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Ryan Thomas Schnalzer

B.S., University of New Mexico, 2006
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Abstract

This research presents a novel, mechanically tunable sensor that utilizes the acous-

tic response of a polymer based acoustic bandgap (ABG) material to identify and

quantify damage in material substrates. Acoustic bandgap (ABG) sensors are the

mechanical analogues of semi-conductors by which a periodic array of differing acous-

tic impedances causes an acoustic bandgap. This is comparable to the periodic array

of electronic potentials that cause an electronic bandgap in semi-conductors. An

ABG sensor is composed of a host matrix material with a periodic array of inclu-

sions/scatterers made of a material with dissimilar acoustic impedance. ABG sensors

offer advantages to structural health monitoring (SHM) applications. Such advan-

tages include sensor scalability which enables macro to sub-micron damage detection

and the non-intrusive attachment of the sensor to substrates.

The specific use of ABG sensors is proposed for areas of known damage already

initiated (hot-spots) in critical components of a structure. This thesis examines the

vii



proposed use of ABG materials as sensors by showing experimentally and analytically

how ABG can be used to detect and quantify change in the strain field of the substrate

underneath. A parametric experimental study examines specimens composed of

two host materials of low and medium elasticity, one viscoelastic and one elastic

respectively. Four volume fractions are also considered for both host material types.

A finite element simulation is employed to verify the experimental observations of

the acoustic bandgap sensors and to demonstrate the functionality of the sensor.
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Chapter 1

Introduction

1.1 Overview

The purpose of this thesis is to examine the possible application of sensors made of

acoustic bandgap materials for hot-spot damage monitoring. This work will address

the need for micron and sub-micron scale damage detection in composite structures.

This work also demonstrates experimentally and computationally the way in which

ABG sensors work. The experiments are performed using twenty-two macrosized

ABG material specimens that encompass four geometrical variables and two material

property variables. The computational models use the finite element method to

illustrate how an ABG is formed and will serve as a guide in determining the existence

and frequency of occurrence.

1



Chapter 1. Introduction

Figure 1.1: Graphic representation of acoustic bandgap phenomenon

1.2 Sensing by ABG

A major aspect of structural health monitoring (SHM) research targets the devel-

opment of feasible sensing methods to detect damage in structures. This research

proposes a new sensing technique to be used for monitoring damage in critical struc-

tural materials of known damage in structures utilizing mechanically tunable acoustic

bandgap (ABG) materials. Acoustic bandgap is a physical phenomenon that occurs

in periodic materials in which acoustic waves are prohibited from propagating in

the material within a range of frequencies as illustrated in Figure 1.1. A ’gap’ of

transmission is present in the frequency domain. The premise of ABG sensors is to

exploit the this acoustic bandgap to be used as a damage feature that can be related

to damage type and severity.

ABG materials can be micro-manufactured by placement of a periodic array of

scatterers/inclusions in a host matrix material. The scatterer material shall have

highly mismatched acoustic impedance compared with the matrix material. Acoustic

2



Chapter 1. Introduction

impedance, Z, is summarized in Equation 1.1 where ρ is the density and Cl is the

longitudinal wave speed in a material.

Z = ρCl (1.1)

The inclusions form a lattice or a crystal-like structure. A schematic representation

of the proposed ABG sensor is shown in Figure 1.2. It is the differing impedance be-

tween the host material and the scatterers under the specified geometrical constraints

that enables the creation of the bandgap through losses such as reflection.

An ABG sensor differs from many other sensing devices in that the acoustic sig-

nal does not travel through the substrate material where damage is present, but

through the sensor itself. The concept of operation entails sending an acoustic pulse

through one side of the sensor and receiving the pulse on the other side. The respec-

tive bandgap that occurs can therefore act as a damage feature which is indicative

of healthy or damaged behavior due to the condition of the substrate with which

the sensor is adhered. If a local damage underneath the sensor takes place, it is

inferred that the sensor will observe such strain and thus cause a change in the

highly functional periodicity of the structure. Due to the scalable quality of this

phononic occurrence with the periodic spacing, ABG sensing has great potential

for very high sensitivity with low periodic spacing dimensions. The sensitivity is

therefore currently limited only by manufacturing constraints. In addition, changes

in the periodicity of the sensor are directly correlated with the damage size in the

substrate material; accordingly strain values in the substrate translate to amplified

strain values in the sensor due to the relative nature of strain with respect to total

dimension.

strain occurrences within the sensor are an amplified value of the true strain of

the substrate under testing since strain is a normalized quantity with respect to the

dimensions of the structure undergoing strain. So the sensitivity level capabilities

3



Chapter 1. Introduction

Figure 1.2: 3D Schematic representation of an ABG sensor

are amplified.

This thesis will examine the feasibility of using an ABG sensor to detect damage in

a substrate adhered to the ABG sensor. It is considered that localized damage below

the sensor, such as cracking or plastic strain in the substrate, will cause change in

dimensions on the substrate surface, consequently affecting the less-stiff ABG sensor

that is adhered to the deforming substrate. The resulting change in dimensions of

the sensor causes irregular spacing in the highly critical periodicity of the sensor,

instigating a change in the periodicity within a region of the sensor. The received

signal will thereby represent this effect due to a change in behavior of the bandgap.

Traditional sensor outputs can sometimes present false positives, or assign read-

ings of damage due to effects from different occurrences that offset the damage fea-

ture. Incidents that may incur false positives in ABG such as environmental effects

4



Chapter 1. Introduction

shall be considered and addressed. Such instances as temperature and humidity

changes will produce a global change on the substrate allowing for a simple expan-

sion or contraction of the sensor, leaving the periodicity consistent, but with greater

spacings. Based on the concepts stated above, the methods outlined in this thesis

will show the manner in which ABG sensors accomplish damage detection by first en-

gineering a bandgap (demonstrating knowledge of bandgap occurrence by analytical

and experimental matching). In addition, substrate damage is shown by the dete-

rioration of the bandgap and uniform strains due to environmental (non-damaged)

effects are demonstrated through a bandgap profile shift.

1.3 Motivation

Both commercial and military applications are influencing the need for structural

health monitoring with most emphasis in composite structures. A desired movement

from Time Based Maintenance (TBM) to Condition Based Maintenance (CBM) will

enhance the efficiency of use throughout the lifespan of a structure [1]. The largest

impact that SHM may have on composite structures may be in the aerospace indus-

try. It is shown that fiber reinforced polymer composites are increasingly being used

in aircraft structures. In addition, aging aircraft consisting of composite materials

are producing rising costs in support, especially in the Department of Defense [1].

Current methodology in TBM requires inspection periods that result in wastes of

time and money. Inspections can often be complex for the human examiner and

it has consequently been estimated that fifteen percent of all aircraft accidents are

due to human error during maintenance activity [2]. Many times this may be due

to barely visible impact damage (BVID) or damage with no visible indication at all

such as delaminations [3]. These problems are currently being addressed by research.

Critical infrastructure and high value assets are moving towards becoming ”smart”
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or ”intelligent” structures by implementing SHM systems so maintenance costs will

no longer be wasted on inaccurate, time-based procedures. Instead, with the help

of sensors, SHM will provide structures capable of monitoring themselves much in a

way ’analogous to medical science’ [2].

ABG sensors have a specific place in the realm of SHM. Structural health mon-

itoring can be broken down into two categories of sensing abilities consisting of 1)

Global Sensing and 2) Localized Sensing. Both components of SHM have different

purposes and challenges, but have potential to work together in a system to monitor

the structure as a whole. Specifically, localized sensors must achieve sensitivity to

damage relative to the need, which can at times current technology cannot yet meet.

In addition, the sensors must be able to differentiate actual damage from simple envi-

ronmental effects due to fluctuating temperature or humidity. This thesis illustrates

the potential of using ABG material sensors with high sensitivity and capability to

differentiate between damage and other effects.

1.4 Structure of Thesis

The following chapters of this thesis are divided as follows: Chapter 2 covers literature

pertaining to this project by first overviewing SHM, further detailing the need for

SHM, and outlining current sensing techniques available for structures highlighting

specifically composites in the aerospace industry. The second section of Chapter 2

will cover the state of the art on ABG materials addressing both the analytical and

experimental research investigations.

Chapter 3 outlines the experimental methods performed consisting of the fabri-

cation process for the ABG specimens and description of the experimental setup and

testing methods. The last portion of Chapter 3 includes the experimental results

and discussion. Chapter 4 goes over the analytical models that are used to simulate
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ABG sensors. The results of the analytical methods are also found in Chapter 4

along with a discussion. Chapter 5 concludes the thesis with a summary of findings

and how the results support the goals of this research.
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Chapter 2

Literature Review

2.1 Structural Health Monitoring

Structural health monitoring is defined as the scientific process of nondestructively

determining the fitness of an engineered component or system during operation by

identifying the mechanical damage, the severity level of that damage as the compo-

nent or system operates and the future performance of the component or system as

damage accumulates. The components of SHM work together as a system in engi-

neered structures much like a visit to the doctor’s office. The pain or irregularity

that is relayed to the doctor can be compared to recognition of damage occurrence.

Recognition of damage in SHM, like pain indicated by the human nervous system

(Fig 2.1), is obtained through various methods through the use of a damage feature,

which will be described in more detail later in this chapter. Questions by the doctor

about the patient’s recent conditions and worsening of the pain is much like the pro-

cess of diagnosis and prognosis. As structures gain ’intelligence’, making the move

to ’smart structures’, the future of engineering will parallel medical science more

than traditional engineering [2]. For this reason, there is an increasing amount of
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Figure 2.1: Linking nervous system to SHM [4]

research in this area to enhance monitoring ability and monitoring reliability in the

preparation of a comfortable transition to smart structures.

2.1.1 Background

Structural health monitoring encompasses two components, diagnosis and progno-

sis, for in-service conditioning of structural components and systems. SHM differs

from the well known process of nondestructive evaluation (NDE), which offers only

the diagnosis element. Diagnosis for NDE is performed during off-line inspection

in a practice called nondestructive testing (NDT), a subpart of NDE [5]. NDT is

employed to determine damage or condition through nondestructive investigations

such as Eddy current testing (ECT), an electromagnetic testing (ET) method or

ultrasonic testing (UT) for example. Figure 2.2 represents the interaction between

diagnosis and prognosis as a system that works together without the dependence of

human interaction for complete systematic health monitoring. Smart sensing tech-

nologies can inform the system of irregularity to form a diagnosis. With knowledge

based on material characterization and structural damage modeling of the compo-
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Figure 2.2: SHM process [2]

nents in question, the system can provide a prognosis to enhance the current state

of the structural component and form predictions for the residual life. Smart ma-

terials, materials aware of their respective health, have thus thrived in research and

were readily welcomed in the civil and aerospace industries [5]. In an introduction to

the book Structural Health Monitoring, Balageas [5] outlines the benefits of SHM by:

I. Allowing for the efficient use of the structure through the minimization of down-

time and the avoidance of catastrophic failures

II. Giving insight for improvements to the designer/constructor

III. Inducing drastic changes for the organization of maintenance services by aim-

ing to replace scheduled maintenance activities by performance-based (PBM) or

condition-based maintenance (CBM) and reducing maintenance labor mainly through

avoidance of dismounting parts with no hidden defects. SHM also will help to reduce

human involvement, labor, downtime, and human error thus improving safety and

reliability

Structural health monitoring has shown great progress within the last decade

with respect to the detection of damage in materials [6]. Traditionally, acoustic

technology was highly used in NDE, dating back a half-century [7]. Before this, NDE

was mainly limited to simple visual inspection to identify damage in large structures.

SHM has, since its existence, had to deal with the complex challenge of finding a
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way to combine global and local sensing techniques through inference of a damage

feature [8]. Since damage cannot directly be measured, it is thus deduced through

the use of damage features [8]. Damage features are physical indications that lead to

measurable quantities to describe damage. Several techniques for detecting damage

in materials have been addressed in a great deal of research such as acoustic emission

(AE), optical fibers, the use of piezoelectrics, ultrasonic methods, Eddy currents,

Lamb waves and several others [9], [1], [10]. The damage feature in Lamb wave

detection, for example, are anomalies in the wave response signal at the detection

point which can be quantified with complex algorithms to represent damage.

Although there are great challenges and complexities to overcome, SHM has re-

ceived a great amount of attention over the last two decades due to demand from

industry and tremendous interest from the scientific community. The first Interna-

tional Workshop on Structural Health Monitoring was held at Stanford, CA, USA

in 1997 with 60 presenters from all over the world. This workshop was put on again

in 1999 due to overwhelming recommendation from the research community and has

been a yearly event since gaining more and more interest [11]. The heightened atten-

tion in this field has sparked tremendous leaps in the technological advancements in

smart software, sensing and actuating, materials, computation, and signal processing

relating to SHM [12], [6].

2.1.2 Structural Need for SHM

Engineering industry has a definite role for SHM once it has achieved maturity by

overcoming challenges such as reliability and robustness. The aviation industry, for

example, has justifiably had an interest in continuously monitoring the health of

aircraft systems for identification of potential problems before they occur [13]. Goals

to decrease maintenance costs in the aerospace industry aim to incorporate suit-
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Figure 2.3: SHM and NDT working for efficiency [1]

able SHM technologies. Challenges then surface to obtain durable and reliable NDT

methods for in-service operation [4]. Current practices for monitoring structural

health in aerospace structures are time-based. Components of aircraft are evaluated

using non-destructive testing (NDT) techniques every inspection period as dictated

by the governing bodies such as the Federal Aviation Administration (FAA) or the

Joint Airworthiness Authority (JAA) [2] [13]. For example, the F-16 requires 25

hours of maintenance per flight hour [1]. In CBM, health monitoring technologies

determine when service or maintenance is needed based on the known condition of

the structural component in question [1]. This process will eliminate unnecessary

inspection intervals from TBM as well as indicate when service or maintenance is

necessary, which could fall between inspection intervals with TBM, making the over-

all process more efficient and effective. Comparison of NDT vs. SHM is presented

in Figure 2.3.

12



Chapter 2. Literature Review

Figure 2.4: A pictorial summary showing the growing use of composites in major
aircraft (JEC, Estin & Co, Hexcel)

2.1.3 SHM in Composite Materials

A composite material is made up of two or more composite or homogeneous materials

that result in a material which possess unique properties dependent on the geometri-

cal design and individual properties of the constituent materials. Examples include

structural composites consisting of laminar composites and sandwich panels, fiber

reinforced polymer (FRP) composites, and particulate composites [14]. Composites

have been in development and operation in the military for about fifty years. The

transition from metals to composites that is currently being seen is similar to the

conversion from wood to metal in the 1920’s [15].

SHM will be essential to ensuring the safety of the composite structures due to
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changes such as:

1) The building of composite structures on a greater scale

2) The building of composite structures through relatively new, automated tech-

niques rather than time-tested traditional methods by hand

3) The fact that inspection and maintenance requirements will be driven by different

types of failure than what it is currently for metals (fatigue and corrosion perfor-

mance)

Techniques and requirements for metals are based on centuries of experience,

development, and operation and are therefore well accepted and understood. Certi-

fication requirements by the FAA and JAA take a different approach as composites

prove to be more complex and less understood. Although composites offer higher

specific strength and stiffness, they are regulated to a higher degree than metals

usually designed to about 33% of the failure load compared to 60% for metals [2]. In

addition, design with composites is not governed by fatigue and corrosion, making

composites more desirable for use [15].

Composite materials are increasingly being used in aircraft structures [1] [2] as

shown in Figure 2.4. Currently fiber-reinforced polymer composites account for 25%

of the structural weight of Airbus 787 and 50% of the structural weight of a Boeing

747 Dreamliner, which had already moved up from 17% composite composition in

the past Boeing 747 model [2]. Increase for demand in SHM in composite materi-

als is further amplified by the fact that aging aircraft composed of composites are

experiencing rising costs due to support and maintenance.

The steps toward composite failure are outlined by Baker [16]. The process begins

with matrix cracking in transversely loaded plies, followed by matrix cracking in axial

plies, local delamination at intersection of cracks, and ending with fiber breakage.

Research has shown a possibility of ”pre-crack fatigue failure” to occur before the
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visible steps listed by Atodaria [17]. Detection of damage at the early stages like that

of pre-crack fatigue occurring at the microscale can offer benefits to industry using

composite structures through early alarms of possible catastrophic failure in critical

areas for safety, alerts for maintenance necessity that can contribute to lifespan, and

also to signal design flaws for enhancement of better future designs. It has been

stated also that bonded repairs with composite patches in aircraft structures are

becoming a preferred technique in the repair of localized damage [13]. Such patches

offer minimal changes in contours, low weight expense, low cost, easy conformability,

and retard crack growth. Patches also require maintenance and may be another

critical area in need of monitoring.

2.1.4 Other Sensing Methods for SHM

Damage identification in large structures is mainly made up of vibration-based tech-

niques where vibration signals identify anomalies in a system [18]. The identification

of damage in these contexts can be quite complex; much work has been done to

extract these damage features in frequency, time, and other domains. The current

NDE industry consists greatly of ultrasonic technologies for damage identification

[19]. Ultrasonic techniques are common in the aerospace industry due to the gravity

of composites used, but have also been used in checking weld quality in steel struc-

tures [7]. This technique broadly consists of an acoustic signal being sent through

a system to be received at other points throughout the system in order to sense

irregularities. One version of this is C-scans, where surface measurements of sound

intensity are taken [10].

Other acoustic methods in damage identification include AE sensors in which

damage is detected by the acoustic signal that is produced upon the energy release

from fracture [20]. In the case of AE, the sensitivity to energy is proportional to
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the scale of damage. Due to low amounts of energy release, AE can encounter

limitations in terms of its sensitivity resolution. In addition, AE surface techniques

used for composite materials require a great deal of complex signal analysis and

result in high uncertainty in terms of damage location and severity [21]. However,

researchers have now shown how AE and piezoelectric sensors can be integrated

into a network to identify damage locations [22]. Fiber optical and piezoelectric

sensors have also been proposed to be sensitive to AE [23]. Networks of fiber optic

sensors and piezoelectric sensors have also been considered in the literature to detect

damage through embedment of the sensors in the surface or mounting the sensors

onto the surface of the substrate [9]. Advances in micro-fabrication have paved the

way for more sensitive devices due to less restriction in component sizes [24]. Micro-

electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS)

now show capability of creating devices in the nanometer range. More promising is

the fact that Raleigh, shear, and lamb waves have recently been proposed to be more

successful in damage detection than the previously mentioned sensing techniques [25].

An in-depth overview of sensing techniques up to the year 2002 is reviewed in

the dissertation by Kessler [9]. A summary of limitations, strengths, and potential

in the SHM realm of sensing methods is highlighted in Table 2.1 listing techniques

as trivial as visual inspection to complex methods such as AE. Useful attributes of

each sensing type is evaluated in terms of weight, conformability, portability, size,

complexity, expense, sensing area, power draw, and other important qualities. The

capabilities of each sensor type are shown in terms of sensor size (Fig 2.5) and sensor

power draw (Fig 2.6) as of 2002.
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Table 2.1: A comparative summary of strengths, limitations, and SHM potential
among sensing methods [9]

2.1.5 Summary

Structural health monitoring is a major undertaking for complete robust and reliable

use in future applications, especially in preparation for a move from time based
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Figure 2.5: Detectable damage vs. sensor size [9]

Figure 2.6: Detectable damage vs sensor power [9]
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monitoring (TBM) to condition based monitoring (CBM). The aerospace industry

may have the most significant need for smart structures applications. With such

a high percentage of composites used in this industry, there is a great need for

CBM systems capable of monitoring such materials. Financially, such a system can

have great impact on the aerospace industry by efficiently monitoring old composite

aircraft, extending the lifespan of new aircraft, and contributing to better designs

for future aircraft. Current sensing methods show noticeable technology gaps in

fulfilling the requirements necessary to bring SHM forward. New sensing techniques

are needed to fill these gaps and contribute to the spectrum of sensing methods that

can meet the various sensing needs. The composite patches used for composite repair

may be an application where high sensitivity monitoring is useful.

2.2 Acoustic Bandgap Materials

2.2.1 Introduction

Acoustic bandgap materials have created a large spark in the research community

since their emergence in 1993 by Kushwaha et. al. [26] with the first full band-

structure simulation for periodic, elastic composites. Kushwaha et. al. credit their

inspiration to Yablonovitch’s work with macroscopic ’photonic crystals’ that cause

electromagnetic bandgaps in which electromagnetic waves are forbidden [27]. The

propagation of elastic waves in periodic and random media, however, is an old topic

that had been addressed much earlier [28].

Acoustic bandgap formation is attributed to Bragg reflections that can be caused

by passing acoustic signal through a periodic composite material [29]. The gaps

resulting from Bragg reflections in a square lattice occur at frequencies dependent

on lattice constant a, the periodic spacing and are proportional to 1/a and 0.707/a
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corresponding to the period in the direction parallel to the wave propagation ([100] or

ΓX in reciprocal space) and the diagonal direction ([110] or ΓM in reciprocal space)

respectively and must be wide enough to overlap. However, surface reflections on the

scatterer or wave propagation in the scatterer can help the gaps to overlap causing

a full gap extending throughout the Brillouin zone (independent of polarization).

Most interesting is the fact that the frequencies at which ABGs occur are scalable

due to the proportionality with lattice constant ’a’, a trait that is not shared by the

photonic counterpart.

ABG crystal research has paralleled the ideas of photonic bandgap materials with

great hopes for novel applications. Such applications for ABG devices are listed in

the literature for uses in more efficient antennas [30], elastic wave filters [30], [31],

vibrationless environments [26], better transducers for sonar/depth finding systems

and medical ultrasonic imaging, noise control [32], waveguides [33], [34], and acoustic

mirrors [35]. This topic of research has thus produced a great interest made evident

by it’s appearance in over 1000 published journal articles [36].

This section discusses work in the literature that pertains to obtaining and opti-

mizing bandgaps analytically and experimentally. The full elastic plane wave equa-

tion for a homogeneous material is described by Equation 2.1.

(λ+ 2µ)∇(∇ ·
−→
U )− µ∇× (∇×

−→
U )− ρ∂

−→
U = 0 (2.1)

−→
U (−→r , t), is the displacement vector as a function of position −→r and time t, λ and

µ are the Lamè coefficients, ∇ is the Laplacian operator and ρ is the density of the

material. Analytical methods used in the literature include the plane-wave expan-

sion method (PWE), the finite-difference time-domain method (FDTD), the finite

element method, and the variational method (VM). Experiments have shown acous-

tic bandgaps in one-dimension [37], two-dimensions [38], [39], [40], [41], [42], [43],

[44], and three-dimensions [35]. There has been some confutation as some reported
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experimental gaps represent only pseudogaps and not complete gaps [45]. Complete

gaps are defined by a gap which exists independent of polarization of the wave and

its propagation direction [46]. Much of the work cited above pertains to liquid-liquid

or liquid-solid ABG composite materials, which is distinguished as ’sonic crystals’

[29]. There is little work done for solid-solid or solid-liquid composite crystals, which

has also been classified with the name ’phononic crystals’ [29].

2.2.2 ABG Analytical Methods

The analogy between materials with the inhibition of spontaneous emissions and ma-

terials that disallowed vibrations was made leading to the first full band-structure

calculations for such materials [26]. There exists a strong analogy in behavior and

characteristics among phononic crystals, photonic crystals, and their electronic coun-

terpart (Table 2.2). Kushwaha et. al. [26] showed computational results for the band

structure of a periodic array of Nickel in Aluminum and vice-versa. The results are

shown in Fig 2.7 with the vibrational gap found in the hatched area. It was found

that Aluminum in Nickel produced a larger gap, although it was pointed out that

the calculations did not consider the mixed longitudinal-transverse mode and was

therefore not complete because the gaps were not independent of polarization. The

authors considered the complete calculations for phononic gaps to be of comparable

importance to the work in photonics. Sigalas and Economou [47] answered promptly

with calculations showing a narrow, but complete bandgap for Gold (Au) cylinders

in Beryllium (Be) using the transverse polarization mode as Kushwaha and Halevi

had but also the mixed, longitudinal-transverse polarization mode using the plane

wave expansion (PWE) method.

Another analytical method for simulating the band structures in two-dimensional

phononic crystals is the variational method (VM) [48]. The variational method was
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Table 2.2: Comparison among electronic, photonic, and phononic crystals [26]

first used by Sanchez-Perez et. al [41] and shows improvement over PWE in terms of

convergence time [49]. It was determined that the VM works well at high frequencies

for two-dimensional periodicity and converges faster than the PWE method.

The finite-difference time-domain (FDTD) method was used for the first time in

Figure 2.7: Acoustic band structure and density of states for Ni cylinders in Al
forming a square lattice with a filling fraction of 0.35. The principal symmetry
directions making up the Brillouin zone are shown on the lower right. [26]
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the analysis of ABG materials with experimental validation [50]. FDTD was em-

ployed as an improvement upon the previously used plane wave expansion (PWE)

method [47], [30] or the variational method (VM) [41] which endured setbacks due

to convergence problems when dealing with solid-fluid composite ABG structures.

Specifically, problems were encountered when using liquid materials and also finite

systems. The lack of transverse velocity in liquids caused the Finite Fourier Trans-

form of the Lamé coefficient µ not to converge in the PWE. This problem was

traditionally side-stepped by using an imaginary µ, in which unrealistic effects may

or may not reside. Also, FDTD can be used for simulating finite-sized structures

[29]. FDTD was therefore employed to better simulate reality and along with this,

more realistic boundary conditions were applied for a homogeneous surrounding en-

vironment.

The FDTD method discretizes the wave equations in both space and time in which

the variables are then interlaced by a half a grid cell and approximated by center

differences in both domains. This method was tested against experimental results

that considered mercury (Hg), oil, and air in an aluminum (Al) host in separate tests

for filling fractions of 0.22, 0.28, 0.35, 0.40, and 0.42 for each material combination.

The experimental results matched up with the FDTD analytical results showing the

importance of realistic transverse field components that were modified in PWE to

allow for convergence. Vasseur et. al. [51] produced an in-depth overview of the

PWE method and the FDTD method along with a study to use these two methods

for comparison to experimental results consisting of filled and hollow Cu cylinders

in air as well as other experimental results consisting of water instead of air. The

experimental setup included Cu tubes with an inner radius of 13 mm and thickness of

1 mm and were 450 mm long. The lattice constant was 30 mm. A speaker connected

to a low frequency generator was located 40 mm away from the sample face (first

set of inclusions). The difference between the Fourier transforms of the test with

the sample was subtracted from the test with run with no sample thereby removing
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the background effect. It was demonstrated that that the FDTD and PWE methods

agree below 10 kHz, where the assumption of rigid cylinders holds. Although, above

10kHz, only the FDTD method matched experimental results. When water was used

instead of air, FDTD matched only up until 40 kHz when there was dependence based

on cylinder wall thickness.

The FDTD method is used again for Mercury (Hg) spheres in an Aluminum (Al)

host and for Aluminum (Al) cylinders embedded in a Mercury (Hg) host [52]. Sigalas

et. al. compared two analysis using the FDTD method in a three-dimensional pe-

riodic system. The importance of transverse components in solids are discussed, as

results for a case where transverse elements of the Aluminum (Al) scatterers are

turned off and compared to the normal case in which the transverse components are

not ignored [52]. Only very narrow gaps if any at all existed for the case where the

transverse sound velocity in Aluminum (Al) was set to zero while normal conditions

showed that gaps occurred for a wide range of filling ratios. Therefore, the trans-

verse components in solid scatterers in a fluid host are of significance to bandgap

occurrence.

In a similar test, two modes of FDTD algorithm were compared: a sonic version

which deals only with longitudinal waves, and a phononic version which considers

both longitudinal and transverse components [53]. The FDTD method had now been

established in many publications [52], [50], [54]. It was demonstrated that the sonic

FDTD had suitable agreement with the phononic version for methacrylic cylinders

in air and Aluminum (Al) cylinders in air, however for the case of steel in water,

there was a significant difference in the results. The correspondence of the phononic

FDTD was confirmed over the sonic FDTD as predicted using an earlier experimental

verification [55]. This could hint at the use of the sonic code for certain materials,

although it could also be due to the frequency range at which the simulations were

performed as the results for the PWE method were shown before [51].
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2.2.3 Variational Studies

In attempts to create and optimize acoustic bandgaps, research investigations studied

the effects of varying material parameters such as wave speed and impedance via

density and modulus of elasticity in addition to geometrical parameters such as

Bravais lattice type and filling fraction (FF) within each ABG material. Bravais

lattice types are made up of a periodic arrangement repeated at each lattice point

oriented in such arrangements as a square lattice, oblique lattice, rectangular lattice,

monoclinic lattice to name a few [53], [56]. Filling fraction (FF) is a quantity to

summarize the portion of cross-sectional area of the unit cell occupied by the scatterer

material. For a a square lattice with circular inclusions of radius r, the relation is

provided by Equation 2.2 below.

FF = π[
r

a
]2 (2.2)

An overview of all the material properties cited in this chapter is given in Table 2.3

at the end of the chapter.

Once obtaining the ability to calculate coupled longitudinal and transverse modes,

Kushwaha et. al. [32] presented the band structure for Nickel (Ni) in Aluminum (Al)

(and vice-versa) with the mixed-mode calculations. A complete bandgap extending

throughout the Brillouin zone was shown. The Brillouin zone is the irreducible zone

in which symmetry occurs [57]. An outline of the general equation of motion for an

inhomogeneous system that supports the coupled longitudinal and transverse modes

was also given. The equation is isolated down to a special case of a binary composite

material with two-dimensional periodicity on a plane perpendicular to the plane of

wave propagation. The band structure for the square lattice with a filling fraction of

0.35 can be seen in Figure 2.7. A maximum at a filling fraction of about 0.3 is found

for this material type and lattice type based on a curve representing gap width
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Figure 2.8: The normalized gap width vs filling fraction to find maxima for hexagonal
lattice. The first gap for the hexagonal lattice is indicated ’lower gap’, the second
gap by ’upper gap’ and the dotted line represents the first gap for the square lattice.
[58]

against filling fraction (Fig 2.8). Kushwaha and Halevi [58] soon after presented

acoustic bandgaps in the band structures for nickel (Ni) cylinders in an aluminum

(Al) matrix arranged in a hexagonal lattice with the mixed-mode calculations. The

plot of gap width vs. filling fraction can also be seen in Figure 2.8 along with the

result from the square matrix. Since the gap did not vary for a constant structure

with a variable filling fraction on the reduced frequency plot, it was thus illustrated

that the gap occurrence in the frequency domain was inversely proportional to lattice

constant ’a’.

A simple one-dimensional simulation was conducted [30] to find an ABG using

materials consisting of thin and thick plates using molybdenum (Mo) in lucite, iron

(Fe) in lucite, steel in lucite, Al2O2 in Lucite, Al2O2 in aluminum (Al), and iron (Fe)

in aluminum (Al). Bandgaps were presented in terms of a ratio factor where the gap

width is divided by the center frequency of the gap to provide an objective measure

of the gap quality and are shown here in Figure 2.9. It was found that the thin and

thick plates produced very similar results with the Mo in Lucite yielding the best
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Figure 2.9: Gap-to-midgap ratio of scattering component for x in x-y polarization:
(A) Mo in lucite, (B) Fe in lucite, (C) steel in lucite, (D) Al2O2 in lucite, (E) Al2O2

in Al, and (F) Fe in Al [30]

results with a gap to midgap ratio of 0.54 at a filling fraction of about 0.3 as shown.

The band structure results for two-dimensional and three-dimensional periodic

composites made from spheres, cubes, and rods consisting of Steel, Nickel (Ni), Lead

(Pb), and Copper (Cu) in a homogeneous polymer matrix was shown by Kafesaki

et. al [59]. It was re-established that the geometrical conditions responsible for the

formation of bandgaps are dependent upon the volume filling fraction and the lattice

structure as previously shown [47], [32], [58]. The materials used are also considered

to have strong influence on gap production as expectations for high contrast density

between the two materials involved were verified [59]. These results showed that

high density scatterers in a low density background was more important than ve-

locity mismatch. Their investigation also showed the advantage of using a polymer,

specifically citing epoxy, due to it’s low density and its ease for fabrication as a ABG

material.

The importance of density has been alluded to already [59], although another in-

vestigation tests which specific parameter contrast has a greater affect. The acoustic
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impedance contrast versus the velocity contrast between the host and inclusion ma-

terials is compared among varying filling fraction [60]. Here, the results for fictitious

solid materials showed that the ABG becomes wider for high variation in impedance

than for varying velocity, and a maximum is found at an intermediate filling fraction

for the parameters given.

Material parameters were tested again in an investigation where large bandgaps

were presented originating from a three-dimensional sonic crystal made of spherical

water balloons in a Mercury (Hg) host [31]. Face-centered cubic (fcc), body-centered

cubic (bcc) and simple cubic (sc) arrays were all considered. The face-centered cubic

yielded the largest gaps at a gap/midgap ratio of 0.83, the biggest gap shown in

the literature in any dimension. Each array type had a gap maxima occurring at

a filling fraction of 0.24. These results had opposed a previous conclusion that a

low-density, high velocity material in a high-density, low-velocity material could not

produce a bandgap [61]. Kushwaha and Djafari-Rouhani [31] again emphasized that

the density contrast is what should be attributed to the gaps formation, an instance

that is not analogous to photonics.

Geometrical changes were also tested for constant material types to see the ef-

fects. Kushwaha and Djarfari-Rouhani [46] tested a honeycomb lattice (hexagonal)

structure of infinitely rigid metal inclusions against a simple square array. Not only

did the hexagonal lattice produce a wide gap, but gaps were also found for a wider

range of filling fractions. Kushwaha and Djarfari-Rouhani also introduced an inter-

esting concept for the creation of a super bandgap by initiating simultaneous gaps

through a tandem structure of multiple lattice constants and radius values (Figure

2.10). It was pointed out that the stop bands can be raised (lowered) in the frequency

domain by decreasing (increasing) the lattice constant ’a’ as noted previously [31].

The idea opens the door to gap widths never before encountered through the idea of

gap superposition.
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Figure 2.10: Proposal of a super-wide acoustic bandgap signified by the dark line
on the left. The gap extends from the low frequency gap to the high frequency gap
through stacked lattice structures [46]

Like the original of ABG, some research investigation paralleled photonic bandgap

findings. Caballero et. al [56] tested the idea that a reduction in symmetry in the unit

cell can widen the bandgap. The reduction in symmetry was proposed for a simple

square lattice of cylinders by placing a smaller sized cylinder at the center of the unit

cell. Not only did the bandgap widen for the cases with an additional inclusion, but

also allowed for a higher filling fraction as the additional inclusion in the open space

pushed the close-packing condition from 0.78 to 0.92. The enlargement of the gap

was based on the idea of creating more scattering modes.

Goffaux and Vigneron [62] examined the concept of bandgap adjustment or ’tun-

ing’ using long square rigid inclusions in a square host matrix and showing the effect

of their rotation as seen in Fig 2.11. Filling fraction and rotation angle of the square

scatterers (with respect to the square host) is illustrated in Fig 2.12 using PWE and
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Figure 2.11: Square inclusions in square lattice formation showing rotation [62]

Figure 2.12: Square inclusions in square lattice formation showing rotation [62]

FDTD. It was found that the rotation angle of the inclusions in conjunction with the

filling fraction can act as a tuning mechanism for isolating desired gap widths. This

concept can enhance the manipulation and control of bandgap production for appli-

cations with specific bandgap width requirements. Another type of adjustment in

the frequency domain was shown by introducing a polymer coating to the scatterers

[62]. The coated cylinders lowered the midgap frequency by two orders of magnitude.

In a different type of research, the finite element (FEM) method was coupled with

optimization to find the optimal topology for a two-dimensional crystal with scatter-
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ers [63]. A matrix of epoxy with aluminum inclusions was considered. Optimization

for an initial case of diamond-shaped inclusions and square-shaped inclusions con-

verged to a circular-like inclusion. It was found that a mass-damping coefficient of

75,000 in the finite element model was optimal to reduce resonant peaks, but would

not hinder the gap. In addition, the removal of small resonance peaks assured the

bandgap location. This research showed that FEM can be used analytically deter-

mine gap locations for given materials and geometries.

While some research focuses on constructing the bandgap, other research mea-

sures bandgap resistivity based on induced changes, such as waveguides. The arena

of waveguides has become more populated with the introduction of ABG [33], [34].

Sigalas analytically constructs such a device by introducing defect states into an

ABG material [33]. In addition to waveguides, Miyashita also played with the no-

tion of defect modes [53]. Defects in the periodic structure of the lattice such as

the image shown in Fig 2.13 were introduced to determine the consequent effects.

A defect, such as one shown in Figure 2.13 can in turn cause a passband, thus dis-

rupting the bandgap as seen in Fig 2.14. In a similar case Psarobas et. al. [64]

examines a three-dimensional fcc lattice structure with lead spheres to illustrate how

introducing impurities can affect the gap. Such impurities as planes of spheres with

small diameters cause deterioration in the bandgaps.

2.2.4 ABG Experimental Investigations

James et. al. [37] conducted a study for a one-dimensional sonic bandgap consisting

of a theoretical calculation and an experiment. The experiment consisted of two

scenarios of perspex plates of thickness d = 0.4 mm in one case and d = 2 mm

in the other both held by a frame. The frame was placed in a glass tank (300 x

300 x 600 mm) and filled with water. Two transducers with diameters of 38 and
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Figure 2.13: Image of defect mode (waveguide) along line of wave propagation [53]

Figure 2.14: Passband formed within acoustic bandgap by defect mode for
methacrylic resin cylinders in air [53]

29 mm with resonant frequencies of 2.25 and 0.5 MHz (respectively) were used at

frequencies below resonance. A function generator was used and setup to trigger

the digital oscilloscope. Ten signals were averaged to reduce noise in the data. The

sampling interval was set to 0.5 µs resulting in a Nyquist frequency of 1 MHz, well

above the maximum interest frequency of 600 kHz. The total window used 1024

points for a resolution of about 2 kHz. The theoretical results using the casual
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surface Green’s function method (CSGFM) for nontrivial geometries matched up

with the experimental results for periodicities numbering between 2 and 10 plates ;

more plates show deteriorated matching due to slight variations in periodicity. Defect

states were produced such as modification in plate composition, thickness of plates,

and plate spacing (where a plate is removed) exhibited narrow transmission bands

in the gap. This study showed the ease in creating a one-dimensional sonic crystal

and stated how the position and width of the stop bands (and passbands) can be

modified through changes made in dimensions and materials of the unit cell.

The first ultrasonic bandgap was shown using an aluminum (Al) host with a

square configuration of cylindrical holes filled with Mercury (Hg) [38]. The outline

was to use inclusions with a low propagation velocity, but higher density with relation

to the surrounding host medium. The experimental setup makes use of broadband

ultrasonic transducers with a diameter of 20 mm and is processed with a digital

oscilloscope. It was found that the maximum signal-to-noise ratio (SNR) was about

50 dB for the oscilloscope. A second experimental setup used a gain-phase analyzer

to study the dispersion relations. The lattice constants used were 3.25 mm, 2.58

mm, and 2.8 mm, resulting in bandgaps at center frequencies of about 750 kHz, 800

kHz, and 850 kHz.

The first experimental support for two-dimensional ABG material capable of full

phononic bandgap was shown by Vasseur et. al. [39]. This group alluded to the

previous experimental two-dimensional acoustic bandgap done before this, however

it was done using Mercury cylinders in an Al host making it a sonic crystal due to

the liquid inclusions [38] and lacked analytical prediction. Vassuer et. al [39] used

an analytical model developed by Kushwaha [32], [58], [31] with their experiments,

emphasizing the necessity of a prediction model with reliability to adequately use

the term ’engineered bandgap’. The samples tested consisted of two composite bi-

nary materials with dimensions 100 x 100 x 100 mm made of Duralumin cylindrical
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inclusions in an epoxy host. One specimen was made with a square lattice struc-

ture with a lattice constant a = 20 mm and the other specimen made of a centered

rectangle lattice of periodicity a = 20 mm and b = 2a = 40 mm, both containing

cylinders of diameter of 16 mm (Fig 2.15). The experiment used a broad-band 500

kHz P-transducer as the emission source and the measurement of the signals was per-

formed with a TDS 540 oscilloscope with a TD100 Data Manager. The transducers’

diameters were 31.75 mm. The results for transmitted power can be seen in Figure

2.16. The experimental results gave strong evidence of an absolute bandgap and

coincided with the theoretical results at a center frequency of 90 kHz, although some

portions of the gap has transmission slightly above the noise floor. A possible second

gap may be considered at 110 kHz, but is shown extremely narrow. This could be

attributed to the finite nature of the specimen’s lattice in x,y and z directions, the

small dimensions of the transducers, which were on the same order as the lattice

constant, or the measurement equipment. Although one of the gaps was in question

of being a pseudogap, the first major experimental gap was in good agreement with

the prediction from the theoretical model.

Experimental results for a sculpture made of metallic rods in air gained great

attention in the scientific community once published [65]. Kushwaha and Djarfari-

Rouhani [46] immediately discussed the recent sculpture that was used to test for

acoustic bandgap finding that it was only a pseudogap that was found. A pseudogap

is a gap present in limited directions [45] and not throughout the entire Brillouin

zone. Soon after, others mimicked the structure with slight variation in an attempt

to create the gap that was almost present.

Robertson and Rudy [40] commented on the previous test using a sculpture to

show an ABG [65] using a recommendation to increase the filling ratio based on

calculations finding that the full bandgap was not achieved due to the low filling

ratio [45]. Robertson and Rudy created a two-dimensional array of metal cylinders
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Figure 2.15: Geometry layout for square lattice (a) and centered rectangular (b) [39]

in air (similar to Martinez-Sala et. al. [65]). A lattice constant of 3.7 cm with

inclusions of 2.34 cm diameters was used to achieve a filling fraction of 0.31, barely

greater than the recommended filling fraction to produce a complete bandgap. An

impulse signal generated by the second derivative of a gaussian pulse was fed into a

computer and then to a speaker which in turn was directed first through air with no

sample. This was done in succession between 200 and 500 times and then repeated

with the sample of six rows of rods. Frequency steps at about 166 Hz at a total

time window of 6 ms was chosen for the Fourier analysis into the frequency domain.

Anomalous dispersion in phase data was also used in this case to determine gap

formation. The relation discussed in this paper to locate the center frequency gap
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Figure 2.16: Transmitted power spectrum for a square array of Al cylinders in epoxy
measured at the opposite end of specimen from the transmitted signal [39]

in the [110] direction is incorrect. Robertson and Rudy give the inter-lattice spacing

between the diagonal Bragg mode as Equation 2.3 rather than Equation 2.4.

f =
a√
2

(2.3)

f = a
√

2 (2.4)

Therefore the incorrect reported expected value of 6498 Hz is actually twice the

true analytical prediction and actual gap location of 3249 Hz, which matches the

results.

Rubio et. al. [42] also performed experiments inspired on the initial sculpture by

Matinez-Sala et. al [65] although consisting of more variations such as using steel

and wood as scatterers instead of aluminum (Al). The plane wave expansion (PWE)

method was used to test against the experimental results. Configurations with geo-

metrical parameters include a lattice constants of 5.5 and 11 cm for square lattices

and 6.35 and 12.7 cm for triangular lattice with inclusion diameters of 1, 2, 3, and
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4 cm. A speaker and microphones were used to send and detect white signal in the

audible frequency. The interest here is that hollow and full aluminum cylinders as

well as wood cylinders are used in the same configuration (both square and triangu-

lar) to produce the same results (same center bandgap frequency). The results show

gaps in terms of attenuation to demonstrate the independence of inclusion material

type for the formation of a bandgap in sonic crystals concerning rigid materials in

air.

2.2.5 Scalability for Micro-sized ABGs

The scalable nature of ABG allows for micro-scale devices that have corresponding

center frequencies above the kilohertz regime. For example, phononic bandgaps have

traversed into the surface acoustic wave (SAW) dominion at the gigahertz range [66].

A picosecond transient photoacoustic technique, also known as impulsive stimulated

thermal scattering (ISTS) was used to characterize the surface acoustic waves. Many

SAW devices may have relevancy with the results shown here such as microelectronic

structures and electromechanical and microfluidic devices. The simplicity of the

gap creation was based on one-dimensional gratings using conventional lithography

methods [67].

In addition, the true scalability of phononic crystals is looked at on the atomic

level using calculations for nanoscale HFO2 in ZrO2 [68]. The investigation looks at

the range of validity for continuum assumptions. The results suggested that the wave

propagation using continuum description become invalid as dimensions approach

nanometer scales. A thickness dimension of 10Å and upward was distinguished as

the threshold for continuum description to start showing validity. It was pointed

out, as ABG devices materialize in the nano-scale (THz region), other methods will

need to be used to simulate their behavior. Small scale ABG devices have also been
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proposed and tested as biosensors [69]. The goal was to compare the ability of the

phononic crystal to the current biosensing technique using surface acoustic wave

(SAW) devices.

Actual designs of microscale ABG devices using micron-scale geometries were

verified experimentally in recent reports [70], [71]. The MEMS device in this project

was designed for a phononic gap ending at 67 MHz and realized through microfab-

rication methods to achieve a lattice constant of 45 µm and a diameter of 28.8 µm

for one device and values with double for another device. The matrix material con-

sisted of SiO2 and contained nine rows of Tungsten (W) cylinders. A pure matrix

device was tested using a network and an electo-acoustic coupler. The process was

repeated for the device containing the Tungsten (W) cylinders. The pure matrix de-

vice was tested for comparison with the Tungsten inclusion device and also for data

normalization. The results for the first device show a noticeable transmission drop

between 59 MHZ and 76 MHz and coincide with FDTD simulations exhibiting only

a slightly wider and less significant transmission drop. The second device exhibited

slightly greater attenuation with a gap located between 27 and 39 MHz. The small

discrepancies are attributed to an ideal simulation case with no imperfections, losses

due to material, and infinite periodicity which is not achieved experimentally. It was

concluded that the achieved gaps were successful due to high impedance and high

density inclusions in a low-density, low impedance matrix. It was also noted that

slanted couplers minimized length-dependent resonance effects. Such devices were

cited to have applications in communications, ultrasound, and even non-destructive

testing. This research is carried forward by optimizing the gap width and depth

using the same materials [70]. It was shown that an optimal gap width and depth

can be found at a filling fraction of about 0.32 (Figure 2.18). A high peak for gap

depth is achieved at a greater filling fraction, yet at the expense of gap width. This

can be attributed to easy navigation of elastic waves around the scatterers through

the matrix for low filling fractions and the occasion where the waves bounce from
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scatterer to scatterer due to the close proximity of the scatterer centers in high filling

fractions (supported earlier [59]).

Figure 2.17: Experimental and theoretical results for Tungsten in SiO2 [70]

Figure 2.18: Optimal gap depth and gap width for Tungsten in SiO2 in terms of
filling fraction [70]

2.2.6 Summary

Acoustic bandgaps have been studied thoroughly now for about almost two decades

[26] and have shown progress in theoretical simulations from PWE method [33] to
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FDTD [50] and FEM [63] and experimentally [37], [39]. Many applications have

also been listed such as noise filters [32], vibrationless environments [26], and even

sensors [69], [70]. Different approaches for creating and optimizing acoustic bandgaps

up to present time have been presented including geometrical variations and material

variations. Table 2.3 gives a summary of the materials and material properties used

in the various analysis. Values in bold represent properties reported explicitly in

the literature and references are provided for each material used. It is obvious that

there has been a great deal of work in this area, although there is still progress to

be made for more understanding in exploiting the possible variational combinations

to achieve the desired outcome for various applications in ABG.
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Table 2.3: Materials and their properties used in the literature

Material ρ E11orK ν Cl Ct Z
(g/cm3) (GPa) (km/s) (km/s) Mrayls Reference

Nickel (alloy) 8.936 180.000 0.310 4.488 2.916 40.106 [26]
Aluminum (alloy) 2.697 70.000 0.350 5.095 3.105 13.740 [32]
Distilled Water 1.000 2.190 1.480 1.480 [37], [35], [51]
Gold (Au) 19.488 78.000 0.421 2.001 1.177 38.988 [30]
Beryllium (Be) 1.855 287.000 0.042 12.439 8.436 23.073 [30]
Aluminum Oxide (Al2O2) 3.986 300.000 0.233 8.675 5.578 34.580 [30]
Copper (Cu) 8.960 200.122 0.345 4.726 2.298 42.345 [30], [59]
Iron (Fe) 7.860 289.029 0.285 6.064 3.325 47.663 [30], [59]
Aluminum (Al) 2.734 68.000 0.353 4.987 3.024 13.635 [30]
Lead (Pb) 11.357 52.889 0.405 2.158 0.860 24.508 [30], [72], [64]
Molybdenum (Mo) 10.200 329.000 0.304 5.679 3.515 57.929 [30]
Steel 7.890 278.388 0.300 5.940 3.220 46.867 [30]
Lucite/Perspex 1.180 8.602 0.400 2.700 1.614 3.186 [30], [37]
Steel 7.900 256.671 0.300 5.700 3.535 45.030 [37]
Tungsten (W) 18.700 512.086 0.280 5.233 2.860 97.857 [59]
Nickel (Ni) 8.968 311.541 0.310 5.894 3.219 52.857 [59]
Steel 7.800 275.212 0.270 5.940 3.220 46.332 [59], [72]
Silver (Ag) 10.635 152.682 0.370 3.789 1.950 40.296 [59]
Epoxy 1.180 7.613 0.450 2.540 1.160 2.997 [59], [72], [64]
Water 0.998 2.237 1.497 1.494 [31], [72]
Mercury (Hg) 13.500 28.384 1.450 19.575 [31]
Water 2 1.025 2.403 1.531 1.569 [72]
Duralumin 2.799 112.600 0.320 6.342 3.095 17.751 [39]
Epoxy 2 1.142 7.540 0.450 2.569 1.139 2.934 [39]
Glass 2.459 78.776 5.660 13.918 [35]
Glass 2 2.767 92.569 5.784 16.004 [35]
Gold (Au) 19.500 220.147 0.420 3.360 1.239 65.520 [48]
Epoxy 3 1.180 7.583 0.450 2.535 1.157 2.991 [48]
Air 0.001 0.000 0.340 0.000 [51]
Copper (Cu) 8.950 167.803 0.310 4.330 2.900 38.754 [51]
Silicon (Si) 2.330 186.639 0.278 8.950 5.360 20.854 [73]
Polymer (SU-8) 1.190 4.029 0.450 1.840 1.080 2.190 [74]
AlN 3.230 308.313 0.240 9.770 6.204 31.557 [74]
Silicon (Si) 2.330 169.136 0.278 8.520 5.329 19.852 [74]
Silicon Oxide SiO2 2.200 75.032 0.170 5.840 3.764 12.848 [74]
Tungsten (W) 19.250 409.298 0.280 4.611 2.980 88.764 [70]

41



Chapter 3

Experimental Methods

3.1 Introduction

This chapter presents the experimental methods for producing and testing an acoustic

bandgap (ABG) material. This chapter also provides the pertinent experimental

observations and results along with a discussion on the findings. The goals of these

experiments are to examine the possible use of ABG materials as sensors for damage

detection. Two sets of binary composite ABG materials were fabricated using a

simple cubic array of cylinders in a host material. The two sets differ in host material,

but contain the same material for the cylindrical inclusions. Each ABG material set

included a short and long sample with filling ratios 0.18, 0.28, 0.40, and 0.50, totaling

16 samples. This was done to allow for variability in the size dimension thereby

removing biases due to dimensionality of sample size and enhancing true repetitive

behavior such as a bandgap. In addition, each material sample set was accompanied

by a short and long sample of pure matrix material without inclusions to serve as a

control and was used for normalized the data output.

The outlined goal of the experiments was to demonstrate two fundamental prop-
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erties:

1) Demonstrate the ability to engineer an acoustic bandgap material

2) Demonstrate and examine the change in the bandgap profile exposed to uniform

and non-uniform strains initiated with damage in the substrate adhered to the ABG

sensor

The sample materials cover the probable range of filling fractions (0.20-0.50) in

which bandgaps occur. The materials utilized in these experiments also constitute the

physical characteristics of bandgap materials noted in the literature: large impedance

mismatch between scatterer and matrix, density difference, and consequently a ve-

locity imbalance. The host material dictated the design since a material had to be

selected with relatively low stiffness to enable tension or compression during testing

to achieve noticeable strains. A uniform strain can represent environmental changes

and their effect on the substrate. Such instances as temperature, humidity , and

pressure changes can therefore be differentiated. On the other hand non-uniform

strains are representative of localized effects in the substrate such as damage or pos-

sibly delaminations that are common to composite materials. Non-uniform strains

such as damage or delaminations cause more concern and consequently require a

different feature response than uniform strains. The conceptual idea behind the use

of ABG materials as sensors is that ABG sensor response will effectively encounter

a deteriorated acoustic bandgap indicating non-uniform strain due to the variation

in the highly critical periodicity of the inclusions as described in Figure 3.1.

The first section of this chapter defines the materials used and outlines their

corresponding material properties that show relevance in this research. The following

section describes the preparation of the samples and the experimental setup that was

used during testing. The results are then presented and proceeded by a discussion

of the experimental findings.
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Figure 3.1: Schematic representation of ABG sensor adhered to a healthy substrate
experiencing no strain, a uniformly tensioned substrate, and a non-uniformly ten-
sioned substrate

3.2 Materials Overview

The ABG specimens are composed of three main materials: a polymer host, alu-

minum inclusions, and piezoelectric ceramic elements. The acoustic bandgap speci-

men is shown in Figure 3.2, where the polymer is used as the host material for each

specimen type, the aluminum is used for the cylindrical inclusions making up the

scatterers, and the piezoelectric ceramics are used as the transducer and actuator for

each specimen. The functional material properties are given in Table 3.1.
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Figure 3.2: Pictorial of Fabricated ABG with Materials: Piezoelectric Ceramic (Red)
on sides, Polymer host (Transparent Yellow), Aluminum (Al) (Blue) inclusions, and
Composite substrate (Green)-not fabricated in experiments

3.2.1 Host Materials

The selection of the host material was based on the functional theory of the acoustic

bandgap device for the proposed use as a sensor. Successful bandgap crystals re-

ported in the literature review required significant difference in acoustic impedance

between the matrix and inclusion materials. However, there exists practical limita-

tions. For example, choosing liquid as a host material would introduce foreseeable

difficulties in fabrication to isolate/package the liquid and couple the transducers in

addition to proving the feasibility of the proposed sensing technique. On the other

hand, a stiff solid material would also obstruct the sensing concept which requires the

ability of the sensor to magnify the response of the substrate. Therefore a solid ma-
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Table 3.1: Material Properties of materials used to fabricate ABG specimens

Material ρ (kg/m3) E (GPa) cl (km/s)

Piezoelectric Ceramic 7700 63.00 2860.4
Elastomer 1119 0.00 21.1
Epoxy 1110 2.89 1613.6
Aluminum 1100 2710 68.90 5042.3

terial with a stiffness significantly lower than that of potential composite substrates

is desired.

Two polymer host materials were examined in these experiments. Polymers are

classified as hydrocarbons and are made up mainly of covalent bonds. Polymers

are strongly linked to their molecular makeup in terms of the types of elements

and structure by which they are made. Polymers are characterized greatly by the

formation of long flexible chains and their large molecules in comparison to other

hydrocarbons. The chains are made up of stable molecules called monomers, which

link up leading to the term polymer. Polymers are composed of a wide variety of

materials from polyester to polyisoprene (rubber) based on the different molecular

weights and interaction of the polymer chains [14]. Cross linking occurs in many

polymers through synthesis or nonreversible chemical reactions which occurs when

chains that have been formed become bonded. The isotropic behavior of polymers is

attributed to the randomness of the bonded polymer chains in all three dimensions

effectively causing similar behavior in any direction.

Silicone elastomer is a type of polymer that easily deforms. This is indicated

by the low elastic modulus and high failure strain. The specific elastomer used was

Sylgard 186r, which was chosen as a representative elastomer for ABG testing as it

provided a middle-range level of stiffness for elastomers. In addition, Sylgard 186 is a

clear elastomer and thus allowed for visual inspection of air bubble formation during

fabrication. Relatively large (visual) air bubbles would hinder uniform transmission
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of the elastic wave that travel through the polymer during testing. Elastomer poly-

merization is achieved by mixing two components, a base and a curing agent, in

which a chemical reaction occurs causing the formation of three-dimensional chains.

Cross linking in elastomers is called vulcanization which takes place during the cur-

ing process. Elastomers are isotropic, exhibiting the same material properties in all

directions.

The other host material that was considered for the makeup of the ABG sen-

sor is a simple Epoxy with stiffness relatively lower than composite substrates.

Aeropoxyr(AeropoxyrPR2032-Resin PH3660-Hardener) was selected due to its

midrange stiffness and the fact that it is translucent, making it possible to con-

trol air bubbles. Epoxies also offer string adhesion which can be of great advantage

during fabrication to attach the piezoelctric crystals as transducers. Epoxies gener-

ally range in Elastic Modulus from about 2 GPa (290 ksi) to 8 GPa (1160 ksi) and

up if reinforced.

3.2.2 Inclusions

A high tolerance periodicity among the scatterers is desired in order to show a

bandgap in this investigation. Heat sinks made of Aluminum 1100 with periodic

cylinders held by a flat square base were used. Aluminum 1100 is a low alloy alu-

minum made up of around 99 percent aluminum, 0.05-0.2 percent copper, 0.05 per-

cent manganese, 0.95 percent silicon and iron, and less than 0.1 percent zinc. Initially

two heat sink types were used to produce long and short specimens with filling frac-

tions (FF) of 0.18 (r/a = 0.24) and 0.40 (r/a = 0.36). One heat sink is shown in

Figure 3.3.

The selection of experimental FFs were guided by successful tests from the liter-

ature [39], [70]. Therefore heat sinks with fractions of 0.28 to 0.50 were also used.
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Figure 3.3: Picture of example heat sink in square array with lattice constant a =
4.44 mm

Table 3.2 outlines the geometric properties of all the heat sinks used in the exper-

imental investigation. All samples are denoted using HS1 to HS4 representing the

four different filling fractions with subscripts S for short sized and L for long sizes.

All samples had a height values of 12 mm.

Table 3.2: Heat Sink Geometries

Sink Sink Inclusion Lattice Radius Filling Number
Heat Length Width Diameter Constant Ratio Fraction of
Sink (L) mm (W) mm (d) mm (a) mm (r/a) mm (FF) mm Periods

HS1S 25.4 25.4 1.69 3.51 0.24 0.18 5
HS1L 30.5 25.4 1.69 3.51 0.24 0.18 9
HS2S 25.4 25.4 3.17 5.28 0.30 0.28 4
HS2L 38.1 25.4 3.17 5.28 0.30 0.28 8
HS3S 25.4 25.4 3.17 4.44 0.36 0.40 5
HS3L 38.1 25.4 3.17 4.44 0.36 0.40 8
HS4S 25.4 25.4 3.17 3.96 0.40 0.50 5
HS4L 38.1 25.4 3.17 3.96 0.40 0.50 8

3.2.3 Piezoelectric Ceramics

With knowledge about the materials to be used for the formation of the bandgap,

the desired frequency range can now be estimated for given dimensions.

The desired frequency range can now be estimated for given dimensions with
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knowledge about the materials to be used for the formation of the bandgap. For

a hand-held specimen in the low centimeter dimension range, calculations showed

the range of operation to be in the low to mid kilohertz frequency range (further ex-

plained in Chapter 4). A suitable transducer that was capable of this frequency range

and comparable in length dimensions to the specimen face was then selected. Ex-

ample research from the literature that conducted similar experiments used circular

transducers that were within the magnitude of the experimental lattice constant and

signals were averaged over different transducer positions on the ABG material face

[39]. Rectangular transducers were selected for this research to induce displacement

waves throughout the entire face of the bulk specimen.

Plate transducers with dimensions of 25.40 mm in length, 12.20 mm in width,

and 3.05 mm in thickness were used. The material of the transducer is made of a

synthetic quartz, known as Zirconate Titanate (PZT). The specific PZT (commer-

cially known as APC 850) is typically used for low power resonance devices when

high coupling and/or high sensitivity is needed (e.g. pressure sensors, microphones)

[75]. A thin film of silver on the polarity sides of the crystal allowed for soldering

connections. The mode of vibration in the thickness direction was used in this in-

vestigation. The equation representing the total change in the thickness direction of

the ceramic element ∆h is shown in Equation 3.1 as a function of the piezoelectric

charge constant, d33, and the applied voltage, V . The voltage limit for the ceramic

element used is 8 V/mil for yielding an output voltage of about 20 watts/in2 [75].

More material properties of the type of PZT used are listed in Table 3.3. The

Curie point designates twice the maximum operating temperature, the piezoelectric

charge constant relates the strain to applied voltage, the voltage constant is the elec-

tric field generated per stress applied, and the frequency constants are the resonant

frequency multiplied by the respective mode dimensions. Subscripts indicate direc-

tional properties with respect to polarization. For example, d33 indicates induced
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strain in direction 3 per unit electric field applied in direction 3 (direction 3 is paral-

lel with the direction of polarization), d31 indicates the induced strain in direction 1

(perpendicular to polarization) per unit electric field applied in direction 3, and d15

is the induced strain in direction 2 (perpendicular to polarization) per unit electric

field applied in direction 1 (See Figure 3.4). The relation to find the resonant mode

in the thickness direction is given in Equation 3.2 where fs is the series resonance,

NT is the frequency constant in the thickness direction and h is the height of the

ceramic. The measuring frequency range should be below the series frequency to

avoid resonant effects in the results readings. The same resonances can be found for

the longitudinal and axial mode frequencies using their respective dimensions and

frequency constants.

Figure 3.4: Orientation of PZT material properties from Table 3.3

∆h = d33V (3.1)

NT = fsh (3.2)
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Table 3.3: Piezoelectric properties of APC 850 PZT [75]

Relative Dielectric Constant KT

1750
Dielectric Dissipation Factor (%) tanδ

1.4
Curie Point (Deg C) Tc

360
Electromechanical Coupling Factor (%) kp k33 k31 k15

0.63 0.72 0.36 0.68
Piezoelectric Charge Constant (10−12 C/N or m/V) d33 −d31 d15

400 175 590
Piezoelectric Voltage Constant (10−3 Vm/N or m2/V ) −g31 g15

12.4 36
Young’s Modulus (1010 N/m) Y11 Y33

6.3 5.4
Frequency Constants (Hz·m or m/s) NL NT NP

1500 2032 1980
Density (103 kg/m3) ρ

7.7
Mechanical Quality Factor Qm

80

3.3 Sample Preparation and Experimental Setup

3.3.1 Sample Preparation

The goal in fabricating the specimens was to create near geometrically-identical

specimens by size with respect to inclusion specimens and pure matrix specimens

with no inclusions in order to provide uniformity in testing methods. Three different

sizes were fabricated out of the four different specimen filling fractions and the two

host materials (elastomer and epoxy) summarized in Table 3.4. The fabrication

process had slight variations for the two different host types to achieve uniform

specimens. The fabrication process for the elastomer and epoxy specimens follow:
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Table 3.4: Specimen Properties Overview

Width Length Height Mass
Elastomer (mm) (mm) (mm) (g)

HS1S 25.5 25.6 15.2 26.4
HS2S 25.7 25.8 14.9 29.8
HS3S 25.6 25.7 15.6 28.6
HS4S 25.6 25.6 14.8 30.2
HS1L 25.5 32.3 14.6 31.8
HS2L 25.4 32.7 15.2 36.0
HS3L 25.6 36.1 15.1 33.1
HS4L 25.4 32.5 15.6 36.9

Epoxy
HS1S 24.5 24.5 11.0 24.5
HS2S 24.0 24.5 11.2 26.2
HS3S 23.9 24.0 11.3 25.2
HS4S 23.8 24.0 11.2 26.1
HS1L 24.7 31.3 11.6 28.3
HS2L 23.4 35.1 12.4 31.7
HS3L 23.4 35.6 11.5 29.4
HS4L 23.8 35.6 11.2 31.6

Process for Fabrication of the Elastomer Specimens:

1. Prepare the L-clamps (Figure 3.5) on the Plexiglas plate ( 75 x 125 mm) at the desired length and clamp the

L-clamps to the plate. (Ensure a tight connection between space where L-clamps meet)

2. Place the two transducers on each side of the void made by the inside of the L-clamps.

Figure 3.5: Picture of milled L-Clamp to be used as casing for sensor fabrication

3. Unscrew the cap by removing the metal top piece from the elastomer dispenser then remove the green stopper.
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Fit the nozzle on the dispenser and screw the top cap back on (ensuring that the nozzle is properly fit).

4. Place elastomer dispenser in the dispensing gun and slowly fill the void within the L-clamps to about 2/3 of the

volume with the mixed elastomer components.

5. Agitate the holder for about one minute and then place the assembly in the vacuum (Figure 3.6).

6. Repeatedly allow the vacuum state to be evacuated from the chamber (provides control by popping air bubbles

Figure 3.6: Picture of elastomer specimen in vacuum chamber

within and not allowing for overflow). Allow for evacuation more frequently (every 5 seconds) at beginning and less

frequently over time (up to about 8 minutes).

7. After 30 minutes, remove the assembly from the vacuum chamber.

a. If making pure matrix fill remaining volume with elastomer and allow slight excess on top held by surface tension

(to account for some volume loss). Return to vacuum.

b. If making an inclusion specimen, fill volume leaving 1-2 mm open. Then place heat sink with the inclusions facing

downward into the elastomer volume (base on top) and return the assembly to the vacuum.

8. Leave elastomer in the vacuum for 3-4 hours or when all visible air bubbles are removed under normal pressure

state. *Note: Non-visible air pockets become visible during vacuum phase.

9. Once removed from vacuum, allow to sit for 20 minutes then place in oven at 105 oC for 10 minutes.

10. Allow at least one day after removal from oven to ensure a full cure. If pure matrix skip to step 14, else place the

specimen in the cutting frame. Adjust the specimen so that the transducers are planar with the inside edge of the

blade void of the cutting frame and tighten the frame until there is no slip. Use foam if necessary. Over-tightening

will cause bending of the specimen. Ensure that the inclusions are parallel with the top of the cutting frame(Figure

3.7).

11. Screw cutting frame in the Isometric saw. Check to see if the blade is in contact with the liquid coolant bath

below. Adjust blade manually to be planar with the blade void of the cutting frame closest to the transducers.

12. Close saw lid and turn blade on to speed 100 rpm. Lower saw arm and begin cutting until the blade goes fully

through the specimen(Figure 3.8).

13. Remove cutting frame and specimen from saw and remove specimen from cutting frame and allow specimen

to dry for about 1 day. 14. Cut small slices of elastomer off the four inner corners of the specimen and remove any

elastomer that may be on the outside upper corners of the transducers.

15. Scratch off the oxidized layer of the transducer to expose the silver layer of the crystal at one end on each of the

inner sides of the transducer where the elastomer piece was removed and at the opposite side of other side of each
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Figure 3.7: Picture of inclusion specimen being set-up in aluminum cutting frame

Figure 3.8: Isometric saw used to cut specimens

transducer.

16. Solder on a 1.5 lead to each of the scratched areas. Verify that the connection is good by checking with a

voltmeter (aim 0.3 ohms).

Process for Fabrication of the Epoxy Specimens:

1. Prepare the L-clamps on the Plexiglas plate ( 75x 125 mm) at the desired length and clamp the L-clamps to

the plate. (Ensure a tight connection between space where L-clamps meet)

2. Apply a 0.5 mm layer of vacuum grease throughout the void made by the inside of the L-clamps (for removal of

specimen later).
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3. Use 10 mL syringe to obtain proper volume of epoxy resin and place in small glass contained with wide opening.

Using a different syringe, obtain 1/3 the amount of resin used of hardener and place in the same glass container.

Mix the two components together slowly to minimize air bubbles introduced for 2 minutes or until there does not

appear to be marbleized effects.

4. Using another syringe, transfer the epoxy to the greased open volume made by the L-clamps until full (leave 1-2

mm from top if inclusion specimen).

5. Agitate the holder for about one minute and then place the assembly in the vacuum.

6. Repeatedly allow the vacuum state to be evacuated from the chamber (provides control by popping air bubbles

within and not allowing for overflow). Allow for evacuation more frequently (every minute) at beginning and less

frequently over time (up to about 30 minutes).

7. After 30 minutes

a. If making pure matrix, ensure volume is still completely filled.

b. If making an inclusion specimen, place heat sink with the inclusions facing downward into the epoxy volume (base

on top) and return the assembly to the vacuum(Figure 3.9).

8. Leave epoxy in the vacuum for 2-4 hours or when all visible air bubbles are removed under normal pressure state.

Figure 3.9: Picture of placing heat sink into epoxy mold

*Note: Non-visible air pockets become visible during vacuum phase.

10. Once removed from vacuum (Figure 3.10), allow to sit for 20 minutes then place in oven at 105 oC for 5 minutes

(over-curing will cause redness to occur).

11. Allow at least one day after removal from oven to ensure a full cure. If pure matrix skip to step (15), else
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Figure 3.10: Picture of epoxy specimen being removed from greased L-Clamps

place the specimen in the cutting frame. Adjust the specimen so that the top of the epoxy portion of the specimen

is planar with the inside edge of the blade void of the cutting frame and tighten the frame until there is no slip. Use

foam if necessary. Over-tightening may cause bending of the specimen. Ensure that the inclusions are parallel with

the top of the cutting frame.

12. Screw cutting frame in the Isometric saw arm. Check to see if the blade is in contact with the liquid coolant

bath below. Adjust blade manually to be planar with the blade void of the cutting frame closest to the transducers.

13. Close saw lid and turn blade on to speed 250 rpm. Lower saw arm and begin cutting until the blade goes fully

through the specimen.

14. Remove cutting frame and specimen from saw and remove specimen from cutting frame and allow specimen to

dry for about 1 day.

15. Using the wet sander, sand the specimens to designated sizes and intend for flat, perpendicular edges.

16. File the four corners of the specimen to remove about 1-2 mm of depth and width.

17. Scratch off the oxidized layer of the transducer to expose the silver layer of the crystal at one end on each of the

one side of the transducers and at the opposite side of other side of each transducer.

18. Solder on a 1.5 lead to each of the scratched areas. Verify that the connection is good by checking with a

voltmeter (aim 0.3 ohms).

19. Repeat step (3) and use epoxy to adhere transducers to epoxy specimen. Place heater nearby for faster curing
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(2 days).

A great deal of care was taken to create the maximum amount of uniformity

among the specimens. This included designing and implementing consistencies in

dimensions, material makeup, and adhesion to the transducers. Uniformity among

the specimens allow the controlled variables to emerge in the results therefore making

it possible to draw direct correlations. It was also imperative that each transducer

be placed on the specimen face perpendicular to the direction of propagation and

parallel to the opposing transducer.

3.3.2 Test-Setup

The intention of the experiment is to evaluate the ability of the ABG specimen to

hinder elastic wave propagation under a specific frequency range and the significance

of periodicity disturbance on the ability. A schematic representation of the test set-

up is shown in Figure 3.11. A test frame was constructed to provide uniformity

in testing conditions and to optimize overall response of the ABG material. The

test frame was made with the intention to provide support on both sides of the

specimen with minimal obstruction to the transducer or received signal. It was later

determined that the test frame enabled producing compressive and tensile strains in

the ABG specimen as see in Figure 3.13.

The test frame was made of 1 mm thick Aluminum C-channels and a lead C-clamp

(Figure 3.12). The C-clamp was suspended from the middle C-channel and four legs

were glued to two lateral channels that supported the middle C-channel. Four round

aluminum bases were attached to the legs for enhanced stability. All connections

were initially glued, but nuts, bolts, and U-rings were added later to provide rigidity

and cohesion among the components. An array of soft and non-conductive materials
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were placed on each side of the C-clamp to reduce any possible current flow through

the structure linking the transducers electrically rather than mechanically and also

providing the soft support to the specimen. The array of soft materials was made

up of a thin piece of cork board, insulating rubber, and fiberglass wool.

Figure 3.11: Schematic representation of test setup including the network analyzer
and the ABG test frame

The equipment used to obtain the transmission data was an HP 8753D Option

011 network analyzer with a 85046A S-parameter test set seen in Figure 3.14. A

network analyzer is used to measure the scattering parameters (S-parameters) of an

electrical system. The type of network analyzer that was used in these experiments

is called a vector network analyzer (VNA) or gain-phase analyzer which measures

both amplitude and phase properties. The S-parameters represent the reflection and

transmission of an electrical network. For example S12 and S21 is the transmission

coefficient of a network in a 2-port system and the two quantities are equal for a
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Figure 3.12: Picture of ABG Test-Bed Structure

Figure 3.13: Picture of ABG sensor being compressed in Test-Bed Structure

reciprocal network. The transmission coefficient is the complex linear gain found by

dividing the output voltage of the measured network by the input voltage.
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Figure 3.14: Picture of network analyzer and S-parameter test set

The experiments here will involve the transmission coefficient, although our net-

work is not electrical. The network was made up of dielectric materials and the

intention was to evaluate the propagation of elastic waves in the dielectric material

under various frequencies. The network analyzer used adaptors, coaxial cables and

crocodile clips to connect to leads soldered onto the piezoelectric transducers. The

transducers have the task of converting the electrical signal into an analogous me-

chanical displacement wave. This process is called the inverse piezoelectric effect.

The transducer on the opposing side of the mechanical network (ABG material) is

utilized through the piezoelectric effect where induced displacement (strains) gener-

ate voltages with opposite polarity [75]. With an electrical signal again, the scattering

parameters can be measured.

Calibration was necessary to increase the measurement accuracy of the network

analyzer results. Common errors in measurements include sources such as connector
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repeatability, lossy cables, temperature and frequency drift and leakage. Calibration

can effectively remove some of these errors, specifically the systematic errors that are

repeated such as those caused by mismatch, leakage, and system frequency response

[76]. This type of error correction is done through the use of measurement standards

which mathematically updates the network analyzer system. The standards used

for this experiment consisted of the 85032E N-Type calibration kit. A full two-port

calibration was conducted for measurement of the transmission of the ABG material

network.

Our experiments examined the transmission of the elastic wave through vari-

ous frequencies by analysis of the electrical response. The network analyzer makes

sweeps through the user-defined frequencies and a transmission response is deter-

mined for each frequency within this frequency band. Measurements were taken

over two frequency ranges. First from 100 kHz to 350 kHz, the maximum of 1601

points was taken for a sweep to optimize accuracy. The second range, from 30 kHz

(S-Parameter test set minimum) to 800 kHz, was wider than the first to capture any

events that may occur after the targeted range such as second mode gaps. The high

sampling rate is important to avoid aliasing, which can occur if sampling above the

Nyquist Frequency. The Nyquist Frequency is a maximum frequency value dictated

by sampling rate. If the sample rate is too low, aliasing may occur which hides true

amplitude results by taking too few sample points from a sinusoidal output in the

time domain.

The network analyzer sends and receives sinusoidal voltage pulses which are then

converted to readings within the frequency domain. Sinusoidal displacement impulses

are then created through the piezoelectric crystals and translated to the sample

materials. The resulting frequencies create particle movement in a variable range of

wavelengths through the materials. When the acoustic waves approach wavelengths

with the same order of magnitude as the lattice constant, there exists a point of
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maximum reflection due to the scatterers with high acoustic impedance contrast,

thus causing the wave transmission response for the corresponding frequencies to

drop.

3.4 Results

The following results are divided into two sections. The first section presents the

results for the specimens with an elastomer host. The second section presents the

results for the specimens with an epoxy host. The experiments conducted were done

under three conditions. The first condition was tested to model an ABG sensor

adhered to a substrate in a healthy state in which the specimens were under ’no-

strain’. The test-frame was simply used to support the specimen with minimal pres-

sure. Next, the ABG specimens were placed under uniform tension and compression

using the test-frame. The uniform compression was achieved by simply tightening

the C-clamp and creating a deformation in the length of the specimen. A similar

process was carried out by compressing the side-faces (specimen rotated 90 degrees

around inclusion axis) to create an indirect tensile strain through the elongation of

the specimen. Lastly, non-uniform strain was achieved for the tension condition by

making a cut of depth 15 percent of the height into the specimen along the inclusion

axis and applying the same side pressure as for the uniform tension case.

Specimens with no inclusions were made of each host material with the same

dimensions and tested in the same fashion as a control and to act as a normalization

base for the inclusion-filled sample’s results. Each inclusion specimen’s transmission

results was normalized by the transmission results for the pure matrix specimen with

the corresponding host material and size dimensions. This procedure, which is re-

ferred to as normalization, effectively enabled removing amplitude biases that may

occur and helped in locating the acoustic bandgap. This will be demonstrated in
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the elastomer section of the results. In addition to normalization, each specimen’s

response is averaged over four tests for each condition state. By averaging responses

over different testings for each specimen, environmental effects were eliminated min-

imizing the significance of noise, temperature, humidity effects, and test equipment

variations.

3.4.1 Elastomer Host: Results and Discussion

For the experiments consisting of specimens with an elastomer host, the expected

bandgaps dictated the frequency sweep range to be between 10 kHz (the network

analyzer minimum) to 350 kHz. An intermediate frequency (IF) bandwidth of 30

kHz was used to reduce the noise floor in the receiver input. A maximum of 1601

points was used over the 240 kHz span. The data output from the network analyzer

is given in terms of the transmission coefficient (unitless) for each frequency step as

shown in Figure 3.15. This figure presents the transmission for a specimen with an

elastomer host containing aluminum cylindrical inclusions in a square array with a

filling fraction of 0.40 and the transmission response for the corresponding host ma-

trix specimen which is made of the same dimensions and host material, but contains

no inclusions.

It is evident that there is difficulty in quantifying the difference in the inclusions

and matrix responses at low transmission values. Low transmission values prove

meaningful in isolating a bandgap, therefore a logarithmic scale is used for the y-axis

to provide more detail to these lower values. Decibels (dB) are assigned to the y-axis

which are used as a measure of magnitude with respect to a reference quantity. In

cases such as amplitude, voltage, and current, decibels are found using Equation 3.3
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Figure 3.15: Averaged transmission coefficient for elastomer specimens with FF =
0.40 (Solid) and elastomer matrix (Dashed)

using a reference quantity A0 where A is the measured value.

20 ∗ log10(
A

A0

) (3.3)

Here, decibels are used in the same way to express amplitude based on voltage input

and output given as the transmission coefficient. Figure 3.16 uses the same data as

in Figure 3.15 but using decibels to show a more descriptive representation of the

lower transmission values.

Acoustic bandgaps appear as regions of low transmission representing the fact

that elastic waves are prohibited within designated frequency zones. A bandgap,

being indicative of the periodicity of the inclusions with differing impedance, is thus

an attenuated region in transmission with respect to the matrix response. One more

processing step can further enhance the representation of bandgaps by utilizing the

idea that a bandgap a region of low transmission in reference to the signal that

would be passed without the scatterers present. To improve the representation of

relative transmission response of the inclusion specimens with respect to the matrix
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specimens, a normalization of the data is performed. The normalization quantity

is found by dividing the transmission coefficient function of the inclusion specimens

by the transmission coefficient function of the matrix specimens as described above.

The normalized transmission response of the cases above is shown in Figure 3.17. It

can be seen that low transmission responses in the inclusion specimens with respect

to the matrix response are more easily perceived. It appears as though there are two

gaps present at about 120 kHz and 170 kHz, although these are not bandgaps for

reasons that will be addressed shortly.

Figure 3.16: Averaged transmission in dB for elastomer specimens with FF = 0.40
(Solid) and elastomer matrix (Dashed)

Figure 3.18 shows the signal responses for an experimentally modeled healthy case

substrate with the filling fractions 0.18, 0.28, and 0.50. The healthy case signifies

no induced strain to the sensor. It can be seen that each filling fraction produces

similar transmission drops around the same area as for FF = 0.40 at about 120 kHz

and 170 kHz. For filling fractions with different lattice constants, bandgaps should

occur at different frequencies where the center frequency is inversely proportional to

lattice constant ’a’. More tests results are shown in Figures 3.19 and 3.20 for sensor
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Figure 3.17: Averaged normalized transmission in dB for elastomer specimens with
FF = 0.40

specimens subjected to compressive and tensile strains. In both figures, the gaps

seem to widen for compressive strains and become slightly thinner for tensile strains.

It can also be seen that the compressive strains produce a small shift leftward toward

the lower frequencies. The higher attenuation for the compressive and tensile cases

throughout the frequencies measured may be attributed to the tighter boundaries

being applied to achieve these strains. The boundaries undoubtedly cause more

damping throughout the system as the signals are more likely to travel through the

now stiffer mediums.

Overall, a bandgap could not be pinpointed for the elastomer host for the test

cases run. Although it does appear that bandgaps are present at 120 kHz and 170

kHz, this is the result of high peaks that occur for the matrix specimens thereby

reducing the signal transmission when normalization takes place. The occurrence of

the same bandgap frequency for each filling fraction displays the erroneous nature

of the gap. In fact, the matrix specimens only had transmission at various high

transmission regions and had very low transmission otherwise. The inclusion speci-
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Figure 3.18: Averaged normalized transmission in dB for elastomer specimens with
FF = 0.18 (Solid), FF = 0.28 (Dashed) and FF = 0.50 (Dot-Dashed)

mens naturally have more attenuated responses due the metal inclusions and higher

scattering of waves, which has a greater effect as frequency increases. Therefore, all

that could be detected was lack of transmission throughout the frequency region, and

the dips were due to the matrix specimen peaks. For this reason, normalization can

be misleading as the perceived gaps in normalized transmission seen in Figures 3.18

through 3.20 point to lack of transmission in the inclusion cases where the matrix

specimens were able to have some transmission.

Although elastomers offer great advantages in terms of strain mobility to easily

take on substrate behavior, they are also hindered with low transmissibility. This was

a concern from the start as rubbers are well-known for their vibration absorbability

and their many applications as dampers. In conclusion, the results do not necessarily

show that bandgaps cannot be found for elastomers of filling fractions 0.18, 0.28,

0.40, and 0.50. Bandgaps may be present within the signal responses, yet the level of

attenuation of the matrix and inclusions specimens is too high to depict a bandgap

profile for the given experiments. In order to more accurately test elastomers as a
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Figure 3.19: Averaged normalized transmission in dB for elastomer specimens with
FF = 0.18 under healthy conditions (Solid), compressed conditions (Dashed) and
tensile conditions (Dotted)

host material, the vibration amplitude to material size ratio needs to be higher to

have less energy dissipation due to the viscoelastic effects of the elastomer matrix.

A smaller specimen with the same displacement amplitude may allow for a stronger

signal to propagate throughout the resulting lower frequency range to be used (due

to lower lattice constant). Also, the same size specimen with greater displacement

may also be easily implemented with the installation of different transducers.

3.4.2 Epoxy Host: Results and Discussion

The same process to achieve transmission in decibels and normalized transmission in

decibels is carried out for the epoxy case. Figure 3.21 shows the difference between
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Figure 3.20: Averaged normalized transmission in dB for elastomer specimens with
FF = 0.50 under healthy conditions (Solid), compressed conditions (Dashed) and
tensile conditions (Dotted)

the minimal, no-transmission case in which the output channel is totally detached

from the input channel in a scenario called ’Open’ and the averaged long matrix spec-

imen case. There is more transmission for the epoxy hosts and room for attenuation

to be detected at most points throughout the search region than for the elastomer

hosts.

Figure 3.22 and Figure 3.23 show the healthy-case transmission responses for

specimens HS1L. Figure 3.22 is the wide view response for HS1L from 50 kHz to

700 kHz along with matrix specimen M2. Figure 3.23 shows a tighter view isolating

the area of interest where the bandgap should be located. Arrow pointing downward

spot two possible gaps in range of calculated values at slightly over 250 kHz and 290

69



Chapter 3. Experimental Methods

Figure 3.21: Averaged transmission in dB for long and short epoxy matrix (Solid)
and open channel in which no transmission occurs (Dashed)

kHz. Because the Bragg resonance is capable of producing a gap for the inclusions

parallel to the direction of wave propagation as well as in the diagonal (45 degrees)

direction for a square lattice, two gaps are considered. Further investigation upon

normalization can more objectively reveal attenuation gaps as seen in Figure 3.24.

Although the response at the higher frequency range of Figure 3.23 seems to be

heading upward, it can be seen in the normalized plot in Figure 3.24 that the same

portion is lower with respect to the rest of the response. This is found in all of the

cases upon normalization indicating a downward bias due to loss of transmission

upon scattering of the waves. Since the matrix specimens by which the inclusion

specimens are normalized do not contain scatterers, the response of the matrix stays

consistent, therefore leaving the bias in the normalized responses of the inclusion

specimens.

Another possible gap is shown in Figure 3.25. This example shows the normalized

averaged response for specimen HS2S with respect to matrix M1. Although it is not

as profound as the previous example, it still may be an indication of an ABG. An

70



Chapter 3. Experimental Methods

Figure 3.22: Wide view of average transmission response for HS1L specimen of FF
= 0.18 (Solid) and M2 matrix (Dashed)

Figure 3.23: Tight view of average transmission response for HS1L specimen of FF
= 0.18

accompanying gap for the diagonal Bragg resonance was not found in this case. Again

due to scalability, a smaller lattice constant will produce a gap at a higher frequency.

Therefore, a specimen with the same inclusion radii, but shorter periodicity than

that of HS2S will show gaps at higher frequencies. Specimen HS3S has the same

radius as HS2S, but has a 20 percent shorter periodicity yielding expected gaps at a

higher frequency. The response for HS3S is shown in Figure 3.26. There appears to
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Figure 3.24: Average normalized transmission response for HS1L specimen of FF =
0.18

be two possible gaps around about 245 kHz and 320 kHz.

Figure 3.25: Average normalized transmission response for HS2S specimen of FF =
0.28

The last example for the specimens under no strain is for HS4L. A rather wide

attenuation band is presented in Figure 3.27. It is expected that higher filling frac-

tions show more pronounced gaps in terms of depth, although in this case, a great

amount of attenuation has already occurred due to the high frequency at which the

gap is expectedly located. This makes for some difficultly in locating a gap.
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Figure 3.26: Average normalized transmission response for HS3S specimen of FF =
0.40

Figure 3.27: Average normalized transmission response for HS4L specimen of FF =
0.50

The specimens were then put under uniform and non-uniform strain conditions

to simulate conditions of the underlying substrate. In each case, a strain value of

0.2 milli-strains was attempted and achieved to within 0.05 millistrains. The results

for specimen HS1L under uniform compression is given in Figure 3.28. It can be

seen that the first gap deepens and narrows, with a possible slight shift toward the
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higher frequencies. The second gap experiences some thinning a more clear shift

in the same direction. The same specimen under tension is shown in Figure 3.29.

Here, a similar change occurs also exhibiting narrowing. The second gap seems

to experience the same shift as the compression case, although the first gap may

actually seem to show a shift in the opposite direction. For the circumstance that

these attenuation bands are functions of the periodicity, a compressive strain would

institute a shorter periodicity causing a gap to occur at a higher frequency, thus a

shift upward. Inversely, a tensile strain causes an elongation of the periodicity, thus

making a shift downward in frequency.

Figure 3.28: Average normalized transmission response for HS1L specimen of FF =
0.18 under healthy conditions of no strain (Solid) and uniform compressive strain of
0.2 milli-strains

Lastly, a non-uniform strain of HS1L is shown in Figure 3.30. Here, an iso-

lated period between the second and third row of inclusions out of nine total rows

along the direction of propagation is strained at 0.2 millistrains more than the sur-

rounding rows. Thus, the period between the second and third row of inclusions is

greater causing a non-uniform periodicity. The consequences of this occurrence on

the normalized transmission response is shown. The first gap raises in transmission

indicating less attenuation and widens slightly, while the second gap acts similarly to
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Figure 3.29: Average normalized transmission response for HS1L specimen of FF =
0.18 under healthy conditions of no strain (Solid) and uniform tensile strain of 0.2
milli-strains

the tension and compression cases showing a great value of attenuation at 296 kHz

and 309 kHz and a small shift toward the higher frequencies.

Figure 3.30: Average normalized transmission response for HS1L specimen of FF =
0.18 under healthy conditions of no strain (Solid) and non-uniform tensile strain of
0.2 milli-strains of variation

The is some difficulty in locating bandgaps in the experimental results. This

is partly due to high variation in the response which can possibly be attributed to
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reflections, although due to consistent profiles of upper and lower regions in various

specimen results, the confusion is likely due to the piezoelectric crystal. Therefore

there is a great deal of difficulty in determining which attenuation bands are actu-

ally the result of the designed periodicity. In spite of various efforts to maximize

the emergence of the gaps through averaging and size reflection considerations, the

piezoelectric profile is believed to have overridden the results. These results will

be re-evaluated when the analytical results are shown and discussed in the next

Chapter.
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Analytical Methods

4.1 Introduction

This chapter will cover the analytical methods used in this research that aid to bet-

ter understand acoustic bandgap engineering. A theoretical method for bandgap

prediction is introduced based on Bragg and Mie reflections. In addition, a finite

element model was employed in four case studies to test the functionality of ABG

materials as sensors. The first three case studies serve as benchmarks to validate the

analysis through comparison with ABG experimental results published in the liter-

ature. The last case study considers the experiments conducted already addressed

in Chapter 3 of this thesis. A parametric study of bandgap performance is shown

with the validated model to exhibit bandgap engineering through variation of key

material and geometrical parameters. The proposed functionality of ABG sensors is

then examined by creating simulated induced uniform and non-uniform strains on

an example ABG sensor.
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4.1.1 Bragg and Mie Reflections

As discussed earlier, the occurrence of acoustic bandgaps can be attributed to de-

structive interference caused by reflections within the ABG material. These reflec-

tions are the result of elastic waves acting like a phonon, which bound back upon

themselves causing a net change in displacement of nearly zero in the ABG mate-

rial. Bragg reflections are the culprits of this phenomenon in which the scatterers

are placed in such a way that the impedance difference causes a rebound between

the scatterers primarily in the matrix material. Mie reflections can also play a role

(although they are not always present in the literature) by allowing for reflections

within the inclusion material. When these two types of reflections coexist at the

same frequency range, gaps can be be amplified in strength. A visual explanation of

this development is shown in Figure 4.1 by correlating wavelength to reflection occur-

rence. The reflections are created by destructive interference between the inclusions

(Bragg) and within the inclusions (Mie) based on wavelength distance. Wavelength

is defined by Equation 4.1

λ =
Cl
ω

(4.1)

where Cl is longitudinal speed of sound in a material and ω is frequency in Hz.

Since the reflections can be understood physically, they can also be located in

the frequency domain. The frequency locations of the reflections depend on both

material and geometrical parameters shown to have significance in the literature

such as density, modulus of elasticity, filling fraction, lattice constant, and inclusion

diameter. Bragg and Mie reflections center frequency locations (FB and FM) are

predicted by the Equations 4.3 and 4.4 respectively where the Bragg Velocity (CB) is

calculated using Equation 4.2. The Bragg Velocity is a theoretical quantity calculated

as a weighted average of material velocities to describe the behavior velocity of the

phonons in the creation of Bragg reflections based on the material makeup of a

78



Chapter 4. Analytical Methods

Figure 4.1: Relationship between wavelength, λ, and acoustic bandgap formation
using an example square lattice to show reflection modes between inclusions (Bragg)
and within inclusions (Mie)

structure, summarized by filling fraction. Constants for host material and scatterer

material speeds of sound are CH and CS respectively.

CB = CH × (1− FF ) + CS × FF (4.2)

FB =
CB
2a

(4.3)

FM =
CS
2d

(4.4)
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Design of an ABG crystal can then be structured using Equations 4.2 through

4.4 as a tool to place gap locations in the frequency domain shown in Figure 4.2.

Although Bragg reflections A and B are always a fixed scalar multiple apart, there is

a dependence on the material’s characteristics of impedance mismatch for their cor-

responding reflection gaps to be wide enough to overlap and merge. For example in

a square lattice, there exists a diagonal Bragg reflection mode at the lattice constant

multiplied by the square root of two signified in Figure 4.2 by BraggB. More reflec-

tions can exist for different Bravais lattice types with more inclusions within the unit

cell to increase the gap quality. Various modes can occur from second and further

order reflections denoted as (m) for Bragg reflections and (n) for Mie reflections.

4.1.2 Finite Element Background

The finite element method (FEM) is used in many applications from structural prob-

lems that encompass stress analysis in elements such as trusses and frames, buckling

analysis, and vibration analysis to non-structural problems such as heat transfer,

fluid flow, and electric and magnetic potential distribution [77]. Finite element anal-

ysis has also appeared in the literature using harmonic analysis to simulate acoustic

band gap materials [63], [78]. The principles of this method are constructed through

the discretization of geometries into elements that are made up of nodes. There is

an array of element types including linear elements for one-dimensional problems,

quadrilateral and triangular elements for two-dimensions, and tetrahedral and hexag-

onal for three-dimensions. Element types are chosen based on the geometry and type

of analysis of the intended model. Element size is also a variable that can be changed

to enhance the results of the model. In essence, the finite element functions on the

basis of equation 4.5, where F is the vector describing the global nodal forces, K

is the total stiffness matrix, and d is the generalized displacement vector made up

of known and unknown nodal degrees of freedom [77]. Equation 4.5 relates known
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Figure 4.2: Example case for design in maximizing bandgaps based on mode locations
of the Bragg reflections (m) and the Mie reflections (solid and dashed lines)

and unknown forces with known and unknown displacements through an assembled

stiffness matrix. Commercial programs such as ANSYS rand SAP 2000 rutilize

this concept in conjunction with a graphical user interface (GUI) to facilitate the

design and understanding of models through visualization for the user.

F = Kd (4.5)

Damping is implemented in this analysis to provide realistic effects in the pre-

sented results. The inclusion of damping can at times be complex in certain applica-
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tions. The type of damping used in this analysis is frequency-independent material

damping. The damping, thus, takes effect only on the materials for which the damp-

ing is specified. The effects of damping can sometimes have undesirable consequences

on otherwise controlled parameters. For instance, damping can cause changes in the

inherent material’s properties such as impedance. The effects of impedance, as dis-

cussed earlier, are responsible for allowing or disallowing wave propagation (e.g.

reflections). This parameter must therefore be checked in its use.

The free vibration equation is used in finite-element given by Equation 4.6

[F ] = [M ][ẍ] + [C][ẋ] + [K][x] (4.6)

for a harmonic analysis using the full method. The force matrix is given as [F ]

which is equal to the mass matrix [M ] multiplied by the acceleration [ẍ] plus the

damping matrix [C] multiplied by the velocity [ẋ] plus the stiffness [K] multiplied by

the displacement [x]. The plane wave equation discussed earlier for a homogeneous

material, Equation refEq:wave, is for considering full-elastic isotropic materials used

to detect flaws in materials, although when damping is considered, more terms are

introduced. Therefore the inertial and stiffness terms from the vibration equation

can be linked to the wave equation when damping is not considered.

The damping matrix for finite element is found through equation 4.7

[C] = α[M ] + β[K] +
2ξ

Ω
[K] + Σβj[Kj] +

∑
[CK ] +

∑ 2ξj
Ω

[Kj] +
∑ gj

Ω
[Kj] (4.7)

in which α and β are the global constant stiffness and mass damping factors (respec-

tively), ξ is the global constant damping ratio, which are all material independent

and Ω is the excitation frequency [79]. In addition, each of the previously mentioned

damping quantities can be specified as material dependent for materials 1:j along

with gj, the frequency-dependent structural damping coefficient for material j. An
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element damping matrix [Ck] can also be supported for certain element types.

Three types of damping are initiated through the use of the damping factors

described above: viscous, structural, and Coulomb. Viscous damping is velocity-

proportional damping which is characteristic of fluids and linear dependent with

frequency. Structural damping is the internal resistance to movement within a ma-

terial and can be related with solid damping, which accounts for energy loss between

structural joints in a system. Structural damping becomes analogous to viscous

damping in the full method (use of nodal coordinates). Coulomb damping has non-

linear effects, as it opposed motion through effective static and kinetic frictional

forces within elements [80].

The finite element analysis used in this work was conducted with ANSYS, a com-

mercial finite element software. An acoustic analysis was performed to benchmark

three case studies from the literature and one case study of the experimental obser-

vations from Chapter 3 of this thesis. In addition, simulations were also conducted

for ABG sensor response to substrate strain found at the end of this chapter. Under

acoustic investigations in the program, modal analysis and harmonic analysis can be

implemented based on desired results. A modal analysis is generally a good start-

ing point to find natural frequencies for a given model. A harmonic analysis also

provides useful results such as material displacements in the frequency domain for a

given range of frequencies. Harmonic analysis only accommodates steady state inter-

ests which suits the goals of this project. Transient results can be obtained through

modal analysis and other types of acoustic investigations. There are a few methods

to choose from in solving the harmonic analysis. The reduced or mode superposi-

tion methods are choices, but only the full method can handle asymmetric matrices

[81]. Finally the sparse solver was chosen over the Jocobi Conjugate Gradient (JCG)

solver and the Incomplete Cholesky Conjugate Gradient (ICCG) solver. Although

the JCG is recommended for most analyses, it was found that the sparse solver saved
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in run time and was sufficient in producing repeatable results.

Various models were tried including a recommended air layer surrounded by an

infinite absorbing boundary in which no reflections are produced. This model used

special absorbing line elements (FLUID129) that surrounded a fluid layer (FLUID29)

produced especially for an acoustic analysis. Upon testing, it was determined that

this condition provided a scenario that was isolated and did not allow for proper

energy dissipation for benchmarking realistic cases. For this reason, a newer model

was created to permit some necessary reflections and energy release through more

rigid material surroundings in place of fluid. The model can be seen in Figure 4.3.

Figure 4.3: Pictorial of boundaries used in the FE model simulation to model case
studies
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Table 4.1: Materials and their properties used in Vasseur et. al [39]

ρ Cl Ct C11 C44

Material (kg/m3) (m/s) (m/s) (1010N/m) (1010N/m)
Duralumin 2799 6342 3095 11.26 2.681

Epoxy 1142 2569 1139 0.754 0.148

4.2 Case Studies

4.2.1 Case Study 1: Vasseur et al. [39]

An early example of experimental evidence for the presence of a bandgap was shown

by Vasseur et. al [39] with their Epoxy and Duralumin crystal. This ABG material

was made up of a square array of cylindrical Aluminum inclusions produced at a

macroscale. The lattice constant here is 20 mm, leading to a filling fraction of 0.50

for an inclusion radius of 8 mm. There is a total of 25 scatterers lined up in a

5 x 5 array. The material properties can be found in Table 4.1. A P-transducer

was used with a 500PR pulser/receiver. The measurements of displacements were

taken using an oscilloscope. The transducers in the experiment were circular with a

diameter of 31.75 mm, in the same dimension range as the lattice constant. For this

reason, signals were averaged from the different transducer positions running along

the receiving face of the specimen.

The finite element model that produced the results in 4.5 was built in two dimen-

sions as seen in Figure 4.4. The center square cell represents the ABG sensor with the

origin of the vibrational displacement beginning on the left edge and the detection

point located on the right edge. A results-based model led to the formation of an

additional slab of matrix material surrounding the center ABG cell with two outer

boundaries. These boundaries were intended to act as a perfectly matched layer

(PML), in which the boundary would have the ability to fully receive the displace-
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ment wave with little or no loss to reflections and exhibit high energy absorption.

However it was found that some reflection better reproduced the benchmark results.

So the PML was carried out as a semi-absorbing boundary which acted as an energy

dissipater, yet still provided enough impedance match to allow energy across the

boundary with a reasonable amount of reflection toward the center cell.

Figure 4.4: Computational model of Vasseur et al. [39] showing the circular Du-
ralumin inclusions in Epoxy arranged in a square lattice with outer slab and two
semi-reflective boundaries

For the model in Case Study 1, the ABG material (center cell) was 10.5 cm x 10.5

cm x 10.5 cm with the surrounding slab boundary thickness of 10 mm. The outer

Epoxy boundary was followed by three 3 mm layers of damping material with similar

properties as the Epoxy. The damping layers were defined with 70 percent frequency-

independent damping with lower levels of stiffness from Epoxy-matching to less stiff
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Figure 4.5: Comparison of experimental results (Solid) from Vasseur et al. and
numerical simulations by the FE model (Dashed)

from inside to outside. A displacement amplitude of 6µm was selected based on

literature also using Panametrics delta broadband 500 kHz P-transducer with 500PR

pulser/receiver [82]. The experimental results are shown in 4.5 in comparison with

the FE results obtained from this model. The Y-axis in this report was shown in

terms of the transmission coefficient and was not normalized as a case was not run

for a pure Epoxy matrix. The Y-axis, thus represents the power received divided

by the power put in to the system. It can be observed that the FEM results match

the experimental bandgap frequency range and both sides of the gap profile line up

extremely well. Due to a truncated report of the experimental results the Y-axis

only goes to 0.1 (10 percent of the input energy). The magnitude of the FEM is

within 15 percent transmission of the experimental values within the given window

with the exception of frequencies lower than the bandgap (50 kHz). The FEM model

approached a value of 1.9 at these frequencies. The low transmission reported at

these values for the experimental results most likely is due to the ramping up of the

transducer power, although was not accounted for by the authors when dividing by

the input power.
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Table 4.2: Materials and their properties used in El-Kady et. al[70]

Longitudinal Shear Wave
Mass density Wave Velocity Velocity

Material (kg/m3) (km/s) (km/s)
Tungsten (W) 19250 4.611 2.980

SiO2 2200 5.840 3.764

4.2.2 Case Study 2: El-Kady et al. [70]

One example of experimental evidence for phononic crystals is given by El-Kady

et. al [70]. More interesting is the fact that these results were produced using a

phononic crystal with dimensions at the microscale. The geometric properties of the

crystal consists of a simple square lattice of dimensions 405 µm x 405 m with a lattice

constant a of 45 m and an inclusion diameter of 28.8 µm. The host material was

made of SiO2 with embedded Tungsten (W) inclusions. The material properties are

given in Table 4.2.

Their study used integrated AlN (aluminum nitrate) electroacoustic couplers for

sending and receiving displacement signals. The signals were sent to and received

from a network analyzer which measured the longitudinal vibrations. The ABG

crystals measurement was normalized by measurements from a bulk matrix specimen

consisting of only the host SiO2 material in a method similar to the experiments

performed in this thesis. The difference in these experiments, however, was the

necessity of placing small air holes in the center of the Tungsten (W) inclusions. The

air holes were required for fabrication purposes to allow for an undercut. Therefore,

the matrix specimen was also produced with air holes. A study of the effect of air

holes and their size within the inclusions was conducted using a finite-difference time

domain (FDTD) simulation. It was shown that as the diameter of the air hole was

increased, the thinner the gap became by shrinking from the left (lower-frequency)

side as the right side of the gap stayed mostly constant. A value of 5 µm was chosen
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for air hole radius making up around 11 percent of the lattice constant value. An air

hole radius of 20 percent of the lattice constant was determined to begin destruction

of the bandgap profile. The model is shown in Figure 4.6.

Figure 4.6: Computational model of El-Kady et al. [70] showing the circular Tung-
sten inclusions with small air-holes in SiO2 arranged in a square lattice with outer
slab and two semi-reflective boundaries

The finite element model is compared to the theoretical and experimental results

given by El-Kady et al. for the case with no air holes. The results are shown in

Figure 4.7. The finite element model to produce these results was constructed us-

ing a modulus of elasticity of 410 GPa (75 GPa), a density of 19250 kg/m3 (1142

kg/m3), and a Poisson’s ratio of 0.27 (0.165) for the Tungsten (W) inclusions (SiO2

matrix). A simulated wave front was produced by a sinusoidal displacement on the

left-most line of the computation cell indicated by a blue dashed line in Figure 4.4.
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Figure 4.7: Comparison of experimental results (Solid) from Vasseur et. al and
theoretical FEM results (Dashed)

Special boundaries were applied on the model which aided in the realistic dissipation

of energy and allowed for appropriate reflections within the computation cell. The

slab surrounding the cell was made up of 10 µm of SiO2 (about a quarter of the

lattice constant) followed by a two layers of 0.5 µm damping materials. The slab

was made with the same material properties as SiO2, but the two damping layers

varied in elastic modulus and were assigned material damping of 70 percent as done

in the previous case study analysis. Again a slight impedance mismatch was imple-

mented for limited reflections yet allowed for energy movement across the boundary

for energy absorption.

The amplitude of the displacement was based on an estimated value derived from
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the piezoelectric equation 3.1. A table lookup value for a PZT ceramic piezoelectric

material yields a piezoelectric charge constant of 400E-12 m/V for the thickness

mode. A maximum estimated potential difference of 0.5 V gives around 0.2 nm

which was used in the simulation.

4.2.3 Case Study 3: Mohammadi et al. [71]

Another micro-structured phononic crystal is considered here. The experimental ev-

idence provided by Mohammadi et al. [71] was selected due to the more complicated

lattice structure. A benchmark case such as this one will enhance the analytical

models credibility by exemplifying robustness in its ability to simulate response.

A hexagonal Bravais lattice structure (minus the center) was experimentally ver-

ified at the micro-level using a lattice constant of 15 and a radius of 6.4 attempting a

strong gap based on reducing symmetry in the Brillouin zone. The research encom-

passes the growing movement to plate structures over SAW devices or bulk structures

in the creation of ABG materials. Several bridge-like plate structures were produced

using a 14-step fabrication process on Silicon. The process included metal deposition

for the creation of the electrical transducers along with zinc oxide sputtering for the

piezoelectric effect and lithography and plasma etching for the hole removal. Due to

the frequency limitations of the small size transducers, 18 devices had to be man-

ufactured to excite various frequency intervals and were summed up and averaged

over the frequency domain in question.

The same model layout was used for this analysis as done before with changes

only in dimensionality and can be seen in Figure 4.8. The slab layer outside the

center cell was 60 µm on both sides of the center cell and 20 µm on top and bottom

of the center cell surrounded by two damping layers of 4 µm. Again 70 percent

frequency-independent material damping was used in the damping layers of simi-

91



Chapter 4. Analytical Methods

Figure 4.8: Computational model of Mohammadi et al. [71] showing the circular
air inclusions in Silicone arranged in a square lattice with outer slab and two semi-
reflective boundaries

lar characteristics. Again, the boundary conditions were selected based on results-

matching. Although the boundaries of the samples were not provided, a picture

indicates that the sample was created with long edges also outside of the center cell

with some distance between the first rows of inclusions and the transducers. The

analytical results can be compared to the experimental reporting in Figure 4.9.

4.2.4 Case Study 4: Experiments

The next case study is performed for the Epoxy specimens tested in this thesis. The

theoretical results provide a guide that can demonstrate, firstly, if a bandgap exists
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Figure 4.9: Comparison of experimental results (Solid) from Mohammadi et. al and
theoretical FEM results (Dashed)

for the geometries and materials used. Second, the simulation results can serve as a

guide to the frequency region where the bandgap should occur if one is found to be

present.

The surrounding slab was again made with the same material as the host matrix:

Epoxy. A slab thickness of 2 mm was used surrounding the inner cell for all cases. The

two outer damper layers used 2 mm each of material-specified frequency-independent

damping of 0.7. The first damping layer was made with an elastic modulus of 2.9 GPa

to match the surrounding slab since it has been found that little impedence contrast

should exist at the boundary. The next boundary, however, is made up of two-thirds

of the first elastic modulus to account for the energy dissipation throughout the

first damped boundary also allowing for some reflection based on small impedence

difference.
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Table 4.3: Bragg and Mie first mode reflection locations for experimental cases

Filling a d CM CS CBragg Bragg1 Bragg2 Mie
Fraction (mm) (mm) (m/s) (m/s) (m/s) (kHz) (kHz) (kHz)

0.18 3.15 1.69 5009 1616 2234 318 225 1482
0.28 5.28 3.17 5009 1616 2577 244 173 790
0.40 4.44 3.17 5009 1616 2975 335 237 790
0.50 3.96 3.17 5009 1616 3324 420 297 790

The FE results are first presented in Figure 4.10 free of reflections from bound-

ary conditions to maximize bandgap viewing ability. Based on this analysis, it is

evident that gaps are present for these material types and geometries for filling frac-

tions 0.28, 0.40, and 0.5. As previously described by the literature, the higher filling

fractions shows the most significant gap. These results correlate well with the cal-

culation approximations found in Table 4.3. The Bragg and Mie calculations listed

in Table 4.3 match extremely well with the FE results. The simple calculations are

broad approximations and do not account for such variables as transverse compo-

nent interactions caused by transverse velocity (based on Shear Modulus) and exact

wavelength representation due to the interaction between the matrix and inclusion

materials.

Notice that the results for the 0.18 filling fraction case are not represented in

Figure 4.10. This is because there was no gap present due to the low filling fraction.

Although calculations show that a gap can occur at 318 and 225 kHz, it is dependent

upon the physical interaction (impedance mismatch) for the gap to take place. It

can be noted also that that Mie frequency is out of the domain for these gaps. A Mie

reflection will not produce a gap by itself, yet can aid the quality of the gap when it

is within reach. For example, a Mie reflection generally helps to bond the two Bragg

modes.

The first gap and the largest, is of course produced by the highest filling fraction,
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Figure 4.10: Analytical results in unbounded condition for filling fractions 0.50, 0.40,
and 0.28

FF = 0.5 shown in Figure 4.11 normalized and with the boundary conditions stated

above to simulate realistic conditions. The finite element results are plotted by a

dashed line against the experimental results (solid) and show excellent gap boundary

matching for the larger Bragg2 first mode located between about 180 kHz to 300 kHz.

There is a large jump afterwards in the experimental, where the computation results

stay lower. This can be attributed to the piezoelectric transducers overpowering the

profile of the experimental, yet it can be seen that the second gap (Bragg1) is almost

emerging around 410 kHz matching the anti-resonance in the computational results.

Another example of the FE results is shown alongside the experimental results

in Figure 4.12 for the normalized averaged case of samples with filling fractions of

0.40. The results are found through normalization using an identical model with

Epoxy in place of Aluminum inclusions. It can be seen that two gaps are predicted
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Figure 4.11: Comparison of normalized experimental (Solid) and finite element re-
sults for filling fraction of 0.50

by the FE model between about 200 and 280 kHz and again between 310 and 340

kHz signifying again Bragg1 and Bragg2. The fact that two gaps are present, as in

the previous case, indicates that the two reflection modes did not merge.

Ways to couple these gaps include increasing the impedance difference between

the matrix and host materials, increasing the filling fraction, or introducing the Mie

reflection mode if not already present. The experimental results only show one main

gap. The second gap is either not present or masked by the anti-resonance occurring

at the same frequency (most likely due to the piezoelectric crystals). A small drop is

shown around 350 kHz in the experimental results which could be evidence of that

second gap. Nevertheless, material property or geometrical changes need to take

place in order to merge the two gap modes for a strong bandgap.

The second experimental gap example shown in Figure 4.13 is not as noticeable
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Figure 4.12: Comparison of normalized experimental (Solid) and finite element re-
sults for filling fraction of 0.40

as the first, although is strong enough to emerge through the transmission profile

highly dictated by the piezoelectric transducers. Again we see the experimental gap

about 50 kHz higher than the FE results as also seen with less severity in the first

two cases (by 5 kHz and 10 kHz respectively). Because this is consistent, it can most

likely be attributed to the material properties input in the FEM versus the actual

properties. The elastic modulus can be affected by curing temperatures to become

more brittle or ductile. This aspect is of course neglected in the finite element model.

4.2.5 Parametric Analysis

It has been shown that the major determinants in producing a bandgap are traced

back to impedance differential between the host material and the scatterer material

when the geometrical conditions are fit. Impedance Z, however, is dictated by two
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Figure 4.13: Comparison of normalized experimental (Solid) and finite element re-
sults for filling fraction of 0.28

other material characteristics as seen in Equation 1.1, density ρ and longitudinal

speed of sound Cl. Also this condition also realizes a bandgap if periodicity exists

and that periodicity contains the correct filling fraction based on its bravais lattice

type. This section tests the resulting change in bandgap profile for given changes in

material and geometrical parameters.

A given case similar to Case Study 1 is studied with a fuller gap achieved by

decreasing the density from the reported value of 1200 kg/m3 to 500 kg/m3. Density

and elastic modulus are then variated from the base case to show respective changes

in the gap. Material 1 represents the inclusion material while material 2 is the matrix

material. Since impedance is proportional to the square root of density and sound

speed in a material, it is assumed that both parameters would have a similar effect on

the gap. Considering Figure 4.14, it can be seen that for higher density in material

1, a shift to the lower frequency region occurs while a lower density endures a shift
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upward in frequency with definite overall gap quality measured by the proportionality

of gap width to mid-gap frequency. Also, a second gap appears for the low density.

Inversely, a high density for material 2 causes a shift downward in frequency with

diminished gap quality and also a second gap appearance.

Figure 4.14: Parametric study for change in density in material 1 (a) and material 2
(b)

Figure 4.15 shows the results for changes in elastic modulus for material 1 (a) and

material 2 (b). It is shown that a higher elastic modulus in material 1 also slightly

increases gap quality, and causes the immersion of a second gap; the second mode

gap. Interestingly, the shift occurs at the opposite side of the gap for the elastic

modulus change than the density change. The same can be said for part (b) which

shows the change in elastic modulus of material 2. Although lowering the elastic

modulus of material 2 leads towards a larger gap, it is at the expense of decoupling
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the gap’s two modes. This could mean that the maximum impedance threshold is

met, although higher filling fraction could remedy this.

Figure 4.15: Parametric study for change in the elastic modulus in material 1 (a)
and material 2 (b)

Lastly, Figure 4.16 addresses the geometrical dependency by considering the in-

clusion diameter in the material. A higher diameter makes a 10 kHz shift to the

right with a neglible increase in width, yet at the expense of depth. A second gap

appears, which is the second Bragg mode around 180 kHz (twice the frequency of

the gap at 90 kHz). A lowering of the diameter has much higher consequences as the

gap is reduced to half its width at the right side. It is important to point out that

the diameter change is directly linked to filling fraction.

The explanation for these changes can be explained by the relations that have
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Figure 4.16: Parametric study for change in inclusion diameter

been discussed in this thesis. In many cases two gaps are present whether they

are decoupled from one gap or appear. The second gaps can be the BraggA of

the same mode if separated by a scalar value of the
√

2 multiplied by the BraggB

reflection location or could be the coupled BraggA/BraggB second mode if located

at double the location frequency of the first. Although changing density and the

elastic modulus are directly related to impedance, these parameters also contribute

to the speed of sound in the material. Although a higher impedance for material

1 and lowed impedance for material 2 generally help to create better impedance

mismatch for the ABG material, a higher density will decrease the speed of sound

in the material and vice-versa for a higher modulus of elasticity.

101



Chapter 4. Analytical Methods

4.2.6 Feasibility Study for Damage Monitoring

The study of defect modes in ABG materials has been studied before with regard to

waveguides [33], [29], [64] where it has been shown that passbands, bands of trans-

mission, can form, thus disrupting the band profile. Here, similar defect modes can

occur with induced strain, as previously stated. By compromising the lattice con-

stant dimension, the fundamental structure of ABG occurrence, a defect is thereby

created by the induced strain which is then indicated by the bandgap profile. A

delamination in a composite, for example, could show signs of debonding through a

localized strain. Such a strain would translate into the less-stiff ABG matrix creating

a wider lattice above the strained area. Similarly, uniform strains due to situations

such as thermal effects should be addressed to avoid false positives. This section

looks at the theory of concept proposed by ABG sensing. Figures 4.23 shows the

models for the strain cases for the results shown further in the section which can

simulate damage such as that shown in Figure 4.17.

Figure 4.17: Visual representation of example damage and functionality of ABG
sensor

The Vasseur et al. [39] case is revisited to be tested as a representative case for
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functionality. This case was selected based on the simplicity of design and also to

demonstrate the scalability of the proposed ABG sensing technique with respect to

the lattice constant dimension and the center frequency of the gap. First it is shown

in Figure 4.18 how scalability is achieved based on the lattice constant a. For given

material properties, a dictates the location of the gap if one is to occur pending

proper conditions such as FF and impedance mismatch. The two Bragg modes are

slightly separated in the Vasseur et al. [39] case, so the gap quality was enhanced

by merging the two modes which was done by lowering the density of the Epoxy

matrix material by half to increase the impedance difference between the host and

inclusion materials. Figure 4.18 part (a) shows the gap profile on the macroscale

using an a of 20 mm. Part (b) shows an nearly identical gap profile created in finite

element analysis using an a of 20 µm. Note the frequency range on the X-axis of

both plots showing the kHz range for the macroscale model and the MHz range

for the microscale model. Both models are un-normalized and created under ideal,

low-reflection environments.

Figure 4.19 includes a two-part plot of non-uniform strains taking place in the

ABG sensor to incite lattice disruption. Part (a) presents the transmission profile for

a highly localized strain occurring at the beginning of the ABG structure in 5 percent

and 10 percent localized tensile strain and part (b) presents the same information

for localized strain at the end. The 5 percent strain case is shown by a dashed line in

both cases while the 10 percent is represented by dotted lines. A small gap disruption

is created for the 5 percent lattice constant increase with more visible change for the

strain taking place at the end of the structure. The 10 percent change, however,

begins to show more noticeable gap deterioration.

A case is also considered in Figure 4.20 for strain that is not localized within

the ABG material and is distributed unevenly across several columns of the sensor.

Case (a) gives the transmission results for non-localized strain at the beginning of
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Figure 4.18: Comparison of macroscale ABG results in which a = 20 mm (a) with
microscale ABG results in which a = 20 µm (b) to show scalability

the ABG structure distributed between the inclusions from left to right as a 5 µm

change (10 µm), 3 µm change (6 µm) and 1.5 µm (3 µm) for a 10 percent overall

strain. The same is done for case (b) but runs from the right-most inclusion spacing

column inward. Results are similar with a slightly larger change in gap profiles for

case (a). The gap profile shows more deterioration in this example of non-localized

strain than for the previous case of localized strain with respect to total strain values.

A slight shift downward in frequency also takes place attributed to the larger lattice

spacings which are repeated here more than in the localized strain case.

Consideration for transversely strained cases is also taken into account. Figure

4.21 presents the results for strains in the range of 10 percent and 20 percent. In can

be seen that a larger profile deformation occurs per strain value for this case over
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Figure 4.19: Progression of deterioration in band gap profiles for 5 percent and 10
percent localized strain at beginning of ABG (a) and end of ABG (b)

Figure 4.20: Progression of deterioration in band gap profiles for 5 percent and 10
percent distributed strain at beginning of ABG (a) and end of ABG (b)
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the previously presented cases. It should be noted that the deformations of the gap

profiles up to this point has mainly taken place on the right (upper frequency) side

of the gap.

Figure 4.21: Progression of deterioration in band gap profiles for 10 percent and 20
percent localized transverse strain

Uniform strains are addressed in Figure 4.22 in both tensile and compressive in-

stances. The effects of constant strain throughout the sensor adhere to the same

rationality in the three instances shown here. For compressive strains (plot (a)), the

gap profile shows a clear shift downward along the frequency axis with noticeable

gap width reduction. The gap reduction will have consequences on the right side of

the gap more than the left because the direct axial Bragg mode is located on this

side and moves downward with respect to the lattice constant at a rate of 1.33 over

the diagonal Bragg mode. Also the gap is reduced in width due to quality tolerances

as the perpendicular geometry differs now from the axial spacings when before both

directions were related by a common lattice constant. For compressive strain, only a

5 percent dimension change was possible due to geometrical limitations. The opposite

held true in compression versus tension. There is a clear shift upward in frequency

with some widening of the gap. The gap widening can also be attributed to the fact
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that the effective filling fraction is increased.

Figure 4.22: Shifted band gap profiles for 10 percent and 20 percent localized trans-
verse strain

This chapter has validated a numerical model from three highly variable cases

in the literature ranging in size-scale, geometry, material type, and experimental

setup. The computational results match the benchmark cases extremely well in

terms of gap location and energy dissipation level with impressive matching of small

resonance occurrences outside the gap profile. Comparison with experimental results

helped to validate two questionable band gaps and demonstrated changes necessary

to merge the two Bragg reflections occurring with the respectively material types.

Perhaps most useful employment of the numerical modeling tool was the feasibility

study where the functionality of the proposed ABG technique was tested. The results

are consistent with the proposed functionality. It should be noted that the scale of

strain of the ABG material, based on the periodic disruption dimension based on

damage size, translates to a much lower strain value for the substrate component

due to the relativity of strain with respect to dimension. Therefore ABG material
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Figure 4.23: Strain cases conditions (a) Normal (b) 10 percent transverse strain (c)
10 percent local strain at front (d) 10 percent local strain at end (e) 20 percent total
distributed strain at front from 10 percent to 7 percent to 3 percent (f) 20 percent
total distributed strain at endfrom 10 percent to 7 percent to 3 percent (g) 10 percent
total uniform tension (h) 10 percent total uniform compression

strain can correspond with lower strain values in the substrate material leading to

highly sensitive sensing ability.
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Conclusion

This thesis has examined the use of acoustic bandgap (ABG) materials as sensors for

damage detection for structural health monitoring (SHM). The need for new types

of sensing techniques in has been discussed with the interest in hot spot monitoring.

Specifically, it was demonstrated that there is a clear desire for the aerospace industry

to move towards condition-based monitoring from the current time-based monitoring

methods which can be realized with innovative and reliable sensing techniques. New

sensing techniques are among the essential components in accomplishing the ability to

create smart structures capable of condition-based monitoring. Although initial costs

for research, transition, and implementation may be high, such investigations can

have economical savings that can be realized by removing unnecessary maintenance

and inspection time, early detection of damage, and through aiding in the design of

new structures. Most importantly still, are the safety benefits.

In addition, past research looking at the phenomenon of acoustic bandgaps has

also been reviewed. Both theoretical and experimental investigations were covered

that aimed to create and investigate the performance of acoustic bandgaps. The

governing geometric parameters and material properties were outlined discussing the
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major contributors to attaining an ABG. These contributing factors were highlighted

beginning with material property aspects such as high impedance contrast between

inclusion and matrix materials and moved onto geometrical suggestions like the use

of high filling fractions and the different lattice configurations. Small-scale ABG

materials were also discussed to demonstrate the feasibility of ABG fabrication in

the future where ABG devices can be exploited for different uses like ultrasonic

transducers, waveguides, antennas, and for sensors as suggested here.

The experimental methods summarized the steps taken to fabricate a macrosized

ABG material and the parameters for each of the material components that make

up the ABG material. The experiments considered 16 total specimens aimed to

span a range of possible acoustic gap forming elements. Eight specimens for two

host materials were each tested for long and short specimens of four filling fractions

ranging from 0.18 to 0.50. The results for the elastomer host cases proved mostly

inconclusive as the response detected across the material was too low to show any

representation of bandgap behavior. Smaller sized specimens, stronger transducers,

or a combination of the two could help with this issue in future work. Such work

could prove interesting, considering the large impedance contrast possible with such

a low stiffness material. In addition, elastomers would seemingly perform very well

considering their elongation ability to assume the strain characteristics of underly-

ing substrate material and should be considered again with the above-mentioned

recommendations.

On the other hand, the results for the epoxy-based ABG sensors provided three

gap formations. Due to an overpowering response signal believed to be dictated by

the piezoelectric crystal, bandgaps were difficult to isolate with certainty. Again,

strong transduction of the signal could improve the representation of attenuation,

especially at high frequencies. This attenuation was much more apparent in the

response of specimens with high filling fractions and long dimensions, making the
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response for the specimens that are more likely to have bandgaps more difficult to dis-

tinguish in that frequency range than the other specimens. Although great care was

taken to choose an appropriate piezoelectric ceramic that worked for the necessary

frequency range, it is the ceramic that is attributed to the difficulty in realizing the

presentation of gaps. Furthermore, a higher impedance difference between the host

and inclusion materials is necessary to merge the gap modes and/or the introduction

of the Mie reflection could prove useful in creating a strong gap.

The analytical models, consisting of gap location calculations and the implemen-

tation of a finite element method, were very helpful in this investigation. The finite

element model was benchmarked using three diverse case studies from the literature

for validation. The first case study consisted of a macro-sized bulk ABG material

and the analytical results matched the experimental findings very well showing both

existence and gap placement agreement in the frequency range. The second and

third benchmark cases consisted of much smaller dimensionality and were also val-

idated with strong agreement. Benchmark case 3 was especially interesting in that

the analytical model demonstrated its robust ability in matching the results for such

a complex lattice structure at a very small scale. This proves the FE model to be an

excellent tool for the design of ABG sensors.

The FE model was also tested against the experimental results presented in this

thesis. Three experimental gaps were found in three of the four geometries tested,

matching the numerical analysis. The gaps for each case were separated according to

Bragg mode. It is therefore obvious that a greater impedance difference is necessary

to strengthen the gap formation. Other alternatives including increasing the filling

fraction and to change the material types to induce a Mie reflection which can also

help to strengthen the gaps.

The feasibility study showed various strain cases to test the functionality of ABG

materials as sensors. Two levels of induced strain were tested for various scenarios
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of strain distributions including localized tensile non-uniform strain, non-localized

non-uniform strain, transverse tensile non-uniform strain, tensile uniform strain and

compressive uniform strain. Induced strain was considered occurring at the beginning

of the sensor as well as at the end for comparison. It was shown that the level of

gap deterioration is significantly affected by the non-uniformity in lattice disruption

due to non-uniform strain (localized and non-localized). The non-localized cases

tended to show more severe deterioration of the gap profile per strain level. Front-

end strain and back-end strain gave surprisingly similar gap deterioration profiles,

although back-end strain cases show a bit higher sensitivity than the front-end. The

transverse non-uniform tensile case clearly showed deterioration as wave propagation

was permitted through the open space when the lattice constant was separated along

one row. Finally, the uniform strain cases performed as expected with small shifts

downward in frequency for tension cases as the lattice constant was increased, and

upward in frequency as the lattice constant increased. This was in line with theory

as the lattice constant is scalable.

The use of ABG materials as sensors for specifically monitoring known damage on

critical components has potential in the SHM realm and it has been shown that such

sensors can be produced at small scales with scalable potential and amplified strain

capability. As SHM is gaining momentum and condition-based monitoring becomes

the norm, ABG sensors can fill in the voids for sensing demands for high sensitivity.

ABG sensing also offers differentiation between non-uniform and uniformly strained

instances, which has a definite role in the prognosis of damage. Further research is

warranted before ABG can be used in field application.

This line of research can be continued in three recommended areas. Experimental

evidence of gap formation at the nano-scale, which has already been shown in the

literature, needs to include strain cases with gap deterioration tracking. The key

efforts here will be in transmission of signal and material selection. Next, the prac-
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ticality of use as sensors should be considered based on energy and data processing

requirements and cost of production. In preparing for use in the field, the benefits

will need to be clearly understood, therefore specific applications need to be consid-

ered along with attention to possible setbacks in its function to find its place within

the workings of SHM and provide reliability, which is the backbone that makes SHM

the advantageous and economic choice.
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A1: Benchmark 1 ANSYS logfile

/config,NRES,5000

/PREP7

!/INPUT,INPUTad,txt

a=.02 !20 microns

d=.016

c= 0 !3e-3

WI = 2.5*a

WO = 3.0*a

HI = 2.5*a

HO = 3.0*a

numsteps=250

!R1=2.5*a*2

!CYL4,0,0,R1

RECTNG,-WO,WO,-HO,HO,

RECTNG,-WI,WI,-HI,HI,

ASBA, 1, 2

k,9,2.5*a+3*e,0

A,5,8,7,9,6

CYL4,-2*a-2*e,-2*a-2*f,d/2

CYL4,-a-e,-2*a-2*f,d/2

CYL4,0,-2*a-2*f,d/2

CYL4,a+e,-2*a-2*f,d/2

CYL4,2*a+2*e,-2*a-2*f,d/2

CYL4,-2*a-2*e,-1*a-f,d/2

CYL4,-a-e,-1*a-f,d/2

CYL4,0,-1*a-f,d/2

CYL4,a+e,-1*a-f,d/2

CYL4,2*a+2*e,-1*a-f,d/2

CYL4,-2*a-2*e,0,d/2

CYL4,-a-e,0,d/2

CYL4,0,0,d/2

CYL4,a+e,0,d/2

CYL4,2*a+2*e,0,d/2

CYL4,-2*a-2*e,a+f,d/2

CYL4,-a-e,a+f,d/2

CYL4,0,a+f,d/2

CYL4,a+e,a+f,d/2

CYL4,2*a+2*e,a+f,d/2

CYL4,-2*a-2*e,2*a+2*f,d/2

CYL4,-a-e,2*a+2*f,d/2

CYL4,0,2*a+2*f,d/2

CYL4,a+e,2*a+2*f,d/2

CYL4,2*a+2*e,2*a+2*f,d/2

FLST,3,25,5,ORDE,3

FITEM,3,2

FITEM,3,4

FITEM,3,-27

ASBA, 1,P51X

CYL4,-2*a,-2*a,d/2

CYL4,-a,-2*a,d/2

CYL4,0,-2*a,d/2

CYL4,a,-2*a,d/2

CYL4,2*a+e,-2*a,d/2

CYL4,-2*a,-1*a,d/2

CYL4,-a,-1*a,d/2

CYL4,0,-1*a,d/2

CYL4,a,-1*a,d/2

CYL4,2*a+e,-1*a,d/2

CYL4,-2*a,0,d/2

CYL4,-a,0,d/2

CYL4,0,0,d/2

CYL4,a,0,d/2

CYL4,2*a+e,0,d/2

CYL4,-2*a,a,d/2

CYL4,-a,a,d/2

CYL4,0,a,d/2

CYL4,a,a,d/2

CYL4,2*a+e,a,d/2

CYL4,-2*a,2*a,d/2

CYL4,-a,2*a,d/2

CYL4,0,2*a,d/2

CYL4,a,2*a,d/2

CYL4,2*a+e,2*a,d/2

RECTNG,-WO-c,-WO,-HO,HO,

RECTNG,-WO-2*c,-WO-c,-HO,HO,

RECTNG,WO,WO+c,-HO,HO,

RECTNG,WO+c,WO+2*c,-HO,HO,

RECTNG,-WO,WO,-HO-c,-HO,

RECTNG,-WO,WO,-HO-2*c,-HO-c,

RECTNG,-WO,WO,HO,HO+c,

RECTNG,-WO,WO,HO+c,HO+2*c,

ET,1,PLANE82

!*

KEYOPT,1,1,0
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KEYOPT,1,2,0

KEYOPT,1,3,0

KEYOPT,1,5,0

KEYOPT,1,6,0

!*

!ET,2,FLUID29

!*

!KEYOPT,2,2,0

!KEYOPT,2,3,0

!*

!ET,3,FLUID129

!*

!KEYOPT,3,3,0

aglue, all

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,1,,73e9

MPDATA,PRXY,1,,.34

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DENS,1,,2799

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,2,,4.4e9

MPDATA,PRXY,2,,.37

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DENS,2,,1142

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DMPR,2,,0.02

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,3,,4.4e9

MPDATA,PRXY,3,,.37

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DENS,3,,1142

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DMPR,3,,0.7

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,4,,3.3e9

MPDATA,PRXY,4,,.37

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DENS,4,,1142

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DMPR,4,,0.7

!MPTEMP,,,,,,,,

!MPTEMP,1,0

!MPDATA,MU,3,,100

!MPTEMP,,,,,,,,

!MPTEMP,1,0

!MPDATA,DMPR,2,,1e-1

!MPTEMP,,,,,,,,

!MPTEMP,1,0

!MPDATA,DAMP,2,,1e-6

FLST,5,25,5,ORDE,4

FITEM,5,1

FITEM,5,-2

FITEM,5,4

FITEM,5,-26

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

!*

CMSEL,S,_Y1

AATT, 1, , 1, 0,

CMSEL,S,_Y

CMDELE,_Y

CMDELE,_Y1

!*

FLST,5,2,5,ORDE,2

FITEM,5,44

FITEM,5,-45

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

!*

CMSEL,S,_Y1

AATT, 2, , 1, 0,

CMSEL,S,_Y

CMDELE,_Y

CMDELE,_Y1

!*

FLST,5,4,5,ORDE,2

FITEM,5,36

FITEM,5,-39

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

!*

CMSEL,S,_Y1

AATT, 3, , 1, 0,

CMSEL,S,_Y

CMDELE,_Y

CMDELE,_Y1

!*

FLST,5,4,5,ORDE,2

FITEM,5,40

FITEM,5,-43

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

!*

CMSEL,S,_Y1

AATT, 4, , 1, 0,

CMSEL,S,_Y

CMDELE,_Y

CMDELE,_Y1

!*

SMRT,6

SMRT,5

SMRT,4

SMRT,3

SMRT,2

SMRT,1

MSHAPE,0,2D

MSHKEY,0

!*

FLST,5,35,5,ORDE,6

FITEM,5,1

FITEM,5,-2

FITEM,5,4

FITEM,5,-26

FITEM,5,36

FITEM,5,-45

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CHKMSH,’AREA’

CMSEL,S,_Y

!*

AMESH,_Y1

!*

CMDELE,_Y

CMDELE,_Y1

CMDELE,_Y2

!*

!Absorbing Boundary

!FLST,5,4,4,ORDE,2

!FITEM,5,1

!FITEM,5,-4

!LSEL,S, , ,P51X

!NSLL,S,1

!/REPLOT

!NPLOT

!NSLL,S,1

!TYPE, 3

!MAT, 1

!REAL,

!ESYS, 0

!SECNUM,

!*

!R,1, ,,,

!*

!ESURF
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ALLSEL,ALL

!Fluid-Solid Boundary

!FLST,5,4,4,ORDE,2

!FITEM,5,9

!FITEM,5,-12

!LSEL,S, , ,P51X

!NSLL,S,1

!/REPLOT

!NPLOT

!NSLL,S,1

!sf,all,fsi

!ALLSEL,ALL

!APLOT

FINISH

/SOL

!!*

ANTYPE,3

!*

!*

HROPT,FULL

HROUT,ON

LUMPM,0

!*

EQSLV,ICCG,1e-008,

PSTRES,0

!*

FINISH

/PREP7

FLST,2,1,4,ORDE,1

FITEM,2,8

!*

/GO

DL,P51X, ,UX,1e-6,

FINISH

/SOL

HARFRQ,0,500e3,

NSUBST,numsteps,

KBC,1

!*

!ALPHAD,100000,

!BETAD,0,

!DMPRAT,0,

!*

FINISH

/PREP7

R,1,R1,0,0,

!*

FINISH

/SOL

/STATUS,SOLU

SOLVE

/POST1

*GET,STEPS,ACTIVE,0,SET,NSET

*DIM,NODE_RES,ARRAY,numsteps,1

FINISH

/POST26

/UI,COLL,1

NUMVAR,200

SOLU,191,NCMIT

STORE,MERGE

PLCPLX,0

PRCPLX,1

FILLDATA,191,,,,1,1

REALVAR,191,191

NUMVAR,200

PLCPLX,0

PRCPLX,1

FILLDATA,191,,,,1,1

REALVAR,191,191

!*

NSOL,2,9,U,X, UX_3

STORE,MERGE

vget,NODE_RES(1),2

*cfopen,amplitude4,txt,,

*vwrite, Node_Res(1)

(E12.5)

*cfclos
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