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ABSTRACT 

Structural metrics have been used for nearly a century to provide designers with 

simple, rational tools for comparing the mass performance of aircraft and spacecraft 

platforms.  Large space structures designers and evaluators rely on metrics to compare 

boom, telescope, and long antenna architectures. In this work, scaling metrics are 

established for rectangular flexible blanket solar array structural architectures.  The 

approach takes advantage of the fact that an ideal solar array structure is a system of 

coupled beam and tensioned blanket components rather than the typical simplifying 

approach of considering only one beam with a distributed mass as the blanket.  A 

fundamental frequency relation is developed to represent a beam-cable system in a 

clamped-free boundary condition.  A structural model of the array is developed on the 

basis of minimum mass and minimum beam cost using constraint analysis methods and 
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weight equations.  This structural model expression is solved numerically using root 

finding algorithms, is transformed into an approximate expression using regression 

techniques, and the terms are symbolically related into scaling parameters and scaling 

indices.  These metrics enable straightforward comparison of a wide range of array sizes, 

geometric forms, column types, column quantities, blanket mass densities, acceleration 

loads, fundamental frequencies, and power production values.  Finally, practical 

application and accuracy of these metrics is demonstrated by comparing to the latest 

heritage tensioned blanket systems on-orbit and those still in prototype form: Terra (EOS-

AM), the Milstar constellation, the International Space Station, MegaROSA, and 

MegaFlex. 
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CHAPTER 1. INTRODUCTION 

Structural engineering is the discipline of combining material types and member 

elements to efficiently work together as a collective structural system that supports loads.  

The geometric arrangement of and materials used in this structural system is collectively 

identified as the structural architecture.  The selection of a structural architecture for a 

particular usage is based upon the external loading applied and the design constraints 

driving that application scenario.  Prudent aircraft and spacecraft structural design also 

demands minimization of the structural mass. 

1.1 Bridge Analogy 

An analogy in civil engineering would be the selection of the appropriate type of 

structure and material to build a bridge across the Bering Strait, a distance of 53 miles. 

Many different structural architectures are available to the design engineer who must first 

consider the requirements: the number and weight of vehicles; expected earthquake and 

wind loads; gravity-induced loads; free-span distance; the cost to manufacture and 

maintain; aesthetics; durability in the context of the environment; and water depth 

through the channel. 

A wooden beam would collapse under its own weight for spans of only a few 

dozen meters; thus tens of thousands of pier columns would be required along the 53 mile 

stretch.  On the other hand, a beam formed from a carbon fiber composite into a complex 

non-prismatic tube is more mass efficient and is technically feasible but prohibitively 

expensive. 

  

1 

  



Next consider a truss bridge.  Because of increased structural depth over a solid 

rod or hollow tube, a truss has higher structural efficiency and thus can reach longer 

spans between piers.  However, for spans greater than a few hundred meters, a suspension 

or cable-stayed bridge can achieve higher structural efficiency than even a truss bridge.  

Certainly there are other extreme cases where the span is too long for even a suspension 

bridge to reach given current limitations on materials, construction equipment and other 

technical limits.   

The point to take away is that each structural architecture, type and material 

combination, has unique scaling characteristics that determine the range and limits of its 

application.  Understanding these limitations also drive research and improvement in 

technology in the relevant field.   

Technical evaluators and conceptual designers of large spacecraft structures 

benefit from a similar understanding of scaling limits.  Metrics are especially needed at 

the concept formulation phase of new programs.  These early decisions represent large 

R&D investment commitments and thus must be guided toward concepts and technology 

components that promise only the highest payoff for the least risk.  A variety of valuable 

metrics and parametric relationships have been developed over several decades to serve 

this purpose. 

1.2 Objectives, Approach, and Limitations 

The present work adds to this historical repertoire by developing a set of metrics 

related to large tensioned-supported spacecraft payloads that are substantially planar in 

dimension.  This payload class is identified by the three structural elements used in the 
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construction—a tensioned flexible blanket(s) to collect or transmit radiation energy, a 

compression column(s) to react the tension, and a spreader bar(s) to transfer load from 

the blanket to the column.  This is an attractive structural system for both low and high 

precision spacecraft payloads due to the packaging efficiency and mass efficiency that 

compression structures provide over flexural structures.  Tensioned-blanket photovoltaic 

solar arrays (i.e., flexible blanket solar arrays) and tensioned precision antenna arrays are 

two platforms well poised to take advantage of this structural support approach.  The 

focus of this work is photovoltaic arrays where dimensional stability is not a driving 

requirement. 

Previous approaches that have addressed this need are limited to a simple single 

beam model with the blanket mass distributed along the beam length.  The approach 

proposed in the present study is differentiated from these previous approaches in that the 

solar array structural system is considered rather than just a single beam component.  The 

system approach accounts for the dynamic interaction and mass scaling of multiple 

beams and blankets connected in parallel. 

The advantage of addressing the problem from the system level is that the results 

become more relevant for a broader range of solar array architectures, namely those that 

are substantially rectangular in deployed geometry rather than just rectilinear.  The 

disadvantage is that more structural terms are needed adding analytic complexity and 

potentially confusing the usability of the results.  A balanced approach is needed between 

model complexity and practical usability.  Structural scaling metrics must be readily 

understandable and quickly usable by those comparing structural architectures, those 
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considering mission concepts, and those crafting technology investment strategies.  These 

models are not intended to serve detailed structural design activities.  Instead they should 

provide a practical tool that helps to set investment trajectories on paths that are well-

founded on solid structures principles. 

1.3 Outline of Dissertation 

The process by which the metrics are developed is outlined by Figure 1.  This 

provides a roadmap through the dissertation.  The first step as recorded in Chapter 2 is a 

systems analysis.  Historical structural metrics are reviewed and flexible blanket solar 

array types, support column types, and blanket types are consolidated.  This analysis 

includes historical surveys as well as projections into the future art of the possible.  The 

outcome of this system analysis step is a comprehensive understanding of the bounds of 

this problem. 

Chapter 3 describes the distillation of this design boundary into the absolute 

minimum set of solar array performance constraints and design parameters.  A range of 

values defines a general solar array physical model that represents all practical 

manifestations of a rectangular-shaped flexible blanket solar array. 

In Chapter 4 loading relations are developed for both the array fundamental 

frequency and strength.  This analytical development leverages first principles, finite 

element techniques, and minimization techniques.  Appendix A provides more detail into 

the finite element model used to develop the fundamental frequency relation. 

Chapter 5 combines the loading equations into an array weight equation in terms 

of the requirement constraint terms and the array design terms.  This relation is then 
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subjected to two objective constraints: minimize array mass and minimize beam cost.  

The first half of the chapter builds this array mass objective function, ultimately 

culminating in the apex of analytical complexity—a transcendental equation for array 

mass that is solved by numerical methods.  The second half of this chapter starts back 

down the path of simplification by breaking down this complex solution into 

approximation model for array mass in terms of array loading terms and design terms.  

This simplification process leverages a modified design of experiments process along 

with linear and power function regression techniques.  Appendix B is provided as a 

supplement to Chapter 5, detailing the regression analysis process. Finally in Chapter 6, 

terms are grouped to form the scaling parameter and scaling index.  Practical application 

and metric accuracy is then demonstrated by comparing existing array architectures on 

the basis of the newly minted array scaling metrics. 
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Figure 1.  Dissertation roadmap. 
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1.4 Photovoltaic Solar Array Overview 

Essential for nearly every spacecraft, solar arrays utilize the photovoltaic effect1 

to convert solar radiation into electricity that is conditioned to power spacecraft 

components or charge batteries.  Solar arrays started as simple body-mounts in 1958 and 

have progressed over the last 50 years into two structural support types: accordion-folded 

rigid panels and tensioned flexible blankets.2   

The standard array type in use today is the rigid panel type.  Through a series of 

accordion folded composite plates of thicknesses typically ranging 0.25 to 1 inches, rigid 

panel arrays rely on bending stiffness through structural depth for stiffness and strength.  

Each panel is populated with electrically connected photovoltaic cells.  Rigid panel arrays 

have a heritage of deployment reliability, and they package into launch vehicle fairings 

reasonably well for most missions.  But the stacked-plate packaged form factor and poor 

mass efficiency does not scale well to the larger array sizes needed to satisfy future 

government and private industry spacecraft power needs.  State of the art commercial 

communications satellites are approaching 20 kW of total power generation with as many 

as seven panels per wing.  But to do so, these wings require two-staged deployments of 

side panels, a step that increases the risk of an unsuccessful deployment.  For example, 

one of the six-panel wings on the Loral SES-4 spacecraft launched in 2012 appeared to 

have had deployment challenges according to Space News (URL: 

http://www.spacenews.com/article/launch-siriusxm-satellite-delayed-solar-array-

concerns, accessed 8 March 2012). 
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In contrast, flexible blanket photovoltaic arrays are less common.  They have been 

used for several decades but in limited quantities, appearing on-orbit as early as 1990 on 

the Hubble Space Telescope.3,4  A few years later in 1994 the U.S. Air Force launched the 

first of several Milstar communications satellites according to a fact sheet (URL: 

http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=5328, accessed 4 April 

2013).  Each uses a flexible blanket solar array for power generation.  Two 4.3 kW array 

wings are shown on the Milstar space vehicle in Figure 2; each is tension-supported by a 

continuous longeron lattice truss compression column built by Astro Aerospace visibly 

extended along the center of the gold colored photovoltaic blankets in the figure.  This 

solar array type has been successfully used on a handful of other spacecraft systems such 

as the International Space Station5 (ISS) and the Terra EOS-AM6 spacecraft, but these 

examples remain the exceptions rather than the standard. 

 

Figure 2.  A Milstar communications satellite with two opposing 4.3 kW tensioned photovoltaic 

blanket winglets each supported by a compression column. 

Flexible blanket arrays have shown strong promise of scalability toward high 

power levels due to exceptional packaging efficiency and good mass efficiency, reasons 

specifically cited in selecting the flexible blanket approach for Milstar.7  But the 
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structural effects of scaling these tensioned arrays are currently not well understood by 

the spacecraft community.  The design space has been narrow up to this point in history.  

All known historically flown rectangular flexible blanket arrays have used a single 

compression column to react the tension and enforce deployment of either one or two 

flexible blankets.  The downside of this traditional approach is the high cost of the 

deployable truss and the awkward stowage situation of a cylindrical boom canister joined 

orthogonally to a rectangular blanket box. Other support structure configurations are 

possible as have been proposed over the years as will be detailed in the following section.  

One historical example is a single compression column that reacts as many as 10 separate 

blankets.8  More recently a multiple column support approach has been under 

development by the interest of the United States government.9,10,11 where a rollable tube 

column has been suggested rather than a truss.  These emerging concepts appear 

promising but must be compared on the basis of common, quantifiable metrics.  Circular 

form factors have also been proposed as flexible blanket arrays12,13,14,15, but these are not 

directly considered in this study. 

1.5 Nomenclature 

A  =  Deployed area, m2 

AR  =  Aspect ratio, m/m 

a  =  Acceleration load as a fraction of Earth’s gravity, 9.81 m/s2 

b  =  Blanket 

bb  =  Backbone boom 

EA  =  Beam axial stiffness, N 
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EI  =  Beam flexural stiffness, Nm2 

GJ  =  Beam torsion stiffness, Nm2 

g  =  Acceleration due to Earth’s gravity, 9.81 m/s2 

Ip  =  Polar moment of Inertia, m4 

k  =  Spring stiffness, N/m 

keq  =  Equivalent spring stiffness, N/m 

L  =  Length, m 

M  =  Beam moment due to inertial loading, Nm 

m  =  Total array mass 

mpb  =  Primary boom mass, kg 

n  =  Quantity of primary booms 

P  =  Axial load, N 

Pcr  =  Critical Euler load, N 

pb  =  Primary boom 

R2  =  Coefficient of determination 

r  =  Root 

S  =  Tension per unit width, N/m 

sb  =  Spreader bar 

T  =  Tension, N 

W  =  Array width, m 

w  =  Primary boom linear mass density, kg/m 
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β  =  Structural mass fraction, kg/kg 

ƒ  =  Fundamental frequency of vibration, Hz 

γ  =  Array areal mass density, kg/m2 

δ  =  Frequency knockdown factor, 0.76 

ε  =  Areal Power Density, W/m2 

κ  =  Scaling Index, m2.374 / (kg0.824 s0.648) 

κl  =  Load Scaling Index, m2.158 / kg0.824 

κp  =  Power Scaling Index, m0.864 / (kg0.824 s0.648) 

η  =  Scaling Parameter, m0.374 kg0.176 / s0.648 

ηr  =  Requirements Scaling Parameter, 1 / (m0.274 s0.648) 

ηa  =  Architecture Scaling Parameter, m0.648 kg0.176 

μ  =  Beam efficiency index, N3/5 m9/5 / kg 

ρ  =  Mass density, kg/m3 

σ  =  Standard deviation 
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CHAPTER 2. SYSTEMS ANALYSIS 

This goal of this chapter is to develop an understanding of the bounds of the solar 

array design and analysis space.  Developing practical structural metrics requires a sound 

understanding of structural architectures throughout time—historical successes, the 

present state of the art, and the future art of the possible.  It also requires an 

understanding of the interactions of key structural variables through the study of 

historically developed structural metrics.  Analysis of this broad and complex design 

space is reported in this chapter. 

2.1 Structural Metrics 

Many structural metrics, structural indices, and performance charts have been 

developed over the last century to aid in structural design within the aerospace 

community.  Introduction of these tools followed soon after the birth of piloted aircraft in 

the early 20th century.   But it was the voracious demand for lightweight aircraft during 

World War II that fully inspired the development of structural metrics.  These metrics 

were used to reduce the amount of structural testing required for new aircraft fuselages, 

skins, spars, and struts. 

2.1.1 Early Developments 

Herbert Wagner16 was a prominent German-American rocket scientist who 

arrived in the United States immediately following World War II; although his broad 

contributions to aerospace engineering started many years prior.  He succinctly described 

light metal aircraft design as the art of avoiding buckling of struts and sheet metal walls.  
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But the problem was that at that time, no analytical methods existed to predict the 

strength of open walled struts and skins.  Instead designers relied exclusively on 

extensive experimentation to find the most mass-efficient spar and skin forms.  In 

response to this laborious task, Wagner published simple metrics for sizing aircraft struts 

and girders based on minimum mass.  He introduced the concept of a structural index in 

1928, a quantity referring to a loading term divided by a mass term.  The index proved 

useful for interpolating between experimental results to reveal the most mass efficient 

structural forms and materials, reducing the number of experiments required to arrive at 

the optimum design.  These indices were based on the law of similarity of the strength of 

materials, defined by Wager in the following: 

 

The basis for this evaluation is supplied by the law of similarity of the strength of 

materials. This law says that, with two geometrically similar struts, made of 

exactly the same material and similarly loaded from a geometric stand-point, all 

deformations will be geometrically similar and all geometrically corresponding 

points will be subjected to like stresses, provided the external loads are 

proportional to the square of the linear dimensions of the struts. This law applies 

even when the yield point is exceeded. 

 

Fifteen years after Wagner published the structural index, Goodier17 published a 

process for developing structural metrics using dimensional analysis, a rigorous process 

of generating dimensionless scaling coefficients.  He specifically addressed the problem 
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of a square plate that has a central hole being subject to shear loads.  He developed 

dimensionless quantities that were validated through a series of structural experiments on 

plates over a range of sizes.  Structural coefficients were proven numerically identical 

regardless of plate size.  This contribution was useful again for reducing the quantity of 

structural testing necessary to optimize the weight of aircraft support structures. 

Building on Wagner and Goodier’s work, Shanley in 195218 published a 

comprehensive set of practical relations between allowable stress and a structural index 

for aircraft wing ribs, airfoils, and fuselage sections.  Shanley, unlike Goodier, did not 

implement the strict use of dimensional analysis to arrive at dimensionless coefficients.  

Instead he used dimensional similarity principles to develop a structural index to have 

units of stress (i.e., force per unit area).  For example, the column loading structural index 

is the axial load divided by length squared, P/L2, and for a thin walled tube in bending, 

the structural index is the moment load divided by the diameter cubed, M/D3.  The 

structural index is typically related to allowable stress graphically. 

The principal of the structural index is important because it allows many different 

structural members to be compared within a given structural system on the basis of 

performance only, independent of the material or proportions by which that member is 

constructed.  These indices helped aircraft designers to understand the mass penalty paid 

for using a non-optimum structural form that may in fact be necessary for practical 

reasons.  

Shanley’s method of strength analysis starts with development of the weight 

equation.  It is defined by the four fundamental variables affecting the weight of any 
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structure: the load P, the length of the transmission path L, the material density ρ, and the 

allowable stress σ.  For the case of a beam column under compression, the weight 

equation is written according to Eq. (1).  

 m  P L  ρ
=

σ
 (1) 

The critical Euler compressive stress is represented by σ.  This method is restricted to 

evaluating strength only; stiffness must be considered separately. 

2.1.2 Structural Components 

A quarter century later through the advent of the Space Shuttle and the promise of 

weekly launches, another push for structural metrics had developed.  It was at this time 

that aircraft design approaches were first adapted for use on large space structures 

concepts by John Hedgepeth19 and Martin Mikulas20. 

The adaptation of structural metrics from aircraft to spacecraft was natural since 

the design parameters are quite similar.  Aircraft design is predominantly driven by mass 

minimization and strength maximization, both material strength and elastic stability.  

Similarly, stiffness and mass are parameters of especially high concern to spacecraft bus 

and payload engineers.  Strength remains important but mostly for larger structures 

susceptible to large on-orbit deformations from slewing motions or aggressive thruster 

firing sequences.     

Next, both Mikulas and Murphey developed truss performance metrics that are 

used for simplified comparison of long, slender, lightly-loaded trusses.  Each was 
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developed into different formulations but both use the same basic assumptions. A 

comparison of methodologies is provided to follow. 

Mikulas20,21 used weight equations and similarity principles to develop a relation 

for the allowable bending strength of lightly-loaded, beam-columns.  This relation, shown 

as Eq. (2), is derived using the fundamental principles of bending stress in a thin-walled 

tube and column buckling strength.  

 

22
l

l

RM 2 E r
m 2 L

 π
=  ∑ ρ  

  (2)  

Rl is the longeron radius of gyration, E is the Elastic Modulus, Ll is the longeron length, 

M is the applied moment, and ρ is the mass density. This metric is adapted for a truss by 

adding a parasitic mass factor to account for the additional non-structural mass of 

diagonals, battens, and joints where ∑ = 1.0 for the ideal case of no parasitic mass and  

∑ = 4.0 for the case of a typical deployable space truss where the load-bearing longeron 

members account for one-fourth the total mass. 

The longeron cross section mass is assumed to be uniformly distributed around 

the truss circumference.  Allowable moment is directly related to the column buckling 

limit load of a single longeron located along the line of maximum compressive stress for 

a truss subjected to the said bending moment.  It is assumed that as the truss scales in 

diameter, the longeron length scales proportionally so as to maintain a fixed longeron 

slenderness ratio, longeron length divided by longeron diameter, of 100. 

In similar fashion Murphey22 developed two boom indices for the two most 

common loading scenarios: beam (i.e., bending) loading and column loading. The higher 
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the indicial value for a given truss design, the more mass efficient that truss.  The indices 

for column and bending loads are listed as Eqs. (3) and (4) respectively. 

 
( )

2
3

c

LP
w

µ =   (3)  

 
( )1 52M EI

w
µ =   (4)  

The bending index, Eq. (4), will be used extensively in the analytical modeling to follow 

in later chapters. 

This approach allows comparison of truss performance without knowledge of 

detailed truss construction or even the materials used.  The benefit of these indices is they 

capture the strength, stiffness, and weight performance of a truss using testable boom 

properties: critical bending moment M, flexural stiffness EI, linear density w, length L, 

and critical Euler buckling load P.  This allows many different boom types to be 

objectively compared on an even playing field despite drastic design differences. 

The beam index assumes that the truss failure mode is longeron buckling.  It also 

assumes that the truss behaves like an Euler-Bernoulli beam where plane cross-sections 

remain plane during bending.  Also the stiffness of battens and diagonals can be neglected 

because these elements are very lightly stressed during bending and column loading. 

The differences between Mikulas’ and Murphey’s approaches are subtle.  Mikulas 

chose to hold longeron slenderness ratio constant; therefore as truss bay length and 

diameter grow, the diagonal angle must change.  Thus the truss radius of gyration is 

defined by bay length and cannot be scaled independently. 
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Murphey on the other hand chose to hold truss diagonal angle constant while 

treating the longeron radius of gyration as an independent variable.  Similar to Mikulas 

he assumes the longeron is always adequately slender in order to maintain to the Euler 

buckling failure mode. But as the truss radius grows, the longeron length grows 

proportionally to hold diagonal angle constant.  Similarly, as the number of longerons 

grows, longeron length decreases proportionally to maintain constant diagonal angle.  

This enables independent scaling of longeron length and radius of gyration enabling 

direct comparison of different longeron hierarchy from a solid rod to a tube to a truss.    

This treatment of truss strength22,23 is based on the following review that will be derived 

into an expression of similar form to Mikulas’ for a direct comparison. 

One underlying assumption is that the truss geometric center is always coincident 

with the neutral axis regardless of the number of longerons.  This assumption shows that 

the flexural stiffness of the truss is equivalent to the axial stiffness contribution of each 

longeron.  Each longeron is therefore treated as a fraction of the cross-section area of a 

thin-walled tube according to Eq. (5). 

 ( )
n n

2 2 2 2
l i l 1 l

i 1 i 1

2π nEI = EA x = EA r cos ψ + i -1 = EA r
n 2= =

 
 
 

∑ ∑   (5)  

The area term, Al, refers to each longeron cross-section; the quantity of longerons is given 

by n; and the truss cross-section radius is given by r.  The distance from the truss 

geometric center to a specific longeron is further defined by Eq. (6). 

 i ix r cos= ψ   (6)  

Beam flexural stiffness is commonly defined as the applied moment divided by 

the resulting beam curvature κ, shown by Eq. (7). 
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MEI =
κ

  (7)  

Combining Eq. (5) with (7) produces Eq. (8), the moment curvature relationship for a 

truss. 

 2
l

M n EA r
2

=
κ

  (8)  

Assuming the longeron elements are pinned at both ends such that they only carry 

axial loads, the load in a single longeron is related to the longeron strain, εl, as defined by 

Eq. (9). 

 l l lP EA= ε   (9)  

The longeron strain can also be expressed in terms of truss curvature by Eq. (10) where θ 

is the circumferential angle of the longeron with respect to the bend axis. The desired 

direction of bending load is applied such that maximum deformation occurs 

perpendicular to one of the truss faces. 

 l r sinε = κ θ   (10)  

By combining Eqs. (8), (9), and (10) the truss bending moment can be expressed 

by Eq. (11) in terms of the truss radius, longeron axial load, number of longerons, and 

angle of the furthest most longeron from the bending axis. 

 lrP nM
2sin

=
θ

  (11)  

If the truss failure mode is assumed to be longeron buckling then Eq.(11) can be 

expanded into Eq.(12). 
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π
=

θ
  (12)  

The radius of gyration of the longeron is defined by Eq. (13) where I is defined as the 

area moment of inertia. 

 2 l
l

l

IR
A

=   (13)  

The axial material fraction β of the truss is defined by Eq. (14) as the ratio of longeron 

cross section area to the total effective cross section area of the truss including battens 

and diagonals,  

 lnA
A

β =   (14)  

The linear density of the truss is then expressed in terms of longeron cross section 

area and material density through Eq. (15). 

 lnAmw A
L

= = ρ = ρ
β

  (15)  

Eqs. (12), (13), (14), and (15) are combined into Eq. (16) to express the truss 

moment in terms of truss radius, number of longerons, and longeron cross-section 

geometry. 
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  (16)  

When the methods of Murphey in Eq. (16) are compared to those by Mikulas in 

Eq. (2), the equations are nearly identical.  The only two differences are that Eq. (16) 

includes an axial material fraction term and a term for the angle of the bend axis with 

respect to the longerons.  Whereas Eq. (2) accounts for the material fraction with an 
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equivalent inverse term in the denominator, Σ, and the longeron angle is assumed fixed at 

45 degrees as represented by the √2 term in place of sin ϑ although, curiously, the angle 

term is inversed. 

Weight-strength metrics have been developed for other structural components as 

well.  In the 1970’s Williams24 presented metrics for rib stiffened compression panels and 

cylinders.  In the 1960’s Anderson25 developed metrics for Aerodynamic decelerators.  In 

both cases, the metrics were reduced to a weight parameter with units of force per length 

cubed and a loading parameter with units of force per length squared, equivalent to the 

units of stress. 

2.1.3 Planar Structural Systems 

More recently, Mikulas built on the beam index from Eq. (2) to develop a loading 

parameter that relates solar array structural requirements to beam design parameters.  The 

solar array is treated as a single optimized composite tube with a distributed mass to 

represent the tensioned photovoltaic blanket.  It is shown that growth of the solar array 

loading parameter is related to the growth of the structural mass fraction.  Mikulas 

defines structural mass fraction as the ratio of column mass to blanket mass.  The loading 

parameter defined by Eq. (17) quantifies the mass penalty of increasing solar array 

structural requirements: length, acceleration load, and the fundamental frequency of 

vibration (printed with the written permission of Dr. Martin Mikulas). 
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As the loading parameter grows, the structural mass fraction grows proportionally 

by necessity.  As is evident by this relation, growth in array length is especially 

detrimental to mass efficiency when compared to growth in acceleration loading or the 

fundamental frequency requirement. 

A similar approach was developed by Murphey22 using his beam efficiency index 

previously defined by Eq. (4).  Again, a single beam column is the structural basis, and a 

distributed mass along the beam is used to represent the blanket.  Rather than sizing a 

specific composite tube as the benchmark of beam performance, the beam is 

characterized generically by the beam efficiency index.  As defined earlier, this term 

quantifies the relationship between truss bending strength, flexural stiffness, and mass per 

length in terms of testable performance parameters.  It is not necessary to know the truss 

construction details.   

Originally developed for trusses, this index is also useful for comparing other 

slender beam column architectures such as rollable tubes.  The loading equations are 

based on thin-walled tube behavior that neglect shear stiffness effects. 

From this index, it is shown that growth in solar array length, frequency, and 

strength requirements require a beam with a larger index value, similar to how Eq. (17) 

shows a necessary growth in structural mass fraction to accommodate growth of the 

loading parameter. 

Both of these previous approaches are limited to a single beam with the blanket 

mass distributed along the beam length.  The approach proposed in the present study is 
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differentiated from these previous approaches in that the solar array structural system is 

considered rather than just a single beam component.  The system approach accounts for 

the dynamic interaction and mass scaling of multiple beams and blankets.  

The advantage of addressing the problem from the system level is that the results 

become more relevant for a broader range of solar array architectures, namely those that 

are substantially rectangular in deployed geometry rather than just rectilinear.  The 

disadvantage is that more structural terms are needed adding analytic complexity and 

potentially confusing the usability of the results.   

2.2 Flexible-Blanket Solar Array Structural Architectures 

Many different tensioned blanket support structure concepts have been proposed 

over the last four decades.  They each fit into one of four structural architecture 

categories: radial, rectangular segmented, rectangular coupled, or rectangular grillage.  

Understanding how the various components of the system fit and function together is a 

necessary prelude to structural analysis of the system. 

The first radial architecture was patented by Kaplan26 in 1977 as shown in  

Figure 3.  Radial lines extending from a central drum are tensioned by a concentrated 

compression hoop column structure.  Deployment is enforced by torsion spring elements 

located at several hinge locations on the hoop rim.  Rate is controlled by a motor that 

unfurls the radial tension lines.  Deployed strength is ensured by the structural depth of 

alternating top to bottom drum attachment location of each radial tension line.  Blankets 

are unfurled from the drum synchronously with the tension lines, one blanket gore for 

each rim segment. 
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Figure 3.  Patent 4,030,102 by Kaplan. 

This Kaplan invented concept was further developed by Crawford27 and 

eventually designated the Astro Spoked Wheel Array (that would later also be known also 

as the ATK HexWheel).  A one megawatt version was conceptually sized to fit in the 

Space Shuttle payload bay at a deployed diameter of 109 meters, a mass of 6100 kg, and 

an estimated fundamental frequency of 0.063 Hz.  The gore tension was approximated as 

a single string with variable mass per radial length given according to the gore mass, m, 

rim segment length, L, and gore area, A, by Eq. (18). 

 mlw
A

=   (18) 

Fundamental frequency of the gore was approximated in Eq. (19) as a string 

according to the total gore tension, T, mass per radial length, w, and total radial arm 

length, x. 
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2wx

=   (19) 

Compression in the rim was approximated by assuming the hoop is circular and 

that each radial tension line carries half the gore blanket tension.  The radial arm 

compression load, P, is related to the number of gores, n, through Eq. (20). 

 TnP =
π

  (20) 

The partially stowed and deployed views of the Spoked Wheel Array are shown 

by Figure 4. 

 

Figure 4.  Astro Spoked Wheel Array partially stowed and deployed 

Another radial architecture commonly known as the UltraFlex Array from AEC-

ABLE (ATK) was first patented by Harvey28 in 1994.  Instead of a hoop column reaction 

structure with guy-wires, this architecture uses radial (intermediate) spars to react gore 

tension.  These intermediate spars are intentionally deflected out of plane cup-up to 

provide tension to the gores.  Each gore, surrounded by two intermediate spars, has a 

mid-gore flexure hinge that is pre-creased into the stowed configuration to generate 

circumferential tension.  Deployment is actuated by driving rotation of a hub around a 

fixed axle.  The lead spar, labeled as 21 in Figure 5, is connected to the rotating hub and 
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thus leads the circumferential deployment motion, intermediate spars and gores follow.   

The root spar connects the spacecraft bus to the fixed axel. At full deployment the lead 

spar is connected to a honeycomb plate to provide reaction for gore preload.  Polyimide 

foam is used between gores to control preload when stowed. 

 

Figure 5.  UltraFlex patent 5,296,044 by Harvey is shown deployed and in two partially 

deployed states. 

In 2009, an application was filed by White29 that reveals a new embodiment of the 

UltraFlex Array.  This new embodiment is known as MegaFlex30.  Among other new 

details, the primary changes include a secondary fold of the root spar and a secondary 

fold of the gores for the purpose of increased packaging efficiency over the UltraFlex 

concept.  The secondary root spar articulation is evident from Figure 6. 

Structural depth is incorporated by spar support struts shown in Figure 7.  These 

struts, labeled as 190 in the figure, are secured to the intermediate spars at one-third the 

distance from the hub.  A circumferential cable, labeled as 193 in the figure, connects 

these support struts for even greater deployed stiffness and strength. 
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Figure 6.  Deployment stages of application 11/944061 show a secondary articulation of the 

root spar in 25B. 

 

Figure 7.  Patent application 11/944061 shows spar support struts, 190, and a circumferential 

cable, 193. 

Rectangular segmented is by far the most common tensioned blanket array type in 

use today.  Rectangular coupled is very similar to segmented except the blankets are 

joined at the tip by a continuous spreader bar and thus are synchronously deployed rather 

than sequentially deployed. 
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The first recorded rectangular array concept was a coupled system prototyped in 

1972.  A spreader bar was used to transfer tension loads from 10 separate blankets to a 

single compression column.  This concept was conceived to deploy a 10,000 ft2 blanket 

area.  The deployment test article showing half of the blankets is illustrated in Figure 8.8 

 
Figure 8. Deployment concept for a 10,000 ft2 rectangular coupled concept from 1972. 

In 1983, Rauschenbach31 from TRW, Inc., patented one of the most common of 

rectangular segmented types known as the Advanced Photovoltaic Solar Array (APSA).  

This concept uses a central compression column, most commonly the continuous 

longeron lattice truss, to support an accordion folded blanket.  The blanket structure is 

composed of rib-stiffened panels connected by elastic hinge elements that are strain free 

in the stowed state and strained in the deployed state.  This concept was developed into a 
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prototype using JPL funding that became the foundational technology upon which many 

other accordion folded solar arrays were based over the past 30 years.  The baseline 

APSA32 was sized to be 15.25 meters long by 2.81 meters wide.  This design later 

morphed into the array used on the NASA Terra EOS-AM33 climate monitoring 

spacecraft launched in 1999.  This array was deployed to 8.5 meters long by 4.9 meters 

wide. 

The Europeans also adopted this TRW developed architecture on the Olympus-F1 

(i.e., L-SAT-1)34 experimental telecommunications satellite launched in 1989.  Each of 

two wings spans were 11 meters long and 5.5 meters wide. 

While the APSA was certainly foundational for maturing necessary technology 

elements, there was another array that was the first to demonstrate the tensioned blanket 

compression column concept.  In 1984 the Solar Array Flight Experiment (SAFE)35 

deployed a Lockheed Martin developed FlexArray from the Space Shuttle Discovery 

cargo bay to a length of 32 meters and width of 4 meters on the STS-41D mission.  

Following this experiment, eight wings (16 blankets) were used on the International 

Space Station, each stretching 35 meters long and 11.6 meters wide.64  Another version of 

this array was used on the United States Air Force communications satellite constellation 

Milstar first launched in 19947.  Each wing stretched 15.2 meters long and 3.0 meters 

wide. 

APSA, SAFE, ISS, Milstar, EOS-AM, and Olympus all use a single continuous 

longeron lattice truss for primary deployment and structural support.  Other deployment 

and support methods have been proposed for rectangular segmented arrays including the 
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scissor pantograph, accordion folded truss, rollable slit tube, rollable Bi-STEM, and a 

guy-wire stabilized STEM.  Each of these approaches is described in detail to follow. 

In 1999 Benton36 patented a method to deploy and support an accordion folded 

blanket with a spring-loaded sliding friction scissor pantograph.  The invention is shown 

in Figure 9 in the partially deployed state.  Three years later, Murphy37 patented a similar 

but improved version known by ATK Space Systems as Aurora.  The accordion folded 

blanket is supported using a spring-loaded scissor pantograph attached to the tip and base 

plates.  Deployment is enforced by tension springs attached to cables tied between 

opposing outer links, extending the pantograph by drawing the links together.  Kicker 

springs are included in the central links to force initial deployment motion.  Deployment 

rate is controlled by a pair of lanyards connecting the tip and base plates.  The lanyards 

pass through eyelets on the blanket and are wound around a rotational damper at the root.  

Deployment binding is prevented by the secondary links at the base and tip plates labeled 

as 26 and 27 in Figure 10.  A flexible harness is included on the lengthwise perimeter.  

Blanket preload in the stowed state is enforced by foam buttons attached to each blanket 

facet.  To manage thermal expansion, contraction, and deployment impulses, a set of thin 

flexible spines are continuously attached to the full length of the blanket.  These spines 

are joined to the tip and base plates through constant force Neg’ator springs. 
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Figure 9.  Patent 5,961,738 by Benton. 

 

Figure 10.  Patent 6,423,895 by Murphy. 

In 2009 a patent application was filed by Murphey38 for an accordion folded solar 

array blanket deployed and supported with an accordion folded compression column 

truss39.  Because the column neutral axis lies coincident with the blanket tension axis, the 

column is required only to carry pure compression loads with no eccentricity.  

Deployment is enforced through the release of strain energy in the concentrated strain 

hinges of the accordion folded truss.  This concept is readily scaled to a rectangular 
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coupled architecture by adding an additional accordion articulation of the blanket boxes.  

Figure 10 illustrates both the segmented and coupled manifestations of this concept. 

 

Figure 11.  Patent application 12/55012 by Murphey shows both segmented and coupled array 

forms. 

Another type of rectangular segmented solar array was patented by Beidleman40 

in 2010.  This architecture known as RAPDAR is defined as having a tensioned blanket 

that is supported by two slit-tube (i.e., open section thin-walled tube)  longerons 

connected to the root and the tip spreader bars and separated with multiple spreader bars 

along the boom length.  Deployment is enforced by a shape memory effect inherent to 

one of the fiber reinforced polymer plies.  As the rolled (i.e, stowed) boom is heated, the 

polymer in the exposed region softens allowing the other fully rigid composite plies to 

force the boom to recover the as-fabricated deployed shape.  This architecture also works 

with bi-stable slit-tubes, those that have two elastically stable states, rolled and deployed.  

Figure 12 shows the stowed and deployed states of RAPDAR along with a close-up of 

the connection between the slit-tube and a batten. 
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Figure 12.  Patent 7,806,370 by Beidleman. 

RAPDAR is not the first concept to use the roll-out boom and blanket approach.  

The Hubble telescope solar arrays, Flexible Rolled-Up Solar Array (FRUSA)41, were the 

first to implement the roll-out approach.  FRUSA is supported by a pair of stainless steel 

Bi-STEM booms (two nested Storable Tubular Extendible Members) attached to a tip 

spreader bar and a root spar tube.  Two blankets and two pairs of Bi-STEM booms 

synchronously unfurl from the spar tube in opposite directions by a motor drive.  An 

embossed cushion is rolled with the blanket to provide preload for launch loads.  During 

deployment the cushion is separated from the blanket and furled around a secondary 

drum shown in Figure 13.  Each of the two nested Bi-STEM elements is a 6.4 cm 

diameter, 0.13 mm thick tube with a 30° slit opening oriented180° from each other. 

 

Figure 13.  The FRUSA array is shown partially deployed alongside an illustration of the Bi-

STEM booms used to deploy and support the blanket. 
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Although few details have been made public to date, others have been actively 

developing a roll-out solar array concept.  In 2010 Deployable Space Systems was 

awarded an Air Force contract to develop the ultra-lightweight elastically Self-

Deployable Roll-Out Solar Array (ROSA)42 for ultra-thin multijunction photovoltaic 

blankets and has since developed the concept for other U.S. Government agencies10. 

Yet another rectangular segmented architecture was patented by Stribling43 in 

2006.  This patented concept known as the Boeing High Power Solar Array (HPSA) uses 

either a rolled or an accordion folded blanket.  This blanket is supported by a pair of 

STEM booms attached to a tip spreader bar and to the array root.  The booms (i.e., bow 

beams) are intentionally buckled so as to provide a constant tension force to the blanket 

and to a pair of guy-wires, one end attached to the boom tips and the other to the tip of a 

pair of tether beams.  This guy-wire approach adds structural depth to the system 

improving strength and stiffness.  Figure 14 shows a partially stowed array with the 

STEM booms, guy-wires, and tether beams. 

In a later publication by Stribling44, additional design refinements are described 

through a graphic shown as Figure 15.  Notice from this figure the critical nature of the 

force balance between the bow beam critical load, the tether tension, and constant force 

springs used to tension the blanket.  Other bow beam architectures are suggested such as 

a carbon fiber reinforced plastic (CFRP) STEM rather than the stainless STEM described 

in the patent. 
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Figure 14.  Patent 6,983,914 of the HPSA array uses guy-wires for structural depth. 

 

Figure 15.  The restoring force of the buckled bow beam generates blanket and tether tension. 

The fourth and last tensioned blanket support structure category is the rectangular 

grillage (i.e., tiled network of repeating bays of frame members), the least common of the 

four forms.  Two types of grillage structures have been proposed, those that use 

hexagonal bays and those that use rectangular.  Both can be engineered to fold into a 

bundle of struts, but rectangular bays have been preferred in every case thus far because 

of the direct load path across the bays and the ease of constructing rectangular blankets 

versus hexagonal. 

In 2007, Murphy45 patented the AEC-Able Engineering SquareRigger 

architecture.  The support method is a grillage of rectangular bays of 2:1 aspect ratio.  
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Within each bay is an accordion or roll stowed blanket tensioned between the two 

opposing short struts.  Six struts of equal length are used for each bay with the cross 

section preferably rectangular of dimensions 4 to 10 centimeters by 2 to 5 centimeters.  

Deployment method is a synchronous rotation of hinge pin joints located at the corner of 

each bay and at the mid-point of each bay length.  Deployment is enforced by a motor 

located at alternating corner hinge tables.  In addition to driving the strut rotations, each 

motor spool has four cables attached with the opposing cable ends attached to two 

blankets, one cable at each of the free corners of the two blankets.  As the motors deploy 

the hinges, the cables are furled around the motor drum.  Then once the strut hinges have 

been locked out, the motor is reversed to unfurl the cable and thus hoist a pair of blankets 

into their respective bays. 

Figure 14 shows the synchronous deployment of two twelve-bay wings.  The 

figure also shows a close-up of one hinge table including the tapes (118) used to 

synchronize deployment of the struts.  Lastly, the figure shows a cross-section of one 

stowed bay where the blanket (34) nests inside the six folded struts (22 and 24). 

 

Figure 16.  The SquareRigger architecture synchronously deploys dozens of struts into a 

rectangular grillage of bays filled with tensioned blankets. 
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2.3 Structural Architecture Categories 

Based on the previous historical survey, flexible blanket solar arrays may be 

categorized according to four distinctly different structural architecture categories: 

 1. Rectangular segmented 

 2. Rectangular coupled 

 3. Rectangular grillage 

 4. Radial 

Each of these architectures is characterized by the following design terms: (a) 

area, (b) number of segments, (c) segment length, and (d) segment width.  Each of these 

terms is defined slightly differently for each of the array forms.  Yet each array form has 

the same four basic structural components: (a) primary boom, (b) spreader bar, backbone 

boom, and (c) flexible blanket.  Figure 17 labels the defining characteristics of each array 

architecture category.  

Each of these three structural components is defined by a list of design 

parameters.  Some parameters are defined through assumption of industry practice, and 

others are derived through expression.  The focus of the work herein is the rectangular 

segmented and the rectangular coupled architectures.  The rectangular grillage and radial 

architectures will not be considered. 
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Figure 17.   Each array architecture is described by a set of common variables. 

2.4 Deployable Boom Performance 

For each of the solar array architectures illustrated in the previous section, a range 

of deployable boom types is available.  The structural efficiency of a given boom type is 

directly tied to the structural hierarchy by which that boom is constructed.  Figure 18 
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illustrates the growth in boom hierarchy from a solid rod to a truss of tubes. As structural 

hierarchy grows, the strength and stiffness performance grows for a given mass (i.e., 

structural efficiency).  But the mass savings of increased hierarchy always comes at a 

cost—these booms are usually more complex to construct and they package into larger 

volumes when folded. 

 

Figure 18. Illustration of boom hierarchy, (a) solid rod, (b) tube, (c) truss of rod longerons, (d) 

truss of tube longerons. 

A survey of heritage and prototype deployable trusses is provided in Table 1.  On 

the last row, the beam performance index is listed.  These performance values were 

collected and published previously by Murphey22.   

A class of boom not included in this table is the collapsible tube.  This class is 

generally lower in structural efficiency than a truss but tends to be simpler in construction 

and smaller in packaged volume.  This type includes the Storable Tubular Extendible 

Member (STEM)46,47, the Collapsible Tube Member (CTM)48,49,50 also known as the 
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Lenticular, and the Triangular Rollable And Collapsible (TRAC)51,52 mast.  The cross-

section shapes of these boom types are shown in Figure 4 in the two states: flattened and 

deployed. 

 

Figure 19. Collapsible tube boom types shown collapsed and deployed (expanded). 
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Table 1.  Truss parameters either measured (m), derived through analysis (a) or determined by 

inspection (i). 
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MAR 

L’ 
Garde 
SSP 

Truss 

ATK-
ABLE 

S2 Coil-
able 

ATK- 
ABLE 
GR1 
Coil-
able 

ATK- 
ABLE 
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Coil-
able 

ATK- 
ABLE 
SRTM 

ATK-
Tri-
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GS2 

ILC 
Dover 
Ultra-
Boom 

De-
ployed 

ILC 
Dover 
Ultra-
Boom 

Pris-
tine 

Foster-
Miller 

Tubu-lar 
Truss  

Foster-
Miller 

Slit 
Tape 
Truss 

Foster-
Miller 
Boom 

Iso-grid 

Bending 
stiffness 

(Nm2), EI  

99,200 

a 

1.536E6 

m 

0.100E6 

m 

81,352 

m 

11,162 

m 

15.78E6 

m 

1.202E6 

a/m 

11,740 

m 

6,505 

m 

4,588 

m 

36,724 

m 

5,835 

a 

Bending 
strength 

(Nm), M  

289.0 

a 

1,087 

a 

270.2 

m 

48.6 

m 

10.6 

m 

6,525 

m 

383.0 

a/m 

63.6 

m 

19.4 

m 

3.50 

m 

18.30 

m 

0.95 

m 

Axial 
Stiffness 
(N), EA  

10.3E6 

a 

6.584E6 

m 

5.19E6 

m 

4.20E6 

m 

1.55E6 

m 

94.3E6 

m 

9.34E6 

a/m 

2.89E6 

m 

1.43E6 

m 

0.457E6 

m 

1.84E6 

m 
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a 
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a 
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a 
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m 
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m 
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m 
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m 
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m 
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a 
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a 
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a 
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a 
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a 
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a 
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a 

9.06 

a 
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a 

27.47 

a 
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a 
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a 
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(kg/m), w  
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a 
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m 

0.420 

m 

0.070 

m 
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m 
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m 
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m 
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m 

0.0475 

m 
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m 
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m 
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3 

a 

3 

i 

3 

i 

3 

i 

3 

i 

4 

i 

3 

i 

16 

i 

16 

i 

3 

i 

3 

i 

18 

i 
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a 
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m 
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m 

0.197 

m 
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m 
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m 
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0.090 

m 
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m 
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m 
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m 
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m 
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a 

56.00 

m 
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m 
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m 
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m 
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m 
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a/m 

30.00 

m 
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m 

58.90 

m 
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m 
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m 
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a 
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m 
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m 
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m 
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m 
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m 
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m 
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m 
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m 
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m 

1,522 

m 
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a 
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a 
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m 
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m 
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m 
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m 
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m 

86.2 

m 
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m 
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a 
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N3/5m9/5/kg 

613 404 224 648 521 177 1,268 237 290 187 454 242 
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2.5 Photovoltaic Blanket Performance 

The primary function of a photovoltaic solar array is not simply to support a large 

flexible blanket.  The blanket must, of course, be populated with photovoltaic cells 

capable of converting solar radiation into an electrical current and passing that current 

back to the spacecraft bus.  From the perspective of structural scaling, only the blanket 

mass and area is of concern.  However it is eventually necessary to relate deployed area 

to the actual power produced. Table 2 provides the necessary information for this 

conversion.  Flexible blanket areal mass densities and areal power densities are listed for 

the current state of practice in photovoltaic cell power conversion efficiencies as well as 

anticipated future advancements in multi-junction technologies. 

The current state of practice areal power density is represented by a 29.5% 

efficient triple-junction cell between the range of 250 to 280 W/m2.  The exact value 

within this range depends on cell manufacturer, size, cell laydown spacing, and blanket 

harness voltage.  These cell conversion values represent the beginning of mission life and 

the low-earth-orbit solar spectrum parameters of 28°C Air Mass Zero (AM0).   

Blanket area and mass values are also documented in the table.  The mass 

includes the substrate, cell modules, and harnessing, but does not include any non-

functioning area consumed by the deployment structure such as a gap between two 

suspended blankets.  Lower power densities and mass densities are typical of flexible 

thin-film cells and the higher densities are typical of multi-junction silicon cells, both 

types are used in a tensioned blanket configuration.  The high end of areal densities in the 

table refer to specialized missions traveling to or through Medium Earth Orbit where a 
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thick cover glass protection is needed to shield cells from radiation damage.  Thin film 

cells are less susceptible to this radiation damage therefore do not require as much 

protection.   

Although not annotated in Table 2, it is worth noting that arrays operating at 

higher than typical voltages are lighter-weight than the lower voltage counterparts.  The 

reason is that higher voltage conduction lines are able to transmit at lower current levels 

than lower voltage lines for the same power levels according to Ohm’s Law.  Lower 

currents do not need as much conductor diameter ultimately reducing the copper mass on 

the array.  For example, blanket areal mass density is reduced by approximately 10% 

when the harness voltage level is increased from 70 V to 210 V on a large array.  The 

table assumes 70 V blanket harnessing. 

The final performance measure is the solar array power produced.  This will be 

reported as a beginning of life (BOL) metric for this study.  Arrays generate less power at 

the end of mission life (EOL) than at the beginning because cell materials degrade over 

long duration exposure to the space environment.  An array in low, middle, or 

geosynchronous orbit over a typical 7-15 year mission lifetime will generate 25% to 35% 

less power at the end of life than at the beginning.58  Factors that influence these losses 

include operating temperature, ultraviolet darkening, thermal cycling, contamination, 

radiation, and debris damage.  These losses are highly dependent upon the cell substrate 

and cover glass material used as well as the array orbital environment.  Without 

knowledge of these mission and cell construction details, beginning of life power is a 

more appropriate metric to compare arrays. 

  
  

43 

  



Table 2.  Survey of flexible blanket areal mass density and areal power density.  

      

   
γ ε measured, 

m 
projected, 

p 
Cell Efficiency and Type 

 

(kg/m2) (W/m2) 

 

13% Thin Film, a-Si 

 

0.5-2.5 95-113 m 

 

15% Thin Film, 1J CIGS 

 

0.5-2.5 110-130 p 

 

20% Thin Film, 2J CIGS 

 

0.5-2.5 147-173 p 

 

29.5% 3J XTJ/ZTJ** 

 

1.0-2.0 250-280 m 

 

33% 3J IMM 

 

1.0-2.0 290-320 m 

 

35% 4J IMM 

 

1.0-2.0 307-340 p 

 

38% 6J IMM 

 

1.0-2.0 334-368 p 

 

29.5% XTJ/ZTJ, 8x Stretched Lens Array 

 

0.6-1.4 350-420 p 

 

38% 6J IMM, 8x Stretched Lens Array 

 

0.6-1.4 450-540 p 

      Flexible Blanket Array State of Practice 

 
 

  

 

1994 Milstar, Si 

 

1.2 97.8 m 

 

1999 Terra (EOS-AM), 18% GaAs/Ge 

 

1.7 120 m 

 

2000 International Space Station, 14% Si 

 

1.2 109 m 

 

2013 Ground Prototype 1, 29.5% XTJ/ZTJ 

 

1.6 280 m 

 

2013 Ground Prototype 2, 29.5% XTJ/ZTJ 

 

1.2 275 m 
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2.6 Large Space Structures Loading 

The next step in the systems analysis process is to consider the loading.  Large 

space structures must endure unique loading regimes that are not intuitive. 

Spacecraft attitude control systems tend to drive many of the structural load 

requirements levied on the large appendages to which they are attached.  The three 

structural parameters that drive the design of spacecraft attitude determination and 

control systems are as follows:  the fundamental frequency of structural vibration, the 

critical damping ratio, and the mass moment of inertia.  As an example consider the case 

of a flexible beam extending equidistant from a bus.  The appendage fundamental 

frequency, ƒ, is shown to be related to the control system frequency, ƒc, through Eq.(21) 

with the following terms: appendage mass moment of inertia, I2, bus inertia, I1, 

appendage damping ratio, ξ, and order of the roll-off filter, r, where a first order filter is 

defined as 6dB/octave.19 

 
( )

22 r

1

c 2

1

I
Iƒ 1 

3 rƒ I1
I 2

+
 

=  + ζ   + 
 

  (21) 

Also, it has been shown that the control frequency is related to the disturbance torque, Q, 

an allowable angular displacement, delta theta, and the total spacecraft mass moment of 

inertia about the same axis through Eq. (22). 
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The conclusion is that low frequency, lightly damped, high moment of inertia 

structures can impart uncontrollably high loads to the spacecraft bus after being excited 

by a torque.53  These high dynamic loads require control actuators with both high 

bandwidth and high torque authority to execute the artificial damping control schemes 

necessary to maintain spacecraft stability.  Combining high rolloff bandwidth and high 

torque authority is the most stressing case for attitude control actuators such as 

momentum wheels, control moment gyros, and torque rods.  

Even if spacecraft stability can be maintained in these cases, the time required to 

stabilize may not be practical.  High precision, time sensitive sensing instruments on 

geostationary missions require the large deployed structures to settle quickly so that 

sensing data can be collected.  Time spent waiting for the array to settle after a torque 

maneuver is time lost gathering sensing data.  In such cases dynamic isolation of the 

array from the spacecraft bus may be necessary.  The Traveler-ARM54 is one such 

dynamic isolation solution that allows the sensor to collect data immediately after a 

maneuver torque.  While an elegant solution, this system introduces considerable cost. 

Depthless (surface) structures such as most solar arrays are unique in that the 

dynamic vibration characteristics can be highly non-linear.53  Since these structures lack 

depth, deployment hinges become primary load paths.  Mechanical hinges commonly 

used in deployable booms (as opposed to flexible material deformation hinges) are 

susceptible to manufacturing imperfections that cause joint dead-band.  Because these 
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hinges are primary load paths this dead-band causes uneven blanket tensions and 

discontinuities in array structural vibration which are manifested as jitter coupled with 

dynamic shock.53  The number of kinematic hinges is directly related to the complexity of 

modeling and ground testing validation efforts. 

Array deployed strength limit is defined as the maximum single-event 

acceleration that the array can endure without failure.  A wide range of acceleration 

magnitudes are possible depending on mission scenarios.   

Orbit transfers and earth departure maneuvers require chemical thruster burns that 

induce large unidirectional impulses into the array.  These forces translate to single-event 

root array accelerations of 0.1 to 0.25 gees (g’s)68.  For these events, the array is assumed 

to be oriented in the optimal strength direction prior to firing thrusters. For this study, that 

will be the out-of-plane load direction.  Missions requiring spacecraft docking are rare; 

however if needed they induce single-event accelerations as high as 1g.55 

Spacecraft angular accelerations are induced by both active and passive means. 

Spacecraft pointing and orbit correction maneuvers are examples of active acceleration 

sources.  Passive accelerations are caused by gravity gradient, atmospheric drag, and 

solar radiation pressure.  Large area surface structures such as those studied herein are 

especially susceptible to atmospheric drag and gravity gradient torque effects in low earth 

orbit.19  For higher orbits, atmospheric drag and gravity gradient effects fall off and solar 

pressure is more noticeable although still typically orders of magnitude less than slewing 

accelerations.  The dominating sources of angular acceleration are gravity gradient and 

slew maneuvers that typically range from 0.01g to 0.001g.55 
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The moments transmitted to the array during these accelerations can be severe.  In 

the extreme case of undamped vibrations from a typical bang-bang slew maneuver, the 

dynamic load factor can be three times greater than the steady-state applied moment.56  

On the other hand for an optimized slew profile and fully damped vibrations, the input 

moment is well approximated by a steady-state acceleration. 

Damping ratio is a detailed-design-specific parameter that is not likely to be 

affected by the general differences in architecture type as considered at the conceptual 

design phase.  Rather damping is dictated by the frictional forces and inelastic 

deformations specific to detailed design aspects such as structural damping, joint friction, 

and blanket processing.  A typical value for damping in mechanically joined precision 

structures is ξ ≈ 0.01 (or 1%).57  For structures that rely on material deformation hinges, 

the damping value is likely lower than 1% since fewer load paths are contact-friction 

dependent, a primary source of structural damping.  For tensioned blanket solar arrays 

damping values can be much higher.  For the Solar Array Flight Experiment58 on STS-

41D, damping ratios ranging from 2% to 8% were measured during the first bending 

mode of vibration where the fundamental frequency was measured between the range of 

0.059 Hz to 0.072 Hz. 

Mass and packaged volume are performance measures that primarily impact the 

monetary cost of launching a spacecraft.  While throw weight is the limiting factor for 

most launch vehicles, packaged volume is just as important a consideration for large solar 

arrays.  The lower the mass and smaller the stowed volume, the smaller and thus lower 
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the cost of the launch vehicle.  Tens of millions of dollars are saved in launch costs by 

moving from a larger to a smaller class launch vehicle.59   

2.7 Solar Array Parametric Studies 

The next step in the systems analysis is to study past work in solar array 

parametric sizing studies.  Rather than a broad focus on structural size scaling, these 

studies have primarily focused on design optimization or on generic mass scaling effects 

for a single structural architecture.  

The first to note is a parametric comparison of solar array performance based on 

detailed part-by-part sizing for generic mission sets by Murphy60.  One of the stated goals 

of this comparison was to understand the trade between thin-film (TF) and crystalline 

multi-junction (MJ) devices.  The first observation is that array power production, 

measured in Watts (W), is a key performance driver.  Four essential metrics for evaluating 

solar array performance were rank ordered in this study: W/kg, W/m2, W/m3, and mass 

moment of inertia.  Several array structural architectures were compared for each of four 

typical mission sets: 3 kW low earth orbit, 10 kW medium earth orbit, 20 kW 

geosynchronous orbit, and a 10 kW inter-planetary mission.  Each mission listed in  

Table 3 has unique environmental and spacecraft pointing considerations that affect cell 

degradation, temperature cycles, and structural requirements.  
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Table 3.  Typical missions and derived solar array requirements used in point design 

comparison.  

 LEO MEO GEO Interplanetary 
(IP) 

End of Life (EOL) 
Power Class 3 kW 10 kW 20 kW 10 kW 

Orbit 1000 km, 
90° incl. 8000 km, 0° 36,000 km, 

circular 0.7 to 5 AU 

Lifetime 7 years 7 years 15 years 7 years 

Temperature Range 120°C to 
-100°C 

110°C to 
-140°C 

100°C to 
-180°C 

150°C to 
-160°C 

Circuit at EOL 30 V 30 V 100 V 100 V 

Deployed ƒ1 0.25 Hz 0.10 Hz 0.05 Hz 0.10 Hz 

Deployed Strength 0.01 g 0.01 g 0.007 g 0.01 g 

Stowed ƒ1 40 Hz 35 Hz 35 Hz 40 Hz 

Stowed Strength 20 g 20 g 20 g 20 g 

Acoustic Loading 147 dB 147 dB 147 dB 147 dB 
 

Three tensioned blanket solar arrays were sized and performance metrics 

compared for each of these mission sets.  Aurora37 is a rectangular array supported by a 

single pantograph compression column.  UltraFlex28 is a radial array supported by hinged 

radial booms.  And SquareRigger45 is a rectangular grillage array supported by smaller 

rectangular bays of hinged struts.  MJ blankets were assumed to be 30% efficient at the 

beginning of life (BOL) while TF was assumed to be 15%.  Table 4 lists the performance 

metrics of each array point design60.  All represent AEC-ABLE Engineering designs as of 

the time of publication, 2002. 

 In 2000, Hoffman61, developed a parametric model that compares both tensioned 

and rigid panel thin-film (TF) and multi-junction (MJ) arrays for a variety of missions 
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ranging from several hundred watts to 20 kilowatts.  This Array Design Assessment 

Model (ADAM) accounted for dozens of blanket performance characteristics as well as 

power subsystem differences at the spacecraft level.  Performance trends were predicted 

based on end of life power requirements for each mission considered.  Since missions 

beyond 20kW were not considered only single wing configurations were included.  For 

the tensioned blanket devices, a single compression column coilable lattice boom was 

used.  The boom was sized for a 0.5 Hz fundamental array frequency.  Boom strength was 

not considered for either loading case: Euler buckling due to blanket tension or critical 

moment due to spacecraft slew accelerations. 

Both Murphy and Hoffman developed parametric assessments of tensioned 

blanket solar arrays but from different approaches.  Murphy focused on comparing array 

point designs in order to show the benefits and drawbacks of TF and MJ tensioned 

blanket arrays sized for realistic loading conditions on three different structural forms, 

radial, rectangular single wing, and rectangular grillage.  Hoffman on the other hand 

showed general performance trends between tensioned TF and MJ arrays for a single 

method of structural support, a rectangular blanket tensioned by a coilable lattice boom. 
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Table 4.  Point design solar array comparison.  
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2.8 High Power Mission Applications 

The motivation for scaling up flexible blanket solar arrays is to generate more 

power for future spacecraft.  United States Government spacecraft sectors have long 

expressed the need for more power to both on-orbit assets and exploration spacecraft.  In 

some cases, more power enhances mission goals.  In others it enables new missions or 

reduces mission cost.  The highest power arrays that have been used on-orbit generate  

18 kW to 25 kW at the beginning of array life and are of rigid panel construction.62,63  

This excludes the eight International Space Station wings that together generate 84 kW64, 

but the high mass and packaged volume of these wings required each to be launched 

separately on the recently retired Space Shuttle and assembled manually in space. 

The need is for hundreds of kilowatts rather than only 25 kW.  In the last five 

years alone, the National Aeronautics and Space Administration (NASA) and several 

Department of Defense organizations have endorsed efforts to develop high power solar 

arrays.  The Defense Advanced Research Projects Agency (DARPA) funded the Fast 

Access Spacecraft Testbed (FAST)65.  The Air Force Research Laboratory (AFRL) 

announced the Advanced eXperiment In Orbital Manipulation (AXIOM)66 experiment 

that requires a high power, lightweight solar array to power Hall effect thrusters.  NASA 

recently awarded several industry contracts to study solar electric propulsion mission 

concepts that include risk reduction of high power, lightweight solar arrays.10 

In the early 2000’s, the AFRL initiated a program called PowerSail to develop a 

generic solar array system capable of supporting growth in satellite power demand for the 

next 20 years.67  The driving need was for an array scalable beyond 100 kW but that 
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could be acquired at a 5X decrease in cost, a 5X increase in watts per kilogram, and a 

drastic decrease in the stowed volume of the array.  Cost, mass, and stowed volume were 

recognized as the three primary constraints that limit available power in present day 

satellites.  This program yielded a specific solar array concept of which sub-scale 

deployable modules were ground tested, but the full array was never matured into the 

flight demonstration phase.  Yet the need for more power continues to prevail. 

A 2010 Aerospace study revealed several defense missions that are either 

enhanced or enabled by higher power, lighter weight, more compactly packaged solar 

arrays.  Table 3 lists the power levels required to enable each respective mission.65 

 NASA has expressed interest in high power solar arrays scalable to 400 kW for 

the purpose of solar electric propulsion (SEP) tugs.  Table 5 shows that the defense need 

for SEP tugs is to transfer communications satellites from a LEO to a GEO orbit.  The 

NASA need is similar except the purpose is to travel beyond earth orbit for human 

exploration of Mars, human rendezvous with a near-earth asteroid, or science missions to 

the far reaches of the solar system.68  

The SEP tug concept relies on chemical rockets to launch heavy payloads into 

LEO then uses electric propulsion combined with high power solar arrays to transport 

these payloads to higher orbits or beyond Earth orbit to an assembly point such as the 

Lagrange point between the Earth and the moon where modules are joined in preparation 

for the long trip to a nearby planet or asteroid.69  The advantage of electric propulsion is 

that it does not require expendable chemical agents for propulsion fuel therefore 

propulsive impulses can be sustained almost indefinitely.  The specific impulse is 
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estimated to be ten times higher than that of chemical propulsion.68  NASA roadmaps for 

science, exploration, and advanced technology all consider SEP as a vital future 

capability.69 

Table 5.  Defense and civil missions enabled by increasing available power on-orbit. 

 Power Required to Enable 

Laser Communications 100 kW 

Laser Remote Detection of Chemical Species 50 kW 

Laser Water Vapor Atmospheric Profile 100 kW 

Laser Space Defense 220 kW 

LIDAR Terrestrial Imaging from 1500 km 100 kW 

Airborne Moving Target Indicator Radar 65 kW 

Space Solar Power Demonstrator 700 kW 

Electric Propulsion LEO to GEO Orbit Transfer 
from a Minotaur IV Class Vehicle 15 kW 

Electric Propulsion LEO to GEO Orbit Transfer of 
100 kW Communications Sat 200 kW 
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CHAPTER 3. ANALYTIC APPROACH 

The systems analysis reported in the previous chapter forms the basis upon which 

a solar array model is formed.  This model represents all practical rectangular flexible 

blanket solar array architectures and is defined by a minimum set of performance 

constraints and design parameters.  The analytical process developed to operate on this 

model is then presented.  Solutions are generated that quantify the effects of each design 

parameter on array performance. 

3.1 Performance Parameters and Design Variables 

Based on the systems analysis reported in Chapter 2, the solar array performance 

constraints considered in this analytical model include the following: the deployed area (a 

quantity proportional to the total power produced), the fundamental frequency of 

vibration, and the maximum acceleration strength limit.  Other external design attributes 

are certainly affected by architecture selection but are not quantified for consideration 

herein; these include packaging efficiency and several sources of cost such as fabrication, 

analysis, test, integration, deployment, and on-orbit operations. 

The worst case external loads applied to the array are assumed to be rectilinear 

accelerations.  The source of these loads includes spacecraft thruster impulses or 

rendezvous docking event impulses.  Attitude control slew maneuvers are also a common 

acceleration source, but these loads are rotational in nature and much lower in magnitude 

than the rectilinear acceleration sources.  The solar array failure mode is assumed to 

occur as an out-of-plane bending due to these acceleration loads, reacted in the boom as a 

maximum root moment.  Knowledge of the exact boom failure mode or design margin is 
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not needed for this study.  Instead it is only necessary that the boom design limit moment 

be known.  

The solar array architecture is structurally represented by three components—the 

blanket, the primary boom, and the spreader bar—each having a unique contribution 

toward system performance and mass.  The blanket design is further defined by three 

parameters:  the deployed area, areal mass density, and the applied tension load.  The 

spreader bar is defined only by the length and linear mass density since it is assumed 

rigid.   

Figure 20 provides a physical description of the model used as the basis for this 

constraint analysis.  The primary support booms are beam columns that serve three 

functions:   

1) react the tension load in the blankets,  

2) stiffen the array system in conjunction with the tensioned blankets, and  

3) strengthen the array system.   

The boom design is therefore characterized only by performance measures: flexural 

stiffness, strength limit moment, linear density, length, and quantity.   

The solar array structural system is defined as the unique assemblage of these 

three primary components and the performance ranges of each.  While rectangular in 

dimension, the array system size is defined by the blanket area where the length is 

equivalent to the primary boom length and the width equivalent to the spreader bar 

length.  The structural system is further defined by the quantity of primary booms used to 

deploy and tension the blanket(s) and achieve system stiffness and strength. 
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Figure 20.  A physical description of the constraint analysis model. 

The physical model as illustrated in Figure 20 considers any number of primary 

support booms arranged in a parallel layout.  The inertial loading is assumed to be evenly 

distributed across all booms, and the bending stiffness of each boom is combined into an 

equivalent array bending stiffness as will be detailed in a section to follow.  The spreader 

bar connects the boom tips and transfers blanket tension loads into boom compression 

loads.  The bar is characterized by a linear density and is assumed rigid based on the fact 

that standard solar array design practice is to size the spreader bar stiffness to be much 

higher than that of the primary booms in order to avoid substantial blanket shear strains.  

While the figure shows two primary booms as an example, the model considers a range 

of primary boom quantities [1:10] and a large blanket area range [10:2000] m2. 

The blanket component is characterized only by two terms, area and areal mass 

density.  The area of the blanket is the product of the primary boom length and the 

spreader bar width.  This assumption does not account for gaps between adjacent blankets 

where no active multi-junction photovoltaic cells are populated which is sometimes 
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necessary in practical design to allow room for deployment of primary booms or to 

modularize blanket fabrication.  A wing on the ISS, for example, has an active area that is 

about 80% of the total projected area.  Two 4.57 meter blankets are stretched along either 

side of a 2-meter gap that allows room for deployment of the ATK FAST mast. 

Note that neither the blanket tension nor the boom critical Euler load is listed as a 

design parameter despite the obvious influence on array strength and fundamental 

frequency performance.  The reason is that these equitable quantities were discovered to 

be readily optimized by maximizing the coupled beam-blanket fundamental frequency.  

The optimized blanket tension and the approximate fundamental frequency solution is 

developed in a section to follow, Clamped-Free Beam-Cable. 

The interface between the array and the spacecraft is assumed to be rigid and thus 

is represented as a clamped boundary condition in the model.  This assumption renders 

the results relevant to the widest possible range of array sizes but still allows the user 

space to consider the mass and stiffness effects of the attachment method.   

Two methods are typical as illustrated in Figure 21, one for a small array and one 

for a very large array.  A small 10 m2 array would likely be joined directly to a spacecraft 

bus through a yoke structure and a solar array drive assembly interface, no backbone 

boom is needed.  In practice this interface introduces additional compliance and mass to 

the array structure resulting in a lower fundamental frequency of vibration.  Quantifying 

this effect requires detailed knowledge of the spacecraft construction and therefore is not 

appropriate for this model.   
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Figure 21.  The smallest and largest array sizes considered in the constraint model.  

On the other hand a very large 8000 m2 array would likely be split into two  

4000 m2 wings, each wing constructed of multiple winglets, joined down the center by a 

backbone boom.  While the backbone boom and the winglets are dynamically coupled, it 

is most convenient to separate the individual effects in order to preserve generalization of 

the structural scaling results.  In practice the backbone boom is likely to be sized 

according to the principle that the system fundamental frequency shall be lower than that 

of the individual solar array winglets by some multiplication factor of two or greater.  

This sizing requirement is necessary in order to prevent the excitation of symmetric mode 

shapes during a spacecraft acceleration maneuver.  Symmetric mode shapes create a 

dynamic vibration scenario that is highly problematic from a spacecraft attitude control 

standpoint—several different fundamental modes of vibration oscillate at identical 
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frequencies rendering active control schemes ineffective at compensating.  Nevertheless, 

the backbone boom is considered rigid herein. 

Table 6 lists the practical range of performance constraints and component 

properties that bound the solution space for the array model.  This data is compiled from 

several heritage tensioned blanket array systems including Milstar7,7, APSA70,71, Terra 

EOS-AM6,72, Olympus73, Hubble Space Telescope4, and the International Space Station5.  

Recent and projected advancements in solar array architectures74, cell power conversion 

efficiency trends75 are all captured in this table. 

Table 6.  Practical ranges used to bound the constraint analysis solution space. 

              

    
Range 

 
Units 

Objective Constraint 
    

 
Areal Mass Density γ 0 - 10 

 
kg/m2 

Array Performance Parameters 
    

 
Fundamental Frequency ƒ 0.001 - 5 

 
Hz 

 
Lateral Acceleration Load a 0.001 - 0.2 

 
9.81 m/s2 

 
Deployed Area A 10 - 2000 

 
m2 

Primary Boom Properties 
    

 
Beam Efficiency Index μ  1 - 5000 

 
N3/5m9/5/ kg 

  
(Flexural Stiffness) EI  -- 

 
N m2 

  
(Moment Strength) M  -- 

 
N m 

 
Structural Mass Fraction β 0.01 - 0.5  

 
kg/kg 

  
(Linear Mass Density) wpb  -- 

 
kg/m 

 
Length Lpb  5 - 30 

 
m 

 
Boom Quantity n  1 - 10 

 
 -- 

Blanket Properties 
    

 
Areal Mass Density γb 0.5 - 2.0 

 
kg/m2 

Spreader Bar Properties 
    

 
Linear Mass Density wsb 1 - 5 

 
kg/m 
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3.2 Analytic Process Flow 

Figure 22 illustrates the overall flow of the constraint analysis process that has 

been developed for this solar array model.  The process starts by categorizing the three 

array performance constraints then defining the minimum set of component parameters 

necessary to characterize the structural architecture in light of the constraints as reported 

in the previous section.  Loading equations are then developed to characterize array 

fundamental frequency and strength.  These functions are substituted into the beam 

efficiency index in order to consolidate bending stiffness and strength limit into a single 

beam efficiency term that also quantifies beam cost. 

Next, the array weight equation is developed in terms of the component design 

parameters and array performance constraints.  For example, this weight equation 

combines mass terms for the three array components: primary boom, blanket, and 

spreader bar. 

This weight equation is solved by numerical methods.  Throughout this process, 

the array mass and beam efficiency (i.e., cost) are simultaneously minimized.  This 

minimized beam efficiency value and minimized array mass value is recorded for each of 

2,430 design cases to form the approximation model.  The approximation model is then 

tested for accuracy and symbolic expressions developed using error minimization 

techniques.  The last step is then to extract the scaling metrics from the approximation 

model that represent solar array scaling trends. 
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Figure 22.  Constraint analysis process flow. 

Solar array power production, measured in Watts, is not directly included as a 

parameter in the model development since it has no bearing on the array structural 

behavior.  Instead, blanket area and areal mass density are considered. Array power 

production is readily predicted with knowledge of the array area and the power 

conversion efficiency of the selected photovoltaic cell.  

3.3 Observations 

This analytical model is developed to represent the structural dynamics and 

strength behavior of a general rectangular tensioned blanket solar array architecture.  The 

architecture is constructed from one or multiple beam columns that support a tensioned 
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photovoltaic blanket ranging in area from 10 to 2000 m2. This model leverages first 

principles, finite element techniques, structural indices, and numerical analysis methods 

to relate the array frequency and strength constraints to component sizes and layouts 

needed to meet those constraints while minimizing both array mass and beam cost.  This 

numerical model is not the goal of this overall work, only the basis upon which a 

symbolic approximation model and ultimately metrics are developed to represent the 

structural scaling behavior of an array architecture. 
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CHAPTER 4. ARRAY LOADING 

This chapter reports on the development of fundamental frequency and strength 

relations for the tensioned blanket solar array model. This analytical development 

leverages first principles, finite element techniques, and minimization techniques.  

Appendix A is provided as a supplement to this chapter for more detail into the finite 

element structural model.  

This structural model is developed to represent a tensioned blanket solar array as 

a coupled system. The hypothesis is that a large aspect ratio (i.e., long and narrow) 

tensioned blanket can be structurally represented by simple tensioned-cable mechanics 

rather than by the more complex membrane mechanics.  Since by definition cables do not 

have torsional modes of structural vibration, it is necessary to discuss the practical design 

parameters by which tensioned blankets vibrate in torsion versus the out-of-plane 

sinusoidal shapes typical in the fundamental mode of structural vibration.  This 

discussion is also useful for discerning the parameters by which very large arrays with 

backbone booms vibrate in torsion versus bending.  A discussion of cable dynamics is 

provided first, followed by an analytic examination of slender beam dynamics, and 

finally empirical data is provided for validation. 

4.1 Cable-Membrane Approximation 

The structural dynamics behavior of a cable and a membrane are quite different.  

The simplest place to start in understanding these differences is the example of a 

suspended straight cable with fixed boundaries.  The fundamental frequency of this 
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component is well known as Eq. (25), defined by three terms:  cable tension, length, and 

linear mass density.76  

 
1 21 T

2L w
ƒ  =  

 
  (23) 

This one-dimensional cable equation can be extended into a two-dimensional 

“areal” cable by introducing the width dimension to the tension and mass terms expressed 

as Eq. (24). 

 
1 2

ƒ 1 S
2L

 
=  γ 

  (24) 

But the behavior of this relation is still one-dimensional.  A cable does not 

account for shear effects thus a torsion mode of natural vibration is not possible, only 

sinusoidal mode shapes are possible.  A membrane, on the other hand, does exhibit some 

torsion/shear stiffness that is readily approximated.  For example, a membrane tensioned 

to a fixed distance then twisted reacts with a restoring force that drives the membrane 

back to the equidistant equilibrium state, a behavior that resembles a torsional pendulum 

seeking equilibrium.  Equation (25) was published in 197377  as a tool for approximating 

the lowest torsion frequency of such a membrane assuming a rigid column support and a 

mass-less, rigid spreader bar on a twisting pivot.  This relation was developed at a time 

when tensioned blanket solar array options were being evaluated for the ISS.  

 
1 2

ƒ 3 S
2 L

 
=  π γ 

  (25) 

Notice that this equation matches the cable solution from Eq. (24) sans the 

constant reduction of the square root of 3 divided by pi or approximately 0.55.  Therefore 
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the fundamental frequency of torsional vibration for a narrow blanket is approximately 

half that of out-of-plane sinusoidal vibration.  Of course, this conclusion assumes a rigid 

support column.   

Next, the dynamic behavior of the support is examined to provide further 

understanding of the tensioned blanket solar array modes of fundamental structural 

vibration.  The fundamental frequency of torsional vibration of a slender shaft is 

expressed by Eq. (26) in two forms.77   
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 
=   ρ 

 
=  γ 

  (26) 

The first form is generic, and the second is modified to account for the polar area moment 

of inertia of a rigid rectangular blanket joined to the beam-shaft.  The blanket is 

characterized by an areal density, γ, length, L, and width, W.  This expression is valid for 

both array layouts illustrated in Figure 21.  For a single-beam-blanket segment, Lpb is 

substituted for the generic length term in Eq. (26).  For the backbone boom array system, 

Lbb is substituted for the length term, and 2Lpb is substituted for the width term as the 

primary boom mass and blanket mass are lumped into the areal mass density term.  This 

relation does not apply to array configurations where multiple primary booms support a 

single blanket; such cases are expected to respond exclusively in a bending mode of 

structural vibration due to the shear frame stiffness effect.   
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The fundamental frequency of bending vibration is represented by the expression 

for a clamped-free Euler-Bernoulli beam in Eq. (24).78  As before, both the generic form 

and the modified forms are expressed. 
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  (27) 

Equations (3) and (4) are combined into a ratio of the torsion frequency to the 

bending frequency expressed as Eq. (28).   
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  (28) 

The blanket aspect ratio term, AR, is defined for the two extreme array size 

classes previously discussed and illustrated in Figure 21a and 21b respectively, a beam-

blanket array segment and a backbone boom array system.  In this ratio form, a value less 

than one indicates the fundamental mode of structural vibration to be torsion; conversely 

a value greater than one indicates the mode to be bending.  Notice the beam stiffness ratio 

term (GJ/EI)1/2 is representative of either a primary boom or a backbone boom depending 

again on the respective use of the relation for either a beam-blanket segment or a 

backbone boom system. 

Figure 23 uses the frequency ratio to show how the array aspect ratio and beam 

stiffness ratio affect whether the array mode of fundamental vibration is expected to be 
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torsion or bending.  For large aspect ratios (e.g., long and narrow), the lowest frequency 

of fundamental vibration occurs as a bending mode for all but only extremely small 

stiffness ratios where GJ is very low when compared to EI.  For example when AR = 10, 

torsion is expected only when (GJ/EI)1/2 < 0.065, indicative of a boom with extremely 

small torsion stiffness such as an open section tube.   

 

Figure 23.  Array aspect ratio and the support beam stiffness ratio related to the fundamental 

mode of structural vibration. 
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Conversely, for small aspect ratios, the lowest frequency is more likely to be 

torsion unless a boom with very high torsion stiffness is used.  When AR = 0.1, torsion is 

expected when (GJ/EI)1/2 < 6.48, indicative of a closed-section tube or a robust 

articulated truss.  In summary, the smaller the aspect ratio, the greater the boom GJ 

required to ensure the fundamental frequency of vibration is a bending mode rather than a 

torsion mode.  The inverse is also true. Several empirical examples are plotted in 

Figure 23 to add confidence to the developed relation.  Each example is further described 

in the following.  

The Solar Array Flight Experiment (SAFE) was conducted in 1984 on the Space 

Transportation System-41D35 mission.  A 4.0 meter wide by 30.9 meter long blanket (i.e., 

AR = 10) was deployed and supported with a continuous longeron lattice truss column.  

Given the estimated stiffness ratio of the truss-column to be well above one and the 

aspect ratio to be large, the frequency ratio for this example is expected to be well above 

one, strongly into the bending dominated range as indicated in the figure.  On-orbit 

dynamic measurements of this array confirm this to be true.  The on-orbit deployed 

fundamental frequency was measured to be in the range of 0.059 Hz to 0.072 Hz 

depending on tension variability and orientation to full-sun or eclipse.  The mode shape 

of fundamental vibration is observed to be very similar to a clamped-free beam.  There 

are no noticeable torsion or transverse bending components to these blanket mode shapes, 

only out-of-plane sinusoidal shapes were observed.   

A second example is established by one of the most proliferated tensioned blanket 

solar arrays on-orbit today, on Milstar, perhaps second only to the ISS.  Each spacecraft 
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in the Milstar constellation uses a 2.97 meter wide by 14.8 meter long solar array blanket 

(i.e., AR = 5), each supported by a continuous longeron mast. The mode shape of 

fundamental vibration was analytically predicted to be out-of-plane bending at a 

frequency of 0.162 Hz.  The second and third modes of vibration are expected to be in-

plane and torsion modes at frequencies of 0.200 Hz and 0.391 Hz respectively.7    When 

this example is plotted on Figure 23 based on the beam stiffness ratio and array aspect 

ratio, the frequency ratio is 1.25 as expected based on the published analytic prediction 

that bending is the lowest mode of fundamental vibration but the fundamental mode of 

torsion vibration is not far away. 

A third and final example is provided by the most recently known tensioned 

blanket array to be deployed on-orbit, the Terra (EOS-AM) spacecraft.  Similar to the 

previous two examples, deployment and tensioning was accomplished with a single 

continuous longeron truss column.  This blanket is relatively short but wide, measuring 

8.92 meters long and 5.08 meters wide (i.e., AR = 2).  According to the estimated beam 

stiffness ratio of 0.134, this array falls into the torsion dominated region of the figure 

with a predicted frequency ratio of 0.56.  The actual fundamental mode of structural 

vibration is not confirmed, although the minimum required fundamental frequency is 

recorded as 0.16 Hz.6 

Two imaginary backbone boom cases are also provided in Figure 23 for the likely 

array aspect ratio of one.  The first backbone type is a high modulus carbon fiber 

composite tube with a diameter of 30 cm and a wall thickness of 1 cm.  The stiffness ratio 

for this boom is estimated to be (GJ/EI)1/2 = 38.7, and the corresponding frequency ratio 
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is 59.9, well into the bending dominated range.  On the other hand, an articulated four-

longeron truss such as the ATK FAST mast behaves quite differently than the tube.  The 

stiffness ratio and frequency ratio for this truss as the backbone on a square aspect ratio 

array are (GJ/EI)1/2 = 0.18 and ƒt/ƒb = 0.28 respectively, down into the torsion dominated 

frequency range.  Two different backbone boom architectures yield two very different 

frequency responses; the truss backbone responds fundamentally in torsion and the tube 

backbone in bending. 

4.2 Clamped-Free Beam-Cable Fundamental Frequency 

The next step is to capture the coupled dynamic effects of a beam-blanket solar 

array segment.  A finite element model is created to predict the coupled fundamental 

frequency response of a beam-cable assembly and used to develop a relation that 

approximately represents this response given practical design ranges.  The presumption in 

this section is that the dynamic response of the suspended cable is substantially affected 

by the motion of the beam to which it is attached and vice versa. 

The beam is assumed constrained in a clamped-free condition and the cable is 

fixed to the two opposing beam ends.  Naturally the beam boundary condition has an 

impact on the cable dynamic behavior.  Common practice in modeling an appendage 

joined to a spacecraft bus is to assume one of two boundary conditions, pinned-pinned or 

clamped-free.  The pinned-pinned condition is appropriate when a long beam is joined to 

a bus at the beam mid-point or when the beam mass is much greater than the bus mass.  

The beam mode shape of fundamental vibration then naturally creates a node at the bus 

attachment point closely approximating a true free-free on-orbit condition.  A clamped-
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free condition is more appropriate when the bus mass is commensurate with the beam 

mass or when the structural interface needs to be modeled separately.  The wide range of 

array sizes considered in the present study warrants the use of a clamped-free boundary 

condition.  This allows the results to be used in either the case of a yoke spacecraft 

interface or a backbone boom interface. 

Two fundamental mechanics properties drive the dynamic response of a tensioned 

beam-cable system—tension stiffening of the cable and compression softening of the 

beam—properties that are in direct contrast when the tension in the cable is equivalent to 

compression in the beam as assumed here. 

The fundamental frequency of a straight cable is dependent on only three 

parameters: mass, length, and tension. As shown previously by Eq. (25).  Strictly 

speaking all physical cables have a non-zero bending stiffness, but it is insubstantial 

when compared to the tension-induced stiffness; therefore it is common practice to 

assume it is zero due to the small area moment of inertia. 

The fundamental frequency of a generic beam on the other hand is characterized 

by mass, bending stiffness, and torsion stiffness since a beam, by definition, has a 

substantial area moment of inertia.  The stiffening or softening effect of tension or 

compression loading is typically neglected unless that load is high relative to the critical 

Euler load.  For large space structures, beams are commonly long and narrow (i.e., 

slender), rendering them susceptible to Euler buckling.  Therefore the beam tension and 

compression loads must be considered for these cases. 
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To date this compression-softening and tension-stiffening effect has not been 

considered in developing structural metrics for a beam-cable assembly likely due to the 

absence of a readily available closed form solution for such an assembly.  Common 

practice is instead to distribute the cable (i.e., blanket) mass onto the beam for convenient 

use of well-known beam fundamental frequency relations.  For example, a common 

reference material78 reports independent closed form solutions for a cable in tension and a 

beam in compression, but the coupled effects are not considered.  The approach of the 

current effort is to model these coupled effects using finite element analysis techniques 

then through observation and optimization, develop an approximate fundamental 

frequency equation for a beam-cable assembly. 

The fundamental frequency of a clamped-free Euler-Bernoulli beam has been 

previously defined as Eq.(24).  An approximate solution is also available that captures the 

compression softening effect and the tension stiffening effect of the load P applied 

uniaxial to a beam listed as Eq. (29), an expression that is readily used along with Eq. 

(24).  
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   (29) 

 

The fixed-free Euler buckling load is denoted by Pcr and is defined by Eq. (30).79  

This represents the special case when the compressive load always points back to the 

column root rather than fixed in one downward direction as is commonly assumed.  The 

cable follower load case used here has a critical load four times higher than the classical 

Euler load case. 
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The ABAQUS/Standard80 commercial finite element analysis code is used to 

model the beam-cable assembly.  Figure 24 shows the model components, illustrating that 

the tension load in the cable is equivalent to the compressive load in the beam.  While the 

figure shows the cable deformed for illustrative clarity, the model considers the beam and 

the cable to be collinear in the unperturbed state.  A detailed description of the finite 

element model is provided in Appendix A. 

 

Figure 24.  A physical description of the finite element numerical model. 

A parametric study is performed on six different beam elements and four truss 

elements where the fundamental frequency and critical buckling load is predicted using a 

linear perturbation analysis and compared to the respective closed form equivalents, 

Eqns. (24) and (26) respectively. Cubic Euler-Bernoulli beam elements (i.e., B33) are 
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selected as a result.  This element type is valid when no transverse shear deformation is 

expected, when plane sections remain plane (i.e., no warping), when the beam is 

considered slender such that the ratio of diameter to length is less than 1/15, and when 

transverse loading is expected.  For the cable component, two-node truss elements (e.g., 

T3D2) with null compressive stiffness are selected.  The cross-sections of the beam and 

cable components are chosen arbitrarily, and the length is chosen to be 1 meter for 

convenience.  These elements prove to be the most consistent in predicting the frequency 

over the range of compression loads and tensions of interest.   

A mesh density study is performed on the two beam and truss element types with 

fundamental frequency again used as the figure of merit.  Five element lengths were 

compared:  4 cm, 2 cm, 1 cm, 0.5 cm, 0.25 cm.  As expected the results showed the 

frequency drops as element length is shortened—finer mesh densities generate more 

compliant models.  The frequency changed by less than one hundredth of a percent from 

the 1 cm to the 0.5 cm size; therefore 1 cm length is selected.  The beam and cable 

components are each represented by one hundred elements. 

This beam-cable model is subjected to a series of parametric analysis cases to 

understand the impact of tension and mass fraction on the system fundamental frequency.  

The cable tension is varied over a range from zero to the critical Euler load given as  

Eq. (30).  The mass is parameterized through two terms, the cable linear mass density and 

the structural mass fraction.  Structural mass fraction is the ratio of the primary boom 

(column) mass to the total payload mass that includes the boom and all parasitic, non-
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structural masses such as the photovoltaic blanket and in later cases the spreader bar.  

This fraction is defined by Eq. (31). 

 pb pb

pb sb b

m m
m m m m

β = =
+ +

  (31) 

A mass fraction range of 0.01 to 0.5 is used in the present study. It is important to 

note that this mass fraction includes only the cantilevered components, those that have 

the strongest influence on fundamental frequency.  Solar array components at the root 

have little contribution to modal mass.  These include the root pallet, yoke, and any 

mechanisms or restraint devices fixed to the root.  These components will be documented 

later for the effect on total mass but are not included in the analytical development of 

strength and fundamental frequency. 

The cable tension is controlled in the model using a temperature gradient applied 

as an initial condition.  The cable tensile strain directly transfers into the beam column as 

a compressive load through a rigid tie constraint during the first analysis step.  The non-

linear solver is used in the first step to enable the tension and compression pre-loads to 

transfer to the second step, a linear perturbation dynamic analysis.  The system 

fundamental frequency is extracted as the first non-zero eigenvalue frequency regardless 

of whether the motion is dominated by the beam or by the cable. 

Figure 25 shows the results of the analysis in terms of three normalized quantities: 

the load ratio of cable tension to the critical Euler load on the abscissa, the frequency 

ratio on the ordinate, and the structural mass fraction.  The ratio of the model 

fundamental frequency to the closed-form beam-only frequency, Eq. (24), where the 

cable mass is distributed along the beam length.  The horizontal line at the top of the 
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figure represents this normalized frequency value.  The additional effect of a compressive 

load on this closed-form beam solution is also represented as defined in the figure by  

Eq. (29).  Notice that when no load is applied the frequency ratio is unity, but as 

compression is introduced the beam frequency drops, eventually falling to zero as the 

load approaches the critical Euler load.  The exact solution for a tensioned cable is also 

plotted from Eq. (25).  The effect is opposite that of the compression beam.  For a cable  

 

Figure 25.  The beam-cable system fundamental frequency related to axial compressive load 

ratio. 

Cable Dominated 
 Mode Shape for  
P/Pcr < 0.18 

  

Beam Dominated 
Mode Shape for  
P/Pcr > 0.24 

  

78 

  



under zero tension the frequency is zero.  As tension increases from zero, the frequency 

quickly rises as expected.  The blanket torsion frequency is also plotted in the figure 

based on Eq. (25).  The results show the same trend as the cable-only solution but at a 

lower frequency by a factor of 0.55 as discovered previously. 

Another observation from Figure 25 is that the fundamental frequency of torsional 

vibration of a narrow tensioned membrane, defined by Eq. (25), is similar to the 

fundamental cable frequency, and both are higher than the peak frequencies of the beam-

cable assembly.  This observation adds credence to the assumption that the cable 

mechanics adequately approximate a blanket for tensioned solar array architectures. 

For all three structural mass fraction cases in Figure 25, the frequency ratio shows 

a two-part response that is similar in magnitude between the three.  First the system 

frequency rises sharply as cable tension increases from zero to about 18% of the critical 

Euler load.  For this stage the mode shape of fundamental vibration is dominated by cable 

motion; the beam moves very little.   From there, the frequency levels off before starting 

into the second stage of the response at about 24% the critical Euler load.  The frequency 

steadily decreases back down to zero as the cable tension approaches the beam critical 

Euler load.  The dynamic motion during this second phase is dominated by the beam as it 

slowly suffers from compressive softening effects.  The first stage of the frequency 

response closely resembles the exact solution for a cable.  Similarly the second stage 

response resembles the approximate solution for a compression beam. 

It is observed that since a clamped-free beam does not have symmetric boundary 

conditions that the dynamic response is tightly coupled between the cable and beam.  For 
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example, beam tip motion demands cable motion, regardless of the cable tension or mass.  

If the tension is low and cable mass high then the cable contributes a strong inertial mass 

to the beam response; conversely if the cable tension is high and the mass is low then the 

cable introduces compliance into the beam response.  In both cases, the cable has a 

reduction effect on the system fundamental frequency. 

This frequency response in Figure 25 is surprisingly insensitive to the large 

changes in the structural mass fraction, β = 0.01 to 0.5.  The peak frequency for the 

largest structural mass fraction beam-cable is 0.82 of the exact beam frequency, and this 

occurs at a 18% the critical Euler load.  On the other hand, the peak frequency for the 

smallest structural mass fraction case was 0.70 of the exact beam frequency at a load ratio 

of 0.24.  This consistent behavior lends itself to a convenient approximation of the 

fundamental frequency of a generic beam-cable system.  The average peak frequency and 

load ratio is calculated from the two bounding cases for structural mass fraction.  The 

desired blanket tension is 0.21 of the critical Euler load, and the fundamental frequency 

of a beam-cable is less than the exact clamped-free solution by a factor of approximately 

0.76.  This is introduced as the frequency knockdown factor δ in Eq. (32), a modified 

relation for the fundamental frequency of a clamped-free beam.  Note that the linear mass 

density term, w, includes both the beam and blanket mass. 

 
1 2

4

3.516 EI
2

ƒ
wL

 = δ  π  
   (32) 

Equation (32) approximates the fundamental frequency of a clamped-free beam-cable 

assembly.  This coupled beam-string fundamental frequency is insensitive to changes 

over the structural mass fraction range considered, β = 0.01 to 0.5, but is highly sensitive 
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to changes in the cable tension.  The desired cable tension is determined to be 21% the 

critical Euler load of the support column.  The system fundamental frequency of vibration 

at this optimized tension level is equivalent to 76% of the closed form clamped-free beam 

frequency, a constant defined as the frequency knockdown factor.  A general conclusion 

of clamped-free tensioned cable systems is that calculating the fundamental frequency 

using a simple distributed mass approach will always over predict the frequency by 30%.  

Conversely, joining the tensioned cable along the beam length rather than just the two 

opposing ends will increase the frequency by 30%. 

4.3 Array System Fundamental Frequency 

The next step is to expand the single beam fundamental frequency relation into a 

multi-beam system.  The guiding assumption is that the multi-beam, solar array structural 

architecture behaves like an undamped single degree-of-freedom dynamic system of 

parallel springs.  The general fundamental frequency expression for these assumptions is 

Eq. (33).76 

 
1 2

ƒ 1 k
2 m

 =  π  
  (33) 

The mass, m, is located at the tip of the spring.  It is also known that the spring stiffness 

of a clamped-free beam in flexure is represented by Eq. (34). 

 3

3EIk
L

=   (34) 

A relation has been developed as Eq. (35) that approximates the tip mass in terms of a 

distributed mass along the beam length using the Raleigh-Ritz energy method.76 
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 m 0.24wl=   (35) 

The equivalent stiffness of multiple identical beams in parallel is readily expressed 

through Eq. (36). 

 eq 1 2 nk k k k nk= + +… =   (36) 

Substituting Eqns. (34), (35), and (36) into Eq. (33) and adding the frequency knockdown 

factor produces Eq. (37), an expression for the system fundamental frequency of multiple 

clamped-free parallel beams joint at the tip, each of identical bending stiffness, EI, length, 

L, and linear mass density, w. 

 
1 2

4

1 3nEI
2 0.2

ƒ
4wL

 = δ  π  
  (37) 

This expression is expanded to include the relevant solar array mass terms into Eqn (38). 
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  (38) 

This relation is rearranged in terms of flexure stiffness into Eq. (39).  Note that the 

frequency term represents the array system frequency while the flexure stiffness term is 

characteristic of a single primary boom. 
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pb pb

ƒ
L A w A2EI nw

3.536 n L L
 γπ = + +    δ   

  (39) 

Eq. (38) is used to predict the fundamental frequency of the solar array system 

examined herein.  This expression combines the boom stiffness effects using the principle 
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of superposition to represent a system of clamped-free beam-cable structural elements 

joined at the tip arranged parallel. 

4.4 Array Strength 

Now that fundamental frequency is known, a relation for array strength is needed.  

Two assumptions of strength govern this development.  First, the most likely structural 

failure mode is beam flexure strength due to an out-of-plane rectilinear acceleration load 

on the array.  Second, beam failure could occur as either local buckling, crippling, 

material failure, global buckling, or self-contact.  Knowledge of the exact failure mode is 

not important for model development; it is only necessary to have knowledge of the 

maximum moment the array must endure and to have knowledge of the tested limit 

moment of the beam column(s) enduring that load. 

The fundamental equation governing inertial loading is developed through first 

principles.  Consider a slender beam cantilevered from the spacecraft bus.  A rectilinear 

acceleration load is applied to a mass-less bus which imparts an inertial load onto the 

beam.  The beam root must react that inertial load with a moment.  Examination of the 

free body and kinetic diagrams of this beam in Figure 26 reveals that the distributed 

inertial force is represented by Eq. (40) which is a function of the beam distributed mass 

and the rectilinear acceleration applied at the root. 

 F(x) m(x)ag=   (40) 

The total reaction moment at the root is quantified by Eq. (41) as the integration 

of the distributed inertial load along the beam length.  
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L L

0 0
M F(x) xdx m(x)ag xdx= =∫ ∫   (41) 

Assuming an evenly distributed mass, the root moment reduces to Eq. (42), 

indicative of a constant distributed inertial load along the beam as expected for a 

rectilinearly applied acceleration.  Note that rotational root acceleration would yield a 

linearly distributed inertial load varying from zero at the root to a maximum at the tip. 

 
2w(ag)LM

2
=   (42) 

This expression for the required moment on a single beam is expanded into 

Eq.(43) for an arrangement of multiple clamped-free beams in parallel.  The mass term, 

w, from Eq. (42) represents the total array mass divided among the quantity of primary 

booms.  And the acceleration term, ag, represents to total array loading in Eq. (42) 

therefore is divided by the boom quantity when expanded into Eq.(43).  Each boom 

carries an equal portion of the inertial mass loading.  This leads to an important 

application point—the acceleration loading is applied to the entire array model, but the 

moment term represents the reaction at each individual primary boom. 

 
2

pbb sb
pb 2

pb pb

agLA w A1M nw
n L L 2
 γ

= + +  
 

  (43) 

This relation is used to represent the maximum design moment of each primary boom 

used in the solar array architecture. 
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Figure 26.  Free-body and kinetic diagrams of a beam with translational acceleration applied at 

the root. 

4.5 Observations 

The previous analytic development of cables and slender beams provides a logical 

framework to evaluate the tensioned blanket solar arrays parameters that affect the 

fundamental frequency of structural vibration in either bending or torsion modes.  Three 

empirical cases substantiated this analytic framework.   

For most practical applications blanket shear tension stiffness effects are 

secondary to extensional effects therefore a cable is sufficient to approximately represent 

an array blanket that has an aspect ratio of at least five with the realization that smaller 

aspect ratios may also be relevant provided the beam torsion stiffness is sufficiently 

greater than the bending stiffness.   
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A useful analytical tool is developed to provide a quick assessment of 

fundamental mode of structural vibration.  The special case that does not hold true to this 

tool is that of a single support boom with a very low ratio of torsion stiffness to bending 

stiffness.  This case is likely to be dominated by blanket shear effects. Nevertheless the 

present study neglects blanket shear-torsion effects based on the assumption that array 

designers will avoid torsion modes due to the spacecraft attitude determination and 

control challenges.  Therefore the fundamental mode of vibration for a solar array winglet 

is approximately captured by the coupled out-of-plane motion of a beam-cable assembly 

for most practical column types and blanket aspect ratios.   

Similarly a large array system of winglets supported by a substantial truss or a 

composite tube backbone boom is likely to also respond in a bending mode of natural 

vibration.  On the other hand, if the backbone boom is a lightweight truss or if the array 

system has a very large aspect ratio, the fundamental mode of structural vibration is 

expected to be torsion. 

This chapter also presented a new fundamental frequency solution for a beam-

cable assembly that is demonstrated to adequately represent the coupled dynamic 

behavior of a long, narrow membrane blanket joined to a cantilever beam.  Blanket 

fundamental frequency dynamics are adequately captured by this simple cable solution 

for tensioned blanket solar array architectures. 

Furthermore the coupled beam-string fundamental frequency solution is 

insensitive to changes over the structural mass fraction range considered, β = 0.01 to 0.5, 

but is highly sensitive to changes in the cable tension.  This leads to a convenient 
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optimization of the cable tension with respect to the beam-column critical Euler load.  

The desired cable tension should be equivalent to 21% of the critical Euler load.  The 

system fundamental frequency of vibration at this optimized tension level is always less 

than the closed-form clamped-free beam prediction by approximately 30%.  This 

conclusion may be put into practice by applying a knockdown factor δ = 0.76 to the 

closed-form solution.  Further application of this observation is that if the blanket mass is 

distributed along the beam as is common practice, the fundamental frequency will always 

be over-predicted by, again, about 30%.  Conversely, if the array blanket is, in fact, joined 

to the beam continuously along the beam length, the frequency will be increased by the 

same margin. 
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CHAPTER 5. CONSTRAINT ANALYSIS SOLUTION 

In this chapter the loading equations are combined with the beam efficiency index 

to form the array weight equation in terms of the requirement constraint terms and the 

array design terms.  The first half of the chapter derives the weight equation, culminating 

at the apex of numerical complexity—a transcendental equation for array mass that is 

solved by numerical methods.  Constraints are then imposed onto this solution, 

minimizing array mass and minimizing beam cost.  Using these constraints the complex 

numerical solution of roots is simplified into an approximate symbolic expression for 

array mass.  This simplification process leverages a design of experiments process along 

with linear and power function regression techniques.  Appendix B is provided to 

supplement to this chapter with greater detail regarding this regression analysis. 

5.1 Numerical Model Development 

The relations for array frequency and strength, Eqs. (39) and (43) respectively, are 

first substituted into the beam efficiency index introduced earlier as Eq. (4).  The result is 

Eq. (44), a complete expression for the linear mass density of a single primary boom, a 

transcendental equation due to the dual location of the beam mass term.  Note that 

numerical values have been substituted for two known constants:  the frequency 

knockdown factor and the gravitational acceleration constant. 
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Finally this expression for primary boom mass is substituted into the array weight 

equation to form Eq. (45). 
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  (45) 

This equation is solved symbolically using the numerical methods available in the 

Mathematica© commercial software package. 

5.2 Approximation Model Development 

The purpose of developing the approximation model is to simplify the weight 

equation solution into readily usable metrics that ultimately inform solar array structural 

scaling behaviors.  This is accomplished by first subjecting the equation to constraints, 

minimizing array mass and beam cost.  Once the approximation model is developed 

symbolic expressions are derived by observing the relative influence of each design 

parameter on the objective constraints through a regression analysis.  

Table 7 lists each term discretized into a practical range for study.  Notice that the 

acceleration loading and fundamental frequency terms are combined to form a single 
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loading term, a simplifying step based on inspection of Eq. (44).  Initial observations of 

the relative influence of parameters reveal that the array areal density term is highly 

sensitive to small changes in area and length.  Therefore these terms were discretized into 

more steps than the others.  A total of 2,430 unique design cases were investigated based 

on the unique combinations of the seven independent parameters listed in the table. 

 The relative influence of these terms was explored through an informal design of 

experiments study.  For the seven independent parameters listed in Table 7, the maximum 

and minimum of each was first considered in constructing a reduced experiment set of 27 

cases.  Each is plotted against the dependent parameter, array areal mass density, using 

the weight equation previously expressed as Eq. (45). 

One observation from these results is the consistent relationship between array 

mass density and the beam efficiency index.  It is clear that a minimum desired value 

exists beyond which increasing beam efficiency has little effect on reducing areal mass 

density.  Higher beam index values require greater structural hierarchy leading to more 

complex deployable boom assemblies and larger stowed volumes; therefore the minimum 

index is preferred.  For example, a continuous longeron mast constructed with pultruded 

S2 glass rods has a moderate beam index of μ = 224 N3/5m9/5/kg and has flown 

successfully many times on-orbit since the 1960’s.22,81  The ATK TriLok® boom is an 

example of greater hierarchy, a truss of tubes that has not yet been demonstrated on-orbit.  

The TriLok® has a high beam index of μ = 1268 N3/5m9/5/kg.22  But the deployment 

mechanism is more complex, and the boom does not package as well as the continuous 

longeron masts.  While beams of higher index values correlate to greater mass savings, 
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they are also typically more costly and may require larger packaged volumes.  Array mass 

must be minimized but not at the expense of excessive growth in beam efficiency (i.e., 

cost).  Both must be simultaneously minimized. 

Table 7.  Discretized range of design parameters used to define 2,430 unique structural 

architectures. 

            

   
Discretized Range 

 
Units 

Objective Constraint 
    

 
Areal Mass Density γ 0 - 10 

 
kg/m2 

Array Performance Constraints 
    

 
Loading Term a ƒ [0.00001, 0.01, 1] 

 
Hz 9.81 m/s2 

 
Area A [10, 60, 200, 600, 2000] 

 
m2 

Primary Boom Properties 
    

 
Beam Efficiency Index μ  1 - 5000 

 
N3/5m9/5/ kg 

 
Length Lpb [5, 10, 15, 20, 25, 30] 

 
m 

 
Quantity n [1, 2, 10] 

 
 -- 

Blanket Properties 
    

 
Areal Mass Density γb [0.5, 1, 2] 

 
kg/m2 

Spreader Bar Properties 
    

 
Linear Mass Density wsb [1, 3, 5] 

 
kg/m 

            
 

A typical example of the relationship between the array areal mass density and the 

beam efficiency index is shown in Figure 27.  It is clear that minimizing array mass 

quickly leads to the trivial solution of infinite beam efficiency.  Array mass asymptotes 

toward the blanket mass constant value.  The minimum desired beam efficiency value is 

readily identified in the figure at the “knee in the curve”, a location identified where the 

slope is negative unity as expressed by Eq. (46).   
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 min max

max min

10
5000

γ − γ −
=

µ −µ
  (46) 

It is important to note that this slope is dependent upon the practical ranges 

selected previously in Table 7.  Namely the areal mass density range from 0 to 10 kg/m2 

and the beam efficiency index range from 1 to 5000 N3/5m9/5/kg.  

 

Figure 27.  A typical response between the array areal mass density and the beam efficiency 

index. 

This figure represents an example case of a medium sized array, 30 meters long 

by 2 meters wide, supported by two booms subjected to a high combined loading,  

af  = 1 Hz-9.81 m/s2, with a spreader bar density of 2 kg/m and a blanket areal density of 

1.0 kg/m2.  For this case the minimum desired beam efficiency is predicted to be μ = 853 

N3/5m9/5/kg.  If a beam of lower efficiency is used then the array performance 

requirements may still be met, but a disproportionately large mass penalty will be paid.  

On the other hand, choosing a beam with a higher efficiency than the desired will yield 

only a small relative reduction in array mass.  For example doubling the beam efficiency 

[ 853 N3/5m9/5/kg, 2.28 kg/m2 ] 

Total Mass 
Blanket Mass 
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index from 853 to 1706 N3/5m9/5/kg reduces the total areal mass density by 30% from 2.28 

kg/m2 to 1.58 kg/m2, but also increases the hierarchy of the truss leading to more complex 

deployment approaches and larger stowed volumes.  The minimum desired beam 

efficiency index and areal mass density pairs are recorded for each of the 2,430 cases 

using this minimization technique.  This reduces the number of independent terms from 

seven to six. 

A summary of the regression analysis process and results is provided herein.  A 

more complete explanation of the process is provided as Appendix C.  This process 

explores the relationships between the six independent terms on the two dependent terms, 

beam efficiency and array mass, as listed in Table 7.  Each combination of variables is 

explored and the sensitivity of interactions observed and recorded.  Based on these 

observations, the independent terms are rank ordered according to relative influence on 

beam efficiency (and by association array mass).  Reduced sets of the most sensitive 

variable combinations are compared and approximately quantified. These relations are 

then reassembled into an approximation model of the array architecture. 

The sensitivity study begins with one area case, A = 2000 m2.  Through empirical 

examination, a linear relationship is discovered between the terms μ and Lpb.  This linear 

relationship is highly sensitive to changes in the loading term, af, mildly sensitive to 

blanket density, γb, and boom quantity, n, and mostly insensitive to changes in wsb.  This 

relationship is conveniently approximated as Eq. (47) where the constants are further 

defined by Eqns. (48) and (49).  The coefficient of determination, R2, between the 

numerical model data and the regression fit is calculated as the measure of fit goodness.  
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The coefficient of determination is calculated as the average of the squared differences 

between the regression fit and the numerical model data. 

 2
1 pbc L ;R 0.995µ ≈ =   (47) 

 0.215
1

2
2 ;c c (a R 0) 99f .9≈ ≥   (48) 

 0.231
2 3

2Rc c n ; 0.999≥≈   (49) 

 0.176
3

2
bc 9.82 ;R 9953 0.≥≈ γ   (50) 

Substitution of Eqns. (48), (49), (50) into (47) produces an approximate 

expression for the beam efficiency index for one array area, A = 2000 m2. 

 0.216 0.231 0.176
A 2000 pb b9.823L (af ) n=µ ≈ γ   (51) 

This expression is then expanded into a form that represents the behavior of all six array 

areas through further regression.  The difference between the approximation model and 

the numerical model is captured by Eq. (52) followed by the regression fit for this 

expression as Eq. (53). 

 numerical 4 approximationcµ ≈ µ   (52) 

 2
4 0.245

6.450c ;R 0.98
A

≈ ≥   (53) 

Equation (51) and (53) are substituted into Eq. (52) to form Eq. (54), a general form that 

approximately represents the minimum desired beam index value for all the solar array 

architectures considered within the full parametric space. It is noteworthy that the 

spreader bar mass term does not appear in this expression, indicating that the mass 

contribution of that component does not appreciably affect the primary boom mass 

scaling.   
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µ ≈ γ   (54) 

This expression for the beam index is also useful for approximating the array areal 

density since it is directly related to beam mass.  Eq. (55) is readily developed by 

performing a power regression on the 2,430 data points between the analytic model and 

the approximation model.  

 ( )0.923
pb

2 0.0024 ;R 0.998γ µ ≥≈   (55) 

This expression is then substituted into the weight equation to form Eq. (56), an 

approximate symbolic representation of the transcendental weight equation expressed 

previously as Eq.  (45). 
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  (56) 

This expression represents an approximation of the array areal mass density given 

that the beam(s) used to support the array are characterized by the minimum desired 

beam efficiency index described by Eq. (54). 

This approximate relation for array mass is compared to the numerical model 

solution from Eq. (45) to provide a statistical evaluation of the goodness of fit.  Figure 28 

provides a visualization of the fit.  The coefficient of determination between the two 

models is R2 = 0.00247 kg2/m4; the standard deviation is σ = 0.04883 kg/m2; the 

maximum deviation is 0.1809 kg/m2; and the minimum deviation is -0.2161 kg/m2 as 

listed on the figure.  This fit provides strong confidence that the approximation model 

adequately captures the structural behavior of a tensioned blanket solar array system with 
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similar minimization of array mass and beam efficiency (i.e., cost) as the objective 

functions to be minimized. Only a lengthy root-based solution was available prior to 

development of the approximation model, highlighting the value of a simple but 

reasonably accurate approximate solution. 

 

Figure 28.  The approximation model areal mass density data is compared to the numerical 

model to show fit goodness. 
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5.3 Observations 

The constraint analysis process used in this chapter successfully distills a complex 

numerical solution for solar array mass into an approximation model that is recognizable 

and of adequate accuracy and simplicity.  The outcome is the ability to readily compare 

scaling effects of rectangular tensioned blanket solar array architectures. 
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CHAPTER 6. RESULTS 

6.1 Metrics Development 

Now that the validity of the approximation model has been established, practical 

metrics are extracted and used to enlighten the understanding of scaling rectangular 

tensioned blanket solar arrays.  First, the constant is dropped from Eq. (54) and the 

expression is separated into two terms of influence: the requirements parameter and the 

architecture parameter expressed as Eqns. (57) and (58) respectively.  

 
0.216

r 0.245

(af )
A

η =   (57) 

 0.231 0.176
a pb bL nη = γ   (58) 

The unusual powers related to these terms are a result of the regression techniques used 

to generate this approximation model.  The requirements parameter terms are grouped 

according to what a mission planner would typically dictate to an array designer:  

maximum acceleration loading, minimum fundamental frequency, and minimum power 

production (i.e., deployed area).  The architecture parameter includes terms usually 

available for manipulation by the array designer:  array length, quantity of beam-column 

supports, and blanket areal mass density.   

The requirements and architecture parameters are recombined to form the array 

scaling parameter expressed as Eq. (59). 
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The scaling parameter quantifies the relative penalty of scaling the array.  When 

comparing two arrays with the same scaling parameter, by definition both require the 

same beam performance (i.e., beam efficiency index) to maintain a low areal mass 

density. As an example, increasing the acceleration loading and fundamental frequency 

requirements translates into the need for higher performance support columns.  If the 

frequency or acceleration requirement doubles, the required beam efficiency index 

increases by a factor of 1.16.  Similarly if the blanket density doubles, the required beam 

performance increases by a factor of 1.13. 

The column affects array scaling as well.  Doubling the length of the array for a 

given area requires doubling the beam efficiency index.  Whereas doubling the number of 

primary booms increases the beam efficiency requirement of each boom by only a factor 

of 1.17.  Therefore the shortest array with the fewest number of booms always provides 

the most mass efficient architecture, but if forced to choose between reducing length and 

reducing boom quantity, the length will have a much greater positive impact on array 

mass and cost.    

It is also clear from this parameter that the most mass efficient means to grow the 

array area, and thus power production, is by increasing the blanket width rather than the 

length.  In fact if all other terms are constant, increasing the array width actually 

decreases the overall areal mass density.  This is explained by considering that only 
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blanket areal mass density is being added without the need for additional boom length 

(i.e., mass).   

Of course, design practice informs us that as the blanket width grows so does the 

mass of the spreader bar and blanket storage box.  But this additional mass growth is a 

secondary effect when compared to the mass and structural performance penalty of 

growing length of the primary support boom.  Admittedly, the spreader bar has a 

considerable mass impact on extremely large aspect ratio arrays.  However blankets with 

aspect ratios greater than one are not likely to be implemented in practice due to the 

practical challenges of construction.  Even an aspect ratio of one provides the opportunity 

for assembling multiple long, narrow blankets to a pair of foldable, low mass spreader 

bars, joined to a single beam-column support.  The principle holds true that short, wide 

array segments are always more mass efficient than those that are long and narrow. 

Figure 29 provides a visualization of the relationship between the beam efficiency 

index and the array scaling parameter.  As the array scaling parameter increases, beams of 

greater performance are needed to maintain a reasonably low areal mass density.  As such 

the penalty parameter may be considered a measure of scaling penalty.  As a specific 

design case moves upward and leftward on the figure, some array mass efficiencies will 

be realized but at an increasingly high beam efficiency growth.  As the beam efficiency 

index grows, the structural hierarchy of that beam must also increase leading to more 

complex deployment mechanisms and larger stowed volume geometric forms and higher 

cost.  For example, doubling the beam efficiency from this baseline yields a 30% 

reduction in array mass, and this relationship continues asymptotically such that as the 
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beam efficiency index approaches infinity as the beam mass approaches zero, leaving the 

array mass as only the sum of the blanket and spreader bar.   

 

Figure 29.  The beam efficiency index is related to the solar array scaling parameter. 

The baseline curve represents simultaneous minimization of array mass and beam 

efficiency.  Increases in beam efficiency into the upper left-hand quadrant yield minimal 

reductions in array mass.  On the other hand, array designs that move downward and 

rightward in Figure 29 gain weight at an increasingly disproportionate pace when 

compared to the beam efficiency index.  Designs in this quadrant will be very massive 
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but may have the opportunity to save some costs by implementing low-hierarchy beam 

architectures.   

While the extreme corners of both quadrants of Figure 29 should be avoided, 

moving below the baseline is especially undesirable.  Moving above the baseline may be 

preferred in unique cases where the gains in beam efficiency are achieved at a low 

monetary cost or if an array of extremely high mass efficiency is needed to meet unusual 

mission requirements. 

Three heritage array systems are readily compared using this scaling parameter.  

Table 8 lists the specifications for each example considered: Terra, Milstar, and ISS.  

Figure 29 shows that the Milstar array lies closely to the baseline while the ISS array falls 

just below and Terra just above.  Milstar uses a continuous longeron mast to meet a light 

loading requirement while the ISS uses an articulated truss to meet a relatively severe 

loading requirement.  The ISS array also has the additional requirement of retractability, 

likely requiring additional design features that diminish structural performance.  The 

Terra spacecraft array on the other hand pushes up into the very high mass efficiency 

range due to relatively short, 8.92 meters, but wide, 5.08 meters, aspect ratio and the 

efficient continuous longeron mast used μ = 189 N3/5m9/5/ kg. 

Two additional arrays are represented in Table 8, MegaROSA10 (Roll Out Solar 

Array) and MegaFlex14,15.  Both are ground prototype systems but are different in their 

geometric form.  MegaROSA is a rectangular architecture that fits within the assumptions 

of the present study while MegaFlex is circular in form, constructed from a series of spars 

arranged radially with blanket gores attached continuously along the edges of these spars.   
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The MegaROSA prototype is included to show how an alternative dual-column 

architecture compares to a heritage single-column system.  The Mega ROSA data is 

provided courtesy of Mr. Steve White, Deployable Space Systems, Inc., Goleta, CA.  

Notice the similarities and differences between MegaROSA and Milstar.  Both have a 

similar boom length and loading requirement, but MegaROSA has twice the quantity of 

booms and almost twice the deployed area.  The mass penalty for using two columns 

instead of one is evident by the higher scaling parameter:  η = 2.39 for MegaROSA and  

η = 2.14 for Milstar.  However the MegaROSA architecture makes up for that penalty 

with a lighter blanket and lighter spreader bar.  And since the MegaROSA architecture is 

70% wider than Milstar, more area is available for power conversion.   

Recall that increasing area by growing the width is much more mass efficient than 

growing the length.  Since no beam efficiency index is available for the MegaROSA 

columns, it is not possible to plot this example on Figure 29.  However, Eq. (54) provides 

a means of estimating the minimum optimum beam efficiency to be μ = 151.  Ultimately 

ROSA shows close similarity to Milstar in areal mass density performance despite the use 

of two columns instead of one and despite almost twice the deployed area.  Ultimate 

selection of one architecture over the other in practice would depend upon additional 

subjective considerations such as the projected cost, mechanical complexity, and 

reliability of the deployment as well as the packaged volume penalty and packaged form 

factor. 

The MegaFlex array is listed to show the performance of an alternative geometric 

form.  The MegaFlex data is provided courtesy of Mr. Mike McEachen, ATK Space 
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Systems, Goleta, CA.  Since the scaling parameter has been developed for the rectangular 

form it is not appropriately used to compare the MegaFlex prototype to MegaROSA.  

Nevertheless, a comparison of performance specifications is informative.  MegaROSA 

and MegaFlex have both been sized for similar missions; the deployed area and loading 

requirements are nearly identical.  MegaFlex was sized with ten radial spars while 

MegaRosa uses two primary booms.   The mass density of each architecture was 

separated into a cantilevered mass and a root mass where the cantilever mass includes the 

primary booms or spars, blanket or gores, and spreader bar or tip mandrel if used.  This 

cantilever mass was separated due to the high contribution toward structural sizing and 

thus fundamental frequency and strength.  The root mass on the other hand includes the 

root structure known as the pallet or the panel in addition to the root mechanisms such as 

deployment motors, hub assemblies, and restraint devices.   

Notice that the mass density performance is very similar between the two 

architectures.  MegaROSA has a slightly higher cantilever mass density of γ = 1.29 kg/m2 

compared to γr = 1.16 kg/m2 for MegaFlex.  But MegaFlex has a higher root mass density 

of γr = 0.593 kg/m2 compared to γr = 0.105 kg/m2 for MegaROSA.  The root mass density 

terms are normalized against the deployed area for ease of comparison. 
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Table 8.  Design specifications and scaling metrics for three heritage and two ground prototypes. 
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A second metric is developed by dividing the array scaling parameter, Eq. (59), by 

the total areal mass density.  The result is the array scaling index listed as Eq. (60). 

 
0.176

0.216 0.231 0.755 b
pb(af ) n L A

m
γ

κ =   (60) 

While the previously defined scaling parameter is useful for comparing structural 

architecture options on an even playing field, the scaling index serves a slightly different 

purpose as it informs mission planners how the array requirements—acceleration loading, 

fundamental frequency, and array area—affect the array mass.  This index is useful 

during the early stages of mission planning when the array requirements are being traded 

against other subsystem requirements within the overall mission concept, and the array 

architecture is unknown. 

The scaling index is separated into two indices for clarity.  First the acceleration 

and fundamental frequency terms form the loading index given as Eqn (61).   

 
0.176

0.231 0.755 b
l pbn L A

m
γ

κ =   (61) 

This index is plotted in Figure 30 for three loading requirement values.  This figure 

shows that as the loading index grows, the support structure mass must grow 

proportionally in order to meet the growing strength and stiffness demand of a larger, 

longer, more massive array.  This figure also shows that the rise in structural mass occurs 

more sharply for higher loaded arrays and more gradually for lesser loaded arrays.  The 

scaling index is modified again, this time the area term removed to form the power index 

shown as Eq. (62).   
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The power index is plotted in Figure 31 to show the relative mass penalty of five different 

array sizes.  The effect is similar to that shown by the loading index where the larger the 

area, the steeper the growth in structural mass. 

 

Figure 30.  Loading index related to array structural mass fraction for three acceleration and 

frequency values. 
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Figure 31.  Power index related to structural mass fraction for a wide range of array areas to 

show the relative structural mass penalty of increasing the loading, length, blanket mass, and boom 

quantity. 

One conclusion from these two figures is that the structural mass of very large, 

highly loaded arrays grows much more quickly than small area, lightly loaded arrays such 

as those currently in use today.  The scaling index is a penalty quantity that must be 

minimized in order to minimize array mass.  Boom length is the most influential variable 

in the scaling index that should be aggressively minimized. 
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General conclusions may be drawn from the scaling parameter and the scaling 

index.  Both metrics handsomely reward reductions in array length for a constantly held 

area, and these both prefer fewer primary booms.  Short, wide arrays supported by a 

single column are always more mass efficient than long, narrow arrays supported by 

multiple columns for a given array area, strength, and frequency requirement.  Three 

terms have a similar inverse effect on beam efficiency: array loading, boom quantity, and 

blanket areal mass density.  Each term scales according to a factor of about two-fifths.   

Reducing the blanket areal density has a direct additive effect on solar array mass 

according to Eq. (59).  In fact the blanket mass remains the single most significant 

contributor to the total mass of the array (i.e., for this study, the mass of non-cantilevered 

components were neglected: boom deployment mechanism, blanket containment pallet, 

yoke structure, and Solar Array Drive Assembly).  When considering methods to reduce 

this mass, it is important to remember that the vast majority of this mass comes from the 

photovoltaic cell.  The blanket substrate is typically a low-mass, thin membrane polymer 

or high-strength, open weave fabric.  The past 30 years of advancements in blanket 

construction techniques and materials have yielded little improvement in total blanket 

areal mass density, and the future does not currently show much promise in this area.  

However, small reductions in cell mass would yield a sizable reduction in array mass.  

Perhaps advancements in cell construction techniques will yield mass improvements in 

the years to come. 
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6.2 Practical Application 

Four practical example cases are presented to further demonstrate the utility of the 

scaling metrics.  Table 9 lists the array requirements, design parameters, and resulting 

metrics for each case.  

Table 9.  Example cases to represent solar array scaling effects. 

  

 

Case 1 Case 2 Case 3 Case 4 Units
Requirements Input

Wing Power (BOL) – 15 15 15 100 kW
PV Cell Efficiency – 29.5 29.5 33 33 %
Wing Area A 60 60 52 345 m2

Acceleration Load a 0.1 0.1 0.1 0.1 9.81 m/s2

Fundamental Frequency ƒ 0.2 0.2 0.2 0.2 Hz 
Size Input

Length Lpb 30 10 8.7 15 m
Width W 2 6 6 23 m
Boom Quantity n 1 2 2 4 –
Blanket Mass Density γb 1.5 1.5 1.5 1.5 kg/m2

Spreader Bar Mass wsb 1 1 1 3 kg/m
Results

Array Scaling Parameter η 5.08 1.99 1.79 2.28 m0.374 kg0.176 / s0.648

Requirements Parameter ηr 0.158 0.158 0.163 0.103 1 / (m0.274 s0.648)
Architecture Parameter ηs 32.2 12.6 11.0 22.2 m0.648 kg0.176

Array Scaling Index κ 2.50 1.10 0.99 1.18 m2.374 / (kg0.824 s0.648)
Minimum Beam Efficiency μ 322 126 113 144 N3/5m9/5/ kg
Wing Mass m 122 108 94 668 kg
Mass Reduction from Case 1 – – 11% 23% – –
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The first three cases represent a communications spacecraft that requires 30 kW 

of power at the beginning of service life.  State of practice triple junction PV cells will be 

used.  According to Table 2 these cells generate 250 W/m2; therefore the total required 

deployed area is 120 m2, 60 m2 for each of two wings.  The maximum acceleration load 

expected on the deployed array is 0.1 g, and the minimum required fundamental 

frequency is 0.2 Hz.  From these terms, the requirements parameter is calculated using 

Eq. (57) to be ηr = 0.158. 

Now that requirements have been established, four different structural 

architectures are considered.  The first case is constructed with a single blanket 30 meters 

long by 2 meters wide, supported by a single beam-column.  From Table 2, blanket mass 

density is taken to be γb = 1.5 kg/m2.  The architecture parameter is then calculated from 

Eq. (58) to be ηs = 32.2.  The product of the requirements and architecture parameters 

becomes the scaling parameter, η = 5.08.  This value, when plotted on Figure 29, 

correlates to a beam efficiency index of μ = 322.  The array mass is estimated from Eq. 

(56) to be m = 122 kg. 

The second case consists of the same blanket area as the first but is shorter,  

10 meters long by 6 meters wide, and is supported by two beam-columns instead of one.  

Again, the blanket mass is 1.5 kg/m2.  The architecture parameter for this case is ηs = 

12.6, and the scaling parameter is η = 1.99.  The beam efficiency index is less than half 

that of the first case, μ = 126, and the total mass is reduced to m = 108 kg.  Interestingly, 

the penalty paid for using two columns is easily overcome by the benefits of a shorter, 
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wider aspect ratio.  The payoff of the reduced beam index is reduced structural hierarchy 

and reduced cost. 

The third case considers upgraded PV cells from the XTJ/ZTJ state of practice to 

an IMM cell type, yielding a boost in conversion efficiency from 29.5% to 33%.  This 

upgrade allows a smaller deployed area, 52 m2, per wing since the areal power density 

has increased to 290 W/m2.  The requirements parameter is recalculated to be ηr = 0.163.  

Keeping the width and boom quantities as defined previously as case 2 but reducing the 

array length to 8.7 meters, the architecture parameter reduces to ηs = 11.0, and the scaling 

parameter reduces to η = 1.79.  The beam efficiency index for case 3 is μ = 113 and the 

total mass is m = 94 kg; both are slightly lower than those of case 2 by 10% and 13% 

respectively.  The beam efficiency index reduction is a direct result of reducing the array 

area length from 10 meters to 8.7 meters, and the mass reduction is a result of reducing 

the area from 60 m2 to 52 m2. 

A fourth case examines the mass and cost penalties of scaling to higher power 

arrays.  Consider a 400 kW array where each wing is split into two 100 kW winglets, 

joined by a backbone boom.  Assuming 33% efficient IMM cells, the area of each winglet 

needs to be 345 m2.  The strength and frequency requirements are 0.1 g’s and 0.2 Hz 

respectively, yielding a requirements parameter of ηr = 0.103.  Blanket mass is again 

assumed to be γb = 1.5 kg/m2.  The length of each winglet is 15 meters and the width is 23 

meters.  Four primary booms are used to support the blanket therefore the architecture 

parameter is ηs = 22.2.  The scaling parameter is η = 2.28, and the minimum beam 

efficiency index is μ = 144.  The winglet mass is estimated to be 668 kg.  Estimating the 
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200 kW wing mass requires an estimation of backbone boom mass, primary boom 

deployment mechanisms mass, and blanket box mass.  Each of these is lumped into a 

conservative backbone mass of 10 kg/m.  The total wing mass is 1566 kg, and the total 

effective areal mass density is γ = 2.27 kg/m2.  Note that for this example, the blanket 

mass comprises 66% of the total and the structure and mechanism is 34% of the total.  It 

would be difficult to improve this mass performance.  For an array of this size, the 

packaged volume performance and deployment reliability are likely to be far more 

important considerations than mass efficiency. 

The scaling index is useful when power or loading requirements are not well 

defined, but perhaps the array mass limit is known such as during mission concept 

planning.  Figure 30 and Figure 31 show the relative mass scaling of different array 

architectures given a constant total mass requirement. 

Before concluding, some comments are offered regarding packaging performance.  

Packaging is an important consideration for evaluation of solar array architectures, but it 

is difficult to quantify generally and fairly across multiple architectures.  The boom 

quantity and efficiency index both likely have a direct relation to packaged volume, but 

detailed design information of deployment mechanisms is needed in order to quantify 

these effects.  Blanket packaged volume on the other hand is readily quantified with 

knowledge of deployed area.  Additional work is needed to quantify the relationship 

between structural performance and packaging performance. 
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CHAPTER 7. CONCLUSIONS 

7.1 Summary 

Simplified structural metrics have been successfully established for rectangular 

flexible blanket photovoltaic solar array architectures.  This approach considers the solar 

array structure as a system of beam and tensioned blanket components rather than as a 

beam component with a distributed mass.  A structural model was developed using 

constraint analysis methods, solved using numerical root finding algorithms, and 

simplified into an approximation model using regression techniques.  From this process, 

an array scaling parameter and an array scaling index emerged. 

To support the scaling parameter development, a relation was developed to 

approximate the fundamental frequency of a clamped-free, beam-cable assembly.  It was 

discovered that the well-known beam-only fundamental frequency of vibration solutions 

will always over predict the frequency of a distributed mass blanket system by 30%.  A 

more accurate solution is to couple the frequency knockdown factor, δ = 0.76, with the 

beam-only solution in order to account for the combined effects of the beam and the 

string.  It was established through on-orbit examples and comparison of beam torsion 

stiffness to bending stiffness ratios that this beam-string relation adequately represents a 

beam-blanket assembly for the purposes of architecture comparison. 

Both the scaling parameter and the scaling index are useful tools for comparing 

tensioned blanket solar array structural architectures.  Both are developed on the basis of 

minimum array mass and minimum beam efficiency (i.e., cost). 
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The scaling parameter is useful for comparing structural architecture options on 

an even playing field.  It provides perspective into the source of mass efficiency 

differences by quantifying the mass effects of different boom architectures.  One 

significant conclusions drawn from this parameter is that short, wide arrays that are 

supported by a single column are always more mass efficient that long, narrow arrays 

supported by multiple columns for a given array deployed area, strength and frequency. 

The scaling index serves a slightly different purpose as it informs mission 

planners how the array requirements—acceleration loading, fundamental frequency, and 

array area—affect the array mass.  This index is useful during the early stages of mission 

planning when the array requirements are being traded against other subsystem 

requirements within the overall mission concept. 

Practical application of the scaling parameter and scaling index were 

demonstrated.  The latest heritage flexible blanket solar array systems were compared 

using the array scaling parameter and the array scaling index: Terra (EOS-AM) launched 

in 1999, Milstar constellation first launched in 1994, and the ISS arrays first launched in 

2000.  A practical range of photovoltaic cell types and corresponding areal power 

densities were presented to provide a straightforward translation of deployed area to the 

actual array power production on-orbit.  Two prototype array concepts were listed and 

compared, MegaROSA and MegaFlex. 

While these metrics developed herein quantify the mass penalty of scaling a 

variety of solar array architectures, additional subjective factors must be considered in 

parallel.  For example, the packaged volume and geometric form of the folded array has 
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strong bearing on the launch vehicle cost and space mission flexibility.  Other important 

factors include the ease by which the array can be tested on the ground in a simulated 

space environment and the ease by which the array structural behavior can be analytically 

predicted.  The time and manpower required to assemble an array is another important 

consideration that requires subjective assessment.  Each of these factors ultimately 

influences monetary cost. 

In closing, these metrics provide practical tools aimed at helping those comparing 

structural architectures, those considering mission concepts, and those crafting 

technology investment strategies.  The ultimate purpose is to help set investment 

trajectories on paths that are well-founded on solid structures principles. 

7.2 Limitations 

It is important to note the intended use of the metrics by also specifying the 

limitations for application.  The focus of this work is photovoltaic arrays where 

dimensional stability is not a driving requirement.  Dimensional stability was not 

considered as a constraint thus these metrics are not appropriate for precision structural 

applications such as antennas and optical apertures.  Furthermore, these models are not 

intended to serve detailed structural design activities.  Detailed part sizing is not 

considered.  Instead these models represent trends in structural scaling behavior and 

should be used early in the concept design process. 

7.3 Future Work 

A discussion of the limitations of the current work is naturally followed by an 

exploration of future possibilities.  The present study presents a method for developing 
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structural scaling metrics for a structural system, whereas previous approaches have 

primarily focused on the structural component.  Additional system level scaling metrics 

are needed for other classes of tensioned architectures such as tensioned precision planar 

antennas and precision transmission optical apertures for both rectangular and radial 

configurations. 

Packaging performance of solar arrays is not considered directly herein but 

remains an important consideration.  It is difficult to quantify generally and fairly across 

multiple architectures without knowledge of detailed design information of deployment 

mechanisms.  Additional work is needed to quantify the relationship between structural 

performance and packaging performance for all types of large structural platforms. 

Another field ripe for study is the quantification of deployable structures 

complexity.  Structural architecture selection is currently heavily influenced by the 

perception of design complexity.  Yet this factor has a profound impact on the monetary 

cost of analyzing, building, testing, and operating a spacecraft payload.  This link 

between design complexity and cost demands that mechanical complexity be better 

quantified and tracked especially during the conceptual design phase of the acquisition 

process.  Yet it is at this phase when complexity is most difficult to quantify since no 

detailed drawings, master equipment lists, or labor estimates are available.  Design 

complexity metrics are needed for deployable structures designers and for the spacecraft 

design community as a whole.  
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APPENDIX A. BEAM-CABLE FINITE ELEMENT ANALYSIS 

A finite element model is created to predict the coupled fundamental frequency 

response of a beam-cable assembly and is used to develop a relation that approximately 

represents this response given practical design ranges.  The presumption is that the 

dynamic response of the suspended cable is affected by the motion of the beam to which 

it is attached and vice versa. 

The ABAQUS/Standard80 commercial finite element analysis code is used to 

model the beam-cable assembly.  Figure 32 shows the model components, illustrating that 

the tension load in the cable is equivalent to the compressive load in the beam.  The beam 

is constrained in a clamped-free condition where the root is fixed in all 6 degrees-of-

freedom (3 rotation and 3 displacement), and the tip is free to rotate and translate in all 6 

degrees-of-freedom.  The cable is joined to the two opposing beam ends.  The tip of the 

cable follows the displacement motions of the beam tip, and the root of the cable is not 

allowed to displace due to the fixity of the beam root.  While the figure shows the cable 

deformed for illustrative clarity, the model considers the beam and the cable to be 

collinear in the unperturbed state.  

The structural element options are evaluated based on accuracy in predicting the 

fundamental frequency and critical buckling load.  Six different beam elements and four 

truss elements are compared to represent the column and the blanket respectively.  The 

FE model predictions of fundamental frequency were compared to closed form solutions 

for both the beam and blanket shown as Eqs.(63) and (64) respectively.  
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Figure 32.  An illustration of the beam-cable assembly shows that the cable tension load, P, is 

reacted as an equivalent beam compression load, P.  

Table 10 lists each element type and the error when compared to the closed form 

beam fundamental frequency solution from Eq. (63). The first beam element type listed 

in the table is the linear Timoshenko beam, linear because the shape function and thus 

stress distribution is linearly interpolated between the two nodes at a single integration 

point.  The quadratic and cubic elements use two and three integration points between 

nodes respectively, allowing more accurate stress predictions for a given element but at a 
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computation penalty.  Similarly, elements that use three-nodes yield more accurate 

displacement predictions than two-node elements because the interpolation function is 

raised to second order.  The hybrid formulation adds an additional axial force variable 

that does not seem to make a difference for the loading scenarios in this study where axial 

displacement is not substantial.   

Euler-Bernoulli is a simpler version of the more general Timoshenko formulation.  

Timoshenko includes shear deformation effects that cause these elements to be more 

compliant and thus predict a lower fundamental frequency of vibration than Euler-

Bernoulli.  This is the reason that the table shows a 4% lower frequency by the 

Timoshenko beams.  The Timoshenko formulation is best used to approximate short, 

stout beams with appreciable shear deformation.  The Euler-Bernoulli formulation on the 

other hand is best for slender beams where the ratio of diameter to length is less than 1/15 

as expected for this space structures application.  Furthermore additional integration 

points are appropriate in this case because transverse loading is expected to cause large 

bending deformations but not shear deformations.  Thus the Cubic Euler-Bernoulli beam 

element, B33, is selected to be the most suitable for this application. 
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Table 10.  Beam element type comparison reveled B33 to be the most accurate. 

                      
Element  

Type 
 FEA  Closed Form 

 % Error  Element Description 
 ƒ, Hz  ƒ, Hz 

 
 

B31   0.53403  0.55959  -4.568%  2-node Linear Timoshenko beam, 
transverse shear stiffness, stout     

B31H 
 

0.53403 
 

0.55959 
 

-4.568% 
 2-node Linear hybrid Timoshenko 

beam, transverse shear stiffness 
and deformation, stout 

    
    

B32  0.53409  0.55959  -4.557%  
3-node Quadratic Timoshenko 
beam, transverse shear stiffness, 
stout     

B32H 
 

0.53409 
 

0.55959 
 

-4.557% 
 

3-node Quadratic hybrid 
Timoshenko beam, transverse 
shear stiffness and deformation 
allowed, stout 

    

    

B33 

 

0.55959 

 

0.55959 

 

0.000% 

 
2-node Cubic Euler-Bernoulli 
beam, no transverse shear 
deformation, no warping, slender-
-dia/length < 1/15, transversely  
loaded 

    
    

    

B33H 

 

0.55959 

 

0.55959 

 

0.000% 

 
2-node Cubic hybrid Euler-
Bernoulli beam, no transverse 
shear deformation, no warping, 
slender--dia/length < 1/15, 
transversely loaded 

    
    

    
                      

 

For the elements that represent the cable, fewer options are available.  Four 

elements are tested in the same manner as previously—linear and quadratic truss 

elements, each with a standard and hybrid formulation.  The fundamental frequency 

results were compared from a typical tensioned cable model.  There was no difference 

between the four elements therefore the most computationally efficient element was 

selected, the two-node truss element T3D2.  The compressive stiffness was set to zero.  
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Next a convergence study involving mesh refinement is performed on the coupled 

beam-cable model using the B33 beam elements and T3D2 truss elements.  Fundamental 

frequency is again used as the figure of merit.  Five element lengths were compared on a 

1-meter long typical model:  4 cm, 2 cm, 1 cm, 0.5 cm, 0.25 cm.  Figure 33 shows that 

the frequency drops as element length is shortened—finer mesh densities generate more 

compliant models as expected.  The frequency changed by less than one hundredth of a 

percent from the 1 cm to the 0.5 cm size; therefore 1 cm length is selected.  The beam and 

cable components are therefore each represented by one hundred, equal-length elements. 

 

Figure 33.  Mesh density analysis shows the 1 cm element size to be more than sufficiently accurate. 

The model construction details are shown in Figure 34.  The length and material 

properties are arbitrarily selected for convenience; this is allowable since the model 

outputs of interest—fundamental frequency, mass, and column compression—are 

normalized against known baseline values.  Absolute values are not important. 
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Figure 34.  The finite element model represents a beam and a cable joined at two opposing ends. 

The model was subjected to a series of parametric cases in order to understand the 

impact of cable tension and cable mass on the system fundamental frequency.  The cable 

tension is varied over a range from zero to the critical Euler load, shown as Eq. (65).   

 2
cr 2

EIP
L

= π   (65) 

 

1 meter 

Beam 
EI = 1 N-m2 
A = 0.0001 m2 
ρ = 10,000 kg/m3 
m = 1 kg 
B33 Elements: 100 
Nodes:  101 

Cable 
E = 100,000 N/m

2
 

A = 0.00001 m
2 

T3D2 Elements: 100 
Nodes: 101 

Clamped Boundary 

Cable-to-beam tie constraint 
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The structural mass fraction is varied over a range from 0.01 to 0.5.  Structural mass 

fraction is defined as the ratio of the boom (column) mass to the total mass that includes 

mass of both the boom and the cable.  Changes to the mass fraction in the model were 

accomplished by changing the cable mass density while holding the beam mass constant. 

The cable tension is controlled in the structural model using a temperature 

gradient applied as an initial condition.  In the first analysis step, the cable tensile strain 

directly transfers into the beam column as a compressive load through a rigid tie 

constraint.   The geometric non-linear solver is used in the first step in order to ensure the 

cable tension and beam compression loads are carried over into the second step as pre-

conditions, a linear perturbation dynamic analysis. 

The system fundamental frequency output is recorded as the first non-zero 

eigenvalue frequency regardless of whether the motion is dominated by the beam or by 

the cable.  Figure 35 shows a plot of all results normalized in the ordinate against 

Equation 1, and normalized in the abscissa against Equation 3.  Table 11 documents the 

results of all analysis cases and the frequency of fundamental structural vibration for each 

case.    

Table 12 shows the mode shape of vibration for the two extreme mass ratio cases,  

β = 0.5 and β = 0.01.  The images show the un-deformed and deformed shape of the 

coupled beam-cable; the beam is distinguishable from the cable by the larger cross-

section diameter.  Notice by comparing the two rows in Table 12 that the mass ratio has 

no distinguishable effect on the mode shapes.  The load ratio, on the other hand has a 

sizable effect.  When the beam compressive load and cable tension load is small, the 
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cable deforms past the beam in a sinusoidal shape that is largely independent of the beam.  

However, when the axial loads approach Euler buckling, the tightened cable has almost 

no motion independent of the beam.  The straight cable closely follows the motion of the 

beam. 

 

Figure 35.  Beam-cable FEA results shown normalized against exact frequency and buckling solutions. 
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Table 11. FEA analysis cases and frequency results. 

                  

Mass Ratio 
 

Load Ratio 
 

Fundamental Frequency 
 

Normalized frequency 

mbeam/(mbeam 
+ mcable) 

 
P/Pcr 

 
FEA, Hz 

 

Beam-Only 
Exact, Hz 

 
fFEA/fExact 

0.5 
 

0 
 

0.000000 
 

0.395697 
 

0.00000 
0.5 

 
0.025 

 
0.224310 

 
0.395697 

 
0.56688 

0.5 
 

0.05 
 

0.280170 
 

0.395697 
 

0.70805 
0.5 

 
0.075 

 
0.304140 

 
0.395697 

 
0.76863 

0.5 
 

0.1 
 

0.315460 
 

0.395697 
 

0.79724 
0.5 

 
0.125 

 
0.321020 

 
0.395697 

 
0.81129 

0.5 
 

0.15 
 

0.323560 
 

0.395697 
 

0.81771 
0.5 

 
0.175 

 
0.324340 

 
0.395697 

 
0.81968 

0.5 
 

0.2 
 

0.323980 
 

0.395697 
 

0.81877 
0.5 

 
0.25 

 
0.321100 

 
0.395697 

 
0.81149 

0.5 
 

0.3 
 

0.316340 
 

0.395697 
 

0.79946 
0.5 

 
0.4 

 
0.303060 

 
0.395697 

 
0.76590 

0.5 
 

0.5 
 

0.285570 
 

0.395697 
 

0.72170 
0.5 

 
0.6 

 
0.263420 

 
0.395697 

 
0.66572 

0.5 
 

0.7 
 

0.234970 
 

0.395697 
 

0.59382 
0.5 

 
0.8 

 
0.196520 

 
0.395697 

 
0.49665 

0.5 
 

0.9 
 

0.137640 
 

0.395697 
 

0.34785 
0.5 

 
0.9375 

 
0.102870 

 
0.395697 

 
0.25998 

0.5 
 

1 
 

0.000000 
 

0.395697 
 

0.00000 

         0.2 
 

0 
 

0.000000 
 

0.250261 
 

0.00000 
0.2 

 
0.025 

 
0.113570 

 
0.250261 

 
0.45381 

0.2 
 

0.05 
 

0.146080 
 

0.250261 
 

0.58371 
0.2 

 
0.075 

 
0.163200 

 
0.250261 

 
0.65212 

0.2 
 

0.1 
 

0.173050 
 

0.250261 
 

0.69148 
0.2 

 
0.125 

 
0.178960 

 
0.250261 

 
0.71510 

0.2 
 

0.15 
 

0.182530 
 

0.250261 
 

0.72936 
0.2 

 
0.175 

 
0.184600 

 
0.250261 

 
0.73763 

0.2 
 

0.2 
 

0.185660 
 

0.250261 
 

0.74187 
0.2 

 
0.25 

 
0.185790 

 
0.250261 

 
0.74239 

0.2 
 

0.3 
 

0.184180 
 

0.250261 
 

0.73595 
0.2 

 
0.4 

 
0.177680 

 
0.250261 

 
0.70998 

0.2 
 

0.5 
 

0.167920 
 

0.250261 
 

0.67098 
0.2 

 
0.6 

 
0.155500 

 
0.250261 

 
0.62135 

0.2 
 

0.7 
 

0.138150 
 

0.250261 
 

0.55203 
0.2 

 
0.8 

 
0.115300 

 
0.250261 

 
0.46072 

0.2 
 

0.9 
 

0.080502 
 

0.250261 
 

0.32167 
0.2 

 
0.9375 

 
0.060074 

 
0.250261 

 
0.24005 

0.2 
 

1 
 

0.000000 
 

0.250261 
 

0.00000 
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Table 11. (continued) 
 
mbeam/(mbeam 

+ mcable)  P/Pcr  FEA, Hz  
Beam-Only 
Exact, Hz  fFEA/fExact 

0.1 
 

0 
 

0.000000 
 

0.176961 
 

0.00000 
0.1 

 
0.025 

 
0.075868 

 
0.176961 

 
0.42873 

0.1 
 

0.05 
 

0.098048 
 

0.176961 
 

0.55407 
0.1 

 
0.075 

 
0.110110 

 
0.176961 

 
0.62223 

0.1 
 

0.1 
 

0.117280 
 

0.176961 
 

0.66275 
0.1 

 
0.125 

 
0.121740 

 
0.176961 

 
0.68795 

0.1 
 

0.15 
 

0.124540 
 

0.176961 
 

0.70377 
0.1 

 
0.175 

 
0.126250 

 
0.176961 

 
0.71344 

0.1 
 

0.2 
 

0.127220 
 

0.176961 
 

0.71892 
0.1 

 
0.25 

 
0.127670 

 
0.176961 

 
0.72146 

0.1 
 

0.3 
 

0.126810 
 

0.176961 
 

0.71660 
0.1 

 
0.4 

 
0.122620 

 
0.176961 

 
0.69292 

0.1 
 

0.5 
 

0.116020 
 

0.176961 
 

0.65563 
0.1 

 
0.6 

 
0.107150 

 
0.176961 

 
0.60550 

0.1 
 

0.7 
 

0.095498 
 

0.176961 
 

0.53966 
0.1 

 
0.8 

 
0.079674 

 
0.176961 

 
0.45023 

0.1 
 

0.9 
 

0.055589 
 

0.176961 
 

0.31413 
0.1 

 
0.9375 

 
0.041469 

 
0.176961 

 
0.23434 

0.1 
 

1 
 

0.000000 
 

0.176961 
 

0.00000 

         0.05 
 

0 
 

0.000000 
 

0.125130 
 

0.00000 
0.05 

 
0.025 

 
0.052260 

 
0.125130 

 
0.41764 

0.05 
 

0.05 
 

0.067668 
 

0.125130 
 

0.54078 
0.05 

 
0.075 

 
0.076152 

 
0.125130 

 
0.60859 

0.05 
 

0.1 
 

0.081274 
 

0.125130 
 

0.64951 
0.05 

 
0.125 

 
0.084498 

 
0.125130 

 
0.67528 

0.05 
 

0.15 
 

0.086554 
 

0.125130 
 

0.69171 
0.05 

 
0.175 

 
0.087841 

 
0.125130 

 
0.70200 

0.05 
 

0.2 
 

0.088594 
 

0.125130 
 

0.70801 
0.05 

 
0.25 

 
0.089026 

 
0.125130 

 
0.71147 

0.05 
 

0.3 
 

0.088507 
 

0.125130 
 

0.70732 
0.05 

 
0.4 

 
0.085681 

 
0.125130 

 
0.68473 

0.05 
 

0.5 
 

0.081115 
 

0.125130 
 

0.64824 
0.05 

 
0.6 

 
0.074931 

 
0.125130 

 
0.59882 

0.05 
 

0.7 
 

0.066786 
 

0.125130 
 

0.53373 
0.05 

 
0.8 

 
0.055711 

 
0.125130 

 
0.44523 

0.05 
 

0.9 
 

0.038859 
 

0.125130 
 

0.31055 
0.05 

 
0.9375 

 
0.028984 

 
0.125130 

 
0.23163 

0.05 
 

1 
 

0.000000 
 

0.125130 
 

0.00000 
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Table 11. (continued) 
 
mbeam/(mbeam 

+ mcable) 
 

P/Pcr 
 

FEA, Hz 
 

Beam-Only 
Exact, Hz 

 
fFEA/fExact 

0.02 
 

0.025 
 

0.032557 
 

0.079139 
 

0.41139 
0.02 

 
0.05 

 
0.042200 

 
0.079139 

 
0.53324 

0.02 
 

0.075 
 

0.047547 
 

0.079139 
 

0.60081 
0.02 

 
0.1 

 
0.050798 

 
0.079139 

 
0.64189 

0.02 
 

0.125 
 

0.052861 
 

0.079139 
 

0.66796 
0.02 

 
0.15 

 
0.054188 

 
0.079139 

 
0.68472 

0.02 
 

0.175 
 

0.055027 
 

0.079139 
 

0.69533 
0.02 

 
0.2 

 
0.055527 

 
0.079139 

 
0.70164 

0.02 
 

0.25 
 

0.055840 
 

0.079139 
 

0.70561 
0.02 

 
0.3 

 
0.055545 

 
0.079139 

 
0.70188 

0.02 
 

0.4 
 

0.053808 
 

0.079139 
 

0.67992 
0.02 

 
0.5 

 
0.050958 

 
0.079139 

 
0.64391 

0.02 
 

0.6 
 

0.047081 
 

0.079139 
 

0.59492 
0.02 

 
0.7 

 
0.041964 

 
0.079139 

 
0.53026 

0.02 
 

0.8 
 

0.035003 
 

0.079139 
 

0.44230 
0.02 

 
0.9 

 
0.024411 

 
0.079139 

 
0.30846 

0.02 
 

0.9375 
 

0.018206 
 

0.079139 
 

0.23005 
0.02 

 
1 

 
0.000000 

 
0.079139 

 
0.00000 

         0.01 
 

0 
 

0.000000 
 

0.055960 
 

0.00000 
0.01 

 
0.025 

 
0.020717 

 
0.055960 

 
0.37022 

0.01 
 

0.05 
 

0.029703 
 

0.055960 
 

0.53079 
0.01 

 
0.075 

 
0.033479 

 
0.055960 

 
0.59827 

0.01 
 

0.1 
 

0.035780 
 

0.055960 
 

0.63940 
0.01 

 
0.125 

 
0.037244 

 
0.055960 

 
0.66556 

0.01 
 

0.15 
 

0.038188 
 

0.055960 
 

0.68243 
0.01 

 
0.175 

 
0.038787 

 
0.055960 

 
0.69314 

0.01 
 

0.2 
 

0.039146 
 

0.055960 
 

0.69954 
0.01 

 
0.25 

 
0.039377 

 
0.055960 

 
0.70367 

0.01 
 

0.3 
 

0.039176 
 

0.055960 
 

0.70008 
0.01 

 
0.4 

 
0.037959 

 
0.055960 

 
0.67833 

0.01 
 

0.5 
 

0.035953 
 

0.055960 
 

0.64248 
0.01 

 
0.6 

 
0.033219 

 
0.055960 

 
0.59362 

0.01 
 

0.7 
 

0.029609 
 

0.055960 
 

0.52912 
0.01 

 
0.8 

 
0.024697 

 
0.055960 

 
0.44133 

0.01 
 

0.9 
 

0.017222 
 

0.055960 
 

0.30777 
0.01 

 
0.9375 

 
0.012845 

 
0.055960 

 
0.22954 

0.01 
 

1 
 

0.000000 
 

0.055960 
 

0.00000 
                  

  

  

129 

  



Table 12.  Sample mode shapes of fundamental structural vibration. 
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APPENDIX B. NUMERICAL MODEL MATHEMATICA© CODE 
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Flexible Blanket Solar Array Mass Solution

Mathematica version 8.0

Created by Jeremy A. Banik

24 January 2014

m = Total mass of solar array, kg

A = Total power collecting area of solar arary, m2

Lpb = Length of primary boom HsL supporting an

array winglet cantilevered from spacecraft bus or from a

rigid backbone boom in the case of multiple winglets, m

Lsb = Length of the rigid spreader bar, m

npb = Quantity of primary booms arranged in parallel

wpb = Primary boom mass per unit length, kg � m

wsb = Spreader bar mass per unit length, kg � m

Γb = Photovoltaic blanket areal mass density, kg � m2

M = Primary boom failure moment, Nm

EI = Primary boom bending stiffness, Nm2

Μpb = Primary boom beam index, N3�5 m9�5 � kg

f = Solar array fundamental frequency, Hz

a = Applied acceleration as a fraction of Earth' s grav constant; a * 9.81 m � s2

Constraint Requirements Equations

Total array area :
A = Lsb Lpb;

Primary boom mass per unit length is generically related to the critical
moment and bending stiffness through a beam structural efficiency rating :

Μpb ³ Μpb req =

IM2 EIM1�5

wpb
-- > wpb =

IM2 EIM1�5

Μpb
;

Primary boom moment load requirement
due to lateral inertial loads from a bus translation acceleration :

M ³ Mreq = npb wpb + Γb A � Lpb +
wsb A � Lpb

Lpb

a g Lpb2

2

npb =
1

wpb

2 M

a g Lpb2
-

Γb A

Lpb
+

wsb A

Lpb2
;

Primary boom bending stiffness requirement due to minimum
fundamental frequency of a series of clamped - free beams in parallel :

No tip mass effects-- Energy Methods Approx. for clamped - free, multi - beam

EI ³ EIreq = f
2 Π

3.5355 Η
L2

Lpb4

npb
npb wpb + Γb A � Lpb +

wsb A � Lpb

Lpb
;

wpb =
1

npb

Η 3.5355

f 2 Π
L2

npb EI

Lpb4
-

Γb A

Lpb
-

wsb A

Lpb2
;
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Weight Equation Solution;

H* Objective Function, Array Weight Equation; *L
Γt@Γb_, npb_, wpb_, Lpb_, A_, wsb_D := Γb + npb wpb Lpb � A + wsb � Lpb;

H* Constraint Equations based on acceleration,frequency and beam efficiency *L
g = 9.81;

Η = 0.76;

H* Array HsystemL Frequency *L
EI@npb_, f_, Lpb_, Γb_, A_, wsb_, wpb_D :=

f
2 Π

3.5355 Η

2 Lpb4

npb
npb wpb + Γb A � Lpb +

wsb A � Lpb

Lpb
;

H* Array HsystemL Acceleration Load *L
M@wpb_, npb_, a_, Lpb_, Γb_, A_, wsb_D :=

1

npb
npb wpb + Γb A � Lpb +

wsb A � Lpb

Lpb

a g Lpb2

2

H* Beam HcomponentL Efficiency *L

wpb@M_, EI_, Μpb_D :=

IM2 EIM1�5

Μpb
;

NOTE : Form transcendental equation for wpb by substituting frequency and

strength equations into beam efficiency equation and solve symbolically

using numerical methods to isolate wpb since wpb appears on both sides *L
H* First check the transcendental equation for wpb *L
Print@"Transcendental Equation for wpb = ", FullSimplify@

wpb@M@wpb, npb, a, Lpb, Γb, A, wsbD, EI@npb, f, Lpb, Γb, A, wsb, wpbD, ΜpbDDD;

H* Solve the wpb transendental equation *L
wpbsol@npb_, f_, Μpb_, a_, Lpb_, Γb_, A_, wsb_D :=

Solve@wpb@M@wpb, npb, a, Lpb, Γb, A, wsbD,

EI@npb, f, Lpb, Γb, A, wsb, wpbD, ΜpbD � wpb, 8wpb<DP1T �� FullSimplify

Print@"First Root, Numerical Solution, of wpb Transcendental Equation = ",

wpbsol@npb, f, Μpb, a, Lpb, Γb, A, wsbDD;

H* Substitute wpb solution into weight equation and solve for Γt *L
Print@"Polynomial Equation for Γt = ",

FullSimplify@
Γt@Γb, npb, wpbsol@npb, f, Μpb, a, Lpb, Γb, A, wsbD, Lpb, A, wsbDDD;

Γtsol@npb_, f_, Μpb_, a_, Lpb_, Γb_, A_, wsb_D := FullSimplifyA
ΓtAΓb, npb, wpbsol@npb, f, Μpb, a, Lpb, Γb, A, wsbDP1,-1T, Lpb, A, wsbEE;

H* @@1,-1DD refers to the first part, 1, of the last part, -1,

in the list, thus the numerical value for wpb in the numerical

solution for wpb once all variables have been defined numerically *L
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Transcendental Equation for wpb =
404.201 IH1.33333 + 2 wpbL3M1�5

Μpb

First Root, Numerical Solution, of wpb Transcendental Equation =

:wpb ® RootB-
2.4415117612351574948801638846377 ´ 1047

Μpb5
-

1.0986802925558208726960737480870 ´ 1048 ð1

Μpb5
-

1.6480204388337313090441106221304 ´ 1048 ð12

Μpb5
-

8.240102194168656545220553110652 ´ 1047 ð13

Μpb5
+

9.546708625427331702887143019145 ´ 1033 ð15 &, 1F>

Polynomial Equation for Γt =

:0.666667 + wpb ® RootB-
2.4415117612351574948801638846377 ´ 1047

Μpb5
-

1.0986802925558208726960737480870 ´ 1048 ð1

Μpb5
-

1.6480204388337313090441106221304 ´ 1048 ð12

Μpb5
-

8.240102194168656545220553110652 ´ 1047 ð13

Μpb5
+

9.546708625427331702887143019145 ´ 1033 ð15 &, 1F >

Minimum Optimum Μpb Solution;
Baseline Definitions of Variables
f = 1;

Γb = 1;

wsb = 3;

npb = 2;

Μpb =.; Μpbmin = 0; Μpbmax = 5000;

Lpb = 30;

a = 1;

A = 60;

H**L
H* Solve for the minimum optimum Μpb and the corresponding Γt for one case*L
Γtsolp@npb_, f_, Μpb_, a_, Lpb_, Γb_, A_, wsb_D := DAFullSimplifyAΓtAΓb, npb,

wpbsol@npb, f, Μpb, a, Lpb, Γb, A, wsbDP1,-1T, Lpb, A, wsbEE, 8Μpb, 1<E;

H* Minimum optimum Μpb occurs when the slope of dHΓtL�dHΜpbL = -10�5000 *L
Μpbtemp = NSolve@8Γtsolp@npb, 1, Μpb, a, Lpb, Γb, A, wsbD< � -1 � 500, ΜpbDP1,1,-1T;
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Μpbtemp = NSolve@8Γtsolp@npb, 1, Μpb, a, Lpb, Γb, A, wsbD< � -1 � 500, ΜpbDP1,1,-1T;

Γtsoltemp = Γtsol@npb, 1, Μpbtemp, a, Lpb, Γb, A, wsbD;

Print@"Minimum Optimum Μpb = ", Μpbtemp, "; where Γt = ", ΓtsoltempD;

Print@" npb = ", npb, "; af = ", a f, "; Μpb = ", Μpb,

"; Lpb = ", Lpb, "; Γb = ", Γb, "; A = ", A, "; wsb = ", wsbD
H* Solve for minimum optimum Μpb and Γt for 2430 discrete cases:

1. Define INPUT as discrete value ranges H162 casesL:
Γb=@0.5,1,2D; , wsb=@1,3,5D, npb=@1,2,10D, Lpb=5,10,15,20,25,30D

2. Solve @dΓt � dΜpb = -1�500, for ΜpbD
print the 168 Μpb numerical solutions. This
derivative locates the "knee in the curve" for the plot of
Γt versus Μpb over the range of interest: Γt=@0:10D, Μpb=@0:5000D.

3. Print the corresponding
Γt values for the minimum optimum Μpb from step 2

4. Copy the two lists, Γt and Μpb, to Excel
5. Repeat steps 2-4 for the 15 unique requirements cases:

A=@10, 60,200,600,2000D, af=@0.00001,0.01,1D
6. Curve fit the unique cases

in Excel to find common relationships: *L
TableA

PrintANSolve@8Γtsolp@npb, 1, Μpb, a, Lpb, Γb, A, wsbD< � -1 � 500, ΜpbDP1,1,-1TE,

8Γb, 80.5, 1, 2<<, 8wsb, 81, 3, 5<<,

8npb, 81, 2, 10<<, 8Lpb, 85, 10, 15, 20, 25, 30<<E
H* Γt *L
TableAPrintAΓtsolAnpb, 1,

NSolve@8Γtsolp@npb, 1, Μpb, a, Lpb, Γb, A, wsbD< � -1 � 500, ΜpbDP1,1,-1T,

a, Lpb, Γb, A, wsbEE, 8Γb, 80.5, 1, 2<<, 8wsb, 81, 3, 5<<,

8npb, 81, 2, 10<<, 8Lpb, 85, 10, 15, 20, 25, 30<<E *L
H* Plot Γt vs Μpb *L
Print@"Black=Γt, Blue=Γb, Red=Γsb, Brown=Γpb"D
PlotA8Γtsol@npb, 1, Μpb, a, Lpb, Γb, A, wsbD, Γb<,

8Μpb, Μpbmin, Μpbmax<, PlotRange ® 880, 5000<, 80, 10<<, Frame ® True,

Axes ® False, FrameLabel -> 9"Μ, N3�5m9�5� kg", "Γ, kg�m2"=,

ImageSize ® 260, PlotStyle ® 88Black, Thick<, 8Dashed, Black, Thick<<,

BaseStyle ® 8FontSize ® 10, FontWeight ® Bold<E
H* PlotA9Γtsol@npb,1,Μpb,a,Lpb,Γb,A,wsbD,Γb,wsb�Lpb,

npb Lpb�A wpbsol@npb,1,Μpb,a,Lpb,Γb,A,wsbDP1,-1T=,

8Μpb,Μpbmin,Μpbmax<,PlotRange®880,5000<,80,10<<,Frame®True,

Axes®False,FrameLabel->9"Μpb","Γt, kg�m2"=,ImageSize®500,

PlotStyle®88Black,Thick<,8Blue,Thick<,8Red,Thick<,8Brown,Thick<<,

BaseStyle®8FontSize®12,FontWeight®Bold<E *L
H* Plot Γt' vs Μpb *L
Γtsolp@npb_, f_, Μpb_, a_, Lpb_, Γb_, A_, wsb_D = DAFullSimplifyAΓtAΓb, npb,

wpbsol@npb, f, Μpb, a, Lpb, Γb, A, wsbDP1,-1T, Lpb, A, wsbEE, 8Μpb, 1<E;

Plot@8Γtsolp@npb, 1, Μpb, a, Lpb, Γb, A, wsbD< * 500, 8Μpb, Μpbmin, Μpbmax<,

, ,
135



Plot@8Γtsolp@npb, 1, Μpb, a, Lpb, Γb, A, wsbD< * 500, 8Μpb, Μpbmin, Μpbmax<,

PlotRange ® 880, 5000<, 8-1.00001, -0.99999<<, Frame ® True,

Axes ® False, FrameLabel -> 8"Μpb", "Γt'"<, ImageSize ® 500,

PlotStyle ® 8Black, Thick<, BaseStyle ® 8FontSize ® 10, FontWeight ® Bold<D
Minimum Optimum Μpb = 852.9129292513062824336148655048; where Γt = 2.27681

npb = 2; af = 1; Μpb = Μpb; Lpb = 30; Γb = 1; A = 60; wsb = 3

Black=Γt, Blue=Γb, Red=Γsb, Brown=Γpb
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H* Solve Γt using Minimum
Optimum Μpb Approximation*L

H* Variable Definitions *L
f = 1; H* Hz, f = 1 always *L
Μpb =.; H* N3�5m9�5�kg *L
H* Μpb=6.911�A^0.255 Lpb Ha fL^0.22 H2.085 npb+2.386 Γb+6.03L; *L
Γb = 0.5; H* kg�m2 *L Γbmin = 0.5; Γbmax = 2;

wsb = 5; H* kg�m *L wsbmin = 1; wsbmax = 5;

npb = 10; npbmin = 1; npbmax = 10;

Lpb =.; H* m *L Lpbmin = 5; Lpbmax = 30;

H* if Lpb<5 then Γpb®fHwsbL else Γpb¹fHwsbL*L
a = 1; H* m�s2 *L amin = 0.00001; amax = 1;

A = 10; H* m2 *L Amin = 10; Amax = 2000;

H* Define minimum optimum Μpb approximation*L
ΜpbOpt@npb_, f_, a_, Lpb_, Γb_, A_D :=

6.911 � A ^0.255 Lpb Ha fL^0.22 H2.085 npb + 2.386 Γb + 6.03L;

H* Plot the Γt results with Μpb minimum optimum approximation *L
Print@"Black=Γt, Gray=ΓtHΓb=wsb=0L, Blue=Γb, Red=Γsb, Brown=Γpb"D
Print@" npb = ", npb, "; af = ", a f, "; Μpb = ", Μpb,

"; Lpb = ", Lpb, "; Γb = ", Γb, "; A = ", A, "; wsb = ", wsbD
PlotA9Γtsol@npb, f, ΜpbOpt@npb, f, a, Lpb, Γb, AD, a, Lpb, Γb, A, wsbD,

Γtsol@npb, f, ΜpbOpt, a, Lpb, 0, A, 0D, Γb, wsb � Lpb,

npb Lpb � A wpbsol@npb, f, ΜpbOpt, a, Lpb, Γb, A, wsbDP1,-1T=,

8Lpb, Lpbmin, Lpbmax<, PlotRange ® 885, 30<, 80, 10<<, Frame ® True,

Axes ® False, FrameLabel -> 9"Lpb", "Γt, kg�m2"=, ImageSize ® 500,

PlotStyle ® 88Black, Thick<, 8Gray, Thick, Dashed<, 8Blue, Thick<, 8Red, Thick<,

8Brown, Thick<<, BaseStyle ® 8FontSize ® 12, FontWeight ® Bold<E

Black=Γt, Gray=ΓtHΓb=wsb=0L, Blue=Γb, Red=Γsb, Brown=Γpb

npb = 10; af = 1; Μpb = Μpb; Lpb = Lpb; Γb = 0.5; A = 10; wsb = 5
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APPENDIX C. REGRESSION TECHNIQUES FOR METRIC 

DEVELOPMENT 

Regression is an error minimization technique that is used here to develop an 

approximation model from the more complex numerical model of solar array mass.  The 

approximation model is necessary because out of this model, simplified metrics are 

developed that represent solar array structural scaling effects in a form that is easy to 

understand and implement for structural architecture comparisons.  The approximation 

model is not as accurate as the numerical model but is well within an acceptable error for 

the purposes of architecture comparison. 

Before detailing the approximation model, a brief review of the numerical model 

is provided.  It is developed using the constraint analysis process that minimizes solar 

array mass based on mechanics principles for fundamental frequency and beam strength.  

A single transcendental equation for array mass is developed that is solved using 

numerical methods.   

It is necessary to discretize the structural design variables in order to form 

structural design cases.  These discretized parameters are listed in Table 13.  Unique 

combinations of this set total 2,430 unique solar array structural architecture cases.   

The array mass is predicted for a range of array design cases in order to 

understand the conditions by which mass is minimized.  It was discovered that 

minimizing array mass simultaneously maximizes the beam efficiency index; therefore 

no local minima or maxima exists for array mass.  To avoid the trivial solution of zero 

mass and infinite beam efficiency, the “knee in the curve” between array mass and beam 
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efficiency is calculated for each design case, effectively minimizing both terms 

simultaneously.  For each unique design case, a pair of array mass and beam efficiency 

values exist.  Table 13 lists the six design parameters that are discretized to form a total of 

2,430 design cases.  

Table 13.  Discretized range of design parameters used to define 2,430 unique structural architectures 

            

   
[Discrete] Range 

 
Units 

Objective Constraint 
    

 
Areal Mass Density γ 0 - 10 

 
kg/m2 

Array Design Requirements 
    

 
Loading Term aƒ [0.00001, 0.01, 1] 

 
Hz 9.71 m/s2 

 
Area A [10, 60, 200, 600, 2000] 

 
m2 

Primary Boom Properties 
    

 
Beam Efficiency Index μ  1 - 5000 

 
N3/5m9/5/ kg 

 
Length Lpb [5, 10, 15, 20, 25, 30] 

 
m 

 
Quantity n [1, 2, 10] 

 
 -- 

Blanket Properties 
    

 
Areal Mass Density γb [0.5, 1, 2] 

 
kg/m2 

Spreader Bar Properties 
    

 
Linear Mass Density wsb [1, 3, 5] 

 
kg/m 

            
 

The first step in developing the approximation model is to evaluate the 

sensitivities of each design parameter to the array mass and beam efficiency terms. 

Strictly speaking the array mass is a function of beam, blanket, and spreader bar mass.  

However, all but the beam mass have only a linear additive effect on array mass.  This 

reality coupled with the minimized solution for array mass and beam efficiency allows 

the approximation modeling to be focused on the six design parameters from Table 13 

and the effect on beam efficiency. 
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The relative sensitivity of these seven variables is accomplished through an 

informal design of experiments process culminating in regression analysis.  Each step in 

this regression analysis process is shown in Figure 36.  Each combination of variables is 

explored and the sensitivity of interactions is observed and recorded.  Based on these 

observations, the parameters are ranked according to relative influence on beam 

efficiency.  Reduced sets of the most sensitive variable combinations were compared and 

approximately quantified through regression techniques in the order of relative 

sensitivity. These relations were then reassembled into an approximation model of the 

array architecture.  Observations and conclusions from each of these steps are provided in 

the following. 
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Figure 36.  Regression analysis process flow. 

Simultaneously minimize array mass 
and beam efficiency, γ and μ, producing 
2,430 design cases, each related to a 
unique numerical value pair, μ and γ. 
γ = γpb + γb + γsb 
γpb = μ(aƒ, L, A, n, γb, wsb) 

 

Rank the design 
parameters according  
to relative sensitivity 
 to changes in μ. 

Approximate the functional relationship between each parameter and the 
beam efficiency index, μ, in rank order.  μ(A, Lpb, aƒ, n, γb, wsb) 

1)  A 
2)  L 
3)  aƒ 
4)  n 
5)  γb 
6)  wsb 

wsb [1:5] kg/m2 

A = 2000m2 A = 600m
2 A = 200m

2 A = 10m
2 A = 60m

2 

A = [10:2000] m
2 

(eliminated due to trivial effect on μ) 

μ [f (A,Lpb,af,n,γb)] Lpb [5, 10, 15, 20, 25, 30] m 

µ
Lpb

≈ c1[f (A, af, n, γ𝑏𝑏)] aƒ [0.00001, 0.01, 1] Hz 9.71 m/s2 

n [1, 2, 10] 

γb [0.5, 1, 2] kg/m
2 

µ

Lpb
≈ c4 �f �A, γ𝑏𝑏��  𝑛𝑛

0.231 (𝑎𝑎𝑎𝑎)0.216 

µ

Lpb
≈ c2�f �A, n, γ𝑏𝑏��(𝑎𝑎𝑎𝑎)

0.216
 

µ

Lpb
≈ c6 [f (A)] 9.823 𝛾𝛾𝑏𝑏

0.176 𝑛𝑛0.231 (𝑎𝑎𝑎𝑎)0.216 

µ

Lpb
≈

63.357

A0.245  𝛾𝛾𝑏𝑏
0.176 𝑛𝑛0.231 (𝑎𝑎𝑎𝑎)0.216 
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C.1 Parameter Sensitivities 

The first data set to be examined was that of the largest area, A = 2000 m2.  

Focusing on a single area data set to begin helps to make the analysis more manageable 

since the number of unique design cases is reduced from 2,430 to 486.  The first 

observation from this set was that the beam efficiency index, μ, and the primary boom 

length, Lpb, are linearly related, and the slope of this relationship is affected by all 

remaining terms.  The slope is highly sensitive to changes in the loading term, af.  It is 

mildly sensitive to changes blanket areal mass density, γb, and boom quantity, n.  And the 

slope is mostly insensitive to changes in the spreader bar linear mass density, wsb.  

Conveniently, the remaining four area cases proved to respond similarly in trend to this 

large area case so it is investigated further as a representative set. 

Changing the spreader bar mass density proved inconsequential to all the 

parametric cases except for those of the most extreme aspect ratio.  For example, large 

area arrays that are very short tend to be measurably affected by spreader bar density.  

These cases include those with a length of no more than 5 meters and an area of 200 m2 

or greater and a spreader bar density of 3 kg/m or greater.  The practical challenges of 

building a 5 meter long by 60 meter wide (or wider) array are likely to prevent such a 

structure from every being seriously considered.  Therefore since the mass of the spreader 

bar has a small effect on practical array sizes, this term is neglected in the approximation 

model.  This reduces the number of design cases from 2,430 to 810. 

 

 

  

143 

  



C.2 Parameter Relations 

Now that the sensitivities of the parameters have been established, relationships 

between parameters are quantified.  The largest area cases are again investigated first, 

reducing the number of design cases from 810 to 162.  The beam efficiency index is 

related to the array length term due to the previously observed approximately linear 

relationship.  Since the slope of this relation is determined to be highly sensitive to the 

loading term, the results are separated into three respective data sets illustrated in Figure 

37, Figure 38, and Figure 39 by af = 0.00001 9.81-Hz-m/s2, 0.01 9.81-Hz-m/s2, and 1.0 

9.81-Hz-m/s2.   

 

Figure 37.  The smallest loading term and largest area cases. 
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Figure 38.  The mid-level loading term and largest area cases. 

 

Figure 39.  The largest  loading term and largest area cases. 
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Each of these three plots is separated into nine data sets representing the nine 

unique combinations of blanket density and boom quantity.  The data set labels on the 

plot are ordered in the same sequence as they appear.  This sequence remains unchanged 

for all three plots, but the spread between the plots, i.e., slope, is strongly affected by the 

loading term of the given figure.  Notice the difference in ordinate scale between the 

three.  The cases that require the highest beam efficiency are those with the most massive 

blankets and the greatest number of booms used to support those blankets.  Conversely as 

the blanket mass shrinks and the quantity of booms approaches unity, the required beam 

efficiency index is minimized.   

A linear regression fit is applied to each of 27 data sets in these three figures.  The 

coefficient c1 and coefficient of determination, R2, are recorded in Table 14. The R2 value 

is the squared correlation between the numerical model data and the regression fit.  It is a 

measure of fit goodness where a value of 1.0 indicates a perfect fit, and a value of less 

than one indicates a less than perfect fit. 

From Figure 37, Figure 38, and Figure 39 notice the direct correlation between 

the beam efficiency index magnitudes and the respective loading term.  Greater loading 

term values drive toward the need for more efficient beam columns. 

In the first step, the beam efficiency term and the array length term are combined 

into a ratio due to the observed direct proportionality.  This ratio is represented by the 

coefficient c1, a value that is unique for each of the 27 cases and is listed in Table 14.   
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Table 14.  The linear regression fit between beam efficiency index and array length for A = 2000 m2. 

                      

        
Regression:  c1 ≈ μ / Lpb 

A 
 

γb 
 

aƒ 
 

n 
 

c1 
 

R2 

m2 
 

kg/m2 
 

9.81-Hz-m/s2 
 

– 
 

– 
 

– 
2000 

 
2 

 
0.00001 

 
10 

 
1.619 

 
0.9989 

2000 
 

2 
 

0.01 
 

10 
 

6.832 
 

0.9985 
2000 

 
2 

 
1 

 
10 

 
18.959 

 
0.9943 

2000 
 

2 
 

0.00001 
 

2 
 

1.167 
 

0.9989 
2000 

 
2 

 
0.01 

 
2 

 
4.851 

 
0.9989 

2000 
 

2 
 

1 
 

2 
 

13.162 
 

0.9965 
2000 

 
2 

 
0.00001 

 
1 

 
1.014 

 
0.9988 

2000 
 

2 
 

0.01 
 

1 
 

4.192 
 

0.9989 
2000 

 
2 

 
1 

 
1 

 
11.281 

 
0.9971 

2000 
 

1 
 

0.00001 
 

10 
 

1.355 
 

0.9964 
2000 

 
1 

 
0.01 

 
10 

 
5.877 

 
0.9965 

2000 
 

1 
 

1 
 

10 
 

16.945 
 

0.9902 
2000 

 
1 

 
0.00001 

 
2 

 
0.973 

 
0.9961 

2000 
 

1 
 

0.01 
 

2 
 

4.134 
 

0.9970 
2000 

 
1 

 
1 

 
2 

 
11.586 

 
0.9934 

2000 
 

1 
 

0.00001 
 

1 
 

0.845 
 

0.9950 
2000 

 
1 

 
0.01 

 
1 

 
3.561 

 
0.9970 

2000 
 

1 
 

1 
 

1 
 

9.871 
 

0.9944 
2000 

 
0.5 

 
0.00001 

 
10 

 
1.145 

 
0.9898 

2000 
 

0.5 
 

0.01 
 

10 
 

5.153 
 

0.9950 
2000 

 
0.5 

 
1 

 
10 

 
15.389 

 
0.9869 

2000 
 

0.5 
 

0.00001 
 

2 
 

0.823 
 

0.9898 
2000 

 
0.5 

 
0.01 

 
2 

 
3.610 

 
0.9928 

2000 
 

0.5 
 

1 
 

2 
 

10.516 
 

0.9892 
2000 

 
0.5 

 
0.00001 

 
1 

 
0.713 

 
0.9894 

2000 
 

0.5 
 

0.01 
 

1 
 

3.091 
 

0.9928 
2000 

 
0.5 

 
1 

 
1 

 
8.897 

 
0.9904 

        
MEAN 

 
0.9946 

        
STD DEV 

 
0.0036 

        
MAX 

 
0.9989 

        
MIN 

 
0.9869 
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Next, this coefficient is related to the loading term illustrated in Figure 40.  The 

three loading term cases are shown on the abscissa.  Again the unique array blanket and 

boom quantity parameters are represented by nine data sets for a total of 27 set cases.  

The relationships between the ordinate and abscissa in this figure are related through a 

power regression quantified by a linear coefficient c2 and a raised power c3.  The values 

for these coefficients are listed in Table 15 along with the regression equation to which 

they are assigned.  Closer inspection of the coefficient c3 shows a relatively constant 

value for all nine cases.  Therefore the mean of c3 is calculated and used as the raised 

power coefficient for the loading term. 

 

Figure 40.  The coefficient c1 is related to the loading term through a power regression. 
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Table 15.  The power regression between beam efficiency index, length, and loading term. 

                      

      
Regression:  μ / Lpb ≈ c2 (aƒ)c3 

A 
 

γb 
 

n 
 

c2 
 

c3 
 

R2 

m2 
 

kg/m2 
 

  
 

  
 

  
 

  
2000 

 
2 

 
10 

 
18.687 

 
0.213 

 
0.9997 

2000 
 

2 
 

2 
 

13.012 
 

0.210 
 

0.9998 
2000 

 
2 

 
1 

 
11.166 

 
0.209 

 
0.9998 

2000 
 

1 
 

10 
 

16.625 
 

0.219 
 

0.9995 
2000 

 
1 

 
2 

 
11.406 

 
0.215 

 
0.9997 

2000 
 

1 
 

1 
 

9.731 
 

0.213 
 

0.9997 
2000 

 
0.5 

 
10 

 
15.059 

 
0.225 

 
0.9994 

2000 
 

0.5 
 

2 
 

10.309 
 

0.221 
 

0.9995 
2000 

 
0.5 

 
1 

 
8.731 

 
0.219 

 
0.9995 

      
MEAN 

 
0.216 

 
0.9996 

      
STD DEV 

 
0.005 

 
0.0001 

      
MAX 

 
0.225 

 
0.9998 

      
MIN 

 
0.209 

 
0.9994 

                      
 

Next, the coefficient c2 is further examined as it relates to the remaining variables, 

blanket density and boom quantity.  A power regression between n and c2 is illustrated in 

Figure 41.   This fit introduces two new coefficients c4 and c5 as listed in Table 16.  The 

coefficient of determination is also listed along with the regression relation.  The mean of 

the coefficient c5 is used as the raised power coefficient for the boom quantity parameter. 
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Figure 41.  The coefficient c2 is related to the boom quantity parameter through a power regression. 

 

Table 16. The power regression between the beam efficiency index, length, boom quantity, and loading 

term. 

                  

    
Regression:  μ / Lpb ≈ c4 nc5 (aƒ)0.216 

A 
 

γb 
 

c4 
 

c5 
 

R2 

m2 
 

kg/m2 
 

  
 

  
 

  
2000 

 
2 

 
11.156 

 
0.224 

 
1.0000 

2000 
 

1 
 

9.721 
 

0.233 
 

1.0000 
2000 

 
0.5 

 
8.739 

 
0.237 

 
1.0000 

    
MEAN 

 
0.231 

 
1.0000 

                  
 

The next step is to examine the relationship between blanket density and the 

coefficient c4.  Figure 42 illustrates the power regression fit for this relationship, and 

Table 17 lists the coefficient of determination and the regression relation.  
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Figure 42. The coefficient c4 is related to blanket density through a power regression. 

 

Table 17.  The power regression between all parameters except array area. 

          

  
Regression:  μ / Lpb ≈ c4 n0.231 (aƒ)0.216 

A 
 

c4 
 

R2 

m2 
 

  
 

  

2000 
 

9.823 γb0.176 
 

0.9946 
          

  

The relation presented in Table 17 is rearranged to form Eq. (66), the 

approximation model for all array architectures of the size A = 2000 m2.  

 0.216 0.231 0.176
A 2000 pb b9.823L (af ) n=µ ≈ γ   (66) 

  

c4 = 9.8225 γb
0.1761

R² = 0.9946
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The final step in this approximation model development is to incorporate the array 

area, A.  First, Eq. (66) is used to predict the beam efficiency index for all 2,430 design 

cases.   These results are compared to the numerical model predictions of the beam 

efficiency index, and the results are grouped according to array area.  The comparison is 

expected to produce no error for the largest area set and measurable error for the other 

data sets.  For each area data set, a linear regression fit is used to generate a coefficient, 

c6, that represents the ratio of numerical to approximate.  A c6 value of one would 

indicate a perfect fit between the numerical model and approximate model.  The 

coefficients are listed in Table 18.   Notice that the coefficient for the largest area data set 

is c6 = 1.000 as expected since the approximation equation was developed using that data 

set.  The values for c6 are plotted in Figure 43 against the respective array area values.  A 

power regression is shown to fit the data, approximating the relationship between c6 and 

A.   

 

Table 18.  The linear regression fit results between the beam efficiency index from the numerical model 

and that from the large area approximation model. 

          

  
Regression:  μ-numerical  ≈ c6 μ-approximate 

A 
 

c6 
 

R2 

m2 
 

  
 

  

2000 
 

1.000 
 

0.9966 
600 

 
1.342 

 
0.9943 

200 
 

1.749 
 

0.9916 
60 

 
2.352 

 
0.9877 

10 
 

3.698 
 

0.9807 

  
MEAN 

 
0.9902 
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Figure 43.  The coefficient c6 is related to array area. 

 The regression expression defining c6 is then substituted into Eq. (67) to complete 

the approximation model.  Therefore Eq. (67) approximately represents the structural 

scaling behavior of the full range of solar array architectures represented in this study.  

 

0.216 0.231 0.176
6 pb b

0.216
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pb b0.245

c  9.823L (af ) n

(af )63.358 L n
A

µ ≈ γ

µ ≈ γ
  (67) 

This approximation model is checked for accuracy by comparing to the numerical 

model predictions of beam efficiency index for all 2,430 design cases.  Figure 44 shows 

the comparison.  A data point above the line represents the case where the approximation 

model under-predicts the beam efficiency index, and a point above the line represents an 

over-prediction.  The statistical analysis listed on the figure shows relatively good 
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agreement across the full range.  A closer inspection of the figure reveals especially good 

agreement for the lower beam efficiency values which is where the majority of design 

cases are represented. 

 

Figure 44.  Fit goodness between the approximation model and the numerical model. 
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APPENDIX D. USER’S GUIDE 

Metrics have recently been developed to quantify the structural scaling effects of 

rectangular flexible blanket solar arrays.  The purpose of this guide is to define the 

practical usage of these metrics.   

One challenge in the conceptual design of spacecraft is that thousands of 

structural design configurations are possible in meeting power generation, structural 

strength and fundamental frequency needs.  It is not practical to analyze each solar array 

architecture variation in detail.  The scaling metrics herein provide a means to evaluate 

all rectangular flexible blanket array architectures in a manner that is readily 

understandable and quickly usable for conceptual design purposes. 

These metrics are intended to serve those comparing structural solar array 

architectures, those considering mission concepts, and those crafting technology 

investment strategies. These practical analytical tools should help to set investment 

trajectories on paths that are well-founded on structural mechanics principles. These early 

decisions represent large R&D investment commitments and thus must be guided toward 

concepts and technology components that promise only the highest payoff for the least 

cost. 

Figure 45 provides a physical description of the generic solar array model used as 

the basis for developing these scaling metrics.  The number of structural components and 

performance terms was selected in order to balance model accuracy and user simplicity.  

This model is defined by the unique assemblage of three structural components:  

1) Tensioned flexible blanket(s) to collect or transmit radiation energy,  
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2) Primary boom column(s) to react the tension, and  

3) Spreader bar(s) to transfer load from the blanket to the column.   

The array size is defined by the blanket area such that the length is equivalent to the 

primary boom length and the width is equivalent to the spreader bar length.  The 

structural architecture is further defined by the quantity of primary booms used to deploy 

the blanket(s) and achieve system stiffness and strength. Primary booms are defined only 

by the structural performance they demonstrate: flexural stiffness, moment strength, and 

mass density.  Neglecting the boom construction details allows direct comparison of 

drastically different boom types such as a truss of tubes to a rollable slit tube.  The 

photovoltaic blanket is defined by an areal mass density and an areal power density—two 

terms dependent on the photovoltaic cell type chosen to populate the blanket.  The 

spreader bar is characterized by linear mass density.  The array performance is quantified 

by three terms:  

1) Deployed area (e.g., power produced),  

2) Acceleration load limit, and  

3) Fundamental frequency of structural vibration. 

The scaling parameters and scaling indices developed to characterize this array 

structural model are listed in Table 19 along with select related equations.  To 

demonstrate the accuracy of these scaling metrics, the sprung mass is predicted of four 

heritage flexible blanket arrays: Terra, Milstar, International Space Station, and the 

MegaROSA ground prototype.  The results of this comparison are summarized in  

Table 20. 
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Figure 45.  The general solar array model (a) assumes the root is fixed so that the array wing is 

treated independent of the root support whether it be a yoke (b) or backbone boom (c). 
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Table 19.  Relevant equations and metrics. 

 

Strength and Frequency Units

Clamped-Free Beam-
Cable Frequency

                                                  ;   δ= 0.76  Hz

Torsion/Bending 
Freqency Ratio

Hz / Hz

Critical Euler Load 
(with cable follower)

 N

Beam Moment from
Rectilinear Accel.

 N-m

Beam Efficiency 
Index*  N 3/5 m9/ / kg

Cost and Mass

Approximate Beam 
Efficiency Index  N 3/5 m9/5 / kg

Approximate Sprung 
Areal Mass Density kg / m2

Scaling Parameters

Scaling Parameter  m0.374 kg 0.176 / s 0.648

Requirements 
Scaling Parameter  1 / (m0.274 s 0.648 )

Architecture Scaling 
Parameter  m0.648 kg 0.176

Scaling Indices

Scaling Index  m2.374 / (kg 0.824 s 0.648 )

Load Scaling Index  m2.158 / kg 0.824

Power Scaling Index  m0.864 / (kg 0.824 s 0.648 )

*Murphey, T., “Booms and Trusses,” Recent Advances in Gossamer Spacecraft, edited by 
C. H. M. Jenkins, Progress in Astronautics and Aeronautics, Vol. 212, AIAA, Reston, VA, 2006, pp. 1–43.

2
cr 2

EIP
L

= π

1 2
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3.516 EI
2
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0.176
0.231 0.755 b

l pbn L A
m

γ
κ =
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0.216
0.231 0.176

pb b0.245
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Table 20.  Metrics accuracy is demonstrated by predicting sprung mass of existing arrays.  

        
Terra   Milstar   ISS 

  

Mega 
ROSA 

prototype   
Units 

Deployed PV Area A 45.3 
 

44.0 
 

301 
 

74.3 
 

m2 

Root Mass Density γr 1.09 
 

0.857 
 

0.574 
 

0.172 
 

kg/m2 

             Boom Mass Density γpb 0.077 
 

0.102 
 

0.463 
 

0.135 
 

kg/m2 

Blanket Mass Density γb 1.66 
 

1.22 
 

1.20 
 

1.07 
 

kg/m2 

Spreader Mass Density γsb 0.323 
 

0.203 
 

0.121 
 

0.083 
 

kg/m2 

             Total Cantilever  
Mass Density γ 2.06  1.52  1.78  1.29 

 

kg/m2 

             Predicted Cantilever  
Mass Density γ 1.81  1.46  1.65  1.32 

 

kg/m2 

 
% Error 

 
-12% 

 
-4% 

 
-7% 

 
3% 

                            

D.1 Assumptions and Limitations 

To provide the user with the proper context for application, major assumptions 

surrounding the development of these scaling metrics are listed as follows:  

1) The array geometry is rectangular and the columns are arranged in 

parallel. 

2) The photovoltaic blanket(s) is represented dynamically as a cable(s). 

3) The array limit loading is a rectilinear acceleration applied at the 

spacecraft bus in the direction normal to the plane of the array.  Example 

sources of this load: thruster impulse or docking maneuver.  Rotational 

acceleration loads are not considered due to their lesser magnitude. 

4) The array failure load occurs as an identical maximum moment at the base 

of each beam-column under the combined axial compression and moment 
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loading.  The maximum beam strength is therefore the maximum moment 

the beam can endure (including any design margin) while subjected to an 

axial compressive load from the blanket. 

5) The axial compression load in each column is assumed to be a constant 

21% of the critical Euler buckling load. 

6) The array fundamental frequency of structural vibration oscillates in an 

out-of-plane motion similar to that of a cantilever beam.  This mode shape 

is assumed to be preferred over a torsion mode due to spacecraft control 

challenges of the latter. 

7) Array fundamental frequency considers the mass of the spreader bar to be 

distributed along the column length.  This is justified as long as the 

spreader bar mass is less than 10% the total array mass. 

8) Array mass equation accounts for only the sprung mass—blanket(s), 

compression column(s), and spreader bar(s). 

9) The root boundary is assumed rigid.  Practically, the root boundary is the 

yoke, Solar Array Drive Assembly, or backbone boom. 

10) Dimensional stability is not considered as a performance constraint thus 

these metrics are not appropriate to characterize precision structures such 

as antenna and optical apertures. 

11) The metrics are relevant over the parameter space listed in Table 21. 
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Table 21.  Practical array design ranges that bound the validity of the metrics. 

              

    
Range 

 
Units 

Objective Constraint 
    

 
Areal Mass Density γ 0 - 10 

 
kg/m2 

Array Performance Parameters 
    

 
Fundamental Frequency ƒ 0.001 - 5 

 
Hz 

 
Lateral Acceleration Load a 0.001 - 0.2 

 
9.81 m/s2 

 
Deployed Area A 10 - 2000 

 
m2 

Primary Boom Properties 
    

 
Beam Efficiency Index μ  1 - 5000 

 
N3/5m9/5/ kg 

  
(Flexural Stiffness) EI  -- 

 
N m2 

  
(Moment Strength) M  -- 

 
N m 

 
Structural Mass Fraction β 0.01 - 0.5  

 
kg/kg 

  
(Linear Mass Density) wpb  -- 

 
kg/m 

 
Length Lpb  5 - 30 

 
m 

 
Boom Quantity n  1 - 10 

 
 -- 

Blanket Properties 
    

 
Areal Mass Density γb 0.5 - 2.0 

 
kg/m2 

Spreader Bar Properties 
    

 
Linear Mass Density wsb 1 - 5 

 
kg/m 

              

D.2 Array Requirements Trade 

One practical use of these metrics is to compare the effects of different 

architectures on array performance.  This is helpful when requirements are in flux, and an 

understanding of the array mass and cost penalties may help influence the definition of 

power production, acceleration load limit, and fundamental frequency requirements. 

The array scaling parameter provides a single numerical value by which array 

structural architectures may be compared on the basis of minimum mass and minimum 

beam efficiency.  Beam efficiency in this case is synonymous with beam cost—monetary 

cost, packaged volume cost, and mechanism complexity cost.  The scaling parameter is 
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related to the beam efficiency in Figure 46 showing the parameter to essentially be a 

penalty parameter.  As each term in the parameter grows, the beam efficiency must grow 

proportionally to maintain minimum array mass.  If specific array architectures reside in 

the upper left-hand quadrant of this figure, the beam efficiency is unnecessarily high; the 

array mass savings gained are comparatively low.  On the other hand, architectures that 

fall in the lower right-hand quadrant have low beam efficiency, and the array mass is 

severely penalized as a result.  Neither extreme quadrant is desirable. 

Each term in the scaling parameter has a unique influence on this balance between 

array mass and beam cost.  The scaling proportionalities shown at the top of Figure 46 

illustrate the relative influence of each on beam efficiency.  For example, cutting array 

length in half while maintaining all other terms equal, cuts the beam index by one half 

due to the direct proportionality.  On the contrary, cutting the blanket density in half 

yields only a 0.11 reduction in beam efficiency.  Surprisingly, cutting the array area in 

half while maintaining constant length raises the required beam efficiency index by 1.18.  

The conclusion is that long, narrow arrays are not as mass efficient as short, wide arrays. 

The scaling index shows a similar trend as the scaling parameter except it is 

shown with respect to structural mass fraction rather than to beam efficiency.  This index 

is separated for convenience into the load scaling index and the power scaling index, 

differentiated only by the respective loading and area terms removed.  Figure 47 and 

Figure 48 illustrate these two indices with respect to mass fraction showing that as array 

loading and area grow, the structural mass fraction grows in proportion.   Larger, higher 

loaded arrays require greater structural mass than the counter scenario. 
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Figure 46.  The beam efficiency index is related to the solar array scaling parameter. The (a) 

ATK Trilok®, μ = 1268 N
3/5

m
9/5

/kg, and (b) S2 Coilable, μ = 224 N
3/5

m
9/5

/kg , booms are shown as 

examples. 
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Figure 47.  Load scaling index related to array structural mass fraction for three acceleration 

and frequency values.  Two example 60kW cases illustrate the structural mass fraction difference 

between a blanket of 20% thin film CIG cells and one with 33% IMM cells, all other design parameters 

being equal. 
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Figure 48.  Power index related to structural mass fraction for a wide range of array areas to 

show the relative structural mass penalty of increasing the loading, length, blanket mass, and boom 

quantity. 
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D.3 Array Architecture Trade 

A second practical use of these metrics is to compare and in some cases create 

conceptual solar array structural architectures.  Using the metrics for this purpose 

requires knowledge of the three primary requirements: beginning of life (BOL) power 

production, fundamental frequency of structural vibration, and maximum on-orbit 

acceleration load.   

As an example, consider a communications spacecraft in geosynchronous orbit.  

The power required at the beginning of service life is 30 kW.  The expected acceleration 

load is relatively high, ag = 0.1 gees (0.981 m/s2), and the minimum fundamental 

frequency required is f = 0.1 Hz.  Two different photovoltaic cells are being considered.  

The first is state-of-practice triple junction XTJ/UTJ cells with 29.5% BOL efficiency 

(AM0) as documented in Table 22.  The second cell type is a four-junction Inverted 

Metamorphic cell that operates at 33% efficiency.  These two cell types generate 

approximately 250 W/m2 and 290 W/m2 respectively.  Therefore the total required 

deployed area for each 15 kW wing is 60 m2 and 52 m2 respectively.  The areal mass 

density of the blanket when populated with these cells strung together at a nominal 

operating voltage of 70 V is γb = 1.5 kg/m2. 

Now that the performance requirements have been established, four different 

structural architecture cases are considered.  The first case uses the 29.5% efficient cells 

and is constructed with a single blanket 30 meters long by 2 meters wide, supported by a 

single beam-column.  The scaling parameter for this case is calculated to be η = 5.08 

from the equation in Table 19.  This value, when plotted on Figure 46 or multiplied by the 
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constant 63.358, correlates to a minimum required beam efficiency index of μ = 322.  

The array sprung mass is estimated from the equation in Table 19 to be m = 122 kg. 

The second case uses the same 29.5% efficient cells but is shorter, 10 meters long 

by 6 meters wide, and is supported by two beam-columns instead of one.  The scaling 

parameter for this case is less than half that of the first case, η = 1.99.  The required beam 

efficiency index is also less than half, μ = 126, and the total mass is reduced to  

m = 108 kg.  One conclusion to be drawn is that the penalty paid for using two columns 

is easily overcome by the benefits of the shorter, wider aspect ratio of case 2 over case 1.  

The payoff of the reduced beam index is reduced beam structural hierarchy and thus 

reduced cost. 

The third case considers the upgraded cells, 33% efficient IMM type, yielding a 

boost in conversion efficiency from 29.5% to 33%.  The same width and boom quantities 

as case 2 are maintained but the array length is reduced to 8.7 meters because of the 

lesser area.  The scaling parameter then reduces to η = 1.79.  The minimum required 

beam efficiency index is μ = 113, and the total mass is m = 94 kg.  Both terms are lower 

than those of case 2 by 10% and 13% respectively and are much lower than those of  

case 1 by 65% and 23% respectively.  The beam efficiency index (i.e., beam cost) 

reduction is a direct result of reducing the array area length from 10 meters to 8.7 meters, 

and the mass reduction is a result of reducing the area from 60 m2 to 52 m2. 

Case 3 emerges as the lightest weight, lowest cost structural architecture given the 

communications mission requirements.  Of course, these quantitative results are not taken 

simply at face value.  They are deliberated alongside other subjective design 
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considerations such as the added cost of higher efficiency IMM cells.  But even if these 

cells are cost prohibitive, case 2 remains the better structural architecture than  

case 1.  Other considerations also enter the decision process such as beam packaged 

volume and mechanism complexity.  But case 2 requires a lesser beam efficiency than 

case 1, meaning the structural hierarchy may be relaxed from perhaps a truss of solid rods 

to a rollable slit tube. 

These array concepts must also be checked for the fundamental mode of structural 

vibration.  Bending modes are preferred over torsion modes due to the associated 

spacecraft control challenges of a torsion mode over bending. Figure 49 is consulted.  

Case 1 uses a single column but has a large aspect ratio, AR = 15, so the GJ/EI ratio 

required to ensure a bending mode is relatively low GJ/EI = 0.002. If the aspect ratio of 

this single column architecture drops below the threshold indicated on this figure, the 

fundamental mode becomes torsion not bending.  For cases 2 and 3, the torsion mode is 

possible due to the small aspect ratio but is not likely to dominate due to the shear-frame 

effect of having two columns joined at the tip by a spreader bar. 

This same comparison approach may be used to compare arrays with backbone 

booms.  Case 4 is provided in Table 23 as an example.  Once the conceptual array 

architecture(s) have been selected, the aspect ratio is plotted on Figure 49 to determine 

the minimum required backbone boom GJ/EI ratio to maintain a bending vibration mode 

rather than torsion.  For case 4, this minimum ratio is GJ/EI = 0.982.  Further sizing of 

the backbone boom may be accomplished by lumping the array mass onto the backbone 

and selecting a bending stiffness such that the fundamental frequency is less than ½ the 
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wing fundamental frequency.  A lower backbone frequency helps to ensure the spacecraft 

does not have to deal with symmetric modes of vibration caused by multiple, identical 

array winglets vibrating at similar frequencies—a scenario that is very difficult to sense 

and control using typical spacecraft determination and control actuators such as torque 

rods, momentum wheels, and control moment gyroscopes. 

One cautionary note is that the array mass predicted herein accounts for the 

sprung mass of the array only.  The sprung mass includes all components that contribute 

to frequency and strength calculations such as the primary booms, blankets, spreader 

bars, and anything fixed to the spreader bars. If the user desires to approximate the total 

array mass, the un-sprung components must be considered separately.  Examples of un-

sprung mass include blanket boxes, deployment mechanisms, and restraint devices. 
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Table 22.  Survey of flexible blanket areal mass density and areal power density.  

      

   
γ ε measured, 

m 
projected, 

p 
Cell Efficiency and Type 

 

(kg/m2) (W/m2) 

 

13% Thin Film, a-Si 

 

0.5-2.5 95-113 m 

 

15% Thin Film, 1J CIGS 

 

0.5-2.5 110-130 p 

 

20% Thin Film, 2J CIGS 

 

0.5-2.5 147-173 p 

 

29.5% 3J XTJ/ZTJ** 

 

1.0-2.0 250-280 m 

 

33% 3J IMM 

 

1.0-2.0 290-320 m 

 

35% 4J IMM 

 

1.0-2.0 307-340 p 

 

38% 6J IMM 

 

1.0-2.0 334-368 p 

 

29.5% XTJ/ZTJ, 8x Stretched Lens Array 

 

0.6-1.4 350-420 p 

 

38% 6J IMM, 8x Stretched Lens Array 

 

0.6-1.4 450-540 p 
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Table 23. 30kW communications satellite array architecture comparison and a larger backbone 

boom architecture example. 

 

 

 

Case 1 Case 2 Case 3 Case 4 Units
Requirements Input

Wing Power (BOL) – 15 15 15 100 kW
PV Cell Efficiency – 29.5 29.5 33 33 %
Wing Area A 60 60 52 345 m2

Acceleration Load a 0.1 0.1 0.1 0.1 9.81 m/s2

Fundamental Frequency ƒ 0.2 0.2 0.2 0.2 Hz 
Size Input

Length Lpb 30 10 8.7 15 m
Width W 2 6 6 23 m
Boom Quantity n 1 2 2 5 –
Blanket Mass Density γb 1.5 1.5 1.5 1.5 kg/m2

Spreader Bar Mass wsb 1 1 1 3 kg/m
Results

Array Scaling Parameter η 5.08 1.99 1.79 2.40 m0.374 kg0.176 / s0.648

Requirements Parameter ηr 0.158 0.158 0.163 0.103 1 / (m0.274 s0.648)
Architecture Parameter ηs 32.2 12.6 11.0 23.4 m0.648 kg0.176

Array Scaling Index κ 2.50 1.10 0.99 1.23 m2.374 / (kg0.824 s0.648)
Minimum Beam Efficiency μ 322 126 113 152 N3/5m9/5/ kg
Wing Mass m 122 108 94 672 kg
Mass Reduction from Case 1 – – 11% 23% – –
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Figure 49.  Array aspect ratio and the support beam stiffness ratio related to the fundamental 

mode of structural vibration—bending or torsion. 

  

𝐴𝐴𝐴𝐴 = 0.25 

𝐴𝐴𝐴𝐴 = 0.5 

𝐴𝐴𝐴𝐴 = 0.1 

𝐴𝐴𝐴𝐴 = 1 

𝐴𝐴𝐴𝐴 = 1 
𝐴𝐴𝐴𝐴 = 2 

𝐴𝐴𝐴𝐴 = 5 

𝐴𝐴𝐴𝐴 = 10 

  

172 

  



REFERENCES 

1 Green, M. A., “Solar Cells: Operating Principles, Technology and System 

Applications.” Kensington: The University of New South Wales, 1992. pp. 2. 

2 Jones, P., Spence, B., “Spacecraft Solar Array Technology Trends,” Proceedings of 

the IEEE Aerospace Conference, Vol. 1, Aspen, Colorado, 21-28 March 1998, pp. 141-

152. 

3 Felkel, E., Wolff, G., “Flexible Rolled-Up Solar Array,” Air Force Aero Propulsion 

Laboratory, Technical Report AFAPL-TR-72-61, Wright Patterson AFB, OH, 30 June 

1972. 

4 Thornton, E., Kim, Y., “Thermally Induced Bending Vibrations of a Flexible Rolled-

Up Solar Array,” AIAA Journal of Spacecraft and Rockets, Vol. 30, No. 24, 1993, pp. 

438-448. 

5 Thornton, E., Chini G., Gulick, D., “Thermally Induced Vibrations of a Self-

Shadowed Split-Blanket Solar Array,” 35th AIAA Structures Structural Dynamics and 

Materials Conference, AIAA-94-1379, Hilton Head, SC, 18-20 April 1994. 

6 Kurland, R., Schurig, H., Rosenfeld, M., Herriage M., Gaddy, E., Keys, D., Faust, C., 

Andiario, W., Kurtz, M., Moyer, E., "Terra Flexible Blanket Solar Array Deployment, 

On-Orbit Performance and Future Applications," 28th IEEE Photovoltaic Specialists 

Conference, 22 September 2000, Anchorage, AK. 

7 Gibb, J., “MILSTAR’s Flexible Substrate Solar Array—Lessons Learned.” 26th 

Aerospace Mechanisms Symposium, Goddard Space Flight Center, 1992. 

  

173 

  

 



8 Lindberg, D., “A 928-m2 (10,000 ft2) Solar Array,” 7th Aerospace Mechanisms 

Symposium, Manned Spacecraft Center, Houston, Texas, 7-8 September 1972. 

9 Beidleman, N., Freebury, G., Francis, W., Lake, M., Barrett, R., Kellar, P., Taylor, 

R., “Large-Scale Deployable Solar Array. United States Patent 7806370. 5 October 2010.  

10 Davis, G., Gohardani, A., Murphy, D., White, S., “Quest for Electricity Helps Power 

Space Structures Work,” AIAA Aerospace America, Vol. 15, No. 11, December 2013,  

pp. 8. 

11 Stribling, R., Schwartz, J., “Deployable Solar Array Assembly.” United States 

Patent 6983914. 10 June 2006. 

12 Crawford, R., Hedgepeth, J., Preiswerk, P., "Spoked Wheels to Deploy Large 

Surfaces in Space" Final Report NASA CR-2347, Contract NAS2-6731, ARC-R-1004, 

January, 1975. 

13 Harvey, J., Jones, A., “Lightweight Stowable and Deployable Solar Cell Array.” 

U.S. Patent 5296044. 22 March 1994. 

14 White, S. Douglas, M., Takeda, R., Spence, B., Gregory, N., Schmidt, J.,  

Sorensen, P., “Solar Arrays.” United States Patent Application 11/944061. 21 May 2009. 

15 Murphy, D., “MegaFlex – The Scaling Potential of UltraFlex Technology.” 53rd 

AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2012-1581, 

Honolulu, Hawaii, 23-26 April 2012. 

  

174 

  

 



16 Wagner, H., “Remarks on Airplane Struts and Girders Under Compressive and 

Bending Stresses, Index Values.” National Advisory Committee for Aeronautics 

(NACA), TM No. 500, June 1929. 

17 Goodier, J., Thomson, W., “Applicability of Similarity Principles to Structural 

Models.” National Advisory Committee for Aeronautics (NACA), TN No. 933, July 

1944. 

18 Shanley, F. R., “Weight-Strength Analysis of Aircraft Structures.” New York: 

McGraw-Hill, 1952. 

19 Hedgepeth, J., “Critical Requirements for the Design of Large Space Structures.” 

NASA Final Report, No. 3484, Contract NAS1-15347. November 1981. 

20 Mikulas, M., “Structural Efficiency of Long Lightly Loaded Truss and Isogrid 

Columns for Space Applications.” NASA, TM No. 78687,July 1978. 

21 Mikulas, M., Collins, T., Doggett, W., Dorsey, J., Watson, J., “Truss Performance 

and Packaging Metrics.” American Institute of Physics (AIP) Space Technology and 

Applications International Forum (STAIF), 12-16 February 2006. AIP Conference 

Proceedings, Vol. 813. pp. 1000-1009. 

22 Murphey, T., “Booms and Trusses,” Recent Advances in Gossamer Spacecraft, 

edited by C. H. M. Jenkins, Progress in Astronautics and Aeronautics, Vol. 212, AIAA, 

Reston, VA, 2006, pp. 1–43. 

  

175 

  

 



23 Murphey, T., “Symbolic Equations for the Stiffness and Strength of Straight 

Longeron Trusses.” 47th AIAA Structures, Structural Dynamics and Materials 

Conference, AIAA 2006-2123, Newport, Rhode Island, 1-4 May 2006. 

24 Williams, J., Mikulas, M., “Analytical and Experimental Study of Structurally 

Efficient Composite Hat-Stiffened Panels Loaded in Axial Compression.'' 16th AIAA 

Structures, Structural Dynamics, and Materials Conference, AIAA 1975-754, Denver, 

Colorado, 27-29 May 1975.  

25 Anderson, M., Bohon, H., Mikulas, M., “A Structural Merit Function for 

Aerodynamic Decelerators”, NASA TN-5535, November 1969. 

26 Kaplan, R., “Deployable Reflector Structure.” United States Patent 4030102. 14 

June 1977. 

27 Crawford, R., Hedgepeth, J., Preiswerk, P., "Spoked Wheels to Deploy Large 

Surfaces in Space" Final Report NASA CR-2347, Contract NAS2-6731, ARC-R-1004, 

January, 1975. 

28 Harvey, J., Jones, A., “Lightweight Stowable and Deployable Solar Cell Array.” 

United States Patent 5296044. 22 March 1994. 

29 White, S. Douglas, M., Takeda, R., Spence, B., Gregory, N., Schmidt, J., Sorensen, 

P., “Solar Arrays.” United States Patent Application 11/944061. 21 May 2009. 

30 Murphy, D., “MegaFlex – The Scaling Potential of UltraFlex Technology.” 53rd 

AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2012-1581, 

Honolulu, Hawaii, 23-26 April 2012. 

  

176 

  

 



31 Rauschenbach, H., Bashin, S., Smith, B., “Ultra Lightweight Folding Panel 

Structure.” United States Patent 4384163. 17 May 1983. 

32 Kurland, R., Stella, P., “Advanced Photovoltaic Solar Array Program Status.” 

Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, August 

6-11, 1989, Washington DC, Vol. 2, pp. 829-834. 

33 Kimber, R., Regalado, O., Wu, C., “The EOS-AM Solar Array—A Flexible 

GaAs/Ge Array.” 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, 10-14 

May 1993, pp 1375-1380. 

34 Gerlach, L., Marks, G.W., Quittner, E., Renshall, J., Zwanenburg, R., "The Design 

of the L-SAT (Olympus) Solar Array," Proceedings of the 3rd European Symposium on 

Photovoltaic Generators in Space, Bath, 4-6 May 1982. pp. 241-248. 

35 National Aeronautics and Space Administration Marshall Space Flight Center, 

“Solar Array Flight Experiment Final Report.” Contract NAS-8-31352 April 1986. 

36 Benton, M., Jones, A., Spence, B., McCutcheon, E., Devillier, C., “Solar Array for 

Satellite Vehicles.” United States Patent 5961738. 5 Oct 1999. 

37 Murphy, D., Foster, M., “Solar Array for Satellite Vehicles.” United States Patent 

6423895. 23 July 2002. 

38 Murphey, T., Dumm, H.P., “Blanket Solar Array with Z-Folded Truss.” United 

States Patent Application 12/55012. 3 Sept 2009. 

  

177 

  

 



39 Mejia-Ariza, J., Murphey, T., Dumm, H.P., “Deployable Trusses Based on Large 

Rotation Flexure Hinges,”  AIAA Journal of Spacecraft and Rockets, Vol. 47, No. 6, 

November-December 2010, pp. 1053-1062. 

40 Beidleman, N., Freebury, G., Francis, W., Lake, M., Barrett, R., Kellar, P., Taylor, 

R., “Large-Scale Deployable Solar Array.” United States Patent 7806370. 5 Oct 2010. 

41 Foster, C., Tinker, M., Nurre, G., Till, W., “Solar-Array-Induced Disturbance of 

the Hubble Space Telescope Pointing System.” AIAA Journal of Spacecraft and Rockets, 

Vol. 32. No. 4. July-August 1995, pp. 634-644. 

42 United States Air Force Small Business Innovative Research Website “Ultra-

Lightweight Elastically Self-Deployable Roll-Out Solar Array (ROSA) for Responsive 

Space.” 2010 Award 93287, Contract FA9453-10-C-0040, [URL: 

http://www.sbir.gov/sbirsearch/detail/3721] 

43 Stribling, R., Schwartz, J., “Deployable Solar Array Assembly.” United States 

Patent 6983914. 10 June 2006. 

44 Stribling, R., Dommell, C., Streett, A., Cokin, D., Larson, B., “Boeing Advanced 

Modular Power Systems.” 29th Space Power Workshop, Los Angeles, California, 18-21 

April 2011.  

45 Murphy, D., “Structures Including Synchronously Deployable Frame Members 

and Methods of Deploying the Same.” United States Patent 7211722. 1 May 2007. 

46 Rimrott, F.P.J, ”Storable Tubular Extendable Member - A Unique Machine 

Element,” Journal of Machine Design, Vol. 37, 1965. pp. 156-165. 

  

178 

  

 



47 Hazelton, C.S., Gall, K.R., Abrahamson, E.R., Denis, R.J., Lake, M.S., 

”Development of a Prototype Elastic Memory Composite (STEM) for Large Space 

Structures,” 44th AIAA Structures, Structural Dynamics and Materials Conference, AIAA 

2003-1977, Norfolk, Virgina, 7-10 April 2003. 

48 Aguirre, M., “Collapsible Tube Mast,” Proceedings of the 2nd European Space 

Mechanisms & Tribology Symposium, Meersburg, Germany, 9-11 October 1985, pp. 75. 

49 Unda, J., Weisz, J., Rivacoba, J., Ruiz Urien, I., “Family of Deployable Retractable 

Structures for Space Applications,” Acta Astronautica Vol. 32, No. 12, 1994, pp. 767-

784. 

50 Herbeck, L., Eiden, M., Leipold, M., Sickinger, C., Unckenbold, W., “Development 

and Test of Deployable Ultra-Lightweight CFRP-Booms for a Solar Sail.” European 

Conference on Spacecraft Structures, Materials and Mechanical Testing, ESASP-468, 

Noordwijk, The Netherlands, 29 November – 1 December 2001, pp.107. 

51 Banik, J., Murphey, T., “Performance Validation of the Triangular Rollable and 

Collapsible Mast,” 24th AIAA/USU Conference on Small Satellites, SSC10-II-1. Logan, 

Utah, 2010. 

52 Murphey, T. W., Banik, J. A., “Triangular Rollable and Collapsible Boom,” United 

States Patent 7895795, 1 March 2011. 

53 Adler, A., Hague, T., Spanjers, G., Engberg, B., Gooding, J., Murphy, D., Mikulas, 

M., “PowerSail: The Challenges of Large, Planar, Surface Structures for Space 

  

179 

  

 



Applications” 44th AIAA Structures, Structural Dynamics and Materials Conference, 

AIAA 2003-1828, Norfolk, Virginia, 7-10 April 2003.  

54 Murphey, T., Botke, M., Blankinship, R., Hague, T., “An Articulated Motion and 

Vibration Isolator for Spacecraft” 44th AIAA Structures, Structural Dynamics and 

Materials Conference, AIAA 2003-1829, Norfolk, Virginia, 7-10 April 2003. 

55 Murphey, T., “Solar Array Structural Architecture Fundamentals” 28th Space Power 

Workshop, Los Angeles, California, 19-22 April 2010. 

56 Murphey, T., Cliff, E., Lane, S., “Matching Space Antenna Deformation Electronic 

Compensation Strategies to Support Structure Architectures.” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 46, No. 3, July 2010. pp 1422-1436. 

57 Lake, M., Peterson, L., Levine, M., “Rationale for Defining Structural Requirements 

for Large Space Telescopes.” AIAA Journal of Spacecraft and Rockets. Vol. 39, No. 5, 

September-October 2002. pp. 674-681. 

58 Schock, R., “Solar Array Flight Dynamics Experiment.” Workshop on Structural 

Dynamics and Control Interaction of Flexible Structures, NASA Marshall Space Flight 

Center, Alabama, 22-24 April 1986.  

59 Reed, B., “What’s Next?” Space Power Workshop, Los Angeles, California, 19-22 

April 2011. 

60 Murphy, D., Eskenazi, M., White, S., Spence, B., “Thin-Film and Crystalline Solar 

Cell Array System Performance Comparisons” 29th Photovoltaic Specialist Conference, 

19-24 May 2002. pp 782-787. 

  

180 

  

 



61 Hoffman, D., Kerslake, T., Hepp, A., Jacobs, M., Ponnusamy, D., “Thin-Film 

Photovoltaic Solar Array Parametric Assessment,” 35th Intersociety Energy Conversion 

Engineering Conference and Exhibit Collection of Technical Papers, AIAA-2000-2919, 

Vol. 1 (A00-37701 10-44), Las Vegas, Nevada, 24-28 July 2000, pp. 670-680. 

62 Boeing Company Press Release, “Boeing 702 HP Fleet” Accessed 30 November 

2011 [URL: http://www.boeing.com/defense-space/space/bss/factsheets/702/702 

fleet.html] 

63 Loral Company Press Release, “Space Systems/Loral Selected to Provide Two 

High-Power Satellites to Intelsat” 31 December 2008. Accessed 30 November 2011. 

[URL: http://investor.loral.com/releasedetail.cfm?ReleaseID=357228] 

64 National Aeronautics and Space Administration Website, “International Space 

Station Facts and Figures.” Accessed November 30, 2011. [URL: http://www.nasa.gov/ 

mission_pages/station/main/onthestation/facts_and_figures.html] 

65 Penn, J., Richardson, G., Brown, N., Ranieri, C., Henning, G., “Spacecraft 

Applications Enabled by High Powered Solar Array Technology.” 28th Space Power 

Workshop, Los Angeles, California, April 19-22, 2010. 

66 United States Government Federal Business Opportunities, “AXIOM-

AMWSE_PRESOLICITATION_AND_BFI_ANNOUNCEMENT.” Original Pre-

Solicitation date February 9, 2011. Accessed November 30, 2011. [URL: 

https://www.fbo.gov/] 

  

181 

  

 



67 Meink, T., Reinhardt, K., Luu, K., Blankinship, R., Huybrechts, S., Das, A., 

“PowerSail – A High Power Solution” AIAA Space Conference and Exposition, AIAA 

2000-508, Long Beach, California, 19-21 September 2000.  

68 Kerslake, T., “Solar Electric Propulsion (SEP) Tug Power System Considerations” 

29th Space Power Workshop, Los Angeles, California, 18-21 April 2011.  

69 National Aeronautics and Space Administration Press Release 11-191, “NASA 

Issues Announcement For Solar Electric Propulsion Studies” June 17, 2011. [URL: 

http://www.nasa.gov/home/hqnews/2011/jun/HQ_11-191_Solar_Projects.html] 

70 Kurland, R., Stella, P., “Advanced Photovoltaic Solar Array Program Status.” 

Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, 

Washington DC, Vol. 2, 6-11 August 1989, pp. 829-834. 

71 "Advanced Photovoltaic Solar Array Design," NASA Final Report, NASA-CR-

186345, JPL Contract No. 957358 (NAS7-918), 3 November 1986. 

72 Kimber, R., Regalado, O., Wu, C., “The EOS-AM Solar Array—A Flexible 

GaAs/Ge Array.” Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, 

Louisville, Kentucky, 10-14 May 1993, pp. 1375-1380. 

73 Gerlach, L., Marks, G.W., Quittner, E., Renshall, J., Zwanenburg, R., "The Design 

of the L-SAT (Olympus) Solar Array," Proceedings of the 3rd European Symposium on 

Photovoltaic Generators in Space, Bath, United Kingdom, 4-6 May 1982, pp. 241-248. 

74 Eskenazi, M., White, S., Spence, B., Douglas, M., Glick, M., Pavlick, A., Murphy, 

S., Oneil, M., McDanal, A., Piszczor, M., “Promising Results from Three NASA SBIR 

  

182 

  

 



Solar Array Technology Development Programs.” NASA Final Report, NASA/CP—

2005-213431, 2005. 

75 Solar Cell Array Design Handbook, Jet Propulsion Laboratory, NASA-CR-149364, 

Vol. 1, October 1976. Ch. 6. 

76 Paz, M., Leigh, W., Structural Dynamics Theory and Computation, Kluwer, Boston, 

2004. 

77 “Design Data Handbook for Flexible Solar Array Systems” NASA Report N74-

73793. NASA Contract NAS9-11039. Lockheed Missiles and Space Company. March 

1973. 

78 Blevins, R., Formulas for Natural Frequency and Mode Shape, Krieger, Florida, 

2001. 

79 Timoshenko, S. P., Gere, J., Theory of Elastic Stability, Dover, New York, 1961. 

80 ABAQUS/Standard Users Manual, Hibbitt, Karlsson, and Sorensen, Inc., Version 

6.11-1, 2011. 

81 Alliant Tech Systems Data Sheet, “Coilable Boom Systems,” Accessed 30 January 

2014. [URL: http://www.atk.com/wp-content/uploads/2013/05/Coilable-2012.pdf] 

  

183 

  

 


