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ABSTRACT 

 

Fatigue damage can be defined by a decrease in stiffness of Asphalt Concrete (AC) under 

repeated traffic loading. For each cycle of traffic loading, tensile strain develops at the 

bottom of AC layer of an asphalt pavement. Some localized damages occur in the 

material at minute-scale due to this developed tensile strain.  These damages cause 

decrease in stiffness (E) of AC.  Damage caused by a single vehicle is small. However 

the accumulated damage is not small if a large number of vehicles are considered over 

the design life of an asphalt pavement. After certain level of damage accumulation, 

bottom-up fatigue cracking initiates and forms alligator cracking at the surface.  

 

Like traffic loading, repeated day-night temperature cycle causes damages in AC.  

Damage due to a single day-night temperature fluctuation may be small. However the 

accumulated damage due to a large number of day-night temperature cycles may not be 

small. In this study, fatigue damage due to traffic loading is termed as traffic-induced 

fatigue damage, and fatigue damage due to temperature is termed as temperature-induced 

fatigue damage. The recently developed AASHTOWare Pavement Mechanistic-
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Empirical (ME) Design Guide predicts the fatigue performance of AC based on repeated 

traffic-induced tensile strain at the bottom of AC layer. Cyclic thermal strain due to day-

night temperature fluctuation is not considered due to the fact that there is no closed-form 

solution or model available for calculating thermal fatigue damage.  

 

This study, for the first time, develops a closed-form equation for calculating the 

temperature-induced fatigue damage of AC. To develop the model, beam fatigue testing 

was conducted using different AC mixtures in the laboratory. The mechanical beam 

fatigue test data was correlated with the actual cyclic temperature loading test data. The 

model was then validated using an unknown test data. To that end, the developed model 

was calibrated for field conditions using the Falling Weight Deflectometer (FWD) test 

data. The developed model is used to evaluate fatigue damages of 34 Long-Term 

Pavement Performance (LTPP) test sections. 

 

Fatigue damage predicted by the traditional AASHTOWare Pavement ME Design 

approach, which considers only traffic-induced fatigue damage, is compared to the 

fatigue damage by the developed model which considers both traffic- and temperature-

induced fatigue. Results show that the error may decrease by up to 29% through the 

incorporation of temperature-induced fatigue damage in the AASHTOWare Pavement 

ME Design approach. This means the reliability of alligator cracking prediction can be 

improved through the use of the developed thermal fatigue model. It is therefore 

suggested to include the temperature-induced fatigue damage model, which is developed 

in this study, in the AASHTOWare Pavement ME Design Software. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Problem Statement 

Fatigue damage is defined by the decrease in stiffness of Asphalt Concrete (AC) under 

repeated loading. Most of the past studies addressed fatigue damage due to repeated 

traffic loading (AASHTO 2008, Huang 2004, NCHRP 2004, Schwartz et al. 2013, 

Carvalho and Schwartz 2006, El-Basyouny and Witczak 2005a,b). Tensile strain 

develops at the bottom of AC of asphalt pavement when traffic wheel passes over AC. 

Some minute-scale damages occur due to this developed tensile strain. Under repeated 

traffic loading, micro-scale damage due to repeated tensile strain causes a decrease in AC 

material’s stiffness (E).  The damage is accumulated in AC over the design life of asphalt 

pavement. After certain level of damage accumulation, bottom-up fatigue cracking 

initiates, propagates through the AC layer, and shows at the surface as an alligator cracks 

(see Fig. 1). A network of fatigue cracks on the actual pavement surface looks like an 

alligator skin and therefore, fatigue cracking is also known as alligator cracking, as 

shown in Fig. 1(b).  

 

Like traffic loading, repeated temperature cycle may cause some damages in AC.  In 

places like New Mexico, the day-night air temperature difference is about 35 °F for many 

days (cycles) in a year. Damage due to one day-night temperature fluctuation may be 

small, but the accumulated damage due to a large number of day-night temperature cycles 

may not be small. This study hypothesized that the damage due to repeated day-night 

temperature cannot be neglected. In this study, fatigue damage due to traffic is termed as 
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traffic-induced fatigue damage, and fatigue damage due to temperature is termed as 

temperature-induced fatigue damage. While repeated cycles of temperature accumulates 

damages, it is possible that one cycle of temperature may cause significant amount of 

damage simply due to temperature induced strain reaches materials strength (strain). This 

aspect of temperature induced failure or crack can be counted separately, but not as 

temperature-induced fatigue damage. 

 

 

 

a) Tensile strain at the bottom of AC b) Fatigue cracking in a pavement 

in the UNM campus 

 

Figure 1. Fatigue cracking in an asphalt pavement 

 

1.2 Hypothesis 

In pavement design, the traffic-induced fatigue damage is calculated by dividing the 

actual number of traffic load (n) by the allowable number of traffic load,     that an AC 

material can withstand by the following relationship (AASHTO 2008): 

 

,

1

1 1 , ,

p m
i j

i j fv i j

n
D

N 

       (1) 
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where 1D  is the damage ratio or damage index for specific traffic n, n is the number of 

load repetitions for axle type j in period i, N
fv
 is the allowable number of load repetitions, 

p is the number of seasons in each year and m is the number of axle groups. The 

allowable number of load repetition,     is determined by the following relation 

(AASHTO 2008): 

 

3.9492 1.2811 1
0.007566(10 ) ( ) ( )M

fv H

t

N C
E

     (2) 

4.84( 0.69)b

a b

V
M

V V
 


      (3) 

 

where 
t
 = tensile strain at bottom of AC at critical location; E = stiffness

1
 of the AC; 

C
H
 = thickness correction factor; V

b
 = percent effective binder content and V

a = percent 

air void. It can be noted that while Eq. 2 is available for the traffic-induced fatigue 

damage, such equation does not exist for the temperature-induced fatigue damage, which 

is the main topic of discussion here. 

 

It is hypothesized that temperature-induced fatigue damage can be measured and used in 

pavement reliability for better reliability of the prediction of the alligator cracking. If 

alligator cracking is predicted using Eqs. (1-3), there is always a discrepancy between the 

predicted and field measured values, which requires to calibrate the model to local 

conditions. This discrepancy can be reduced by using temperature-induced fatigue 

                                                           
1
 AC’s dynamic modulus and stiffness are synonymous and therefore, they are used interchangeably in this 

study. 
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damage and traffic-induced fatigue damage. The functional form of temperature-induced 

fatigue damage equation is proposed following Eq. (2) as below: 

 

N
ft
=f (E, ε)       (4) 

 

where N
ft
 is the allowable number of day-night temperature fluctuation that AC material 

can withstand before showing cracking; ε is the thermal strain at the bottom of AC due to 

day-night temperature difference; E is the stiffness of the AC material which depends on 

the temperature and frequency of temperature fluctuation.  

 

It is known that thermal strain (ε) in AC can be expressed as: 

 

               (5) 

 

where α is the coefficient of thermal contraction and expansion of AC material;    is the 

day-night temperature difference. Here, α-value is defined as the average of the 

Coefficient of Thermal Contraction (CTC) and the Coefficient of Thermal Expansion 

(CTE). 

 

1.3 Objectives and Scopes 

The main objective of this study is to develop a closed form equation or model to 

calculate the thermal fatigue damage in asphalt pavement. To achieve this objective, the 

following tasks are accomplished: 
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a) Measure CTC and CTE values of asphalt concrete in the laboratory. 

b) Develop a regression model to determine temperature at any depth of AC given 

the pavement surface temperature. 

c) Develop a fatigue model to determine the fatigue life of asphalt concrete under 

the temperature-induced fatigue damage. 

d) Validate the developed temperature-induced fatigue model in the laboratory. 

e) Calibrate the developed temperature-induced fatigue model under field 

conditions. 

f) Evaluate the developed fatigue model using data available in the Long-Term 

Pavement Performance (LTPP) database, which were not used in model 

development. 

 

The detailed research methodology is presented by a flow chart in Fig. 2. The major 

research task lies in developing the model described by Eq. (4). The second major task is 

to develop Eq. (5) to determine the thermal strain. To develop so, α-value is determined 

in the laboratory first. Then, a regression model to determine the day-night temperature 

fluctuation at any depth of AC is developed. Using the thermal strain value determined 

following the above procedure, laboratory fatigue test is conducted on three mixtures. 

Based on the laboratory test data, a regression model is developed to determine the 

fatigue life of AC under day-night temperature fluctuation. This model is then calibrated 

using the Falling Weight-Deflectometer (FWD) data for field compatibility. The 

contribution of the developed model is evaluated by comparing the alligator cracking 

prediction with the measured field data available in the LTPP database. Bottom up 
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alligator cracking predicted using the AASHTOWare Pavement ME Design approach, 

which considers traffic-induced fatigue damage only, is compared to that by the 

combined traffic- and temperature-induced fatigue. 

 

 

Figure 2. Research methodology 

1.4 Organization  

The organization of the dissertation can be described as follows: 

Chapter One. It presents the problem statement, hypothesis and research 

objectives.  

Chapter Two. The current pool of literature on the subject area is presented in 

Chapter Two.  

Fatigue 
Damage 
Model 

Step 1: Determining 
CTC/CTE 

Investigate the effects of 

           a) temperature 

           b) cross-anisotropy 

           c) air void 

           d) aggregate type 

           e) aggregate gradation 
 

Step 2: Determining 
temp. profile of AC 

a) Developing regression model 

Step 3: Model 
development 

a) Determining  test method 

b) Determining test conditions 

c) Fatigue tests under different 
temperatures and strain levels 

Step 4: Model 
validation/calibrati

on 

a) Laboratory validation/calibration 

b) Field validation/calibration 

Step 5: Model 
performance 

a) Application procedure in the 
AASHTOWare Pavement ME 
Design Software 

b) Model Performance 
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Chapter Three. It deals with the procedure to determine the thermal strain at the 

bottom of AC. It presents the CTC and the CTE values of AC. It also presents the 

regression model to determine the temperature fluctuation at any depth of AC.  

Chapter Four. It presents the laboratory testing to gather the test data which was 

used to determine the temperature-induced fatigue model.  

Chapter Five. It deals with the model validation in the laboratory and model 

calibration under field conditions. 

Chapter Six. The performance of the model is evaluated in this chapter. 

Chapter Seven. It summarizes the findings of the study. Recommendations for 

future studies are also listed.   
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CHAPTER TWO 

LITERATURE REVIEW 

3.1 General  

In this chapter, literature related to temperature-induced fatigue damage of AC is 

documented. Several studies attempted to develop such a model. However, most of those 

attempts were unsuccessful. The AC is considered fixed to the base layer in the current 

study; the researchers behind this consideration are also described. In addition, the 

developmental procedure of the traffic-induced fatigue damage which is currently being 

used is discussed. 

 

3.2 Temperature-Induced Fatigue Damage 

The concept of thermal fatigue damage in asphalt pavement is pretty old. Shahin and 

McCullough (1974) proposed the thermal fatigue model as follows: 

 

2

1

1
k

N k


 
  

 
                             (6) 

 

where N is the allowable load repetitions to cause fatigue cracking under thermal strain, ε 

and k
1
 and k

2
 are the regression constants based on constant strain test. They did not 

perform any laboratory test to develop the model; rather they assumed the regression 

constants. The model was validated based on the measured transverse cracking data from 

Ontario Test Roads and Ste. Anne Test Road. The model was not correlated with the 

alligator cracking data. However, the researchers did not report the values of the 

regression constants. In fact, accurate values of these two constants are unknown. In 
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addition, the allowable load repetition (N) as a function of stiffness of AC was not 

included in that model. 

 

Huang (2004) described the model proposed by Shahin and McCullough (1974). As 

Shahin and McCullough (1974) did not report the values of the regression constants, 

Huang (2004) suggested using the traffic-induced fatigue model available in the literature 

as a replacement of the temperature-induced fatigue model. However, traffic-induced 

fatigue model should not be used in place of the temperature-induced fatigue model 

because there is a difference in frequency value between traffic loading and temperature 

loading. 

 

Arabzadeh et al. (2015) presented thermal fatigue damage behavior of AC based on 

uniaxial fatigue testing on asphalt sample using mechanical loading. In that study, an 

experimental setup was developed in order to measure the thermal fatigue resistance of 

AC under strain-controlled testing. Different aggregates, gradations, asphalt binders and 

asphalt contents were studied. Uniaxial loading was mechanically applied to achieve 

constant amplitude sinusoidal strain at a frequency of 0.01Hz to simulate thermal fatigue 

behavior of AC. The strain amplitudes were determined using the measured thermal 

coefficients of the test specimens and the temperature differential corresponding to the 

climate of the city of Ankara. They studied the effects of aggregate type, gradation, 

binder etc. in fatigue resistance of AC. No temperature-induced fatigue model was 

developed in that study. 

 



10 
 

Tarefder and Islam (2013) measured traffic and temperature-induced fatigue damages 

using laboratory developed fatigue models for a pavement section on Interstate 40 (I-40) 

in the city of Albuquerque in the State of New Mexico in United States. The specific 

objectives of that study are mentioned below: 

a) Predicting fatigue life (and damage) of I-40 pavement due to traffic 

loading based on laboratory developed fatigue model using the field 

measured stiffness and counted traffic. 

b) Determining damage for temperature induced strain at the bottom of AC 

using the developed fatigue model for thermal load. Horizontal strains at 

the bottom of AC due to both diurnal and annual temperature fluctuations 

were considered. 

c) Compare the above determined vehicle and thermal induced damages and 

evaluate the contribution of thermal strain in fatigue life of AC. 

 

The work procedure to compare both vehicle and thermal induced damage is presented in 

Fig. 3. Firstly, fatigue life of I-40 pavement was predicted for vehicle load only which 

was the procedure of the AASHTOWare Pavement ME Design. Then, damages for 

diurnal and yearly thermal strains were included with vehicle induced damage. The 

contributions of vehicle, daily and yearly transverse longitudinal horizontal strains in the 

fatigue damage of AC were then evaluated. 
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Figure 3. Research procedure to compare temperature- and traffic-induced 

damages 

 

As a first step, fatigue life prediction models were developed for both vehicle and thermal 

loads based on stiffness and strain of AC collected from the I-40 section in New Mexico. 

A total of fourteen samples were tested at seven different strain levels at 20 °C to develop 

traffic-induced fatigue model. In the second step, traffic and thermal strains at the bottom 

of AC were measured by the Horizontal Asphalt Strain Gauges (HASGs). In the third 

step, using these strain values, fatigue damage at the bottom of asphalt concrete was 

determined. Both day-night and yearly temperature induced strains were considered. The 

laboratory developed model at a single temperature was used to determine the allowable 

number of load for different seasons. The laboratory test must have been conducted at 

different temperatures to account the seasonal effect. In addition, no calibration factor 

was determined to transfer the laboratory model to field condition. Another limitation of 

that study is that the temperature-induced fatigue model was assumed based on fatigue 
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test using three beams samples only. That study was also limited to a single pavement in 

New Mexico. 

 

Islam et al. (2014a) compared traffic versus temperature-induced fatigue damages using 

the AASHTOWare Pavement ME Design fatigue model (Eq. 2) for the pavement section 

on I-40 in New Mexico. The traffic model provided by the AASHTOWare Pavement ME 

Design was used for both traffic- and temperature-induced fatigue damages following the 

recommendation of Huang (2004). The developed strains under traffic and temperature 

loading were determined using installed strain gauges at the bottom of AC. It was found 

that temperature produces a major portion of the total fatigue damage for the specific 

pavement site in New Mexico. The limitation of that study was that traffic-induced 

fatigue model was used for temperature-induced fatigue model. This is not appropriate as 

the frequencies of traffic and temperature loads are not equal. Separate fatigue model was 

required for determining temperature-induced fatigue damage. 

 

Islam and Tarefder (2014a) separated thermal fatigue damage at the bottom of an asphalt 

concrete and hence, the fatigue life of asphalt concrete of I-40 pavement. Both the traffic- 

and temperature-induced fatigue models were developed testing at different temperatures. 

In addition, the effect of loading frequency on temperature-induced fatigue model was 

considered by testing at different frequencies and extrapolated for daily and yearly 

temperatures’ frequencies. In the first step, fatigue damage of I-40 pavement was 

predicted for vehicle load only, which is the procedure of the AASHTOWare Pavement 

ME Design Guide to determine the fatigue life of AC. The fatigue model was developed 
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in the laboratory using beam fatigue testing. The developed model had input parameters 

of AC modulus and tensile strain at the bottom of AC. A shift factor was applied to the 

developed model to transfer the model from laboratory to field performance.  

 

To determine AC moduli, firstly, the monthly average AC temperature was measured at 

twelve different months. Then, beam flexure tests (around 100 cycles) were conducted at 

these temperatures to determine the initial stiffness at twelve different months. 

Transverse horizontal tensile strains at the bottom of the AC were measured at different 

seasons for different axle loads from December 2012 to November 2013 by the HASGs. 

The transverse horizontal strain was considered instead of the longitudinal one as the 

transverse strain is 20% greater than the longitudinal strain (Islam and Tarefder, 2013a). 

The total traffic number for the year was determined from the data of installed Weigh-in-

Motion (WIM) Data. Finally, fatigue damage due to traffic load was determined for one 

year of traffic loading. 

 

In the second method, fatigue damages due to day-night and yearly longitudinal thermal 

strains were determined. Fatigue models were developed for both day-night and yearly 

thermal loads. The vehicle induced fatigue model could be used for predicting 

temperature induced fatigue damage, as the frequency of the thermal load is much 

smaller than that of the vehicle load. The fatigue model for day-night and yearly 

temperature cycles were different as each has different magnitude and frequency of 

loading. The developed model has an input parameter of frequency of loading only. 

Average day-night and yearly thermal strains are measured from December 1, 2012 to 
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December 31, 2013 using the HASGs as shown in Fig. 4. Fatigue damages due to day-

night and yearly temperature-induced loads are determined for one year of day-night and 

yearly temperature cycles and results were compared with vehicle-induced damage 

obtained from the first method. Results showed the importance of thermal fatigue 

damage; however, there were still some limitations in that study such as field calibration, 

data extrapolation etc. 

 

 

Figure 4. Temperature and horizontal strain variations at the bottom of AC. 

 

In the revised study, Islam and Tarefder (2015a) developed a closed-form equation or 

model of temperature-induced fatigue damage of AC. To generate data, beam fatigue 

testing was conducted on three Superpave mixtures in the laboratory. The developed 

model was then used to evaluate fatigue damages of the several LTPP test sections. 

Fatigue damage determined by the traditional AASHTOWare Pavement ME Design 

approach (which considers traffic-induced fatigue damage only) was compared to that by 
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the combined traffic- and temperature-induced fatigue. Results showed that the error 

decreased by 31% through the incorporation of temperature-induced fatigue damage in 

the AASHTOWare Pavement ME Design approach.  

 

The above discussion concludes that there is no well-established temperature-induced 

fatigue model in the literature to be accounted for alligator cracking. This reason 

motivated the author to develop temperature-induced fatigue model.  

 

3.3 Asphalt Boundary Condition 

It is important to investigate the research related to asphalt’s boundary condition in real 

pavement. This is important to design a suitable test condition in the laboratory. If 

temperature changes occur in free asphalt samples, no damage is expected as the material 

expands and contracts freely. However, if cyclic temperature changes occur in restrained 

samples, repeated thermal stress will be developed inside the material as the material 

cannot expand and contract freely. Therefore, fatigue damage will occur if cyclic 

temperature change is applied to restrained samples. This can be explained by Fig. 5. 

 

 

Figure 5. Thermal expansion and contraction on restrained AC sample 
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Past studies analyzed the pavement section under different boundary conditions. Zubeck 

and Vinson (1996) developed deterministic and probabilistic models to predict low-

temperature cracking of asphalt concrete mixtures with the Thermal Stress Restrained 

Specimen Test (TSRST) results. In the TSRST test, the sample is fully restrained at the 

ends. This is because the field slab is considered full restrained. In fact, the calculation of 

the crack spacing is based on the theory that the pavement slab cracks when the pavement 

temperature reaches the cracking temperature of the mixture and the slab is fully 

restrained.  

 

Kirkner and Shen (1999) developed the so called Fictitious Crack Model (FCM) to 

predict thermal cracking of asphalt pavements. They assumed the interface friction 

between the asphalt concrete and underlying layer is fixed and governed by the 

Coulomb’s friction law. Frictional Restraint Model (FRM) was developed by Marastenu 

et al. 2004 and Timm et al. 2003 with the assumption that AC layer is free at one end and 

free at the other end. They also assumed that the AC layer is supported on elastoplastic 

foundation with frictional resistance. Rajbonshi and Das (2009) determined the crack 

spacing of transverse cracking of AC for single low temperature cracking using the same 

boundary conditions.  

 

Recently, Al-Qadi et al. (2010) performed 3-D dynamic finite element analysis by using 

an implicit algorithm to simulate FWD test results using the fully bonded asphalt-base 

interface. Appea (2003) used same fully bonded asphalt-base interface to validate his 

model with the field instrumentation data. In another study, an axisymmetric model was 
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developed to determine the response of an instrumented pavement section under dynamic 

load by Howard and Warren (2009). They also used full restrained boundary conditions 

for all layers. From the above discussion, it can be concluded that any segment of asphalt 

concrete is fixed to the underneath base course, one end free and another end fixed as 

shown in Fig. 6. The free boundary condition typically arises from the construction joint 

or the accidental weakest point of pavement.  

 

 

  

 

 

 

 

Figure 6. Boundary condition of asphalt concrete in pavement 

 

3.4 Coefficients of Thermal Expansion and Contraction (α-value) 

The α-value is essential to determine the thermal strain caused by temperature fluctuation 

as shown in Eq. 5. In one-dimensional (ID) material, if there is a temperature change 

(∆T), the material elongates. Thus, α-value reports change in length due to unit change in 

temperature. More preciously, α-value is the strain per degree change in temperature.  

 

Several studies were conducted in the past to study the CTC and the CTE of AC. Stoffels 

and Kawanda (1996) patched resistive strain gauges on cylindrical samples of 152.4 mm 

diameter and 51 mm thick to measure the decrease in sample diameter due to the 

Asphalt Concrete 

Base Course 

Fixed 

Boundary 

Free 

Boundary 

Full-Bonded Interface 



18 
 

temperature decrease from 0 °C to -25 °C. Field collected cylindrical samples from 

different highway sections were tested. The CTC value was reported to be 1.33x10
-5

 to 

2.97x10
-5

 per ˚C in the horizontal direction (perpendicular to the direction of 

compaction). It was observed that the measured strain varied linearly with temperature; 

the CTC value was not affected significantly by gauge position, gauge orientations and 

type of material. 

 

Metha et al. (1999) used Linear Variable Differential Transformers (LVDTs) to 

determine the CTC of cylindrical core samples of 150 mm diameter 50 mm thick from 0 

˚C to -25 ˚C. The CTC value was reported to be 1.58x10
-5

 to 2.33x10
-5

 per ˚C. The 

researchers followed the work of Stoffels and Kawanda (1996) except they used LVDTs 

instead of resistive strain gauges. 

 

Zeng and Shiels (1999) used AC beams of 51 mm x 51 mm x 340 mm dimensions and 

tested between -40 °C and +40 °C. The LVDTs were attached outside the environmental 

chamber. Based on a single asphalt mixture, the CTC and the CTE values were 

determined to be 1.35x10
-5

 and 2.62x10
-5

 per ˚C respectively. The researchers explored 

the effect temperature on the CTC and the CTE values and concluded that assumption of 

thermal linearity is not appropriate. 

 

Mamlouk et al. (2005) used beam samples of 50 mm x 50 mm x 390 mm (field and 

laboratory compacted) inside an environmental chamber and the LVDTs were placed 

outside the chamber using rubber plug. The temperature range was 0 °C to 60 °C. The 
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CTC and the CTE values were determined to be 3.745x10
-5

 and 3.786x10
-5

 per ˚C 

respectively. The researchers used different types of materials (air voids ranged between 

3.6 and 8.0 %.) and finally, concluded that the thermal coefficient values were dependent 

on material type. However, they did not correlate the changes of the CTC and the CTE 

values with material type and the large variation of air voids might have caused the 

variations in the results. 

 

Xu and Solaimanian (2008) determined the CTC and the CTE values on cylindrical 

samples in the temperature range of -5 ˚C to 40 ˚C. Cylindrical specimens were subjected 

to temperature variations in an environmental chamber and specimen deformations were 

measured using extensometers. A finite element model was developed to simulate the 

thermal stresses and strains inside the specimen to evaluate the measured the CTC and 

the CTE. That study determined the CTC and the CTE values along the vertical direction. 

 

Several researchers evaluated the effects of the aggregate type and its percentage on the 

CTC and the CTE values of Portland Cement Concrete (PCC) (Won 2005; Naik et al. 

2011; Jahangirmejad et al. 2009). Those researchers reported that CTC and CTE values 

are significantly affected by the aggregate type and quantity. Based on the same logic, the 

CTC and the CTE values of AC should also be affected by the aggregate type. Typically, 

CTC or CTE of asphalt binder is 1.1x10
-4

 per °C and of rock ranges 0.4 x10
-5

 to 1.3x10
-5

 

per °C (Hardin 1995; Timm et al. 2010, Al-Ostaz 2007).  

 



20 
 

The above discussion clarifies that the researchers were investigated the CTC and CTE 

values in one direction, either horizontal (perpendicular to the direction of compaction) or 

vertical. Xu and Solaimanian (2008) determined the CTC and the CTE values along the 

vertical direction; all other researchers measured along the horizontal direction. In 

addition, the effect of cross-anisotropy (vertical versus horizontal directions) is still an 

unsolved issue. In addition, the effects of AV, aggregate geology, aggregate gradation 

etc. are still unknown issues. The present study proposes to investigate all these issues 

using both field and laboratory compacted asphalt samples so that the readers can use the 

proposed thermal model for a wide range of conditions. 

 

Bayat and Knight (2010) and Al-Qadi et al. (2005) measured the thermal strain in their 

instrumentation section. However, the researchers did not determine the field α-value. In 

addition, no calibration procedure of the strain gauge was described by these researchers. 

The nonlinear behavior of α-value with temperature can also be an issue. In addition, the 

aggregate type, gradation and air void may also affect the results. Hence, their findings 

cannot be used in this study because, α-value depends on material temperature. 

Therefore, it can be said that there are no field CTC and CTE values in the literature 

which can be used to measure thermal strain in the field at different temperature ranges. 

This study determines the α-value at different temperatures to use it in different phases of 

the study. 
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The α-value can be determined using the following Eq.: 

 

o

L
L

T







      (7) 

 

where L
o
 is the original length of the samples, ∆L is the change in length due to change in 

temperature by ∆T. It can be determined by changing the temperature of an AC sample 

and measuring the corresponding change in length. The change in temperature can be 

applied using an environmental chamber and the change in sample length can be 

measured by Linear Variable Displacement Transducer (LVDT). 

 

3.5 Determining Temperature at the Bottom of Asphalt 

Determination of pavement temperature is essential to determine the thermal strain as 

shown in Eq. 5. It is also important in analyzing and interpreting FWD test data to 

backcalculate layer stiffness, in estimations of frost-thaw action and frost penetration, in 

calculations of cooling rates for freshly compacted asphalt layers, and in the assessment 

of diurnal and seasonal effects in structural response in flexible pavement (Wang 2012, 

Yavuzturk and Ksaibati 2002).  

 

Studying the effects of temperature in flexible pavements started more than fifty years 

ago (Domaschuk et al. 1964, Littlefield 1967, Jones et al. 1968). For this purpose, it is 

essential to predict the temperature variations inside the pavement. Numerous studies 

have predicted temperature profiles in flexible pavement based on statistical, numerical 

and probabilistic methods developed based on climate and pavement data. The data were 
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usually collected through the LTPP under the Strategic Highway Research Program 

(SHRP). However, such statistical and probabilistic methods tend to underestimate high 

pavement temperature or overestimate low pavement temperature.  

 

Wang (2012) developed an algorithm using thermal properties of Hot-Mix Asphalt 

(HMA), pavement depth and surface temperature to predict one-dimensional (1D) 

temperature profiles in a multilayered pavement system. The developed algorithm can be 

applied in estimating temperature profiles in a multilayered pavement system. Results 

were validated using field data measured during 1964 to 1965 from the study of Kallas 

(1966). This type of old data is not valid in today’s asphalt conditions as significant 

changes have occurred in HMA mix design and compaction methods. In addition, the 

fitted value was not very good at greater depths (>0.15 m). 

 

Khadrawi et al. (2012) developed a heat transfer model to predict transient thermal 

behavior of AC using the thermal properties of asphalt concrete, surface and ambient 

temperature and solar radiation. Pavement temperature at any depth could be predicted. 

However, the AC layer was assumed infinite in depth and typical thermal properties of 

AC were assumed. The model also needed to be field validated before using in any other 

sites. 

 

Yavuzturk and Ksaibati (2002) analyzed a two-dimensional (2D) finite difference model 

that is capable of determining temperatures on an hour-by-hour basis at any arbitrary 

point in an asphalt pavement. The model considers thermal ambient conditions, such as 

http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.aspx
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the ambient dry bulb temperature, global solar radiation intensity, pavement geometry 

and orientation, ambient wind conditions and pavement thermal properties. This model is 

not user-friendly for practicing pavement engineers and includes a lot of variables, which 

are very often difficult to obtain.  

 

Diefenderfer (2002) developed two statistical models, referred herein as Diefenderfer 

Statistical Model (DSM), based on the instrumentation section in Virginia named the 

Virginia Smart Road (VSR), to predict the maximum and the minimum temperatures at 

any depth of the pavement. However, these models are quite inappropriate in New 

Mexico (NM) pavements as the HMA mixture design and geometry of NM pavements 

are not similar to VSR. 

 

Some examples of other existing models are the SHRP LTPP Models (Diefenderfer 

2002). These models were evaluated for validity for the Interstate 40 (I-40) pavement in 

NM. The maximum temperatures for the I-40 pavement at 263 mm depth were 

determined using these models and the results are plotted in Fig. 7. It is observed that the 

DSM and LTPP model produce much greater temperature at this depth whereas the 

SHRP model produces much lower temperature at this depth compared to I-40 pavement. 

It also shows that the measured temperature at the I-40 instrumented section is consistent. 

The equations of these models are presented in Eqs. (8) to (10). 

 

SHRP Model: 
2 3

(max) (max) (1 0.0063 0.007 0.0004 )pav sT T d d d                        (8) 
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where (max)pavT  is the maximum pavement temperature (°F) at depth, d (in.), (max)sT is the 

maximum surface temperature (°F).  

 

LTPP Model: 
2 3

(max) (max)( 17.8)(1 0.00248 0.000011 0.0024 ) 17.8pav sT T d d d              

                                                                                                                    (9)  

(max)pavT is the maximum pavement temperature (°C) at depth, d (m), (max)sT is the 

maximum surface temperature (°C). 

 

DSM Model: (max) 1 20.686 0.000567 27.87 2.7875pavT x x x                                (10) 

 

(max)pavT is the maximum pavement temperature (°C) at depth, 1x  is the maximum air 

temperature (°C), 2x  is the calculated daily solar radiation (kJ/m
2
day), and x is the depth 

from the surface (m). 

 

Formal statistical analysis is conducted to evaluate the mean (average) temperatures and 

the measured data of these models. One-Way Analysis of Variance (ANOVA) is 

performed with null hypothesis that the mean (average) values of the temperature data are 

equal and the alternative hypothesis is that the mean values are not equal. The test yields 

the p-value (probability of null hypothesis to be true) closer to zero (much less than 0.05). 

Therefore, the null hypothesis is rejected in favor of the alternative hypothesis. This 

concludes that the mean values are not equal at 95% Confidence Interval (CI). ANOVA 

test requires that the data is normally distributed. This assumption is evaluated by the 
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formal normality test namely Shapiro-Wilk Normality test. The null hypothesis of this 

test is that the data are normally distributed and the alternative hypothesis is that the data 

are not normally distributed. This test produces p-value ranges between 0.64 and 0.72 for 

the four set of data presented in Fig. 7. As the p-value is much greater than 0.05, the 

alternative hypothesis is rejected in favor of the null hypothesis. Therefore, the normality 

assumption of the data is satisfied and the result produced in the ANOVA test is valid. 

 

 

 

Figure 7. Comparisons of measured temperature with other studies 

 

Pair-wise t-test was also conducted to evaluate which pair or pairs of means differ(s). 

Fisher’s least Significant Difference (FSD) method yields the output listed in Table 1. 

The LTPP and the DSM models have p-value greater than 0.05 and thus, these two 

models produce the equal mean value at 95% CI. No other combination has the equal 

mean value. Therefore, no existing model perfectly represents the field condition of I-40 

pavement in New Mexico. The reason is the climate conditions of New Mexico. This is a 
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rocky and arid area; where, typical day-night temperature fluctuation is so high, humidity 

and rainfall are so low. 

 

Table 1. p-values of multiple comparison tests using FSD method 

 

3.6 Thermal Strain 

Though the AASHTOWare Pavement ME Design has not considered thermal fatigue 

damage yet, several researchers have reported a significant strain development and 

damage in pavements due to day-night temperature fluctuation. Bayat and Knight (2010) 

measured daily strain fluctuations as high as 650 µε and yearly strain fluctuations as high 

as 2544 µε per year at the bottom of AC in a test section in Canada. Al-Qadi et al. (2005) 

measured the daily thermal strain up to 350 µε at the bottom of surface layer in an 

instrumented pavement section in Virginia. These measured strain values are quite large. 

Thousands of traffic repetitions occurs during one temperature cycle, it is possible that 

one cycle of temperature may cause significant amount of damage simply due to large 

amplitude of strain. Therefore, temperature-induced fatigue damage should be considered 

in addition to traffic-induced fatigue damage in determining the fatigue cracking in AC. 

In the study of Islam and Tarefder (2013b), it was found that temperature produced 

thermal strains are larger than traffic-induced tensile strain in a pavement section in New 

Mexico. 

 DSM LTPP Measured 

LTPP 0.097 - - 

Measured 0.0405 0.003 - 

SHRP 0.000008 0.00002 0.00005 
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3.7 Development of Traffic-Induced Fatigue Model 

Study on the development of the traffic-induced fatigue model, currently being used in 

the AASHTOWare Pavement ME Design Software, is essential. This is because the 

proposed temperature-induced fatigue model to be developed during this study may be 

included in the Pavement ME Design Software in future. Therefore, both models 

developed using similar logic and assumptions so that they are comparable. The traffic-

induced fatigue model has been developed through the National Cooperative Highway 

Research Project (NCHRP), 1-37A (NCHRP 2004). Initially, it was named Design Guide 

(DG) 2002 which is now known as the AASHTOWare Pavement ME Design Guide. 

 

3.7.1 Calibration of Regression Coefficients  

Two available models were examined first: the Shell Oil model and the Asphalt Institute 

(AI) model (El-Basyouny and Witczak 2005a,b). By examining both the preliminary 

results of the Shell Oil and the Asphalt Institute models, it was clear that the Shell Oil 

model possessed more scatter and did not possess any definite trends to follow. The 

Asphalt Institute model had much less scatter and resulted in a definite trend between 

damage and cracking for sections greater than 4 in. to 6 in. AC layer and thin AC sections 

(less than 4 in.). Based on the initial study, it was concluded that the Asphalt Institute 

model was more acceptable model initially to use as the base model for the prediction of 

the fatigue damage percentage for the new model. For the AI’s fatigue equation, the 

number of load repetitions to failure is shown in the following equation: 
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Then a trial section has been assumed as follows: 
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where N
f
 is the allowable number of traffic load repetition; M is discussed in Eq. (3); k

1
, 

β
f1

, β
f2

 and β
f3 are calibration coefficients. Eighty-two LTPP sections were selected for 

the fatigue simulation because they contained fatigue-cracking data in the database. The 

82 sections were located in 24 different states with different climatic locations. The 

asphalt concrete mix bottom-up, fatigue-cracking model was calibrated following the 

process noted here: 

a) Calibration (performance) data were collected from the LTPP database for each 

field section. 

b) Simulation (predictive) runs were performed using the DG software and a 

different set of calibration coefficients in the number of-load repetition model. 

c) The predicted damage from each calibration coefficient combination was 

compared with the measured cracking observed in the field. The coefficient 

combination with the least scatter of the data and the correct trends was selected. 

d) The predicted damage was correlated to the measured cracking in the field by 

minimizing the square of the errors. 
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The simulation runs were accomplished by running the software for a combination of 

values of the calibration factors β
f2

, β
f3

.The other constant, β
f1 

was considered unity and k
1
 

was assumed a function of the total asphalt concrete layer thickness. After the simulation, 

it was found that for β
f1

=1, β
f2

=1.2 and β
f3 =1.5, the field measured cracking best 

correlated with the predicted cracking. Finally, k1 was found to be: 

 

he

k

49.302.11

1

1

003602.0
000398.0

1




                   (13) 

 

where h is the total AC thickness. 

 

3.7.2 Determining Damage Shift Factor  

The next step of the calibration process was to derive an appropriate shift function 

relating predicted damage to the measured alligator fatigue cracking. The correlation 

between the alligator cracking and damage was based on two assumptions: 

a) A sigmoidal function form is the best representative of the relationship between 

cracking and damage. This is an extremely reasonable assumption, because the 

relationship must be “bounded” by 0 ft
2
 cracking as a minimum and 6,000 

ft
2
cracking as a maximum. 

b) An alligator cracking value of 50% cracking of the total area of the lane (6,000 

ft
2
) occurs at a damage percentage of 100%. 

 



30 
 

The fatigue cracking–damage transfer function used in the calibration of the DG alligator 

(bottom-up) fatigue cracking was assumed to take on the form of a mathematical 

sigmoidal function. The model form selected was parameter was obtained from the 

relationship between the rate of cracking and the thickness of the AC layer. The rate of 

cracking was calculated from only 26 sections (of 82 sections) that developed significant 

cracking. This shift factor was found manually for each group to satisfy the assumption 

that 50% of the fatigue cracking occurs at 100% damage. The relationship between the 

amount of fatigue cracking and the damage factor was found to be: 
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where 
2C can  be expressed as: 

2.856

2 2.40874 39.748(1 )C h                    (15) 

 

In addition to the above correlation, the correlation required the damage shift factors 

adopted for each thickness group are shown in Table 2. 

 

Table 2.  Damage shift factor used in damage ratio 

AC Thickness (in.) Damage Shift Factor 

<2 0.000398 

2-4 0.002934 

4< 0.004 
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CHAPTER THREE 

DETERMINING THERMAL STRAIN 

3.1 General  

As a first step of developing the model, it was needed to determine the thermal strain 

developed at the bottom of AC due to day-night temperature fluctuations. This chapter 

discusses the procedure to determine the probable thermal strain in asphalt. 

 

3.2 Determining α-Value 

3.2.1 Background 

LVDT is made up of steel and membrane which also expand and contact with 

temperature change. Therefore, LVDT needs to be calibrated first before using it to 

measure change in sample length. The calibration of LVDT is described in the following 

section. 

 

3.2.2 Calibration of Linear Variable Displacement Transducer  

Temperature affects the response of deformation measuring device, LVDTs due to the 

expansion and contraction of steel used in the sensor. When temperature increases, both 

the AC material and the sensor’s components expand and vice-versa. The effects of 

thermal expansion and contraction of steel must be considered to determine the accurate 

thermal strain, more specifically, to determine the exact CTC and CTE values of the AC. 

 

The LVDTs were also calibrated using a zerodur (whose CTC and CTE values are almost 

zero) in the laboratory as shown in Fig. 8. The LVDTs were glued to the zerodur and the 
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whole system was kept inside an environmental chamber. Temperature increase from -20 

˚C to 50 ˚C and decrease from 55 ˚C to -20 ˚C were made at a rate of 0.5 ˚C/min and the 

corresponding deformation (strain) variations in the LVDTs were recorded using a data 

acquisition system. The chamber temperature and the inside sample temperature were 

monitored continuously. The test was continued until both the chamber temperature and 

the inside sample temperature coincided each other. The total process of the temperature 

increase and decrease took about 12 hours. The test was repeated in another day to cross 

check the reliability of the data. 

 

 

Figure 8. Calibration of the LVDTs 

 

It was observed that the LVDTs showed negative (contraction) results upon increase in 

temperature. This can be explained using Fig. 9, where the mechanism of contraction has 

been explained. The zerodur does not expand due to increase in temperature, whereas, the 

LVDT steel rods used in the LVDT expand. As the ends of the LVDT are glued to the 
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zerodur, the sensor spring must contract to accommodate the expansion of steel rods. 

Therefore, upon increase in temperature, LVDT shows contraction output if the material 

(here, zerodur) does not expand. In Fig. 9, the gauge length is L, which does not change 

as the zerodur does not expand nor contract. Upon increase in temperature, the length of 

two steel components, L1 and L2 become L1+∆L1 and L2+∆L2 respectively. Consequently, 

the spring length is reduced by ∆L1+∆L2, which results the contraction strain of 

(∆L1+∆L2)/L due to an increase of temperature by ∆T. 

 

 

 

 

 

 

 

Figure 9. Contraction mechanism of LVDT due to increase in temperature 

 

Fig. 10 plots the strains due to the increase and the decrease in temperatures between the 

range of -20 ˚C and 50 ˚C. It shows that the resulting strains follow almost straight lines 

with temperature. The contraction strain due to unit increase in temperature is termed as 

the CTE of LVDT and the expansion strain due to unit decrease in temperature is termed 

as the CTC of LVDT. From the best fit straight curve, it is found that the CTC and CTE 

values of LVDT are 2.56x10
-5

 per ˚C and 2.13 x10
-5

 per ˚C respectively. The second test 

at another day yields the similar results. These values should be adjusted with the values 

obtained from the actual AC sample testing. 
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L 
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      Zerodur (Ref. Temp., To)                                Zerodur (Higher Temp., To+∆T) 

 



34 
 

 

Figure 10. CTC and CTE of LVDTs 

 

3.2.3 Sample Collection and Preparation 

Field collected cylindrical core sample of 100 mm diameter and 50 mm height were used 

to investigate the effect of temperature on CTC and CTE values of AC. The field cores 

were collected in collaboration with the New Mexico Department of Transportation 

(NMDOT) from the I-40 section in New Mexico. The sample was collected from the 

pavement section before the highway was open for traffic. The coring of a sample from 

the section is shown in Fig. 11(a). The cores were cut into 100 mm diameter and 50 mm 

height samples as shown in Fig. 11(b) using the laboratory saw in the laboratory.  
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a) Collecting the field core b) Sample cutting in the laboratory 

Figure 11. Sample collection and preparation 

 

The bulk and the theoretical maximum densities were determined following the 

AASHTO T 166-07 (2007) and the AASHTO T 209-05 (2007) tests protocols 

respectively. The AVs of the samples were measured between 5.1 to 5.4% with an 

average value of 5.2%. The mixture used in the pavement is a widely used dense graded 

Superpave (SP) mix, type SP-III with the maximum aggregate size of 25 mm. The 

mixture contained 35% Reclaimed Asphalt Pavement (RAP) materials. Performance 

Grade (PG) binder, PG 76-22 was used an amount of 4.4% by the weight of the mixture. 

About 5% of materials passed through the No. 200 sieve size (0.075 mm). 

 

3.2.4 Testing 

A total of three samples were tested in the temperature range of -20 ˚C to 55 ˚C. Two 

LVDTs were glued at the surfaces of the cylindrical thin samples as shown in Fig. 12. 

The LVDTs measured the change in diameter of the sample upon change in temperature. 

One cooling cycle and one heating cycle were used with five increments (change of 15 

˚C) of each. After each temperature change, there was about four hours of waiting period 



36 
 

to ensure temperature equilibrium inside the specimens. The cooling or heating rate used 

was at a rate of 0.5 °C per min. Continuous record of temperatures and deformations 

throughout the test were made using the LVDTs and temperature probes. Each cooling or 

heating cycle took about 30 hours to complete. 

 

 

Figure 12. Measuring the expansion-contraction due to temperature change 

 

3.2.5 Results and Discussion 

The decrease in thermal strain with respect to the decrease in temperature was considered 

the CTC and the increase in thermal strain with respect to the increase in temperature was 

considered the CTE. The laboratory CTC and CTE values (averages of the three samples) 

are listed in Table 3. It can be seen that the CTC and CTE values are not constant at 

different temperature. For instance, the CTC value varies from 0.33x10
-5

 to 3.11x10
-5

 per 

°C at different temperature. The CTE value ranges 2.38x10
-5

 per °C to 3.12x10
-5

 per °C. 

Similar observation was also made in the study of Islam and Tarefder (2014b). In that 
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study, field CTC/CTE values were determined using field strain sensors. The Standard 

Deviations (SDs) of the values range 6 to 11%. The average of the CTC and the CTE 

values is considered the α-value and plotted in Fig. 13. It shows that the α-value is also 

non-linear with temperature. The α-value increases with temperature; reaches to a peak 

and then decreases with the increase in temperature. The α-value at any temperature can 

be determined using the developed by best fit curve of the data presented in Fig. 13. 

 

Table 3. Measured CTC and CTE values at different temperature ranges  

Temperature Range  

(°C) 

CTC and CTE (10
-5

 per °C) 

CTC CTE 
Avg. of CTC and 

CTE (α-value) 

-20 to -5 0.33 3.12 1.73 

-5 to 10 1.92 2.81 2.37 

10 to 25 2.94 2.38 2.66 

25 to 40 3.11 2.56 2.84 

40 to 55 2.57 2.63 2.60 

 

 

 

Figure 13. Temperature-dependent α-value 
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The α-values (µε/°C) at the different temperatures (°C) can be determined using the 

following Eq. which was developed using the best fit curve of the measured data:  

 

20.006 0.356 22.633T T         (16) 

 

This model was used to determine the thermal strain at the bottom of AC which is 

discussed later. 

 

3.3 Further Study on α-value 

3.3.1 Investigating the Effect of Cross-Anisotropy 

AC is not isotropic material. The recent studies by the author and his group prove that 

AC material is at least cross-anisotropic (Islam et al. 2014b, Ahmed et al. 2013, Ahmed 

et al. 2014, Tarefder et al. 2013, Tarefder et al. 2014). However, the difference of CTC 

and CTE values in the vertical and the horizontal directions is not mentioned in the 

literature. This study hypothesizes that the CTC and the CTE values of AC in vertical and 

horizontal directions are not equal considering the compaction force and particle 

arrangement. The CTC and the CTE values in the vertical direction were measured using 

cylindrical samples of 100 mm and 150 mm high. Cylindrical samples of 100 mm 

diameter and 50 mm thickness were used to measure these values along the horizontal 

direction as discussed in the previous section. 
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3.3.1.1 Sample Collection and Preparation 

The samples were collected from the I-40 instrumented section as described earlier. The 

samples were then cut into 100 mm diameter and 150 mm height. The AVs of the 

samples were measured between 4.9 and 5.5% with an average value of 5.3%. 

 

3.3.1.2 Testing 

Three replicates samples were tested in the temperature range of -20 °C to 55 °C. Two 

LVDTs were glued at the curved surface of the cylindrical samples. While testing, the 

sample was laid down to avoid the gravity action as shown in Fig. 14. The LVDTs 

measured the change in the length of the sample upon change in temperature. The heating 

or the cooling schemes were the same as the horizontal samples as discussed earlier. 

 

 

Figure 14. Measuring the thermal expansion-contraction (Vertical Direction) 
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3.3.1.3 Results and Discussion 

The CTC and CTE values in both the vertical and the horizontal directions at different 

temperature are presented in Fig. 15. It can be observed from Fig. 15(a) that the 

horizontal CTC value is smaller than the vertical one except at one point. However, the 

horizontal CTE value is smaller than the vertical one between the temperature of -20 °C 

and 55 °C and follows parallel. Both the CTC and CTE values along horizontal direction 

are measured to be 4.7% smaller than the vertical values.  

 

The reason for the horizontal CTC and CTE values being smaller than vertical values 

may be the particle arrangement. The flat and elongated particles lie horizontally upon 

applying compaction pressure. Referring the surface area point of view, the binder 

content of a single aggregate on a horizontal direction (i.e. flat and elongated face) is 

greater than that of vertical direction (i.e. short face). Then, if one imaginary line is 

assumed in vertical direction and one in horizontal direction, it can be observed that the 

binder amount along the vertical line is greater than that of the horizontal line. This 

explanation applies to both coarse and fine aggregates. However, the authors did not 

conduct any microscopic study. By visual inspection, it was observed that number of 

aggregates showing the long and elongated face on the surface of AC sample is actually 

greater compared to showing the short face of aggregate. The CTC and CTE values of 

binder are roughly 10 to 30 times greater than the aggregate (Hardin 1995, Timm et al. 

2010, Al-Ostaz 2007). Therefore, a very small decrease in binder content might cause the 

decrease in the CTC and the CTE values. A statistical test is required to evaluate the 

results whether the change in the CTC and CTE values are significant or not. 
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a) CTC with temperature b) CTE with temperature 

Figure 15. Cross-anisotropic CTC and CTE values with temperature 

 

ANOVA test was conducted to evaluate the decrease in the CTC and CTE values along 

horizontal direction using the test data between 25 °C and 40 °C. The null hypothesis was 

that the average values were equal and the alternative hypothesis was that the average 

values were not equal. The p-values (probability of null hypothesis to be true) of the tests 

of CTC and CTE values were found to be 0.13 and 0.365 respectively. As both of these 

values are greater than 0.05 (5%), the null hypothesis is true. Therefore, the values are 

statistically equal at 95% CI. Conclusions can be made that the CTC and the CTE values 

are equal both in the horizontal and vertical directions. 

 

3.3.2 Investigating the Effect of Air Void 

3.3.2.1 Sample Collection and Preparation 

Laboratory compacted cylindrical thin samples of 150 mm diameter and 50 mm thick 

were used to investigate the effect of Air Void (AV). Cylindrical samples of 150 mm 

diameter and 170 mm height were prepared following AASHTO T 312-07 (2007) test 
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protocol and then, cut into the desired size using a laboratory saw. The loose mixture was 

collected from the I-40 instrumented section at the time of construction. It is a SP-III 

mixture with 35% RAP and PG 76-22 binder was used by 4.4% of the weight of the mix. 

Three sets (three samples of each) of samples were prepared; the average AVs are 1.4%, 

5.5% and 9.7% with SDs of 0.3%, 0.4% and 0.4% respectively. 

 

3.3.2.2 Testing 

The samples were tested in the temperature range between 20 °C and 40 °C. The CTC 

and the CTE values were measured along the horizontal direction of the samples. The 

variations of thermal expansion and contraction at this temperature range were 

considered linear. At the two extreme temperature points, there were about four hours of 

waiting period to ensure temperature equilibrium inside the specimens. The cooling or 

heating was conducted at a rate of 0.5 °C per min, which was the same in the whole 

study. Continuous record of temperatures and deformations throughout the test were 

made using the LVDTs and temperature probes.  

 

3.3.2.3 Results and Discussion 

The measured CTC and CTE values (average) for all the three different types of samples 

are plotted in Fig. 16. The average CTC values are 3.35x10
-5

, 3.19x10
-5

 and 2.84x10
-5

 per 

°C of the air void of 1.4%, 5.5% and 9.7%, respectively, with the SDs of 0.30 x10
-5

, 0.14 

x10
-5

 and 0.17 x10
-5

 per °C. That means the CTC value decrease with increase in AV. 

Similar observation has been made on the CTE values. There is greater void space inside 

the material of the higher AV. As the individual particle elongates, it occupies the void 
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space at least a little bit without affecting the dimensions of the whole sample. This may 

be the reason for the lower values of the CTC and the CTE. However, statistical tests are 

needed to evaluate this decreasing behavior. 

 

 

Figure 16.Variations of the CTC and the CTE values with AV 

 

Pairwise t-tests were conducted to evaluate the decrease in the CTC and CTE values with 

AV. The null hypothesis was that the average values of the CTC and the CTE of any pair 

were equal and the alternative hypothesis was that the average values were not equal. The 

p-values of the test results are listed in Table 4. It shows that all the p-values are greater 

than 0.05 for all pairs. Therefore, the null hypothesis is true and all the CTC and CTE 

values are equal (regardless of the air voids of the samples) at 95% CI. Finally, it can be 

concluded that the CTC and CTE values are not affected significantly by the AV of the 

sample, although Fig. 16 shows the decreasing behavior. 
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Table 4. p-values of the CTC/CTE of AC with different AVs 

 AV-1.4% AV-5.5% 

CTC 

AV-5.5% 0.294 - 

AV-9.7% 0.279 0.622 

CTE 

AV-5.5% 0.276 - 

AV-9.7% 0.413 0.310 

 

3.3.3 Investigating the Effect of Aggregate Type 

3.3.3.1 Sample Collection and Preparation 

AC is composed of asphalt both binder and aggregate. Therefore, the CTC and CTE 

values of AC should be affected if the aggregate type (expansion and contraction 

behavior) changes (Won 2005; Naik et al. 2011; Jahangirmejad et al. 2009). Three types 

of aggregates were used in this study to evaluate the aggregate effect. These are basalt, 

river deposits and gravel-sand which are very widely used in the construction of 

highways in the state of New Mexico, USA. The average bulk specific gravities were 

measured to be 2.75, 2.67 and 2.63 and water absorptions capacities are 1.5%, 0.5% and 

0.9% of the basalt, river deposits and gravel-sand respectively (AASHTO T 84-00 

(2007), AASHTO T 85-91 (2007). The physical properties of the three aggregates such 

as, flat and elongated pieces of aggregates, fine aggregate angularity, combined sand 

equivalent etc. were maintained the same for all the mixtures. The raw materials were 

collected from the NMDOT and all the quality insurance was made in the laboratory. 
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Cylindrical samples of 150 mm diameter and 170 mm height were prepared following 

AASHTO T 312-07 (2007) test protocol in the laboratory. The samples were then cut into 

cylindrical thin samples of 150 mm diameter and 50 mm height using a laboratory saw. 

The mixture was a SP-III mixture and PG 70-22 binder was used by 4.5% of the weight 

of the mixture. The average AV of the samples was 5.1% (with SD of 0.3%). The 

gradation of the aggregate is presented in Fig. 17. All the three types of mixtures were 

prepared following this gradation chart. 

 

 

Figure 17. Gradation of AC containing different aggregate types 

 

3.3.3.2 Testing 

A total of nine samples (3 types, 3 replicates of each) were tested to determine the CTC 

and CTE values between the temperature range of 20 °C and 40 °C in the horizontal 

direction. At the two extreme temperature points, there were about four hours of waiting 
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period to ensure equilibrium temperature all over the specimens. The cooling or heating 

was conducted at a rate of 0.5 ˚C per min. 

 

3.3.3.3 Results and Discussion 

The CTC values are presented in Fig. 18. The average CTC values are 3.28x10
-5

, 

3.06x10
-5

 and 2.88x10
-5

 per °C with SDs of 0.06x10
-5

, 0.04x10
-5

 and 0.08x10
-5

 per °C of 

the mixtures with river deposits, basalt and gravel-sand respectively. That means that the 

mixture with river deposits has the highest value of CTC and the mixture with gravel-

sand has the lowest. All of these mixtures have same conditions except the aggregate 

types. Therefore, the aggregate type plays this role to cause a change in the CTC value.  

 

 

Figure 18.CTC values with aggregate type 
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Pair wise t-tests were conducted to evaluate the change of the CTC value with the 

aggregate type. The null hypothesis was that the average values of CTC of any pair of 

mixtures were equal and the alternative hypothesis was that the average values were not 

equal. The p-values of the test results are listed in Table 5. It shows that all the p-values 

are smaller than 0.05 (5%). Therefore, the null hypothesis is rejected and all the CTC 

values are not equal at 95% CI. Finally, it can be concluded that the CTC values are 

affected significantly by the aggregate type of the sample as shown in Fig. 18. 

 

Table 5. p-values of the CTC/CTE of SP-III AC with different aggregates 

 Basalt River Deposits 

CTC 

River Deposits 0.008 - 

Gravel and Sand 0.038 0.003 

CTE 

River Deposits 0.0003 - 

Gravel and Sand 0.041 0.002 

 

 

The CTE values are presented in Fig. 19. The average CTE values are 3.73x10
-5

, 

2.39x10
-5

 and 2.23x10
-5

 per °C with SDs of 0.04x10
-5

, 0.03x10
-5

 and 0.001x10
-5

 per °C of 

the mixtures with river deposits, basalt and gravel-sand respectively. That means that the 

mixture with river deposits has the highest value of CTE and the mixture with gravel-

sand has the lowest. The similar behavior was observed for the CTC values. 
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Figure 19.CTE values with aggregate type 

 

The p-values of the pair wise t-test results are also listed in Table 5. It shows that all the 

p-values are smaller than 0.05 (5%). Therefore, the null hypothesis is rejected and all the 

average CTE values are not equal at 95% CI. Finally, it can be concluded that both the 

CTC and the CTE values are affected significantly by the aggregate type of the sample. 

 

3.3.4 Investigating the Effect of Aggregate Gradation 

3.3.4.1 Sample Collection and Preparation 

Three types of gradations (SP-II, SP-III and SP-IV) were used to evaluate the effect of 

aggregate gradation on the CTC and CTE of asphalt concrete. The mixtures contain PG 

70-22 binder of 4.7% of the weight of the mixture. The gradations of the mixtures are 

presented in Fig. 20. Plant produced loose mixtures (SP-II, SP-III and SP-IV) were 

collected from ongoing construction site in collaboration with NMDOT. It was ensured 
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that all the three mixture had the same physical properties except the aggregate gradation. 

The average AV of the samples is 4.9% (with SD of 0.4%). Cylindrical samples of 150 

mm diameter and 170 mm height were prepared following AASHTO T 312-07 (2007) 

test protocol. The samples were then cut into cylindrical thin samples of 150 mm 

diameter and 50 mm height.  

 

 

Figure 20. 0.45 power charts of the three mixtures 

 

3.3.4.2 Testing 

A total of nine samples (3 types, 3 replicates of each) were tested between the 

temperature range of 20 ˚C and 40 ˚C in the horizontal direction. The test parameters 

were similar with the other test programs described earlier.  
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3.3.4.3 Results and Discussion 

The CTC and the CTE values are plotted in Figs. 21 and 22 respectively. The average 

CTC values are 3.2x10
-5

, 3.28x10
-5

 and 3.38x10
-5

 per °C with SD of 0.14x10
-5

, 0.19x10
-5

 

and 0.15x10
-5

 per °C for the SP-II, SP-III and SP-IV mixture respectively. The average 

CTE values are 2.45x10
-5

, 2.8x10
-5

 and 2.36x10
-5

 per °C with SD of 0.25x10
-5

, 0.02x10
-5

 

and 0.18x10
-5

 per °C for the SP-II, SP-III and SP-IV mixture respectively. It can be seen 

that there is no regular pattern between the CTC and the CTE values. 

 

 

Figure 21.CTC values with aggregate gradation 
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Figure 22.CTE values with aggregate gradation 

 

Statistical pair wise t-tests were conducted to evaluate the change of the CTC and CTE 

values with aggregate gradation. The p-values of the test results are listed in Table 6. It 

shows that all the p-values are greater than 0.05 (5%). Therefore, the null hypothesis is 

true and all the CTC and the CTE values are equal at 95% CI. Finally, conclusion can be 

made that aggregate gradation has no effect on the CTC and the CTE values of AC as 

long as the volumetric contents of the aggregate and the binder remain the same. 

 

Table 6. p-values of the CTC/CTE of a basalt mixture with different gradations 

 SP-III SP-II 

CTC 
SP-II 0.605 - 

SP-IV 0.502 0.204 

CTE 
SP-II 0.138 - 

SP-IV 0.054 0.657 
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3.4 Discussion on α-value 

The CTC and CTE values, which are needed to determine the thermal strain, have been 

determined using laboratory testing for a wide range of temperatures.  These results are 

also available in the study of Islam and Tarefder (2015b). Based on the findings of the 

study the following conclusions can be made: 

 CTC and CTE values of asphalt mixture are non-linear with temperature. CTC 

value is concave downward and CTE value is concave upward between the 

temperature range of -20 °C and 55 °C. The temperature-dependent α-value 

(µε/°C) can be presented by the following equation: 

20.006 0.356 22.633T T      

 CTC and CTE values of asphalt mixture along the horizontal and vertical 

directions of compaction are statistically equal. 

 The air void and aggregate gradation have no effect on CTC and CTE values of 

AC; however, aggregate type has a significant effect on these values. 

 

Unless the details of the mixtures are available, the above mentioned model was used to 

determine the α-value (µε/°C) for any mixture. Typically, α-value of AC mixture is not 

available in the LTPP database for lack of test evidence.  
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3.5 Determining Temperature Fluctuation  

Temperature variation (ΔT) at the bottom of AC is required to measure the thermal strain 

caused by temperature fluctuation as shown in Eq. 5. Two types of models to determine 

the temperature at the bottom of AC were developed. The statistical model was 

developed based on regression analysis of a full year data from the I-40 instrumentation 

section. The second model, Finite Element Model (FEM), was developed but not used in 

any of the analyses in the study. It utilizes the thermal properties of AC material such as 

thermal conductivity (k), specific heat capacity (C) and the coefficient of heat convection. 

The FEM method is described in Appendix D. 

 

3.5.1 Developing Regression Models 

Regression models were developed to predict temperature at any depth of AC using the 

collected data from the I-40 pavement. The maximum, minimum and average AC 

temperature at any depth can be determined using the developed models. This study also 

verifies the developed models with further field data and statistical analysis. 

 

3.5.1.1 Sensors Installation 

Two types of sensors were installed to measure temperature related parameters such as 

solar radiation, air temperature and pavement temperature. The weather station measures 

air temperature, solar radiation, wind speed, humidity, etc. Fig. 23 shows the installed 

weather station. It also shows the installed cabinet box for the data acquisition system and 

data gathering computer. The system is powered by solar system. 
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Figure 23. Installed weather station Figure 24. Installation of temperature 

probes 

 

Six temperature probes were installed at different depths in the pavement. The probes 

were bundled together such that after installation these remained at the surface, at 50, 

100, 263, 340 and 490 mm depth. The bundled probes are shown in Fig. 24.  A 25 mm 

diameter hole was drilled with electric drill machine. Then, the hole was cleaned with a 

vacuum cleaner. The probes were then inserted into the hole as straight as possible 

keeping the top one at the same level to the surface. The temperature probes were 

installed around 300 mm outside the shoulder. The installed temperature probes’ 

functionality was checked by connecting the probes to the data acquisition system.  

 

3.5.1.2 Data Collection 

The temperature and the solar radiation data were collected for one year, from October 

15, 2012 to October 14, 2013. Based on the data, regression analysis was conducted to 

develop temperature prediction models to determine the maximum, the minimum and the 

average temperature at any depth of AC. The models were then validated using further 

data collected from October 15, 2013 to January 21, 2014. 
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3.5.1.3 Analysis 

3.5.1.3.1 Temperature Variations 

The pavement surface heats up during the day and cools down at night. Therefore, 

temperatures of the pavement materials vary at all times. The air and the pavement 

temperatures at various depths are shown in Fig. 25. The air temperature is the minimum 

around 8:00 am and the maximum around 15:00 pm. However, the minimum and the 

maximum temperatures at the bottom of the asphalt concrete are observed around 11:00 

am and 21:00 pm respectively. These values are measured at 8:30 am and 16:30 pm, 

respectively, at 90 mm depth. Fig. 25 also shows that the average temperature may occur 

in pavement either about 12:00 am or 12:00 pm. The maximum and the minimum 

temperatures with depth of AC can be used to determine the asphalt grade needed with 

depth of AC. These can also be used to correlate pavement temperature with structural 

responses such as stress-strain due to wheel load and material properties such as stiffness 

of AC. In addition, determination of the maximum, the minimum and the average 

temperatures of a pavement may offer a close understanding of the continuous 

temperature variation of the pavement.  
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Figure 25. Temperature variations over the day on October 24, 2012 

 

The temperature at any depth of the pavement is largely dependent on the surface 

temperature, solar radiation and the depth of the pavement. Linear regression analysis 

was conducted to determine the best-fit regression model to predict the temperature at 

any depth. The independent variables are solar radiation, pavement surface temperature 

and pavement depth. The dependent variable is pavement temperature at a particular 

depth. 

 

3.5.1.3.2 Predicting the Maximum Temperature 

The maximum temperature at any depth of the pavement depends on the maximum 

surface temperature and the concerned depth of the pavement. Solar radiation may affect 

the maximum temperature. This is why, it is also considered as an independent variable. 
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Based on regression analysis, the following two models, Eqs. (17) and (18) were 

developed. 

 

max max max2.5 0.91 25.6 0.004y x x S                             (17) 

 

max max0.8 0.87 25.6y x x                                               (18) 

 

where maxy = predicted daily maximum pavement temperature (°C) at any depth of AC 

maxx = daily maximum surface temperature (°C) 

x = concerned depth from surface (m) 

maxS = daily maximum solar radiation (W/m
2
) 

 

The maximum surface temperature can be determined from the maximum air temperature 

using the following relationship: 

 

max max1.33 3.21x a                              (19) 

 

where maxa = daily maximum air temperature (°C). 

 

The coefficients of determination (R
2
) of all equations (Eqs. (17) to (19)) were between 

0.96 and 0.98, which are very close to unity. The R
2
 value shows sufficient evidence for 

the correlation is strong. Eq. (17) predicts the maximum temperature at any depth of the 
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pavement using the maximum surface temperature, the maximum solar radiation and the 

concerned depth. However, solar radiation may not be at maximum at the time of the 

maximum surface temperature. Thus, the effect of solar radiation may not contribute 

significantly. Therefore, another regression model (Eq. (18)) is developed excluding solar 

radiation. This model produces a similar output to the previous model (Eq. (17)) and the 

weightage of solar radiation is very small. The models also show that the maximum 

temperature at any depth of AC is always smaller than the maximum surface temperature. 

 

3.5.1.3.3 Predicting the Minimum Temperature 

The minimum temperature of the pavement at any depth depends on the minimum 

surface temperature and the concerned depth. The minimum temperature usually occurs 

late at night or in the morning when solar radiation is insignificant. This is why solar 

radiation was excluded to develop the model to determine the minimum temperature at 

any depth of the AC. The regression model for predicting the minimum temperature ( miny

in °C) is shown in Eq. (20). The model was strongly correlated as depicted by the R
2
 

value of 0.99. 

 

min min1.84 20y x x                           (20) 

 

where minx = daily minimum surface temperature (°C) and can be found from: 

 

min min0.925 6.76x a           (21) 

x = concerned pavement depth (m) and mina is the minimum air temperature. 
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This model indicates that it can never be colder inside the pavement than the minimum 

surface temperature and that the minimum temperature is always greater further down in 

the pavement.  

 

3.5.1.3.4 Predicting the Average Temperature 

The regression model to determine the daily average temperature ( avgy ) at any depth of 

the AC (°C) was developed using the average surface temperature, the average solar 

radiation and the depth. The average surface temperature can also be related with the 

average air temperature. Another issue is that average temperature may occur in daytime 

or nighttime. The regression models are shown in Eqs. (22) and (23). 

 

1.1 0.93 3.65 0.0002avg avg avgy x x S                                   (22) 

 

1.1 0.94 3.65avg avgy x x                                                     (23) 

 

where avgx is the daily average surface temperature (°C), avgS is the average solar 

radiation (W/m
2
). Both of the equations have the R

2
 value of 0.69. Both these equations 

can be used to predict the average temperature. Eq. (23) excludes solar radiation; 

however, it is observed that both of these equations produce the similar outputs as the 

weightage of solar radiation is very low. Therefore, it is better to use the shorter model, 

Eq. (23). Eq. (22) can only be used if the avgx occurs in daytime because avgS  is only 

available in daytime. The average surface temperature (°C) can be correlated with the 

average air temperature (°C) (with the R
2
 value of 0.92) by Eq. (24). 
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1.136 4.956avg avgx a                  (24) 

 

3.5.1.3.5 Model Validation 

The predicted models were compared with the measured data. Figs. 26 and 27 plot the 

predicted, the minimum, and the maximum values with the measured ones at two 

different depths, 50 mm and 100 mm. It was observed that for both of these depths, the 

models predict temperature values very close to the measured data. The predicted models, 

for some cases, produce lower temperature than the measured minimum, and greater 

temperature than the measured maximum. Formal statistical tests were conducted to 

evaluate these differences. 

 

 

Figure 26. Predicted and measured temperatures at 50 mm depth of AC 
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Figure 27. Predicted and measured temperatures at 100 mm depth of AC 

 

ANOVA test was conducted to evaluate the developed models. The null hypothesis was 

that the mean values are equal and the alternative hypothesis was that the means are not 

equal. The minimum, the average and the maximum predicted and measured 

temperatures at 50 mm depth for the period of October 15, 2013 to January 21, 2014 were 

compared. The ANOVA test produces p-values of 0.96, 0.12 and 0.89 for the minimum, 

the average and the maximum predicted and measured temperatures respectively. All the 

p-values were much greater than 0.05. The alternative hypothesis is therefore rejected in 

favor of the null hypothesis at 95% CI. Therefore, the mean values of the predicted and 

measured minimum temperatures at 50 mm depth are equal, which verifies the developed 

model.  
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3.5.1.3.6 Discussion 

This study developed regression models to determine the maximum, the minimum and 

the average temperatures at any depth of AC in an asphalt pavement. The maximum, the 

minimum and the average temperatures at any depth of AC can be determined if the 

surface or the air temperature is available. However, the actual temperature of the 

pavement at specific period of time was not investigated. In addition, the models were 

developed based on temperature measurements obtained from a single pavement section 

in New Mexico.  

 

3.5.2 Discussion on Determining Temperature Fluctuation 

Two types of models were developed to determine the temperature at any depth of AC in 

a pavement. Both of the models need the surface temperature as an input. Thus, the inside 

pavement temperature can be found using these two models if the surface temperature is 

known. These results are also available in the study of Islam et al. (2015a). The 

AASHTOWare Pavement ME Design Software also shows the temperatures at surface 

and different layers of AC (not at the bottom of AC). The surface temperature can be 

used to determine the temperature at the bottom of AC. In the current study, only the 

regression model has been used for its simplicity. 
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CHAPTER FOUR 

TEMPERATURE-INDUCED FATIGUE MODEL DEVELOPMENT 

 

4.1 General 

 

The development of the closed form equation (Thermal Fatigue Model) for determining 

allowable number of cycle ( ftN ) due to specific temperature fluctuation is discussed in 

this chapter. The fundamental form of Eq. 2 is presented in Fig. 28. For a given ε, ftN

was determined as a function of E. Now, E varies with given temperature and frequency. 

Therefore, laboratory beam fatigue tests were conducted at different temperatures, 

frequencies and strain levels to generate the data. However, the beam fatigue test (by the 

mechanical loading) was correlated with the axial fatigue test (by actual temperature 

loading). 

 

 

Figure 28. Schematic of fatigue test result 
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4.2 Materials 

Three different SP mixtures, listed in Table 7, were used to develop the temperature-

induced fatigue model in the current study. The mixtures are described below: 

Mixture 1: This mixture was collected while paving the I-40 instrumentation 

section in cooperation with the NMDOT. It was a SP-III HMA mixture with basalt 

aggregate. The mixture had a binder of PG 76-22 an amount of 4.4% by the weight of the 

mixture. The specific gravity of the binder was 1.014.  

 

Table 7. Materials used to develop the model  

Mixture 

No. 
Mixture Type HMA/WMA 

Binder  

Type 

Binder 

Content (%) 

Aggregate 

Type 

1 SP-III HMA PG 76-22 4.4 Basalt 

2 SP-III HMA PG 70-22 4.7 River deposits 

3 SP-IV WMA PG 76-22 4.7 Gravel 

 

The bulk specific gravity (G
mb

) testing was performed on AC beam samples according to 

the AASHTO T 166-07 (2007) standard. For the aggregates, it ranged between 2.571 and 

2.868. This mixture had 35% RAP materials from two sites in NM, Budagers and West 

Central. The G
mb

 of RAP materials varied from 2.685 to 2.751. The theoretical maximum 

specific gravity (G
mm

) of the loose HMA mixtures was determined by using the 

AASHTO T 209-05 (2007) standards and found to be 2.573. The nominal maximum 

aggregate size of the aggregate was 19 mm.  

Mixture 2: It was a SP-III HMA mixture with river deposit aggregate. The 

mixture has a binder of PG 70-22 an amount of 4.7% by the weight of the mixture. The 
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nominal maximum aggregate size of the aggregate was 19 mm. This mixture has 25% 

RAP material. The specific gravity of the binder was 1.037. The G
mb

 of  the aggregates  

ranged between 2.533 and 2.599. The G
mb

 of RAP material was 2.649. The G
mm

 of the 

loose HMA mixtures was determined to be 2.459.  

Mixture 3: It was a SP-IV Warm Mix Asphalt (WMA) mixture with gravel 

aggregate. The mixture had a PG binder of PG 76-22 an amount of 4.7% by the weight of 

the mixture. The nominal maximum aggregate size of the aggregate was 12.5 mm. This 

mixture has 35% RAP material. The specific gravity of the binder was 1.02. The G
mb

 of  

the aggregates  ranged between 2.573 and 2.624. The G
mb

 of RAP material was 2.801. 

The G
mm

 of the loose HMA mixtures was determined to be 2.505. The gradations of these 

mixtures are shown in Fig. 29.  

 

 

Figure 29. Gradations of aggregates used in AC 
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4.3 Sample Preparation 

The dimensions of the AC beam samples used in laboratory testing are approximately 

380 mm x 63 mm x 50 mm (15 in. x 2.5 in. x 2 in.). Samples were compacted to 

dimensions (450 mm x 150 mm x 75 mm) greater than those shown above using an 

asphalt beam compactor (due to mold size). The AASHTO T 312 (2007) standard was 

followed while heating and transferring the HMA mixture. HMA mixtures were heated to 

150 °C for no more than one hour and were then compacted using a kneading compactor 

as shown in Fig. 30(a). Once cooled, the compacted HMA specimens were then cut into 

two beams (15 in. x 2.5 in. x 2 in.) using a laboratory saw, as shown in Fig. 30(b).  

  

   

a) Compaction of 

mixture 
b) Cutting the slabs c) Prepared samples 

Figure 30. Beam sample preparation 
 

4.4 Sample Volumetric Properties 

The air voids of the samples ranged between 5.2% and 6.1% with an average value of 

5.6%. This large air void range was beneficial to the study. This is because, difference in 

air void produced difference in initial stiffness and fatigue life which yielded better 

correlation between fatigue life and stiffness. 

  

15 in. 

2.5 in. 
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4.5 Determining Equivalent Laboratory Test 

Change in temperature causes thermal expansion and compression of AC in axial mode. 

Therefore, it is ideal to develop the fatigue model by applying cyclic temperature 

(causing thermal expansion and compression) on constrained sample and measure the 

stiffness after different cycles of thermal expansion and compression. However, applying 

cyclic temperature load on a restrained sample is extremely difficult and time consuming. 

Therefore, the relationship between the damages caused due to the beam fatigue test by 

the mechanical loading and axial fatigue test by the temperature loading was developed 

first. Then mechanical load in a beam fatigue fashion was applied to create similar effect 

of thermal expansion and contraction.  

 

For further clarification, Fig. 31 shows the ideal test schematic where a temperature 

difference (∆T) is applied on the restrained beam sample. This applied ∆T creates thermal 

stress axially in the restrained sample. In the current study, an equal amount of stress is 

created using beam fatigue test by applying equivalent strain (ε) produced by ∆T. The 

equivalent strain (ε) can be computed by the product of α and ∆T if only 1D is considered 

at this stage. Note that α-value is temperature dependent. Biaxial tension in AC slab may 

be considered in future studies. 
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Figure 31. Test scheme versus the ideal test setup 

 

The correlation between the beam fatigue test by the mechanical loading and axial fatigue 

test by the temperature loading was investigated in the laboratory. Four beam samples 

were sealed and restrained with wood as shown in Fig. 32. Then, the restrained samples 

were exposed to temperature load in a precise environmental chamber. Each temperature 

cycle consists of 12 hours of heating and 12 hours of cooling with reference to the mean 

temperature. The first 2 hour period is required for the temperature to reach to the inside 

of the sample. The mean temperature was 20 °C; an increase and decrease of 10 °C from 

20 °C were applied for 10 cycles (one temperature cycle per day). 
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a) Schematic of the restrained sample b) Applied temperature loading 

 

 

 

 

c) Restraining the samples with wood d) Applying cyclic temperature 

 

Figure 32. Correlation between the actual temperature and mechanical loading 

 

The average α-value at 20±10 °C has been obtained to be 27 µε/°C. The expansion and 

contraction of the restraining wood was measured to be 7.4 µε/°C. This means the 

effective thermal strain obtained by the sample is 19.6 µε/°C (27-7.4 µε/°C). The area 

under the 12 hour period loading, shown in Fig. 32(b), is 2156 µε-hour. The stiffnesses of 

the conditioned samples were measured after 10 days of temperature loading. 

 

On the other hand, equivalent strain (540 µε peak-to-peak) was applied to other four 

beam samples using the beam fatigue test apparatus at 1.16x10
-5

 Hz (one cycle per day) 
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sinusoidal loading at 20 °C for 10 cycles. The area under the 12 hour period loading is 

2063 µε-hour, which is 4% less than 2156 µε-hour applied in temperature loading. The 

stiffnesses of the restrained samples before loading and after 10-day of the beam fatigue 

loading were measured. Note that the α-values (µε/°C) at the different temperatures (°C) 

have been determined  using the following Eq. 16 which has been developed for the same 

mixture:  

 

Fig. 33(a) shows the stiffness ratios of samples for both the beam fatigue by the 

mechanical loading and axial fatigue by the temperature loading tested at an average 

temperature of 20 °C. Here, stiffness ratios means the ratio of stiffnesses after and before 

the 10-day loading; Regarding the temperature of 20 °C, the beam fatigue by the 

mechanical loading was conducted at 20 °C and the axial fatigue by the temperature 

loading was conducted at an average temperature of 20 °C. Fig. 33(a) shows that the 

stiffnesses of AC samples decreases to 86.7% and 87.2% due to the axial fatigue test by 

the temperature and beam fatigue test by the mechanical loading respectively. The 

decrease in stiffness is almost equal for both cases (86.7% versus 87.2%).  

 

Statistical t-test was conducted to evaluate these two damage ratios with the null 

hypothesis of “true difference between the means of stiffness ratios of beam fatigue test 

by the mechanical loading and axial fatigue test by the temperature loading is zero”. The 

p-value (probability of null hypothesis to be true) was found to be 0.84 which is 1580% 

greater than 0.05 (5%). Therefore, the null hypothesis is true and these two values (86.7% 

and 87.2%) are statically equal at 95% CI. Finally, in the rest of the study it is considered 
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that the damages due to the beam fatigue test by the mechanical loading and axial fatigue 

test by the temperature loading are equal. It might be possible that the difference between 

the beam fatigue test by the mechanical loading and axial fatigue test by the temperature 

loading is significant after large number of cycles. However, the developed model was 

calibrated with field condition which can take care of the uncertainty. 

 

The above mentioned test was also conducted at 12 °C; an increase and decrease of 10 °C 

from 20 °C were applied for 10 cycles (one temperature cycle per day). The average α-

value at 20±10 °C was obtained to be 25.6 µε/°C. The effective thermal strain obtained 

by the sample is 18.2 µε/°C (25.6-7.4 µε/°C). The area under the 12 hour period loading 

is 2002 µε-hour. On the other hand, equivalent strain (520 µε peak-to-peak)  was applied 

to other four beam samples using the beam fatigue test apparatus at 1.16x10
-5

 Hz (one 

cycle per day) sinusoidal loading at 12 °C for 10 cycles. The area under the 12 hour 

period loading is 1986 µε-hour, which is 1% less than 2002 µε-hour applied in 

temperature loading. The stiffnesses of the restrained samples before loading and after 

10-day of the beam fatigue loading were measured.  

 

Fig. 33(b) shows the stiffness ratios of samples for both the beam fatigue by the 

mechanical loading and axial fatigue by the temperature loading tested at an average 

temperature of 12 °C. At this temperature, only three samples have been tested for both 

the beam fatigue by the mechanical loading and axial fatigue by the temperature loading. 

Fig. 33(b) shows that the stiffnesses of AC samples decreases to 82% and 82.4% due to 
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the axial fatigue test by the temperature and beam fatigue test by the mechanical loading 

respectively. The decrease in stiffness is almost equal for both cases (82% versus 82.4%). 

 

  

a) At 20  °C b) At 12  °C 

Figure 33. Beam fatigue (mechanical) versus axial thermal fatigue damage 

 

4.6 Laboratory Testing 

Prior to testing, each sample was conditioned to test temperature, 20 °C, using an 

environmental test chamber for 2 hours. Beam fatigue tests were conducted at three 

different temperatures (-10 °C, 20 °C and 40 °C) and at three different strain levels (200 

µε, 500 µε and 1000 µε) at 0.01 Hz of sinusoidal loading. The usage of sinusoidal 

loading means the day-night temperature cycle was considered sinusoidal with the 

horizontal axis at the middle of loading. The possible residual stress in AC slab which 

might occur due to the sudden decrease in temperature while compaction was not 

considered. In addition, each day temperature was considered heating and each night 

temperature was considered cooling although the AC slab might be in cold zone in whole 

winter and hot zone in whole summer. The temperature range and strain levels used in the 
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study cover the variations possibly occur in real pavement. The reason for testing at 0.01 

Hz of loading is described later.  

 

A total of 75 beam samples were tested to develop the model. Two to five replicate 

samples were tested to obtain consistent results. The test matrix is shown in Table 8. 

Tests which took more than 15 days (13,000 of cycles) to finish, were stopped and the 

data were extrapolated using the Weibull Function. This function shows excellent 

performance to predict the number of cycle to cause failure of a sample using 

extrapolation (Prowell et al. 2008, Tarefder and Barlas 2013). Sometimes the tests were 

conducted at 1 Hz and deduced the results for 0.01 Hz. The full test program took almost 

three years to finish. The sample geometry and support conditions were adopted 

following the AASHTO T 321-07 (2007) test standard. 

 

Table 8. Test matrix  

Strain Level 40 °C 20 °C -10 °C 

200 µε x x x 

500 µε x x x 

1000 µε x x x 

 

The test setup and a typical test result are shown in Fig. 34. The samples were clamped to 

the loading frame in a way they were compacted. If the upside of the beam sample is 

turned into down it may produce erroneous stiffness as observed in of the previous 

studies (Islam et al. 2012, Islam et al. 2014a).  
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a) Test setup b) Test results 

Figure 34. Four-point bending test 

 

4.6.1 Frequency of Loading 

It is a well established phenomenon that behavior of AC is frequency dependent. 

However, recent study shows that performance of AC is also frequency dependent (Islam 

et al. 2015b). Therefore, careful consideration of loading frequency is essential. The 

reason of conducting the tests at 0.01 Hz (instead of 1.16x10
-5

 Hz) is described herein. 

The fatigue life of AC decreases with the decrease in frequency of loading at any strain 

level.  This behavior was also observed by Mannan et al. (2015). However, the fatigue 

life becomes stable at the frequency of equal or lower than 0.01 Hz as shown in Fig. 35. 

Fig. 35(a) shows the fatigue life of AC tested at different strain levels. It can be observed 

that fatigue life becomes stable at a frequency of 0.01 Hz or less for any strain level. For 

instance, the fatigue lives of AC samples are 3740, 2570, 970, 701 and 713 at frequencies 

of 10 Hz, 1 Hz, 0.1 Hz, 0.01 Hz and 0.001 Hz, respectively, tested at 20 °C and 1000 µε 

of loading. That means the fatigue lives are almost equal (701 versus 713) at 0.01 Hz and 
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0.001 Hz of loading. It is considered that the fatigue life at lower frequency of loading 

(for example, 1.16x10
-5

 Hz) is equal to that of 0.01 Hz of loading. 

 

Similar observation was made when the tests were conducted at different temperatures as 

shown in Fig. 35(b). The fatigue life becomes stable at a frequency of 0.01 Hz or less for 

different temperatures at 500 µε of loading. This behavior may due to the healing 

behavior of AC. At low frequency of loading, load sustains on sample for longer time and 

damage produces is higher due to viscoelastic nature of AC. On the other hand, material 

gets greater time to heal at slower loading rate. Combining these two effects, the fatigue 

life becomes stable at a frequency of 0.01 Hz or less. Finally, the fatigue life of AC at 

1.16x10
-5

 Hz may be obtained reasonably if the test is conducted at 0.01 Hz or less.  

 

  

a) Allowable load repetitions at different 

strain levels at 20 °C. 

b)  Allowable load repetitions at different 

temperatures at 500 µε. 

 

Figure 35. Effect of loading frequency on the fatigue life of AC 
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To confirm the above statement further beam fatigue tests were conducted on AC 

samples at 0.01 Hz and 1.16x10
-5

 Hz of loading for ten cycles at 20 °C and 12 °C. A total 

of four samples were tested for each frequency of loading. The stiffness ratios (ratio of 

stiffnesses before and after the 10-cycle loading) at 20 °C are presented in Fig. 36. It 

shows that the stiffnesses of AC samples decreases to 86.1% and 87.2% due to 0.01 Hz 

and 1.16x10
-5

 Hz of loading for ten cycles, respectively, at 20 °C. The decrease in 

stiffness is almost equal for both cases (86.1% versus 87.2%).  

 

Statistical t-test was conducted to evaluate these two damage ratios with the null 

hypothesis of “true difference between the means of stiffness ratios of beam fatigue tests 

at 0.01 Hz and 1.16x10
-5

 Hz loading is zero”. The p-value (probability of null hypothesis 

to be true) was found to be 0.66 which is 1220% greater than 0.05. Therefore, the null 

hypothesis is true and these two values (86.1% and 87.2%) are statically equal at 95% CI. 

Finally, in the rest of the study it is considered that the damage due to the beam fatigue at 

0.01 Hz and 1.16x10
-5

 Hz of loading at 20 °C is considered the equal. 

 

Figure 36. Decrease in stiffness for testing at 0.01 Hz and 1.16x10
-5

 Hz (20 °C) 
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The stiffness ratios (ratio of stiffnesses before and after the 10-cycle loading) at 12 °C are 

presented in Fig. 37. It shows that the stiffnesses of AC samples decreases to 81.9 % and 

82.4% due to 0.01 Hz and 1.16x10
-5

 Hz of loading for ten cycles, respectively, at 12 °C. 

The decrease in stiffness is almost equal for both cases (81.9% versus 82.4%).  

 

Statistical t-test was conducted to evaluate these two damage ratios with the null 

hypothesis of “true difference between the means of stiffness ratios of beam fatigue tests 

at 0.01 Hz and 1.16x10
-5

 Hz loading is zero”. The p-value (probability of null hypothesis 

to be true) was found to be 0.21 which is greater than 0.05. Therefore, the null hypothesis 

is true and these two values (81.9% and 82.4%) are statically equal at 95% CI. Finally, in 

the rest of the study it is considered that the damages due to the beam fatigue at 0.01 Hz 

and 1.16x10
-5

 Hz of loading at 12 °C are equal. 

 

 

Figure 37. Decrease in stiffness for testing at 0.01 Hz and 1.16x10
-5

 Hz (12 °C) 
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4.6.2 Stiffness of Samples 

The stiffness of AC is frequency dependent. The fatigue lives of AC may be equal at 0.01 

Hz and 1.16x10
-5

 Hz of loading. However, the stiffnesses of AC are not equal at 0.01 Hz 

and 1.16x10
-5

 Hz of loading. Therefore, the stiffnesses of the three types of samples at 

different temperatures were determined using the beam fatigue apparatus at 1.16x10
-5

 Hz 

of loading. In summary, fatigue life and stiffness of beam samples were measured testing 

at 0.01 Hz and 1.16x10
-5

 Hz of loading respectively.  

 

Now the question is about the initial stiffness of samples. According to the AASHTO T 

321 (2007) test protocol, the stiffness at the 50
th

 cycle of loading is considered the initial 

stiffness. The first 50 cycles is neglected to consider the initial setup and stabilization of 

the test program. However, one might expect significant damage at the first 50 cycles of 

loading especially at low frequency of loading.  

 

The effect of low frequency of loading at 20 °C and 500 µε is presented in Fig. 38; where 

the decreases in stiffness ratios are plotted due to loading from 0.0001 Hz to 10 Hz. The 

vertical dash line cuts the stiffness ratio at the 50
th

 cycle of loading. It can be observed 

that the stiffnesses decrease to about 84%, 80%, 72%, 68% and 64% for the frequencies 

of 10 Hz, 1 Hz, 0.1 Hz, 0.01 Hz and 0.001 Hz respectively. The decrease in stiffnesses 

especially at 0.1 Hz, 0.01 Hz and 0.001 Hz are quite large. In addition, the test stabilizes 

within 5 cycles of loading at low frequency of loading such as 0.01 Hz. Therefore, this 

study considers the initial stiffness at the 5
th

 cycle of loading for the testing at 0.01 Hz.  
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Figure 38. Decrease in stiffness with number of loading at 500 µε 

 

4.7 Test Results and Model Development 

Fig. 39 presents the beam fatigue test results for all the three mixtures. It shows that the 

fatigue life of AC decreases with an increase in applied strain. This is expected; larger 

load produced more damage. For instance, the fatigue lives of SP-III (PG 76-22) mixture 

at 1000 µε and 200 µε are 643 and 90250, respectively, at 20 °C. Regarding the effect of 

temperature, the fatigue life decreases at lower temperature and vice versa. This is also 

expected; stiffness of AC is higher at lower temperature and stiffer material fails earlier 

in controlled-strain fatigue test. For example, the fatigue lives of the above mentioned 

mixtures are 953 and 306 at 40 °C and -10 °C, respectively, at 1000 µε of loading. 

Similar effect was observed for all three mixtures. Another feature of the test data 

presented in Fig. 39 is that the test data is scattered. This is because, the results are 

obtained from testing AC samples at three different temperatures. 
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a) SP-III (PG 76-22) b) SP-III (PG 70-22) c) SP-IV (PG 76-22) 

Figure 39. Beam fatigue test results for the three mixtures 

 

A nonlinear least square algorithm was scripted to fit the data presented in Fig. 39. The 

best regression model is found as follows: 

 

             6 0.4168 3.4581 1
1.272 10 ( ) ( )ftN x

E 

           (25)

 6 0.4168 3.4581 1
1.272 10 ( ) ( )

( )
ftN x

E T




    (26)   

6 0.4168 3.45814.696 1
1.272 10 ( ) ( )

( ) ( )
ftN x

E atm T




     (27) 

 

where E is in psi, E(atm) is in atmospheric pressure, and ε is in strain. The R
2
 of the 

model is 0.79. The model is similar to the AASHTOWare Pavement ME Design model; 

however, the powers of E and ε are smaller than those of the traffic-induced fatigue 

model used in the AASHTOWare Pavement ME Design Software.  
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CHAPTER FIVE 

MODEL VALIDATION/CALIBRATION 

5.1 General 

The thermal fatigue damage was developed using the test data on three different asphalt 

mixtures. An unknown mixture, which was not used in the model development, was used 

to validate the model in the laboratory.  

 

5.2 Laboratory Validation/Calibration 

The developed model was validated/calibrated in the laboratory using a different asphalt 

mixture. The fatigue life of the mixture for a particular strain level and temperature was 

predicted using the developed model. Then, the fatigue life of the mixture for that 

particular strain level and temperature was measured in the laboratory using the beam 

fatigue test. Comparing the model prediction and laboratory measurement the developed 

model was calibrated/calibrated. 

 

5.2.1 Material 

The mixture used to verify the developed model was a SP-III limestone mixture with no 

RAP material in it. The three materials used for developing model had RAP material.  

The mixture had a PG binder of PG 70-22 an amount of 4.2% by the weight of the 

mixture. The nominal maximum aggregate size of the aggregate was 19 mm. The specific 

gravity of the binder was 1.034. The G
mb

 of the aggregates ranged between 2.615 and 

2.64. The G
mm

 of the loose HMA mixtures was determined to be 2.478. The gradation of 

this mixture is shown in Fig. 40. 



82 
 

 

Figure 40. Gradation of the mixture used for laboratory validation 

 

5.2.2 Sample Preparation  

Beam samples of approximately 380 mm x 63 mm x 50 mm (15 in. x 2.5 in. x 2 in.) were 

prepared following the same procedure described in section of “4.3 Sample Preparation”. 

Samples were compacted to dimensions (450 mm x 150 mm x 75 mm) greater than those 

shown above using an asphalt beam compactor (due to mold size). HMA mixtures were 

heated to 150 °C for no more than one hour and were then compacted using a kneading 

compactor. Once cooled, the compacted AC specimens were then cut into two beams (15 

in. x 2.5 in. x 2 in.) using a laboratory saw.  

 

5.2.3 Testing 

Beam fatigue tests were conducted at 20 °C and 500 µε at 0.01 Hz of sinusoidal loading. 

The sample geometry and support conditions were adopted following the AASHTO T 

321-07 (2007) test standard. Prior to testing, each sample was conditioned to test 

temperature, 20 °C, using an environmental test chamber for 2 hours. 
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5.2.4 Results and Discussion 

The stiffness and fatigue life of the fourth mixture measured using the beam fatigue test 

is shown in Table 9. The fatigue life of the mixture was also predicted using the 

developed model. The measured and the predicted fatigue lives were compared to 

validate the laboratory developed model.  

 

Table 9. Laboratory validation of the developed model 

Sample 

ID 

Strain 

Tested 

Measured 

Stiffness 

Measured 

Fatigue Life 

Predicted 

Fatigue Life 

p-value of 

the t-test 

 (µε) psi    

1 500 338913 1673 1639 

0.32 

2 500 275403 2195 1787 

3 500 301213 1421 1721 

4 500 311895 1856 1696 

5 500 333065 2248 1651 

 

Statistical t-test was conducted to evaluate these two fatigue lives (measured and 

predicted) with the null hypothesis of “true difference between the means of measured 

fatigue life and predicted fatigue life is zero”. The p-value (probability of null hypothesis 

to be true) was found to be 0.32 which is greater than 0.05. Therefore, the null hypothesis 

is true and the measured and the predicted fatigue lives are statically equal at 95% CI. 

Finally, the developed temperature-induced fatigue model is true for the fourth mixture 

also. 

 

5.3 Field Validation/Calibration 

Field calibration of the laboratory developed model is essential as the laboratory sample 

size, boundary conditions and other factors are not same to real field condition. 
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Calibration was done by determining the thermal fatigue damage in a field pavement and 

comparing the damage to that calculated by the developed model.  

 

5.3.1 Calibration Procedure 

Field calibration was conducted by imposing a shift factor (k) in the laboratory developed 

temperature-induced fatigue model as shown in Eq. (28): 

 

6 0.4168 3.4581 1
( )1.272 10 ( ) ( )ftN k x

E 

      (28) 

where the k can be expressed as follows: 

( )

( )

R lab

R field

D
k

D
        (29) 

Where )(labRN and )( fieldN are the damage index in the laboratory and in the field 

respectively. 

 

5.3.2 Determining Field Damage Index 

To determine the thermal fatigue damage in field, FWD test was conducted on the 

shoulder (non-trafficked) of I-40 in New Mexico, shown in Fig. 41. The test on shoulder 

was started in October 2013, once in a month (first week), every hour from 9 am to 3 pm. 

A total of five points were selected on which fifteen drops are applied at three load levels 

on each point. The temperatures of the AC at four different depths (surface, 2 in., 4 in. 

and bottom of AC) were measured using the installed temperature probes at the section. 

The FWD data was backcalculated using the backcalculation software, ELMOD.  
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Figure 41.Conduction of FWD test on I-40 pavement 

5.3.3 Results  

The stiffness results are presented in Fig. 42. It shows that the stiffness of AC decreases 

from 679 ksi (at 18.34 °C) to 660 ksi (at 18.31 °C) from October 2013 to October 2014. 

Note that the straight lines in Fig. 42 do not mean that the stiffness decreases linearly 

with the age; the lines show the starting and end points only. Similarly, the stiffness of 

AC decreases from 1271 (at 6.54 °C) ksi to 1214 ksi (at 6.54 °C) from December 2013 to 

December 2014. For January 2014 to January 2015, the stiffness of AC decreases from 

1035 ksi (at 4.59 °C) to 997 ksi (at 4.66 °C) respectively. Note that the FWD test could 

not be conducted in November 2014 due to equipment issue. A one-year damage period 

has been considered.  
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Figure 42. Decrease in shoulder stiffness due to thermal fatigue loading 

 

The field damage ratio ( ( )R fieldD ) was calculated using the following Eq. 

 

( )
0.5

R field

o

E
D

E


           (30) 

 

where ∆E is the decrease in stiffness in one year period and E
o
 is the stiffness at the 

starting month. The reason for 0.5 (or 50%) in the denominator is that AC usually fails 

when the initial stiffness is decreased by 50% (AASHTO T 321-07 2007). The ( )R fieldD  

has been calculated as 0.05596, 0.08969 and 0.07282 considering the data of October 

2013-2014, December 2013-2014, and January 2014-2015 respectively, using Eq. 30. 

The average ( )R fieldD is found to be 0.07283. 
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5.3.4 Calculating Laboratory Damage Ratio 

 

The laboratory damage ratio ( ( )R labD ) can be calculated using the following Eq. which is 

similar to Eq. 1, used by the AASHTOWare Pavement ME Design Software to calculate 

the traffic-induced fatigue damage index (D
1
): 

 

( )

1 ,

q

i
R lab

i ft i

n
D

N

                  (31) 

 

where  N
ft
 is the allowable number of temperature load repetitions in period i and q is the 

number of periods in each year. Calculation of ( )R labD  for the I-40 shoulder (for which 

( )R fieldD has been determined) is shown in Table 10. The monthly average temperature of 

AC was measured using the installed temperature probes. This average temperature is 

needed to determine the α-value for that temperature using Eq. 16. Then, the developed 

thermal strain (ε = α ∆T) was calculated using the α-value and the measured monthly-

average day-night temperature fluctuation (∆T). It would be better to calculate the daily 

day-night ∆T instead of monthly average which is very time consuming. The stiffness of 

AC materials at 1.16x10
-5

 Hz was determined in the laboratory. The damage ratio for 

each month has calculated for each month and finally summed up to 0.00083 per year. It 

would also have been better to calculate the damages at different depths and determine 

the average damage, which would be pursued in future research. 
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Table 10. Calculating laboratory damage ratio due to thermal fatigue loading 

Month 

Average Temperature 
of AC 

α  
(Eq. 16) 

Monthly Avg. 
∆T 

Strain (ε= 
α(∆T)) 

E at 1.16x10-5 
Hz 

N
ft
 n 

ft

n

N

 

°C µε/°C °C µε psi 
   

January 4.49 24 2.7 65 150649 
2648

281 
31 1.17E-05 

Februar

y 
9.22 25 3.5 89 146726 

9108

19 
28 3.07E-05 

March 16.08 27 4.12 110 94430 
5172
87 

31 5.99E-05 

April 22.30 28 4.7 130 76636 
3239

87 
30 9.26E-05 

May 28.73 28 4.9 137 52057 
3166

74 
31 9.79E-05 

June 35.55 28 5.4 150 40263 
2583

10 
30 0.000116 

July 35.69 28 5.3 147 38276 
2817

70 
31 0.00011 

August 34.95 28 5.03 140 41359 
3248

44 
31 9.54E-05 

Septem
ber 

30.66 28 4.6 128 46073 
4145
97 

30 7.24E-05 

October 22.04 28 4.2 116 61880 
5241

19 
31 5.91E-05 

Novem

ber 
16.02 27 3.7 99 109798 

7053

91 
30 4.25E-05 

Decemb
er 

7.90 25 3.6 90 161396 
8314
33 

31 3.73E-05 

( )

1 ,

q

i
R lab

i ft i

n
D

N

  per year 0.00083 

 

5.3.5 Determining the Shift Factor 

 

The laboratory to field calibration factor, k of the developed model (N
ft
) was found to be 

0.01134 using the Eq. 29. Finally, the developed model became as follows, which was 

calibrated for field condition: 

 

6 0.4168 3.4581 1
( )1.272 10 ( ) ( )ftN k x

E 

  

8 0.4168 3.4581 1
1.4423 10 ( ) ( )ftN x

E 

  or 
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8 0.4168 3.4581 1
1.4423 10 ( ) ( )

( )
ftN x

E T




 or 

8 0.4168 3.45814.696 1
1.4423 10 ( ) ( )

( ) ( )
ftN x

E atm T




 

 

There are several limitations in the field calibration of the developed temperature-induced 

fatigue model. Firstly, the environmental factors on AC damages were neglected based 

on the previous laboratory findings (Islam and Tarefder 2015c, Islam and Tarefder 

2015d). Those studies showed that the damage due to aging, environmental factors such 

as moisture, freeze-thaw etc. are prominent during the initial stage of conditioning. For 

example, the effect of aging on the stiffness of AC occurs during the first year of 

conditioning; the FWD test on the pavement was started when the pavement was more 

than two years. The second issue is that the calibration was conducted using a single 

pavement. The damage is typically high at the beginning and slows down with time. 

However, the Miner’s law assumes the damage as linear. This might be a reason, the field 

damage is found higher (k value lower than 1) than the laboratory determined damage. 

Long-term monitoring of the damage was needed for better comparison. 
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CHAPTER SIX 

MODEL TESTING 

6.1 General 

The developed temperature-induced fatigue model was used to predict alligator cracking 

to evaluate its performance and possible contribution in research. The errors of predicting 

alligator cracking under traditional approach and using the developed model were 

compared. The detail of the procedure is discussed step by step. 

 

6.2 Alligator Cracking Prediction Procedure 

Before discussing the predicted alligator cracking, it is better first to discuss the 

procedure for the prediction of the alligator cracking using the traditional AASHTOWare 

Pavement ME Design Software. The design starts with inputting the data in a user-

friendly window. Then the analysis is run, and the output is presented in Excel 

worksheets. The procedure, which is needed to predict cracking for flexible pavements, 

follows certain steps which are summarized below: 

 

a) Organize the input data. All inputs needed for the analysis are tabulated. In the 

current study, the inputs of the simulations were obtained from the LTPP 

database. Few cases where data is not available in the LTPP database, the default 

AASHTOWare Pavement ME Software values were used. Regarding the 

Poisson’s Ratio (ν), the AASHTOWare Pavement ME Design Guide uses two 

types of ν-value; a constant value of 0.35 or the relationship between the ν-value 

and the dynamic modulus. A study by the author shows that ν-value is not 
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constant for AC (Islam et al. 2015d). Thus, the consideration of ν-value of 0.35 is 

not so reasonable. This is why, the current study uses the relationship between the 

ν-value and the modulus. 

b) Process traffic data. The processed traffic data is then processed to determine 

equivalent number of single, tandem, and tridem axles produced by each passing 

of tandem, tridem, and quad axles at different periods of analysis. 

c) Process temperature data. The hourly pavement temperature profiles are 

generated using the Enhanced Integrated Climatic Model (EICM) for each month. 

d) Process monthly moisture data. The effects of seasonal changes in moisture 

conditions on base and subgrade modulus are also determined using the EICM 

model. 

e) Sub-layering of pavement structure. The pavement structure is subdivided into 

smaller sublayers to account for changes in temperature and frequency in the 

asphalt layers. The unbound layers are also subdivided to determine the moisture-

dependent layer modulus and subsequently the distresses. 

f) Calculate stress and strain. The developed tensile strains are then calculated for 

each load, load level, load position, and temperature difference for each month 

within the design period at the bottom of each asphalt layer. The complex 

modulus of AC is expressed as a function of the mix properties, temperature, and 

time of the load pulse. Knowledge of the predicted tensile strain at any point, 

along with the layer dynamic modulus and fatigue life repetition relationship, 

allows for the direct calculation of the damage for any asphalt layer. 
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g) Calculate fatigue cracking. Calculate the cracking for each layer from the 

predicted damage. 

 

6.3 Model Application Procedure in the AASHTOWare Design Guide 

The AASHTOWare Pavement ME Design Guide uses field calibrated model to predict 

the alligator cracking in asphalt pavement. The field calibration was conducted in two 

steps. In the first step, the predicted alligator cracking data using the Asphalt Institute’s 

Model was compared with the field measured cracking data from LTPP. By minimizing 

the errors, a revised model was generated. That revised model is currently being used by 

the AASHTOWare Pavement ME Design Guide. Secondly, different shift factors (ranges 

0.000398 to 0.004) based on the thickness of AC were used in the AASHTOWare 

Pavement ME Design Guide while calculating the Damage Ratio (D
1
) (El-Basyouny and 

Witczak 2005a,b). Note that ‘Damage Ratio’ is very often termed as ‘Damage Index’ or 

simply, ‘Damage’ in the literature. Then an empirical model is used to predict the amount 

of alligator cracking using damage index and thickness of asphalt layer of the pavement. 

The AASHTOWare Pavement ME Design model to correlate the damage with the 

amount of cracking is presented earlier (Eq. 14) as follows: 

 

2 2 1

4

2 log( %)

1
( )
60 1

C C D

C
FC

e
 




        

where 
2C can  be expressed as: 

2.856

2 2.40874 39.748(1 )C h            
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where FC is the area of alligator cracking (percentage of total lane area); h is the AC 

thickness (in.) and 
4C  is a regression coefficient (typically 6000). The summation of the 

measured alligator cracking was divided by the total area of the lane (12 ft. x 500 ft. = 

6,000 ft
2
) to calculate the measured percentage area cracked. 

 

The AASHTOWare Pavement ME Design Software calculates the traffic-induced fatigue 

damage index (D
1
) using Eq. 1 as discussed earlier.  After calculating the damage ratio                

( 2

1 ,

q

i

i ft i

n
D

N

 ) for thermal fatigue, the total damage index (D) can be calculated as: 

 

1 2D D D                  (32)    

 

Note that both D
1 

and D
2
 are multiplied by the damage shift factor, ranges 0.000398 to 

0.004 based on the thickness of AC. Then, the amount of fatigue cracking (considering 

thermal fatigue also) can be determined using the following Eq.: 

 

2 2

4

2 log( %)

1
( )
60 1

C C D

C
FC

e
 




                  (33)   

                                      

This means the current study proposes to replace the traffic-induced damage index, 
1D by 

the total damage index, D. To summarize, the whole procedure can be written as: 

Step 1: Take the average temperatures at the different periods (say, months) of 

analysis. 

Step 2: Calculate the α-values at the different periods of analysis using Eq. 16. 
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Step 3: Predict the maximum temperature (y
max

) (Eq. 18) and the minimum 

temperature (y
min

) (Eq. 20) at the bottom of AC using the surface maximum and 

the minimum temperatures obtained from the AASHTOWare Pavement ME 

Design output. Then, the average temperature fluctuation for that period can be 

determined by minmax yyT  . 

Step 4: Determine the developed thermal strain, ε = α ΔT. 

Step 5: Take the stiffness of AC from the AASHTOWare Pavement ME Design 

output. It is ideal to determine the stiffness for 1.16x10
-6

 Hz. 

Step 6: Predict the allowable number of load repletion for temperature 

fluctuations for a specific period using the developed model                                    

  ( 8 0.4168 3.4581 1
1.4423 10 ( ) ( )ftN x

E 

 ). 

Step 7: Determine the damage ratio ( 2

1 ,

q

i

i ft i

n
D

N

 ) for thermal fatigue damage. 

Step 8: Apply the damage shift factor from Table 2. This is because, it is applied 

by the AASHTOWare Pavement ME Design in the traffic related fatigue damage. 

Step 9: Determine the total damage index (
1 2D D D  ). 

Step 10: Determine the amount of alligator cracking                                                

(
2 2

4

2 log( %)

1
( )
60 1

C C D

C
FC

e
 




).    

 

The contribution of the model has been determined by analyzing randomly chosen LTPP 

test sections. The research methodology to determine the contribution of the model is 

presented in Fig. 43 which can be described as follows: 
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Step 1. Measured performance data were collected for all the 34 chosen sections 

from the LTPP database. 

Step 2. Simulation runs were performed using the AASHTOWare Pavement ME 

Software to determine the performance predicted by the AASHTOWare 

Pavement ME Software. The inputs of the simulations were obtained from the 

LTPP database. Few cases where data is not available in the LTPP database, the 

default AASHTOWare Pavement ME Software values were used. The obtained 

prediction from this step is due to the traffic-induced fatigue damage. 

Step 3. The predicted damage by the AASHTOWare Pavement ME Software was 

correlated to the measured cracking obtained from the Step 1. The Root Mean 

Square of Error (RMSE) was then determined using the MATLAB.  

Step 4. Manual calculation was made to predict the performance based on Eq. 28 

using the D instead of the D
1
. The predicted damage was correlated to the 

measured cracking from the Step 1. This prediction represents the prediction 

obtained by using both traffic- and temperature-induced fatigue damages. 

Step 5. The predicted damage from the Step 4 considering both the traffic- and 

temperature-induced fatigue was correlated to the measured cracking obtained 

from the Step 1 to determine the RMSE using the MATLAB. 

Step 5. The RMSE, from the Step 3 and the Step 5 were compared to determine 

the performance of the developed model. 
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Figure 43. Methodology to determine the contribution of the developed model 

 

The day-night temperature difference (∆T) is required to determine the thermal strain due 

to the day-night temperature fluctuations. The AASHTOWare Pavement ME Design 

Software does not analyze the temperature at the bottom of AC. The maximum (
maxy ) 

and the minimum (
miny ) temperatures (ºC) at the bottom of AC in any day were 

determined using the following models (Eqs. 18 and 20) as discussed earlier.  

 

max max0.8 0.87 25.6y x x          

   min min1.84 20y x x          
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Pavement ME 

Design prediction 

AASHTOWare 

Design software 

Inputs: from LTPP 

data 

Combining Thermal fatigue with  the 
AASHTOWare Pavement ME Design 

N
ft
: from  the 

developed model 

E: from the AASHTOWare 
Pavement ME Software output 
(converted for 1.16x10-5 Hz) 

ε = α(∆T) 

∆T = y
max

- y
min 

D=D
1
+D

2 
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where 
maxx = daily maximum surface temperature (°C) obtained from the AASHTOWare 

Pavement ME Design Software output; 
minx = daily minimum surface temperature (°C) 

obtained from the The AASHTOWare Pavement ME Design Software output and x = 

AC thickness (m). The α-values (µε/°C) at the different temperatures were determined  

using the following Eq. 16 which is presented again: 

 

20.006 0.356 22.633T T            

 

6.4 Collecting Measured Cracking Data 

 

Data were obtained from the LTPP website (www.infopave.com) (LTPP 2015). While 

choosing the LTPP sections, the field sections were selected randomly to ensure that a 

well-balanced matrix of pavement parameters, climate, traffic and most importantly, 

fatigue cracking was present. These projects included varying climates, traffic levels, 

subgrade soils, and pavement structural cross-sections. Few cases, some parameters were 

not found; these values were assumed the default ones from the AASHTOWare 

Pavement ME Design Guide. 

 

The test sections cover a diverse range of site features. All data required for executing the 

models, including the model inputs and measures of fatigue distress, were extracted, 

reviewed for accuracy and completeness, and incorporated into a project database. These 

data elements included performance observations (measurements of distress), material 

properties, traffic and climatic characteristics, pavement cross-section, foundation, and 

http://www.infopave.com/
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many others. Fig. 44 shows the 19 States from where 34 LTPP sections were chosen. It 

covers almost the whole US and different climates, AC thickness and amount of 

cracking. 

 

 

Figure 44. US States from where LTPP sections were chosen (circled) 

 

 

Fig. 45 shows the frequency distribution of alligator cracking for the chosen sections. It 

shows that 169 data points have cracking values between 0 and 5%.  
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Figure 45. Number of section with cracking amount 

 

The measured cracking with the thickness variations of the chosen sections are shown in 

Fig. 46. It shows that the chosen array of section has almost all kinds of AC thickness.  

 

 

Figure 46. Measured cracking data with AC thickness 
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The measured cracking data are also correlated with the Mean Annual Average 

Temperature (MAAT) as shown in Fig. 47. It shows that the MAAT varies between 2.9 

°C and 24.1 °C. This is important that the chosen section covers a wide range of air 

temperature. Another feature is that the cracking data is not correlated with the MAAT. 

 

 

Figure 47. Measured cracking data with the MATT 

 

The LTPP database provided the alligator fatigue–cracking data according to the severity 

level (low, medium, and high severity) for each LTPP section. The total fatigue cracking 

without using any weights for each severity category was used as the total alligator 

cracking data was used while calibrating the AASHTOWare Pavement ME Design 

Guide. For the bottom-up cracking, the summation of the measured alligator cracking 

was divided by the total area of the lane (12 ft × 500 ft = 6,000 ft
2
) to calculate the 

percentage area cracked. 
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6.5 Analysis of Predicted and Measured Cracking Data 

The standard errors (predicted cracking-measured cracking) of alligator cracking using 

both approaches are presented in Fig. 48. Negative value means the measured amount of 

alligator cracking is greater than the predicted amount of cracking. Fig. 48(a) shows that 

the error increases with the damage for the traditional AASHTOWare Pavement ME 

Design approach. It is negligible at the beginning; however, it increases with 

damage/service life of pavement. The error deviates the maximum value of -24% for the 

traditional AASHTOWare Pavement ME Design approach which is very unsafe for 

pavement design. The standard error (S) of estimate of the data is presented using the 

following best fit equation: 

 

7.57 15.5log

13
1.13

1 D
S

e 
 


        (34) 

 

 In addition, the error continues increasing (positive direction) sharply after certain value 

of damage which is too much conservative. On the other hand, incorporation of thermal 

fatigue damage with the traditional AASHTOWare Pavement ME Design produces much 

consistent error with damage/service life of pavement as shown in Fig. 48(b). This 

approach produces a standard deviation value of 3.87% of the error and it is almost 

consistent for all damage values (throughout the service life of pavement). Therefore, 

considering the thermal fatigue damage, pavement design is way safer compared to the 

traditional AASHTOWare Pavement ME Design approach. In addition, the standard error 

using this approach is mostly positive. This means the predicted amount of cracking is 

greater than the measured amount of cracking; which is conservative. Considering this 
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positive sign and small value of the standard error, the current study proposes to neglect 

this error.  

  

a) Error using traffic loading only 

(AASHTOWare approach) 

b) Error using both traffic- and 

temperature-induced fatigue 

 

Figure 48. Standard error (prediction minus the measured cracking data) 

 

The predicted cracking data using the AASHTOWare Pavement ME Design approach is 

presented in Fig. 49.  It shows the prediction of alligator cracking using Eq. 14. It can be 

observed that the predicted cracking is typically below the predicted cracking. The Root 

Mean Square of Error (RMSE) is 4.812.  
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Figure 49. Prediction of alligator cracking versus the measured cracking data 

 

The predicted cracking data combining the temperature-induced fatigue damage with the 

AASHTOWare Pavement ME Design is presented in Fig. 50. The prediction of the 

alligator cracking has been calculated using Eqs. (32) and (33). The visual inspection 

shows that the cracking prediction is less scattered for the prediction of cracking using 

both the traffic and the temperature as shown in Fig. 50. The RMSE of the alligator 

cracking predicted by combining the temperature-induced fatigue damage with the 

AASHTOWare Pavement ME Design is 4.151. This means the RMSE decreases by 14% 

after the incorporation of temperature-induced fatigue damage with the AASHTOWare 

Pavement ME Design Software.  
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Figure 50. Prediction of alligator cracking versus the LTPP measured data 

 

The above prediction of cracking in Fig. 50 is obtained by using the cracking model 

shown in Eq. 33. All the coefficients of Eq. 33 were kept unchanged. If the coefficients of 

Eq. 33 are modified to accommodate the temperature induced fatigue, it may further 

cause a decrease in the RMSE value. The following revised cracking model is proposed: 

 

2 2

4

2 log( %)
( )
60 1

C C D

Cd
FC

e
 




     (35) 

 

 

where 2.856

2 2.40874 39.748 (1 ) cC a b h      

 

 

Four regression constants have been added as a, b, c and d. Correlating the measured 

cracking data using Eq. 35, in different trials, the regression coefficients (a, b, c and d) 

were obtained. The regression coefficients and the corresponding RMSE are presented in 
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Table 11. Here, the unity value of the regression coefficient is assumed; the rest of the 

values are obtained from the best fit simulations. It can be observed that only by 

introducing the regression constant, a (keeping everything else unchanged), the RMSE 

decreases by 24%. The incorporation of four regression coefficients (a, b, c and d) the 

RMSE decreases by 29%. 

 

Table 11. Optimizing the cracking model (Eq. 35) to minimize the error 

Trial 

No. 
a b c d RMSE 

Decrease in 

RMSE (%) 

1 1 1 1 1 4.1514 13.7 

2 1.23 1 1 1 3.6678 23.8 

3 1.148 1.742 1 1 3.6058 25.1 

4 1.161 2.332 1.085 1 3.6141 24.9 

5 1.858 15.86 1.585 4.172 3.4404 28.5 

 

 

The prediction of alligator cracking using four regression coefficients (Trial 5 in Table 

11) is shown in Fig. 51. It shows that the prediction is much close to the measured data; 

the RMSE is 3.44. This means the error decreases by 29% after revising the regression 

constants in cracking model presented in Eq. 35.  
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Figure 51. Prediction of cracking using the proposed cracking model (Eq. 35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

6 

12 

18 

24 

30 

0 6 12 18 24 30 

P
re

d
ic

te
d

 C
ra

ck
in

g
 (

%
 o

f 
la

n
e 

ar
ea

) 

Measured Cracking (% of lane area) 

Sample Size=204 

RMSE=3.44 



107 
 

CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATION 

7.1 General 

Traffic-induced fatigue damage occurs due to tensile strain at the bottom of AC. After 

certain level of damage accumulation, bottom-up fatigue cracking initiates and forms 

alligator cracking at the surface. Like traffic loading, repeated day-night temperature 

cycle may cause some damages due to cyclic thermal expansion and contraction of AC. 

The recent AASHTOWare Pavement ME Design Software does not consider the cyclic 

thermal strain due to day-night temperature fluctuation due to the fact that there is no 

closed-form solution or model available for calculating thermal fatigue damage. This 

study for the first time, developed a fatigue model to determine the fatigue life of AC due 

to day-night temperature fluctuation. The model was developed based on laboratory 

fatigue testing and calibrated to field condition. The developed model was then evaluated 

for its performance using measured alligator cracking data from 34 LTPP sections.  

 

7.2 Conclusions 

Like traffic loading day-night temperature fluctuations cause fatigue damage in AC. A 

thermal fatigue damage model was developed in this study. The AASHTOWare 

Pavement ME Design approach can be improved for the better prediction of alligator 

cracking by considering the developed thermal fatigue damage with the traffic-induced 

fatigue damage.  The thermal fatigue model can enhance the accuracy of the fatigue 

cracking prediction by any pavement design software. Specific finding from this research 

are listed below: 
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 The temperature-induced fatigue model developed in this study is represented by 

the following: 

8 0.4168 3.4581 1
1.4423 10 ( ) ( )ftN x

E 

   or 

8 0.4168 3.4581 1
1.4423 10 ( ) ( )

( )
ftN x

E T




 or 

6 0.4168 3.45814.696 1
1.272 10 ( ) ( )

( ) ( )
ftN x

E atm T




 

where N
ft
 is the allowable day-night temperature cycle,  E is the stiffness of AC 

(psi) at 1.16x10
-5

 Hz; E(atm) is the stiffness of AC in atmospheric pressure at 

1.16x10
-5

 Hz; ε is the thermal strain due to day-night temperature fluctuation;  is 

the coefficient of thermal expansion and contraction; and ∆T is the  day-night 

temperature fluctuation in AC. 

 If the developed temperature-induced fatigue model in this study is combined 

with the traffic-induced fatigue model that is available in the AASHTOWare 

Pavement ME Design Guide, the error in the prediction of alligator cracking 

decreases by 14%. 

  The damage in a single cycle of loading while conducting beam fatigue test using 

mechanical loading is statistically equal with the damage produced while 

conducting axial fatigue test using thermal loading. 

 The fatigue life of AC decreases with the decrease in frequency of loading; 

however, becomes stable at the frequency of 0.01 Hz or less. 

 CTC and CTE values of asphalt mixture are non-linear with temperature. CTC 

value is concave downward and CTE value is concave upward. The temperature-
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dependent α-value (µε/°C) (average of CTC and CTE) can be presented by the 

following equation: 

20.006 0.356 22.633T T      

 CTC and CTE values of AC are not affected by the sample’s cross-anisotropy, air 

void and aggregate gradation; however, aggregate type has a significant effect on 

CTC and CTE values. 

 

7.3 Recommendations for Further Study 

This study proposes a closed form equation to calculate the allowable number load 

repetition for day-night temperature fluctuation. In spite of limited limitations (such as 

number of mixtures, number of tests, calibration data) this study shows the importance of 

incorporating the thermal fatigue damage in pavement design. Some future researches 

can be recommended as follows: 

 Only three mixtures were used to develop the thermal fatigue model. The fourth 

mixture was used to validate the model. In future, wider range of mixtures can be 

used to improve the developed thermal fatigue model in this study. 

 The developed model was calibrated to field conditions using a single pavement 

on I-40 in New Mexico. Several instrumented pavement sections with different 

climate conditions can be used to improve the model. 

 While calibrating the model in the field, the effects of aging, freeze-thaw, 

moisture damage, healing etc. were ignored. Further testing on damage behavior 

of field AC due to environmental factors can be pursued in future studies. 
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 The samples were clamped with wood while applying actual temperature loading 

on restrained samples. In future studies, zerodur material can be used instead of 

wood to examine the full restraining effect on temperature-induced fatigue 

damage. Also, the thermal fatigue damage can be monitored using the acoustic 

emission test at different cycles of temperature-conditioned samples in the 

laboratory. 

 The pavement AC slab was considered one-dimensional in this study. Biaxial 

tension in AC slab was not considered in the current study. Biaxial or three-

dimensional analysis can be conducted in a future study. 

 The developed model can be used to determine the fatigue damage due to day-

night temperature loading which contributes to the longitudinal top-down 

cracking. It is well known that the longitudinal top-down crack occurs in AC 

pavement due to both traffic-induced fatigue and temperature-induced fatigue 

damages. The traffic-induced fatigue model that is available in the 

AASHTOWare Design Software can be used to determine the traffic related 

fatigue damage. The AASHTOWare Design Software uses the bottom-up traffic 

model to determine the top-down fatigue damage of AC. This is because no top-

down traffic fatigue model is still available in the literature. The top-down traffic 

fatigue model can be developed in the laboratory by the axial push-pull fatigue 

testing. The reason for the axial push-pull fatigue test is that the top-down traffic 

fatigue damage occurs due to the tensile strain developed close to the vehicle tire. 

Thus, the axial push-pull fatigue testing can be conducted in tension mode to 

develop the traffic-induced fatigue model for top-down fatigue model. 
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APPENDIX A 

SAMPLE CALCULATION FOR DETERMINING ALLIGATOR CRACKING 

INCLUDING THERMAL FATIGUE DAMAGE 

 

An example is presented here to show how thermal-fatigue damage has been calculated. 

In addition, it shows how alligator cracking was determined including the temperature-

induced fatigue damage. A LTPP pavement section from Arizona, 04-0113, has been 

chosen randomly. The measured cracking on this section was obtained from the LTPP 

database. The predicted alligator cracking using the AASHTOWare Pavement ME 

Design Software was determined first. Then, the alligator cracking using the thermal 

fatigue damage with the AASHTOWare Pavement ME Design Guide was calculated. 

 

Description of the Section 

The general information of the Section is provided in Table A1. It is located in Arizona 

with latitude of 35.392° and longitudinal of 114.255°. The construction of the pavement 

started in June 1993; the design life was 6 years. It had three layers: AC layer of 4.5 in. 

thickness, granular base of 7.5 in. thickness and then semi-infinity subgrade. The climate 

of the test section can be generated using the AASHTOWare Pavement ME Design 

Software using interpolation of several weather stations nearby. It needs the latitude, 

longitude, elevation and ground water table as the inputs to extract the nearby weather 

station data. 
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Table A1. General information of the 04-0113 section 

Location AZ 

LTPP ID 04-0113 

Design Life 6 years 

Base/Subgrade construction: June, 1993 

Pavement construction: August, 1993 

Traffic open: August, 1993 

Type of design Flexible 

Latitude North (degrees) 35.392 

Longitude West (degrees 114.255 

Elevation (ft) 3580 

Groundwater Table Depth1 (ft) >20 

Layers 
AC: 4.5 in 

Base Layer: 7.5 in 

Unbound Layers’ Stiffnesses 
Base Layer: 40000 psi 

Subgrade: 38000 psi 

 

 

Measured Alligator Cracking Data 

The measured alligator cracking data obtained from the LTPP database is presented in 

Table A2.  The survey was started in February 1995. The survey report presented the 

measured amount of cracking in ft
2
. Then, the percentage of lane area cracked was 

calculated considering the total lane area of 6000 ft
2
 (500 ft section with 12 ft wide lane). 

The cumulative percentage lane area cracked was calculated with the survey period. 
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Table A2. Measured alligator cracking data from the LTPP 

Survey Date 

Measured 

Cracking 

(ft
2
) 

Percentage 

of total 

Lane Area 

2/21/1995 0 0 

3/30/1995 0 0 

8/17/1995 0 0 

11/8/1995 0 0 

2/7/1996 0 0 

4/3/1996 0 0 

7/10/1996 0 0 

8/14/1996 0 0 

1/8/1998 0 0 

1/13/1998 0 0 

4/20/1998 9.700 0.1617 

6/11/1998 9.700 0.3233 

10/22/1998 9.700 0.4850 

2/16/1999 36.600 1.0950 

1/13/2000 28.000 1.5617 

 

 

AASHTOWare Predicted Alligator Cracking Data 

The AASHTOWare Pavement ME Design Software has been used to predict the alligator 

cracking of the section. The inputs of the section were obtained from the LTPP database. 

Typically, the software needs three types of inputs: 

a) General inputs (Geometry of the section, design criteria etc.) 

b) Climate (Temperature and moisture data) 

c) Traffic (Axle weight and distribution) 

The general inputs of the section are listed in Table A1. The climate data was obtained by 

interpolation of the several weather stations data nearby. The traffic data was been 

extracted from the LTPP database. The design two-way (total of 4 lanes) Annual Average 
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Daily Truck Traffic (AADTT) was 600 with a compound growth rate of 4%. The 

monthly adjustment factors of the traffic are presented in Table A3.  

 

Table A3. Monthly traffic adjustment factor on the section of 04-0113 

   
Vehicle Class 

Month 
Class 

4 

Class 

5 

Class 

6 

Class 

7 

Class 

8 

Class 

9 

Class 

10 

Class 

11 

Class 

12 

Class 

13 

January 0.58 0.80 1.23 0.00 0.79 0.97 1.21 0.76 0.95 0.00 

February 0.52 0.79 0.77 0.00 0.88 0.93 1.38 0.75 0.84 0.00 

March 0.58 0.99 1.02 0.00 1.24 0.92 1.05 2.18 0.95 0.00 

April 0.93 1.12 1.08 0.00 1.29 1.05 1.38 1.52 1.16 0.00 

May 1.05 1.05 1.03 0.00 1.13 0.97 0.70 0.84 1.16 0.00 

June 1.40 1.25 1.33 0.00 1.13 1.13 1.05 0.93 1.05 0.00 

July 1.39 1.19 1.02 0.00 0.98 0.92 0.70 0.73 1.05 0.00 

August 1.40 1.16 1.00 0.00 0.93 0.99 0.70 0.80 0.84 0.00 

September 1.28 1.07 1.28 0.00 0.95 0.97 1.04 0.84 1.05 0.00 

October 1.28 1.01 0.89 0.00 1.05 1.03 1.04 0.91 0.95 0.00 

November 0.81 0.81 0.71 0.00 0.87 1.08 0.70 0.86 1.05 0.00 

December 0.81 0.75 0.63 0.00 0.73 1.03 1.05 0.89 0.95 0.00 

 

The vehicle class distribution is shown in Table A4. It shows that most of the traffic is 

class 9 vehicle with the percentage of 61.2%. The AASHTOWare Pavement ME default 

values have been used for which site specific data is not available in the LTPP. 

 

Table A4. Vehicle class distribution 

Class Weightage 

Class 4 1.4% 

Class 5 17.4% 

Class 6 2.9% 

Class 7 0.0% 

Class 8 8.4% 

Class 9 61.2% 

Class 10 0.4% 

Class 11 6.8% 

Class 12 1.5% 

Class 13 0.0% 
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After the simulation, the damage ratio and percentage of the total lane area cracked were 

obtained with the service life. The values on the survey dates are presented in Table A5. 

 

Table A5. Predicted alligator cracking data from the AASHTOWare output 

Date 
Damage 

Ratio (%) 

Percentage of 

total Lane Area 

2/21/1995 0.735 1.75 

3/30/1995 0.765 1.77 

8/17/1995 1.05 1.92 

11/8/1995 1.18 2.00 

2/7/1996 1.23 2.04 

4/3/1996 1.31 2.10 

7/10/1996 1.51 2.29 

8/14/1996 1.58 2.38 

1/8/1998 2.29 4.60 

1/13/1998 2.29 4.60 

4/20/1998 2.38 5.16 

6/11/1998 2.53 6.25 

10/22/1998 2.79 8.56 

2/16/1999 2.87 9.35 

1/13/2000 3.15 12.09 

 

 

Prediction of Alligator Cracking including Thermal Fatigue Damage with the 

AASHTOWare 

The procedure to determine the alligator cracking incorporating the thermal fatigue 

damage with the AASHTOWare Pavement ME Design can be described as follows: 

 

Step 1: Take the average temperatures at the different periods (say, months) of analysis 

(Column 2 of Table A6). 

Step 2: Calculate the α-values at the different periods of analysis using Eq. 16 (Column 3 

of Table A6). 
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Step 3: Predict the maximum temperature (y
max

) (Eq. 18) and the minimum temperature 

(y
min

) (Eq. 20) at the bottom of AC using the surface maximum and the minimum 

temperatures obtained from the AASHTOWare Pavement ME Design output. Then, the 

average temperature fluctuation for that period can be determined by minmax yyT   

(Column 6 of Table A6). 

Step 4: Determine the developed thermal strain, ε = α ΔT (Column 7 of Table A6). 

Step 5: Take the stiffness of AC from the AASHTOWare Pavement ME Design output. 

It is ideal to determine the stiffness for 1.16x10
-6

 Hz (Column 8 of Table A6). 

Step 6: Predict the allowable number of load repletion for temperature fluctuations for a 

specific period using the developed model ( 8 0.4168 3.4581 1
1.4423 10 ( ) ( )ftN x

E 

 ) (Column 9 

of Table A6). 

 

Table A6. Determining allowable load repetition under thermal fatigue 

 

Average 

Temp. Below 

AC 

α 
Surface 

Min. Temp 

Surface Max. 

Temp 

Temp 

Fluctuations 

(∆T) 

Strain 

ε 
E N 

 
°C µε/°C °F °F °C µε ksi 

 

Jan. 10.29 26 33.4 68.8 10.8 276 177 190 

Feb. 11.11 26 35.6 73.2 11.7 301 156 148 

Mar. 15.72 27 40.5 86.9 15.6 416 98 59 

Apr. 20.33 27 47.1 96.5 16.5 453 58 55 

May. 27.67 28 57.6 109 16.7 467 46 54 

Jun. 32.50 28 67 116.7 15.2 425 39 80 

July. 34.61 28 71.7 119.9 14.2 394 37 107 

Aug. 34.22 28 73.7 118.3 12.3 342 39 171 

Sep. 29.06 28 64.2 110.4 13.8 384 47 106 

Oct. 20.94 27 50.3 96.1 14.6 400 72 77 

Nov. 13.22 26 38.8 78.6 12.5 328 178 104 

Dec. 7.83 25 31.5 65.6 10.3 257 197 232 
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Step 7: Determine the damage ratio ( 2

1 ,

q

i

i ft i

n
D

N

 )  for thermal fatigue damage (Column 

2 of Table A7). 

Step 8: Apply the damage shift factor from Table A2. This is because, it is applied by the 

AASHTOWare Pavement ME Design in the traffic related fatigue damage Then, 

calculate the cumulative damage (Columns 3-5 of Table A7).  

Step 9: Determine the total damage index (
1 2D D D  ) (Column 4 of Table A8). 

Step 10: Determine the amount of alligator cracking (
2 2

4

2 log( %)

1
( )
60 1

C C D

C
FC

e
 




) 

(Column 5 of Table A8).  This value can be modified to increase the reliability. 

 

Table A7. Determining damage under thermal fatigue loading 

 

Raw Damage Ratio 

(%) 
Shift Factor 

Shifted  

Damage Ratio 

(%) 

Cum. Damage Ratio (%) 

2/21/1995 538 0.004 2.2 2.3 

3/30/1995 575 0.004 2.3 2.5 

8/17/1995 715 0.004 2.9 3.1 

11/8/1995 798 0.004 3.2 3.4 

2/7/1996 889 0.004 3.6 3.8 

4/3/1996 945 0.004 3.8 4.0 

7/10/1996 1043 0.004 4.2 4.5 

8/14/1996 1078 0.004 4.3 4.6 

1/8/1998 1590 0.004 6.4 6.8 

1/13/1998 1595 0.004 6.4 6.8 

4/20/1998 13.22 0.004 6.8 7.2 

6/11/1998 7.83 0.004 7.0 7.5 
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Table A8. Determining the alligator cracking using the thermal fatigue 

Date 

Damage Ratio 

(%) 

(Traffic) 

Damage Ratio 

(%) 

(Thermal) 

 

1 2D D D   

Predicted 

Percentage of total 

Lane Area 

2/21/1995 0.735 2.2996 3.0346 1.5988 

3/30/1995 0.765 2.4577 3.2227 1.7143 

8/17/1995 1.05 3.0561 4.1061 2.2680 

11/8/1995 1.18 3.4109 4.5909 2.5787 

2/7/1996 1.23 3.7998 5.0298 2.8633 

4/3/1996 1.31 4.0392 5.3492 3.0722 

7/10/1996 1.51 4.4581 5.9681 3.4806 

8/14/1996 1.58 4.6077 6.1877 3.6266 

1/8/1998 2.29 6.7961 9.0861 5.5878 

1/13/1998 2.29 6.8175 9.1075 5.6024 

4/20/1998 2.38 7.2321 9.6121 5.9482 

6/11/1998 2.53 7.4543 9.9843 6.2038 

10/22/1998 2.79 8.0228 10.8128 6.7736 

2/16/1999 2.87 8.5229 11.3929 7.1730 

1/13/2000 3.15 9.9377 13.0877 8.3406 
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APPENDIX B 

LTPP DATA FOR CHOSEN PAVEMENT SECTION 

 

The AASHTOWare Pavement ME Design input data for the 34 chosen LTPP sections 

were collected from the LTPP database. These input data are listed in Table B1 to B10. 

 

Table B1. Analysis conditions 

Section 
State 

Code 

SHRP 

ID 
State 

Project 

Type 

Base/Subgrade 
Construction 

Completion Date 

Asphalt 

Construction 

Completion 
Date 

Traffic 
Opening 

Date 

Design 
Period 

(years 

01-1001 01 1001 Alabama GPS 8/1/1980 10/1/1980 10/1/1980 19 

01-1019 01 1019 Alabama GPS 8/1/1986 10/1/1986 10/1/1986 13 

01-4126 01 4126 Alabama GPS 2/1/1988 4/1/1988 4/1/1988 11 

02-1001 02 1001 Alaska GPS 5/1/1983 7/1/1983 7/1/1983 16 

02-1002 02 1002 Alaska GPS 8/1/1984 10/1/1984 10/1/1984 15 

04-0113 04 0113 Arizona GPS 6/1/1993 8/1/1993 8/1/1993 6 

04-0114 04 0114 Arizona GPS 6/1/1993 8/1/1993 8/1/1993 6 

04-1024 04 1024 Arizona GPS 5/1/1977 7/1/1977 7/1/1977 22 

09-1803 09 1083 Connecticut GPS 5/1/1985 7/1/1985 7/1/1985 14 

12-3995 12 3995 Florida GPS 10/1/1975 12/1/1975 12/1/1975 24 

12-3997 12 3997 Florida GPS 4/1/1974 6/1/1974 6/1/1974 25 

12-4107 12 4107 Florida GPS 4/1/1986 6/1/1986 6/1/1986 13 

20-1009 20 1009 Kansas GPS 11/1/1984 1/1/1985 1/1/1985 14 

25-1003 25 1003 Massachusetts GPS 7/1/1974 9/1/1974 9/1/1974 25 

26-1001 26 1001 Michigan GPS 7/1/1971 9/1/1971 9/1/1971 28 

27-1087 27 1087 Minnesota GPS 11/1/1978 1/1/1979 1/1/1979 20 

29-1008 29 1008 Missouri GPS 2/1/1986 4/1/1986 5/1/1986 13 

34-1031 34 1031 New Jersey GPS 7/1/1973 9/1/1973 9/1/1973 26 

35-0101 35 0101 New Mexico GPS 9/1/1995 11/1/1995 11/1/1995 4 

35-1112 35 1112 New Mexico GPS 4/1/1984 6/1/1984 6/1/1984 15 

37-1024 37 1024 NC GPS 9/1/1980 11/1/1980 11/1/1980 19 

37-1802 37 1802 NC GPS 12/1/1989 2/1/1990 2/1/1990 9 

40-4087 40 4087 Oklahoma GPS 2/1/1986 4/1/1986 7/1/1986 13 

40-4165 40 4165 Oklahoma GPS 4/1/1984 6/1/1984 6/1/1984 15 

42-1599 42 1599 Pennsylvania GPS 6/1/1987 8/1/1987 8/1/1987 12 

45-1011 45 1011 SC GPS 4/1/1985 6/1/1985 7/1/1985 13 

47-3104 47 3104 Tennessee GPS 4/1/1986 6/1/1986 6/1/1986 13 

48-1077 48 1077 Texas GPS 11/1/1981 1/1/1982 1/1/1982 17 

48-1169 48 1169 Texas GPS 6/1/1972 8/1/1972 8/1/1972 27 

48-1174 48 1174 Texas GPS 10/1/1973 12/1/1973 5/1/1975 24 

48-3749 48 3749 Texas GPS 1/1/1981 3/1/1981 3/1/1981 18 

48-9005 48 9005 Texas GPS 5/1/1986 7/1/1986 9/1/1986 13 

50-1002 50 1002 Vermont GPS 6/1/1984 8/1/1984 11/1/1984 15 

53-1008 53 1008 Washington GPS 9/1/1978 11/1/1978 11/1/1978 21 
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Table B2. Pavement lane properties 

 

Section 

 

Lane Width 

(ft) 

Pavement 

Slope      (%) 

Initial IRI 

(m/km)1 

Thermal 

Conductivity   

(BTU/hr-ft-ºF) 

Heat Capacity 

(BTU/lb-ºF) 

Surface Short 

Wave 

Absorptivity 

01-1001 12 1.5 150 0.67 0.22 0.85 

01-1019 12 1.5 150 0.67 0.22 0.85 

01-4126 12 1.5 150 0.67 0.22 0.85 

02-1001 12 1.5 150 0.67 0.22 0.85 

02-1002 12 1.5 150 0.67 0.22 0.85 

04-0113 12 1.5 150 0.67 0.22 0.85 

04-0114 12 1.5 150 0.67 0.22 0.85 

04-1024 12 1.5 150 0.67 0.22 0.85 

09-1803 12 1.5 150 0.67 0.22 0.85 

12-3995 12 1.5 150 0.67 0.22 0.85 

12-3997 12 1.5 150 0.67 0.22 0.85 

12-4107 12 1.5 150 0.67 0.22 0.85 

20-1009 12 1.5 150 0.67 0.22 0.85 

25-1003 12 1.5 150 0.67 0.22 0.85 

26-1001 12 1.5 150 0.67 0.22 0.85 

27-1087 12 1.5 150 0.67 0.22 0.85 

29-1008 12 1.5 150 0.67 0.22 0.85 

34-1031 12 1.5 150 0.67 0.22 0.85 

35-0101 12 1.5 150 0.67 0.22 0.85 

35-1112 12 1.5 150 0.67 0.22 0.85 

37-1024 12 1.5 150 0.67 0.22 0.85 

37-1802 12 1.5 150 0.67 0.22 0.85 

40-4087 12 1.5 150 0.67 0.22 0.85 

40-4165 12 1.5 150 0.67 0.22 0.85 

42-1599 12 1.5 150 0.67 0.22 0.85 

45-1011 12 1.5 150 0.67 0.22 0.85 

47-3104 12 1.5 150 0.67 0.22 0.85 

48-1077 12 1.5 150 0.67 0.22 0.85 

48-1169 12 1.5 150 0.67 0.22 0.85 

48-1174 12 1.5 150 0.67 0.22 0.85 

48-3749 12 1.5 150 0.67 0.22 0.85 

48-9005 12 1.5 150 0.67 0.22 0.85 

50-1002 12 1.5 150 0.67 0.22 0.85 

53-1008 12 1.5 150 0.67 0.22 0.85 
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Table B3. Environmental / climatic properties 

 

Section 
Latitude North 

(degrees) 

Longitude West 

(degrees 
Elevation (ft) 

Groundwater 

Table Depth (ft) 

Source of 

Information 

01-1001 32.533 85.080 495 31 

NCHRP (2004) 

01-1019 31.353 88.032 61 12 

01-4126 34.179 86.875 760 30 

02-1001 60.650 149.492 1310 >20 
02-1002 60.759 149.239 839 10 
04-0113 35.392 114.255 3580 >20 

04-0114 35.392 114.255 3580 >20 

04-1024 35.279 113.131 5456 >20 

09-1803 41.395 72.027 165 5.9 

12-3995 26.501 80.078 19 9 

12-3997 30.087 81.706 21 10 

12-4107 27.393 80.459 26 16.8 

20-1009 37.998 98.747 1922 15.0 

25-1003 42.201 71.335 128 11 

26-1001 44.31 84.916 1154 19 

27-1087 44.807 93.228 1118 7.8 

29-1008 37.296 94.579 860 34 

34-1031 39.544 75.062 85 5 

35-0101 32.678 107.071 5117 >20 
35-1112 32.632 103.520 3760 >20 
37-1024 35.296 83.18 2125 >20 

37-1802 36.316 78.516 500 >20 

40-4087 34.638 99.288 1350 7.5 

40-4165 36.391 98.291 1319 8.7 

42-1599 41.433 76.713 1500 20 

45-1011 32.822 80.03 12 19 

47-3104 36.24 83.762 1230 >20 

48-1077 34.539 100.435 1835 10.9 

48-1169 32.196 94.803 430 8.0 

48-1174 27.789 97.873 109 >8.3 

48-3749 27.930 98.556 570 20.0 

48-9005 29.517 98.721 910 >20 

50-1002 44.120 73.180 283 4.2 

53-1008 47.558 117.394 2356 55 
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Table B4. Pavement structure 

 

Section 
No. of 

Layers 
Layer Number Layer Type1 

Representative 

Thickness (in) 

01-1001 5 

1 

2 

3 

4 

5 

AC 

AC 

GB 

GS 

SS 

1.6 

1.6 

6.2 

19.1 

- 

01-1019 6 

1 

2 

3 

4 

5 

6 

AC 

AC 

AC 

GB 

SS 

BR 

1.1 

2.6 

3 

5.5 

252 

- 

01-4126 5 

1 

2 

3 

4 

5 

AC 

AC 

GB 

SS 

BR 

1.4 

11.7 

18.4 

132 

- 

02-1001 3 

1 

2 

3 

AC 

GB 

SS 

3 

6.3 

- 

02-1002 4 

1 

2 

3 

4 

AC 

GB 

GS 

SS 

3.3 

6 

7.5 

- 

04-0113 3 

1 

2 

3 

AC 

GB 

SS 

4.5 

7.5 

04-0114 3 

1 

2 

3 

AC 

GB 

SS 

6.8 

12 

04-1024 3 

1 

2 

3 

AC 

GB 

SS 

10.8 

6.3 

09-1803 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

2.9 

4.3 

12 

- 

12-3995 4 

1 

2 

3 

4 

AC 

GB 

GS 

SS 

5 

12.8 

12 

- 

12-3997 4 

1 

2 

3 

4 

AC 

GB 

GS 

SS 

3.1 

11.6 

15 

- 

12-4107 3 

1 

2 

3 

AC 

GB 

SS 

2.7 

12 

- 

20-1009 3 

1 

2 

3 

AC 

AC 

SS 

2.4 

8.7 

25-1003 5 

1 

2 

3 

4 

5 

AC 

AC 

GB 

SS 

BR 

1.2 

5.4 

12.7 

41 

- 
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Table B4. Pavement structure (contd.) 

 

26-1001 3 

1 

2 

3 

AC 

GB 

SS 

2.2 

10.9 

- 

27-1087 2 
1 

2 

AC 

SS 

15.7 

- 

29-1008 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

1.8 

9.6 

4.4 

- 

34-1031 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

1.8 

5.5 

11 

- 

35-0101 3 

1 

2 

3 

AC 

GB 

SS 

7.2 

8.6 

- 

35-1112 3 

1 

2 

3 

AC 

GB 

SS 

6.3 

5 

- 

37-1024 3 

1 

2 

3 

AC 

GB 

SS 

4.8 

12 

- 

37-1802 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

2.2 

2.3 

8.2 

- 

40-4087 4 

1 

2 

3 

4 

AC 

ATB 

TS 

SS 

2.2 

7.9 

6 

40-4165 3 

1 

2 

3 

AC 

AC 

SS 

2.7 

5.4 

42-1599 5 

1 

2 

3 

4 

5 

AC 

AC 

GB 

SS 

BR 

3 

9.3 

12 

300 

- 

45-1011 3 

1 

2 

3 

AC 

GB 

SS 

3.2 

10.1 

- 

47-3104 4 

1 

2 

3 

4 

AC 

GB 

SS 

BR 

1.3 

8.7 

300 

- 

48-1077 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

1.4 

3.7 

10.4 

48-1169 4 

1 

2 

3 

4 

AC 

GB 

SS 

BR 

1.1 

11.3 

240 

48-1174 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

1.4 

3.3 

13.2 
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Table B4. Pavement structure (contd.) 

 

48-3749 4 

1 

2 

3 

4 

AC 

GB 

TS 

SS 

1.8 

8.1 

8.8 

48-9005 4 

1 

2 

3 

4 

AC 

GB 

SS 

BR 

1.15 

9.4 

300 

50-1002 4 

1 

2 

3 

4 

AC 

AC 

GB 

SS 

3 

5.5 

25.8 

- 

53-1008 4 

1 

2 

3 

4 

AC 

GB 

GS 

SS 

3.4 

3.1 

9.8 

- 

AC: Asphalt Concrete 

ATB: Asphalt Treated Base 

GB: Granular Base 

SS: Subgrade 

BR: Bedrock 
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Table B5. Aggregate gradation for asphalt mixtures 

 

Section 
Layer 

Number 

Layer 

Type1 

% Retained 

3/4" Sieve 

% Retained 

3/8" Sieve 

%Retained 

#4 Sieve 

% Passing 

#200 Sieve 

01-1001 
1 

2 

AC 

AC 

8 

5 

33 

35 

52 

54 

0.1 

7.8 

01-1019 

1 

2 

3 

AC 

AC 

AC 

0 

7 

11.5 

12 

30 

35 

36 

57.5 

52.5 

4 

4 

2.7 

01-4126 
1 

2 

AC 

AC 

0 

14 

21 

43.5 

43 

53 

5.8 

5.2 

02-1001 1 AC 0.5 28 51 9.3 

02-1002 1 AC 4 28.5 49.5 8.2 

04-0113 1 AC 1.8 21.5 39.8 6.3 

04-0114 1 AC 1.8 21.5 39.8 6.3 

04-1024 1 AC 5.0 33.0 54.0 7.1 

09-1803 
1 

2 

AC 

AC 

0 

21.5 

33 

45.5 

48 

56.5 

4.8 

5.4 

12-3995 1 AC 0 7.5 39 4.8 

12-3997 1 AC 0 7.5 35 4.1 

12-4107 1 AC 0 8 34 4.8 

20-1009 
1 

2 

AC 

AC 

0.0 

0.0 

16.5 

15.5 

34.5 

34.0 

8.0 

7.5 

25-1003 
1 

2 

AC 

AC 

0 

4 

16 

43.5 

44.5 

59.5 

5.7 

3.1 

26-1001 1 AC 0 22 43.5 6.9 

27-1087 1 AC 7.5 26 39.5 6.7 

29-1008 
1 

2 

AC 

AC 

0 

4 

10 

31.5 

46 

54 

6.2 

9.6 

34-1031 
1 

2 

AC 

AC 

0 

11 

3.5 

43.5 

37 

56.5 

4.2 

5.2 

35-0101 1 AC 2 23 43 5.5 

35-1112 1 AC 0 20 36.5 7.8 

37-1024 1 AC 5.5 38.5 53 5.2 

37-1802 
1 

2 

AC 

AC 

0 

5 

3 

34 

20 

49 

7.5 

5 

40-4087 
1 

2 

AC 

ATB 

0.0 

12.0 

15.0 

29.5 

34.0 

38.5 

7.3 

7.8 

40-4165 
1 

2 

AC 

AC 

0.0 

9.5 

5.9 

57.0 

27.5 

52.0 

7.2 

5.4 

42-1599 
1 

2 

AC 

AC 

0 

22 

1.5 

51 

37.5 

77 

6.6 

4.5 

45-1011 1 AC 1 36.5 57 6.7 

47-3104 1 AC 0 22 35 9.2 

48-1077 
1 

2 

AC 

AC 

0.0 

22.0 

3.0 

32.0 

46.0 

43.0 

4.0 

7.0 

48-1169 1 AC 0.0 0.0 38.0 4.0 

48-1174 
1 

2 

AC 

AC 

0.0 

17.5 

21.9 

31.5 

38.6 

45.5 

3.0 

7.5 

48-3749 1 AC 0.0 2.5 32.0 5.1 

48-9005 1 AC 0.0 7.0 34.0 4.0 

50-1002 
1 

2 

AC 

AC 

0.5 

25.5 

21 

47.5 

41.5 

63.5 

3.7 

2.9 

53-1008 1 AC 0 14 39 6.9 
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Table B6 Effective binder content 

 

Section 
Layer 

Number 

Layer 

Type1 
P

b
 (%) G

b
 G

mb
 G

mm
 G

sb
 G

se
 V

be
 (%) 

01-1001 
1 

2 

AC 

AC 

6.2 

4.5 

1.028 

1.028 

2.365 

2.36 

2.45 

2.523 

2.682 

2.67 

2.697 

2.709 

13.82 

9.13 

01-1019 

1 

2 

3 

AC 

AC 

AC 

5.8 

4 

3.85 

1.028 

1.028 

1.028 

- 

2.281 

2.191 

- 

2.493 

2.554 

2.59 

- 

2.95 

- 

2.65 

2.598 

11.6 

8.0 

7.94 

01-4126 
1 

2 

AC 

AC 

5.3 

3.4 

1.033 

1.033 

2.196 

2.345 

2.327 

2.523 

2.634 

2.666 

2.502 

2.658 

15.42 

7.98 

02-1001 1 AC 6.5 1.014 2.238 2.436 2.63 2.682 12.03 

02-1002 1 AC 6.35 1.014 2.396 2.461 2.722 2.724 14.94 

04-0113 1 AC 4.25 1.040 2.288 2.520 2.653 2.690 8.21 

04-0114 1 AC 4025 1.040 2.218 2.520 2.653 2.690 7.96 

04-1024 1 AC 4.20 1.012 2.304 2.589 2.704 2.778 7.38 

09-1803 
1 

2 

AC 

AC 

4.95 

3.55 

1.01 

1.01 

2.297 

2.3 

2.552 

2.527 

- 

- 

2.772 

2.675 

9.9 

7.1 

12-3995 1 AC 5.6 1.03 2.214 2.371 2.489 2.569 9.43 

12-3997 1 AC 6.8 1.03 2.071 2.305 2.44 2.533 10.76 

12-4107 1 AC 6.6 1.03 2.226 2.305 2.426 2.525 10.89 

20-1009 
1 

2 

AC 

AC 

4.50 

4.55 

1.018 

1.018 

2.328 

2.298 

2.430 

2.428 

2.600 

2.600 

2.599 

2.600 

10.31 

10.28 

25-1003 
1 

2 

AC 

AC 

6 

4.4 

1.026 

1.026 

2.544 

2.513 

2.585 

2.645 

2.85 

2.85 

2.862 

2.852 

14.52 

10.71 

26-1001 1 AC 5.1 1.024 2.391 2.447 2.69 2.644 13.38 

27-1087 1 AC 4.65 1.02 2.369 2.531 2.77 2.727 12.07 

29-1008 
1 

2 

AC 

AC 

4.15 

4.2 

1.017 

1.017 

2.449 

2.385 

2.484 

2.477 

2.635 

2.635 

2.649 

2.643 

9.51 

9.59 

34-1031 
1 

2 

AC 

AC 

5 

4.15 

1.025 

1.025 

2.452 

2.507 

2.57 

2.566 

2.785 

2.852 

2.791 

2.745 

11.79 

13.45 

35-0101 1 AC 4.8 1.001 2.205 2.39 2.53 2.57 9.29 

35-1112 1 AC 5.05 1.015 2.31 2.577 - 2.807 10.1 

37-1024 1 AC 5.1 1.01 2.288 2.515 2.821 2.736 14.02 

37-1802 
1 

2 

AC 

AC 

6.35 

4.8 

1.01 

1.01 

2.08 

2.215 

2.361 

2.467 

2.66 

2.66 

2.596 

2.66 

14.87 

10.53 

40-4087 
1 

2 

AC 

ATB 

4.75 

4.50 

0.995 

1.010 

2.391 

2.373 

2.496 

2.498 

2.710 

2.723 

2.698 

2.684 

11.77 

11.77 

40-4165 
1 

2 

AC 

AC 

4.45 

3.88 

1.029 

1.029 

2.262 

2.260 

2.483 

2.530 

- 

- 

2.658 

2.689 

8.90 

7.77 

42-1599 
1 

2 

AC 

AC 

7 

3.93 

1.024 

1.024 

2.246 

2.294 

2.552 

2.26 

2.739 

2.754 

2.875 

2.761 

11.75 

8.65 

45-1011 1 AC 4.4 1.032 2.391 2.488 2.717 2.66 11.99 

47-3104 1 AC 5.6 1.02 2.196 2.481 2.65 2.711 10.29 

48-1077 
1 

2 

AC 

AC 

4.8 

4.35 

0.985 

0.985 

2.249 

2.303 

2.443 

2.45 

- 

2.614 

2.64 

2.628 

9.6 

9.73 

48-1169 1 AC 5 1.028 - - - - 10 

48-1174 
1 

2 

AC 

AC 

5.3 

6.26 

1.01 

1.01 

- 

1.914 

- 

2.213 

- 

- 

- 

2.403 

10.6 

12.5 

48-3749 1 AC 6 1.028 2.121 2.266 2.402 2.454 10.62 

48-9005 1 AC 4.7 1.024 2.162 2.402 - 2.573 9.4 

50-1002 
1 

2 

AC 

AC 

5.95 

3.8 

1.01 

1.01 

2.338 

2.484 

2.456 

2.597 

2.664 

2.806 

2.701 

2.769 

12.65 

10.49 

53-1008 1 AC 5.8 1.01 2.389 2.506 2.745 2.757 13.37 
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Table B7. Original air voids and total unit weight 

 

Section 
Layer 

Number 

Layer 

Type 
MAAT (ºF) 

Original 

Viscosity 

(MPoises) 

Original Air 

Void (%) 

Total Unit 

Weight (pcf) 

01-1001 
1 

2 

AC 

AC 

64.91 

94.91 

1.36 

1.36 

8.92 

10.19 

147.26 

147.26 

01-1019 

1 

2 

3 

AC 

AC 

AC 

65.5 

65.54 

65.5 

1.89 

1.89 

1.89 

8 

8.51 

10.74 

150 

150 

142 

01-4126 
1 

2 

AC 

AC 

59.77 

59.77 

1.36 

1.36 

9.16 

11.23 

137.03 

146.33 

02-1001 1 AC 37.03 0.33 8.11 149 

02-1002 1 AC 37.4 0.22 7.3 149.48 

04-0113 1 AC - - 9.77 142.77 

04-0114 1 AC - - 9.77 138.4 

04-1024 1 AC 53.3 0.93 11 151 

09-1803 
1 

2 

AC 

AC 

50.5 

50.5 

2.28 

2.28 

9.96 

9 

149 

157 

12-3995 1 AC 75.06 1.36 10.36 138.16 

12-3997 1 AC 69.31 1.29 10.12 140 

12-4107 1 AC 73.42 1.36 7.73 138.87 

20-1009 
1 

2 

AC 

AC 

56.03 

56.03 

1.36 

1.36 

8.16 

10.17 

145.27 

143.4 

25-1003 
1 

2 

AC 

AC 

49.33 

49.33 

1.36 

1.36 

7.92 

11.44 

148.76 

146.32 

26-1001 1 AC 43.54 0.62 9.95 149.17 

27-1087 1 AC 45.4 1.33 10.39 147.83 

29-1008 
1 

2 

AC 

AC 

57.64 

57.64 

2.24 

2.24 

6 

6.41 

152.82 

148.79 

34-1031 
1 

2 

AC 

AC 

54.5 

54.5 

1.36 

1.36 

8.5 

8.07 

152.99 

156.46 

35-0101 1 AC - - 7.73 142.4 

35-1112 1 AC 60.84 1.09 10.37 150 

37-1024 1 AC 56.41 2.01 9 150 

37-1802 
1 

2 

AC 

AC 

58.2 

58.2 

1.06 

1.06 

11.92 

10.2 

141 

144 

40-4087 
1 

2 

AC 

ATB 

62.44 

62.44 

1.36 

1.36 

8.01 

9.36 

149.19 

148.1 

40-4165 
1 

2 

AC 

AC 

58.7 

58.7 

2.07 

2.07 

8.92 

10.69 

147 

147 

42-1599 
1 

2 

AC 

AC 

45.29 

45.29 

1.68 

1.68 

12 

11.34 

145 

163 

45-1011 1 AC 66.2 1.36 8.09 149.19 

47-3104 1 AC 56.18 2.8 11.48 143 

48-1077 
1 

2 

AC 

AC 

61.44 

61.44 

.68 

2.61 

7.93 

6 

149 

149 

48-1169 1 AC - 2.07 8 147 

48-1174 
1 

2 

AC 

AC 

- 

71.63 

0.8 

0.8 

9 

13.5 

147 

121 

48-3749 1 AC 71.78 0.76 10.44 132.35 

48-9005 1 AC - 0.63 10 139 

50-1002 
1 

2 

AC 

AC 

52.04 

52.04 

1.36 

1.36 

8.71 

11.02 

145.89 

154.98 

53-1008 1 AC 47.36 0.76 9.13 149.07 
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Table B8. Asphalt binder grade data (NCHRP 2004) 

 

Section 
Layer 

Number 

Layer 

Type 

Viscosity 

Grade 
Pen Grade Pen 77 ºF 

Visc 

140 ºF 

(Poises) 

Visc 275 ºF 

(cStokes) 

01-1001 
1 

2 

AC 

AC 

AC-20 

AC-20 
- 

79 

76 

1993 

2043 

369 

375 

01-1019 

1 

2 

3 

AC 

AC 

AC 

AC-20 

AC-20 

AC-20 

- 

75 

75 

75 

1997 

1997 

1997 

400 

400 

400 

01-4126 
1 

2 

AC 

AC 

AC-20 

AC-20 
- - - - 

02-1001 1 AC AC-5 - 163 436 172 

02-1002 1 AC AC-2.5 - 225 288 140 

04-0113 1 AC AC-30 - 36 9761 699.8 

04-0114 1 AC AC-30 - 36 9761 699.8 

04-1024 1 AC - Pen 85-100 103 944 - 

09-1803 
1 

2 

AC 

AC 
- 

Pen 60-70 

Pen 60-70 

69 

69 

2052 

2052 
- 

12-3995 1 AC AC-20 - - - - 

12-3997 1 AC - Pen 85-100 89 1690 - 

12-4107 1 AC AC-20 - - - - 

20-1009 
1 

2 

AC 

AC 

AC-20 

AC-20 
- - - - 

25-1003 
1 

2 

AC 

AC 

AC-20 

AC-20 
- - - - 

26-1001 1 AC - Pen 120-150 - - - 

27-1087 1 AC - Pen 85-100 - - - 

29-1008 
1 

2 

AC 

AC 
- 

Pen 60-70 

Pen 60-70 
- - - 

34-1031 
1 

2 

AC 

AC 

AC-20 

AC-20 
- - - - 

35-0101 1 AC AC-20 - 56 2793 472 

35-1112 1 AC - Pen 85-100 96 - - 

37-1024 1 AC AC-20 - 73 1788 414 

37-1802 
1 

2 

AC 

AC 
AC-20 

AC-20 
- 

97 

97 

2051 

2051 

683.4 

683.4 

40-4087 
1 

2 

AC 

ATB 
AC-203 

AC-20 
- - - - 

40-4165 
1 

2 

AC 

AC 
AC-20 

AC-20 
- 

72 

72 

2233 

2233 

465 

- 

42-1599 
1 

2 

AC 

AC 
AC-20 

AC-20 
- 

79 

79 

2037 

2037 

452 

452 

45-1011 1 AC AC-20 - - - - 

47-3104 1 AC AC-20 - 63 1977 - 

48-1077 
1 

2 

AC 

AC 
AC-20 

AC-20 
- 

118 

65 

1016 

2265 

590 

- 

48-1169 1 AC AC-20 - 72 1870 464 

48-1174 
1 

2 

AC 

AC 
AC-10 

AC-10 
- 

110 

110 

995 

995 

255 

255 

48-3749 1 AC AC-10 - - - - 

48-9005 1 AC AC-10 - 122 1107 280 

50-1002 
1 

2 

AC 

AC - 
Pen 85-100 

Pen 85-100 

92 

92 

1144 

1144 

308 

308 

53-1008 1 AC AC-10 - 83 30662 504 
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Table B9. Unbound materials data 

 

Section 
Layer 

Num 

Layer 

Type 

Dry Thermal 

Conductivity 

(BTU/hr-ft-

°F) 

Heat 

Capacity 

(BTU/lb-

°F) 

Liquid 

Limit 

(LL) 

Plastic 

Limit 

(PL) 

Plasticity 

Index   

(PI) 

% 

Passing 

#200 

Sieve 

% 

Passing 

#4 

Sieve 

D
60 

(mm) 

01-

1001 

3 

4 

5 

GB 

GS 

SS 

0.30 

0.27 

0.23 

0.17 

0.17 

0.17 

0 

0 

25 

0 

0 

18 

0 

0 

7 

9.7 

12.9 

24.1 

46.5 

63 

76 

8.37 

2.7 

0.9 

01-

1019 

4 

5 

6 

GB 

SS 

BR 

0.27 

0.23 

0.60 

0.17 

0.17 

0.20 

0 

17 

- 

0 

15 

- 

0 

2 

0 

14 

28 

0 

58 

98 

0 

5.05 

0.24 

1 

01-

4126 

3 

4 

5 

GB 

SS 

BR 

0.23 

0.23 

0.60 

0.17 

0.17 

0.20 

0 

10.5 

0 

0 

9.5 

0 

0 

1 

- 

14.3 

29.9 

0 

59 

92 

0 

4.84 

0.21 

1 

02-

1001 

2 

3 

GB 

SS 

0.3 

0.3 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

9 

11 

51 

50 

6.22 

7.67 

02-

1002 

2 

3 

4 

GB 

GS 

SS 

0.3 

0.3 

0.3 

0.17 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7 

3.9 

7.6 

50 

30 

46 

6.63 

25.44 

9.96 

04-

0113 

2 

3 

GB 

SS 

0.30 

0.27 

0.17 

0.17 

21 

0 

21 

0 

0 

0 

10.0 

9.0 

57.0 

77.0 

5.61 

2.25 

04-

0114 

2 

3 

GB 

SS 

0.30 

0.23 

0.17 

0.17 

21 

24 

21 

17 

0 

7 

10.0 

18.0 

57.0 

64.05 

5.61 

3.94 

04-

1024 

2 

3 

GB 

SS 

0.22 

0.22 

0.17 

0.17 

28 

- 

12 

- 

16 

22 

11.0 

30.0 

34.0 

72.0 

14.30 

1.15 

09-

1803 

3 

4 

GB 

SS 

0.30 

0.23 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

8 

12.6 

56 

90 

5.75 

0.48 

12-

3995 

2 

3 

4 

GB 

GS 

SS 

0.30 

0.30 

0.30 

0.17 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7.6 

6.4 

1.8 

55.5 

86.5 

99.5 

4.86 

0.4 

0.27 

12-

3997 

2 

3 

4 

GB 

GS 

SS 

0.27 

0.23 

0.3 

0.17 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

0 

0 

0 

21 

12 

9 

70 

87 

99 

1.82 

0.13 

0.15 

12-

4107 

2 

3 

GB 

SS 

0.27 

0..27 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

8.8 

11.4 

64.5 

99.0 

2.50 

0.29 

20-

1009 
3 SS 0.27 0.17 21 17.5 3.5 30.7 100.0 0.22 

25-

1003 

3 

4 

5 

GB 

SS 

BR 

0.27 

0.27 

0.6 

0.17 

0.17 

0.2 

0 

0 

- 

0 

0 

- 

0 

0 

- 

8.6 

20.5 

0 

72.5 

68 

0 

2.04 

2.14 

1 

26-

1001 

2 

3 

GB 

SS 

0.27 

0.27 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

6.3 

4 

58.5 

98 

5 

0.34 

27-

1087 
2 SS 0.27 0.17 0 0 0 26.4 95.5 0.26 

29-

1008 

3 

4 

GB 

SS 

0.27 

0.27 

0.17 

0.17 

0 

27 

0 

16 

0 

11 

14.4 

37.8 

61 

67 

4.1 

1.2 

34-

1031 

3 

4 

GB 

SS 

0.27 

0.27 

0.17 

0.17 

25 

0 

19 

0 

6 

0 

9.3 

6.9 

75 

92 

1.8 

0.73 

35-

0101 

2 

3 

GB 

SS 

0.3 

0.18 

0.17 

0.17 

0 

40 

1 

18 

0 

27 

5 

69 

55 

93 

5.1 

0.07 

35-

1112 

2 

3 

GB 

SS 

0.27 

0.3 

0.17 

0.17 

23.5 

0 

18 

0 

5.5 

0 

17 

3 

70 

100 

1.96 

0.17 

37-

1024 

2 

3 

GB 

SS 

0.23 

0.22 

0.17 

0.17 

0 

38 

0 

26 

0 

12 

27 

35 

48 

95 

9.88 

0.27 

37-

1802 

3 

4 

GB 

SS 

0.3 

0.12 

0.17 

0.17 

0 

44.5 

0 

28 

0 

16.5 

10 

57 

52 

92 

7.24 

0.12 
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Table B9. Unbound materials data (Contd.) 

 
40-4087 4 SS 0.12 0.17 44 23 21 88.6 100.0 0.07 

40-4165 3 SS 0.23 0.17 0 0 0 29.0 100.0 0.18 

42-1599 
3 
4 

5 

GB 
SS 

BR 

0.3 
0.22 

0.60 

0.17 
0.17 

0.2 

16 
26.5 

- 

15 
20.5 

- 

1 
6 

- 

12 
48 

0 

38 
67 

0 

8.63 
1.50 

1 

45-1011 
2 

3 

GB 

SS 

0.27 

0.23 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

21.3 

16.3 

67 

98 

2.5 

0.14 

47-3104 

2 

3 

4 

GB 

SS 

BR 

0.27 

0.22 

0.6 

0.17 

0.17 

0.2 

0 

30.5 

- 

0 

20.5 

- 

0 

10 

- 

16 

58 

0 

48 

86 

0 

8.45 

0.09 

1 

48-1077 
3 
4 

GB 
SS 

0.30 
0.22 

0.17 
0.17 

0 
0 

0 
0 

0 
0 

8.0 
63.0 

45.0 
96.0 

10.05 
0.07 

48-1169 

2 

3 
4 

GB 

SS 
BR 

0.23 

0.30 
0.60 

0.17 

0.17 
0.20 

0 

0 
- 

0 

0 
- 

0 

0 
- 

27.0 

3.0 
0.0 

83.0 

100.0 
0.0 

0.39 

0.20 
1.0 

48-1174 
3 

4 

GB 

SS 

0.30 

0.12 

0.17 

0.17 

0 

55 

0 

21.5 

0 

33.5 

14.0 

64.0 

59.0 

100.0 

4.74 

0.07 

48-3749 
2 
3 

4 

GB 
TS 

SS 

0.27 
0.12 

0.12 

0.17 
0.17 

0.17 

0 
40.7 

42 

0 
20.5 

18 

0 
20.2 

24 

17.8 
49.0 

49.0 

78.0 
99.0 

99.0 

1.10 
0.11 

0.11 

48-9005 

2 

3 
4 

GB 

SS 
BR 

0.22 

0.12 
0.60 

0.17 

0.17 
0.20 

25 

57.5 
- 

16 

26.5 
- 

9 

31 
- 

42.0 

64.0 
0.0 

74.0 

80.0 
0.0 

1.75 

0.07 
1.00 

50-1002 
3 

4 

GB 

SS 

0.3 

0.3 

0.17 

0.17 

0 

0 

0 

0 

0 

0 

3.3 

7.0 

18 

48 

23.54 

7.74 

53-1008 

2 

3 

4 

GB 

GS 

SS 

0.3 

0.3 

0.3 

0.17 

0.17 

0.17 

0 

0 

22 

0 

0 

17 

0 

0 

5 

3.6 

8.6 

8.6 

50.5 

53.5 

43.5 

6.04 

5.54 

9.89 
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Table B10. Unbound materials data 

 

Section 

Max. Dry 

Unit 

Weight 

(pcf) 

Specific 

Gravity 

AASHTO 

Class 

Ext. Resilient 

Modulus (psi) 

01-1001 

139 

137.5 

121 

2 

2.65 

2.7 

A-1-a 

A-1-b 

A-2-4 

40000 

38000 

32000 

01-1019 - 

2.65 

2.68 

2.6 

A-1-b 

A-2-4 

- 

38000 

32000 

750000 

01-4126 

134 

122 

- 

2.65 

2.68 

2.6 

A-2-4 

A-2-4 

- 

32000 

32000 

750000 

02-1001 - 
2.65 

2.65 

A-1-a 

A-1-a 

40000 

40000 

02-1002 

142 

146 

141 

2.65 

2.65 

2.65 

A-1-a 

A-1-a 

A-1-a 

40000 

40000 

40000 

04-0113 - 
2.65 

2.65 

A-1-b 

A-1-a 

40000 

32000 

04-0114 - 
2.65 

2.69 

A-2-4 

A-1-a 

40000 

32000 

04-1024 - 
2.7 

2.72 

A-1-b 

A-26 

25500 

25500 

09-1803 - 
2.65 

2.65 

A-1-a 

A-2-4 

40000 

32000 

12-3995 

130 

112 

107 

2.65 

2.65 

2.65 

A-1-a 

A-3 

A-3 

40000 

29000 

29000 

12-3997 - 

2.65 

2.65 

2.65 

A-1-b 

A-2-4 

A-3 

38000 

32000 

29000 

12-4107 
129 

118.5 

2.65 

2.65 

A-1-b 

A-2-4 

38000 

32000 

20-1009 119.5 2.69 A-2-4 32000 

25-1003 

133.5 

128 

- 

2.65 

2.65 

2.6 

A-1-a 

A-1-b 

- 

40000 

38000 

750000 

26-1001 
138.5 

111 

2.65 

2.65 

A-1-a 

A-3 

40000 

29000 

27-1087 129.5 2.65 A-2-4 32000 

29-1008 
142.5 

124 

2.65 

2.71 

A-1-a 

A-2-6 

40000 

17000 

34-1031 
130.5 

124 

2.68 

2.65 

A-2-4 

A-1-b 

32000 

38000 

35-0101 - 
2.65 

2.74 

A-2-6 

A-1-a 

40000 

17000 

35-1112 - 
2.69 

2.65 

A-1-b 

A-3 

38000 

29000 

37-1024 - 
2.65 

2.71 

A-2-4 

A-2-6 

32000 

25500 

37-1802 - 
2.65 

2.73 

A-1-a 

A-7-6 

40000 

8000 
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Table B10. Unbound materials data (Contd.) 
 

40-4087 108 2.75 A-7-6 8000 

40-4165 - 2.65 A-2-4 32000 

42-1599 - 

2.67 

2.71 

2.6 

A-1-a 

A-4 

- 

40000 

24000 

750000 

45-1011 
127.5 

110 

2.65 

2.65 

A-1-b 

A-2-4 

38000 

32000 

47-3104 - 

2.65 

2.72 

2.6 

A-1-b 

A-4 

- 

38000 

24000 

750000 

48-1077 - 
2.65 

2.65 

A-1-a 

A-4 

40000 

24000 

48-1169 - 

2.65 

2.65 

2.6 

A-2-4 

A-3 

- 

32000 

29000 

750000 

48-1174 

133.5 

103 

100 

2.65 

2.74 

2.75 

A-1-b 

A-7-6 

A-7-6 

38000 

8000 

8000 

48-3749 

109.5 

106.5 

106.5 

2.65 

2.73 

2.73 

A-1-b 

A-7-6 

A-7-6 

38000 

8000 

8000 

48-9005 - 

2.71 

2.75 

2.6 

A-4 

A-7-6 

- 

24000 

8000 

750000 

50-1002 - 
2.65 

2.65 

A-1-a 

A-1-a 

40000 

40000 

53-1008 

146 

149.5 

125 

2.65 

2.65 

2.63 

A-1-a 

A-1-a 

A-1-a 

40000 

40000 

40000 
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APPENDIX C 

MEASURED AND PREDICTED ALLIGAOTR CRACKING DATA 

 

The measured, the AASHTOWare Predicted and the AASHTOWare Predicted alligator 

cracking data including the thermal fatigue are presented in Table C1. 

 

Table C1. Alligator cracking data 

Section Date 

Measured 

Cracking 

(%) 

AASHTOWare 

Predicted Cracking 

(%) 

Including thermal fatigue 

with AASHTOWare 

Predicted Cracking (%) 

48-1169 2/26/1990 0 2.40 0.0137 

 3/4/1990 0 2.43 0.0138 

 9/18/1990 0 2.59 0.0151 

 1/16/1991 0 2.74 0.0160 

 3/7/1991 0 2.81 0.0164 

 6/25/1991 0 2.89 0.0171 

 1/30/1992 0 3.40 0.0192 

 2/27/1993 0 4.53 0.0234 

 8/11/1993 0 4.96 0.0251 

 3/3/1995 0 7.39 0.0327 

 7/19/1995 0 7.94 0.0347 

 7/15/1997 0 11.93 0.0483 

 5/27/1999 1.42 12.83 0.0579 

48-9005 2/17/1993 2.0983 2.34 0.0022 

 4/5/1993 2.4217 3.95 0.0034 

 2/20/1995 3.6767 5.49 0.0045 

 2/16/1996 4.0717 13.04 0.0104 

 7/9/1996 5.0400 13.62 0.0112 

 7/2/1997 0.0000 17.43 0.0277 

 7/10/1998 7.7850 17.83 0.0404 

48-1174 4/10/1991 0.2683 2.12 4.7366 

 3/26/1992 0.0000 2.21 5.0623 

 2/18/1993 0.6267 2.31 5.3792 

 3/31/1993 1.5950 2.49 5.5074 

 2/21/1995 2.0617 2.97 6.1972 

 3/21/1995 3.8733 2.99 6.2253 

 1/12/1996 6.4383 3.32 6.5268 

 4/22/1997 14.7450 3.89 6.9844 

 3/20/1998 0.2683 2.12 4.7366 
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Table C1. Alligator cracking data (contd.) 

Section Date 

Measured 

Cracking 

(%) 

AASHTOWare 

Predicted Cracking 

(%) 

Including thermal fatigue 

with AASHTOWare 

Predicted Cracking (%) 

48-3749 4/9/1991 0 7.94 0.2162 

 8/29/1991 0 7.94 0.2192 

 3/16/1992 0 9.06 0.2332 

 2/16/1993 0 9.72 0.2426 

 2/21/1993 0 10.80 0.2614 

 3/31/1993 0 12.67 0.2959 

 2/21/1995 3.8033 14.88 0.3552 

 3/21/1995 5.9200 14.88 0.3555 

 3/28/1997 7.9700 15.07 0.3625 

04-0113 2/21/1995 0 1.75 1.5988 

 3/30/1995 0 1.77 1.7143 

 8/17/1995 0 1.92 2.2680 

 11/8/1995 0 2.00 2.5787 

 2/7/1996 0 2.04 2.8633 

 4/3/1996 0 2.10 3.0722 

 7/10/1996 0 2.29 3.4806 

 8/14/1996 0 2.38 3.6266 

 1/8/1998 0 4.60 5.5878 

 1/13/1998 0 4.60 5.6024 

 4/20/1998 0.1617 5.16 5.9482 

 6/11/1998 0.3233 6.25 6.2038 

 10/22/1998 0.4850 8.56 6.7736 

 2/16/1999 1.0950 9.35 7.1730 

 1/13/2000 1.5617 12.09 8.3406 

04-0114 2/15/1995 0 1.60 1.3565 

 3/30/1995 0 1.60 1.4767 

 8/17/1995 0 1.67 1.9303 

 11/7/1995 0 1.70 2.1881 

 2/6/1996 0 1.71 2.4525 

 4/2/1996 0 1.72 2.6280 

 7/9/1996 0 1.78 2.9673 

 8/13/1996 0 1.80 3.0898 

 1/7/1998 0 1.97 4.7804 

 4/21/1998 0.7717 1.98 5.1127 

 6/12/1998 1.6333 2.03 5.3097 

 10/23/1998 3.5350 2.10 5.7823 

 2/12/1999 7.9117 2.11 6.1385 

 1/13/2000 9.1317 2.27 7.2967 
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Table C1. Alligator cracking data (contd.) 

Section Date 

Measured 

Cracking 

(%) 

AASHTOWare 

Predicted Cracking 

(%) 

Including thermal fatigue 

with AASHTOWare 

Predicted Cracking (%) 

04-0115 2/15/1995 0.0000 1.45 4.1355 

 3/30/1995 0.4133 1.45 4.1634 

 1/7/1998 0.4133 1.45 4.8198 

 2/11/1999 0.4133 1.45 5.0776 

 1/12/2000 0.4133 1.45 5.2927 

04-1007 9/20/1991 0.6283 1.55 5.4524 

 2/2/1993 1.6333 1.63 6.1764 

 9/16/1994 5.0067 1.75 7.0674 

04-1024 11/3/1989 0 2.48 3.1240 

 8/26/1990 0 2.61 3.6246 

 10/29/1992 0 3.08 4.2913 

 3/28/1995 0 3.86 4.9916 

 7/17/1995 0 4.09 5.0986 

 8/22/1995 0.1967 4.21 5.1418 

 11/9/1995 0.1617 4.39 5.2156 

 4/4/1996 0.2683 4.48 5.3090 

 6/13/1996 1.9733 4.68 5.3781 

 8/15/1996 2.6917 5.06 5.4675 

 4/22/1998 15.4467 6.54 5.9660 

 6/15/1998 15.4467 6.94 6.0342 

 10/26/1998 15.7150 7.89 6.1914 

40-4087 1/17/1990 0 1.45 0.8902 

 10/13/1991 0 1.45 1.7160 

 10/15/1991 0 1.45 1.7189 

 11/6/1992 0 1.45 2.3187 

 2/8/1993 0 1.45 2.4737 

 11/3/1994 0 1.45 3.6062 

 2/9/1995 0.5383 1.45 3.7945 

 6/18/1997 5.0950 1.45 5.5751 

40-4165 10/13/1994 0.0533 1.63 4.1391 

 4/18/1995 0.1067 1.63 4.3413 

 6/20/1995 0.1600 1.64 4.4149 

 4/22/1996 0 1.66 4.7615 

 11/8/1996 0 1.68 4.9990 

 5/23/1997 0.6983 1.68 5.2123 
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Table C1. Alligator cracking data (contd.) 

Section Date 

Measured 

Cracking 

(%) 

AASHTOWare 

Predicted Cracking 

(%) 

Including thermal fatigue 

with AASHTOWare 

Predicted Cracking (%) 

01-1001 9/2/1991 0.1250 1.74 2.0669 

 4/2/1992 0.3400 1.77 2.2056 

 7/24/1992 0.5550 1.79 2.2916 

 1/15/1993 1.3083 1.83 2.4225 

01-1019 5/15/1989 0.0000 1.46 3.7102 

 4/16/1990 0.0000 1.47 5.0865 

 1/15/1991 0.0000 1.47 6.2062 

 6/19/1991 13.3300 1.47 6.8358 

 3/31/1992 13.3300 1.48 7.9890 

 3/29/1993 18.5317 1.48 9.4351 

01-4126 6/5/1989 0 1.45 1.8574 

 3/3/1991 0 1.45 4.7002 

02-1001 5/31/1990 0 1.45 0.1941 

 8/21/1991 0 1.45 0.2430 

 8/26/1993 0 1.45 0.3294 

 6/15/1995 0 1.45 0.4123 

 8/22/1997 0 1.45 0.5198 

 8/26/1998 0.0533 1.45 0.5715 

 6/24/1999 2.7983 1.45 0.6147 

02-1002 5/30/1990 0 1.45 0.2007 

 8/22/1991 0.1033 1.45 0.2606 

 8/25/1993 0.1033 1.45 0.3649 

 6/14/1995 0.1033 1.45 0.4646 

 8/21/1997 0.1033 1.45 0.5940 

 5/14/1998 0.1033 1.45 0.6378 

47-3104 8/23/1989 1.2383 1.46 0.0015 

 11/1/1989 1.2383 1.46 0.0017 

 5/6/1991 2.1000 1.62 0.0050 

 8/13/1991 9.6167 1.66 0.0056 

50-1002 8/17/1994 5.0950 1.45 10.9953 

 4/27/1995 11.5350 1.45 11.7344 

 10/17/1996 13.1317 1.45 14.3218 

 5/15/1997 11.9483 1.45 14.9550 

 10/23/1997 17.9933 1.45 16.2508 

 6/9/1998 25.1517 1.45 16.6811 
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Table C1. Alligator cracking data (contd.) 

Section Date 

Measured 

Cracking 

(%) 

AASHTOWare 

Predicted Cracking 

(%) 

Including thermal fatigue 

with AASHTOWare 

Predicted Cracking (%) 

35-0101 5/1/1997 0 1.45 1.5068 

 3/19/1999 0 1.45 3.5767 

 10/8/1999 0 1.46 4.1962 

35-1112 12/5/1989 0 1.49 4.0905 

 1/22/1991 0 1.50 4.9781 

 3/27/1991 0 1.51 5.1145 

09-1803 7/31/1989 0 1.45 1.1658 

 9/5/1990 0 1.45 1.5059 

 8/22/1991 0 1.45 1.8068 

 9/30/1992 0.1250 1.45 2.1568 

 5/12/1994 3.6417 1.45 2.6696 

 5/25/1995 7.6417 1.46 3.0009 

 10/8/1996 10.4050 1.46 3.4428 

37-1802 3/10/1991 0.5917 1.70 3.7295 

 10/10/1992 2.0267 1.83 5.0177 

26-1001 7/19/1988 0 1.45 5.5620 

 9/7/1989 0 1.45 6.1620 

 7/21/1990 0 1.45 6.6324 

 7/16/1991 0.5567 1.45 7.1790 

 9/27/1991 1.0233 1.45 7.2934 

 9/1/1992 1.6867 1.45 7.8228 

 6/7/1993 3.0317 1.45 8.2640 

 6/9/1993 4.3050 1.45 8.2672 

 5/12/1995 5.2733 1.45 9.4047 

 7/5/1996 6.6550 1.45 10.1023 

 8/5/1999 7.4450 1.45 12.0187 

12-3997 8/15/1990 0.7717 1.57 8.9334 

 10/4/1991 1.3450 1.59 9.6055 

 3/8/1993 19.0883 1.60 10.4486 

34-1031 4/6/1992 4.8617 1.49 2.6772 

25-1003 8/4/1989 0 1.45 4.7871 

 9/6/1990 0 1.45 5.1532 

 8/23/1991 0.4667 1.46 5.4757 

 9/30/1992 2.9417 1.46 5.8469 

 10/27/1995 4.9517 1.47 6.8739 

53-1008 7/4/1991 0.5567 1.51 6.3723 

 6/28/1993 1.4717 1.53 7.6000 

 6/16/1994 17.9400 1.54 8.2102 
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Table C1. Alligator cracking data (contd.) 

Section Date 

Measured 

Cracking 

(%) 

AASHTOWare 

Predicted Cracking 

(%) 

Including thermal fatigue 

with AASHTOWare 

Predicted Cracking (%) 

45-1011 3/18/1992 0 6.18 2.4092 

 10/24/1992 0 9.11 2.7388 

27-1087 10/25/1991 0 1.45 1.8712 

 5/11/1993 0 1.45 2.1202 

 10/5/1994 0.0533 1.45 2.3465 

 6/25/1996 0.2683 1.45 2.6245 

 8/3/1999 2.1167 1.45 3.1255 

 9/4/2000 2.6550 1.45 3.3011 

29-1008 2/16/1992 0.6817 1.62 0.6020 

 3/5/1993 3.3733 1.65 0.7174 

 3/26/1993 6.0650 1.65 0.7218 

 3/29/1993 6.0650 1.65 0.7225 

 4/17/1996 6.0650 1.75 1.0713 

 2/1/2000 6.0650 1.92 1.5487 

 2/16/1992 0.0000 1.45 7.5114 

42-1599 8/29/1989 1.0950 1.45 1.6205 

 9/27/1990 0 1.45 2.4983 

 3/1/1993 0 1.45 4.4710 

 9/1/1994 0 1.45 5.6798 

 6/21/1995 0 1.45 6.3182 

 7/19/1996 0 1.45 7.1692 

 3/26/1998 0.1433 1.45 8.4778 

37-1024 11/3/1989 2.7800 1.49 5.7470 

12-4107 12/6/1989 0 1.45 0.7664 

 2/5/1991 0 1.45 0.9838 

 7/18/1991 0 1.45 1.0714 

12-3995 4/15/1992 0 2.11 2.8387 

 3/9/1994 1.4350 2.29 3.2483 

 1/17/1996 2.4033 2.56 3.6699 

 1/21/1996 4.4300 2.56 3.6715 
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APPENDIX D 

DETERMINING THERMAL PROPERTIES OF ASPHALT CONCRETE 

 

Several thermal properties such as thermal conductivity (k) and specific heat capacity (C)  

are needed in the AASHTOWare Pavement ME Design Software as inputs to predict 

pavement distresses such as thermal cracking and aging. The determination of the 

parameters, k and C are discussed herein. In addition, a Finite Element Model (FEM) was 

also developed to determine the temperature variation at any depth of AC which is 

described. It is mentionable that the FEM method was not used in the study to predict the 

temperature fluctuation at the bottom of AC; rather, the regression models discussed in 

the main body were used. 

 

DETERMINATION OF C IN THE LABORATORY  

 

Laboratory Testing 

A foam ice box was used as a calorimeter as shown in Fig. D1. This box was considered 

to be thermally insulator material. To confirm, hot water of 50.5 °C was kept inside the 

box and the temperature was monitored for 3 hours with a thermometer inserted into the 

box. The decrease in temperature was measured to be 1.9 °C per hour (≈ 0.1 °C per three 

minutes) in first hour and 1.7 and 1.6 °C for the second and the third hour respectively. 

Then, hot water of 50.5 °C was taken and the mass of water was measured carefully. A 

cylindrical sample was prepared and cut into small pieces in the laboratory. The same 

mixture of the instrumented section was used to prepare the sample. Details of sample 
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preparation are described in next section. The weight of these cut samples were measured 

and the body temperature was recorded. Prior to measuring the temperature, the samples 

were conditioned in room temperature for at least 24 hours. Then sample was then 

immersed in water very quickly and the bowl was covered. One thermometer was 

inserted into the box to measure the sample-water temperature. Then, the decrease in 

temperature was monitored to determine the stable temperature. 

 

 

Figure D1. Test setup for determining the C of the AC 

 

Calculation for determining the C 

The test was stopped when the temperature reached to a stable condition. It took 42 

minutes to reach to the stable position. Even though, the test was continued up to 1 hour 

to ensure the accuracy of reading. The heat loss of 1.9 °C was compensated for 

Thermometer 

Sample 

Foam box 
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calculating the final stable temperature. Then, using Eq. D1 the C value of the AC was 

determined. 
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where mw, Cw and θw are the mass, specific heat capacity and initial temperature of water, 

mAC, θAC are the mass and initial temperature of the AC respectively and θf  is the final 

temperature of the mix. In this test, 2.525 kg of AC of 20.6 °C was mixed with the 4.019 

kg of water of 50.1 °C. The final temperature was 44.8 °C after applying the temperature 

correction. The laboratory C of the AC is measured to be 1464 J/(kgK).  

 

DETERMINATION OF THE k  

The k value was determined through FEM analysis using laboratory data. Thermal 

gradient was applied in a cylindrical sample in the laboratory. Increase in temperature 

with time at the colder end of the sample was recorded. Based on the laboratory 

determined C value a FEM model was developed for the cylindrical sample and k value is 

assigned on trial and error basis. The increase in temperature at the colder end of the 

model sample was compared with the increase in temperature of the laboratory sample to 

determine the optimum  k value.  Using k and C values in FEM, field AC temperatures at 

90 mm depth were predicted from morning to afternoon and compared with measured 

values. 
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Sample Preparation 

Some plant mix was collected from the instrumentation construction site in corporation 

with the NMDOT. The mix was compacted to prepare a 150 mm diameter and 170 mm 

height cylindrical sample using a gyratory compactor at 150 °C. Prior to the compaction a 

steel pin was inserted up to 70 mm depth at the top of it. The pin was carefully pulled out 

just after the compaction. No pin was inserted in the sample which was prepared to 

determine the C value. The sample was then cored into a 100 mm diameter sample using 

laboratory coring tool and the two edges remained uncut to avoid the cut edge effect.  

The air void and density of both samples were measured to be 4.3%. Prior to the testing, 

the sample was oven dried for 24 hours at 40 °C.   

 

Laboratory Testing  

The sample was covered with felt, an insulating material, as shown in Fig. D2. This 

insures no loss and gain of heat through the curved surfaces. Such a boundary condition 

represents the field condition, one-dimensional vertical downward flow. One end of the 

sample was immersed in hot water in a constant water temperature bath. The other end of 

the beam was kept open for heat convection to air to simulate heat flow or transmission 

of AC layer to the base layer in a pavement. Specifically, the top surface of the beam was 

kept open for heat convection to the laboratory air.  

 



154 
 

 

Fig. D2. Testing the sample for measuring temperature increase at the colder end 

 

The temperature of the hot water was stabilized before placing the specimen. A 

thermometer was inserted replacing the steel pin. The temperature of the hot water was 

maintained 43.1 °C and the laboratory air temperature was 22.5 °C, a total temperature 

differential of 20.6 °C. The increase in temperature at the colder end of the beam was 

recorded every 15 minutes. This test data was used to compare with FEM output for 

determining the  k value of the asphalt concrete.  
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Determination of  k using FEM 

The C value was determined in the laboratory and used as a input in FEM. The k value 

was assigned as trial and error basis and the laboratory measured temperature was 

matched with FEM results to obtain the optimum k. A three-dimensional FEM was 

developed in commercial finite element software, ANSYS. In the FEM analysis, the one 

dimensional transient heat transfer analysis is conducted. This method uses the basic 

transient heat transfer Fourier Equation (Eq. D2). 
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where: k, C and ρ are the thermal conductivity, specific heat capacity and density of the 

AC respectively.  T, t and x denote temperature, time and the length of the sample 

respectively. Carslaw and Jaeger (1959) derived the analytical solution of this partial 

equation and is given as in Eq. D3: 
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where n is the number steps required for the convergence, i.e., 1,  2, 3 and so on, σ is the 

thermal diffusivity (m
2
/s). A solid cylinder of 100 mm diameter and 90 mm height was 

modeled. The laboratory sample height was 170 mm but the thermometer was inserted at 

90 mm depth. Therefore, the effective length of the sample was 90 mm. A linear thermal 

property was assumed for asphalt concrete. A solid 87 element, readily available in 
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ANSYS, was used to idealize an AC element. The solid 70 and solid 90 elements were 

also evaluated and observed to be consistent, though SOLID 87 is finally used in this 

study. No heat convection was assumed at the curved surface. A temperature of 20.6 °C 

was applied on one edge and the other edge was kept at 0 °C to simulate the laboratory 

condition.  

 

Several trails values of k were assigned in the FEM model. The optimum solution was 

obtained for the k value of 2.11 W/(mK). At the colder end, the increase in temperature 

was 1.39 °C after 30 minutes for maintaining 20.6 °C temperature at the hot end. 

Variations of the temperature for FEM and laboratory testing are shown in Fig. D3. The 

initial part of the plot has the exact match and with time it deviates a little. However, 

these k and C values were validated with the field measured data. 

 

 

Fig. D3. Variations of temperature with time 
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VALIDATION OF LABORATORY C AND FEM k VALUES 

Using the determined k and C values in FEM model the temperature at 90 mm depth of 

the AC was predicted. The predicted value was compared with measured temperature 

from morning to afternoon on October 16, 2012. The surface temperature was the 

minimum around 8:15 am and maximum around 3:15 pm; whereas these values were at 

9:15 am and 4:45 pm respectively at 90 mm depth. The half an hourly surface 

temperature on the pavement was assumed constant. The increase in surface temperature 

form 8:15 am to 8:45 am was 0.56 °C as shown in Table D1.  

 

This increase in temperature heated up the pavement material up to 8:45 am (30 minutes). 

Similarly, the increased in temperature from 8:45 am to 9:15 am (i.e. 1.31 °C) heated up 

the pavement up to 9:15 am. Similarly, all the half an hourly increase in temperature with 

reference to the 8:15 am temperature (minimum temperature) were calculated and 

durations of heating were considered 30 minutes.  

 

When the temperature started to decrease after reaching the peak at 3:15 pm the increase 

(negative values) in temperature was calculated with reference to the temperature at 3:15 

pm. This increase in temperature was assigned at one end of the modeled sample and the 

other end was maintained at 0 °C. The corresponding temperature increase at the colder 

end after 30 minutes was calculated and summed up with the minimum temperature at 90 

mm depth (16.83 °C). The cumulative sum of the produced temperature was considered 

the predicted temperature at 90 mm depth. The predicted and the measured temperature at 

90 mm depth are shown in Fig. D4. A promising agreement between these two values 
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was observed. Therefore, conclusion can be drawn that the simplified numerical analysis 

and the practice ready, low cost laboratory procedure measure the thermal properties 

accurately. 

Table D1. Measured temperature at 90 mm depth on October 16, 2012 

Time Surface Temperature (°C) Temperature Increase (°C) 

08:15 am 12.92 0.00 

08:45 am 13.48 0.56 

09:15 am 14.23 1.31 

09:45 am 16.66 3.73 

10:15 am 19.51 6.58 

10:45 am 21.44 8.52 

11:15 am 23.26 10.33 

11:45 pm 25.99 13.07 

12:15 pm 28.50 15.58 

12:45 pm 28.82 15.90 

01:15 pm 30.44 17.52 

01:45 pm 32.00 19.08 

02:15 pm 33.28 20.36 

02:45 pm 34.11 21.19 

03:15 pm 34.50 21.58 

03:45 pm 34.28 -0.22 

04:15 pm 33.83 -0.67 

04:45 pm 33.06 -1.44 

 

 

Fig. D4. Predicted and measured temperatures at 90 mm depth 
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CONCLUSIONS 

This study determines thermal properties of AC using a single mixture. The results are 

presented in the study of Islam and Tarefder (2014d). Based on the current study the 

following conclusions can be made: 

 The C value of the AC mixture used in the study is 1464 J/(kgK). 

 This study also determines k value from FEM analysis using cylindrical sample 

using the laboratory determined C value; the resulted k value is 2.11 W/(mK).  
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