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Abstract 

The main goal of the thesis is to develop a constitutive damage model for simulating 

tensile fracture of concrete using the micropolar peridynamics model. Micropolar 

peridynamics was proposed by Gerstle in 2007 as a generalization  to the  bond based 

peridynamics method introduced by Silling in 2000, which was only capable of handling 

materials with specific Poisson’s ratios.  Inspired by the bilinear cohesive model  in the 

cohesive crack approach, a new constitutive damage model is proposed to simulate the 

tensile fracture of a normal-strength concrete. Laboratory experimental data for crack 

mouth opening displacement vs. load of notched beams, obtained by Chapman in 2011 

which are of three different sizes, are used to calibrate the model. It is shown that the 

simulation results obtained from modeling match very well with those from laboratory 

experiments, and the size of the fracture process zone, the damage, and cracking patterns 

are match experiment as well. As a part of the research the  isotropicity of the hexagonal 

particle lattice , proposed by Gerstle in 2011 and  used in our simulations, is shown 

analytically, and the critical time step of the explicit time integration method, which is  

used to solve the governing equations, is determined.  



vii 
 

Table of Contents 

List of Figures …………………………………………………………………..……….X 

List of Tables ……………………………………………………….……….………..XIII 

Chapter 1 Introduction …………………………………………………………………1 

               1.1 Mechanism of tensile fracture of concrete ..................................................2 

               1.2 Bond based peridynamics …………………………………..….…………..6 

                    1.2.1 Basic formulation …………………………………….…..…………..7 

                     1.2.2 Numerical approximation and solution to peridynamics equations of   

                           motion ……………………………………………………….…...….….8                    

               1.3 Micropolar peridynamic lattice model (MPLM) …………………...………9 

               1.4 Objectives and scope ……………………………………………..……..…10 

Chapter 2 Formulation of elastic lattice ………………………………………...……11 

                2.1 Isotropicity of hexagonal lattice and rigidity of its members……...……...12 

                        2.1.1 Lattice under     …………………………………………………..12 

                               2.1.1.1 Young’s modulus     
    ………..………...………………….16 

                                2.1.1.2 Poisson’s ratio    
   …………………………………………17 

                        2.1.2 Lattice under    …………………………………………………..17 



viii 
 

                                 2.1.2.1 Young’s modulus    
    ……………………….……………20 

                                 2.1.2.2  Poisson’s ratio     
    ……………...…………….…………21 

                     2.1.3  Lattice under pure shear …………………………….………………21 

                                  2.1.3.1 Shear modulus    
    …………………….…………………25 

                     2.1.4  Isotropicity of the hexagonal lattice …………………………….….25 

                     2.1.5 Axial and flexural rigidity of the lattice members ………………….26 

                     2.1.6 Magnitude of internal forces under    ,    , and    …..…...………27 

             2.2  Critical time step …………………………………………………….……..28 

                     2.2.1 Critical time step of a framed structure …………………………….32 

             2.3 2D Co-rotational beam formulation ………………………………………..34 

                     2.3.1 Co-rotational concept ……………………………………………… 34 

                     2.3.2 Co-rotational formulation …………………………………………..35 

Chapter 3 Damage model ………………………………………………..…………….38 

                 3.1  Micropolar damage model ……………………………………………...38 

                 3.2 Tensile damage index …………………………………….….…….……39 

Chapter 4 Calibration of the damage model ………………….………..….…………43 

               4.1 Configuration of the beams and material properties of the concrete ……43 



ix 
 

               4.2 Simplification in configuration of beams …………………………………44 

               4.3 Loading specifications ……………………………………….……………45 

               4.4 Maximum value of velocity applied to the top particle …………………..46 

               4.5 Maximum value of the critical Time step ………………………………..46 

               4.6 Effect of parameters of damage model on the CMOD-load diagram ……47 

               4.7 Calibration of the damage model for s = 3.175 mm …………………….. 48 

                     4.7.1 Numerical and experimental results for load point displacement ….52 

                     4.7. 2 Damage and cracking pattern ………………………………….…..56 

               4.8 Calibration of the damage model for s = 6.35 mm ……………………….58 

               4.9 Calibration of the damage model for s = 12.70 mm ……………………..63 

Chapter 5   Conclusions …………………………………….…………….……………66 

               5.1 Future work ……………………………………………………………….68 

References ……………………………………………………………….……………...69 

 

 

 

 



x 
 

List of Figures 

Fig. 1.1 Fracture Process zone (Ref.  Bazant 2002) ………………………………..……3 

Fig. 1.2  Merging micro-cracks to be become part of the main crack (Ref. Shah et al.       

              1995) ………………………………………………………….…………………3 

Fig. 1.3 Mode I Crack for Fictitious crack approach (Ref.  et al. Shah 1995)…………....4 

Fig. 1.4 Stress vs. crack opening displacement curve ……………………….……..…….4 

Fig.  2.1 The concrete plate , blue rectangle, is discretized to hexagonal  particles which    

               are interacting by micro-polar links (black links) …………………………….12 

Fig. 2.2  Horizontally loaded hexagonal lattice …………………………………………13 

Fig. 2.3  Upper segment of section a-a, the horizontal internal loads applied to the    

               Inclined members have not been shown in this figure ………………………..14 

Fig. 2.4 Internal loading applied to the periodic part of the lattice under     ……….….14 

Fig. 2.5  Hexagonal lattice under vertical stress ………………………………………...17 

Fig. 2.6  Segment of the lattice located to the right of section    , the vertical loads     

               applied to inclined members have not been shown in this figure ….………….18 

 

Fig. 2.7 Internal loading applied to the periodic part of the lattice under    ….….…….19 

Fig. 2.8 The lattice under pure shear…………………………………….……………….21 

Fig. 2.9 Internal loading applied to the periodic part of the lattice under pure shear……22 

Fig. 2.10  Equivalent lattice unit of the lattice loaded in pure shear ……………………23 



xi 
 

Fig. 2.11 Simplified lattice unit of the lattice loaded in pure shear …………………….24 

Fig. 2.12 Lattice unit  under    ……………………………………………….………..27 

Fig. 2.13  Lattice unit under    ………………………………………………….……..27 

Fig. 2.14  Lattice unit under    ………………………………………………….……...28 

Fig. 2.15 Typical fictitious beam…………………………………….…………………..33 

Fig. 2.16 Initial and current configuration of a typical fictitious beam…………………35 

Fig. 2.17 Current deformed configuration of a fictitious beam…………………………36 

Fig. 3.1 Bilinear softening model used to define the damage index……………….……40 

Fig. 4.1  Configuration of the beam specimens ………………………………….……..43 

Fig. 4.2  Overhangs are replaced with equivalent moment …………….……………….44 

Fig 4.3 Computational model of  D3,  lattice spacing, s , is 3.175 mm…………………45 

Fig. 4.4 Typical CMOD-load diagram ………………………………………………….47 

Fig. 4.5 Numerical and Experimental results for CMOD- Load of D3 beam,  

              s = 3.175 mm ………………………………………………………………….49 

Fig. 4.6  Numerical and experimental results for CMOD-load of D6 beam,  

               s = 3.175 mm …………………………………………………………………50 

Fig. 4.7  Numerical and experimental results for CMOD-load of D9  beam,  

               s = 3.175 mm ………………………………………………………………...51 



xii 
 

Fig. 4.8  Numerical and experimental results for LPD-load of D3 beam,  

               s = 3.175 mm …………………………………………………………………53 

Fig. 4.9  Numerical and experimental results for LPD-load of D6 beam,  

               s = 3.175 mm………………………………………………………………….54 

Fig. 4.10 Numerical and experimental results for LPD-load of D9 beam,  

                s = 3.175 mm ………………………………………………………………..55 

Fig. 4.11 Damage pattern of D3 beam for different values of CMOD, see Fig. 4.5 for   

               corresponding load values, s = 3.175 mm …………………………………..57 

Fig. 4.12  Numerical and experimental results for CMOD-load of D3 beam,  

s = 6.7 mm ……………………………………………………………………….……59 

Fig. 4.13  Numerical and experimental results for CMOD-load of D6 beam,   

s =  6.35 mm ………………………………………………………………………….60 

Fig. 4.14 Numerical and experimental results for CMOD-load of D9 beam, 

 s =  6.35 mm …………………………………………………………………………61 

Fig. 4.15 Damage pattern of D6 beam for different values of CMOD, see Fig. 4.6 for   

               corresponding load values, s = 6.35 mm …………………………………...62 

Fig. 4.16 Numerical and experimental results for CMOD-load of D9 beam,  

               s = 12.7 mm ………………………………………………………………...64 

Fig. 4.17 Damage pattern of D9 beam for different values of CMOD, see Fig. 4.7 for  

               corresponding load values, s = 12.7 mm ……………………………………65 

 

 

 



xiii 
 

List of Tables 

Table 4.1  Nominal beam dimensions in mm ……………………………………….…..43 

Table 4.2 The value of damage model parameters for s = 3.175 mm ………………….48 

Table 4.3 The color of the damaged fictitious beam based on the range of damage…...56 

Table 4.4 The value of damage model parameters for s = 6.35 mm……………………58 

Table 4.5 The value of damage model parameters for s = 12.7 mm……………………63 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 Introduction 

        Concrete is an important material which is dominant in construction all over the 

world.  However, due to the lack of knowledge, technology, and budget for full scale load 

testing of structures and  monitoring the response of its components under a complex 

loading, most of the relations given in the design codes are based on the outputs obtained 

from simplified laboratory experiments. To compensate for the effect of these 

simplifications, the values of the safety factors  are  increased, which does not necessarily 

mean gaining extra safety. In addition, lots of other simplifications are made to make the 

design of structures by engineers easier.  For example, most modern design codes neglect 

the tensile strength of concrete completely. These all mean wasting  money, and making 

it difficult for engineers to see and understand the real behavior of  structures. 

        On the other hand, significant progress in the power of computers in the recent years 

can be beneficial in  performing more realistic simulations. To this end, developing 

simple and effective constitutive material models is essential to allow engineers safely 

use the full capacity of structural components, and to design more economical, and safer 

structures. Micropolar peridynaimics is a simple, powerful approach which has been 

developed to simulate ultimate behavior of structures by considering all kind of failure 

mechanisms. This method needs an appropriate material constitutive model to simulate 

realistic response of structures.  Since the goal of this research is to develop a constitutive 

material model for micropolar peridynamics  to simulate the tensile fracture, the method 

will be presented  after introducing tensile fracture mechanism of the concrete and some 

other computational methods which have been developed to simulate tensile fracture of 

concrete during the past years.  
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1.1 Tensile fracture mechanism of concrete         

        Concrete is a two-phase material consisting of the matrix and aggregate bonded 

together at the interface. The matrix and aggregate are very different in modulus of 

elasticity, thermal coefficient, and response to the change of moisture content, and the 

interfacial  transition zone between the matrix and the aggregate has more voids and is 

weaker compared to the bulk cement matrix.  Furthermore, hardening of fresh concrete is 

accomplished by a loss of moisture in the cement paste, which causes shrinkage of the 

concrete, which happens only in the cement paste. During the shrinkage tensile stress can 

be developed in some parts of the concrete which may cause shrinkage cracks before 

loading.  Concrete’s tensile strength is about 8 to 15 percent of its compressive strength. 

Since concrete is a heterogeneous material, as stated before it has very complicated 

fracture mechanisms, which are related to its microstructure. During fracture, the high 

stress state near the crack tip causes micro-cracking at flaws. These flaws result from 

water-filled pores, air voids acquired during casting, and shrinkage cracks due to curing 

process. The inelastic zone around the crack tip consisting of micro-cracks as shown in 

Fig. 1.1 is called fracture process zone (FPZ). The fracture process zone is the 

intermediate space between the cracked and the uncracked portion.  It has been observed 

that micro-cracks have random orientation with respect to the main crack plane, and their 

density decreases with increasing distance from the surface of the main crack.  As the 

crack propagates these micro-cracks merge and become a single structure to give 

continuity to the already existing crack (Fig. 1.2) [Shah et al. 1995].  
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Fig. 1.1 Fracture process zone (Ref. Bazant 2002)  

 

                                             

Fig. 1.2  Merging micro-cracks to become part of the main crack (Ref. Shah et al. 1995) 

        Due to the presence of the large FPZ in concrete, classical linear elastic fracture 

mechanics is inadequate to model this material. Extensive studies has be conducted to 

develop a method to simulate fracture of concrete, and a major advance in this field was 

made by Hillerborg in 1976 [Hillerborg et al. 1976].  Inspired by the models proposed to 

simulate the fracture of ductile materials, Hillerborg  proposed the fictitious crack model. 

In this method fracture formation is regarded as a gradual phenomenon in which the 

separation of the surfaces involving in the crack takes place across an extended crack tip, 
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also called “fictitious crack” or “cohesive zone” as shown in Fig. 1.3, and is resisted by 

cohesive tractions. 

 

Fig. 1.3 Mode I crack for fictitious crack approach (Ref. Shah et al. 1995) 

     As the surfaces (known as cohesive surfaces) separate, the traction first increases until 

a maximum is reached as shown in Fig. 1.4, and then subsequently reduces to zero, which 

results in complete separation.                                  

                                                

 

Fig. 1.4 Stress vs. crack opening displacement curve 

 

        The cohesive crack model was used in finite element methods to simulate the 

fracture of concrete. The notable ones among numerous finite element methods are: 

𝐶𝑂𝐷 

𝑆𝑡𝑟𝑒𝑠𝑠, 𝜎 



5 
 

fictitious crack approach, discrete crack approach, and smeared crack approach.  One  

problem with these methods is that they use meshing to discretize the domain and, 

therefore, to simulate crack propagation and stress concentration at the crack tip they 

require re-meshing, which is very difficult. In addition, they need a criterion for 

specifying the crack direction, a criterion for failure, and other criteria for crack initiation 

and crack propagation. The dependency of the results on mesh refinement is the major 

deficiency with smeared crack models [Nguyen and Chun 2005]. 

        The lattice modeling technique is another approach which has received considerable 

attention in recent years for modelling the fracture of heterogeneous media such as 

concrete. A lattice model discretizes a continuum by axial elements capable of 

transferring forces and moments. The earliest model was proposed by Hrennikoff in 1941 

[Hrennikoff  1941] but the method languished due to insufficient computing power. 

Hansen and coworkers developed a model for simulating fracture of metals using a 

square lattice of frame elements [Hansen et al. 1989]. Bazant  [Bazant et al. 1990], and 

Schlangen and Van Mier  [Schlangen and Van Mier 1992] demonstrated frame and truss 

lattice models for modeling concrete, primarily at the meso-structural (material) level. 

They  used a triangular lattice network, because it was found to better simulate the 

heterogeneous structure of concrete. 

        To obtain a realistic pattern for crack patterns, the lattice model were modified in 

order to  distinguish  between the hardened cement paste, the fine and coarse aggregates, 

and a bond layer between the cement paste and aggregate constituents.  In all of these 

lattice-type models, the focus was on the elastic truss or frame elements, connected at 

nodes and these elements were simply eliminated when the maximum tensile stress in an 
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element reached a critical value. Arslan [Arsalan et al. 2002] has simulated concrete 

beams by regarding the matrix phase as elastic and tension softening.  Ince [ Ince 2005] 

included the inherent disorder in the microstructure by assigning random strength and/or 

stiffness properties to the elements in a regular lattice.  

        Silling  [Silling  2000] introduced the peridynamics method.  This method does not 

have the drawbacks of finite element methods and lattice methods. Since this method is 

the base for the method that has been used in this research, it will be presented   in greater 

detail. 

        The peridynamic theory is based on integral equations, in contrast with the classical 

theory of continuum mechanics, which is based on partial differential equations. 

Since partial derivatives do not exist on crack surfaces and other singularities, the 

classical equations of continuum mechanics cannot be applied directly when such 

features are present in a deformation. The integral equations of the peridynamic theory 

can be applied directly, because they do not require partial derivatives [Silling 2000]. 

       The ability to apply the same equations directly at all points in a mathematical model 

of a deforming structure helps the peridynamic method avoid requiring special techniques 

of fracture mechanics. For instance, in peridynamics, there is no need for a separate crack 

growth law based on a stress intensity factor. 

1.2 Bond based peridynamics 

        The essence of this method is that integration, rather than differentiation, is used to 

compute the force on a material particle. The method falls into the category of nonlocal 

models, because particles separated by a finite distance can interact with each other. 

http://en.wikipedia.org/wiki/Integral_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Mathematical_singularity
http://en.wikipedia.org/wiki/Continuum_mechanics
http://en.wikipedia.org/wiki/Deformation_(engineering)
http://en.wikipedia.org/wiki/Fracture_mechanics
http://en.wikipedia.org/wiki/Stress_intensity_factor
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1.2.1 Basic formulation 

        Suppose a body occupies a reference configuration in a region  . It is assumed that 

each pair of particles interact through a vector-valued function   such that the force per 

unit reference volume due to interaction with other particles denoted by   is obtained 

from the following equation: 

                            ( ,  )  ∫  ( (  ,  )   ( ,  ),     )     
                                (1.1) 

here  ( ,  ) is the displacement of the particle located at point   at time t, and  ( ,  ) is 

the resultant force applied to the particle of unit volume at point   by the other particles 

of the body surrounding this particle.  Knowing the value of forces applied to the particle 

at   and the body force applied to this particle, Newton’s second law for this particle 

implies that: 

                                                         ̈   ( ,  )                                                    (1.2) 

It is also assumed that the force that two particles apply to each other have the same 

magnitude but opposite sense. These forces are assumed to be  parallel to the relative 

current position vector of particles. Another assumption is that if the distance between 

two particles is greater than a number which is called the  horizon of the material and 

denoted by  , then the particles do not interact or apply force to each other. The adequacy 

of this method relies on defining appropriate force function   such that the main features 

of the material under study is attained in the simulations.  
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1.2.2 Numerical approximation and solution to peridynamic equations of motion 

        To solve Eq. 1.2 numerically, the body is discretized into particles, each with a 

known volume in the reference configuration. Taken together, the particles form a grid. 

Then the following approximations are used. First it is assumed that each particle’s mass 

is concentrated at its centroid, and the particles interact through their centroids, regardless 

of their size. So the integral in Eq. 1.1 is simplified to the following finite sum: 

                          (  ,  )  ∑  ((     ), (     ))      ,                       (1.3) 

where   is the index of the particle under consideration and   is the index of the other 

particles which are in the material horizon of the particle   .  Vector    in the position 

vector of the centroid of the particle  .  

        To obtain the current values of displacement, velocity, and acceleration, the 

following time integration is usually used. Acceleration of any particle is obtained by 

using the applied force to the particle: 

                                                                         ̈( )  
 ( )

 
                                                         (   ) 

The forward Euler integration method is used to obtain the value of velocity at  time 

     : 

                                             ̇(    )   ̇( )   ̈( )  ,                                          (1.5) 

and the backward Euler integration  method is used to obtain the value of displacement: 

                                          (    )   ( )   ̇(    )                                       (1.6) 
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Once the value of velocities and displacements of the particles are updated, the force 

applied to the particles is obtained and the process is repeated to determine the response 

of the structure at the next time step. Since explicit time integration is used, the value of 

time step needs to be limited to critical time step which will be determined in the next 

chapter. 

One of the drawbacks  of  bond-based peridynamics  is  that  it restricts  Poisson’s ratio of 

the material to 1/3 in 2D problems and ¼ in 3D. To overcome this  limitation, the 

micropolar  peridymanics was proposed by Gerstle in 2007 [Gerstle et al. 2007]. 

1.3 Micropolar peridynamic lattice model (MPLM) 

         In this method it is assumed that, in addition to force, particles apply moments to 

each other. This means that each particle is sensitive to the rotation of the surrounding 

particles, and if a particle  rotates, the other particles will apply moment to that particle to 

resist deformation.   

With the material mass represented by particles in a lattice, Newton’s 2nd law of motion 

is applied to each particle   : 

                                          ∑    
  
             ̈  ,                                              (1.7) 

                                    ∑    
  
              ̈ ,                                              (1.8) 

where     and     are the force and moment vectors, respectively, exerted by particle j 

on particle  ,       and       are the externally applied force and moment vectors, 

respectively, applied to the centroid of particle  ,   ̈  and  ̈  are the linear and angular 

acceleration vectors, respectively, of the centroid of particle  ,    and    are the mass 
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and mass momentum of particles respectively, and     is the number of particles,  , that 

are in the neighborhood (“material horizon,  ”) of particle  .  The vector functions      

and      describe the internal forces and moments between neighboring lattice particles, 

and from these functions, the material and fracture behaviors emerge. In the bond-based 

damage model, the functions     and     also depend upon evolving damage parameters, 

    which will be defined on the chapter three, associated with the “link” between 

particle   and particle  . 

        To decrease the computational cost, it is  assumed that the lattice is hexagonal, 

which is discussed in more detail in the next chapter. In 2D, each particle is spaced a 

distance, s, from its six nearest neighbors. Also it is assumed that material horizon is      

so that each particle can interact only with at most six surrounding particles.  

        As an aid to obtain the forces and moments between particles, it is assumed that 

each particle is connected to the surrounding particles by fictitious elastic beams forming 

a triangular lattice. In the next chapter a new method is used to show the isotropicity of 

the lattice, and obtain the axial and flexural rigidity of the fictitious beams. 

1.4 Objectives and scope 

      In chapter two first we demonstrate the isotropicity of the hexagonal lattice under 

plain stress. Rahman [Rahman 2012] has shown this numerically, and we show it 

analytically.  Then we obtain the critical time step of the explicit time integration  method  

that is implemented in PDQ; PDQ is a software developed by Prof. Gerstle, Prof. Atlas, 

professor in the Department of Physics & Astronomy at UNM, and their graduate 
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students. Finally, we present co-rotational formulation to include large displacements in 

our simulations. 

         In chapter three we introduce a new damage model for micropolar peridynamics to 

simulate tensile fracture of concrete. Using this damage model, it is possible to obtain 

results which are in good agreement with experimental data. 

        In chapter four we calibrate the damage model we introduced in chapter three by 

using the available experimental results. For this, we use the results of experiments which 

was conducted on notched beams by Chapman [Chapman 2011]. Finally we  present the 

conclusions and suggestions in chapter five. 
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Chapter 2 Formulation of elastic lattice 

        In section 2.1 first we simulate a concrete plate of thickness     by a hexagonal 

lattice and investigate its isotropicity, and then we determine the axial and flexural 

rigidity of the lattice members,  considered as elastic beams. In section 2.2 we determine 

the critical time step of the explicit time integration method used in the simulations, and 

finally in section 2.3 we present the 2D co-rotational formulation of beams.   

2.1 Isotropicity of hexagonal lattice and rigidity of its members 

       In this section, a solid plate is modeled as a hexagonal lattice, as shown in   Fig. 2.1, 

and the periodic nature of the hexagonal lattice is used to obtain the internal forces under 

uniaxial tension and pure shear. Then the axial and flexural rigidity of the lattice are 

determined. Moreover, by using obtained Young modulus and  Poisson’s ratio of the 

lattice, its isotropicity is demonstrated. 

Fig.  2.1 The concrete plate , blue rectangle, is discretized to hexagonal  particles which 

are interacting by micro-polar links (black links) 

𝑥 
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2.1.1 Lattice under     

        Suppose a hexagonal lattice which is under a uniform horizontal normal stress     

as depicted in Fig. 2.2. We assume that all of the elements have axial rigidity   , flexural 

rigidity   , and length  . Another assumption for this lattice is that the number of 

elements is large enough to assume translational symmetry and hence conclude that  the 

nodes cannot rotate under this loading. Therefore, the inflection point of the lattice 

members  is located at their midpoints. 

        Due to the contraction of lattice in y direction under this loading, the vertical 

members will be under compression. Cutting lattice using imaginary section      and 

considering the equilibrium of the upper segment, the relation between internal vertical 

loads applied to the midpoint of inclined and vertical members can be determined. 

 

Fig. 2.2  Horizontally loaded hexagonal lattice 

𝑥 

𝑦 
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Fig. 2.3  Upper segment of section a-a, the horizontal internal loads applied 

to the Inclined members have not been shown in this figure. 

 

 Consideration of equilibrium of the segment shown in Fig. 2.3 in y direction gives: 

                                   ∑                                                                  (2.1) 

Therefore, considering translational symmetry in both x and y directions, the periodic 

part of the lattice, the part which is trapped inside the hexagonal particles in the figures 

above, has to be loaded as depicted in Fig. 2.4: 

 

Fig. 2.4 Internal loading applied to the periodic part of the lattice under     
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Assuming that the  lattice is under  plane stress,  the magnitude of the horizontal loads is 

determined based on the contribution  of each inclined member in resisting the  applied 

uniform stress: 

                                                                
  

 
                                                                    (   ) 

        The magnitudes of the vertical loads are obtained using uniformity of strain in the y 

direction, equality of vertical strain of imaginary line    and member     in Fig. 2.4. To 

determine the vertical normal strain of imaginary line, first relative displacement of 

points   and   in   direction needs to be obtained by using the virtual work method: 
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where   
   

 denotes displacement of   relative to   in the   direction.  Thus, vertical 

strain of     is: 
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The  vertical strain of    is: 
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The uniformity of strain in y direction, gives (   
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Using Eq. 2.6,   is determined: 

                                                       
√ (         )

 (         )
                                                      (   ) 

Having the magnitude of   , given in Eq. 2.2,   the magnitude of   is obtained: 

                                                     
√   (         )

 (         )
                                                 (   ) 

2.1.1.1 Young’s modulus     
    

        Now, the relationship between  horizontal strain and stress is determined, and it is 

used to obtain Young’s modulus in   direction:  
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Therefore, the vertical strain of the imaginary line connecting   to   is: 
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The values of   and   in equations 2.2 and 2.8 are plugged in Eq. 2.10 to obtain the value 

of      
  : 
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   (         )
                                            (    ) 

Hence, the Young’s modulus in the   direction is: 
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2.1.1.2 Poisson’s ratio    
    

        The obtained strains in   and   directions are used to determine the Poisson’s ratio, 

   
   , of the lattice: 

                                                    
    |

   

   
|  

         

 (        )
                                           (    ) 

 2.1.2 Lattice under     

        Consider the vertically loaded lattice depicted in Fig. 2.5: 

 

Fig. 2.5  Hexagonal lattice under vertical stress 
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 Again  the inflection points are in the midpoint of members. To obtain the horizontal 

loads applied to the midpoint of inclined members, the equilibrium of horizontal forces 

applied to the segment located to the right of section     which passes through the 

midpoint of inclined members is considered: 

 

Fig. 2.6  Segment of the lattice located to the right of section    , the vertical loads 

applied to inclined members have not been shown in this figure 

Equilibrium of the horizontal forces in the figure above gives: 

                                                   ∑                                                               (2.14) 

Since the vertical members are only under axial loads, the lattice unit is only under 

vertical loads, as shown in Fig. 2.7. 
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Fig. 2.7 Internal loading applied to the periodic part of the lattice under     

 Equilibrium of applied loads to the lattice unit in the   direction gives: 
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Because the stress in   direction is uniform, the strains of imaginary line     and  the 

member    in   direction must be equal. The strain of    is: 

  
   

  (

√  
  

√  
  

 
 

   
 

 
  

 
  

 
 

  
)   ,                                 (    ) 

   
   

   
   

   
 (

  

   
 

 

   
)  ,                                      (    ) 

and  the strain of    is: 
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Since the obtained strains are equal, we have: 
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Solving equations 2.15 and 2.19, the magnitudes of     and    are obtained: 
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2.1.2.1 Young’s modulus    
    

        In this part, the strain in the   direction is obtained in terms of    , and it is used to 

determine the Young’s modulus of the lattice in this direction: 
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Thus, the Young’s modulus in the   direction is: 

   
    

√   (         )

   (        )
                                              (    ) 

2.1.2.2  Poisson’s ratio     
    

        To obtain the Poisson’s ratio, first we obtain the lateral strain caused by vertical 

loading: 
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Hence, the Poisson’s ration is: 
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 (        )
                                     (    ) 

2.1.3  Lattice under pure shear 

       Consider the hexagonal lattice that is under pure shear as shown in Fig. 2.8. 

 

Fig. 2.8 The lattice under pure shear 

For this case also the inflection points are located at the midpoint of the members, and 

lattice unit will be loaded as in Fig. 2.9. 
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Fig. 2.9 Internal loading applied to the periodic part of the lattice under pure shear 

In Fig. 2.9, the magnitude of   is determined based on contribution of the inclined 

members on resisting vertical shear stresses: 

  
  

 
                                                                (    ) 

    and   , in Fig. 2.9, are unknown and equilibrium along with compatibility equations 

must be used to obtain their values. Using the equilibrium of the moments of the forces 

applied to the lattice following equation is obtained: 

                                                        
√ 

 
                                                           (    ) 

Since points   and   do not move relative to each other, they can be assumed to be  fixed 

at their position by pinned supports. 
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Fig. 2.10  Equivalent lattice unit of the lattice loaded in pure shear  

The rotations of imaginary  line    and line     , which indicate the shear strain,  must 

be equal. 
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To obtain    , relative displacement of points   and   in horizontal direction is needed: 
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Anti-symmetric loaded frame, shown in Fig. 2.10, can be simplified to the frame depicted 

in Fig. 2.11.  
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Fig. 2.11 Simplified lattice unit of the lattice loaded in pure shear  

 The rotation of point   is obtained as follows: 
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hence, the rotation of    is: 
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Now, we obtain the value of    . For this, first the horizontal displacement of point   , in 

Fig. 1.10, is determined: 
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Simplifying the above equation, we have: 
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By solving equations 2.29 and 2.30 , magnitudes of    and    are obtained: 
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2.1.3.1 Shear modulus    
     

       Now, shear strain is determined in terms of shear stress:  

      
 √    

 (         )
    

 

   
       ,                                (    ) 

hence, the shear modulus is: 

   
    

√ (         )

    
                                              (    ) 

2.1.4  Isotropicity of the hexagonal lattice 

        Comparing the obtained Young’s moduli and Poisson’s rations we see that we have 

necessary conditions for isotropicity of the hexagonal lattice. 

  
      

   ,                                                          (    ) 
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 If the following condition also holds, we can conclude that the lattice is isotropic. 
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We can use the obtained values to check the validity of the above condition for the 

hexagonal lattice. 
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Comparing equations 2.42 and 2.46, it is concluded that the triangular lattice is isotropic.  

2.1.5 Axial and flexural rigidity of the lattice members 

       To expect the equivalent elastic behavior from the hexagonal lattice and the material, 

both must have the same modulus of elasticity and Poisson’s ratio. If we assume that he 

modulus of elasticity and Poisson’s ratio of the material are   and   respectively, then the 

following equations must be satisfied: 

      ,                                                              (    ) 

                                                                      (    ) 

By using equations for      and        , equations 2.24 and 2.27 for example, and 

equations 2.47 and 2.48 , the axial and flexural rigidity of the members of the hexagonal 

lattice are determined by solving equations 2.47 and 2.48  for    and   : 
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2.1.6 Magnitude of internal forces  under    ,    , and     

        Substituting the values of axial and flexural rigidity  in Eq. 2.49 into Eq. 2.8 that  we 

obtained for magnitude of Y  for the lattice under    , the value of this force is obtained: 

 

Fig. 2.12 Lattice unit  under     
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If    and    in Eq. 2.49 are substituted is equations 2.20 and 2.21, the magnitudes of    

and    applied to the lattice unit of a hexagonal lattice which is under     is obtained: 

 

Fig. 2.13  Lattice unit under     
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And finally, following the same procedure  for lattice under pure shear, the values of    

and    in equations 2.39 and 2.40 are determined. 

 

Fig. 2.14  Lattice unit under     
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2.2  Critical time step  

        In this section, the critical time step of the explicit time integration approach used in 

the code is determined. The equilibrium equation for the free vibration of a single degree 

of freedom (SDOF)  system with damping is: 

  ̈( )    ̇( )    ( )   ,                                       (2.53) 

this equation used to be written in the following form: 
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where 

  
  

 

 
 ,          ,                                           (2.55) 

here   is critical  damping ratio  and    is the natural frequency . We use the Verlet 

method for time integration. In this method the value of acceleration at time   is obtained 

by using the following equation:  

                                      ̈( )        ̇( )    
  ( ),                                     (    ) 

knowing the acceleration at time  , the velocity at      is approximated as follows: 

                                      ̇(    )   ̇( )   ̈( )   ,                                       (    ) 

having the velocity at time     , the displacement is estimated as follows: 

                                      (    )   ( )   ̇(    )                                      (    ) 

To obtain the value of the critical time step, we need to find   (    ) in terms of   at  

times    and     . For this, first we obtain  ̇(    ) in terms of   ( ) and  ̇( ) by 

substituting Eq. 2.56 into Eq. 2.57: 

                            ̇(    )   ̇( )  (      ̇( )    
  ( ))  ,                           (    ) 

by substituting  ̇(    ) in the Eq. 2.59 into Eq. 2.58, we obtain: 

           (    )   ( )  ( ̇( )  (       ̇( )    
  ( ))  )                     (    ) 

Now, we find  ̇( ) in terms of  ( )      (    )  by using Eq. 2.58: 

 ( )   (     )   ̇(    )   ,                                     (    ) 
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or 

 ̇( )   
 ( )   (    )

  
                                             (    ) 

By substituting obtained equation for   ̇( ) in Eq. 2.62 into E 2.60, we have: 
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 )    

  ( ))   )   ,   (2.63) 

simplifying the above equation, we obtain: 
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Eq. 2.64 can be written in matrix form as follows: 
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where matrix   is: 

  [    
                    

  
]                         (    ) 

 Eq. 2.65 can be used to obtain the value of displacement after   and     time steps in 

terms of displacement at time zero and time    [Bathe  2007]: 
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]) ))     [ ] [

 (  )

 ( )
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To have a bounded value for  ((   )  ) , when    goes to infinity, matrix    has to 

have bounded elements. Eigenvalues of this matrix can be used to evaluate the 

boundedness of its elements when it is raised to   and   tends to go to infinity. The 

eigenvalues of matrices   and    are determined by using the following equations: 

     ,                                                           (    ) 

or equivalently: 

        ,                                                        (    ) 

here   is an eigenvector of   and   is the corresponding eigenvalue. Obviously, matrices  

  and    have the same eigenvectors, but eigenvalues of    are equal to the eigenvalues 

of   raised to  . It is clear that to have a bounded values for the elements of    its 

spectral radius(  (  ))  which is defined as below must be less than one. 

 (  )     
 

   
  ,                                                 (    ) 

here    is the     eigenvalue of matrix  . The characteristic equation of matrix   is: 

   (    
           )                                  (    ) 

Thus, the eigenvalues of this matrix are: 

  ,  
(    

           )

 
 √

(    
           ) 

 
 (        )      (    ) 

Since 
(    

           )

 
  is a negative number, the minus sign in Eq. 2.72 needs to  be 

selected to obtain the spectral value of matrix  .  
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         ( )    (
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           )

 
 √(    

           ) 

 
 (        ))        (2.73) 

To obtain the value of the critical time step, the following equation needs to be solved: 

                                                   ( )                                                                   (    ) 

Solving Eq. 2.74 for     , one obtains: 

                                      (
 

  
) (√      )                                         (    ) 

Hence, to have stable numerical integration, the selected time step should be less than 

critical one: 

   (
 

  
) (√      )                                           (    ) 

2.2.1 Critical time step of a framed structure 

       It has been shown that to obtain the critical time step of a framed structure one can 

use  equation 2.75, the only difference is that instead of natural frequency, maximum 

frequency of the structure needs to be used in this equation: 

     (
 

    
) (√      )                                          (    ) 

 Maximum frequency of a framed structure can be the maximum frequency of its 

unsupported and undamped members, when only axial deformations are considered, 

because for most of structures the axial rigidity of their members  is by far larger than the 

flexural rigidity [Cook et al. 2001]. In our case, all of the members mechanically and 
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geometrically are the same, therefore, only one of the members needs to be studied. 

Consider a uniform one-dimensional unsupported member with mass m, axial rigidity 

  , and  length   : 

 

Fig. 2.15 Typical fictitious beam 

where the axial rigidity is: 

   
   

√ (   )
 ,                                                   (    ) 

And the value of mass   in Fig. 2.15 is one third of the mass of each hexagonal particle: 
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√ 

 
   )                                                     (    ) 

If we consider a lumped mass matrix, the equations of the free vibration of the member 

are: 
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To have nontrivial solution for the above equation, the determinant of the expression in 

parentheses must vanish, thus: 
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     is obtained by solving Eq. 2.81: 
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Where c is the sound speed: 
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                                                               (    )  

Substituting the value obtained for      into Eq. 2.77, the critical time step for the 

hexagonal lattice is obtained: 
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)                                    (    ) 

2.3 2D Co-rotational beam formulation 

          Fracturing concrete structures can experience large displacements and rotations, 

however, due to the quasi-brittle nature of concrete, deformations are small. In this 

section, co-rotational formulation is presented which permits a frame structure to have 

arbitrarily large displacements and rotations while the deformations are small enough to 

use formulations for small deformations. 

2.3.1 Co-rotational concept  

        As a framed structure is loaded, the entire frame deforms from its original 

configuration. During this process the individual beam elements do the following three 

things, it: 
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1) rotates, 

2) translates, 

3) deforms. 

        The global displacements of the end nodes of the beam element include the 

information about how the beam rotated, translated, and deformed. The rotations and 

translations are rigid body motions that do not affect the internal forces and  can be 

removed from the motion of the beam [Crisfield 1991]. Doing this, all that remains are 

the strain causing deformations of the beam element. A co-rotational formulation seeks to 

separate rigid body motions from strain producing deformations. 

       In this formulation a local coordinate system is attached to the beam element in such 

a way that its x-axis is always directed along this element, and rotates and translates with 

it. Therefore, with respect to this local co-rotating coordinate system the rigid body 

rotations and translations are zero and only local strain producing deformations remain. 

2.3.2 Co-rotational formulation 

        As stated, a local coordinate system is attached to the beam element as shown in Fig. 

2.16 , and rotates and translates with the beam element as the structure deforms.  

 

Fig. 2.16 Initial and current configuration of a typical fictitious beam 
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Knowing the coordinates of the two end nodes of a beam element in its initial and current 

configurations, initial and current angles of the co-rotating coordinate system with respect 

to the global coordinate system, which are denoted by    and   respectively, are 

obtained. 

       
     

     
 ,                                                     (    ) 

      
(     )  (     )

(     )  (     )
                                        (    ) 

Here   and   are the horizontal and vertical displacements of end points respectively. 

 

Fig. 2.17 Current deformed configuration of a fictitious beam 

 Angles   and    in Fig. 2.17 are the global nodal rotations calculated from rotation of 

hexagonal particles. Having initial and current angles of the beam and its nodal global 

rotations, the local nodal rotations are obtained using the following equations: 
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            ,                                                 (2.87) 

Now, it is possible to use slope-deflection formulations to obtain the moments and shear 

forces in nodes of the beam: 

{
   

   
}  
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} ,                                         (    ) 

    
       

 
,           ,                                       (    ) 

where      is the moment applied to node   of the element   . 

        In this chapter the elastic lattice was formulated. The axial and flexural rigidity of its 

members were determined, and its isotropicity was demonstrated. An equation for critical 

time step of the explicit time integration, which is used in PDQ,  is obtained, and the co-

rotational formulation for considering large displacements was presented.  In the next 

chapter, a damage model is defined to simulate the tensile fracture of concrete. 
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Chapter 3 Damage model 

         In this chapter we will propose a new formulation to simulate the fracture of concrete under 

tension, and in the next chapter we will show that the new formulation is capable of appropriately 

simulating the tensile fracture of the concrete.  

3.1  Micropolar damage model 

        In our proposed damage model, constitutive material model, the softening characteristic of 

quasi-brittle material such as  concrete  is simulated by correcting the initial linear elastic forces 

using a damage parameter. A modifier coefficient, which is in terms of a parameter that is called 

the damage index and denoted by  , is applied to the elastic force. As long as the material is in 

the elastic range, this parameter is assumed to be zero. Based on our formulation, the axial force 

in the lattice members are obtained using the following equations: 

                                         ( )  (   )            ,                                     (3.1) 

 ( )    ( ),                                                     (3.2) 

where   is the damage index and    is the axial stretch of the fictitious beam defined as follows: 

                                                             
  

 
                                                                 (   ) 

Here    is the axial deformation of the fictitious beam and   is its initial length.         is 

the damping force that has been defined to damp the waves produced in the solution process. To 

obtain its value, the relative translational velocity vector,    , between particles i and j is 

computed. Then the damping force,        , between the two particles is given by: 

          |        |
   

|   |
,                                         (3.4) 
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where   is the damping factor, with value set assumed to be 0.05, and          is the elastic inter-

particle force calculated in the previous section, including the effect of damage. Thus, the 

damping force, being some proportion of the elastic force magnitude, and always opposing the 

direction of motion [Gerstle et al. 2014].  The end moments applied to the fictitious beams are 

obtained using the following equations: 

    (   )
   

 
(        ),                                              (   ) 

    (   )
   

 
(        ),                                               (   ) 

where     and     are local rotations in the co-rotational formulations. Using the equilibrium of 

the fictitious beam the values of nodal shear forces are determined: 

 ( )   
       

 
,                                                            (   ) 

 ( )     ( )                                                                 (   ) 

3.2 Tensile damage index 

To include the effect of axial and flexural deformations of the fictitious beam on its damage, we 

define a new stretch which is combinations of these two: 

                                                                                                                        (3.9) 

We call the new stretch micropolar stretch. Here   is a dimensionless parameter which is chosen 

to be 0.1 to replicate the ratio of uniaxial compressive load to uniaxial tensile load, usually around 

ten, as is observed empirically for normal-strength concrete. The effect of other values for this 

parameter, which indicates the contribution of curvature in the fictitious beam’s damage, can be 

investigated.     is the maximum of the absolute value of the fictitious beam’s curvature. Since 
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there is no transverse loading applied to the fictitious beam, curvature is maximum at one of its 

ends and therefore is determined using the following equation: 

      (|
 

 
(        )| , |

 

 
(        )|)                              (    ) 

To define the damage index, we first need to define the relationship between force and  

micropolar stretch. Inspired by bilinear damage model, used in finite element methods to simulate 

the tensile fracture of concrete, we assume that the force-micropolar stretch relationship is 

bilinear as shown in Fig. 3.1.  

                           

Fig. 3.1 Bilinear softening model used to define the damage index 

 Based on this model, as long as the value of  micropolar stretch is less than   , which is a 

parameter that needs to be calibrated using experimental results, the fictitious beam is elastic and 

damage index is assumed to be zero. When the value of the micropolar stretch becomes greater 

than    , but it is still less than     , the fictitious beam experiences softening and so damage;   , 

   , and     are the other parameters which  have been used to define the damage index.   

        When the micropolar stretch is greater    and is less than       internal force in the fictitious 

beam can be obtained by using the graph in Fig. 3.1:    

𝐴 

𝐵 

𝜖𝑚𝑝 

𝐹𝑜𝑟𝑐𝑒 

1 

𝐸𝐴 

𝛼 𝑆𝑡 

𝛼 𝑆𝑡 

𝑆𝑡 

𝛼 𝐸𝐴 𝑆𝑡  
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Now we are ready to define the damage parameter.  For this, we assume that the axial force can 

also be obtained using the following equation: 

                                                   (   )                                                       (3.12) 

Note that this is only an assumption and the axial load is determined by equation (3.1), and Eq. 

3.12 is defined to obtain an expression for the damage index. Damage index is determined by 

solving  equations 3.11 and 3.12 for  : 

  (
     

    
)
      

   
                                                 (    ) 

When the value micropolar stretch is greater than      and is less than     , we use the same 

procedure to obtain the damage index, the results is: 

    (
  

     
)
        

   
                                       (    ) 

 If the value of the micropolar stretch is greater than     , we will assume that the fictitious beam 

is completely damaged and is no longer functional. This is equivalent to assuming one for the 

value of damage parameter. An important assumption is that the damage parameter here 

decreases with time, therefore,  the damage index is determined from the following equations: 
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where     is the current micropolar stretch and       is the value of the damage index in the 

previous time step. In summary, based on the value of the micropolar stretch and the damage 

index in the previous time step, the damage index in current time step is determined by using the 

equations in 3.15. 

        Before we proceed to calibrate the model, discussion regarding mesh dependency is needed. 

The micropolar stretch in Eq. 3.9 is a function of the length of the fictitious beams, so that 

damage index in Eq. 3.15 is also a function of the length of the fictitious elements. As a result, the 

parameters of the damage index are a function of the length of the fictitious beams and for each 

size of these elements a new calibration is needed. 

         In the next chapter experimental results of notched there-point-bending beams will be used 

to calibrate proposed damage models and determine proper values for the unknown parameters in 

the equations above. 
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Chapter 4 Calibration of the damage model 

        In this chapter the diagrams of crack mouth opening displacement (CMOD)  vs. load  

of notched three-point-bending beams are used to calibrate the damage model proposed 

in the chapter three.  These data are provided by the experiments which have been done 

based on a proposed test method of ACI 446-5  by  Chapman  [Chapman 2011]. Twelve 

specimens were cast in three different sizes that will be introduced in the next section. 

4.1 Configuration of the beams and material properties of the concrete  

        The configuration of the specimens is given in Fig. 4.1. As stated the beams have 

been casted in three different nominal sizes that are given in Table 1. We call these 

beams  D3, D6, and D9; denoting beams with 3 , 6,  and 9 inches of depth respectively.  

It is worth noting that the reason for overhangs is to prevent sudden failure of the 

specimens before end of the tests by producing negative moment at mid-span. 

 

                                Fig. 4.1  Configuration of the beam specimens 

 

Table 4.1  Nominal beam dimensions in mm 

Beam 

Group 

Depth 

(d) 

Width 

(w) 

Span 

(l) 

Notch Depth 

(ao) 

Notch 

Width 

D3 76.2 152.4 228.6 25.4 2.54 

D6 152.4 152.4 457.2 50.8 2.54 

D9 228.6 152.4 685.8 76.2 2.54 

𝑤 

𝑎𝑜 

𝑙

 
 

𝑙

 
 

𝑙

 
 

𝑙

 
 

𝑑 
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The material  properties of the concrete that we need for our models are density, 

Poisson’s ratio and modulus of  elasticity. These values for the concrete used in 

experiments  are  2323 (kg/m
3
), and 30 (GPa),  and 0.2 respectively.     

4.2 Simplification in configuration of beams 

        The configuration of beams in computational models are slightly different from that 

in  experiments. To decrease the computational cost, overhangs  are  eliminated  in the  

computational models and instead  two negative moments,  as shown in Fig. 4.2,  are  

applied to the both ends of the beams. 

 

Fig. 4.2  Overhangs are replaced with equivalent moment 

Since the self-weight of the beams are not included in our models, the magnitude of the 

negative moments is equal to the magnitude of the moment in the center of the beams in 

the experiments under the beams self-weight. These values for beams D3, D6, and D9, in 

N.mm,  are 1,840,  9,120, and 22,330 respectively. The influence of these moments on 

the force-CMOD diagrams of the beams is negligible, because of their small magnitude, 

but in order to simulate the experimental situations exactly these moments are included in 

the models.  

𝑃 

𝑀 
𝑎𝑜 

𝑀  

𝑙

 
 

𝑙
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4.3 Loading specifications 

        In this section the way the loads are applied  in computational models is introduced. 

For this, the geometry of  D3 beam modeled by using PDQ is provided in Fig. 4.3. The 

loading has two stages: first the negative moments are applied to the end of the beams, 

and after applying these moments the vertical load is applied in the center top of the 

computational beams.   To apply  the vertical  load, we have included an extra particle in 

the center top of the beam, the particle is in dark blue in Fig. 4.3.  

 

Fig 4.3 Computational model of  D3 beam,  lattice spacing, s , is 3.175 mm 

 

        To apply the vertical load the deformation control method is used, which means that 

a fixed amount of downward displacement is applied to the center top particle in each 

time step and the deformation is slowly increased. Since this particle is interacting with 

the surrounding particles, the vertical component of the applied forces exerted to the 

particle is computed. The magnitude of this force together with crack mouth opening 

displacement (CMOD), these data, are recorded as the vertical displacement of this 

particle increases. I need to add that to simulate the notch in the models the particles that 

are in the region where the notch is located are eliminated, and also the damage index,  ,  
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of the fictitious beams which are located on this region and their spacing is equal to the 

lattice spacing is assumed to be one, so they are not allowed to interact.  

        Before proceeding to calibrate the proposed damage model, the maximum value of 

the velocity that can be applied to the top particle in order to prevent waves and dynamic 

effects in the models is obtained, and also the highest value of the time step which 

guarantees accuracy of time integration is determined. Furthermore, the effect of 

unknown parameters of the damage model on the CMOD-load diagram is investigated. 

4.4 Maximum value of velocity applied to the top particle 

        Different values of velocity were applied to the top particle and CMOD-load 

diagrams of the models were plotted and  its effect on these diagrams  is monitored; the 

velocity is obtained by dividing the value of displacement applied to the top center 

particle in each time step by the value of the time step. The upshot is that when the 

velocity is less than 0.08 m/s some vibration in the center top particle is observed, since 

the top center particle is monitored, but the overall shape of the diagram do not change. 

Because the dynamic effect of loading is negligible for this value of speed, it is used for 

calibrating the models and finally a lower value is used to smoothen the graphs. 

4.5 Maximum value of the critical time step 

        In explicit time integration methods, the value of the time step needs to be smaller 

than the critical one in order to guarantee the stability of the solution. In addition, this 

value needs to be restricted to a value which guarantees  the accuracy of solution as well. 

We have checked different values of time step to obtain the maximum value of time step 



47 
 

which gives satisfactory accurate solutions. As a result, when the time step is chosen as 

twenty five percent of the critical time step, the solution is sufficiently accurate: 

   
 

 
√

(   )

 
 (√      ) (

 

 
)                                 (   ) 

4.6 Effect of parameters of damage model on the CMOD-load diagram 

        The damage model has four parameters which need to be calibrated. Determining 

these values using trial and error without having any clue that how crack mouth opening 

displacement-load  diagram is affected by these parameters is very difficult. Therefore, 

first the effect of each parameter on the shape of the typical load-CMOD diagram, shown 

in Fig. 4.4, were  investigated and the following conclusions were drawn: 

 

Fig. 4.4 Typical CMOD-load diagram 

    and    have almost the same effect on the shape of the diagram and both affect 

the shape of diagram in regions (II) and (III) . However,     has more influence 

on the shape of the tail of the diagram, region (III). Thus,    is changed to control 

(𝐼𝐼) (𝐼) 

𝐿𝑜𝑎𝑑 

𝐶𝑀𝑂𝐷 

(𝐼𝐼𝐼) 
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the shape of the diagram in the region (II)  and   shape of the diagram in region 

(III) is controlled by   . 

    mostly affect region (I) of the diagram and the peak load. Therefore, this 

parameter is used to control the peak load.  

    affects all of the three regions of the diagram.  

        Keeping the above hints in mind, three different lattice spacing have been chosen 

and the damage model  has been successfully calibrated. As stated in chapter three, the 

damage model is influenced by the lattice particle spacing,  ,  used in modeling. 

Therefore, the model is calibrated for three different size of lattice spacing: 3.175, 6.35, 

and 12.7 mm.  The  obtained results for three different beam sizes (D3, D6, D9) and for 

the three different size of lattice spacing are represented below. 

4.7 Calibration of the damage model for s = 3.175 mm  

        The model was calibrated for the smallest  lattice spacing  and the following values 

for the parameters, for the best correspondence with experimental results, were obtained: 

Table 4.2 The value of damage model parameters for s = 3.175 mm 

            

0.00015      0.13 20.0 415 

           

CMOD-load diagrams for numerical simulations and experiments are given in figures 

4.5, 4.6, and 4.7 respectively. The experimental results fall in the area which shaded in 

light gray in these figures. Comparing numerical and experimental results, it can be seen 

that the proposed model is capable of successfully  simulating the fracture of plain 

concrete beam in tension.  
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        As Chapman  has stated in his thesis [Chapman, 2011] two different approaches 

have been used to do the experiments. The experiments have been done on D6 beam first, 

and the loading rate has been too fast, so that sudden dynamic failure has been occurred 

during the loading. Consequently, different experimental approach has been  used to 

exclude dynamical  effects for D3 and D9 beams.  If one compares the value of CMOD 

of D3 and D6 beams, when the specimens fail, in figures 4.5 and 4.6, he/she can see that 

this value is smaller for the bigger beam, which can indicate the faster laoding rate of D6 

beam. Surprisingly, the correspondance of the numerical and experimental results is 

better for D3 and D9 beams and the damage model is capable of distinguishing between 

two different experimental approaches. 

4.7.1 Numerical and experimental results for load point displacement 

        Crack mouth opening displacement is not sensitive to concrete damage in loaded 

points and also deformation of supports. On the other hand, the the load ponit 

displacement (LPD)  is very sensitive to the damage of concerete in loaded points and 

since the beams maximum displacement is about 1 mm, see  figures 4.8, 4.9, and 4.10,  

the results obtained for the displacement of the midponit are not generally relaible and are 

not used by researchers as dependable results. In the figures 4.8, 4.9, an 4.10  the 

numerical and experimental diagrams  for LPD- load is given. As it can be seen, there is a 

good agreement between experimental and numerical results which indicates reliablility 

of  experimentls results and accuracy of the formulatios and dependability of the damage 

model  . However,  there is a considerable difference between  the results in elastic range 

for D6 beam. Owing to the fact that  the results obtained for the elastic response of D3 

and D9 beams  are in good aggrement with experimental results and the same procedure 
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is used to computationally simulate the three beams, the reason for this difference is not 

clear and can be the different approach used to do the experiments on D6 beam. 
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4.7. 2 Damage and cracking pattern 

        The main goal of this research is to calibrate the damage model using the 

experimental CMOD-load diagrams. Since the length and width of the cracking process 

zone and the length of the cracks are not measured during conducting laboratory 

experiments, no conclusion can be made from the  results obtained from simulations.  

However, to show the pattern of FPZ and cracking predicted by the simulations the 

results are presented for only one beam for each size of lattice spacing.  

        Fig. 4.11 shows damage and cracking propagation for six different values of 

CMOD. We have used four different colors to distinguish the damaged links. The 

damage range for different colors is different, which is given in table 4.3. 

Table 4.3 The color of the damaged fictitious beam based on the range of damage 

Color: yellow orange brown red 

Damage index range:                                                  

 

When the damage index of a link reaches one, we eliminate that link which means that 

we let the crack to propagate and show the surfaces of the new crack with a black line.  

         As can be seen, the length of the FPZ is big and reaches the top of the beam before 

cracking happens, and racking initializes after the beam lose most of its strength,  due to 

formation and grow of the  micro-cracks in FPZ. The crack direction is vertical which is 

in correspondence with experimental observations.   
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CMOD = 0.016 mm 

 

 

                CMOD = 0.058 mm 

 

 

CMOD = 0.135 mm 

 

 

CMOD = 0.289 mm 

 

 

CMOD = 0.3644 mm 

 

 

CMOD = 0.733 mm 

 

Color: yellow orange brown red 

Damage index range:                                                  

 

Fig. 4.11 Damage pattern of D3 beam for different values of CMOD, see Fig. 4.5 for 

corresponding load values, s = 3.175 mm 

 



58 
 

4.8 Calibration of the damage model for s = 6.35 mm  

        In this section, we calibrate the damage model for the lattice spacing 6.35 mm. To 

decrease the complexity of the damage model, we attempted to use the same values of   , 

  , and   that we obtained for s = 3.175 mm and recalibrate the model only by 

determining a new value for   . Fortunately, the damage model could recalibrated  by 

assuming 0.000118 for the value of   . The parameters of the damage model for the new 

lattice spacing are given in table 4.4. 

Table 4.4 The value of damage model parameters for s = 6.35 mm 

            

0.000118      0.13 20.0 415 

 

        Figures 4.12, 4.13, and 4.14 represent the obtained CMOD-load diagrams for three 

different beam sizes and comparison of them with the experimental results. Interestingly, 

the numerical results are in good agreement with the experimental for D3 and D9 beams 

and to somehow deviate from that for D6 beam. Since the LPD-load diagrams do not 

provide new information, they are not included for this lattice spacing here.   

        Damage and cracking pattern for six different values of CMOD of D6 beam are 

given in Fig. 4.15. The same conclusions can be made by comparing the values of 

CMOD and the damage and cracking patterns. 
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CMOD = 0.0788 mm 

 

 

                CMOD = 0.187 mm 

 

 

CMOD = 0.401 mm 

 

 

CMOD = 0.509 mm 

 

 

CMOD = 0.8205 mm 

 

 

CMOD = 0.924 mm 

 

Color: yellow orange brown red 

Damage index range:                                                  

 

Fig. 4.15 Damage pattern of D6 beam for different values of CMOD, see Fig. 4.6 for 

corresponding load values, s = 6.35 mm 
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4.9 Calibration of the damage model for s = 12.70 mm  

        The same strategy is used for calibrating the damage model for s = 12.7 mm. Since it 

is not possible to correctly create the geometry of D3 and D6 beams with the new last 

lattice spacing, the size of these beams is small to be modeled by the new lattice spacing, 

only D9 beam is modeled. Once again we attempted to adjust only the value of    for the 

new lattice spacing and keep the value of the other parameters fixed. Interestingly, we 

could successfully recalibrate the damage model with this strategy.  The damage model’s 

parameters for new lattice spacing are provided in  table 4.5. 

Table 4.5 The value of damage model parameters for s = 12.7 mm 

            

0.00008      0.13 20.0 415 

      

Based on the values of four damage model parameters, and assuming fixed values for    , 

  , and   , the damage model is simplified to the following form: 

   

{
 
 
 

 
 
 

   ( ,      )                                                                                                           

   (      (
      ( )

   
) ,     )                                                        

       

   (            (
     ( )     

   
) ,     )                          

                                                                                                                        

(   ) 

The obtained CMOD vs.  load diagram, and the cracking pattern for D9 beam and             

s = 12.7 mm and  are given in figures 4.16 and  4.17 respectively. 
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CMOD = 0.128 mm 

 

 

                CMOD = 0.288 mm 

 

 

CMOD = 0.607 mm 

 

 

CMOD = 0.915 mm 

 

 

CMOD = 1.221 mm 

 

 

CMOD = 1.376 mm 

 

Color: yellow orange brown red 

Damage index range:                                                  

 

Fig. 4.17 Damage pattern of D9 beam for different values of CMOD, see Fig. 4.7 for 

corresponding load values, s = 12.7 mm 
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Chapter 5 Conclusions 

         We used micropolar peridynamic lattice model to study tensile fracture of concrete.  

In chapter two we showed the isotropicity of the elastic hexagonal lattice. Moreover, we 

determined the internal forces of a the lattice under    ,    , and    , which can be 

helpful in defining constitutive model for the damage in compression and interpreting the 

damage in shear. Furthermore, we obtained the critical time step of the explicit time 

integration method which is used in PDQ. We showed  that  twenty five percent of this 

number must be used as a time step in the simulations to obtain an accurate solution.   We 

also presented the co-rotational formulation for simulation of large displacements, but 

small deformations.   

         In chapter three we introduced a new damage model. We combined axial stretch 

and flexural curvature of a fictitious  beam to define the micropolar stretch in order to 

consider the role of both axial and flexural deformations in the damage  of fictitious 

beams. Inspired by bilinear closing forces in cohesive crack models, we proposed a new 

damage model for micropolar peridynamics approach. The damage index is as follows:  

  

{
 
 
 

 
 
 

   ( ,      )                                                                                         

   ((
     

    
)
      

   
,      )                                           

       

   (  (
  

     
)
        

   
,      )                           

                                                                                                                            

, (   ) 

        As can be seen in Eq. 5.1, this model has four unknown parameters which need to be 

determined. The value of these parameters were determined using inverse engineering in 

chapter four.  
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       In chapter four the results of laboratory experiments which were conducted by 

Chapman [Chapman 2011] on  three-point-bending notched beams were used to calibrate 

the proposed damage model. He has provided crack mouth opening displacement vs.  

load diagrams for three different beam sizes.  In for computational loading,  we carefully 

used the deformation control method. For this, we applied a very small amount of  

displacement to the particle we considered on the center top point of the beam. We also 

investigated and found that if the velocity applied to the particle be less than 0.08 m/s, we 

will eliminate dynamic effects of the loading from our simulations.  

         Since calibrating a model with four parameters is hard, we considered every 

parameter individually and studied its effect on the CMOD-load diagram, and we 

observed that each parameter is affecting a specific part of the diagram. We used this fact 

to facilitate the process of calibration.  Because the damage model is mesh-dependend, 

the results are a function of lattice spacing, we calibrated the model for three different 

sizes of lattice spacing. We showed that the results of simulations are in a very good 

agreement with the laboratory results. Furthermore, the predicted damage and cracking 

pattern seemed to be very realistic. Surprisingly, the damage model is capable of 

distinguishing between two different approaches used in the laboratory experiments.  

          We also showed  that  three out of four parameters used to define the damage 

model can be assumed to be constant, at least for                    . The 

reason for this is because  we defined the micropolar stretch at controlling points   and   

in  Fig. 3.1 in terms of   . Therefore, the damage model can be simplified to the 

following form. 
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The values of    for lattice spacing sizes  3.175 mm, 6.35 mm , and 12.7 mm are 0.00015, 

0.000118, and 0.00008 respectively. 

5.1 Future work 

        In my opinion, some other benchmark problems containing tensile  and shear 

fracture are needed to be simulated to evaluate the performance of the proposed damage 

model,  for  a different loadings and specimen geometries.  
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