

mechanics formulation for modeling discontinuities in a material at different scales from 

micro to macro [Silling 1998]. Thus, it has the potential to be used for the engineering of 

reinforced concrete structures which show many discontinuities prior to failure. Gerstle et 

al. extended peridynamics to include particle rotations, terming their model the 

“micropolar peridynamic model” [Gerstle et al. 2007b]. However, both the original 

peridynamic and micropolar peridynamic models require that ad hoc discretization 

decisions be made to implement them computationally, and they do not explicitly 

relinquish the continuous topology describing the reference geometry [Gerstle et al. 

2012]. 
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 In this thesis, we discard the continuum mechanics paradigm completely, and 

model reinforced concrete by introducing the “micropolar peridynamic lattice model 

(MPLM)”. The MPLM models a structure as a close-packed particle lattice. In the 

MPLM, rather than viewing the structure as collection of truss or beam elements (as with 

traditional lattice models), the model is viewed as collection of particle masses (as with 

peridynamic models). The MPLM uses a finite number of equally-spaced interacting 

particles of finite mass. Thus, it does not need any ad hoc discretization and it is more 

straightforward to implement computationally. Also, the MPLM is conceptually simpler 

than both the lattice and peridynamic models [Gerstle et al. 2012]. After defining the 

MPLM, its application to reinforced concrete structures is investigated through several 

examples using pdQ2.   
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1.       INTRODUCTION 

In this thesis, we describe a novel architecture for parallel particle dynamics 

which we refer to “particle dynamics Quickly (pdQ2)”. In the second part of this thesis, 

pdQ2 is used to implement the micropolar peridynamic lattice model (MPLM) for 

simulation of reinforced concrete structures. 

1.1. Motivation 

Particle dynamics simulation methods such as peridynamics, molecular dynamics, 

and discrete element methods are widely used by scientists and engineers. The 

availability of a general-purpose and efficient parallel particle dynamics code is thus an 

important tool for many disciplines. Various parallel particle dynamics codes have been 

designed in recent years, such as LAMMPS [http://lammps.sandia.gov], GROMACS 

[Lindahl et al. 2001], and EMU [http://sandia.gov/emu/emu.htm], each with specific 

applications in mind. LAMMPS is designed mainly for molecular and atomistic 

modeling, GROMACS for biophysics, EMU for peridynamic studies, and so forth. 

Therefore, if users wish to use these codes, they must be familiar with domain-specific 

concepts. This is unnecessarily complicated and cumbersome for users in emerging 

disciplines. 

In the second part of this thesis, we present results of the computational modeling 

of reinforced concrete structures using peridynamics within pdQ2. Concrete is a quasi-

brittle material, and cracking is a challenging feature to model in the simulation of 

reinforced concrete structures. Reinforced concrete exhibits many discontinuities even 

http://lammps.sandia.gov/
http://sandia.gov/emu/emu.htm
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before failure mechanisms develop. A failure mechanism in a reinforced concrete column 

subject to earthquake loading is shown in Fig. 1.1. 

 

Figure 1.1 – Failure mechanism at the bottom of a concrete column subject to earthquake loading (from  

[Jennings 1971]). 

 

To this day, ad hoc approximate methods are used to model reinforced concrete 

structures. But these approximate methods are not general or simple enough to be used 

for many complex problems. Thus, current engineering designs are usually overly 

conservative in order to make up for the lack of modeling capability. Economic savings 

could be realized by more intelligent models of reinforced concrete structures.  

With ongoing advances in computational power, it makes sense to use 

computational methods to model fracture problems. Continuum mechanics and finite 

elements methods work well for continuum problems, but they fail to model cracks 

efficaciously.  
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The smeared crack and the discrete crack approaches are among computational 

models based on fracture mechanics using continuum mechanics-based finite element 

methods. In the smeared crack models, the cracks are represented through changes of the 

material stress-strain constitutive equations instead of changes in the geometry as with 

discrete models. Sensitivity of the results to the finite element mesh is the major 

deficiency in smeared crack models [Nguyen et al. 2005]. 

In discrete crack models, fracture mechanics theories are used to predict the 

trajectories of discrete cracks. The problem geometry and the corresponding finite 

element mesh is incrementally altered as cracks propagate [Cusatis et al. 2006]. For 3D 

problems, simulation of discrete cracks is often not possible due to the complexity of the 

required geometry and mesh. Furthermore, the assumptions of fracture mechanics are 

insufficiently general to capture the behavior of reinforced concrete structures. 

Molecular dynamics simulation is another computational approach that can be 

used for fracture modeling. With the most powerful supercomputers, molecular dynamics 

is an effective method to model fracture at the atomistic and nano scales. But applying 

molecular dynamics to macro-scale structures like reinforced concrete structures is not 

yet feasible due to huge computational requirements.  For instance, a concrete beam with 

length of 4 m, depth of 0.4 m, and width of 0.3 m, has about 10
30

 silicon atoms [O'Mara 

et al. 1990]. Today’s most powerful supercomputers can execute molecular dynamics 

simulations up to several billions (10
9
) of particles [Kadau et al. 2006].  

Peridynamics is a formulation that can model discontinuities more realistically 

than other existing methods. Peridynamics can be implemented as a particle dynamics 

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22William+C.+O%27Mara%22
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method which is applicable to macro-scale structures, unlike molecular dynamics. 

Therefore, we apply peridynamic theory to simulate reinforced concrete structures in this 

work.  

1.2. Background 

In light of the issues in attempting to use existing parallel particle dynamics 

codes, developing a general-purpose code that can perform explicit particle dynamics 

simulations is a worthy goal. Different users would be able to use such a code without the 

need to know about many irrelevant concepts from other science and engineering 

domains. To achieve this purpose, in 2009, S.R. Atlas, W.H. Gerstle, N. Sakhavand, and 

V. Janardhanam from the Physics and Astronomy and Civil Engineering departments at 

the University of New Mexico embarked on designing a parallel particle dynamics code 

called “particle dynamics Quantum (pdQ)”. This code [Atlas 1999] was based on an 

earlier object-oriented parallel molecular dynamics code [Atlas et al. 1996], both 

originally developed by S.R. Atlas at the University of New Mexico. While pdQ was 

designed to accommodate both peridynamics and molecular dynamics in a single code, it 

remained domain-specific, with #ifdefs used to select alternative molecular dynamics or 

peridynamic routes through the code at compile time. Also, the data structures used in the 

code were sufficiently complex that it became obvious that a major re-write was 

necessary if “particle shuffle” was to be implemented. Particle shuffle is necessary when 

the particles undergo large relative displacements, which is particularly true for molecular 

dynamics simulations of liquids, for instance. 
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One of the most significant achievements of the current thesis is the development 

of a truly domain-independent particle dynamics code. We still call the code pdQ but 

now the acronym stands for “particle dynamics Quickly”. To distinguish the two codes in 

this thesis, we refer to Sakhavand’s version of pdQ as “pdQ”, and the new version as 

“pdQ2”. The new version, pdQ2, is truly independent of any physical discipline, and 

implements “particle shuffle”, as described in Chapter 3. In addition, due to a redesign of 

the message passing algorithm, pdQ2 is much more computationally efficient than pdQ, 

as shown in Chapter 3. 

 On the reinforced concrete modeling side, S.A. Silling, from Sandia National 

Laboratories, in order to overcome the deficiencies for solving the discontinuum 

problems, proposed the peridynamic model [Silling 1998]. Peridynamics is a 

reformulation of continuum mechanics that allows discontinuities to develop and 

propagate naturally in a material. In this reformulation, the governing equation of motion 

is an integral equation, in contrast to continuum mechanics, which is based on a 

differential equation that fails at displacement discontinuities. However, peridynamics 

does not explicitly completely relinquish the continuum mechanics paradigm [Gerstle et 

al. 2012]. 

 Peridynamics is conceptually similar to molecular dynamics but it can be used at 

varying scales from micro to macro. It models the structure as interacting material 

particles analogous to molecular dynamics, which models molecules of materials as 

interacting atoms. Thus, peridynamics is applicable to civil engineering structures such as 

reinforced concrete bridges. Peridynamics is computationally intensive when applied to 
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large engineering structures and it requires that further ad hoc discretization decisions be 

made in order to implement it computationally. 

 In this thesis, a new model called the “micropolar peridynamic lattice model 

(MPLM)” is presented in Chapter 4. With the MPLM model, the concrete is modeled as a 

close-packed particle lattice, which discards the continuum mechanics paradigm 

completely. The MPLM is a good model for concrete which is inherently discontinuous, 

and it is more straightforward to implement computationally, because fewer ad hoc 

discretization decisions need to be made. 

1.3. Objectives 

The objectives of this thesis are twofold. First, with the goals of simplicity, 

efficiency, and extensibility, pdQ has been redesigned and rewritten (called pdQ2 in this 

thesis). As with pdQ, pdQ2 is designed with the philosophy of hiding computational 

complexities such as parallelization from the user. However, in contrast to pdQ, which 

“inlined” physical models of particle interactions, pdQ2 utilizes programmable user files 

for implementation of physical models. Thus, pdQ2 is an engine that can run any explicit 

parallel particle dynamics simulation, and users can easily implement arbitrary physical 

models with any degree of complexity. 

Second, to address the problems with existing peridynamic and other 

computational models, the “micropolar peridynamic lattice model (MPLM)” is 

implemented. With the MPLM, the number of computations is decreased with respect to 

the original peridynamic model, and it is conceptually simpler than existing continuum 

models [Tuniki 2012]. 
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1.4. Scope  

This thesis includes five chapters. Chapter 2 provides a literature review of 

existing particle dynamics codes and the peridynamic models for reinforced concrete 

structures. Chapter 3 describes the design and performance analysis of pdQ2. Chapter 4 

describes the MPLM and provides several examples to demonstrate the method using 

pdQ2. In Chapter 5, conclusions and future work are suggested. Finally, a concise user 

manual for pdQ2 is provided in the Appendix.   
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2. LITERATURE REVIEW 

 This chapter has three main sections. In the first section, several computational 

algorithms for parallel particle dynamics simulation are studied. In the second section, 

several existing parallel particle dynamics codes are investigated. The advantages and 

disadvantages of these codes are explained. In the third section, the peridynamic theory is 

described and variations of this model are explained. 

2.1. Computational algorithms for parallel particle dynamics 

 Particle dynamics refers to a system of particles interacting with each other in a 

specific physical domain. The basic steps of a particle simulation are particles’ definition, 

domain decomposition, force interactions, integration, and particle shuffling.  

In real-life particle dynamics problems, millions or billions of particles interact 

with each other. In order to solve such realistic problems, exploiting the capabilities of 

parallel computers is necessary. To use parallel computers efficiently, developing 

appropriate algorithms is important. Several parallel algorithms exist mainly for 

molecular dynamics simulation, but they may also be adopted for use in other particle 

dynamics simulations in other domains, such as astrophysical simulation or 

peridynamics. Atom decomposition, force decomposition, and spatial decomposition are 

the three main parallel algorithms that were pioneered in the early days of parallel 

computing.  

 In the atom decomposition method, an equal number of particles are distributed 

among processors regardless of their positions. Then, the new positions are computed on 
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each processor after the all-to-all communication is done among all the processors [Bruck 

et al. 1994]. 

In the force decomposition method, a subset of pairwise forces is assigned to each 

processor [Hendrickson and Plimpton 1992].    

 In the spatial decomposition method, the entire geometrical domain is 

decomposed across several subdomains containing particles. Each subdomain is allocated 

to a specific processor and consequently the particles are assigned to those processors. 

The associated processor does the computations for its particles. But the particles residing 

on processor boundaries necessarily interact with the particles residing on adjacent 

processors. Therefore, to fulfill this requirement, information about particles residing on 

the boundaries need to be exchanged between processors [Finchman 1987]. Like pdQ, 

pdQ2 uses a spatial decomposition algorithm (see Chapter 3). 

 The atom and force decomposition methods are load-balanced. In other words, 

they divide the computations between processors equally. For these methods, the inter-

processor communication scheme is global, in contrast to the spatial decomposition 

algorithm which has a local communication scheme [Plimpton 1995]. 

 Choosing a parallel algorithm is problem-dependent. It can depend upon the 

number of particles in the processor or the speed of the processor itself. For example, if 

the number of particles per processor is high, the spatial decomposition algorithm is more 

efficient than others [Brown and Miagret 1999]. Due to increases in the amount of RAM 

per core in modern supercomputers, this is the regime considered in pdQ and pdQ2. 
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 In the following subsections, several techniques for implementation of parallel 

particle dynamics algorithms are reviewed, including Plimpton’s method of message 

[Plimpton 1995], which is implemented in pdQ2. 

2.1.1. The multi-cell method 

 The multi-cell method was first used by Beazley and Lomdahl for molecular 

dynamics simulations [Beazley and Lomdahl 1994]. In this method, the geometry of the 

problem is divided into cuboids that are assigned to a processor. Each of these cuboids is 

subdivided into cells. Thus, each processor has a certain number of cells, and particles are 

located within the cells. A particle interacts with other particles that are in its 

neighborhood (material horizon) and it does not interact with the particles that are beyond 

the material horizon. By introducing the concept of cell, particles can quickly identify the 

neighbors with which they interact. By choosing the cell dimension to be somewhat 

larger than the material horizon, interaction between particles within the material horizon 

is guaranteed. A particle within a specific cell and processor can interact with other 

particles in the same cell and processor, or other particles in different cells but the same 

processor, or other particles in different cells and processors. If the particles need to 

interact with the particles on other processors, communication between processors is 

necessary. Like pdQ, pdQ2 uses the multi-cell method of Beazley and Lomdahl 

combined with the concepts of walls and procCubes, but we introduce the notions of 

“core” and “skin”, implemented using FORTRAN arrays as described in Chapter 3, in 

order to significantly reduce inter-processor communication. 
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 2.1.2. Plimpton’s method of processor communication 

 Parallel simulation of particle dynamics requires communication between 

processors. Information is sent and received between processors as messages. This is also 

called message passing between processors.  

 In the spatial decomposition algorithm, a cuboid needs to obtain information from 

the twenty-six adjacent cuboids, at most. Thus, each cuboid should receive twenty-six 

messages per time step. In Fig. 2.1, a cuboid (shown in gray), and its 26 adjacent cuboids 

are shown. 

 

Figure 2.1 – Exploded view of a cuboid (shown in gray) and its 26 adjacent cuboids. “p” and “n” refers to 

positive and negative directions respectively. 

 

In 1993, Plimpton introduced a novel method for communication between 

processors in particle dynamics simulation [Plimpton 1995]. With Plimpton’s method of 
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message passing, the number of the messages received by a cuboid reduces to six. In Fig. 

2.2, Plimpton’s method of message passing is illustrated. In the first step, each processor 

sends and receives information in the Xp direction simultaneously. For example, 

processor 2 sends information to processor 3 and also receives the data from processor 1. 

In the second step, each processor sends and receives the information in the Xn direction 

concurrently. In the third step, each processor sends and receives the data in the Yp 

direction; note that this includes information previously passed in the Xp/Xn exchanges. 

In the fourth step, each processor sends and receives the data in the Yn direction, and this 

contains information communicated in the Xp/Xn exchanges. In the fifth step, every 

processor sends and receives information in the Zp direction including data from the 

Xp/Xn and Yp/Yn exchanges.  

 

Figure 2.2 – Plimpton’s method of message passing (after [Plimpton 1995]). 
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In the sixth step, each processor sends and receives data in the Zn direction, 

containing information exchanged in the Xp/Xn and Yp/Yn exchanges. With these six 

steps, each cuboid has now obtained the information from its twenty-six adjacent 

cuboids. Using FORTRAN arrays, we implement Plimpton’s method elegantly, as 

described in Chapter 3. 

2.1.3. Zonal methods 

 Zonal methods have been used in several molecular dynamics research codes. 

Zonal methods are generalized spatial decomposition methods for efficient parallelization 

of range-limited N-body problems [Bowers et al. 2006]. Zonal methods are based on the 

concept of zones which are spatial shaped regions. They enable the tailoring of 

communication between processors and ensure that all near interactions are computed. 

The main purpose of zonal methods is to reduce the communication time in order to 

avoid redundant force calculations. Zonal methods can result in optimized scaling for 

biophysical systems [Bowers et al. 2006]. Like pdQ, to improve the efficiency, zonal 

methods can be implemented in pdQ2 because of using hybrid of cells and procCubes.  

 In the next section, several existing parallel particle dynamics codes are 

described.  

2.2. Parallel particle dynamics codes 

Dynamical simulation of large-scale particle systems is impossible without a 

powerful parallel computer. Even though computational power has tended to increase by 

approximately a factor of two every 18 months following Moore’s law [Moore 1965], it 

is still necessary to take advantage of advanced computational tools to model the largest 
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systems of particles. Thus, it is important to develop a simple, efficacious, and extensible 

parallel particle dynamics code. In the following subsections, several existing particle 

dynamics codes are reviewed and evaluated. 

2.2.1. SPaSM (Scalable Parallel Short-range Molecular dynamics) 

In the early 1990s, D. Beazley and P. Lomdahl collaborated at Los Alamos 

National Laboratory to develop the SPaSM code. It was primarily designed to simulate 

the behavior of materials [Zhou et al. 1998]. SPaSM uses the multi-cell spatial 

decomposition method, and it was originally developed for the Thinking Machine CM-5 

[Beazley and Lomdahl 1994]. In 2006, SPaSM was implemented on the BlueGene/L 

architecture to enable large molecular dynamics simulations with billions of particles. It 

has shown good scaling and performance [Kadau et al. 2006]. Recently, the 

communication data structures in the SPaSM have been rewritten for implementation on 

the Roadrunner supercomputer, achieving excellent speedup [Germann et al. 2009]. 

However, SPaSM is domain-specific for molecular dynamics models, and is proprietary, 

and therefore could not be used as a research platform in the present work.  

2.2.2. LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) 

In 1990, two laboratories (Sandia and LLNL) and three companies (Cray, Bristol-

Myers Squibb, Dupont) began to develop a large-scale parallel classical molecular 

dynamics code called LAMMPS. It was originally developed in FORTRAN 77 and was 

rewritten in FORTRAN 90 in 2001. In 2004, an open source version for LAMMPS was 

released in C++ and the code is updated continuously [http://lammps.sandia.gov].  

http://lammps.sandia.gov/
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LAMMPS is a classical molecular dynamics code that models particles in a 

liquid, solid, or gaseous state. It is designed mainly for parallel simulations; however, it 

can also efficiently run on a single-processor machine. It can run simulations with 

millions or billions of particles. For computational efficiency, LAMMPS uses neighbor 

lists to keep track of nearby particles. On parallel machines, it uses the spatial 

decomposition technique to partition the simulation domain and assign the partitions to 

processors. LAMMPS also implements GPU coding (CUDA and OpenCL) and OpenMP 

for further code acceleration. 

LAMMPS is able to model diverse force fields and statistical ensembles, and 

implements diverse constraints, boundary conditions, and integration schemes. 

Furthermore, a peridynamic module has been added recently to LAMMPS [Parks et al. 

2008]. However, as LAMMPS is not a pure particle dynamics engine, it cannot be readily 

adapted to implement other particle dynamics models. 

2.2.3. GROMACS (GROningen MAchine for Chemical Simulations) 

The GROMACS project was originally designed by the Biophysical Chemistry 

Department of the University of Groningen as a parallel computer system for molecular 

dynamics simulations in FORTRAN 77. Later, it was rewritten in the C programming 

language. Now, it is a free open-source code [Lindahl et al. 2001]. 

GROMACS was primarily designed for simulating biochemical molecules such 

as proteins, lipids and nucleic acids, although it is now also applicable to non-biological 

systems such as polymers. It benefits from novel optimization methods such as the 

automatic generation of inner loops in either C or FORTRAN at compile time. On 
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parallel machines, it uses MPI communication and a spatial decomposition algorithm. 

Currently, GROMACS claims to be the fastest algorithm for parallel molecular 

simulations [Lindahl et al. 2001]. Recently, zonal methods were implemented in 

GROMACS to improve the communication time and to avoid redundant force 

computations [Hess et al. 2008]. As designed, GROMACS is intended principally for 

biophysical simulations and it appears to be cumbersome to use it for other physical 

models or domains. 

2.2.4. Desmond 

Desmond is a software package developed by the D. E. Shaw research group, as a 

free, open-source code specifically for performing parallel molecular dynamics 

simulations of biological and chemical systems [Bowers et al. 2006]. Thus, it cannot be 

easily used for other domain applications.  

Desmond can compute energies and forces for many standard fixed-charged force 

fields used in biomolecular simulations [Lindorf-Larsen et al. 2010]. It implements an 

integrated version of the force decomposition and spatial decomposition algorithms. This 

hybrid of spatial and force decompositions utilizes a spatial decomposition of particles 

into cuboids, and the creation of a computational object for calculating interactions for 

every pair of interacting cuboids [Bhatele et al. 2008]. Since Desmond is mainly 

designed for molecular dynamics and it is domain-specific, it appears to be hard to use it 

for other particle dynamics methods 

 

 

http://www.odysci.com/author/1010112984598066/abhinav-bhatele
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2.2.5. NAMD (Not (just) Another Molecular Dynamics program) 

In 1995, NAMD was introduced as a molecular dynamics program utilizing the 

CHARM++ parallel programming layer for high performance simulations of 

biomolecular systems on parallel supercomputers. It was developed at the University of 

Illinois at Urbana-Champaign [Nelson et al. 1996]. It implements an object-oriented 

design using C++ and is freely available. NAMD is not general enough to be used for 

arbitrary particle dynamics problems. 

NAMD uses spatial decomposition combined with a multithreaded message-

driven design to provide a highly scalable program tolerant of communication latency 

[Nelson et al. 1996]. 

2.2.6. EMU 

EMU has been developed mainly for in-house peridynamic simulations at Sandia 

National Laboratories [http://sandia.gov/emu/emu.htm]. EMU is the first code designed 

specifically for peridynamic simulations, to predict the deformation and failure of solids. 

However, EMU is a research code and is not generally available. We found that it was 

difficult to extend EMU to incorporate micropolar peridynamics and user-specified state-

based damage models. 

2.2.7. pdQ (parallel dynamics Quantum) 

In 2009, a group of faculty and students from the University of New Mexico (S.R. 

Atlas, W.H. Gerstle, N. Sakhavand, and V. Janardhanam) decided to write a parallel 

particle dynamics code called pdQ with the purpose of introducing a versatile parallel 

http://sandia.gov/emu/emu.htm
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code that could be used for both molecular dynamics and peridynamic simulations 

[Sakhavand 2011]. This code was based on a parallel molecular dynamics code originally 

developed by S.R. Atlas at the University of New Mexico [Atlas 1999]. pdQ was written 

for molecular dynamics and peridynamic simulations using #ifdefs to determine a route 

through the code at compile time depending on whether a molecular dynamics or 

peridynamic simulation was required. This limited pdQ to these specific particle 

simulation domains. 

In addition, pdQ was written using a number of complex data structures that did 

not lend themselves to modification or extensibility. For example, “particle shuffle” or 

the state-based peridynamics could not be simply implemented. Also, the message 

passing algorithm used in pdQ was inefficient, sending many unnecessary messages 

between processors [Sakhavand 2011]. In light of these issues, in 2011, we resolved to 

rewrite pdQ with the purpose of simplicity, efficiency, and enhanced extensibility. The 

new version, pdQ2, is described in Chapter 3 of this thesis. pdQ2 is completely non-

domain-specific and it is an engine that can run any parallel particle dynamics simulation. 

Also, pdQ2 is sufficiently simple that “particle shuffle” can be easily implemented, for 

example. Finally, message passing efficiency has been improved by introducing the 

“core” and “skin” concepts as discussed in Chapter 3 and it is shown that pdQ2 is about 

four times faster than pdQ for the problems benchmarked in this thesis. 

2.3.    Peridynamics 

In 2000, S.A. Silling from Sandia National Laboratories introduced the 

peridynamic model that can be used at different scales, from micro to macro and for both 
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continuous and discontinuous media, to overcome the deficiencies of the continuum 

mechanics formulation [Silling et al. 1998]. In this model, the structure is modeled as 

particles interacting with surrounding particles via specified force functions. The 

peridynamic equation of motion is an integral formulation, unlike continuum mechanics, 

which fails at discontinuities; thus, the peridynamic formulation allows cracks to emerge 

naturally.  

To computationally model continuous structures using peridynamics, further ad 

hoc discretization is needed; however, no mesh generation is required. In the peridynamic 

model, the material horizon is defined as a spherical continuous region around a particle i 

that interacts with other particles j within this region. In Fig. 2.3, two particles i and j 

with volumes dVi and dVj are shown in a domain R. The equation of motion of the 

particle i (Newton’s second law) for the peridynamic model is 

                                                                                      ,                                     (2.1)                                              

where    is the pairwise force function between particles i and j. The pairwise force 

function depends on the relative position       and relative displacement      between the 

two particles i and j.    and   are the reference position and displacement fields 

respectively.   is the external force density, in units of force per unit volume.     is the 

mass density.  
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Figure 2.3 – Terminology for the peridynamic model (from [Gerstle et al. 2007b]). 

 

In the following subsections, we discuss further variations of the peridynamic 

model. 

2.3.1. Micropolar peridynamic model 

In 2005, Gerstle et al. extended the peridynamic model by adding moments and 

rotations to the original peridynamic formulation [Gerstle et al. 2007b]. They called their 

model the “micropolar peridynamic model”. The terminology for this model is shown in 

Fig. 2.4. The governing equations of motion (Newton’s second law) for the micropolar 

peridynamic model for the particle i are  

                                                                                         ,                                             (2.2)           
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where       is the pairwise moment function between particles i and j with units of moment 

per unit volume squared.    is the relative rotation between the two particles.    is the 

external moment density, in units of moment per unit volume.    is the mass moment of 

inertia per unit volume. All other parameters are the same as in the original peridynamic 

model.  

The micropolar peridynamic model generalizes the peridynamic model to more 

easily include materials with Poisson’s ratio other than 
 

 
, and axial or plate structures 

[Gerstle et al. 2007b]. For any central force model, it can be proved that there is such a 

limitation on Poisson’s ratio. In Chapter 4, the micropolar peridynamic model is 

specialized to the micropolar peridynamic lattice model (MPLM) with the purpose of 

avoiding ad hoc discretization and achieving greater computational efficiency.  

 

Fig. 2.4 – Terminology for micropolar peridynamic model: (a) kinematics; (b) kinetics (from [Gerstle et al. 

2007b]). 
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2.3.2. Peridynamic states 

The original peridynamic model included only a “bond-based” model for 

materials. “Bond-based” means that the pairwise force function between two particles 

depends only upon the states of these two particles. This is an oversimplification which 

prevents some material behaviors from being modeled, for example plasticity [Silling et 

al. 2007]. 

In order to resolve these difficulties, Silling et al. introduced the concept of 

peridynamic states to generalize the original bond-based peridynamic model [Silling et 

al. 2007]. The state-based peridynamic constitutive model is a relationship between the 

force state and the deformation state. The force state contains the forces within bonds of 

all lengths and orientations. The deformation state is the deformation field within the 

material horizon of a particle. The state-based equation of motion is  

                                                                                                           ,                (2.4)           

where Hx is a spherical region centered at    with the radius of the material horizon.    is 

the force vector state field.  

 State-based peridynamics is computationally more intensive than bond-based 

peridynamics. However, state-based peridynamics is capable of modeling broader 

material behaviors such as plasticity [Silling et al. 2007]. As discussed in Chapter 5, 

pdQ2 is designed so that state-based peridynamics can be easily implemented in pdQ2 

later on.  
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2.3.3. Multi-physical peridynamics 

Multi-physical modeling involves the simulation of multiple physical phenomena 

simultaneously. This multiplicity of physics adds to the complexity of the problem. 

Gerstle et al. has applied the peridynamic model to multi-physical problems [Gerstle et 

al. 2008]. In particular, the peridynamic model has been used to simulate mechanical, 

thermal, electrical, and atomic diffusion processes which often account for the failure of 

the integrated circuits (electromigration).  

In the peridynamic model for electromigration, the constitutive relations of solid 

mechanics, heat conduction, electric conduction, and atomic diffusion correspond to 

integrations over a finite neighborhood of a point [Gerstle et al. 2008]. The factors 

accounted for in the multi-physics constitutive model are fluxes of force, heat energy, 

electrical charge, and atoms. Peridynamic kernels are used to represent the physical 

constitutive behavior of these processes.  

The peridynamic model of electromigration enables four coupled physical 

phenomena to be modeled concurrently: mechanical deformation, heat transfer, electrical 

potential distribution and charge flow, and vacancy diffusion. The conceptual simplicity 

of the model paves the way for the multi-physical simulation of microchips, enabling 

electromigration, thermomechanical crack formation, and fatigue crack formation to be 

analyzed in a systematic manner [Gerstle et al. 2008].  

2.4.    Summary 

In this chapter, several parallel particle dynamics codes have been reviewed. As 

described, they are neither general-purpose nor easy to extend. Thus, it is not straight-
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forward for users to implement their own physical models. In this thesis, the main 

motivation for developing pdQ2 was to further develop pdQ into a general-purpose 

parallel particle dynamics code that is efficient, easy to use, simple and extensible. 

On the peridynamic side, peridynamics and its variations have been described. 

The original peridynamic model can only model materials having Poisson’s ratio 
 

 
. Also, 

it requires that further ad hoc discretization decisions be made in order to be implemented 

computationally. In this thesis, the micropolar peridynamic lattice model is introduced to 

address the difficulties with the original bond-based peridynamic model for modeling 

reinforced concrete. 

In the next chapter a novel architecture for the pdQ2 parallel particle dynamics 

code is presented. 
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3. NOVEL ARCHITECTURE FOR A PARALLEL PARTICLE DYNAMICS 

CODE 

3.1. Introduction 

The development of parallel particle dynamics simulation algorithms has been an 

active topic of research in recent years. Particle dynamics simulation codes have been 

developed in various disciplines, such as molecular dynamics, peridynamics, discrete 

element methods, and so forth. To solve realistic problems, a large number of particles 

and time steps is usually required. Single-processor machines are too slow or do not have 

sufficient memory; thus it is advantageous to use parallel-processor machines to decrease 

simulation times and increase the number of particles and time steps that can be 

simulated. 

While parallelization has resulted in a considerable reduction in simulation time, 

to date, existing codes typically couple their parallelization approaches to domain-

specific features. Therefore, the design of a general-purpose, simple, efficient and 

extensible parallelizable particle dynamics code is an important issue for contemporary 

particle dynamics research. 

Most parallel particle dynamics codes in existence have been developed with a 

specific application in mind. Thus, LAMMPS is fraught with ideas for biophysical and 

materials systems, GROMACS is designed for biophysics, EMU is loaded with 

peridynamic concepts, and so on. In our work, on the other hand, we are careful to keep 

the physical modeling aspects of the code out of the fundamental code architecture. This 
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allows users to more easily get started with their particular physical model, without 

having to first learn about unrelated modeling domains.  

The requirements for designing and building parallel programs can be 

summarized in the following steps [Foster 1995]: 

1. Partitioning: divide the computation to be performed and the data operated on by the 

computation into small tasks. The focus here should be on identifying tasks that can 

be executed in parallel. 

2. Communication: determine what communication needs to be carried out among the 

tasks identified in the previous step. 

Regarding these requirements, pdQ2, like pdQ, uses the spatial decomposition 

algorithm for partitioning the problem. Communication between processors is likewise 

based upon Plimpton’s message passing approach like pdQ [Plimpton 1995]. To reduce 

the number of required messages and their sizes, both codes use the concepts of 

procCubes, cells, and walls. In this chapter, we introduce the new concepts of cores, 

blocks, and skins for communication, which result in higher efficiency with respect to 

pdQ.  

pdQ2 performs the particle dynamics simulation; however, preprocessing and 

post- processing are two other important aspects that should be discussed. Preprocessing 

is the step in which the problem is defined and input files are created for processing. 

Processing is the step in which physics is simulated. Postprocessing is the step in which 

the user analyzes and interprets output data. 
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In Sections 3.2, 3.3, and 3.4, we discuss preprocessing, processing, and 

postprocessing respectively. In Section 3.5, verification and efficiency of the code are 

investigated. 

3.2. Preprocessing 

Preprocessing is typically neither time- nor memory-intensive, and can be easily 

performed on a single processor machine using an interpreted language like MATLAB. 

MATLAB, with its easy syntax and rich graphical functionality, is a very effective 

language for preprocessing the particle dynamics simulations. 

In pdQ2, as in the original pdQ, particles possess two types of attributes: alterable 

and fixed. Alterable attributes of particles may change during the simulation. They may 

include current positions, temperatures, and velocities, for example. At the beginning of 

the simulation, the alterable attributes are set equal to the initial conditions of the 

problem. On the other hand, fixed attributes of particles do not change during the course 

of the simulation. The minimal set of alterable attributes that must be defined are the 

global ID and the initial position for each particle. The minimal set of fixed attributes that 

must be defined are the global ID and the reference position for each particle. Users can 

add other physical attributes to these essential ones. The preprocessor saves the particle 

alterable and fixed attributes in files called ptclAlterAttrs.dat and ptclFixedAttrs.dat 

respectively. It is up to the user to define the additional fixed and alterable attributes for a 

particular simulation. 

The preprocessor must also create two additional input files, pdQInput.dat, 

pdQUserInput.dat, containing all additional input data required for the simulation. The 
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philosophy is to have two separate input data files. One is for general simulation 

requirements (pdQInput.dat), required by all pdQ2 simulations, and the other 

(pdQUserInput.dat) is for additional user specifications.  

General input data that is needed by all particle dynamics simulations include 

decomposition, force field, and integration parameters. Decomposition parameters 

specify the number of processors in the X, Y, and Z directions. The force field parameter 

is the minimum cell size chosen for the domain decomposition (explained further in 

Section 3.3). The sole integration parameter specified at this stage is the number of time 

steps. 

The additional inputs that are specific to the user’s physical model are saved in 

the file pdQUserInput.dat. More detailed information about how to use and set up 

particle attributes and input data are provided in the pdQ2 User Manual in the Appendix. 

We next describe the core of the simulation: the pdQ2 engine, or processing stage. 

3.3. Processing 

 In this stage, parallelization, time loop, particle shuffling and physical modeling 

are performed. Parallelization and particle shuffling are common to all simulations; 

however, the physics varies from simulation to simulation. Parallelization includes 

spatially partitioning of the problem and communicating between processors. Particle 

shuffling is necessary for simulations where particles can move from cell to cell for 

example in molecular dynamics. As physical modeling is defined by the user, several 

user files such as userSetup.F, userIntegrate.F, userForce.F, and userModule.F are 
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provided for this purpose. Thus, pdQ2 handles the parallelization and particle shuffling 

and the user needs only define the physical behavior of the particles. 

 In Sections 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5, partitioning, time loop, 

communication, particle shuffling, and user files are described. 

3.3.1. Partitioning 

In this section, we will discuss domain decomposition, multi-dimensional arrays, 

blocks, procCube, cell, core and skin concepts, and particle allocation to processors. 

Domain decomposition 

In pdQ2, the spatial simulation domain is decomposed into required subdomains. 

The domain extents are determined by finding the maximum and minimum reference 

(fixed) coordinate of all particles in each direction: Xmin, Xmax, Ymin, Ymax, Zmin, and Zmax. 

This is accomplished in the subroutine ComputeDomainParams. 

With the bounding coordinates of particles, a 3D cuboid is established. In 2D, this 

is the dashed rectangle as indicated in Fig. 3.1. The cuboid or rectangle is expanded by a 

margin,  .   is the user-defined margin provided for particle movement. The expanded 

cuboid or rectangle is defined as the domain of the problem.  

Having established the problem domain, the domain is partitioned into cores as 

shown in Fig. 3.2. A core is a 3D cuboid assigned to a processor. The extent of each core 

in each direction is equal to the length of the domain in that direction divided by the 
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number of processors in that direction. For instance, the length of a core in the X 

direction is 
direction Xin  processorsofNumber

2ΔXX minmax 
.  

 

 

 

 

 

 

Figure 3.1 – 2D view of domain boundaries. 

The material horizon or force radius,  , is the radius around a particle beyond 

which the particle does not interact with surrounding particles. As particles need only to 

interact with neighboring particles closer than  , the cores are further subdivided into 

cells [Beazley et al. 1994]. The cells provide a structure that allows for simple and 

efficient searches for surrounding particles by examining only adjacent cells. Cells are 

3D cuboids. The dimensions of a cell are chosen to be slightly larger than   so that 

interacting particles are guaranteed to have a reference or current location in adjacent 

cells. In MD-type problems, where particle motions can be large, particles can be 

“shuffled” from cell to cell. In this case, “current” particle positions are used. In each 

core, 3D indices of cells vary from one to the number of cells in each respective 

direction. Cell layout in two adjacent cores is shown in Fig. 3.3. 
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Figure 3.2 – Cores in the X direction. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Cells in the cores. 
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Multi-dimensional arrays 

In particle dynamics simulations, particles can be identified or labeled by various 

methods. Particles are identified in pdQ2 based on their 3D cell indices and a local cell 

particle index with respect to each cell; however, they also have a global unique integer 

ID that is defined by the preprocessor as an attribute. This makes it possible to take 

advantage of the multi-dimensional array capability provided by FORTRAN, as pdQ2 is 

written in FORTRAN 90, and the use of up to seven-dimensional arrays is possible. 

Hence, arrays identifying particles can be multi-dimensional. In our design, particles are 

indentified by the five-dimensional arrays ptclAlterAttrs, ptclFixedAttrs, and 

ptclIntegAttrs, which are real (generally double precision). ptclAlterAttrs array 

corresponds to particle alterable attributes. ptclFixedAttrs array corresponds to particle 

fixed attributes. The ptclIntegAttrs array contains the integrable particle attributes. These 

arrays are dimensioned as follows:  

Real ptclAlterAttrs (iAttr, iPtclCell, iCellX, iCellY, iCellZ) 

Real ptclFixedAttrs (iAttr, iPtclCell, iCellX, iCellY, iCellZ) 

Real ptclIntegAttrs (iAttr, iPtclCell, iCellX, iCellY, iCellZ) 

where iAttr is the particle attribute index, iPtclCell is the particle index with respect to 

each cell (varying from one to the maximum number of particles in a cell), and iCellX, 

iCellY, and iCellZ are 3D indices of the cell with respect to the procCube which is 

described in the following section. In each core, 3D indices of cells vary from one to the 

number of cells in each respective direction. 

 



33 
 

Particle allocation to processors 

To allocate particles to their processors, it is necessary to define a procCube for 

each core. To define the procCube, the concept of skin is introduced. The skin is a single 

layer of cells surrounding each core in all directions as shown in Fig. 3.4. Together, the 

core and the skin form a procCube. Each skin has six walls. 

. 

Figure 3.4 – Layout of a procCube with core, skin, and walls. 

As an illustration, two adjacent procCubes are shown in Fig. 3.5. A procCube is 

defined for each processor. When the program runs simultaneously on all processors, all 

particles are read by each processor, but the processor stores only the particles that 

belong to its procCube. In the subroutine ComputeProcParams, particles are assigned to 

the procCube that they are in. Also, they are assigned cell indices. Particles in a specific 
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     Y 

Particles in the skin that belong to 

adjacent procCubes 

 Length of procCube in the X direction 

cell and procCube are saved in a 3D integer array called numPtclsCell, with indices 

(iCellX, iCellY, iCellZ). nCX, nCY, and nCZ are the number of the cells in the X, Y, and 

Z directions in the core. In each procCube, when defining core and skin cells, the cell 

indices vary between 0 and nCX+1, nCY+1, nCZ+1 in each direction.  

  

 

  

 

 

 

Figure 3.5 – Two adjacent procCubes in the X direction. 
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3.3.2. Time loop 

 After partitioning the problem, the time loop is initiated. The time loop is the 

mechanism by which the particle alterable attributes evolve. It is up to the user to decide 

how many time steps the time loop should be repeated and when it should be exited. The 

time loop includes the communication between processors, force computation, 

integration, and shuffling. The communication between processors is described in Section 

3.3.3. The force computation and integration are defined as user subroutines in the user 

files as described in Section 3.3.5 and in the Appendix. Particle shuffling is explained in 

Section 3.3.4. In pdQ2, the time loop pseudocode is as follows: 

Do loop until the stopping criterion 

Force computation 

Integration  

Interprocessor communication 

Shuffling 

End loop 

Interprocessor communication is associated by the subroutine ExchangePtclAlterAttr. 

Force computation and integration are accomplished by the subroutines defined in the 

userForce.F and userIntegrate.F files respectively. Shuffling is accomplished in the 

subroutine shuffle. 

3.3.3. Communication between processors  

As shown in previous section, the problem has been decomposed into an array of 

procCubes. We focus now on a single reference processor and its procCube, which we 

refer to as the home procCube. Particles residing in a boundary cell in the core of the 
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home procCube can potentially interact with neighboring particles that are within its 

material horizon but also lie in the cores of an adjacent procCube. The necessary particle 

data from cores of adjacent procCubes must be sent to the skin of home procCube. These 

communications are executed in the code by the Message Passing Interface (MPI) 

subroutines. MPI is a library of communication routines for sending and receiving data 

(messages) between processors. These routines are callable in FORTRAN [Pacheco 

2011]. 

The information that must be passed between processors at each time step consists 

of particle alterable attributes, which are stored in the array ptclAlterAttrs. Before 

entering the time loop, particle fixed attributes are read into the core and skin cells in the 

array ptclFixedAttrs by the subroutine SetupProblem. 

The home procCube is potentially surrounded by twenty-six adjacent procCubes. 

Using Plimpton’s method of message passing as described in Section 2.1.2, messages are 

sent and received for each procCube by the subroutine ExchangePtclAlterAttrs, and the 

message passing is accomplished in six steps per time step. Before describing the six 

steps of message passing as implemented within pdQ2, we explain the naming 

convention for wall and core cells. These are defined as cell blocks. A cell block is a 

cuboidal collection of cells that are responsible for sending and receiving particle 

alterable attributes (ptclAlterAttrs array) between processors. Cell blocks can lie either in 

the skin or in the core. Cell blocks in the skin are shown in Fig. 3.6.  
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The core and the walls in the skin are defined according to cell blocks as follows. 

nCX, nCY, and nCZ are the number of cells in the core of a procCube in the X, Y, and Z 

directions:  

iCore = Cell block [1:nCX, 1:nCY, 1:nCZ] 

iXnSkin = Cell block [0, 1:nCY, 1:nCZ] 

iXpSkin = Cell block [nCX+1, 1:nCY, 1:nCZ] 

iYnSkin = Cell block [0:nCX+1, 0, 1:nCZ] 

iYpSkin = Cell block [0:nCX+1, nCY+1, 1:nCZ] 

iZnSkin = Cell block [0:nCX+1, 0:nCY+1, 0] 

iZpSkin = Cell block [0:nCX+1, 0:nCY+1, nCZ+1] 

The sending walls in the core are defined as follows: 

iXnCore = Cell block [1, 1:nCY, 1:nCZ] 

iXpCore = Cell block [nCX, 1:nCY, 1:nCZ] 

iYnCore = Cell block [0:nCX+1, 1, 1:nCZ] 

iYpCore = Cell block [0:nCX+1, nCY, 1:nCZ] 

iZnCore = Cell block [0:nCX+1, 0:nCY+1, 1] 

iZpCore = Cell block [0:nCX+1, 0:nCY+1, nCZ] 

If the 3D indices of the home procCube are [iPX, iPY, iPZ], then the convention for 

naming adjacent procCubes is as follows: 

iXn procCube = [iPX-1, iPY, iPZ] 

iXp procCube = [iPX+1, iPY, iPZ] 
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iYn procCube = [iPX, iPY-1, iPZ] 

iYp procCube = [iPX, iPY+1, iPZ] 

iZn procCube = [iPX, iPY, iPZ-1] 

iZp procCube = [iPX, iPY, iPZ+1] 

 

Figure 3.6 – Cell blocks in the skin of a procCube. 

 



39 
 

With the definitions in hand for the walls, core, and adjacent procCube 

coordinates, we now illustrate the six message passing steps. Note that these six steps are 

executed in sequence. Also, prior to this step, it is assumed that particles in the core have 

been updated (shown in yellow) by user-defined subroutines in the userIntegrate.F file, 

which are described in Section 3.3. 
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Step 1. Message passing in the Xp direction: 

 In the first step, as shown in Fig. 3.7, the home procCube sends ptclAlterAttrs 

from its iXpCore wall to the iXnSkin wall of the iXp procCube. At the same time, the 

home procCube receives ptclAlterAttrs from the iXpCore wall of the iXn procCube into 

its iXnSkin wall. This is accomplished using the MPI command “MPI_SENDRECV” 

 

Figure 3.7 – Message passing in the Xp direction, with focus on home procCube. Send ptclAlterAttrs from 

(iXpCore, [iPX, iPY, iPZ]) to (iXnSkin, [iPX+1, iPY, iPZ]). Receive ptclAlterAttrs from (iXpCore, [iPX-1, 

iPY, iPZ]) to (iXnSkin, [iPX, iPY, iPZ]). 

 

(iXnSkin, [iPX, iPY, iPZ]) 

To (iXnSkin, [iPX+1, iPY, iPZ]) From (iXpCore, [iPX-1, iPY, iPZ]) 

(iXpCore, [iPX, iPY, iPZ]) 
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Step 2. Message passing in the Xn direction: 

       In the second step, as shown in Fig. 3.8, the home procCube sends ptclAlterAttrs 

from its iXnCore wall to the iXpSkin wall of its iXn procCube. Simultaneously, the 

home procCube receives ptclAlterAttrs from the iXnCore wall of its iXp procCube and 

places them in its iXpSkin wall. 

 

 

Figure 3.8 – Message passing in the Xn direction, with focus on home procCube. Send ptclAlterAttrs from 

(iXnCore, [iPX, iPY, iPZ]) to (iXpSkin, [iPX-1, iPY, iPZ]). Receive ptclAlterAttrs from (iXnCore, [iPX+1, 

iPY, iPZ]) to (iXpSkin, [iPX, iPY, iPZ]). 

(iXpSkin, [iPX, iPY, iPZ]) (iXnSkin, [iPX, iPY, iPZ]) 

From (iXnCore, [iPX+1, iPY, iPZ]) To (iXpSkin, [iPX-1, iPY, iPZ]) 

(iXnCore, [iPX, iPY, iPZ]) 
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Now after these two steps, message passing has been completed in the X direction 

and the core and skins that have been updated are shown in color  in Fig. 3.9.  

 

Figure 3.9 – Walls in the skin that have been updated (shown in green and blue) after completion of message 

passing in the X direction. The core that has already been updated (shown in yellow) before message passing. 

iXpSkin wall iXnSkin wall 

iCore 
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Step 3. Message passing in the Yp direction: 

In the third step, as shown in Fig. 3.10, the home procCube sends ptclAlterAttrs 

from its iYpCore wall, including needed cells that were received as part of the X 

direction message passing, to the iYnSkin wall of the iYp procCube. In the meantime, 

the home procCube receives ptclAlterAttrs from the iYpCore wall of its iYn procCube 

into its iYnSkin wall. 

 

 

Figure 3.10 – Message passing in the Yp direction, with focus on home procCube. Send ptclAlterAttrs from 

(iYpCore, [iPX, iPY, iPZ]) to (iYnSkin, [iPX, iPY+1, iPZ]). Receive ptclAlterAttrs from (iYpCore, [iPX, 

iPY-1, iPZ]) to (iYnSkin, [iPX, iPY, iPZ]). 

(iXpSkin, [iPX, iPY, iPZ]) (iXnSkin, [iPX, iPY, iPZ]) 

(iYnSkin,   [iPX, iPY, iPZ]) 

From (iYpCore, [iPX, iPY-1, iPZ]) 

To (iYnSkin, [iPX, iPY+1, iPZ]) 

(iYpCore, [iPX, iPY, iPZ]) 
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Step 4. Message passing in the Yn direction:  

In the fourth step, as shown in Fig. 3.11, the home procCube sends ptclAlterAttrs 

from its iYnCore, including previously-received cells from the X direction message 

passing, to the iYpSkin wall of its iYn procCube. Concurrently, the home procCube 

receives ptclAlterAttrs from the iYnCore wall of its iYp procCube into its iYpSkin wall. 

 

 

Figure 3.11 – Message passing in the Yn direction, with focus on home procCube. Send ptclAlterAttrs from 

(iYnCore, [iPX, iPY, iPZ]) to (iYpSkin, [iPX, iPY-1, iPZ]). Receive ptclAlterAttrs from (iYnCore, [iPX, 

iPY+1, iPZ]) to (iYpSkin, [iPX, iPY, iPZ]). 

(iXpSkin, [iPX, iPY, iPZ]) (iXnSkin, [iPX, iPY, iPZ]) 

(iYpSkin, [iPX, iPY,   iPZ]) 

(iYnSkin, [iPX, iPY,  iPZ]) 

From (iYnCore, [iPX, iPY+1, iPZ]) 

To (iYpSkin, [iPX, iPY-1, iPZ]) 

(iYnCore, [iPX, iPY, iPZ]) 
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After completion of the four steps of message passing in the X and Y directions, 

received messages in the home procCube are indicated in color in Fig. 3.12. 

 

 

Figure 3.12 – Walls in the skin that have been updated (shown in color) after completion of message 

passing in the X and Y directions. 

 

 

iXpSkin wall iXnSkin wall 

iYpSkin wall 

iYnSkin wall 

iCore 



46 
 

Step 5. Message passing in the Zp direction: 

In the fifth step, as shown in Fig. 3.13, the home procCube sends ptclAlterAttrs 

from its iZpCore wall, including received messages in X and Y directions from previous 

steps, to the iZnSkin wall of its iZp procCube. Simultaneously, the home procCube 

receives ptclAlterAttrs from the iZpCore wall of its iZn procCube into its iZnSkin wall.  

 

 

Figure 3.13 – Message passing in the Zp direction, with focus on home procCube. Send ptclAlterAttrs from 

(iZpCore, [iPX, iPY, iPZ]) to (iZnSkin, [iPX, iPY, iPZ+1]). Receive ptclAlterAttrs from (iZpCore, [iPX, 

iPY, iPZ-1]) to (iZnSkin, [iPX, iPY, iPZ]). 

 

(iXpSkin, [iPX, iPY, iPZ]) (iXnSkin, [iPX, iPY, iPZ]) 

(iYpSkin, [iPX, iPY, iPZ]) 

(iYnSkin, [iPX,  iPY, iPZ]) 

(iZnSkin, [iPX, iPY, iPZ]) 

From (iZpCore, [iPX, iPY, iPZ-1]) 

To (iZnSkin, [iPX, iPY, iPZ+1]) 

(iZpCore, [iPX, iPY, iPZ]) 
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Step 6. Message passing in the Zn direction: 

In the sixth step, the home procCube sends ptclAlterAttrs from its iZnCore wall 

including previously-received messages received on the skin from the message passing 

in X and Y directions, to the iZpSkin wall of its iZn procCube. At the same time, the 

home procCube receives ptclAlterAttrs from the iZnCore wall of its iZp procCube and 

place them in its iZpSkin wall. 

 

 

Figure 3.14 – Message passing in the Zn direction, with focus on home procCube. Send ptclAlterAttrs from 

(iZnCore, [iPX, iPY, iPZ]) to (iZpSkin, [iPX, iPY, iPZ-1]. Receive ptclAlterAttrs from (iZnCore, [iPX, 

iPY, iPZ+1]) to (iZpSkin, [iPX, iPY, iPZ]). 

(iXpSkin, [iPX, iPY, iPZ]) (iXnSkin, [iPX, iPY, iPZ]) 

(iYpSkin,   [iPX, iPY, iPZ]) 

(iZpSkin, [iPX, iPY, iPZ]) 

(iYnSkin, [iPX, iPY, iPZ]) 

(iZnSkin, [iPX, iPY, iPZ]) 

To (iZpSkin, [iPX, iPY, iPZ-1]) 

From (iZnCore, [iPX, iPY, iPZ+1]) 

(iZnCore, [iPX, iPY, iPZ]) 
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Finally, message passing is now complete in the six different directions and all the 

necessary particle alterable attributes data have been received in the skins of the home 

procCube. Received messages are indicated in color in Fig. 3.15. Now, forces on all 

particles in the core of the home procCube can be correctly computed using particle 

information which resides on the home procCube. 

 

 

Figure 3.15 – Walls in the skin after completion of message passing in the X, Y, and Z directions. 
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iCore 
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3.3.4. Moving particles among cells and procCubes: particle shuffle 

Cell indices are used as a mechanism to sort particles into geometric buckets, in 

an effort to avoid needless zero-force computations and to thus limit the number of force 

interactions that must be computed at each time step. The cell size is set somewhat larger 

than the force radius ( ), and thus a particle in the cell with address (iCX, iCY, iCZ) will 

only potentially interact with particles within cells within cell blocks (iCX–1 : iCX +1, 

iCY–1 : iCY +1, iCZ–1 : iCZ +1). 

In simulations of solids composed of particles undergoing small relative 

deformations, particles do not change their non-zero-force neighbors as the solid deforms 

(even if absolute deformations are large), and therefore it is unnecessary to alter the 

particles’ cell addresses during the simulation. However, for simulations of solids 

undergoing large relative deformations, and for liquids, gases, molecules, and atoms, 

particles may undergo large relative deformations, and the neighbors with which they 

interact may change during the course of the simulation.  

Each particle has a current geometric location (x, y, z) as well as a cell address 

(iCX, iCY, iCZ). Each cell is defined by an unchanging geometric location defined by the 

cuboid with limits (iCXmin, iCXmax; iCYmin, iCYmax; iCZmin, iCZmax). At each time step, as 

the particle’s current location (x, y, z)  is updated, a flag is raised if the particle’s current 

location (x, y, z) is no longer geometrically located within its containing cell’s cuboid. 

This flag indicates that it is necessary to shuffle the particle to a neighboring cell. (The 

assumption is made that the magnitude of particle motion,   , in each time step is 
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sufficiently small (say,                 ) that particles need only be shuffled 

between immediately adjacent cells.) 

Two operations are necessary to shuffle a particle from iCell to jCell in a 

procCube: delete the particle from iCell and add the particle to jCell, as shown in Fig. 

3.16. To delete the particle K from iCell with NiC particles, the NiC
th

  particle is copied to 

the location of the K
th

 particle in the ptclAlterAttrs array, and then the number of particles 

is reduced by 1: NiC = NiC −1 as shown in Fig. 3.16(c). Thus, gaps in the ptclAlterAttrs 

array can never occur. To add a particle K to jCell with NjC particles, we must first check 

to make sure that  NjC < Nmax (if NjC = Nmax, either an “out of memory” error message is 

issued and the simulation is terminated, or the ptclAlterAttrs array is extended to allow 

for more particles). Then particle K is copied to the particle address NjC+1 in the 

ptclAlterAttrs array, and the number of particles is increased by 1: NjC = NjC+1 as shown 

in Fig. 3.16(c).  

Consider shuffling a particle from iProcCube to jProcCube. Let us assume that at 

the beginning of the time step, each particle’s position (x, y, z) and attributes are up-to-

date and the particle is located within the geometrical limits of its containing cell. 

Next, internal forces acting upon particles within the core are computed by the 

user-defined subroutine in the file userForce.F as shown in Fig. 3.17(a). These internal 

forces depend upon particle states within both core and skin cells in the home procCube. 

As particle positions, attributes, and cell addresses are all up-to-date, the forces acting 

upon core particles will be correctly computed. 
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Figure 3.16 – Particle shuffling between iCell and jCell in one time step in a procCube. (a) Configuration 

of particles before integration. (b) Configuration of the particles after integration. Particle K moves 

geometrically from iCell to jCell, but it still has wrong cell address (iCell). (c) Configuration of the 

particles after shuffling. 
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Arrow shows the destination of particle. 

Geometrical location of particle is in jCell.  

Cell address of particle is jCell. 
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In the next step, the positions of particles in the core (only) are updated by the 

user-defined subroutine in the file userIntegrate.F as shown in Fig. 3.17(b). Some of 

these particles may now need to be shuffled, perhaps into a skin cell. But at this stage, 

particles are not yet shuffled. 

In the next step, particles in the core are copied, via message-passing, into the 

corresponding skins of adjacent procCubes using the subroutine ExchangePctlAlterAttrs 

as shown in Fig. 3.17(c). Note that some of these copied particles may have geometric 

locations that are not within their containing cells. At the end of this step, all particles in 

both skin and core cells have correct geometric locations, but their cell addresses may be 

obsolete because the particle geometric locations may no longer be within their cell 

boundaries. 

Next, if the shuffle flag is set, a shuffle step is performed in the subroutine Shuffle 

within each procCube separately, as shown in Fig. 3.17(d). In this step, all particles no 

longer within their containing cell are moved to appropriate adjacent cells. Particles 

contained by core cells may move into adjacent skin cells, and vice versa. At the end of 

this step, some particles in skin cells may be missing, but all of the skins will be over-

written in the next step. Importantly, the core cells are guaranteed to have up-to-date 

particle positions and up-to-date cell addresses. 

At the end of the time step, all core cells and all skin cells contain particles with 

up-to-date particle positions and cell addresses, and the condition necessary to start with 

the next time step is fulfilled.  

 



53 
 

M M′ 

 X 

Y 

iCell′ iCell jCell′ jCell 

iProcCube jProcCube 

Geometrical  location of particle is in iCell or jCell.  

Geometrical  location of particle is in iCell′ or jCell′.  

Cell address of particle is jCell.  

Cell address of particle is iCell′. 

Cell address of particle is iCell′. 

Cell address of particle is iCell.  

In Fig. 3.17, the particle shuffling between two adjacent procCubes, iProcCube 

and jProcCube, is shown. We focus on two cells, iCell and iCell′ of iProcCube, and two 

cells, jCell and jCell′ of jProcCube. This illustrates the case where particle M moves from 

the core to the skin in iProcCube. At the same time, particle M′ moves from the core to 

the skin in jProcCube. In Fig. 3.17(a), the particles are shown before integration. In Fig. 

3.17(b), the particles are shown after integration and particle M has the wrong cell 

address. In Fig. 3.17(c), the message-passing between two procCubes is done so that the 

skins of two procCubes become up-to-date. In Fig. 3.17(d), the wrong cell addresses of 

particles M and M′ are corrected by the shuffle step. 

Figure 3.17 – Particle shuffling between iProcCube and jProcCube in one time step. 
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(b) M′ 

(c) 

M (d) M′ 

iCell iCell′ 

 

jCell jCell′ 

 

M 

M M′ 

Figure 3.17 – Particle shuffling between iProcCube and jProcCube in one time step, continued. (a) 

Configuration of the particles before integration. Particles M and M′ have the same geometrical 

coordinates. (b) Configuration of the particles after integration. Particle M moves geometrically from iCell 

to iCell′ in iProcCube, but it still has wrong cell address (iCell). Particle M′ does not move from jCell to 

jCell′, however it must. (c) Configuration of the particles after message passing. Particle M′ has the same 

geometrical coordinates as particle M, but the wrong cell address (jCell). (d) Configuration of the particles 

after shuffling. Particles M and M′ have the same geometrical coordinates and correct cell addresses. 



55 
 

3.3.5. pdQ2 files 

As discussed in previous sections, pdQ2 is designed to be a transparent, 

extensible, and user-friendly code for particle dynamics simulation. It is an engine that 

can be used for any type of particle dynamics simulation. To this end, the source code of 

pdQ2 is divided into two groups of files: non-user and user files, containing non-user and 

user subroutines respectively. All non-user files and user files are shown in Fig. 3.18. 

Non-user files of pdQ2 are applicable to all particle dynamics simulations and are 

not changed by the user. These non-user files include the main pdQ2 driver, MPI 

initiation and termination routines, domain decomposition, processor communication, 

particle shuffling, and timing routines. 

 

Figure 3.18 – Source code files in pdQ2. 

pdQ2 

Non-user files 

allocArraysMPI.F 

exchangePtclAlterAttrs.F 

futils.F 

modules.F 

pdQ2.F 

problemDecomposition.F 

readSimParams.F 

shuffle.F 

User files 

userForce.F 

userIntegrate.F 

userModules.F 

userSetup.F 
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The non-user files are briefly described next. 

allocArraysMPI.F. Arrays related to message passing are allocated (subroutine 

AllocArraysMPI)    

exchangePtclAlterAttrs.F. particle communications are handled using the MPI 

library as explained in Section 3.3.2 (subroutine ExchangePtclAlterAttrs). 

 futils.F. MPI is initialized (subroutine InitRTS) and timing arrays are started 

(subroutine InitTimers). Also, code termination (subroutine Terminate) and array 

deallocations (subroutine DeallocAll) are accomplished by subroutines in this file.  

 problemDecomposition.F. The domain is decomposed and particles in procCubes 

and cells are initialized in the array ptclAlterAttrs and ptclFixedAttrs as described in 

section 3.3.1 (subroutines ComputeDomainParams, ComputeProcParams, ProcLayout, 

and SetupProblem). 

 readSimParams.F. Simulation parameters are read from the pdQInput.dat file on 

processor zero and broadcast to all other processors (subroutine ReadSimParams).  

shuffle.F. Particle shuffling is accomplished as described in Section 3.3.3 

(subroutine Shuffle). 

The remaining four user files: userForce.F, userIntegrate.F, userModules.F, and 

userSetup.F are described in the Appendix. These files are used to tailor the physics and 

particle integration scheme to the particular problem (molecular dynamics, peridynamics, 

etc) of interest to the user.  
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3.4. Postprocessing 

 The pdQ2 engine outputs data files such as particle alterable attributes restart 

files, time history files, and timing. In addition to these files, users can generate their own 

output files at selected times. The user can then analyze and interpret the output files 

graphically using an interpreted language like MATLAB.  

 Particle alterable attributes restart files are stored in the 

ParticleAlterAttrs.timestep.rst file at selected time steps.  In these files, particle alterable 

attributes of all particles are stored. Also, CPU time breakdowns for each subroutine are 

written to the timing.out file. Time history files show the history of particles in a specific 

time period, and it is up to the user to decide to output time history files for a specified 

number of particles at a specified time interval. It is stored in a file called timehist.dat.    

3.5. Code validation and performance analysis 

In this section, the runtime efficiency and numerical accuracy of pdQ2 is 

compared with those of pdQ. To achieve this purpose, we investigate a simple 2D 

benchmark peridynamic problem. 

The problem considered, a 2D peridynamic linear elastic beam, is illustrated in        

Fig. 3.19. The cantilever beam is fixed at the left side and is loaded transversely at the 

right side. The size of the beam is m s by n s. The force radius,  , is 3 particle spacings, 

s; thus each particle (for example the green particle) potentially interacts with 28 other 

particles (red particles). 
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Figure 3.19 – 2D peridynamic linear elastic beam configuration. 

Three performance studies were performed. First, the number of particles was 

held fixed and the number of processors varied. Second, the number of particles was 

varied and the number of processors held fixed. Third, both the number of processors and 

the number of particles were held fixed but the compiler flag was varied. For each case, 

the timings and results from pdQ2 are compared with those from pdQ as both validation 

(to check if the results remain unchanged) and to assess the comparative performance of 

the two codes. The simulation parameters are given in Table 3.1. 
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Simulation parameters 

 Spacing, s = 0.0254 m 

Force radius,   = 3   s 

Min cell size = 1.2     

Delta time = 3.36 E-6 sec 

Load per particle = 1 N 

Damping factor = 0.2 

Young’s modulus = 24.85 E9 N/m
2
 

Poisson’s ratio = 0.22 

Number of time steps = 200 

Monitored particle ID = number of particles 

OPT_PGF  = -g (e.g. optimization flag) 

 

Table 3.1 – Simulation parameters. 

3.5.1. Fixed number of particles; varying the number of processors 

A specific problem with m = 721, and n = 309 for a total of 223,820 particles was 

simulated using pdQ and pdQ2 using varying numbers of processors. The numbers of 

processors in the X and Y directions (denoted nPX and nPY) was varied. The monitored 

particle is indicated in blue in Fig. 3.19. The timing performance is shown in Fig. 3.20. 

We see in Fig. 3.20 that with one processor, pdQ is slightly faster than pdQ2. On the 

other hand, with 32 processors, pdQ2 is about four times as fast as pdQ. 
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The position of the monitored particle in the Y direction, at the end of the 

simulation, is shown in Table 3.2 to compare the accuracy of the two codes. We see some 

differences in the 13
th

 significant digit; the reason for this difference is unknown and 

needs to be further investigated.  

 

Figure 3.20 – Performance analysis of pdQ and pdQ2 using 223,820 particles. 
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Y position of monitored particle at the last time step (m) 

Number of processors pdQ pdQ2 

1 (nPX = 1, nPY = 1) 7.848600129112179 7.848600129111611 

4 (nPX = 4, nPY = 1) 7.848600129112179 7.848600129111607 

8 (nPX = 8, nPY = 1) 7.848600129112179 7.848600129112170 

16 (nPX = 8, nPY = 2) 7.848600129112179 7.848600129112170 

32 (nPX = 8, nPY = 4) 7.848600129112179 7.848600129112170 

 

Table 3.2 – Numerical validation of pdQ2 vs. pdQ using 223,820 particles (differences shown in red). 

 

3.5.2. Fixed number of processors; varying the number of particles 

Fixing the number of processors at 32 (nPX = 8, nPY = 4), the number of 

particles is varied. The smallest simulation has 223,820 particles and largest has 

1,122,892 particles. The performance analysis is illustrated in Fig. 3.21 and the Y 

position of the monitored particle at the last time step is given in Table 3.3. We mainly 

see some differences in the 10
th

 significant digit of the example with 659,680 particles 

that needs to be further studied. As seen in Fig. 3.21, pdQ2 is about four times as fast as 

pdQ using 32 processors. 
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Figure 3.21 – Performance analysis of pdQ and pdQ2 using 32 processors. 8 processors in X direction and 

4 processors in Y direction have been used. 

 

 
Y position of monitored particle at the last time step (m) 

Number of particles pdQ pdQ2 

223,820 (m = 721, n = 309) 7.848600129112179 7.848600129112170 

430,860 (m = 1,001, n = 429) 10.89660012938630 10.89660012938630 

659,680 (m = 1,239, n = 531) 13.48740019651348 13.48740012880217 

867,420 (m = 1,421, n = 609) 15.46860012889683 15.46860012889683 

1,122,892 (m = 1,617, n = 693) 17.60220012956426 17.60220012956404 

 

Table 3.3 – Numerical comparison of pdQ and pdQ2 using 32 processors (differences shown in red). 
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3.5.3. Performance analysis using different optimization flags 

As performance is a very important issue in parallel programs, it is important to 

optimize performance with respect to different compiler flags. 

Both pdQ and pdQ2 were compiled with the PGI compiler [User’s Guide 2012] 

and fourteen compiler optimization options were investigated.  To do the performance 

study using different flags, a specific problem with 223,820 particles (m = 721, n = 309) 

and 32 processors (nPX = 8, nPY = 4) was investigated. The performance results using 

the fourteen different optimization flags are shown in Fig. 3.22. For validation purposes, 

the Y position of the monitored particle at the last time step is shown in Table 3.4. 

 

Figure 3.22 – Performance analysis of pdQ and pdQ2 using different optimization flags. 
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  As seen in Fig. 3.22, the optimization flag, “-Mvect”, gives the most efficient 

timing for pdQ, and “-O4” leads to the highest efficiency for pdQ2. As shown in Table 

3.5, the Y position of the monitored particle does not change when either pdQ or pdQ2is 

compiled with different optimization flags. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4 – Numerical comparison of pdQ and pdQ2 using 223,820 particles and 32 processors (differences 

shown in red). 

 Y position of monitored particle at the last time step (m) 

Optimization 

flag 

pdQ pdQ2 

-g 7.848600129112179 7.848600129112170 

-O1 7.848600129112179 7.848600129112170 

-O2 7.848600129112179 7.848600129112170 

-O3 7.848600129112179 7.848600129112170 

-O4 7.848600129112179 7.848600129112170 

-fast 7.848600129112179 7.848600129112170 

-Mpfi 7.848600129112179 7.848600129112170 

-Mpfo 7.848600129112179 7.848600129112170 

-Minline 7.848600129112179 7.848600129112170 

-Mvect 7.848600129112179 7.848600129112170 

-Mconcur 7.848600129112179 7.848600129112170 

-Mipa=fast 7.848600129112179 7.848600129112170 

-Mneginfo 7.848600129112179 7.848600129112170 

-Munroll 7.848600129112179 7.848600129112170 
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3.5.4. Understanding the performance differences between pdQ and pdQ2 

To understand the reasons for the observed performance differences between pdQ 

and pdQ2, we need to study the timings of both codes in detail. In Fig. 3.23 and 3.24, the 

timings of pdQ and pdQ2 are broken down into “Communication”, “Force computation”, 

and “other”. 

Comparing the performance details of pdQ and pdQ2, it is seen that pdQ2 spends 

about the same amount of time on force computation as pdQ, on both single and multiple 

processors. However, on multiple processors, pdQ spends much more time on 

communication than pdQ2. 

The reason for the significant differences between the communication timings of 

pdQ and pdQ2 can be understood by counting the number and size of the messages 

passed in one time step on a specific processor.  

        Consider the problem with 223,280 particles that ran on 16 processors. The size 

and number of the messages sent from processor number 8 to other processors, for 

instance, are tabulated in Table 3.5. 

 Also, slight difference is observed between pdQ and pdQ2 timings on single 

processor. This can be due to the method that ptclAlteAttrs, ptclFixedAttrs, and 

ptclIntegAtrs arrays are dimensioned. In pdQ, they are 2 dimensional arrays; however, in 

pdQ2, they are 5 dimensional arrays.  
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Figure 3.23 – Performance details for pdQ.  

 

Figure 3.24 – Performance details for pdQ2. 
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Message passing details in one time step for processor number 8 

Number of sent messages Size of sent messages (MB) 

pdQ pdQ2 pdQ pdQ2 

19 4 37.0656 0.21788 

 

Table 3.5 – Message passing details for processor number 8. For 2D peridynamic linear elastic beam using 

223,820 particles.  

 

        As shown in Table 3.5, the number and size of messages sent by a particular 

processor are much less for pdQ2 than for pdQ. 

3.6.    Summary 

 In this chapter, the design and implementation of the pdQ2 parallel particle 

dynamics code has been described. The concepts of cell, wall, core, cell block, skin, and 

procCube have been defined for particle partitioning, communication, and shuffling.  

 The efficiency of pdQ2 with respect to pdQ has been investigated through several 

timing performance analyses. It is shown that pdQ2 is about four times as fast as pdQ, at 

least for the particular 2D problem studied. Also, the performance of pdQ and pdQ2 

using different optimization flags has been studied and compared.  

 In the next chapter, a newly-developed particle dynamics model for quasi-brittle 

structures, the micropolar peridynamic lattice model is implemented using pdQ2. 
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4. MICROPOLAR PERIDYNAMIC LATTICE MODEL FOR QUASI-

BRITTLE STRUCTURES 

4.1. Introduction 

 Continuum mechanics is an awkward model for modeling concrete and other 

quasi-brittle structures, because concrete deformation, in most regimes of interest, is 

inherently discontinuous, and at scales smaller than the aggregate size, concrete is no 

longer a homogeneous material. The peridynamic model has not entirely discarded the 

continuum paradigm, in that the material space continues to be idealized as continuous 

and thus further ad hoc discretization choices need be made to implement peridynamics    

computationally [Gerstle et al. 2012]. 

In this chapter, we discard the continuum material concept completely, and regard 

the material space as a discrete lattice of particles. By using close-packed particle lattices, 

the “micropolar peridynamic lattice model (MPLM)” is able to capture the major features 

of quasi-brittle materials, including large-deformation elasticity, anisotropic damage, and 

fracture. With the MPLM, rather than viewing the model as a collection of beam or truss 

elements connected together at nodes (as with traditional truss- and beam-analogy lattice 

models), the model is viewed as a collection of interacting point masses (as with the 

peridynamic models). The material constitutive behavior is captured via inter-particle 

force vectors that are functions of relative particle positions and velocities and their 

histories. The MPLM uses a finite number of regularly-spaced interacting particles of 

finite mass, rather than an infinite number of infinitesimal particles. Thus the MPLM is 

more straightforward for computational implementation, because fewer arbitrary 

discretization decisions need be made. Additionally, the MPLM is conceptually simpler 



69 
 

than both the truss-analogy lattice model and the original peridynamic model, not to 

mention classical finite element methods [Gerstle et al. 2012]. 

In Section 4.2, the MPLM is defined. A constitutive model for concrete is 

developed and calibrated in Section 4.3, and its use is demonstrated using several 

example problems in Section 4.4.  

4.2. Micropolar peridynamic lattice model (MPLM) 

 In Fig. 4.1, a 2D close-packed particle lattice is shown. Each particle is spaced a     

distance, s, from its six nearest neighbors. To create a 3D face-centered cubic lattice, the 

layer shown in Fig. 1 is replicated repeatedly with a stride of s
2

1
in the X direction, a 

stride of s
2

3
 in the Y direction, and a stride of s

3

2
 in the Z direction.  

The material volume occupied by each particle is sAV   for a 1D lattice 

representing an axial member with cross-sectional area, A, tsV 2

2

3
  for a 2D 

hexagonal lattice representing a flat plate of thickness, t, and 
2

3s
V    for the 3D lattice 

representing a solid. To represent a material with a mass density of  , each particle is 

endowed with a mass of Vm   . Assuming that each particle is represented by a 

solid sphere with radius, r, its mass moment of inertia, I , identical about all axes 

through the particle, is 2

5

2
mrI   [Gerstle et al. 2012]. 



70 
 

 

Figure 4.1 – Hexagonal lattice in 2D (after [Gerstle et al. 2012]). 

The particle lattice spacing, s, can reasonably be chosen as the material grain 

characteristic size (such as the maximum aggregate size for concrete). Alternately, the 

spacing s may be chosen based upon the requirement that the number of particles used for 

a particular problem not exceed the capacity of the computational resource. For a material 

like concrete, it makes no sense to allow the particle lattice spacing to be less than the 

aggregate size; the mesoscale of the material sets a lower bound on appropriate lattice 

particle spacing. Indeed, it makes no sense to define geometric features that are smaller 

than the aggregate size, as even if a structure with such small features could be 

constructed, these tiny features could hardly be considered as consisting of a spatially 

homogenous material. Thus, within the MPLM, a “perfectly sharp crack” and a “perfectly 

sharp corner” are meaningless features, impossible to express [Gerstle et al. 2012].  
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With the material mass represented by particles in a lattice, Newton’s second law 

of motion is applied to each particle i: 

                                                                                        ,                                        (4.1) 

and                                                 Eq. 2 

,                                         (4.2) 

where      and         are the force and moment vectors, respectively, exerted by particle j 

on particle i,        and          are the externally applied force and moment vectors, 

respectively, applied to the centroid of particle i, and     and     are the linear and angular 

acceleration vectors, respectively, of the centroid of particle i.    is the number of 

particles, j, that are within the spherical neighborhood, whose radius is the material 

horizon,  , of particle i. With a close-packed lattice, and               ,      is two (or less) for 

a 1D problem,       is six (or less) for a 2D problem, and     is eighteen (or less) for a 3D 

problem. In the three-dimensional case, each particle, i, is surrounded by 12 nearest 

neighbors, at distance s from particle i, and 6 second-nearest neighbors, at a          

distance        from particle i. For the 3D case, it has been shown that all 18 particles must 

be considered as interacting neighbors of particle i if isotropic classical elasticity is to be 

well-approximated by a hexagonal close-packed lattice model [Rahman 2012]. Of course, 

one could contemplate MPLM models with larger material horizons, which might be 

preferable from the point of view of isotropic damage behavior with respect to lattice 

orientation, but the number of neighboring particles,     , and thus the number of force 

computations would be larger, per particle [Gerstle et al. 2012]. 
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In our implementation, Eqs. 1 and 2 are integrated explicitly in time using a 

simple Verlet integration method, with time step, 
0nc

s
t  , with s being the particle 

spacing,    being the speed of sound in the material, and n being   or greater for stability. 

Because we are interested in modeling cementitious materials, with highly nonlinear 

material behavior, explicit time integration, with the required small time steps, is the 

method of choice. 

The pairwise functions     and      describe the internal forces and moments 

between neighboring lattice particles, and from these functions, the material behavior 

emerges. For a bond-based micropolar peridynamic model, the pairwise functions are 

chosen to be functions of the reference position vectors, and current position vectors, and 

also as functions of the velocities of particles i and j. Note that all of these kinematic 

vectors include particle positions and velocities as well as particle rotations and angular 

velocities. In the bond-based damage model, the pairwise functions also depend upon 

evolving damage parameters,      , associated with the interaction between particles i and j 

[Gerstle et al. 2012]. 

For a state-based peridynamic model [Silling et al. 2007], the pairwise functions 

depends not only upon the states of particles i and j, but also upon the states of all other 

particles, k, and also upon the interaction damage states,    , within the peridynamic 

horizon of particle i. 

With today’s high performance parallel computers and using a code such as pdQ2 

as described in the previous chapters, a million particles can easily be modeled. Thus, on 

a parallel computer, it is feasible to simulate large 3D concrete structures using the 

jiF


jiM


ji

ji
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MPLM – not just small laboratory specimens. 2D simulations as demonstrated in Section 

4.4 are entirely practical on single-processor computers. 

The MPLM, as presented here, is a suitable material model for solids, but not for 

liquids and gases. In solid models, the forces between particles are assumed to arise due 

to deviations from a reference state. As long as the deviation of particle positions from 

their reference locations is not too extreme, the MPLM is appropriate. 

On the other hand, with gases and liquids the forces between particles depend 

upon particle current locations and velocities, but not upon a particle reference 

configuration. Molecular dynamics has been used to model liquids, but only at extremely 

small size and at short time scales [Gerstle et al. 2012].  

In the next section, the material constitutive models are defined for a quasi-brittle 

material.  

4.3. MPLM constitutive model for concrete 

 The MPLM constitutive model for concrete is described in the following three 

subsections. Although it is specialized for concrete, it is certainly possible to construct 

analogous constitutive model for other quasi-brittle materials such as ceramics, bone, and 

so on.  In Section 4.3.1, the linear elastic model for MPLM is explained, in Section 4.3.2, 

the MPLM damage model is elaborated, and in Section 4.3.3, the damping model is 

described. 

 

 



74 
 

i 

  
    

       
    

  

 

  
    

    

 
  
    

    

 

j 

    
 
   
 
      

 
   

 
 

 

  
 
   
 
   

 
  
 
   

 
   

 
d 

X 

   Y 

Z 

 

  
    

  

  
    

  

 

 

  
 
   

 
 

  
 
   
 
 

 

4.3.1. Linear elastic model 

 Assume a large material domain, with minimum characteristic size D. The 

domain is represented by a 1D, 2D, or 3D close-packed particle lattice with spacing, s, 

with    . Within the classical theory of elasticity, away from stress singularities and 

domain boundaries, the static strain field is approximately spatially homogeneous within 

a neighborhood of size s. By equating the strain energy stored within a particle volume, 

  , of the MPLM to the strain energy stored within an equivalent volume of the classical 

elasticity model, we calculate the linear relationship between particle force components 

acting between a pair of particles, i and j, with the particle displacement components 

depicted in Fig. 4.2 [Rahman 2012]. The force vector acting between particles i and j is 

termed as “interaction ij”. 

 

 

 

 

Figure 4.2 – Displacement and force components, in local coordinates, acting between particles i and j, 

separated by distance, d (from [Gerstle et al. 2012]). 

 

For 1D and 2D plane-strain and plane-stress problems, the interaction ij has 

length, d, equal to the lattice spacing, s, and the stiffness relation of interaction ij is 

  

                                                                                                                           



75 
 

 

 

                                                                                                 ,                                      (4.3) 

 

 

 

where s is the lattice spacing, and   and   are the micropolar peridynamic elastic 

constants. For 2D “frame-type” problems, 

                                                                          and          ,                                          (4.4) 

where A is the cross-sectional area of the frame, I is the moment of inertia of the cross 

sectional area about the centroidal out-of-plane axis, and E is Young’s modulus [Rahman 

2012]. For 2D plane stress problems, 

                                                                            and                                ,                 (4.5) 

and for 2D plane strain problems, 

                                                                             and                                ,                    (4.6) 

where t is the thickness of the geometric domain in the Z direction, E is Young’s 

modulus, and v is Poisson’s ratio [Rahman 2012]. 
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Thus it is seen that the isotropic MPLM, with three material parameters, s, a, and 

b, is approximately equivalent to the classical theory of elasticity, with material 

parameters E and v. The difference is that with MPLM, a length scale, s, has been 

introduced. This length scale is crucial for the model to be extended to model strain-

softening behavior, and consequent fracture. 

In the same procedure used for 2D solids, the stiffness relation of interaction ij for 

3D solid problems can be derived [Rahman 2012]. Note that the stiffness relation in Eq. 

4.3 is in local coordinates, and must be transformed into global coordinates for 

determining the forces acting upon the particles for subsequent time integration. 

For many quasi-brittle structures, it is sufficient to assume small-deformation 

behavior, with small particle and interaction rotations. In this case the force interaction 

geometry between particles can be assumed constant over the course of the simulation 

time, and the elastic stiffness matrix of each interaction need only be calculated once for 

each type of interaction before the time integration loop is entered. In this case, 

computation of the elastic stiffness relations is trivial compared to time history damage 

computations.  

However, for some analysis regimes, it is necessary to update the particle 

locations in each time step to account for finite interaction rotations. This geometrically 

nonlinear analysis is slightly more computationally expensive, while allowing for large 

deformation (but still small strain) behavior to be computed. In our computational 

formulation, elastic interaction deformations (interaction stretches and curvatures) are 

assumed to be reasonably small, but large translations and rotations are accounted for 

using a co-rotational stiffness formulation [Crisfield 1991 and Yaw 2008]. Thus, 
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damaged fragments can detach as rigid bodies and move correctly with large translations 

and rotations. However, collision behavior is not currently incorporated into the model, 

except between adjacent particles in the reference lattice. The co-rotational formulation, 

allowing changing elastic stiffness caused by changing geometry, can be employed to 

facilitate modeling of compression and shear-band failures [Gerstle et al. 2012]. 

4.3.2. Damage model 

 With reference to Fig. 4.2, the micropolar axial stretch of interaction i  j, 

                                                       d

dd t

a




 

,                                              (4.7) 

where dt  is the current distance and  d is the reference distance between two particles, is 

defined in a manner similar to axial strain.  

Similarly, the maximum micropolar curvatures about the local Z, Y and X axes, 

respectively, of interaction ij are [Gerstle et al. 2013] 
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The measures of micropolar tensile and compressive interaction deformation are     

defined as 

222

zyxamp d  
,                                        (4.11) 
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           222

zyxamp d  
,                                        (4.12)                  

where β is a dimensionless parameter [Gerstle et al. 2013]. 

 

Figure 4.3 – (a) Damage, t , versus the micropolar strain measure, mp . (b) Damage,

 

c , versus the 

micropolar strain measure, mp . ( t   and c   never decrease with time.) (from [Gerstle et al. 2013]). 

The tensile damage parameter,

 
t , is defined in terms of these deformation 

measures, with reference to Fig. 4.3, as follows. 

For tension damage, ωt : 

 

                ),0(max,0 prevtttmp    ,                                (4.13) 

             )),((max, prevtmpttttmpt    ,                     (4.14) 

           1,   tmptt  ,                                                     (4.15) 
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where prevt  is the value of the tensile damage parameter for interaction ij  in the 

immediately preceding time step. The damage function )(  mpt 

 

is defined in Fig. 

4.3(a), and it has been chosen in such a way that the cohesive tensile softening behavior 

is modeled approximately correctly. 

For the evolution of compression damage, ωt :      

                            1,  cccmp 
 
,                                                (4.16)                                                          

)),(max(, prevcmpcccmpcc     ,               (4.17)                    

),0max(, prevccmpc     ,                           (4.18) 

where prevc  is the value of the compressive damage parameter for interaction ij  in the 

immediately preceding time step. Function )(  mpc   is defined in Fig. 4.3(b).  

The damage parameter,  , is computed as the maximum of t  and c . 

If 0a , then 

{f}=(1- ω)[K]{d} ,                                              (4.19) 

and if 0a , then 

    {f}=(1- ω )[K
*
]{d} ,                                           (4.20) 

 

where {f} is the force vector acting between particles i and j, [K] is the elastic stiffness 

matrix defined using Eq. 4.3, {d} is the vector of particle deformations, associated with 

interaction ij. Because there are many interactions per particle, this form allows damage 

to be anisotropic. 

With the stiffness matrix, [K
*
], the axial components of force are the same as that 
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computed by [K], but the shears and moments are reduced by the damage parameter 

)1( 
 

Thus, compression failure is indirectly precipitated by loss of moment and shear 

capacity (and subsequent instability due to nonlinear geometric effects), but not by loss of 

axial stiffness. In this implementation, damage can be either tensile or compressive, but 

not both [Gerstle et al. 2013]. 

The constitutive model presented has eight parameters: peridynamic lattice 

spacing parameter s, micro-elastic stiffness parameters a and b, and the parameters 

governing tensile and compressive damage evolution: cctt  ,,, , and   .  

The lattice spacing parameter, s, is chosen to be as small as the available 

computational capacity allows, but no less than the largest material grain size.  

The parameter t  is calibrated to reproduce the tensile strength, tf , of the 

concrete: 
E

f t
t  .  

The parameter, 1.0 , is chosen to replicate the ratio of uniaxial compressive 

load to uniaxial tensile load, usually around 10.0, as is observed empirically for normal-

strength concrete. 

The parameter 001.0cs  is chosen to replicate the strain at which uniaxial 

compressive failure commences, and 003.0ccs  is chosen to represent the ultimate 

compressive strain [Gerstle et al. 2013].  

The parameter t  is chosen to replicate the tensile fracture energy, fG , of the 

material, as described in [Gerstle et al. 2012].  



81 
 

In dynamic analysis, it is also necessary to represent material damping, as 

described in the next section. 

4.3.3. Damping model 

In dynamic MPLM simulations, damage events can release sudden bursts of 

acoustic energy. If no material damping is included in the model, this acoustic energy can 

cause spurious vibration and consequent damage. Thus a material damping model is 

incorporated. When computing the force in interaction ij, the relative translational 

velocity vector, jiV


, between particles i and j is computed. The damping force,

 
jiDampf


, 

between the two particles is given by  

jinjiDamp Vmf


2 , and    (4.21) 

jiDampjiElastji ffF


 ,     (4.22) 

where  is the ratio of critical damping, with value set between 0 and 1, m is the particle 

mass,  n  is the highest natural frequency of vibration, jiV


 is the relative velocity 

between particles i and j, jiElastf


 is the elastic inter-particle force calculated in the 

previous section, including the effect of damage, and jiF


 is the internal force vector used 

in Eq. 4.1. The damping force, always opposing the direction of motion, removes energy 

from the system. It is found that choosing 5.0  produces reasonable damping 

behavior, and sufficient accuracy is provided with critical time step
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 21

2

n

Critt . Without going into detail, a similar strategy can be used to 

damp shear and rotational degrees of freedom [Gerstle et al. 2013]. 

4.3.4. Modeling of reinforcing bars and bond 

A reinforcing bar is represented as a 1D lattice of MPLM particles representing a 

bar with cross-sectional area As and cross-sectional moment of inertia Is. The material 

parameters are Young’s modulus Es and yield stress Fy. Steel particles interact if they 

spaced less than s from each other. Steel particles from separate reinforcing bars do not 

interact [Gerstle et al. 2013]. 

As shown in Fig. 4.4, only every other steel particle of a given rebar is connected 

to concrete particles within a horizon s using the same elastic interaction model as for 

concrete-concrete particles (such interactions assume no damage). The reason that only 

every other steel particle is connected to concrete is to allow cracks in concrete to 

develop unhindered by the non-damaged steel-concrete interactions. If the distance 

between a steel particle and a concrete particle is zero, the interaction between these two 

particles is ignored [Gerstle et al. 2013]. 

Bond-slip is indirectly modeled and emerges from the elasticity and damage of 

the interactions between steel particles and the surrounding the concrete particles. 
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Figure 4.4 – Bond of reinforcement (red) to concrete (black) using peridynamic interactions (tan) (from 

[Gerstle et al. 2013]). 

 

4.4. Examples 

In this section, several examples are run using pdQ2 on both single- and multi-

processors. In all of the examples, the target classical material parameters are shown in 

Table 4.1, and the corresponding selected MPLM parameters for concrete and steel are 

shown in Tables 4.2 and 4.3. The time step is chosen as s
c

s
t

steel

7

)(0

10808.1
24

 . In 

each example, the load was linearly ramped from zero to the peak load for duration of at 

least four fundamental periods of the structure, and was thus essentially quasi-static. The 

load is ramped from time zero up to 75% of the total simulation time and then held 

constant.  

Strength is defined as the peak load at which static equilibrium can still be 

achieved. In all of the following examples, the particles in the deformed configuration are 

shown and the damaged interactions are color-coded as shown in Fig. 4.5. Undamaged 
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interactions are not shown in the figures.  

The steel-concrete MPLM interactions are identical to concrete-concrete 

interactions, except that they were assumed to be linear elastic, with no damage. The steel 

was modeled as elastic-perfectly plastic [Gerstle et al. 2013]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 – Classical material parameters. 

Parameter Value Units 

Concrete Young’s modulus, Ec 24.86 GPa 

Concrete Poisson’s ratio, vc 0.20 – 

Concrete comp. strength, f′c 27.58 MPa 

Concrete tens. strength, ft 2.758 MPa 

Concrete Density, 
c  2323.0 kg/m

3
 

Concrete fracture toughness, GF 175.0 N/m 

Steel Young’s modulus, Es 200.0 GPa 

Steel yield strength, Fy 414.0 MPa 

Steel Poisson’s ratio, vs 0.3 MPa 

Steel Density,
s  7850.0 kg/m

3
 

Figure 4.5 – Color-coding for example problems (from Gerstle et al. 2013]). 

Concrete particles 

Steel particles 

Tensile damage (0 < ωt < 1) 

Tensile damage (ωt = 1) 

 
Compressive damage (0 < ωc < 1) 

Compressive damage (ωc = 1) 
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Parameter Value Units 

Lattice Spacing, s 0.020 m 

Microelastic parameter, a 4.557x10
7
 N 

Microelastic parameter, b 506.3 N-m
2
 

Tensile stretch limit St 0.000126 – 

Tensile stretch ratio t  10 – 

Sc -0.001 – 

t  5.728 – 

  0.10 – 

Damping ratio, c 0.05 – 

 

Table 4.2 – MPLM parameters for concrete. 

 

 

Parameter Value Units 

Lattice Spacing, s 0.020 m 

Microelastic parameter, a EsAs N 

Microelastic parameter, b EsIs N-m
2
 

Yield limit, St 0.00207 – 

Damping ratio, c 0.05 – 

 

Table 4.3 – MPLM parameters for steel. 
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4.4.1. 2D uniaxial tension 

Fig. 4.6 shows a rectangular plane-stress plate (24×14×12 cm) for two uniaxial 

tension examples, with the load direction in Fig. 4.6(b) rotated by 90
o
 with respect to the 

lattice in Fig. 4.6(a). Equal tensile loads are applied to each of the particles in the end two 

layers of particles; similarly, opposite forces are applied to the two layers of particles on 

the opposite end of the specimen. The total number of simulation time steps is 10000. 

The damage patterns in each specimen at the end of the simulation are shown in Fig. 4.6. 

For the lattice orientation in Fig. 4.6(a), the failure load was at a stress level of 2.784 

MPa (within 1% of the target ft). However, for the lattice orientation in Fig. 4.6(b), the 

failure load was at a stress level of 3.226 MPa (17% higher than the target ft). Thus, 

although character of the damage patterns are reasonable in both cases, we conclude that 

the tensile strength is somewhat sensitive to lattice orientation. Significant tensile damage 

(yellow) is evident prior to crack formation (black) [Gerstle et al. 2013]. 

 

 

 

Figure 4.6 – Damage patterns for uniaxial tension. Deformations are magnified by factor of 100, at time 

step 10000. (a) Load applied in vertical direction. 

(a) 
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Figure 4.6 – Damage patterns for uniaxial tension. Deformations are magnified by factor of 100, at time step 

10000, continued. (b) Load applied in horizontal direction (from [Gerstle et al. 2013]). 

 

4.4.2. 2D uniaxial compression 

     To investigate uniaxial compressive behavior, the problem described in Section 

4.4.1 is repeated, but now the loading directions are reversed. The resulting deformed 

configurations and damage patterns are shown in Figs. 4.7(a) and 4.7(b) for two loading 

directions with respect to the lattice orientation. 

   For the lattice orientation in Fig. 4.7(a), the failure load is at a stress level of 28.48 

MPa (3.3% higher than the target f′c). However, for the lattice orientation in Fig. 4.7(b), 

the failure load is at a stress level of 61.06 MPa (121% higher than the target f′c). As 

shown in Figs. 4.7(a) and 4.7(b), the tensile damage patterns between the two loading 

orientations are similar, but the compressive damage patterns are different. We conclude 

that both the compressive strength and failure mode are sensitive to lattice orientation. 

Further study and investigation are needed [Gerstle et al. 2013]. 

(b) 
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Figure 4.7 – Damage patterns for uniaxial compression. Deformations are magnified by factor of 10. (a) 

Load applied in vertical direction. (b) Load applied in horizontal direction (from [Gerstle et al. 2013]). 

 

 

(b) 

(a) 
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4.4.3. 2D plain concrete beam; simply-supported 

We assume a plane-stress uniformly-loaded beam, with span of 1.16 m, depth of 

0.26 m, and thickness of 0.12 m. With reference to Fig. 4.8, each particle in the top layer 

of particles is loaded downward to simulate uniform loading. To apply the load 

approximately statically, the load is ramped linearly from time zero up to 75% of total 

simulation time and then the load is held steady. The simulation is run for 40000 time 

steps. Assuming, classically, that the beam’s strength is achieved when the bending stress 

reaches tensile strength, ft, the failure load is predicted as 22.14 kN/m. The MPLM 

simulation predicts a failure load approximately 2.6 times higher than the classical failure 

load: 57 kN/m. This result is expected: the modulus of rupture is typically two or three 

times the tensile strength, especially for small beams. The deformed shape and the 

evolving damage in the beam at time step 40000 are shown in Fig. 4.8. Note that the 

crack branches which is probably a consequence of dynamic fracture [Gerstle et al. 

2013]. 

 

Figure 4.8 – Deformed shape and damage in plain concrete beam subject to uniform loading at time step 

40000. Deformation is magnified by factor of 10 (from [Gerstle et al. 2013]). 
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4.4.4. 2D reinforced concrete beam with no stirrups; simply-supported 

The plain beam in the previous section is now reinforced with a single horizontal 

steel reinforcing bar, of diameter 1.27 cm, whose centroid is located 2 cm above the 

bottom of the beam, as shown in Fig. 4.9. The beam is loaded as in the previous section. 

The simulation is run for 80000 time steps. According to the ACI code [ACI318 2011], 

the bending strength of the singly-reinforced beam is 72.24 kN/m. The MPLM simulation 

predicts a slightly higher strength of 78.74 N/m. The deformed shape and associated 

damage are shown in Fig. 4.9.  

The damage patterns look reasonably realistic, including secondary cracking at 

the bottom of the beam and some compression damage at the top of the beam. At time 

step 65000, the distributed damage above the reinforcing bar extending to the ends of the 

beam and the compression damage above the supports is somewhat unexpected and 

requires further study. 

 

Figure 4.9 – Deformed shape and damage in reinforced concrete beam subject to uniform loading. 

Deformations are magnified by factor of 10. 

 

 

Time step 45000 
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Figure 4.9 – Deformed shape and damage in reinforced concrete beam subject to uniform loading, 

continued (from [Gerstle et al. 2013]). 

 

4.4.5. 2D reinforced concrete beam with stirrups-bending failure; simply-

supported 

The plain beam in Section 4.4.3 is now reinforced with both flexural and the shear 

rebars having diameters of 1.27 cm and 1.0 cm, respectively. The centroid of flexural 

steel is located 2.0 cm above the bottom of the beam. The centroid of left-most stirrup 

(shear reinforcement) is positioned at 4.0 cm from the left end of the beam and the stirrup 

Time step 50000 

Time step 65000 
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spacing is 15 cm. The ACI code [ACI318 2011] predicts a bending-type failure of 72.24 

kN/m. The MPLM simulation is run for 80000 time steps. The MPLM simulation 

predicts strength of 68.63 kN/m. The deformed shape and damage in the beam are shown 

in Fig. 4.10 at three different stages of loading. It is quite similar to those of the ACI code 

[ACI318 2011] but is achieved in a more rational (less empirical) way than the ACI 

equations. 

The advantage of the MPLM over continuum models is that it allows fracture to 

develop unhindered by assumptions of continuous deformation behavior. 

Interestingly, by adding stirrups, the cracking behavior was altered significantly 

from the unreinforced beam, and the failure load was slightly reduced. More study is 

indicated [Gerstle et al. 2013]. 

 

Figure 4.10 – Deformed shape and damage in reinforced concrete beam with stirrups. Deformations are 

magnified by factor of 10. Bending failure is indicated .  

Time step 50000 
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Figure 4.10 – Deformed shape and damage in reinforced concrete beam with stirrups, continued (from 

[Gerstle et al. 2013]). 

 

4.4.6. 2D reinforced concrete beam with stirrups-shear failure; simply-supported 

  To increase the bending strength and thus induce a shear failure, the diameter of 

horizontal rebar in the previous section is now increased to 3.175 cm while keeping the 

stirrups unchanged. According to ACI code [ACI318 2011], the failure is now of the 

shear type, with a strength 210 kN/m. The deformed shape and damage in the beam are 

shown in Fig. 4.11. The MPLM predicts a failure load of 252 kN/m [Gerstle et al. 2013]. 

Time step 60000 

Time step 80000 
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Figure 4.11 – Deformed shape and damage in reinforced concrete beam with stirrups. Deformations are 

magnified by factor of 10. Shear failure is indicated (from [Gerstle et al. 2013]). 

 

Time step 45000 

Time step 30000 

Time step 80000 
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In this section, another example of the reinforced concrete beam with stirrups was 

run using pdQ2 on a parallel supercomputer. 32 processors (8 in the X direction, 4 in the 

Y direction) were used to run this example and each run took about three minutes. This 

beam is a plane-stress uniformly-loaded beam, with the length of 4.06 m, depth of 1.02 m 

and thickness of 0.41 m. It is reinforced with flexural and shear rebar. The flexural and 

the shear rebar have diameters of 10.16 cm and 2.54 cm respectively. The centroid of 

flexural reinforcement is located 5.1 cm above the bottom of the beam. The centroid of 

shear rebar is positioned 8.9 cm from each side of the beam and the shear rebar spacing is 

43.2 cm. With reference to Fig. 4.12, each particle in the top layer of particles is loaded 

downward to simulate uniform loading and the simulation is run for 45000 time steps. 

The ACI code [ACI318 2011] predicts a shear-type failure of 599 kN/m. The deformed 

shape and damages in the beam are shown in Fig. 4.12. Also, the MPLM predicts a 

failure load of 497 kN/m.  

 

Figure 4.12 – Deformed shape and damages in reinforced concrete beam with stirrups. Deformations are 

magnified by factor of 10. Shear failure is indicated. 

 

Time step = 25000 
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Figure 4.12 – Deformed shape and damages in reinforced concrete beam with stirrups, continued. 

4.4.7. 3D plain concrete beam; cantilever 

With reference to Fig. 4.13, a plain concrete beam is clamped at the left end and is 

point-loaded at the right tip. Two layers of particles are fixed at the left end and one layer 

of particles is loaded downwardly at the right end. The beam has a length of 2.0 m, a 

depth of 0.35 m, and a width of 0.16 m. This beam is modeled in 3D and simulated using 

16 processors (8 in the X direction, 2 in the Y direction and 1 in the Z direction). The 

simulation was run for 100000 time steps and took about 30 minutes. The predicted 

failure load is 14784 N. Using the ACI code [ACI318 2011]; the failure load is 4505 N. 

Time step = 35000 

Time step = 45000 
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The deformed shape and damages in the beam are shown in Fig. 4.13. 

 

Figure 4.13 – Deformed shape and damages in cantilever plain concrete beam. Deformations are magnified 

by a factor of 10.  

4.4.8. 3D reinforced concrete beam; cantilever 

 With reference to Fig. 4.14, the previous plain concrete beam is reinforced with   

2 #19 rebars with the cover of 4.0 cm. Two layers of particles are fixed at the left end and 

one layer of particles is loaded downwardly at the right end. The simulation was run for 

100000 time steps and took about 45 minutes. The predicted failure load using MPLM  is 

58400 N. Using the ACI code [ACI318 2011]; the failure load is 37000 N. The deformed 

shape and damages in the beam are shown in Fig. 4.14. 

 

Time step = 100000 
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Figure 4.14 – Deformed shape and damages in cantilever reinforced concrete beam. Deformations are 

magnified by a factor of 10. 

Time step 70000 

Time step 55000 

Time step 85000 
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4.4.9. 3D reinforced concrete beam with stirrups-bending failure; simply-

supported 

 The previous example is modeled, but this time, the beam has simple supports and 

uniform loading on the top of the beam. For shear reinforcement, 2 #13 stirrups are used 

along the beam with the spacing of 8 cm. The simulation was run for 100000 time steps 

and took about 50 minutes. The predicted failure load using MPLM  is 242 KN/m. Using 

the ACI code [ACI318 2011]; the failure load is 148 KN/m. The deformed shape and 

damages in the beam are shown in Fig. 4.15. At the end of the simulation, many damages 

are seen on the supports.  It can be due to the anchorage of longitudinal rebars. 

 

Figure 4.15 – Deformed shape and damages in reinforced concrete beam with stirrups. Deformations are 

magnified by factor of 10. Bending failure is indicated. 

 

 

Time step 45000 
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Figure 4.15 – Deformed shape and damages in reinforced concrete beam with stirrups, continued. 

 

4.5. Summary 

 In this chapter, a microploar peridynamic lattice model (MPLM) for quasi-brittle 

structures was described, and the MPLM constitutive model for concrete was presented. 

Through several examples using pdQ2, the ability of MPLM to model major features of 

reinforced concrete such as stiffness, strength, and failure mechanisms were illustrated. It 

is important to note that the MPLM is not entirely objective with respect to lattice 

rotation. This non-objectivity can be addressed in the future by increasing the material 

horizon, albeit at higher computational cost.  

In the next chapter, conclusions and suggestions for future research are presented. 

Time step 100000 

Time step 70000 
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5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

 The parallel particle dynamics code pdQ2 that has been developed and explained 

in Chapter 3 has been shown to have the capability to perform large particle dynamics 

simulations. pdQ2 can be used for different particle dynamics method such as molecular 

dynamics, peridynamics, the discrete element method. It is a simple, efficient, extensible, 

and user-friendly code.  

 pdQ2 benefits from the concepts of procCubes, cells, cores, skins, cell blocks, and 

walls so that it can be efficiently run on parallel computers. By introducing these 

concepts, problem partitioning and message passing have resulted in a higher efficiency 

and flexibility than in the previous version of the code, pdQ. For instance, for 

peridynamic users, it is now possible to simply implement the state-based peridynamic 

model which was not previously possible in pdQ due to the complex data structures used. 

pdQ2 also enabled the straightforward implementation of particle shuffling which was 

not possible in pdQ. Thus, pdQ2 can be used for simulations in which particle 

neighborhoods can change. Also, pdQ2 provides user files with clear interfaces for 

defining domain-specific modules, hiding the complexities of domain decomposition, 

message passing, and shuffling from the user.  

 The performance analysis of pdQ2 shows that it is about four times faster than 

pdQ for the studied benchmark problem. It was found that the reason for this significant 

difference is the increased efficiency of the message passing in pdQ2. The size and 

number of the messages passed in pdQ2 is significantly decreased compared to pdQ. 
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 However, pdQ2 can still be improved. More simplifications are possible in the 

non-user files. Periodic boundary conditions should be implemented, essential for 

molecular dynamics simulations. Because of the simplifications accomplished, this 

should not be difficult. 

The micropolar peridynamic lattice model (MPLM) introduced in Chapter 4 has 

been demonstrated to accurately model the behavior of the quasi-brittle structures such as 

the reinforced concrete. It allows the cracks to grow spontaneously, unlike with classical 

continuum mechanics. Although the smeared crack model can do similar modeling, it is 

more complex than the MPLM, and therefore is not presented.  

The MPLM is conceptually simple, and therefore can be used with confidence by 

practicing engineers to produce more rational designs. It has been shown that MPLM 

with eight parameters is able to capture the tensile and compressive mechanisms of a 

quasi-brittle material like concrete quite reasonably.  

As shown in the examples, the hexagonal lattice model that is presented is not 

entirely objective with respect to lattice rotations. However, it can model, with reasonable 

accuracy, the major features of concrete such as stiffness, strength, and failure 

mechanisms. The non-objectivity with respect to lattice rotations can be reduced by 

increasing the material horizon to include more particles but at higher computational cost. 

Furthermore, the geometric description provided by the MPLM is more fundamental than 

conventional modeling approaches, avoiding implicit assumptions about spatial topology 

and allowing distributed damage, discrete cracks, and fragmentation to develop as 

emergent properties [Gerstle et al. 2012].   
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 Therefore, using pdQ2 and the MPLM in the digital age seems to provide a 

reasonable basis for modeling of reinforced concrete structures. 

 However, further research is required in the future to improve the MPLM model 

to make it more applicable for engineering applications. The hexagonal lattice is not the 

only choice and perhaps can be changed to reduce the non-objectivity with respect to 

lattice rotation. Also, material behaviors such as plasticity and rate dependency like creep 

and relaxation should be implemented to model concrete more realistically.  
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APPENDIX – USER MANUAL FOR pdQ2 

A.1. Introduction 

 Users of pdQ2 develop their simulation models in FORTRAN 90. The four user 

files (userForce.F, userIntegrate.F, userSetup.F, and userModules.F) are programmed 

according to the user’s wishes; however, the user need not alter the rest of the pdQ2 files, 

which handle the complicated aspects of domain decomposition and parallelization. 

Unlike with many commercial and over academic simulation programs, the 

approach of allowing the user access to the source code allows maximal modeling 

flexibility. In addition, the modeler is thus able to completely review the simulation 

models of others. This approach also eases the design burden on the pdQ2 developer, as it 

is unnecessary to foresee all possible future model types that a user might wish to 

implement. 

  Users do not need to be concerned with the parallelization that takes place when 

running on multiple processors. Instead, the user need only program the physics and the 

response output behavior. The development of the model can take place on a single-

processor machine. When the model is completely developed, it can then be readily run 

on a multi-processor computer. 

A.2. Input files 

The required input files are free-format ASCII text files, with the following 

names: 

pdQInput.dat 
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pdQUserInput.dat 

ParticleFixedAttrs.dat 

ParticleAlterAttrs.dat 

pdQ.pbs (batch submission file, required only for MPI simulations) 

Each of these files is described next. 

pdQInput.dat has general inputs required by any simulation such as 

decomposition, force field, and integration parameters. Decomposition parameters are the 

number if processors in X, Y, and Z directions. The force field parameter is the minimum 

cell size which should be slightly larger than the material horizon. The Integration 

parameter is the number of time steps. 

In addition, the user can specify other input files, LinkFixedAttrs and 

LinkAlterAttrs, for example. 

In pdQUserInput.dat, users can define their user-specific parameters. 

ParticleFixedAttrs.dat contains, in each record, the particle global ID (a unique 

integer), the reference x, y, and z particle positions, and any other particle attributes (such 

as boundary conditions and material properties) that do not change during the course of 

the simulation.  

ParticleAlterAttrs.dat contains, in each record, the particle global ID (a unique 

integer), the current x, y, and z particle positions, and any other particle attributes that 

may change during the course of the simulation (such as rotations, velocities, damage 

parameters). 
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In pdQ.pbs, the batch submission script for running pdQ2 in a shared queue on a 

parallel machine, users specify the number of computational nodes, processors, and 

required time for MPI based simulation.  

A.3. Processing 

The user can customize the four user files: userForce.F, userIntegrate.F, 

userModules.F, and userSetup.F. Note that any file, subroutine or variable beginning 

with the word “user” refers to a user specification.  

userForce.F: 

In userForce.F, users define the force interactions between particles. The force 

calculations depend upon access to particle alterable and fixed attributes that are stored in 

the ptclAlterAttrs and ptclFixedAttrs arrays (five-dimensional arrays) that are defined in 

modules.F file in the module procCubeArrays.  

For example, the i
th

 alterable attribute of particle “j” in cell “k” on the home 

processor is addressed as ptclAlterAttrs(i, jPtclCell, kCellX, kCellY, kCellZ).  

userIntegrate.F: 

 In userIntegrate.F, the user specifies the time integration algorithm using the 

ptclIntegAttrs array to update ptclAlterAttrs.  

userModule.F: 

In userModules.F, the user may declare user-specified variables for modeling 

purposes.  
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For example, user scalars can be defined them in the module userScalars in 

userModules.F file, and included in a user subroutine with the FORTRAN statement “use 

userScalars”. 

userSetup.F: 

In userSetup.F, the user may want to set up extra data arrays. For example, user-

defined links and even finite elements can be constructed in userSetup.F. 

Also, users can output any file they wish, but files that may be output for all 

simulations are ParticleAlterAttrs.timestep.rst, timing.out, and debug.txt. 

After writing the user files and input files, the user compiles the program to create 

the executable file. Then, the user runs the executable file.  

A.4. Output files 

The standard output files are free-format ASCII text files, with the following 

names: 

ParticleAlterAttrs.nnnn.rst, where nnnn is the timestep.  

timing.out                                                                                                     

debug.txt 

All of the .rst files have the same formats as the corresponding .dat files. The 

integer nnnn refers to the simulation time step. 

 In timing.out file, the amount of CPU time it takes to run the whole program is 

reported, along with breakdowns for each component subroutine.  

 In debug.txt, user can write the information that is required to debug the code. 
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A.5. Steps for running a simulation on multi-processor machine 

Step 1. Go to the center website which provides you supercomputing capability 

and request an account (for example, http://www.carc.unm.edu/ for University of New 

Mexico).  

Step 2. If your local computer has any operating system other than Linux, 

download a secure shell (ssh) to be able to connect to machines running the Linux OS. 

Step 3. Use your account and host information for connecting to clusters through 

ssh (for example, the host name for the nano supercomputer at UNM is 

“nano.alliance.unm.edu”). 

Step 4. Copy the pdQ2 folder from the repository to your computer. The pdQ2 

folder contains source files (explained in Section 3.3.4) and a run directory. Note that if 

you have changed any user files, you need to update them in your directory via ssh. 

Step 5. Compile the processor files (FORTRAN files) using the “makeMPI” 

command. 

Step 6. Go to run the directory and update the input files using “SSH file 

transfer”. 

Step 7. Edit the “pdQ2.pbs” script. You should specify number of nodes, 

processors per node, and wall time (amount of time you need to run your simulation to 

completion). 

Step 8. Run the simulation using the “runMPI” command. 

http://www.carc.unm.edu/
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Step 9. You can do whatever you want with the output files that are written in the 

run directory. MATLAB is a good programming environment for postprocessing the 

results. 
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