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ABSTRACT 

The characterization of cable damping is important for the stability and 

performance of structures deployed in space using cables. However, literature available 

for the analysis of carbon fiber cable damping and its effect on dynamical behavior of 

deployable space structure is scarce. The objective of this work is to examine the 

variation of cable damping involving different cable properties and the ambient 

environments through several carefully instrumented tests. An analytical model to predict 

damping based on internal forces and variable cable geometry is developed and compared 

with those of tests.  

An experimental set-up for the measurement of cable damping is described. 

Cables in different lengths (0.2032m, 0.3048m and 0.5080m), constructions 

(20.71turns/m, 41.42tutns/m and 62.13turns/m), temperatures (20  and 4 ) and air 
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pressures (normal and vacuum) are tested under five different tensile forces (111.25N, 

222.50N, 333.75N, 445.00N and 578.50N). In addition, the effect of sensor mass, the 

support and test apparatus on damping are investigated. The damping is identified by the 

‘half-power bandwidth’ method and the ‘logarithmic decrement’ method. The results 

indicate that, typically, damping decreases as the length, tension and the number of turns 

of the tested cable increases. Also, temperature and air pressure contribute to the 

variation of damping.  

To explore the use of finite elements method (FEM) to simulate cable vibration 

and damping, the COMBIN14 and MASS21 elements in ANSYS13.0 are used. The finite 

element simulation results agree well with the test results on vibration frequency and time 

history response. This demonstrates that the selected elements are capable of modeling 

the dynamic response of cables using the Rayleigh damping constants. 

Using simplified mechanistic assumptions, an analytical approach is proposed to 

model cable damping. The proposed method and related issues are discussed considering 

numerical examples. It is shown that this method can predict the damping variation trend 

as observed in the tests of carbon fiber cables.  
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NOMENCLATURE 

The following symbols are used in this dissertation: 

Chapter 3 and 4: 

  ,   ,       frequencies corresponding to response peak and   √  of the response peak  

                     modal damping ratio 

                     the logarithmic decrement 

n                    number of vibration cycles
 

1 , 2            
the first and the second modal damping ratio  

  ,             the vibration amplitudes at n cycles apart 

[ ]                 damping matrix        

[ ]                mass matrix     

[ ]                 stiffness matrix  

 ,                 the Rayleigh damping constants 

F                   the impulse force applied at the center of the cable 

H                   cable pretension  

l                     cable length 

m                   mass per unit length of the cable 

Chapter 5: 

  ,              radius of the cable core and helical wires 

P,                 pitch length of helical wires 

 ,                lay angle of the undeformed and deformed helical wires 



xvii 
 

                     total strain of helical wires along tangent direction  

  
                   the tangent strain of helical wires due to elongation 

  
                   the tangent strain of helical wires due to rotation 

                   initial and deformed length of the cable structure 

 ,                 initial and deformed length of the helical wires 

 ,                 initial and final angle that a helical wire sweeps out  

V,                 volume of the undeformed and deformed cable structure   

  ,              radius of the undeformed and deformed helical wire centerline 

                   change of helical wire length 

                   change of cable lay angle 

                     the axial strain in the cable core wire.  

                     Poisson’s ratio 

CF                 compaction factor 

         the relative rotation of the structure  

                    mutual approach of wires 

                    friction coefficient 

                    ratio of the deformed and undeformed cable structure length 

                    ratio of the deformed and undeformed helical wire length 

                   the contact normal force between cable core and helical wires 

                  the contact normal force between helical wires 

   ,            contact half width  

E                    Young’s modulus  

                    transverse modulus 



xviii 
 

                    contact angle 

                    number of helical wires in a layer 

 ,                the tangential distributed force 

 ,              the tangential distributed force along helical wires 

H                   tangential force along helical wires 

                     loss factor 

                   the energy dissipation per cycle 

U                   the stored energy    

  ,             two successive vibration amplitudes         

                     logarithmic decrement 

                     cable modal damping ratio 

                    relative movement 

                   tonsorial shear strain between cable wires associated with wire axial strain 

                    stored strain energy 

                     vibration profile 

                     vibration amplitude 

                   stored energy due to tension 
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Chapter 1 

Introduction 

This chapter first describes the motivation of this research for the experimental and 

analytical investigation of carbon fiber and steel cable damping, and then summarizes the 

objective and scope of the research. At the end of this chapter, the organization of this 

dissertation is presented. 

1.1 Motivation  

Cables, as assemblages of wires have been widely used as tension members in many 

modern flexible structures, ranging from suspension bridges, electrical and signal 

transmission systems to deployable space structures. As examples for cable application in 

space structures, Fig. 1.1.1 shows the nuclear spectroscopic telescope array (NuSTAR) 

launched by NASA in June, 2012. The NuSTAR telescope extends to achieve a 10-meter 

focal length after being launched into orbit in order to improve the sensitivity of the 

optics. A deployable satellite reflector from Northrop Grumman Corporation is shown in 

Fig. 1.1.2. It will be used to help NASA’s Jet Propulsion Laboratory (JPL) map soil 

moisture and the freezing and thawing cycles globally with unprecedented accuracy, 

resolution and coverage, which aims to understand the health of the Earth’s ecology. 
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Figure 1.1.1 NuSTAR (NASA) 

 

Figure 1.1.2 AstroMesh deployable satellite reflector (Northrop Grumman Corporation) 
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For deployable masts, deployable antennas and other aerospace structures, vibration can 

be caused by launch loads, deployment, and micro-lurch (small accelerations due to 

various forces) etc. Quite often these small vibrations are not desirable and may cause 

malfunctions of the sensor systems. The interest lies in reducing the vibration by 

dissipation of vibration energy or damping. Although characterization of cable damping 

in a vibrating structure has long been an active area of research in structural dynamics, 

the demands of modern engineering have led to a steady increase of interest in recent 

years. Investigations of cable damping have a significant role in vibration suppression in 

space structures under an environment devoid of atmospheric damping. The recent 

developments in the fields of space structures have provided impetus towards developing 

procedures for dealing with cable damping in the context of structural dynamics. Beside 

these, in the last few decades, carbon fiber cable has become an appropriate option for 

aerospace structures because of its light weight and high strength. The sophistication of 

modern design methods together with the development of improved composite structural 

materials instilled a trend towards lighter and larger space structures.  

At the same time, there is also a constant demand for larger optics, which needs to be 

deployed in orbit and has a dimensional stability much smaller than the wavelength of 

light in order to obtain high quality images and other information with minimum noise 

and vibration level. The increasing demand requires that the cables to play a more 

appreciable role in the dynamics of space structures.  

Unfortunately, these highly flexible and lightweight cables possess low damping and are 

susceptible to vibration, especially in the space environment devoid of atmospheric 
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damping. Besides, the knowledge of carbon fiber cable dynamic behavior is very scarce. 

Therefore, measuring cable damping and understanding its mechanisms are particularly 

significant for structures deployed in space where the internal damping is critical for 

structural stability. An extensive ground based test is essential to provide some 

fundamental dynamic properties of carbon fiber cables in space structural applications. 

The demands of lighter space structures and more sensitive space structures are 

conflicting and the problem cannot be solved without proper understanding of energy 

dissipation or damping behavior. In spite of a large amount of research on the 

investigation of damping characterization of steel cable and transmission line conductor, 

understanding of cable damping mechanisms is quite primitive, and it is a field which 

still holds quite a bit of intrigue in the engineering community. This is because the 

modeling of damping is very complex, and it is not in general clear which variables are 

relevant to the damping values. Moreover, it seems that in a realistic situation there exist 

many sources of energy dissipation: the structural joints, the material, and the fluid 

damping etc. Here the difficulty lies in understanding the damping mechanisms and 

providing a model to be used in predicting transient responses, decay times or other 

characteristics in design and analysis where the structural performance is affected by 

energy dissipation.  
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1.2 Objective and Scope  

The overall objective of this work is to study the variation of damping involving different 

cable parameters and environments, and to develop an analytical model for understanding 

damping mechanisms and predicting damping of cables in space applications.  

This work covers the tests of carbon fiber cables under different length (0.2032m, 

0.3048m and 0.5080m), tension (111.25N, 222.50N, 333.75N, 444.50N and 578.50N), 

configuration (20.71turns/m, 41.42turns/m and 62.13turns/m), temperature (20  and 4 ) 

and air pressure (normal and vacuum). Finite element simulation of carbon fiber cable 

vibration is provided for comparing and establishing a relationship with experiments. A 

model for predicting damping is developed based on internal forces, fiber deformation 

and internal cable geometry under simplified but physically realistic assumptions.   

1.3 Outline of the Dissertation 

Motivated by the existing problems and gaps identified in Section 1.1, a systematic study 

on determination and analysis of carbon fiber cable and steel cable damping has been 

carried out in this dissertation. The dissertation is divided into six chapters.  

In Chapter 2, a brief review of literature on currently available experimental and 

analytical studies on damping properties of stainless steel cables and composite cables, 

the effects of cable damping on dynamic behavior of cable structures and techniques for 

vibration suppression is presented. Based on this literature review, some open problems 

have been identified which are summarized in Chapter 2. 
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In Chapter 3, an experimental setup for measuring cable damping is provided, and several 

tests of carbon fiber cables and a stainless steel cable under different conditions are 

reported. The test variables included the cable length, tension, configuration, along with 

the ambient temperature (20  and 4 ) and air pressure (normal and vacuum). In 

addition, the effect of sensor mass, support and test apparatus on cable damping are 

investigated. From the tests, some important conclusions are derived which are discussed 

and analyzed in this dissertation. 

In Chapter 4, attention is specially focused on the simulation of cable vibration using the 

finite element method (FEM) for comparing and establishing the relationship with the 

experiments. A simple and appropriate simulation of cable damping is suggested. 

Chapter 5 is aimed at using the conclusions from tests to validate a theoretical model 

proposed to analyze the cable vibration damping. The expression of damping is derived 

under certain simplified but physically realistic assumptions. The proposed method and 

several related issues are discussed by considering numerical examples.  

Finally, Chapter 6 presents the conclusions emerging from the studies taken up in this 

dissertation and makes a few suggestions for further research.  
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Chapter 2      

Literature Review 

In this chapter, previous experimental and analytical studies to understand damping 

characterization and damping mechanism of stainless steel cables and composite cables 

are reviewed. Also, many attempts to suppress vibrations of cable and cable structure are 

described. From the literature review, several important conclusions are derived to guide 

this research on the experimental and analytical investigation of carbon fiber and steel 

cable damping. Additional literature review specific to the issues addressed in our 

research have been provided in the relevant sections in later chapters. 

2.1 Theoretical Investigation of Cable Damping 

The vibrating taut string or cable was one of the first physical systems to which the 

analytical tools of mechanical and mathematics were applied. The problem of cable 

dynamics and the characterization of cable damping still attract a great deal of attention 

from the scientific community leading to a rich technical literature. This is due to the 

wide application of cables in engineering field and to their tendency to vibrate. Vibrations 

can result in cable or connection failures due to fatigue (Cluni et al., 2007). 

Consequently, how much energy can be dissipated by cables is of importance when 

considering dynamic behavior of structures with cables. 
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In many of the earlier theoretical analyses, several simplifying assumptions have been 

made to obtain analytical or closed form solutions. One of the assumptions is about the 

interwire friction. Friction takes place at the interfaces of cable helical wires and is hard 

to model. For simplification, most of the researchers analyzed two extreme cases: either a 

no-slip friction model or a full-slip friction model. An attempt to relate the internal 

friction to the damping properties of a cable was made by Vinogradov and Atatekin 

(1986). A cantilever cable deformed under a transverse load applied at the free end was 

investigated, the interwire slip was assumed to occur due to the twisting of helical wires. 

Although it is clear that the interaction between the wires is the cause of energy losses, a 

precise mechanism of interwire friction and interwire slippage in a deformed cable 

remains unknown. Therefore, it is necessary to obtain a full understanding of the 

interwire friction and interwire slippage within the cable to achieve realistic prediction of 

cable damping.  

Another important assumption is about the internal wire contact. Based on the wire 

diameter and helix angle, there are three possible types of contact: (a). Wire-wire contact, 

in which wires in the same layer are in contact, and no contact with adjacent layers; (b). 

Core-wire contact, in which the wires in the same layer do not touch each other, and are 

in contact only with the cable core; (c). Mixed (wire-wire and core-wire) contact, in 

which both wire-wire and core-wire contact occur. In the previous models, one contact 

mode is commonly selected as the primary contact to simplify the solution.   

Depending on the type of cable geometry, the modes of loading and the contact behavior, 

several theoretical models have been proposed to date which may be classified as: the 
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‘Masing’ model, in which the interwire friction was considered using the ‘JENKIN’ 

element; the ‘thin rod’ model, which takes bending and torsional stiffness of the 

individual wires into account; and the ‘semi-continuous’ model in which each layer of 

helical wires is modeled as an equivalent ‘thin cylinder’ or ‘thick cylinder’. 

2.1.1 Masing Model 

The ‘Masing’ model was first proposed by Masing (1923) to model the energy dissipated 

per cycle in metals, and it was then used by Gutzer et al., (1995) for the investigation of 

self-damped stranded steel cables. In this model, the cable was treated as a collection of 

discrete and continuous systems of bonded wire layers, as shown in Fig. 2.1.1.1. Each of 

the layers consists of one or more ‘JENKIN’ elements. The ‘JENKIN’ element consists 

of a spring with stiffness    and associated with a dry friction element described by its 

maximum friction force   . An inner variable ‘y’ has to be introduced for every ‘JENKIN’ 

element, to describe the relative position of the friction element. For a complete 

knowledge of the system state the inner variables have to be known, or information has to 

be given on deformation history. The damping parameters of the system were identified 

using the slowly varying amplitude and phase method.  

Sauter and Hagedorn (2002) further developed a hybrid approach by using the distributed 

‘Masing’ model together with the beam theory to model a stock-bridge damper cable. 

This model accounts for the interwire friction force by selecting an appropriate number of 

‘JENKIN’ elements. They also performed experiments on a cantilever self-damped cable 

to measure the ‘Masing’ components by measuring the cable response to a cyclical end 

load.  
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In summary, the ‘Masing’ model provides a good way to simulate the interwire friction, 

however, the ‘Masing’ components are difficult to obtain. 

 

Figure 2.1.1.1 Masing damping model (Gutzer et al., 1995) 

2.1.2 Thin Rod Model 

The ‘thin rod’ model was first proposed by Owada (1952), who used the Kirchhoff’s 

equation of equilibrium to calculate axial and torsional stiffness of a simple strand. In the 

‘thin rod’ model, the basic element of cable is a single thin rod, the equations are 

established for individual wire of strand. The wire bending and twisting is added in this 

model.  

Huang and Vinogradov (1991) investigated the effect of frictional force and interwire slip 

on the mechanical properties of an axially loaded straight cable. The effect of interwire 

slip was considered on macro-scale properties of the cable. The formula of frictional 
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energy dissipation over one axial load cycle was derived. The analysis showed that the 

damping coefficient is inversely proportional to cable pretension. Huang and Vinogradov 

(1992) also addressed the dynamic behavior of a cable under cyclic tension. To obtain the 

load-elongation relationship, the total elongation of the cable was assumed to be 

comprised by two parts, one from the slipped section, and the other from the section 

without interwire slippage, where the process of cable elongation was accompanied by 

micro-slippage of the cable. The analytical results demonstrated that cable axial stiffness 

is slightly increased when tension increases, and that damping is inversely proportional to 

cable pretension. However, the analysis might underestimate the cable elongation caused 

by vibration.  

For a cable subjected to uniform bending, Huang and Vinogradov (1994) showed that 

losses caused by dry friction occur due to twisting and bending of individual wire, and 

the energy dissipation is linearly proportional to bending curvature. Huang and 

Vinogradov (1996a, 1996b) analyzed the damping of a cable under a quasi-static cyclic 

loading, the cable was modeled as an equivalent rod with amplitude dependent damping, 

and the interwire dry friction was considered. The formula for equivalent damping 

coefficient was obtained and showed that the energy losses are proportional to the cube of 

the axial tension, and inversely proportional to the interwire friction forces. In this paper, 

the authors concluded that the damping in cables is caused mainly by dry friction 

between wires, while a small amount of energy is dissipated through individual wires.  

Other researchers also have conducted extensive research on cable interwire behavior and 

energy dissipation using the ‘thin rod’ model. Huang (1978) and LeClair (1989) included 
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the interwire friction interaction in their models and analyzed single layered spiral strands, 

Lanteigne (1985) investigated the problem of interlayer slippage in a multi-layered strand. 

Ramsey (1990) has attempted to include interwire friction in multi-layered strands 

undergoing axial loading using the ‘thin rod’ model.  Sathikh et al., (1989a) showed that 

the axial slip is more appropriate than twist slip. In another paper, Sathikh (1989b) 

derived a more accurate expression for the minimum interwire frictional resistance and 

applied this to cable vibration. Utilizing these researches, Sathikh (1989c) studied the 

interwire friction effects on the transverse vibration of helically stranded taut cable with 

hinged ends. Numerical analysis indicated that the wire’s axial slip force is more 

predominant than the wire’s twist slip force. However, only friction between wires and 

cable core was taken into account while the friction between wires was neglected. This 

research was extended to obtain a general ‘thin rod’ model for the pre-slip bending 

response by Sathikh et al., (2000).  

Raoof and Huang (1991a) proposed a theoretical formulation for obtaining upper bounds 

to single layer helical strand damping under cyclic bending to a constant radius of curva-

ture. Parametric studies show that the traditional coulomb friction model tends to grossly 

overestimate cable damping for large radius of curvature. And the present model suggests 

that for certain ranges of helix angle, increasing helix angle leads to decrease in cable 

damping. 

More complex analytical model is based on curved beam theory assumptions. Within the 

framework of curved beam theory, Labrosse and Conway (2000a, 2000b) investigated the 

frictional damping properties of axially loaded simple straight metallic cables. In this 
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approach, the wires were modeled as curved beams, and the changes in curvature and 

twist of the wires were assumed to be negligible. In the analysis, cable core-wire contact 

and a linearized pivoting friction were considered. The numerical results indicated that a 

larger lay angle lead to a lower damping, and the energy dissipated by pivoting friction is 

very small and negligible compared to other sources of dissipation. Marcel et al., (2010) 

studied the influence of cable rigidity on free vibration modes of a suspended overhead 

transmission line conductor. The ‘Euler-Bernoulli beam’ model with viscous, hysteretic 

or dry internal friction damping was considered in the analysis. The authors found that 

the influence of hysteretic and dry friction damping on high damping modes can be 

neglected. Zhu and Meguid (2007) investigated the flexural damping of slack wire cable 

by modeling cable as curved beam.  

In summary, by using the ‘thin rod’ model, the frictional forces can be considered as the 

external forces acting on the wires, however, the bending is considered in this model, and 

it is not appropriate for a tensioned cable. 

2.1.3 Semi-continuous Model 

Homogenization is a well-known method in solid mechanics, and can be used for the 

continuum modeling of a discrete system composed of many identical repetitive 

elements. In this ‘semi-continuous’ model, each layer of wires in a strand is 

mathematically represented by an orthotropic circular cylinder has ‘averaged’ mechanical 

properties. 
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One of the ‘semi-continuous’ model is the ‘orthotropic sheet theory’, which was first 

developed by Hobbs and Raoof (1982) for the modeling cables and was extended by 

Raoof and his associates over the past three decades. In this model, the individual layer of 

wires was modeled as an equivalent cylindrical thin orthotropic sheet, instead of the rod 

or curved beam used in the ‘thin rod’ model, each sheet has the ‘averaged’ elastic 

properties, and the whole cable is treated as a discrete of concentric orthotropic cylinders.  

Using the ‘orthotropic sheet theory’, Hobbs and Raoof (1984) investigated the frictional 

energy dissipation in multilayered spiral strands. The test results showed that damping is 

slightly dependent on cable axial load due to the non-linear nature of the contact. It was 

shown that the configuration of cable influences damping significantly. In addition, the 

authors found that the lay angle is a key geometric parameter that affects cable 

characteristics, and damping can be enhanced by decreasing the lay angle. This has also 

been demonstrated in another paper (Raoof, 1996). The damping properties of axially 

preloaded multilayered spiral strands under lateral vibration were investigated by Raoof 

(1991b), and Raoof and Huang (1993a). An equivalent hysteretic damping per unit length 

of cable (assumed to depend only on cable construction and cable vibration modes) was 

used to derive the differential equation of cable lateral vibration. A formula for the 

determination of damping on the basis of energy dissipation theory was derived. 

According to the results, the overall structural damping of cable decreases significantly 

with increasing cable length and with increasing tension. Raoof and Huang (1991b) 

investigated the damping mechanism of axially preloaded multi-layered sheathed spiral 

strand in underwater applications. The results demonstrated that the damping ratio 

decreases with the mean axial strain and the length of cable. The damping ratio also 
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varied with the cable construction. Raoof and Davies (2006) conducted theoretical 

parametric studies on the axial and torsional energy loss of axially preloaded spiral 

strands. They pointed that the axial damping may be significantly enhanced by slight 

decrement of lay angle, but the torsional damping will be reduced.  

Another ‘semi-continuous’ model was developed by Blouin and Cardou (1989), and later 

extended by Jolicoeur and Cardou (1994), and Cardou and Jolicoeur (1997). In this 

model, the layer wires are replaced with a cylinder of orthotropic, transversely isotropic 

material. The only major difference between the ‘orthotropic sheet theory’ (thin cylinder) 

and the orthotropic cylinder (thick cylinder) model is that the first one is considered for 

two-dimensional and the second one is for three-dimensional calculations. 

In these studies, a great deal of attention has been paid to the inter-wire contact 

phenomena and friction. In all, the proposed ‘orthotropic sheets theory’ gives a good 

prediction of cable characteristics, the accuracy increases as the number of layers 

increases. However, it is based on the homogenization of the cable layers into orthotropic 

cylindrical sheets and it is not appropriate for a cable with one core and 6 helical wires 

(1+6 structure).  

2.1.4 Other Models 

Claren and Diana (1969a) presented the analytical and experimental study on a 

transmission line cable. According to their results, damping of a taut cable is independent 

of tension, which is contrary to the general experience. To further understand cable 

damping behavior, effect of wire slippage on the damping of axially loaded cable was 
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also explored by Claren and Diana (1969b). The results indicated a nonlinear relationship 

between the slippage coefficients versus tension. In addition, the average hysteretic 

damping coefficient was inversely proportional to the square of the slippage factor.  

Zhong (2003) proposed a frictional bending model, where the cable was modeled as a 

one dimensional continuum with varying flexural rigidity, to estimate damping due to 

internal friction. This study showed that the variation of cable flexural rigidity results in 

damped vibration. Knapp and Liu (2005), Liu and Knapp (2005) proposed an analytical 

approach for self-damped cables, where a flexural rigidity-curvature relationship, instead 

of an external damping term was included in the governing equation of motion. The 

results showed that the variation of cable flexural rigidity with helical wire slip causes 

friction energy dissipation in the cable. Also, the effect of variations in core radius due to 

pressure from the helical layers was investigated.  

All of the aforementioned investigations focus on the damping of a single cable with 

small diameter. However, only the knowledge of the dynamic characteristics of 

individual cables is not sufficient for the prediction of dynamic characteristics of a 

structural system, and the interaction between the structural components should be 

considered. Yamaguchi et al., (2001) investigated a cable system (Fig. 2.1.4.1) with two 

parallel sagged cables connected by a single secondary cable, whose weight and rigidity 

is much smaller than that of the main cables. Equations of motion for the cable system 

were derived using a modal synthesis method with sub-structural formulation. Free and 

forced vibrations of the cable system were analyzed. The results showed that the 
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secondary cable has a great contribution to the structural damping and can cause greater 

damping in the case of coupled motion of the main cables and the secondary. 

 

Figure 2.1.4.1 Schematic diagram of the model of cable system (Yamaguchi et al., 2001) 

Research on cable damping demonstrated that a cable exhibits low damping, which in 

itself is not enough to alleviate cable vibration. Thus, a method to enhance cable damping 

by adding a visco-elastic layer was proposed (Yamaguchi and Adhikari, 1994). Fig. 

2.1.4.2 shows the cross-section of the original cable and the damping treated cable in 

which the author explored the axial and bending loss factor. In this analysis, the ‘Ross-

Ungar-Kerwin’ theory of damping treatment in plates/beams has been extended to a 

structural cable, and the complex modulus for a visco-elastic material was introduced to 

compute the axial loss factor. Also, in the analysis, it was assumed that introduction of a 

visco-elastic layer does not alter the strand configuration, and only the additional 

damping due to the material was considered. Moreover, the damping due to the outer 
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cover was assumed to be negligible. However, according to Raoof (1984), construction of 

the cable has a significant effect on cable damping; therefore, the assumption that the 

introduction of a viscoelastic material will not change the configuration of cable might 

lead to an incorrect damping value for the new cable.  

 

Figure 2.1.4.2 Cross-section of damping treated structural cable (a) typical prefabricated PWS cable (b) 

damping treated cable (Yamaguchi and Adhikari, 1994) 

Wu et al., (2003) investigated the non-linear vibration of loosening cables, where the 

cable loosening was considered by equating the total horizontal tension force in the cable 

to be zero. The governing differential equation of motion considering flexural rigidity 

and damping was derived.  

2.2 Experiments on Cable Vibration 

Many researchers have performed laboratory and field vibration tests on cables, in 

attempts to understand the damping behavior of cables and the dependence of cable 

damping on tension, length, vibration amplitude, temperature, cable construction and 

wear history.  
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Yu (1949, 1952) conducted the dynamic decay test and the static hysteresis test on seven-

wire and single-wire cables subjected to pure bending. Fig. 2.2.1 and Fig. 2.2.2 show the 

experimental mock-up for the analogous static and the dynamic tests, respectively.  

  

Figure 2.2.1 Complete view of the static hysteresis test set-up (Yu, 1952)  

The results showed that the inter-strand dry friction is the major source of internal 

damping. In addition, cable damping varies with length, number of cable wires, vibration 

amplitude and cable pretension. Increment of length reduces cable damping capacity, 

greater number of wires leads to higher damping value, the energy dissipated is a linear 

function of vibration amplitude, the pre-stressing of stranded cable below the yield point 

has no effect on cable damping, while pre-stressing over yield point considerably reduces 

damping capacity. The effect of cable pre-stressing on damping is different from the 

result presented by Raoof and Huang (1993b), who concluded that a higher tension 
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causes a lower damping. The disparity might because of the different loading condition 

and cable configuration. 

    

Figure 2.2.2 General view of the free decay test set-up (Yu, 1952) 

Hard and Holben (1967) tested the self-damping of tensioned transmission line 

conductors using vibration decay technique. The damping was evaluated using the 

‘logarithmic decrement’ method. They found that cable length has no significant 

influence on damping within reasonable limits, and that the effect of tension on damping 

is significant. A marked decrease in damping was observed initially as tension increases, 

followed by a less significant change when the load increases.  

Claren and Diana (1969a) used the forced vibration method to get the energy dissipated 

per cycle of a tensioned transmission line conductor by measuring the energy input per 

cycle while keeping the vibration amplitude constant. From the results, they concluded 
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that the energy could be dissipated without macroscopic slippage of the strands, but by 

the deformation of microscopic inter-strand asperities.  

Seppa (1971) measured self-damping of tensioned cables using the forced vibration 

method. The results showed that the energy dissipated is inversely proportional to tension. 

It is surprising that his result presented a strong dependence of energy dissipation on 

frequency, which contrasts the basic theory that the Coulomb damping is frequency 

independent.  

Ramberg et al., (1977) measured the logarithmic decrement of slack and taut marine 

cables in air and in water. They also found that the logarithmic decrement ratio decreases 

as cable tension increases. In their tests, pinned cable terminations were used and they 

argued that this minimized the support losses. However, no experimental support was 

provided.  

Interwire friction was identified as the primary source of energy dissipation by 

Vanderveldt et al., (1973). Ropes with centrally attached mass with different 

constructions were tested. Experimental results showed that transverse vibration damping 

decreases as the cable axial load increases. The author also cited Yu’s (1952) work, and 

added that no simple model taking into account transverse damping behavior can be 

assumed.  

Murkowski (1988) tested the internal damping of a mine hoist cable under non-planar 

transverse vibration. The results showed that the time rate of change of curvature is the 

major parameter influencing cable internal damping mechanism.  
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Achkire and Preumont (1996, 1998) described a non-contact measurement technique for 

the transverse vibration of small cables and strings using collocated actuator-sensor pairs, 

as shown in Fig. 2.2.3. The performance of an active tendon for the control of a cable-

structure system was investigated. The result showed that active damping of 1.8% was 

achieved for cables with small sag.  

 

Figure 2.2.3 Cable-structure system experimental set-up (Achkire and Preumont, 1996) 

Zheng et al., (2003) tested an inclined cable scaled down from a 143m-long prototype 

cable in an actual cable structure. The internal damping properties of in-plane and out-of-

plane vibration under different tension forces were investigated. The results demonstrated 

that the modal damping ratios of the out-of plane vibration and the first in-plane vibration 

decrease as tension increases.  
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Novak et al., (2004) and Barbieri et.al (2004) proposed a non-contact vibration testing   

set-up for transmission line cables, as shown in Fig. 2.2.4. A damping identification 

procedure for the system using non-contact sensors was presented. Subsequently, 

Barbieri et al., (2004a, 2004b) identified the damping of a transmission line cable system 

subjected to axial load using the aforementioned procedure. Four different methods were 

employed to adjust the damping matrix. The results showed a good agreement between 

the experimental values and the estimated values from the four methods. Besides, the 

results indicated that damping decreases length and tension increases. This linear 

dynamic analysis of transmission line cables was later extended to nonlinear analysis 

(Renato et al., 2008).  

  

Figure 2.2.4 Schematic view of the testing system for overhead line cables (Barbieri, et al., 2004) 
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For cable-stayed bridges or suspended bridges, it is common to add dampers to suppress 

cable vibration. In order to study the damping enhancement effect of adding oil dampers, 

Xu et al., (1998, 1999) tested scaled model cables with and without oil dampers for a 

cable-stayed bridge. The test results showed that a higher tension causes a lower damping. 

Ko et al., (2002) and Duan et al., (2003) presented field vibration tests of a long steel stay 

cable with and without magneto-rheological (MR) dampers. The in-plane equivalent 

modal damping of different cable vibration modes was identified using the vibration 

decay response. Damping was simulated as the combined Rayleigh and frequency 

independent damping, and shows a satisfactory agreement with the experimental results. 

For a cable without MR dampers, the modal damping ratio is independent of vibration 

amplitude within the tested range. Kim and Jeong (2005) also investigated the effects of 

tension and vibration amplitude on cable damping. The resonant vibration testing results 

demonstrated that cable damping might be linearly proportional to the vibration 

amplitude, and decreases as tension increases.                   

Thomas (1981) discussed the damping design technique of wind turbine guy cables and 

demonstrated the feasibility of the design with tests. The proposed damping technique 

used a damper to dissipate energy by coulomb friction, which is simply a pair of weights 

that are suspended from the cable and slide on two inclined surfaces whenever the cable 

moves (Fig. 2.2.5). The test results from the 17-meter Research Turbine at Sandia 

National Laboratories demonstrated that the damping technique works to alleviate the 

resonant vibration of the cables, and a higher tension in the cable leads to a lower 

damping ratio.   
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Figure 2.2.5 Diagram of cable damping concept (Thomas, 1981) 

Zhu and Meguid (2007) conducted free vibration tests of a cantilevered steel wire cable 

using the experimental setup shown in Fig. 2.2.6, where the vibration was captured by the 

high speed camera and the flexural damping were obtained by analyzing photogrammetry 

data. The cable demonstrated a high flexural damping at zero tension and its damping 

was measured to be as high as 37.7% of the critical damping. Comparison of the 

experimental and the numerical results indicated that the Rayleigh damping is suitable to 

model the flexural damping of slacking wire cable. Besides, the results denoted that the 

flexural hysteresis influences dynamic behavior of slacking wire cable significantly.  
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Figure 2.2.6 Experimental setup of a cantilever cable (Zhu and Meguid, 2007) 

Casciati et al., (2008) investigated the effect of cable vibration mitigation using shape 

memory alloy (SMA). A set of laboratory tests on a suspended steel cable and several 

‘steel cable-SMA wires’ systems were conducted using the experimental setup shown in 

Fig. 2.2.7. The results showed that the application of pre-stressed SMA wire increases the 

fundamental frequency and the damping coefficient. The enhancement of damping 

capacity depends on the number of the SMA wire wrapped. However, the mechanism of 

damping augmentation is not clear; it could be due to energy dissipation by the friction 

between cable and the added SMA wires, or internal dissipation in the SMA itself.  
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Figure 2.2.7 Experimental set-up (Casciati et al., 2008) 

Yamaguchi (1987) measured the flexural oscillation modal damping of a 7-wire stranded 

suspension cable. The effects of sag-to-span ratio, span length, and initial tensile force on 

cable modal damping were discussed. The results demonstrated that there exists a critical 

value for the damping and pretension relationship: damping decreases with increasing 

pretension when the initial tension is less than the critical value; however, when the 

initial tension exceeds the critical value, the damping remains constant. In addition, the 

damping was found to be inversely proportional to cable length. The effect of pretension 

on damping in this paper is different to that given by Yu (1949, 1952). 

To investigate how the support flexibility influence cable damping, Yamaguchi (1988) 

conducted a series of tests on the flexural oscillation of suspended cables. The cable 

support was modeled as a spring-mass system with three equivalent springs and one 

equivalent mass (Fig. 2.2.8), however, the damping of cable support was not explicitly 

considered. The results indicated that the additional dynamic strain is dependent on the 

support flexibility, and the damping is proportional to the square of the dynamic strain. In 

addition, the dependence of damping on support flexibility has a close relationship with 

the cable sag-ratio and vibration modes. The authors pointed out that the energy 

dissipation from support is one of the major sources of damping.  
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Figure 2.2.8 Analytical models of cable and support (Yamaguchi and Fujino, 1988) 

Raoof (1990) tested newly manufactured and well used cables to investigate the variation 

of damping with service history. The results showed that the used cable has a lower 

damping than a newly manufactured cable.  

Experiments on a stiff cantilever cable having a concentrated mass at the free end were 

conducted by Pivovarov and Vinogradov (1985) to investigate the influence of various 

damping mechanisms in a cable under flexure. The results showed that at least two types 

of damping mechanism exist in cyclically bending cables, the friction type damping 

dominates at low frequency and viscous damping dominates at high frequencies.  

2.3 Cable Damping in Aerospace Structures 

Large trusses connected by tension cables are used to design large aerospace structures. It 

has the advantages of being deployed and easily reconfigurable by changing the static 

tension in the cables. Aerospace engineers have developed many structures which rely on 
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cable elements for crucial functions. In some deployable structures, passive cables are 

applied to terminate the deployment and to increase the stiffness of the fully-deployed 

structure, and the active cables are designed to control the deployment process and apply 

a pre-stress in the fully deployed structure (Kwan et al., 1993). Moreover, vibration 

control techniques are expected to play an increasing role in maintaining stability and 

sensitivity of sensor systems. Thus, a good estimation of cable damping is significant 

since it directly influences the stability of sensitivity of the structure.  

Tan and Pellegrino (2008) investigated nonlinear vibration of a cable-stiffened 

deployable pantographic structure, as shown in Fig. 2.3.1, which is fully pre-stressed at 

the end of deployment. The modal identification test results indicated that damping of the 

passive cables is inversely proportional to pretension. In addition, the research showed 

that an increment of the active cable tension caused a decrement of the modal damping of 

the system.  
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Figure 2.3.1 Pantographic deployable structure (a) fully deployed configuration (b) joint detail (Tan and 

Pellegrino, 2008) 

For a space structure, one of the major uncertainties in damping prediction is the level of 

damping that would be seen in the absence of the air damping mechanism. Aiming to 

throw some light on this problem, He and Powell (1990) investigated the damping of a 

(a) 
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long taunted tether connecting two spacecraft by modeling it as a visco-elastic continuum 

without bending stiffness. The longitudinal and the lateral vibration damping were 

investigated. Three different damping models, structural damping, internal viscous 

damping and external viscous damping were used to simulate the damping of the tether. 

The results showed that the longitudinal vibration was primarily affected by the material 

damping, and the damping ratio cannot be modeled using the three damping models. In 

addition, the authors concluded that the air friction on the tether skin and the 

aerodynamic drag on the end mass contributed less than 1% to the overall damping of the 

optical fiber cable.  

Power and signal cables are used as non-structural cables in space structures, and the 

effect of these cables on damping is not understood either. Robertson et al., (2007) and 

Babuska et al., (2010) described research on these cables. Simple cable and beam tests 

were conducted in order to determine their influence on space structures. The results 

indicated that even a small number of cables may have a significant dynamic effect, and 

that a large fraction of added cable mass increased the damping. 

Coombs et al., (2008) investigated the effect of cables on a space structure. The Air Force 

Research Laboratory‘s Deployable Optical Telescope (DOT) were tested with different 

cable configurations, as shown in Fig. 2.3.2 and Fig. 2.3.3. The results showed that 

changes to the structural dynamics were dependent on the cable to base structure mass 

ratio. Small mass ratio on the order of 0.5% leads no appreciable modal changes, and a 

mass ratio on the order of 3% resulted in a doubling of damping at specific modes, but no 

change in the natural frequencies.  
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Figure 2.3.2 AFRL’s Deployable Optical Telescope (Coombs et al., 2008) 

              

Figure 2.3.3 DOT mirror petal cable paths and surrounding structure nomenclature (Coombs et al., 2008) 
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2.4 Composite Material Cable Damping 

In common usage, a composite material is defined as a combination of two or more 

materials on a macroscopically homogeneous level (e.g., fibers of one stiff material 

embedded uniformly, but with directionality, in a matrix or another). In Recent years, 

composite cables have been widely used in stayed-cable bridges, space structures and 

other engineering fields due to the advantage of lightweight, high strength, corrosion and 

fatigue resistance. However, reliable information on damping properties and damping 

mechanism of composite cable is very scarce.  

El-Kady et al., (2000) presented the experimental and analytical studies on the loss factor 

of carbon fiber reinforced plastic (CFRP) and pre-stressing steel tendons using the test 

apparatus schematic shown in Fig. 2.4.1. The cable was excited by a hydraulic shaker on 

the double cantilever system. The ‘half-power bandwidth’ method and the ‘resonant 

dwell’ technique were adopted to determine damping. The authors stated that the effect of 

bonding material leads to a higher loss factor at the lowest modes for CFRP strands than 

for steel cables, but for the higher modes, the loss factor is unchanged. In addition, cable 

damping decreases as length increases. Though the results revealed the different effect of 

bonding material on cable damping, the authors did not provide any exploration on the 

reason for the difference. 
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Figure 2.4.1 Schematic of test apparatus (El-Kady, et al., 2000) 

Wei and Kukureka (2000) employed the resonance technique to evaluate damping and 

elastic properties of optical fiber cables. The ‘half-power bandwidth’ method and the 

‘logarithmic decrement’ method were used to obtain cable damping. The results 

demonstrated that damping first decreases as length increases, and then remains constant. 

However, no theoretical or numerical results were provided to validate the experimental 

results.  

Using the resonance technique and the experimental setup shown in Fig. 2.4.2, Wei and 

Kukureka (2003) tested the damping properties of pultruded composite rods and 

telecommunication optical fiber cables at various temperatures (-22 to 266   , at a 

heating rate of 1.8      ). The loss factor of tested cables was defined as the ratio of the 

loss modulus to the storage modulus.  
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Figure 2.4.2 Experimental setup for resonant frequency measurement at different temperatures (Wei and 

Kukureka, 2000) 

Xie et al., (2008, 2010) conducted free vibration tests on carbon fiber reinforced plastics 

(CFRP) cables, steel cables, CFRP wires and steel wires. The results showed that 

damping is amplitude dependent: higher vibration amplitude leads to higher damping. 

Moreover, the author concluded that the tension force has little influence on damping.  

Du et al., (2011) investigated the damping properties and damping mechanisms of fiber 

reinforced vinyl ester composites and fiber reinforced epoxy composites at different 

temperatures and frequencies. The results indicated that damping of the composite 

increases with frequency and declines as the ambient temperature increases. When the 

matrix material is the same, carbon fiber has higher damping than glass fiber material, 

and when the fiber material is the same, vinyl ester composites present higher damping. 
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In addition, the results showed that interface sliding is a key contributor to damping for 

the composite material. 

Wang and Wu (2011) presented a theoretical evaluation on modal damping of a hybrid 

fiber reinforced polymer (FRP) cable with a smart damper. The theoretical equation of 

damping was derived based on the energy principle.  

2.5 Summary 

From literature review of the theoretical and experimental investigations of cable 

damping, the damping effect on space structures and the damping of composite cables, 

summaries and conclusions are drawn as follows: 

a) Several models have been developed to simulate cable damping under axial, bending 

or  torsional loading cases or subjected to the combination of the load cases. One of 

the model is the ‘Masing’ model, which is good for the simulation of interwire 

friction by assuming a ‘JENKIN’ element that consists of a spring with stiffness      

and an associated dry friction element described by its maximum friction force   . 

However, obtaining the ‘Masing’ coefficients is difficult. The ‘thin rod’ model is 

another commonly used model, which modeled the cable wire as ‘thin rod’ or ‘curved 

beam’ within the framework of beam theory. The friction force can be considered as 

external force acting on cable wires, however, bending is considered in this model, 

and it is not appropriate for tensioned cable. Another model is the ‘semi-continuous’ 

model, one commly used ‘semi-continuous’ model is the ‘orthotropic sheets’ theory 

proposed by Raoof (1982), which modeled the cable wire layers as several cylindrical 
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orthotropic sheets. However, the ‘orthotropic sheets’ theory is based on the 

homogenization of the cable layers into orthotropic cylindrical sheets and is not 

appropriate for cables with one core and six helical wires. The ‘thin rod’ model gives 

much more reliable results than the ‘orthotropic sheets’ theory for seven wire cables. 

In addition, several other models were proposed to simulate the cable wire slippage 

and corresponding friction, such as the ‘frictional bending’ model proposed by Zhong 

(2003). In summary, most of the existing models have ignored friction and interwire 

contact deformation, and is not adequate to predict the actual cable damping;  

b) In the aspect of interwire slippage and interwire friction, most of the research focused 

on the occurrence of interwire slippage, with the assumption that the interwire friction 

coefficient and the interwire normal force are constant. In addition, it assumed that 

the elongation of the cable is composed of two parts (one from the cable section 

without wire slippage and one with wire slippage), and superposition is applicable for 

the two parts of cable elongation. However, the assumption of constant interwire 

friction is not reasonable, especially when the cable interwire slippage happens. The 

real behavior of the interwire slippage and interwire friction is not clear;  

c) For the cable contact behavior, usually the wire-core contact or the wire-wire contact 

is considered for the analysis. This could underestimate cable damping for cables 

with soft core and small diameter. Because the coupling core-wire and wire-wire 

contact behavior could be existed; 

d) Material treatment to enhance damping was investigated by Yamaguchi (1994), but 

the assumption that the added damping material will not change cable construction is 

not appropriate; 
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e) Almost all of the investigations of cable damping concentrated on a single cable. 

However, for the study of cable effects on the dynamic behavior of cable structure, it 

is important to take into account the cable interaction behavior. The transmission of 

energy from cable to cable is a crucial problem for the estimation of structural 

responses;   

f) A number of cable parameters that influence damping properties have been 

investigated theoretically and experimentally, such as the cable pretension load, lay 

angle, length, cable configuration and service history. The experimental results 

showed that there is a disparity regarding the influence of cable pretension. One of 

the conclusions is that the damping decreases as tensile force increases (Raoof and 

Huang 1993b, Seppa 1971, Ramberg and Griffin 1977 et al.,). The second is that the 

pretension has little influence on damping (Claren and Diana 1969a), while the third 

conclusion is that a critical value of pre-stress corresponding to the variation of 

damping exists (Yu 1949, 1952, Hard and Holben, 1967). The disparity might be the 

result of energy dissipated through end termination or just the different loading cases 

of the tests. Tests on cables with different construction indicated that damping 

decreases as lay angle increases, and there exists a critical value corresponding to the 

maximum damping. However, the effect of the change of lay angle was not included 

in the analytical models. One major conclusion about the influence of cable length is 

that as length increases, damping decreases, but it was also argued by some authors 

that length contributes little to damping;  

g) In order to get an accurate estimation of cable damping, it is important to exclude the 

damping sources in the tests. For example, the effect of support conditions was 
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considered by Yamaguchi (1988). To make an accurate measurement of damping, the 

control of the support motion is quite important;  

h) Research of cable damping in space structure focus on the effect of the cable on the 

dynamic behavior of a cable structure. Modeling the cable structure system include 

modeling the cable and the host structure. It seems that no reasonable method or 

mechanism is applicable to estimate the cable damping in space using ground based 

test data. In addition, there is no formula to estimate the cable damping, and no 

damping tested in vacuum, and very scare investigation of temperature effect on cable 

damping; 

i) The available investigations of composite material cable damping properties and 

damping mechanism are very scarce. The existing literature focused on the testing of 

damping properties under various length, ambient temperature, and different cable 

constructions of CFRP cables. Though the tests achieved some basic characteristics of 

composite material cable damping, the damping mechanism is not clarified. 
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Chapter 3     

Experimental Identification of Cable 

Damping  

In this Chapter, first, an experimental setup for testing cable vibration damping is 

described. Then several tests of carbon fiber cables and a stainless steel cable are 

reported. From experiments, some important features of cable damping variation are 

observed and discussed.  

3.1 Introduction  

From literature review, the problem of cable damping still attracts a great deal of 

attention from the scientific community leading to extensive experiments on the 

investigation of damping and vibration mitigation of cable and cable structure. However, 

the reported tests appear to have concentrated on stainless-steel cables and much less 

attention has been paid to the carbon fiber cables, especially for those in space structural 

applications. Moreover, there is no investigation of cable damping in vacuum, and the 

available study of temperature effect is very scarce. The damping mechanisms of carbon 

fiber cables remains poorly understood. Therefore, the objective of this chapter is to test 

several carbon fiber cables and a stainless steel cable in attempts to find out the 

dependence of damping on tension, length, lay angle/construction, ambient temperature 

and air pressure. The eventual goal of the tests is to propose a reasonable analytical 
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model to estimate carbon fiber cable damping, and to enhance the stability and 

performance of structures by an optimal design of cables. 

3.2 Experimental Setup 

For the experimental setup, it is possible to vary the applied tension and cable length, and 

the test apparatus can be easily modified to test cable damping in vacuum. Fig. 3.2.1 

shows the full view of the experimental setup. It consists of a tension application and 

measurement system, a cable clamp system, and a data collection and processing system.  

 

Figure 3.2.1 Experimental setup 

Fig. 3.2.2 shows a close-up of the fixture for applying tension. Each cable was first fixed 

to the clamp at the right end of the wooden frame, which is done by screwing four bolts 

to tighten the two steel plates that constitute the clamp system shown as Fig. 3.2.3. The 

left end of the cable was passed through the clamp on the left (Fig. 3.2.4) which is 

initially not tight. A loop, at the left end of the cable, was formed using a cable ferrule 

and stop set (shown as Fig. 3.2.5), and was connected to a load cell (Fig. 3.2.6). The load 

cell with digital meter provided the reading of the tension during the test. The other end 
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of the load cell was connected to an all thread stainless steel rod, which is used to adjust 

cable tension by tightening the bolt at the left end of the wooden frame, shown as Fig. 

3.2.2. Once the appropriate load was applied, the clamp on the left (Fig. 3.2.4) was 

tightened to hold the tension during the tests.  

 

Figure 3.2.2 Tension applying fixture 

 
 

Figure 3.2.3 Details of the clamp  
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Figure 3.2.4 Connection between cable, accelerometers and the dynamic signal acquisition module  

 

Figure 3.2.5 Cable ferrule and stop set 

 

Figure 3.2.6 Connection between cable and load cell  

right clamp left clamp 
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Two accelerometers, type PCB Model 352A73, shown as Fig. 3.2.7 were mounted to the 

cable using wax at approximately three quarters and one fifth of the cable span (Fig. 

3.2.4), respectively. The mass of the accelerometer is 0.3gm, and the size is 

2.8mm×8.6mm×4.1mm (Height × Length × Width). These acceleration locations were 

chosen to such that the first three vibration modes could be detected at either transducer 

by avoiding the nodal points. In addition, having the two accelerometers located on 

opposite sides of the cable span aims to minimize the torsion effects caused by small 

movements of the accelerometers during the cable oscillations.  

 

Figure 3.2.7 PCB 352A73 accelerometer 

The accelerometers were connected to a NI 9234 dynamic signal acquisition (DSA) 

module, as shown in Fig. 3.2.8. The NI 9234 DSA module has a built-in antialiasing filter 

that automatically adjusts to the sampling rate. The DSA module was connected to a 

laptop, as shown in Fig. 3.2.1. 
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Figure 3.2.8 NI USB 9234 dynamic signal acquisition module 

 

Figure 3.2.9 Load cell  

Tests were also conducted in different environmental conditions. Carbon fiber cables of 

different length and different configuration were tested at room temperature (20°C) and 

in a temperature controlled room (4°C) at the University of New Mexico. The test setup 

described above was also sealed to test cables in vacuum condition, with an air pump to 

sustain vacuum. These modifications to the test mock-up will be described in the 

appropriate sections later. 
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3.3 Test Procedures and Data processing 

3.3.1 Test Procedures 

The tests were conducted with the following procedures: 

Step 1: Fabricating a carbon fiber cable 

A carbon fiber cable was made by twisting seven IM7 carbon fiber tows (HERCULES 

INC, type IM7-W-12K), as shown in Fig. 3.3.1.1. First, the strands were fixed at both 

ends using the cable ferrule and stop set. Then holding the untwisted strands at the left 

end, and twisting the strands from the right end for a required number of turns in 

clockwise direction. 

 

 Figure 3.3.1.1 IM-7 fiber tows 

Step 2: Connecting the cable to the load cell, mounting the accelerometers and applying 

tension  
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The left end of the newly manufactured cable was connected to the load cell using the 

formed loop, as shown in Fig. 3.2.2. Then the accelerometers were mounted to the cable 

using wax and connected to the dynamic signal acquisition (DSA) module. After 

clamping the right end of the cable, tension force was applied by slowly tighten the bolt 

at the left end of the wooden frame. 

Step 3: Exciting cable vibration and collecting data for processing 

The vibration of the cable was excited by tapping the cable center.  

3.3.2 Data Processing 

A dynamic signal acquisition (DSA) module with signal conditioning function, type NI 

USB 9234, was connected to a laptop and accelerometers. It digitizes the incoming 

signals to the analog output signals. Each signal was buffered, analog pre-filtered, and 

digital filtered with a cutoff frequency that automatically adjust to the data rate chosen 

(25k/s). The time histories of signals recorded by the two accelerometers were elaborated 

to obtain the spectrum via Lab-VIEW 8.6 with the ‘Fast Fourier Transform’ (FFT). The 

natural frequency of the cable vibration was obtained by recording the frequencies at 

where a response peak is observed. The modal damping ratio was determined using the 

‘half-power bandwidth’ method in frequency domain and the ‘logarithmic decrement’ 

method in time domain, respectively. Fig. 3.3.2.1 and Fig. 3.3.2.2 give a simple 

illustration of the two methods. To estimate modal damping ratio using the ‘half-power 

bandwidth’ method, the frequency response function (FRF) amplitude of the system is 

obtained first. Corresponding to each natural frequency, there is a peak in FRF amplitude 
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(    ). Corresponding to   √  of the response peak are the two half point. The 

frequencies corresponding to FRF amplitude peak (     ) and   √   of the FRF 

amplitude peak were obtained as:   ,    and    , respectively. Then the modal damping 

ratio was calculated using Eq. (3-1) (Chopra, 2001):  

                  
  

    
 

   
                                                           (3-1) 

 

Figure 3.3.2.1 Half-power bandwidth method 

 

Figure 3.3.2.2 Logarithmic decrement method 
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To determine damping using the ‘logarithmic decrement’ method, time history response 

was recorded by accelerometers, and the modal damping ratio can be determined using 

Eq. (3-2) and Eq. (3-3) (Chopra, 2001).   

  
 

 
  |

  

    
|  

  

√    
                                                (3-2) 

                                           
 

√      
                                                                  (3-3) 

Where    is the logarithmic decrement,   is the modal damping ratio, and   ,      are the 

vibration amplitudes at n cycles apart.  

For each cable, seven tests were conducted, and fourteen data (from 2 accelerometers × 7 

tests) were stored. By using the ‘half-power bandwidth method’ in frequency domain or 

the ‘logarithmic decrement method’ in time domain, 14 damping values were obtained. 

The damping for the tested cable, for example, a 0.5080m, 62.13 turn/m carbon fiber 

cable with 445.00N pretension, was obtained by removing  the data sets with maximum 

and minimum damping values (data No.3 and 6 in Table 3.3.3.1), and averaging the 

remaining ten values.  

Table 3.3.1.1 Damping of a 0.5080m, 62.13 turns/m carbon fiber cable with 445.00N pretension 

Data No 1 2 3 4 5 6 7 

Damping estimated with data recorded by 

accelerometer at 3/4 of cable length 

 (%) 

0.36 0.36 0.36 0.36 0.36 0.35 0.35 

Damping estimated with data recorded by 

accelerometer at 1/5 of cable length 

 (%) 

0.35 0.36 0.37 0.36 0.36 0.35 0.35 

Damping of the tested cable 0.36 

Variance 3×10
-5
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From Table 3.3.1.1, the variance of the modal damping ratio for this cable is 3×10
-5

, 

which shows a good repetition of the tests and the result is reliable. The vibration natural 

frequency was determined in the same way. 

3.4 Tests Conducted 

A comprehension of damping variation with cable parameters and ambient environment 

is essential to understand cable damping mechanisms and to design effective vibration 

control methods. Six different configurations of tests were performed and the results were 

analyzed and discussed: 

a) Stainless steel cable in the length of 0.3048m and in the diameter of 0.003175m under 

different tensile forces; 

b) Carbon fiber cables in the length of 0.2032m, 0.3048m and 0.5080m with three 

different configurations (20.71turns/m, 41.42turns/m and 62.13 turns/m) under room 

temperature and room air pressure; 

c) Carbon fiber cables in the length of 0.2032m, 0.3048m and 0.5080m with three 

different configurations (20.71turns/m, 41.42turns/m and 62.13turns/m) at a 

temperature of  4  ; 

d) Carbon fiber cables in the length of 0.2032m, 0.3048m and 0.5080m with three 

different configurations (20.71turns/m, 41.42turns/m and 62.13turns/m) in a vacuum 

chamber (-20 in. Hg); 

e) Carbon fiber cable in the length of 0.3048m with configuration of 41.42turns/m using 

the  stiffened wooden frame (bracing at the corners and cable supports); 
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f) Carbon fiber cables in the length of 0.3048m with three different configurations 

(20.71turns/m, 41.42turns/m and 62.13turns/m) with one accelerometer mounted to 

the cable. 

 3.4.1 Effect of Cable Tension 

The test results of stainless steel cable by Yu (1949, 1952) have shown that the variation 

of damping depends on cable pre-stressing and yielding. Cable pretension has no effect 

on damping when cable pre-stressing below the yield point, while pre-stressing over yield 

point leads to a considerable reduction of damping. The same conclusion was obtained by 

Hard and Holben (1967) for a transmission line conductor. However, the experimental 

results by Seppa (1971), Ramberg and Griffin (1977), Raoof (1993b), Xu et al., (1998, 

1999), Kim and Jeong (2005), Zheng et al., (2003), and Barbieri et al., (2004a, 2004b) 

showed that damping decreases as tension increases, while Yamaguchi (1987) concluded 

that tension has no influence on damping. The disparity could be due to different 

configuration and loading of the tests. In addition, almost all of these tests were 

performed with stainless steel cables or transmission line cables. Thus, it is necessary to 

provide some tests with carbon fiber cables to investigate the effect of tension on 

damping. 

The tests were carried out using the experimental setup shown in Fig. 3.2.1. The tested 

stainless steel cable is made of several (7 × 7) stainless steel wires, as shown in Fig. 

3.4.1.1, and the carbon fiber cable is made by twisting seven IM7 carbon fiber tows 

(HERCULES INC, type IM7-W-12K). The geometric and the mechanical properties of 

the 0.3048m carbon fiber cables are summarized in Table 3.4.1.1. To investigate the 
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effect of the applied tension on damping, cables were loaded with tension force of 

111.25N, 222.50N, 333.75N, 445.00N and 578.50N.  Results of cables tested within test 

configurations (a) to (d) were used to analyze the effect of tension on damping. 

 

Figure 3.4.1.1 Stainless steel cable and cross section 

Table 3.4.1.1 Properties of 0.3048m carbon fiber cables 

Cable construction 

 (turns/m) 

Length  

(m) 

Mass per unit length 

(kg/m) 

Young’s Modulus 

(Pa) 

20.71 0.3048 0.00427 2.76×10
11

 

41.42 0.3048 0.00432 2.76×10
11

 

 62.13 0.3048 0.00446 2.76×10
11

 

3.4.1.1 Carbon Fiber Cables Tested at Room Temperature 

The time history responses and the spectrum of the signals at the two measuring points 

were obtained using the recorded data from the two accelerometers located at three 

quarters and one fifth of the cable span. Fig. 3.4.1.2 shows the time history responses of a 

0.3048m, 20.71 turns/m carbon-fiber cable with 333.75N pretension. From Fig. 3.4.1.2, it 

is noticed that the vibration decayed in about 0.08 second and 35 cycles. Fig. 3.4.1.3 
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presents the corresponding frequency domain data, where a vibration natural frequency of 

458.67Hz was identified from the frequency corresponding to the response peak. 

 

 

Figure 3.4.1.2 Recorded time-history responses for a 0.3048m, 20.71turns/m carbon fiber cable at room 

temperature and 333.75N pretension (a) at 1/5 of cable length (b) at 3/4 of cable length 
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Figure 3.4.1.3 Spectral of signals for a 0.3048m, 20.71turns/m carbon fiber cable at room temperature and 

333.75N pretension (a) at 1/5 of cable length (b) at 3/4 of cable length 

Table 3.4.1.2 and Table 3.4.1.3 list, respectively, the results of the modal damping ratio 

and the identified vibration frequencies for cables tested at room temperature. In Fig. 

3.4.1.4, the experimental determined modal damping ratios for different length and 
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construction cables are plotted against tension and Fig. 3.4.1.5 plots the variation of 

vibration frequency with tension. 

Table 3.4.1.2 Cable damping at room temperature 

Tension 

(N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

111.25 5.50 2.42 2.22 4.59 2.27 1.54 4.20 1.68 1.14 

222.50 3.79 2.11 1.81 3.07 1.80 1.11 2.40 1.24 0.96 

333.75 3.18 1.83 1.33 2.53 1.68 0.94 1.73 1.18 0.54 

445.00 3.06 1.45 1.14 2.35 1.39 0.69 1.23 0.97 0.50 

578.50 2.60 1.40 1.00 2.18 1.36 0.70 1.18 0.90 0.36 

Table 3.4.1.3 Cable vibration frequency at room temperature 

Tension 

(N) 

Frequency for 20.71turns/m cables 

(Hz) 
Frequency for 41.42turns/m cables 

(Hz) 
Frequency for 62.13turns/m cables 

(Hz) 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

111.25 365.71 309.87 159.62 360.29 280.96 117.82 352.68 266.82 114.97 

222.50 515.79 392.63 225.8 2 492.74 369.02 209.3 474.18 360.33 204.54 

333.75 625.85 458.67 263.45 612.20 430.00 262.28 591.53 418.68 261.46 

445.00 694.65 517.74 308.86 693.57 500.49 292.50 687.77 485.62 300.93 

578.50 797.60 554.68 355.53 788.08 534.65 347.72 767.40 502.50 341.27 

The results presented in Fig. 3.4.1.4 show a decrease in the cable damping as tension 

increases. For the 0.2032m cables, the damping presents a significant decrement when 

tension is less than about 222.50N, whereas, for cables in the length of 0.3048m and 

0.5080m, damping decreases at a slow tempo with the applied tension, and the significant 

decrement presented in the 0.2032m cables is not observed, which suggests that a short 

cable could have a greater end effects. From Fig. 3.4.1.5, it is evident that a greater 

tension leads to a higher vibration frequency, and a longer cable exhibits a lower 

vibration frequency. 
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Figure 3.4.1.4 Damping versus tension for cables at room temperature (a) 20.71turns/m (b) 41.42turns/m (c) 

62.13turns/m cables 
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Figure 3.4.1.5 Vibration frequency versus tension for cables at room temperature (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cable 
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3.4.1.2 Carbon Fiber Cables Tested at a Temperature of 4  

For different length, different configuration carbon fiber cables tested in a cold room with 

a temperature of 4 , Table 3.4.1.4 and Table 3.4.1.5 present the modal damping ratios 

and vibration frequencies, respectively. The time history responses for a 0.3048m, 20.71 

turns/m carbon fiber cable tested at a temperature of 4  and 333.75N pretension were 

recorded by the two accelerometers and shown in Fig. 3.4.1.6. Comparing these with the 

time history responses (Fig. 3.4.1.2) of the cable tested at room temperature, the time 

responses in Fig. 3.4.1.6 shows a quicker logarithmic rate of decay (in 0.05 second). In 

other words, a higher damping is presented for cable tested at a temperature of 4 . The 

corresponding spectrum data are shown in Fig. 3.4.1.7. 

Table 3.4.1.4 Cable damping at a temperature of 4  

Tension 

(N) 

Damping for 20.71turns/m cables 
(%) 

Damping for 41.42turns/m cables 
(%) 

Damping for 62.13turns/m cables 
(%) 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

111.25 5.95 3.53 2.58 4.92 2.58 2.35 4.37 1.88 1.58 

222.50 4.25 2.70 2.26 3.69 2.25 1.89 2.46 1.55 1.32 

333.75 3.57 1.98 1.92 2.74 1.89 1.65 1.72 1.23 1.13 

445.00 3.12 1.63 1.51 2.36 1.60 1.38 1.43 1.09 0.95 

578.50 2.71 1.55 1.45 1.95 1.46 1.07 1.30 1.03 0.81 

Table 3.4.1.5 Cable vibration frequency at a temperature of 4  

Tension 

(N) 

Frequency for 20.71turns/m cables 

(Hz) 
Frequency for 41.42turns/m cables 

(Hz) 
Frequency for 62.13turns/m cables 

(Hz) 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

111.25 360.53 267.38 162.64 356.08 262.27 131.68 360.49 242.03 118.04 

222.50 516.70 351.89 219.34 526.42 369.34 209.35 501.18 349.19 212.79 

333.75 613.04 460.92 283.06 612.85 444.31 262.32 591.01 430.68 266.96 

445.00 703.35 523.54 318.79 701.78 518.47 302.10 702.81 505.73 298.65 

578.50 796.57 588.25 360.05 783.16 580.32 344.19 796.47 563.62 367.58 
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Figure 3.4.1.6 Recorded time-history responses for a 0.3048m, 20.71turns/m carbon fiber cable at a 

temperature of 4  and 333.75N pretension (a) at 1/5 of cable length (b) at 3/ 4 of cable length 
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Figure 3.4.1.7 Spectral of signals for a 0.3048m, 20.71turns/m carbon fiber cable at a temperature of 4  

and 333.75N pretension (a) at 1/5 of cable length (b) at 3/ 4 of cable length  

Fig. 3.4.1.8 depicts the vibration damping versus tension for cables tested at a 

temperature of 4  , and Fig. 3.4.1.9 plots the variation of vibration frequency with 

tension. 
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Figure 3.4.1.8 Damping versus tension for cables at a temperature of 4    (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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Figure 3.4.1.9 Vibration frequency versus tension for cables at a temperature of 4   (a) 20.71turns/m (b) 

41.42 turns/m (c) 62.13turns/m cables 
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It is observed from Fig. 3.4.1.8 that cable damping decreases as tension increases. For 

cables in the length of 0.2032m, the damping shows a fast descendant as tension 

increases when tension is less than around 222.50N. For cables in the length of 0.3048m 

and 0.5080m, damping decreases slowly under the applied tension, the significant 

decrement observed in the 0.2032m cables was  not noticed, which suggests that the end 

effects on damping is greater for shorter cables. Besides, a slower damping decrement 

rate was noticed for cables at a temperature of 4   compared with cables at room 

temperature (20 ). The vibration frequency increases as tension increases and decreases 

as length increases as indicated in Fig. 3.4.1.9.  

3.4.1.3 Carbon Fiber Cables Tested in a Vacuum Chamber 

As regards the carbon fiber cables tested at 20  in a vacuum chamber, the identified 

cable vibration frequencies and modal damping ratios are listed in Table 3.4.1.6 and 

Table 3.4.1.7, respectively. The time history responses of a 20.71 turns/m, 0.3048m 

carbon fiber cable are presented in Fig. 3.4.1.10. From the figures, the time history 

responses show a slower decay than the cables in air. The corresponding spectrum signals 

are shown in Fig. 3.4.1.11, which gives a vibration frequency about 581.37 Hz.   

Table 3.4.1.6 Cable vibration frequency in a vacuum (-20 In. Hg) chamber 

Tension 

(N) 

Frequency for 20.71turns/m cables 
(Hz) 

Frequency for 41.42turns/m cables 
(Hz) 

Frequency for 62.13turns/m cables 
(Hz) 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

111.25 351.90 310.35 161.25 323.18 279.29 143.24 321.7 281.76 140.81 

222.50 481.72 413.36 214.78 466.96 359.82 226.24 464.29 356.29 210.82 

333.75 581.37 471.12 286.02 575.97 420.68 280.82 580.89 424.31 284.33 

445.00 705.72 518.26 319.62 660.10 498.45 313.83 657.14 491.28 305.97 

578.50 796.83 567.86 357.24 747.26 567.72 357.80 745.16 521.81 353.93 
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Table 3.4.1.7 Cable damping in a vacuum chamber (-20 in. Hg) 

Tension 

(N) 

 Damping for 20.71turns/m cables 
(%) 

Damping for 41.42turns/m cables 
(%) 

Damping for 62.13turns/m cables 
(%) 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

0.2032

m 

0.3048

m 

0.5080

m 

111.25 4.94 2.14 1.87 4.14 2.03 1.34 3.89 1.33 0.88 

222.50 3.62 1.94 1.24 2.62 1.51 0.92 1.90 1.08 0.66 

333.75 2.95 1.47 0.85 2.06 1.32 0.76 1.43 0.91 0.51 

445.00 2.73 1.16 0.65 1.67 1.13 0.60 1.25 0.72 0.45 

578.50 2.48 1.06 0.62 1.41 0.99 0.58 1.11 0.67 0.33 

   

 

Figure 3.4.1.10 Recorded time-history responses for a 0.3048m, 20.71turns/m carbon fiber cable in vacuum 

chamber with 333.75N pretension (a) at 1/5 of cable length (b) at 3/4 of cable length 
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Figure 3.4.11 Spectral of signals for a 0.3048m, 20.71turns/m carbon fiber cable in vacuum chamber with 

333.75N pretension (a) at 1/5 of cable length (b) at 3/4 of cable length 

The results presented in Table 3.4.1.6 and Table 3.4.1.7 are plotted in Fig. 3.4.1.12 and 

Fig. 3.4.1.13, respectively, where shows the trend of modal damping ratio and vibration 

frequency with the various tension forces.  
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Figure 3.4.1.12 Damping versus tension for cables in a vacuum chamber (a) 20.71turns/m (b) 41.42turns/m 

(c) 62.13turns/m cables 
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Figure 3.4.1.13 Vibration frequency versus tension for cables in vacuum chamber (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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As shown in Fig. 3.4.1.12, for cables tested in vacuum chamber, the vibration damping 

varies in the same way as cables tested at normal atmosphere, the damping decreases as 

tension increases, and a significant decrease was noticed for cables in the length of 

0.2032m when the tension is less than about 225.00N. Fig. 3.4.1.13 shows that the 

vibration frequency increases as cable tension increases and decreases as length increases.  

3.4.1.4 Stainless Steel Cable Tested at Room Temperature  

Stainless steel cables in the length of 0.3048m and in the diameter of 0.003175m were 

tested under different tensile force to investigate the variation of stainless steel cable 

damping with tension.  

Fig. 3.4.1.14 presents the variation of stainless steel cable damping with tension. The 

results showed that for the stainless steel cable, higher tension results in lower damping, 

which is similar to that observed by Seppa (1971), Ramberg and Griffin (1977), Raoof 

(1993b), Xu et al., (1998, 1999), Kim and Jeong (2005), Zheng et al., (2003), and 

Barbieri et al., (2004a, 2004b), and demonstrates the same trend as the carbon fiber 

cables.  

In addition, the modal damping ratios evaluated by the ‘half-power bandwidth’ method 

and the ‘logarithmic decrement’ method are shown in Fig. 3.4.1.14. From the figures, the 

modal damping ratios obtained in time domain agrees well with those evaluated in 

frequency domain, the difference is about 1-3%.  
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Figure 3.4.1.14 Variation of damping with applied tension 
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assumed that the damping matrix is proportional to the combination of mass and stiffness 

matrices as given by the expression of Eq. (3-4) (Chopra 2001): 

[ ]   [ ]   [ ]                                                           (3-4) 

Where: 

           [ ] = damping matrix of the vibration system 

           [ ]   mass matrix of the vibration system 

           [ ] = stiffness matrix of the vibration system 

             and   = the Rayleigh damping constants 

After orthogonal transformation and reduction to n-uncoupled equation, we can obtain 

the following:  

  {
           

 

           
                                                          (3-5) 

From Eq. (3-5), the following is obtained:  

     {
  

                

  
    

 

  
            

  
    

         
                                                  (3-6) 

Where:  

1 ,
2  = the first and the second circular vibration frequency of the tested cable 
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1 , 
2  

= the first and the second modal damping ratio of the tested cable  

1  and 2 can be determined from the spectrum analysis of cable vibration. 1 and 2  

can be determined using the ‘half-power bandwidth’ method. Before applying those 

values to Eq. (3-6), the values are smoothed by quadratic curve fitting. The values of   

and   for 0.3048m (20.71turns/m, 41.42turns/m and 62.13 turns/m) carbon fiber cables, 

and stainless steel cable were obtained by Eq. (3-6), the results are listed in Table 3.4.1.8 

and plotted in Fig. 3.4.1.15 and Fig. 3.4.1.16, respectively. From the plots, it can be 

observed that    initially increases as tension increases, and then decreases. In addition, 

Fig.3.4.1.16 shows that    decreases as tension increases for both carbon-fiber cables and 

the stainless steel cable.  

Table 3.4.1.8 Alpha and beta for the tested 0.3048m cables  

Tension 

(N) 

20.71turns/m carbon 

fiber cable 

41.42 turns/m carbon 

fiber cable 

62.13 turns/m carbon 

fiber cable 
Stainless steel cable 

Alpha Beta Alpha Beta Alpha Beta Alpha Beta 

111.25 -5.239 0.000027 -10.330 0.000029 -22.559 0.000028 24.252 0.000021 

222.50 1.734 0.000017 1.130 0.000016 -18.438 0.000015 28.452 0.000015 

333.75 5.337 0.000012 17.990 0.000009 -11.638 0.000010 29.676 0.000011 

445.00 0.834 0.000009 27.292 0.000006 -6.238 0.000007 27.023 0.000008 

578.50 18.208 0.000009 25.973 0.000006 -6.141 0.000007 18.784 0.000007 
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Figure 3.4.1.15 Relation curves of alpha with tension 

 

Figure 3.4.1.16 Relation curves of beta with tension 
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lower energy dissipation. The initial decrease in damping for short cable lengths could be 

due to greater end (boundary induced) effects for short cables. Concerning with the 

vibration frequency, as expected, a higher tension leads to a higher vibration frequency.  

3.4.2 Effect of Cable Length 

Some previously reported tests showed that damping decreases as cable length increases 

(Yu 1949, 1952, Barbieri et al., 2004a, 2004b); while others indicated that length has no 

significant effect on damping (Hard and Holben, 1967). This disparity may due to the 

difference of cable configuration and test apparatus. It is worthwhile to conduct some 

vibration tests on cables with different lengths to study the dependence of damping on 

length. Tests were performed using the experimental setup shown in Fig. 3.2.1 by 

modifying the location of the wooden components where the steel plates clamped. Cables 

in length of 0.2032m, 0.3048m, and 0.5080m with three different configurations 

(20.71turns/m, 41.42turns/m and 62.13turns/m) were tested at room temperature of 20  

and 4 , and in a vacuum chamber.  

3.4.2.1 Carbon Fiber Cables Tested at Room Temperature 

For carbon fiber cables tested at room temperature, the damping is plotted against cable 

length in Fig. 3.4.2.1. From Fig. 3.4.2.1, it is observed that damping has a significant 

decrement as length increases for cables shorter than 0.3m. Beyond this length, the 

decrement is small or negligible. In addition, for short cables (<0.3m), the decrement 

ratio of damping for cables under a tensile force less than 111.25N is about 2-3 times the 

decrement ratio for cables loading with  a tensile force more than 111.25N . 
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Figure 3.4.2.1 Cable damping versus length for cables at room temperature (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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3.4.2.2 Carbon Fiber Cables Tested at a Temperature of 4  

For carbon fiber cables tested in a cold room with temperature set at 4 , the damping of 

cables with different length and construction are plotted in Fig. 3.4.2.2. It is clear from 

Fig. 3.4.2.2 that damping initially decreases as length increases, and is unaffected by 

length for a longer cable. A significant decrement of cable damping is noticed for the 

short cable with length less than about 0.3m. 
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Figure 3.4.2.2 Cable damping versus length for cables at 4  (a) 20.71turns/m (b) 41.42turns/m (c) 

62.13turns/m cables 
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3.4.2.3 Carbon Fiber Cables Tested in a Vacuum Chamber 

Fig. 3.4.2.3 presents the damping for cables tested in a vacuum chamber, with different 

length and construction. From Fig.3.4.2.3, the variation of damping with length shows the 

same trend as the cables tested at room temperature and at a temperature of 4 . A longer 

cable has a lower damping, and a quicker decrement is presented for a shorter cables. 
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Figure 3.4.2.3 Cable damping versus length for cables in a vacuum chamber (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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In summary, the cable vibration damping decreases as length increases up to a point 

(0.3m) beyond which it is unaffected by cable length.   

3.4.3 Effect of Cable Lay Angle 

Review of the literature reveals that cable lay angle can significantly affect cable 

behavior. Experimental and theoretical results, such as Hobbs and Raoof (1984), 

Labrosse and Conway (1999), Raoof and Davies (2006) showed that cable damping 

increases as lay angle decreases. (Raoof, 1997) demonstrated that most of the overall 

characteristics of large-diameter spiral strands are dominated by the magnitude of the lay 

angles in various layers. Thus, an optimum design of cable damping can be achieved by 

controlling the magnitude of lay angle. However, such changes will inevitably affect 

other cable characteristics.  

The lay angle of a cable represented the construction of the cable. Here, we defined that 

the construction of a cable as the number of turns per meter. Three constructions of 

cables, 20.71turns/m, 41.42turns/m and 62.13turns/m, were considered in the tests. 

Untwisted strands were first fixed at one end, and then twisted the other end of the 

strands to form cables with different constructions.  

3.4.3.1 Carbon Fiber Cables Tested at Room Temperature 

The cable damping versus cable construction (turns/m) is plotted in Fig. 3.4.3.1. From 

Fig. 3.4.3.1, it is noticed that as the number of twists in the cable increases, damping 

decreases. In other words, damping decreases as  the lay angle increases,  which agrees 

with the conclusions by Hobbs and Raoof (1984), Labrosse and Conway (1999), Raoof 
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and Davies (2006). This could be because as the number of twist increases, the cable 

becomes tighter, hence reducing the movement and friction internal to the cable.  
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Figure 3.4.3.1 Cable damping versus cable construction for cables at room temperature (a) 0.2032m (b) 

0.3048m (c) 0.5080m cables  
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3.4.3.2 Carbon Fiber Cables Tested at a Temperature of 4  

Fig. 3.4.3.2 presents the damping versus construction for cables tested at a temperature of 

4 . The plots show that the damping decreases as the number of twists in the cable 

increases. The cables with greater lay angle exhibit lower damping.  
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Figure 3.4.3.2 Cable damping versus cable construction for cables at a temperature of 4  (a) 0.2032m (b) 

0.3048m (c) 0.5080m cables  
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3.4.3.3 Carbon Fiber Cables Tested in a Vacuum Chamber 

Fig. 3.4.3.3 plots the damping versus cable configuration for cables tested in a vacuum 

chamber. According to the results, the variation of cable damping with lay angle is similar 

to that of cables tested at temperature of 20  and 4 , the damping decreases as the 

number of twists in the cable increases.  
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Figure 3.4.3.3 Cable damping versus cable construction for cables in a vacuum chamber (a) 0.2032m (b) 

0.3048m (c) 0.5080m cables  
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In summary, from the tests, it is observed that cable damping increases as lay angle of the 

cable increases. This could be because as the number of twist increases, the cable 

becomes tighter, hence reducing the movement and friction internal to the cable. 

3.4.4 Effect of Air Pressure 

The fluid in which a structure is immersed can provide other damping mechanism. To 

investigate the effect of air pressure on cable damping, the experimental setup shown in 

Fig. 3.2.1 was modified to test the carbon fiber cable damping by excluding air from the 

chamber in the test. The wooden frame in Fig. 3.2.1 was sealed using plastic plates at the 

top and the bottom (Fig. 3.4.4.3). The foam tape (Fig. 3.4.4.6) was used between the 

plastic plates and the wooden frame to reduce leakage. A pressure gauge (Fig. 3.4.4.1) 

was connected to the chamber at the side of the chamber to measure the air pressure, 

shown as Fig. 3.4.4.4. The vacuum of the chamber (-20 in Hg), was achieved by pumping 

the air out of the chamber using the pump shown in Fig. 3.4.4.2.  

There is a tiny hole at the bottom of the chamber which allows the finishing line (Fig. 

3.4.4.5) to pass through. A weight (one pound) was connected to the cable using the 

fishing line, and the cable vibration was excited by cutting off the fishing line using a 

scissor and releasing the weight. The test results were compared to the modal damping 

ratios of cables tested in air to analyze what is the effect of air pressure on damping.  
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Figure 3.4.4.1 Pressure gauge 

   

Figure 3.4.4.2 Air pumper 
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Figure 3.4.4.3 Vacuum chamber  

 

Figure 3.4.4.4   Connection between pressure gauge and chamber  

 

Figure 3.4.4.5 Fishing line   
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Figure 3.4.4.6 Foam tape   

Table 3.4.4.1 lists the damping of a 0.3048m, 20.71turns/m carbon fiber cable tested in 

the vacuum chamber. The variance of the results is 6.79×10
-3

, which shows a good 

repetition of the tests. The comparison of damping in air and in vacuum is shown in 

Table 3.4.4.2, Table 3.4.4.3 and Table 3.4.4, for 0.2032m, 0.3048m and 0.5080m carbon 

fiber cables, respectively.  

Table 3.4.4.1 Damping in vacuum chamber (0.3048m, 20.71turns/m with 333.75N pretension) 

Data No 1 2 3 4 5 6 7 

Damping estimated with data recorded 

by accelerometer at 3/4 of cable length 

 (%) 

2.12 2.12 1.99 2.17 2.11 2.23 2.25 

Damping estimated with data recorded 

by accelerometer at 1/5 of cable length 

(%) 

2.10 2.09 1.96 2.1 2.18 2.22 2.20 

Damping value of the tested cable 2.14 

Variance 6.79×10
-3
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Table 3.4.4.2 Comparison of damping (0.2032m carbon fiber cables) 

Tension 

(N) 

Damping for 20.71turns/m cables 
(%) 

Damping for 41.42turns/m cables 
(%) 

Damping for 62.13turns/m cables 
(%) 

Normal Vacuum 
Decrement 

rate (%) 
Normal Vacuum 

Decrement 
rate (%) 

Normal Vacuum 
Decrement 

rate (%) 

111.25 5.50 4.94 -10.24 4.59 4.14 -9.85 4.20 3.89 -7.43 

222.50 3.79 3.62 -4.38 3.07 2.62 -14.56 2.40 1.90 -20.78 

333.75 3.18 2.95 -7.23 2.53 2.06 -18.77 1.73 1.43 -17.51 

445.00 3.06 2.73 -10.85 2.35 1.67 -29.02 1.23 1.25 1.46 

578.50 2.60 2.48 -4.81 2.18 1.41 -35.46 1.18 1.11 -5.59 

 

Table 3.4.4.3 Comparison of damping (0.3408m carbon fiber cables) 

Tension 

(N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

Normal Vacuum 
Decrement 

rate (%) 
Normal Vacuum 

Decrement 

rate (%) 
Normal Vacuum 

Decrement 

rate (%) 

111.25 2.42 2.14 -11.40 2.27 2.03 -10.40 1.68 1.33 -20.71 

222.50 2.11 1.94 -7.87 1.80 1.51 -16.06 1.24 1.08 -13.00 

333.75 1.83 1.47 -19.51 1.68 1.32 -21.37 1.08 0.91 -15.56 

445.00 1.45 1.16 -20.07 1.39 1.13 -18.88 0.97 0.72 -25.46 

578.50 1.40 1.06 -24.43 1.36 0.99 -27.11 0.90 0.67 -25.14 

 

Table 3.4.4.4 Comparison of damping (0.5080m carbon fiber cables) 

Tension 

(N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

Normal Vacuum 
Decrement 

rate (%) 
Normal Vacuum 

Decrement 

rate (%) 
Normal Vacuum 

Decrement 

rate (%) 

111.25 2.22 1.87 -15.81 1.54 1.34 -12.79 1.14 0.88 -22.46 

222.50 1.81 1.24 -31.77 1.11 0.92 -17.57 0.96 0.66 -31.35 

333.75 1.38 0.85 -38.26 0.94 0.76 -19.26 0.54 0.51 -6.11 

445.00 1.14 0.65 -42.87 0.69 0.60 -12.46 0.50 0.45 -9.20 

578.50 1.00 0.62 -37.60 0.70 0.58 -17.29 0.36 0.33 -7.78 
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Fig. 3.4.4.7 to Fig. 3.4.4.9 showed the comparison of cable vibration damping tested in 

the vacuum chamber and in air (normal) for 0.2032m, 0.3048m, 05080m carbon fiber 

cables, respectively. It demonstrated that cable vibration damping decreased as air 

pressure decreased. Typically, the decrement rate is about 20%, with the maximum of 

75%. The damping has a greater decrement when tension is small. This is because the 

void of the cable is larger when tension is smaller. In addition, the cables with small 

number of turns/m have greater decrement in damping.  
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Figure 3.4.4.7 Comparison of damping for 0.2032m carbon fiber cables in air and in vacuum (a) 

20.71turns/m (b) 41.42turns/m (c) 62.13turns/m cables  
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Figure 3.4.4.8 Comparison of damping for 0.3048m carbon fiber cables in air and in vacuum (a) 

20.71turns/m (b) 41.42turns/m (c) 62.13turns/m cables 
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Figure 3.4.4.9 Comparison of damping for 0.5080m carbon fiber cables in air and in vacuum (a) 

20.71turns/m (b) 41.42turns/m (c) 62.13turns/m cables 
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3.4.5 Effect of Support and Test Apparatus 

Yamaguchi and Fujino (1988) investigated the effect of support flexibility on cable 

damping by the free-oscillation of suspended cables under various support conditions. 

The results showed that damping decreases as the support flexibility increases.  

To investigate the effect of the test apparatus, including the support and the clamping 

system on cable damping, the experimental setup (Fig. 3.2.1) was modified by bracing 

the cable supports and the corners of the wooden frame, as shown in Fig. 3.4.5.1 and Fig. 

3.4.5.2, respectively.  

 

Figure 3.4.5.1 Details of the stiffened support  
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Figure 3.4.5.2 Details of the stiffened frame corners  

A 0.3048m carbon fiber was tested with the new experimental set-up, and the damping 

was compared to the damping tested using the old experimental set-up (before stiffening). 

The results were compared in Fig. 3.4.5.3, which indicated that the effect of the test 

apparatus and fixtures is minimal, and the difference is within 1.5% percent.  

Table 3.4.5.1 Vibration damping comparison 

Tension  

 (N) 

Damping for 41.42 turns/m cables 

(%) 

Previous test After stiffening Before stiffening 

111.25 2.27 2.23 2.30 

222.50 1.80 1.74 1.77 

333.75 1.68 1.62 1.64 

445.00 1.39 1.45 1.42 

578.50 1.36 1.34 1.38 
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Table 3.4.5.2 Vibration frequency comparison 

Tension 

(N) 

Frequency for 41.42 turns/m cables 

(Hz) 

Previous test After stiffening Before stiffening 

111.25 280.96 279.30 272.99 

222.50 369.40 364.72 360.37 

333.75 430.00 415.42 426.55 

445.00 500.49 489.86 484.61 

578.50 534.65 543.76 545.42 

 

 

 

Figure 3.4.5.3 Comparison of damping for cable tested with stiffened and unstiffened setup 
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Figure 3.4.5.4 Vibration frequency with tension 

In addition, to investigate if the test is repeatable, a 0.3048m, 41.42 turns/m carbon fiber 

cable was tested using the old experimental setup (before stiffening), and the results were 

compared to the previous test (test done about one year ago). From the plots in Fig. 

3.4.5.3 and Fig. 3.4.5.4, the results indicated that the difference is within 1.5%, which 

showed that the test is repeatable, and the results are reliable.  

3.4.6 Effect of Temperature  

Temperature is usually considered as one of the most important environmental factors 

affecting mechanical properties of composite materials. Due to the motion of the space 

structure and sun, the cable structures will be subjected to a large variation of temperature 

in space. Thus, it is necessary to investigate the effect of temperature on cable damping. 

The available research is very scarce. The objective of these tests is to investigate the 

effect of temperature on damping and frequency properties of carbon fiber cables.  
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For our experiments carbon fiber cables of different length and different configuration 

were tested at room temperature (20 ) and in a freezer room at the University of New 

Mexico. The temperature of the freezer room was kept at 4 . The control system for the 

room temperature is shown in Fig. 3.4.6.1.  

 

Figure 3.4.6.1 Control system of the freezer room  

Table 3.4.6.1, Table 3.4.6.2 and Table 3.4.6.3 list the cable modal damping ratios at room 

temperature and at a temperature of 4°C. Corresponding plots are shown in Fig. 3.4.6.2 to 

Fig. 3.4.6.3. It is observed that cable damping increases as the ambient temperature 

decreases, and the increment is more significant for a longer cable. Typically, for the 

0.2032m long carbon fiber cables tested at 4 , the damping increment is about 1-10% 

(maximum, 20.16%); and for cables in the length of 0.3048m, the damping increment is 

about 10%-15% (maximum, 45.87); while the cable in length of 0.5080m, the damping 
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increment  is about 30-70% ( maximum 124%). This increment could be due to the 

increase of moisture of the cable.  

Table 3.4.6.1 Comparison of damping for 0.2032m cables at different temperatures  

Tension  

(N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

20 
o
C 4 

o
C 20 

o
C 4 

o
C 20 

o
C 4 

o
C 

111.25 5.50 5.95 4.57 4.92 4.20 4.37 

222.50 3.79 4.25 3.07 3.69 2.40 2.46 

333.75 3.18 3.57 2.53 2.74 1.63 1.72 

445.00 3.06 3.12 2.35 2.36 1.36 1.43 

578.50 2.60 2.71 1.94 1.95 1.18 1.30 

Table.3.4.6.2 Comparison of damping for 0.3408m cables at different temperatures  

Tension  

 (N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

20 
o
C 4 

o
C 20 

o
C 4 

o
C 20 

o
C 4 

o
C 

111.25 2.42 3.53 2.22 2.58 1.68 1.88 

222.50 2.11 2.70 1.83 2.25 1.34 1.55 

333.75 1.72 1.98 1.64 1.89 1.08 1.23 

445.00 1.45 1.63 1.39 1.63 0.97 1.09 

578.50 1.40 1.55 1.36 1.46 0.90 1.03 

Table.3.4.6.3 Comparison of damping for 0.5080m cables at different temperatures  

Tension  

(N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

20 
o
C 4 

o
C 20 

o
C 4 

o
C 20 

o
C 4 

o
C 

111.25 2.22 2.58 1.54 2.35 1.14 1.58 

222.50 1.81 2.26 1.11 1.89 0.96 1.32 

333.75 1.38 1.92 0.94 1.65 0.55 1.13 

445.00 1.14 1.51 0.68 1.38 0.50 0.85 

578.50 1.00 1.15 0.70 1.07 0.36 0.81 
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Figure 3.4.6.2 Comparison of damping for 0.2032m cables at different temperature (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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 Figure 3.4.6.3 Comparison of damping for 0.3048m cables at different temperature (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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Figure 3.4.6.4 Comparison of damping for 0.5080 cables at different temperature (a) 20.71turns/m (b) 

41.42turns/m (c) 62.13turns/m cables 
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3.4.7 Effect of Sensor Mass 

The effect of sensor mass on cable damping was studied by testing cables of length 

0.3048m in two different configurations, with or without the second accelerometer at 1/5 

length.  

The comparison of damping for cables tested in the two different configurations is 

presented in Table 3.4.7.1, and the comparison of vibration frequency is presented in 

Table 3.4.7.2. Fig. 3.4.7.1 shows that without the additional mass of the second 

accelerometer, the damping values are slightly lower; While there is a small increase in 

damping value when the second accelerometer is present, this difference (typically 1-4% 

range, with a maximum of 10%) is very small compared to the large (factor of 2-4) 

differences due to variation of tension, cable length, and # of turns shown in the previous 

sections, which is the focus of this work. The small increment of damping due to the 

additional mass could be explained as: the additional mass displays movements which are 

contrary to those of the cable, and the contrary movement causes inertial forces that 

compensate the cable movements by depriving the vibration energy from the system, and 

lead to the increment of damping.  
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Table 3.4.7.1 Comparison of damping for cables with one and two accelerometers 

Tension 

(N) 

Damping for 20.71turns/m cables 
(%) 

Damping for 41.42turns/m cables 
(%) 

Damping for 62.13turns/m cables 
(%) 

two  

accelerometers 

one 

accelerometer 

two  

accelerometers 

one 

accelerometer 

two  

accelerometers 

one 

accelerometer 

111.25 2.42 2.45 2.27 2.24 1.68 1.74 

222.50 2.11 1.92 1.80 1.65 1.34 1.41 

333.75 1.80 1.76 1.68 1.55 1.08 1.09 

445.00 1.47 1.38 1.39 1.38 0.97 0.99 

578.50 1.40 1.24 1.36 1.19 0.90 0.88 

 

Table 3.4.7.2 Comparison of vibration frequency for cables with one and two accelerometers 

Tension 

(N) 

Frequency for 20.71turns/m cables 
(Hz) 

Frequency (Hz)- 41.42turns/m Frequency(Hz)- 62.13turns/m 

two 

accelerometers 

one 

accelerometer 

two 

accelerometers 

one 

accelerometer 

two 

accelerometers 

one 

accelerometer 

111.25 309.87 322.66 280.96 272.91 266.82 280.70 

222.50 392.63 393.74 369.02 376.11 360.33 359.81 

333.75 458.67 476.41 430.00 456.46 418.68 413.82 

445.00 517.74 532.12 500.49 513.81 485.62 491.92 

578.50 554.68 562.64 534.65 571.83 502.50 529.47 
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Figure 3.4.7.1 Comparison of damping for 0.3048m cables with one accelerometer and two accelerometers 

(a) 20.71 turns/m (b) 41.42 turns/m (c) 62.13 turns/m cables 
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Figure 3.4.7.2 Comparison of vibration frequency for 0.3048m cables with one accelerometer and two 

accelerometers (a) 20.71 turns/m (b) 41.42 turns/m (c) 62.13 turns/m cables 
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In addition, damping for 0.3048m, 41.42 turns/m carbon fiber cables tested at room 

temperature (test 1), at temperature of 4  (test 2), in vacuum (test 3), with stiffened 

experimental apparatus (test 4), with one accelerometer (test 5) was compared in Fig. 

3.4.7.3. Typically, it shows that the order of decreasing effect on cable damping is: the 

vacuum condition, the temperature, the additional sensor mass, and the stiffness of the 

experimental setup.  

Table 3.4.7.3 Damping of a 41.42 turns/m, 0.3048m carbon fiber cable tested under different conditions 

Tension 

(N) 
Test 1 Test 2 Test 3 Test 4 Test 5 

(2-1)/1 

(%) 

(3-1)/1 

(%) 
(4-1)/1 

(5-1)/1 

(%) 

111.25 2.27 2.58 2.03 2.30 2.24 13.66 -10.57 1.32 -1.32 

222.50 1.80 2.25 1.51 1.77 1.65 25.00 -16.11 -1.67 -8.33 

333.75 1.68 1.89 1.32 1.64 1.55 12.50 -21.43 -2.38 -7.74 

445.00 1.39 1.60 1.13 1.42 1.38 15.11 -18.71 2.16 -0.72 

578.50 1.36 1.46 0.99 1.38 1.19 7.35 -27.21 1.47 -12.50 

 

 

Figure 3.4.7.3 Damping for a 41.42 turns/m, 0.3048m carbon fiber cable under different conditions  
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3.5 Conclusions 

In this chapter, an experimental setup was provided to measure the cable vibration 

damping. Cables in different length, different configuration, ambient temperature (20  

and 4 ) and air pressure (normal and vacuum) were tested under five different cable 

tensile forces. The effects of different factors on damping were analyzed and discussed, 

and the following conclusions have been reached:  

a) For carbon fiber and stainless steel cables tested under different tension forces 

(111.25N, 222.50N, 333.75N, 445.00N and 578.50N), damping decreases as 

tension increases within the tension force considered in this research. The same 

conclusion was obtained by Seppa (1971), Ramberg and Griffin (1977), Raoof 

(1993b), Xu et al., (1998, 1999), Kim and Jeong (2005), Zheng et al., (2003), and 

Barbieri et al., (2004a, 2004b) et al.; the decrease in damping is caused by the 

increased cable interwire contact force, which made the occurrence of interwire 

slippage getting harder, and causes lower energy dissipation. For carbon fiber 

cables in the length of 0.2032m, damping has a significant decrement as tension 

increases when tension is less than a certain value (say 222.50N). But this 

significant variation is not noticed for the 0.3048m and 0.5080m carbon fiber cables, 

which indicates that this is attributable to the end effect for short cables; 

b) Cables in three different lengths (0.2032m, 0.3048m and 0.5080m) were tested, 

typically, damping decreases as length increases. A significant decrement in 

damping was observed initially as length increases when length is less than about 
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0.3m, subsequently the decrement is slow or the damping has a tendency to be 

unaffected by length; 

c) Carbon fiber cables in three different configurations (20.71turns/m, 41.42turns/m 

and 61.23turns/m) were tested, as the number of turns/m increases, damping 

decreases, in other words, as lay angle of the cable increases, damping decreases. 

The conclusion is the same as that of steel cables tested by Hobbs and Raoof (1984), 

Labrosse and Conway (1999), Raoof and Davies (2006) et al., and this could be 

because as the number of twist increases, the cable becomes tighter, and reducing 

the movement and friction internal to the cable; 

d) The carbon fiber cables tested in vacuum presented a typically 20% lower damping 

than the cables tested in air. For cables in the length of 0.2032m, a significant 

decrement of cable damping was noticed when the applied tension is less than a 

certain value (say 222.5N). Typically, greater decrement for cables with small 

tension and small number of turns/m was noticed; 

e) The stiffness of the test apparatus and the supports were adequate and did not 

significant influence the test results; 

f) A lower ambient temperature gives a higher cable damping, and the variation is 

more for a longer cable;  

g) The additional sensor mass increases cable damping, but the effect is minimal, 

comparing with the effects of tension, configuration and temperature on damping.  

h) Rayleigh damping factor   initially increases as tension increases, and then 

decreases, and damping factor   decreases as tension increases.  
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Chapter 4 

Finite Element Simulation of Cable 

Vibration 

In this chapter, first, previous research on cable analysis using the Finite Element Method 

(FEM) is reviewed. Then, vibration frequency and the time history response of carbon 

fiber cable are obtained using the FEM-based modal analysis and transient analysis in 

ANSYS13.0 using COMBIN14 and MSASS21 elements. The FEM analysis results are 

then compared with the theoretical and experimental ones. 

4.1 Review of Literature in FEM Analysis of Cables  

Carlson and Kasper (1973) built a simplified model for armored cables using the finite 

element method. Then, Cutchins et al. (1987) studied a cable damping isolator using the 

finite element method. Yamaguchi (1992) analyzed a cable–tie system using the finite 

element method. Chiang (1996) modeled a small length of single strand cable for 

geometric optimization purposes, however, a large number of elements were required for 

an accurate modeling, and the computational cost is too expensive. To decrease the 

computational cost, Jiang et al., (1999) provided a concise finite element model by 

considering the structural and loading symmetries. In this analysis, the contacts between 

the core and helical wires were simulated using surface contact elements. However, while 

the usage of the surface-to-surface contact can provide more accurate results, it is time 

consuming. Armin and Habib (1998) applied the finite difference method to consider the 
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effect of cable tension, bending stiffness and end conditions on cable vibration. Nawrocki 

and Labrosse (2000) established a finite element model of a simple straight wire rope 

strand to study the interwire motions. All the possible cases of interwire contacts were 

studied, and the results showed that rolling and sliding have no effect on the overall 

behavior of cables in axial loading, and the cable response was governed by the interwire 

pivoting. Wu et al., (2006) using cable finite elements and the Rayleigh element damping 

studied the parametric vibration of stay cables of cable-stayed bridges. Casciati and 

Ubertini (2007) established a nonlinear finite element model to simulate the vibration of 

shallow cables and demonstrated the capability to enforce semi-active control using 

tuned-mass dampers. Ghoreishi et al., (2007) determined the validity domain of analytical 

models of synthetic wire rope and steel strand using 3D finite element model. Sometimes, 

the accurate mechanical cable damping models which considered the flexural hysteresis 

between cable strands are not useful towards large-scale engineering applications because 

of the complex mathematical solution. Moreover, it is difficult to implement the 

theoretical model in the finite element simulation. To address these difficulties, Zhu and 

Meguid (2006) developed a framework and numerical tool using the curved beam 

element to predict the dynamic response of low tension cable systems. The term ‘low 

tension cable’ refers to a class of cable systems where the cable is subjected to small 

and/or dynamically fluctuating tension which may vanish anywhere along the cable. Zhu 

and Meguid (2007) modeled slack wire cables using curved beam element with large 

displacement and rotation, and simulated the damping as homogenized Rayleigh damping 

in the nonlinear finite element simulation. The finite element prediction of the cable 

motion agrees well with their experimental measurement.  
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In summary, though different finite element models have been established to investigate 

cable behavior, most of the available cable analysis using FEM focuses on the static 

behavior of steel cable, the investigation of cable dynamic behaviors and cable damping 

using FEM is very scarce. It is the objective of this work to provide a simple but effective 

method to simulate the cable vibration and damping, and to compare the results against 

our experiments. 

4.2 Finite Element Analysis of Cable Vibration  

In this dissertation, the modal analysis was implemented to compute the vibration 

frequency and the transient analysis was used to determine the time history responses of 

the carbon fiber cable. 

In the modal analysis and the transient analysis, a simple straight carbon fiber cable was 

modeled using the COMBIN14 and the MASS21 elements, as shown in Fig. 4.2.1 and 

Fig. 4.2.2, respectively. The COMBIN14 element was chosen as a longitudinal spring 

damper, which is a uniaxial tension-compression element with up to three degrees of 

freedom at each node: translations in the nodal x, y, and z directions. No bending or 

torsion is considered. Because the spring damper element has no mass, additional mass 

elements are needed. The mass was added by using the MASS21 elements, which are 

point elements having up to six degrees of freedom: translations in the nodal x, y, and z 

directions and rotations about the nodal x, y and z axes.  
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Figure 4.2.1 COMBIN14 Spring-Damper (ANSYS help)  

 

Figure 4.2.2 MASS21 Structural Mass (ANSYS help) 

4.2.1 Modal Analysis 

Modal analysis of cables was conducted to determine the natural vibration frequency. 

20.71 turns/m carbon fiber cables in different length (0.2032m, 0.3048m, and 0.5080m) 
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were analyzed under different tensile force (111.25N, 222.50N, 333.75N, 445.00N and 

578.50N), and the results were compared with the theoretical results and the experimental 

results.  

The loads in the FEM analysis were defined and applied in the same order as in the 

experiments. First, the left end of the cable was constrained in all translation and rotation, 

and then a tension was applied at the left end of the cable. After applying tensile force, 

the right end of the cable was fixed. A 0.3048m carbon fiber cable was meshed with 60 

COMBIN14 elements and 59 MASS21 elements. Fig. 4.2.3 gives a finite element 

representation of the cable.  

 

Figure 4.2.3 Finite element representation of a carbon fiber cable 

Table 4.2.1.1, Table 4.2.1.2 and Table 4.2.1.3 list the vibration frequencies from the finite 

element analysis, the theoretical analysis for a taut string and the tests for 0.2032m, 

0.3048m and 0.580m carbon fiber cables, respectively. In the previous study (Irvine, 

1981, Kashani, 1989), the first circular natural frequency of a taut string is given by Eq. 

(4-1):  

 1
H

l m


                                                                 (4-1) 



116 
 

Where: l is the length of the cable, H is the tension, and m is the mass per unit length of 

the cable.  

Table 4.2.1.1 Vibration frequency from different methods (0.2032m, 20.71 turns/m carbon fiber cable)  

Tension  

(N) 

Theoretical results 

(Hz) 

Experimental results 

 (Hz) 

FEM Analysis results 

 (Hz) 

111.25 375.78 365.71 396.24 

225.00 534.41 517.79 560.37 

333.75 650.88 625.85 686.31 

445.00 751.57 694.65 792.48 

578.50 856.92 797.60 903.57 

 

Table 4.2.1.2 Vibration frequency from different methods (0.3048m, 20.71 turns/m carbon fiber cable) 

Tension 

 (N) 

Theoretical results 

 (Hz) 

Experimental results 

 (Hz) 

FEM Analysis results 

 (Hz) 

111.25 264.78 309.87 275.00 

225.00 374.46 392.63 375.00 

333.75 458.62 458.67 460.20 

445.00 529.57 517.74 525.00 

578.50 603.80 554.68 600.00 

Table 4.2.1.3 Vibration frequency from different methods (0.5080m 20.71 turns/m carbon fiber cable) 

Tension  

(N) 

Theoretical results  

(Hz) 

Experimental results 

 (Hz) 

FEM Analysis results  

(Hz) 

111.25 158.86 159.62 158.50 

225.00 224.67 225.82 224.15 

333.75 275.17 263.45 274.52 

445.00 317.74 308.86 316.99 

578.50 362.27 355.53 361.43 

 

Fig. 4.2.1.1 to Fig. 4.2.1.3 present the cable vibration frequency versus tension, the 

results show that the vibration frequency increases as tension increases, and the finite 

element solution closely matches the theoretical results, and the vibration frequency 

obtained from FEM analysis is about 2-4% higher than the test results. This difference 
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could come from the mass per unit length used in the FEM analysis is smaller than the 

exact mass per unit length. The results demonstrated that the modeling of cable with the 

COMBIN14 and MASS21 elements is applicable to obtain a good prediction of the 

cable’s natural vibration frequency. For the cables with other configurations, this model 

can be easily modified by replacing the appropriate parameters (density, cross-sectional 

area etc.) of the model. 

 

Figure 4.2.1.1 Vibration frequency from different methods (0.3048m, 20.71 turns/m carbon fiber cable) 

 

Figure 4.2.1.2 Vibration frequency from different methods (0.5080m, 20.71 turns/m carbon fiber cable) 
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Figure 4.2.1.3 Vibration frequency from different methods (0.2032m, 20.71 turns/m carbon fiber cable) 

4.2.2 Transient Dynamic Analysis 

Transient dynamic analysis using the Finite Element Method (FEM) was used to explore 

the feasibility of using Rayleigh damping parameters to obtain the time history response 

of a vibrating cable. A 0.3048m, 20.71turns/m carbon fiber cable was investigated. The 

cable was modeled with COMBIN14 and MASS21 elements, as shown in Fig. 4.2.2.1.  

 

Figure 4.2.2.1 Finite element representation of a cable 
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carefully selected on the basis of ≈1/20 of the period to allow the initial step acceleration 

change to be followed reasonably well and to enhance the accuracy of analysis. The 

experimentally determined damping constants for this cable are α=5.377 and β=0.000012, 

as listed in Table 3.4.1.8. The loads in the finite element model were applied in the same 

order as the experiments. The cable was first fixed at the left end, and then a pretension 

force H was applied to the right end of the cable. After applying the pretension force H, 

the right end of the cable was fixed. Then an impulse load F was applied at the center of 

the cable for the transient analysis.  

The FEM simulated time history response and the experimental recorded time history 

response of the nodes at one fifth and three quarters of the cable length are shown in Fig. 

4.2.2.2 and Fig. 4.2.3, respectively, for the 0.3048m, 20.71 turns/m carbon fiber cable 

tested with 333.75N pretension. Comparing the time history responses from different 

methods, it can be seen that the finite element simulation and the experimental 

measurements are in good agreement (has close amplitude peak and elapsed in about 35 

cycles). This demonstrates that the carbon fiber cable vibration damping can be modeled 

effectively with the selected elements and the Rayleigh damping.  



120 
 

 

 

Figure 4.2.2.2 Comparison of time history response (a) FEM result of node at 1/5 of cable length (b) 

experimental result of node at 1/5 of cable length 

 

-1500

-1000

-500

0

500

1000

1500

0.60 0.62 0.64 0.66 0.68 0.70

A
cc

e
le

ra
ti

o
n

 (
m

/s
2
) 

Time (s) (b) 

(a) 



121 
 

 

 

Figure 4.2.2.3 Comparison of time history response (a) FEM result of node at 3/4 of cable length (b) 

experimental result of node at 3/4 of cable length 
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4. 3 Conclusions  

A simple finite element modeling of straight carbon fiber cable using the COMBIN14 

and MASS21 elements is discussed. Modal analysis and transient dynamic analysis of 

carbon fiber cables show that the finite element simulation of cable vibration using the 

COMBIN14 and MASS21 elements provides good estimation of natural frequency and 

time history response, respectively. In addition, the Rayleigh damping is adequate for 

modeling carbon fiber cable damping.  

Though, the simple finite model presented can simulate the time history responses of the 

carbon fiber cable adequately, the cable interwire behaviors cannot be taken into account. 

Therefore, further work on the modeling of cable by considering the cable’s actual 

geometry and cable interwire behaviors is needed to give a more accurate estimation of 

cable vibration frequency and time history response. In addition, the effects of 

temperature and air pressure on damping needed to be considered in the FEM simulation. 
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Chapter 5 

Analytical Model of Cable Vibration 

Damping 

In this chapter, an analytical model of cable vibration damping is presented. The model is 

developed using simplified but physical realistic assumptions on material constitutive 

properties and geometric compatibility conditions. The proposed method and several 

related issues are discussed and compared with experimental data.  

5.1 Introduction  

Cables are commonly used as tension members in many engineering structures, such as 

the cable-stayed bridge, large span roofs, mooring systems, deployable space structures, 

etc. Existing analytical models appear to have concentrated on steel cables and much less 

attention has been paid to carbon fiber cables and their effects on the dynamic behavior 

of space structures. Recently, researchers attempted to include interwire friction and 

contact forces to their theoretical models. Some encouraging progress has been made by 

Claren and Diana (1996a, 1969b), who analyzed the internal damping of axially loaded 

stranded cables by introducing the slippage coefficient. However, no further work to 

formulate the cable internal damping and slippage coefficient was provided. Hobbs and 

Roof (1984) addressed the problem of energy dissipation in multilayered spiral strands, 

but simplified their model based on homogenization of the cable layers into orthotropic 

cylindrical sheets. The integration of friction forces and contact forces into the cable 
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damping mechanics remains a challenge. To simplify the problem, usually only one type 

of cable contact, cable core-wire contact or wire-wire contact, is considered, and 

interwire friction is neglected or assumed to be a constant. Sathikh (1989a, 1989b, 1989c), 

Labrosse and Conway (2000a, 2000b), Leech (1987, 2002) studied the interwire friction 

effects on seven-wire cables considering only the wire-core contact of the cable; Machida 

and Durelli (1973), Chi (1974a, 1974b), Knapp (1979), Kumar and Cochran (1987) 

investigated cable damping but neglected the effect of interwire friction. Huang and 

Vinogradov (1992) analyzed the dynamic behavior of a structural cable under cyclic 

tension using the ‘thin rod model’ and assuming constant friction. As a result, the 

friction-free models and constant friction models of cables are not appropriate to simulate 

the damping properties of cables. Moreover, if the strand does not have core or if the core 

radius were too small, the helical wires are in contact with each other along helical lines. 

Therefore, the wire-core contact or wire-wire contact model cannot correctly predict 

carbon fiber cable vibration damping. 

The present work aims at removing some of these assumptions and establishing a model 

by including the cable interwire contact and interwire friction to predict the damping 

properties of carbon fiber cables. The section is organized as follows: 

Step 1: Parameters related to the geometry of the cable and relevant assumptions are 

introduced.  

Step 2: The relevant simplifying assumptions are identified. 
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Step 3: The axial strain of the helical wires due to cable elongation and rotation are 

derived.  

Step 4: The consequent contact normal forces and the cable interwire frictional forces are 

thereafter included in the analytical model.  

Step 5: Using the energy dissipation principle, the formula for cable internal vibration 

damping is derived for the axially loaded carbon fiber cable.  

5. 2 Description of Cable Geometry  

The carbon fiber cables are assemblies of millions of IM7 fibers and are fabricated by 

twisting. For simplification, let us consider a 1+6 cable structure, as shown in Fig. 5.2.1, 

in which the cable has 1 central straight fiber core and 6 helical wires. It should be noted 

that this geometry usually represents the metallic cables, and the tested carbon fiber 

cables can be approximately represented by this geometry. The geometry of each helical 

wire is characterized by the pitch length, P, which is the reciprocal of twist per unit 

length, and the lay angle,  , measured with respect to the axis of the cable (Z axis). The 

helical wire centerline is then a helical curve of radius of   . Let    be the radius of the 

helical wires, and    the radius of the cable fiber core, then we have:  

                                                     (5-1) 

The pitch length of the cable was determined by (Costello, 1997) as: 

  
    

       
                                                     (5-2) 

Where:  
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   = initial radius of helical wires centerline   

   = radius of cable core 

   = radius of helical wires 

P = pitch length of helical wires 

  = initial lay angle of helical wires 

 

Figure 5.2.1 Cable geometry 

5. 3 Relevant Assumptions 

The following assumptions were made: 

a) Displacements and strains are assumed to be small; 

b) The cable wires have a coupling behavior between extension and twisting, and the 

helix angle variation is considered;  
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c) Although the carbon fiber cable was made with non-circular IM7 tows, the cable core 

is assumed to have a circular cross-section, and the helical wires are assumed to have 

elliptical cross-section due to the process of manufacture of the cables;  

d) The cable is considered to be comprising of a core and six helical wires. Both core 

helical wire interaction and interaction among helical wires are considered in the 

analysis; 

e) Effect of Poisson’s ratio and the contact deformation are considered.  

5. 4 Axial Strain of Helical wires  

In axial loading, with traction and torsion, the axial strain of each cable wire is assumed 

to have two parts: the first part results from the elongation of the structure, whereas the 

second part is due to its rotation. For small deformation, the strain of the cable wires can 

be expressed as:  

     
    

                                                       (5-3) 

Where: 

   = total strain of the helical wires along the tangent direction, t designates the 

tangent direction of the helical wires 

  
  = the tangential strain of the helical wires due to elongation 

   
  = the tangential strain of the helical wires due to rotation 
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5.4.1 Axial Strain due to Elongation 

Let    be the extension ratio of the deformed structure length to the initial structure length 

measured along the cable’s axis (z-axis), and    be the corresponding extension ratio for a 

helical wire whose initial and final radii are    and    , respectively, as shown in Fig. 

5.4.1.1, we have:  

   
  

 
                                                          (5-4) 

   
  

 
     

                                          (5-5) 

Where:  

  = initial length of the cable structure 

   = length of the deformed cable structure 

  = initial length of the helical wires 

  = length of the deformed helical wires 

 ,   = the initial and final angle that a helical wire sweeps out in a plane 

perpendicular to the axis of the cable.    
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Figure 5.4.1.1 Developed view of helical wire centerline 

As the helical wires are extended, the cable strands undergo a compaction of volume. The 

ratio of the deformed and un-deformed volume of the cable is defined as the compaction 

factor (CF), we have:   

   
  

 
 

  

    
 

 

   
 

   
  

 

   
                              (5-6) 

Where:  

V,   = the volume of the un-deformed and deformed cable  

CF= compaction factor of the cable 

       = radius of the un-deformed and deformed helical wires  

From Eq. (5-2), we have:  

     
    

 
                                                             (5-7)  
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Therefore, the pitch length in the deformed state can be determined by:  

                                                                         (5-8)  

From Eq. (5-7) and Eq. (5-8), the lay angle of the deformed state can be determined as:  

      
    

  
                                                              (5-9)  

The initial length of a cable helical wire with lay angle   is:  

            
 

     
                                                                (5-10) 

From Eq. (5-4), the axial length    corresponding to the deformed state is:  

                                                                     (5-11) 

Hence, the corresponding helical wire length in the deformed state is:  

   
  

      
 

    

      
                                              (5-12)  

Where:  

  =lay angle of the deformed helical wires 

Using Eq. (5-5), Eq. (5-9), Eq. (5-10) and Eq. (5-12), the helical wire extension ratio can 

be expressed as:  

             
     

       
                                                       (5-13) 

  
    

       
     

  
                                        (5-14)  
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From Eq. (5-5) and Eq. (5-14), the axial strain of the cable wires due to tension can be 

obtained as:  

  
  √         

     

  
                               (5-15) 

From Eq. (5-15), the axial strain of helical wires is a function of the initial lay angle, 

initial radius of helical wires centerline and the radius of deformed cable helical wires 

centerline. The lay angle can be determined from the cable construction defined in 

Chapter 3 (turns/m) using Eq. (5-7). The radius of the deformed cable helical wires 

centerline will be discussed in Section 5.5 by considering the contact deformation and 

Poisson’s ratio.  

5.4.2 Axial Strain due to Rotation 

A relative rotation     exists between the undeformed and deformed cable end section. 

The axial strain of the helical wires due to this rotation can be expressed as:  

  
  

  

 
                                                                   (5-16) 

Where:  

                                                            (5-17) 

Substituting Eq. (5-6), Eq. (5-10) and Eq. (5-17) into Eq. (5-16), the axial strain of the 

helical wires due to rotation can be expressed as:  
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  √  

  

√  

  

 
                                          (5-18) 

       
    

 
 

        

        
 

 

    
                                          (5-19)  

Where:  

         = the relative rotation of the helical wires 

Substituting Eq. (5-19) into Eq. (5-18), the axial strain due to rotation can be rewritten as:  

  
  

√  

√  
[
        

        
 

 

    
]                        (5-20) 

Where: 

    = the axial strain in the cable core  

Assuming small deformation:  

                                  |    |                                            (5-21) 

Hence       can be expressed as:  

                                               (5-22) 

The axial strain of a straight cable core    in Eq. (5-20) is therefore:  

                
    

 
       

     

    
                                     (5-23) 
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Substituting Eq. (5-22) into Eq. (5-23), and neglected the higher order terms, Eq. (5-22) 

can now be written as:  

                                                                 (5-24) 

From Eq. (5-9), we have:  

      
  
   

    
                                                            (5-25) 

      √
     

  
       

                                                   (5-26)  

Substituting Eq. (5-15), Eq. (5-20), Eq. (5-24) and Eq. (5-26) into Eq. (5-3), the total 

strain of the helical wires along the tangent direction can be written as:  

   √  
       

     

  
   √

  

  
[
 √  

                       

√  
  
   

    

 
 

    
] √

     

  
       

          (5-27) 

From Eq. (5-27), the total strain of the helical wires along the tangent direction can be 

determined as a function of the initial lay angle   , initial radius of helical wires 

centerline    , radius of the helical wires centerline of the deformed cable     , the 

compaction factor (CF) and the change of the lay angle   . Determination of     and    

are presented in the following section. 
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5. 5 Modeling Contact and Friction Forces 

5. 5.1 Radius of Deformed Helical Wires Centerline 

If Poisson’s ratio effects in the individual wires are considered, the radius of the 

deformed helical wire centerline becomes:  

                                                           (5-28) 

Where:  

 =Poisson’s ratio of the material  

Contact forces between cable wires result in deformation that reduces the radius of the 

helical wires and consequently reduces the equilibrium contact force per unit length and 

tension resulting in the wires corresponding to specific strand strains. If the contact 

deformation in the cable core and helical wires is considered, the final helical radius can 

now be written as:  

                                                  (5-29) 

Where    is the mutual approach of the cable core and cable helical wires, which can be 

determined from contact theory. The mutual approach between two parallel cylinders is 

given by Roark and Young (1975) as:  

   
     (    )

   
 
 

 
   

   

 
   

   

 
                        (5-30) 
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Therefore the final helical wire centerline radius     is: 

                        
     (    )

   
 
 

 
   

   

  
   

   

  
           (5-31) 

Where:  

   = transverse modulus  

5. 5.2 Interwire Contact and Friction 

Strands in cables may subject to core-wire, wire-wire or coupled core-wire and wire-wire 

contacts depending on the construction of the strand and the type of loading. The contact 

models may change from one model to the other depending on the loads and the 

deformation of the core and wires. Most of the literature on vibration damping analyzes 

the cable strand with either the core-wire contact or wire-wire contact. In this research a 

coupled core-wire and wire-wire contact is considered to understand the effect of 

interfacial forces on the cable vibration damping. Furthermore, the consideration of 

friction at the interface was also included in this model. In the portion where slip occurs 

the helix angle will change. This increase in helix angle under loads is determined from 

Eq. (5-22) to Eq. (5-24) by considering the small deformation:  

                                                             (5-32)  

In a simple cable, the contact zone between a helical wire and the core forms a narrow 

strip whose central line is a helix. This contact can be locally approximated as the contact 

between two parallel straight cylinders. Because the contact width is very small 
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compared with the wire radius, the Hertzian contact theory is applicable. The contact 

half-width between a core and a helix,     was determined by Labrosse and Conway 

(2000a, 2000b) as follows: 

     √
               

         
                                             (5-33) 

Similarly, the contact half width between two helical wires     is: 

     √
               

         
                                         (5-34) 

Where: 

     = the normal load per unit length between cable core and helical wires 

    = the contact half-width of cable core and helical wires contact 

     = the normal load per unit length between helical wires 

    = the contact half-width of helical wires contact 

E = Young’s modulus of the cable material  

5. 5.2.1 Contact Normal Load per Unit Length 

 Along the contact line between the helical wires, the normal distributed force      and 

the tangential distributed force    and   exist, as shown in Fig. 5.5.2.1. Furthermore, 

along the line of contact between the cable core and a helical wire, the normal distributed 

force      and the tangential distributed force    and Q act as shown in Fig. 5.5.2.1.  
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Figure 5.5.2.1 Distributed loads on a helical wire 

Where   is the contact angle, which defines the direction of the distributed contact 

load     , and is given by Costello and Phillips (1974) as the following:  
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}          (5-35)  

Where:  

m = the number of helical wires, equal to six for a 1+6 strand 

When slip between helical wires during the extension of the cable is considered, the 

tangential distributed forces between the core-wire and the wire-wire can be given by:  
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                                                       (5-36) 

Where:  

  = friction coefficient of the material 

As showed by Hobbs and Roof (1982), when the changes in helix angle and radius are 

small, the interwire distributed forces in the normal direction can be represented 

approximately as:  

                                                               (5-37) 

Where:  

     
                                                                     (5-38) 

Substituting Eq. (5-38) into Eq. (5-37), the distributed contact force between the cable 

core and helical wires, denoted by     , (Fig. 5.5.2.2) can be rewritten as:  

         
       

                                          (5-39) 

The contact force between the helical wires can be determined to be:  

      
    

     
 

   
       

  

       
                                  (5-40) 
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Figure 5.5.2.2 Contact force in cable 

5. 6 Determination of Vibration Damping 

An energy based method is used to evaluate the cable vibration damping. For low 

damping, the energy stored at two successive peak amplitudes,    and     , of a freely 

decay vibration is related to the loss factor by (Raoof and Huang, 1991): 

  
  

 
 

  
      

 

  
  

          

    
                                             (5-41) 

Where:  

  = loss factor of the system 

   = the energy dissipation per cycle  

U = the stored energy            

  ,     = two successive vibration amplitudes 
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The logarithmic decrement   of the cable system is given as (Chopra, 2001):  

         
  

    
                                                                      (5-42) 

For low damping, the following expression can be obtained:  

  
 

 
 

         

    
 

 

 

  

 
                                          (5-43) 

Then damping ratio of the cable system   is determined by:  

              
 

√      
 

  

 

√      
  

 
  

                                             (5-44) 

Considering two adjacent helical wires of an axially preloaded carbon fiber cable, sliding 

takes places while the tangential friction forces remains at    . The tangential relative 

displacement between central wires is estimated by Raoof (1991a), based on the 

parametric studies, and is given as: 

                                                                                                  (5-45) 

                                                   (5-46) 

Where:  

  =tangential relative displacement  

   = shear strain between cable wires associated with wire axial strain  

Then friction energy dissipation of helical wires is determined as:  
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                                                                                              (5-47) 

Where    is the contact normal force determined by Eq. (5-39), Eq. (5-40) and the 

associated contact half width, and m is the number of helical wires.  

The stored strain energy can be determined as:  

                                              ∫
 

 

 

 
    

                                                 (5-48) 

Assuming that the sinusoidal vibration profile is: 

                                                  
  

 
                                                (5-49) 

For small amplitude of vibration, axial tension can be approximated to be a constant, and 

the strain energy due to the tension can be expresses as:  

   
 

 
∫       

 

 
   

  

 

  

  
 ∫     

  

 
  

 

 
                   (5-50) 

Where:  

   = initial stored energy due to the applied tension force 

y = the assumed sinusoidal cable vibration profile 

  = vibration amplitude  

The stored energy of the cable is then expressed as:  

                                                                (5-51) 
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Then the damping can be determined using Eq. (5-44)-Eq. (5-51).  

The above mentioned procedure is further described in the form of a flow chart (Fig.  

5.6.1), the procedure was implemented using an iterative MatLab code. 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.1 Analysis flow chart  
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5. 7 Results and Discussion 

The carbon fiber cables tested in the laboratory were analyzed using the proposed 

approach. Table 5.7.1 shows the data pertinent to these cables. The length of cable is 

0.2032m, 0.3048m, and 0.5080m, respectively, and the transverse modulus of the cable is 

assumed as 6% of the longitudinal tensile modulus. The results of this analytical cable 

damping model is shown in Table. 5.7.2.  

Table 5.7.1 Cable properties 

Cable  

No 

Lay angle 

 (rad) 

Poisson's 

ratio 

Young's Modulus 

(Gpa) 

Helical centerline radius 

(m) 

Friction 

coefficient 

1 0.1207 0.3 2.76E+11 0.0004658 0.4 

2 0.2332 0.3 2.76E+11 0.0004562 0.4 

3 0.3328 0.3 2.76E+11 0.0004425 0.4 

Table 5.7.2 Theoretical analysis results of cable vibration damping 

Tension 

(N) 

Damping for 20.71turns/m cables 

(%) 
Damping for 41.42turns/m cables 

(%) 
Damping for 62.13turns/m cables 

(%) 

0.2032m 0.3048m 0.508m 0.2032m 0.3048m 0.508m 0.2032m 0.3048m 0.508m 

111.25 6.09 4.11 2.81 5.02 3.19 1.92 4.67 3.11 1.87 

222.50 3.72 2.52 1.77 2.89 1.82 1.09 2.62 1.75 1.05 

333.75 2.67 1.82 1.30 2.02 1.27 0.76 1.83 1.22 0.73 

445.00 2.09 1.42 1.02 1.56 0.98 0.59 1.40 0.93 0.56 

578.50 1.65 1.13 0.81 1.22 0.76 0.46 1.09 0.73 0.44 

 

Fig. 5.7.1 shows how the analytical results compare with the experimental data. The three 

Figures (Fig. 5.7.1 a-c) correspond to the three different cable construction (# of turns). In 

each Figure the variation of damping with applied tension and length of the cable is 

presented. From the figures, the analytical model is capable of capturing the trends on the 

variation of damping corresponding to each of the three independent variables (length, 

applied tension and construction/lay angle). 
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Figure 5.7.1 Comparison of cable damping (a) 20.71 turns/m (b) 41.42 turns/m, (c) 62.13turns/m cables 
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Fig. 5.7.1 shows that the analytical model captures the decrease in damping as tension 

increases.  Typically, the cable damping is higher in the present model compared with the 

experimental results for a low tension, whereas smaller damping is presented under high 

tension. This could be attributed to the transverse property of the cable wires. The 

modulus in the transverse direction is likely to increase as more tension is applied, which 

was not included in the analyses. 

The analytical damping results provided in Table 5.7.2 are presented in graphical form in 

Figures 5.7.2 and 5.7.3 against with cable construction and length, respectively. The 

trends compare very well with the test data presented earlier in Chapter 3.  
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Figure 5.7.2 Cable damping versus cable construction (a) 0.2032m (b) 0.3048m (c) 0.5080m cables  
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Figure 5.7.3 Cable damping versus length (a) 20.71 turns/m (b) 41.42turns/m (c) 62.13turns/m cables  
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To investigate if it is necessary to include the change of lay angle in the model, Fig. 5.7.4 

presents the theoretical identified damping with (       and without (        

consideration of the change of lay angle, and are compared with the test results. It shows 

that without taking into account of the change of lay angle, the analytical model 

underestimate cable damping (around 50% decrement ratio).  
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Figure 5.7.4 Comparison of damping (with and without consideration of change of lay angle) (a) 20.71 

turns/m, 0.2032m (b) 20.71turns/m, 0.3048m (c) 20.71turns/m, 0.5080m cables 
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Fig. 5.7.5 shows the sensitivity of the analytical value of cable damping to the Poisson’s 

ratio. It is notable that the damping values are not very sensitive to the Poisson’s ratio for 

small and reasonable assumptions (0.3 used in this analysis, typical of carbon fibers). 

With a higher Poisson’s ratio, the flattening of the cable causes more contact and friction 

between cable wires which leads to higher energy dissipation, as shown in Eq. (5-31).  

 

 

Figure 5.7.5 Cable damping versus Poisson’s ratio (20.71 turns/m, 0.2032m carbon fiber cable)  
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The analytical model captured the trends on the variation of damping corresponding to 

each of the three independent variables (length, applied tension and construction/lay 

angle). 

To this end, some straightforward formulations were presented which should prove useful 

in predicting cable vibration damping. However, the accuracy and appropriateness of the 

model is affected by the simplifying assumptions and is also affected by the 

manufacturing process is not as controlled as the analytical derivation.   
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Chapter 6 

Summary and Conclusions  

The studies taken up in this dissertation have developed an experimental setup to test 

cable vibration damping, and a theoretical approach for the analysis of cable damping. 

Summary and detailed discussions were presented at the end of each relevant chapter. 

The purpose of this chapter is to recapitulate the main findings and unify them to suggest 

some further research directions. 

6.1 Summary of the Contributions Made 

a) Cable damping in a vibrating structure has long been an active research area, and it is 

still considered as somewhat of an unknown area. Especially for the carbon fiber 

cables in the space structural application, the available data is scarce. This dissertation 

provides test data on the carbon fiber cable damping under different length, tension 

and configuration. In particularly, a vacuum chamber was designed to test damping of 

carbon fiber cables in the absence of atmosphere. Also, the effect of temperature on 

damping was investigated. Some conclusions are derived from the test results, which 

enrich the understanding of carbon fiber cable damping properties;   

b) The finite element simulation of carbon fiber cable vibration using the COMBIN14 

and MASS21 elements provides a simple but good estimation of cable vibration 

natural frequency and time history response; Also, it shows that the Rayleigh 

damping is adequate and effective for the modeling of cable damping; 
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c) A tensile load provokes not only extension, but also torque or rotation in cables due to 

their helical geometry. This coupling extensional-torsional behavior is quite important 

in the damping prediction of carbon fiber and steel cables. The strain caused by the 

extension and torsion is considered in the analytical model in this dissertation; 

d) The Poisson’s ratio effect, the mutual approach of cable wires and friction are 

considered in the determination of cable damping in the analytical model;  

e) The analytical model captured the trends on the variation of damping corresponding 

to each of the three independent variables (length, applied tension and 

construction/lay angle). 

6.2 Suggestions for Future Work 

The following recommendations are made for future work in order to improve the 

accuracy of damping estimation: 

a) The cable damping should be tested under a wider range of length, tension, 

configuration, ambient temperature and air pressure in order to obtain more data to 

analyze the effect of different factors on damping;  

b) To get a better understanding of the characterizations of cable contact and interwire 

slippage and their effects on damping, it is important to measure the interwire 

pressure and slippage  with sensors; 

c) The effects of temperature and air pressure could be considered in the FEM 

simulation; 
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d) The effect of the microstructure of the cable could provide a better understanding of 

the frictional damping mechanism; 

e) The proposed analytical solution is based on the small displacement and deformation 

assumption. In order to get a better prediction of cable damping, large deformation 

theory could be applied; 

f) Different types of cables are applied in engineering field, therefore it is necessary to 

extend the research to multilayer cables and damping treated cables, etc.;  

g) The shape of wire strand section in a cable or wire rope cross-section is usually 

assumed as elliptical, and the analysis of contact between strands is based upon this 

assumption. This assumption is valid when the helical angle is large, and errors can 

result when the helix angle is small. Thus, it is necessary to investigate the true 

geometry and shape of the strand section, and understand its effect on damping; 

h) Damping of carbon fiber cables in air and in vacuum shows a maximum difference of 

40%, but the full contribution of air damping to the overall damping has not been 

addressed. Considering the changes to void ratio could provide a way to improve the 

theoretical prediction. 
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