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ABSTRACT 

 

 The ability to fold and unfold large sensor structures in space using hinges is 

important for space-based sensor technology.  Tape spring hinges have become common 

in deployable space structures due to simplicity, repeatability and unique folding 

properties.  The mechanical response of these hinges (moment-curvature, energy stored 

etc.) is important in ensuring safety, deployment accuracy as well as optimizing cost of 

the structure. In an effort to learn more about the folding and deployment properties, 

finite element software, Abaqus™, was used to analyze a hinge using multidirectional 

bending. The analysis involved large deformation (rotation through 180 degrees), 

nonlinear geometric loading. In order to increase confidence in the analysis procedures, a 

study was conducted on how the type and size of elements affects stability and buckling 

of a simply-supported plate.   In order to fold a tape spring, a specified length of the 

middle segment of the hinge was first flattened, so the initial curvature about the long 



vii 

 

axis of the hinge was removed. This minimizes the moment of inertia and hence stiffness 

allowing it to be folded. With the middle segment flattened, the hinge was subjected to 

opposite-sense bending about the hinge’s short axis (axis perpendicular to the length of 

the tape spring).  In addition to providing the needed mechanical response, the study 

allowed investigation into the optimum method of folding a hinge.  Energy stored during 

folding and unfolding could be evaluated which allows the designer to determine 

adequate passive damping to obtain necessary post-deployment stability and pointing 

accuracy. 
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Chapter 1 

 Literature Review 

 

1.1 Introduction to Deployable Structures 

 Deployable structures cover a broad range of prefabricated structures that can be 

transformed from a compact configuration into a larger structure of predetermined size 

and shape.  The final deployed configuration is designed to be stable and carry loads 

(Gantes, 2001).  Examples of terrestrial deployable structures include: emergency shelters 

and bridges during natural disasters; protective covers for outdoor activities, tents, 

umbrellas, and sailboat masts are just a few other common applications (Neogi, Douglas, 

& Smith, 1998).  Deployable structures are a topic of ever growing interest and ongoing 

development. 

 The more common and desirable application for deployable structures is the space 

industry.  Due to storage limitations of launch vehicles, these structures are becoming 

widely used in space applications.  As an example, the Atlas launch vehicle has a payload 

capacity in a cylindrical shape of 4 m in diameter and 5 m in length (Neogi, Douglas, & 

Smith, 1998).  This severely limits the size of structures that can be sent into space.  

Items such as solar panels, antennas, radars, thermal radiators, and masts are assemblies 

that can be folded or retracted for transportation and deployed once in space (Kiper & 

Soylemez, 2009).  Figure 1.1 shows an example of a simple deployment of two panels. 
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Figure 1. 1: Deployment of two panels (Seffen, Pellegrino, & Parks, 2000) 

 

 The ability to fold the structure into a compact configuration and deploy it in 

space has great financial advantages.  Deployable structures compared to conventional 

structures eliminate multiple launches and the need for human assembly in space.  

However, this typically leads to a more complex structure due to automatic deployment 

mechanisms.  Reliability is crucial for space applications as failure of deployment would 

be failure for the mission. 

 Deployable structures for space applications are in high demand.  There are many 

different ways to deploy a single part or an assembly.  One important aspect that is taken 

into consideration is the packing efficiency.  Packing efficiency is the ratio of the 

deployed volume to the folded volume (Gantes, 2001).  Typically higher packing 

efficiency is more economical due to maximizing the carrying capacity of the launch 

vehicle.  Deployment can take place in one of two ways, sequentially or simultaneously.  

Sequential deployment involves deployment of items in various stages and tends to be 

more rigid during deployment.  Simultaneous deployment is the deployment of all 

appendages at the same time (Gantes, 2001).  There have been many designs that have 

used various methods of deployment through a variety of technologies. 
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1.2 Types of Deployable Structures 

 Deployable structures fall under two main categories, rigid assemblies and 

flexible assemblies.  Whether the structure is rigid or flexible, the main purpose is to 

transform from its compact configuration to its deployed service state.  Space 

applications of deployable structures include telescoping booms, beams for payload 

attachments, solar arrays, antennas, and reflectors (Neogi, Douglas, & Smith, 1998).  The 

most common example may be a satellite that can be sent up with a number of the 

previously mentioned parts which are  deployed  to create the complete structure once in 

space. 

 

Figure 1. 2: Satellite containing various deployed assemblies (Daily, 2011) 
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 Rigid assemblies are composed of rigid elements and joints.  Typical deployments 

of rigid deployable structures use linkages or telescopic booms.  The advantages of these 

systems are good shape control and a rigid structural system.  This type of system may be 

used when precision tolerances are required or a rigid structural system is needed for 

vibration control.  Disadvantages include complex geometric design, friction in the joints, 

and weight (Kiper & Soylemez, 2009).  

 

 

Figure 1. 3: Typical pantograph (Neogi, Douglas, & Smith, 1998) 

 

 The most common type of rigid structure is the pantograph, Figure 1.3.  Once 

deployed the structure must be stabilized by some sort of external locking mechanism.  

Due to the need for a locking device, the structure is not self-supporting. A second type 

of rigid deployable structure is the self-supporting structure.   Self-supporting structures 

are susceptible to buckling, reducing the load carrying capacity (Neogi, Douglas, & 

Smith, 1998). 
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 Flexible assemblies may or may not include rigid elements in the whole assembly 

depending on the design.  There are a variety of flexible assembly types of deployable 

structures that include but are not limited to: cable-strut assemblies, inflatable systems, 

and other flexible systems used to deploy parts.  Cable-strut assemblies employ a system 

of cables and struts.  The shape of the structure is dependent on the tension of the cables 

used to configure the linkages.  Inflatable structures benefit from low stowage volume 

and mass, cost, and good damping properties, but lack reliability.  Undesired inflation 

shape, stiffness, and the inability to remain inflated make these structures a difficult 

option (Kiper & Soylemez, 2009). 

 An alternative method of flexible deployment is thermally-activated members.  A 

cable containing an internal heating element, an internal bladder, and a braided carbon-

epoxy composite is flexible in its unheated state allowing for packing.  Once heated by 

passing current through the wire, the bladder begins to inflate and provide a structural 

element from the cable.  When the carbon-epoxy composite is heated and subsequently 

cooled, it cures providing permanent stiffness to the cable member.  These cables can be 

set up in varying configurations to create numerous geometric shapes (Neogi, Douglas, & 

Smith, 1998). 

         

Figure 1. 4: Undeployed and deployed thermally-activated member (Neogi, Douglas, 

& Smith, 1998) 
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 Deployable structures can range from very simplistic to extremely complicated.  

Categories include 1-D, 2-D, polygonal units for flat or curved surfaces, prismatic units, 

pyramidal units, etc.  A member in a deployable structure should be able to withstand 

regular service loads and act as a deployment member without adding weight to the 

structure.  Extra members needed for deployment or stability add expense to the structure 

and may require extra connections and deployment mechanisms (Gantes, 2001).  

Deployable space structures experience their highest failure rates during deployment 

(Kiper & Soylemez, 2009).  A clear understanding of the components that make up the 

structure and proper analysis techniques greatly reduce the chance of improper 

deployment or structural failure. 

 

1.3 Common Types of Hinges Used in Deployable Space Structures 

 There are numerous types of hinge designs used in deployable structures.  The 

hinge type is dependent on the type of structure and the required performance parameters 

of the structure.  Hinges can be divided into two categories, manual locking hinges and 

self-locking hinges.  

 Manual locking hinges are typically used in rigid deployable structures.  This 

hinge requires some kind of locking mechanism to be actuated to secure the joint.  To 

lock the joint, there is usually a mechanical device that has to be moved into place to 

secure the joint.  This can require parts such as actuators, motors, electrical wiring, and 

power sources.  All of these extra parts add weight and the chance for mechanical failure. 

Manual locking hinges are undesirable due to the need of extra components (Gantes, 

2001).  Friction within the deployment is a common problem with manual locking 
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hinges.  It provides an additional force that must be overcome and causes micro-lurch 

during operation.  Friction can also produce wear and local weaknesses leading to failure 

if the process is constantly repeated.  These points of friction create a resisting moment or 

force.  Lubrication can reduce the friction and wear on the parts, but introduces additional 

problems depending on the type of lubricant.  This is common in deployable structures 

that use scissor like elements in their design. 

 Self-locking hinges are hinges that have the ability to lock once in the deployed 

configuration.  Also known as the self-locking phenomenon, these hinge types stabilize 

the system once equilibrium has been reached after deployment (Hoffait, Bruls, 

Granville, Cugnon, & Kerschen, 2010).  Self-locking hinges avoid the need for extra 

members, but residual stresses can lower service loads (Gantes, 2001).  Many of these 

hinge types experience highly nonlinear behavior through the folding and deployment 

sequence.  Self-locking hinges are found primarily in flexible assemblies due to their non 

rigid folding properties. 

 The most popular type of self-locking hinge due to its simplicity is the tape spring 

hinge.  A tape spring (Figure 1.5), also referred to as carpenters tape, is a straight strip of 

material with a curved cross section (Walker & Aglietti, 2007).  During deployment of an 

assembly, a tape spring hinge simultaneously achieves actuating, guiding, and self-

locking functions all without friction elements (Hoffait, Bruls, Granville, Cugnon, & 

Kerschen, 2010). 
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Figure 1. 5: Typical tape spring 

 

 Composite tube hinges are closely related to tape spring hinges. A tube hinge is a 

hinge that is constructed from a tube.  The tube hinge is created by cutting two or three 

equally spaced slots in a thin walled composite tube (Figure 1.6).  The remaining material 

left in the tube is essentially multiple tape springs.  The composite tube hinge has the 

ability to be folded and retains the energy to return to its initial configuration under its 

own power.  Tube hinges act just as tape springs, but have stronger deployment 

capabilities and stiffer structural properties when straight (Yee & Pellegrino, 2005). 
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Figure 1. 6: Composite tube hinge in finite element model (Yee & Pellegrino, 2005) 

 

 Another variation of the tape spring hinge makes use of elastic memory composite 

materials to fold and deploy the hinge. The hinge is assembled of ‘bi-lenticular’ tape 

springs held together by aluminum clamps at both ends.  Bi-lenticular configuration 

refers to a pair of tapes springs oriented so both concave sides face one another in a 

mirrored fashion.  The tape springs are made of elastic memory composite laminates that 

have electrical resistive heaters adhesively bonded to the surface.  When heated the hinge 

becomes workable allowing for folding to take place.  The hinge is cooled once the 

desired degree of folding has taken place and the resin in the hinge hardens keeping the 

folded configuration.  When deployment is desired, the heaters are turned on and the tape 

springs along with the elastic memory composite material return to a straight 

configuration.  Once deployment is satisfactory, the heaters are turned off and the hinge 

cools and returns to a rigid state (Beavers, et al., 2002). 
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Figure 1. 7: Elastic memory composite hinge (Beavers, et al., 2002) 

 

1.4 Tape Spring Hinges 

  The tape spring hinge is commonly used in deployable space structures for 

folding and deployment of external assemblies.  Tape springs can be folded and unfolded, 

acting like a hinge, a deployment mechanism, a stiffener, and a locking device at a joint 

all simultaneously (Hoffait, Bruls, Granville, Cugnon, & Kerschen, 2010).  Compared to 

a hinge that requires a motor or an actuator, the tape spring does not need a power source, 

has no internal moving parts, and has no need for lubrication (Walker & Aglietti, 2007).  

The minimization of parts and lack of need for a power source, make tape springs a much 

more reliable hinge and a lighter hinge which translates into cost savings.  All of these 

properties provide a mechanically simple and reliable hinge design. 

  The curved geometry of the tape spring compared to a flat piece of material gives 

the tape spring greater stiffness, which helps make the structure more rigid once 
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deployed.  In the straight configuration, the tape spring acts as a stiffener, due to its good 

structural properties.  The straight configuration works as a locking device, because once 

it is straightened it is hard to get the tape spring to fold again.  These properties eliminate 

the need for stiffeners and locking devices found in other types of hinges. 

  Tape springs can be folded 180 degrees in either direction and remain completely 

elastic.    Holding torque is the maximum moment on the moment-curvature diagram.  

This represents the maximum moment, also called the peak moment, the tape spring can 

withstand.  Driving torque is the residual moment after the tape spring has folded.  This is 

the moment that is required to keep the hinge in the folded configuration, and is available 

for deployment (Hoffait, Bruls, Granville, Cugnon, & Kerschen, 2010). 

 Tape springs can be folded 180 degrees in either direction.  The longitudinal 

folding of the tape spring so that the concave faces of the tape spring fold toward each 

other is known as equal-sense bending.  Opposite-sense bending occurs when the tape 

spring is folded so the concave faces are folded away from one another (Figure 1.8).  
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Figure 1. 8: (a) equal-sense bending (b) opposite-sense bending (Soykasap, 2007) 

Opposite-sense bending produces a much greater peak moment than equal-sense bending 

(Soykasap, 2007).  In both cases, the moment-curvature relationship is nonlinear.  Figure 

1.9 generalizes the moment-curvature relationship for both cases of bending. 

 

Figure 1. 9: General moment-curvature relationship (Walker & Aglietti, 2007) 
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 Strain energy is strored when the hinge is folded.  During deployment the stored 

strain energy is converted into kinetic energy.  When the hinge straightens out the all of 

the energy has been released.  Due to the larger peak moment of the opposite-sense bent 

tape spring, more energy is released compared to an equal-sense bent tape spring.  To 

prevent the overshoot effect (oscillations before locking takes place), tape spring hinges 

are composed of more than one tape spring (Seffen, Pellegrino, & Parks, 2000).   Two 

tape springs can be set next to one another facing opposite directions.  Other hinges have 

been made up of three tape springs with two facing one direction and one facing the 

opposite direction as in Figure 1.10.  The hinge would be folded so the single tape spring 

would fold in the opposite-sense direction because it creates the largest moment.  When 

deploying, the other two tape springs help the hinge system to come to equilibrium and 

self-lock, by complementary opposing moments, reducing the chance of overshoot 

(Hoffait, Bruls, Granville, Cugnon, & Kerschen, 2010). 

 

Figure 1. 10: Three tape spring hinge (Hoffait, Bruls, Granville, Cugnon, & 

Kerchen, 2010) 
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1.5 Finite Element Analysis of Tape Spring Hinges 

  Deployable structures must be designed for two completely different loading 

conditions:  i) service loads in the deployed configuration which tend to result in small 

deformations and linear-elastic material response, and ii) the deployment process, during 

which the structure is usually subjected to geometrically nonlinear loading due to large 

rotations or displacements.  Creating a structure to satisfy both conditions can be quite 

challenging.  Often to accomplish a design objective an iterative design process is used as 

exact solutions may be very tedious and slow down the iterative process (Gantes, 2001). 

 Generally three failure modes are considered: strength, stiffness (related to 

vibration and control), and buckling (related to stiffness and strength).  All three modes 

are considered; however one specific mode, such as stiffness, may be the most important 

design criteria to reduce vibrations in the structure during the service state (Gantes, 

2001).  The rigorous requirements and multiple failure modes make efficient designs of 

deployable structures challenging.  The use of finite element programs help identify 

problem areas, make quick design changes, and reanalyze the part or structure in a timely 

manner. 

 Due to the highly nonlinear nature of the folding of tape springs, the finite 

element software package Abaqus™ was chosen to run analyses of tape spring hinges.  

Tape springs modeled by others use general-purpose shell elements also known as the 

S4R element (Soykasap, 2007), (Ng, 2006).  To allow the program to run the analysis in a 

geometrically nonlinear fashion, the ‘geometric nonlinear incremental analysis tool’ 

(*NLGEOM) was applied.  This tool allows the solution to be obtained through 
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incremental stabilization by artificial damping throughout the analysis (Yee & Pellegrino, 

2005).   

 For the analysis of tape spring hinges it is recommended that the smallest 

damping factor that will still allow for convergence of the simulation be used.  This 

damping factor is said to be 1x10
-8

 for many cases (Yee & Pellegrino, 2005).  If the 

artificial damping factor is set too high, undesirable results will be obtained.  One author 

found that a damping factor of 1x10
-6

 achieved the best results to match the experimental 

data for steel tape spring hinges (Soykasap, 2007). 

 In this thesis finite element analyses were conducted to determine an efficient 

method of folding tape spring hinges.  Based upon the analytical methods of previous 

models, a tape spring model was constructed in Abaqus™ to test the idea of folding about 

two axes, which is necessary to fold and deploy a tape spring hinge.  The analyses started 

with a model verification through the buckling analysis of a plate, a progressive approach 

to learn about large nonlinear bending of a plate. Subsequent analyses included 

determination of energy stored and moment-curvature relationships from folding and 

deploying (unfolding) of a tape spring about two axes. 

 

  

 

 



16 

 

Chapter 2 

 Model Verification and Large Deformation Bending 

 

2.1 Model Validation on Buckling Analysis of a Simple Plate 

 When creating a finite element model (FEM) to solve a problem it is important to 

verify that the results are what would be expected through conventional calculations.  

This section will describe the process of model verification for buckling analysis of a 

simple aluminum plate.  An arbitrary plate size was selected and the buckling load was 

calculated through standard equations.  The plate was modeled in Abaqus™, a finite 

element software program, using three different model types.  The analysis was validated 

by comparing the buckling load results from the models and the analytical solution. 

 An aluminum plate was modeled using arbitrary dimensions of 40 inches high by 

10 inches wide by 0.25 inches thick.  The modulus of elasticity, E, used was 10,000 ksi 

with a Poisson’s ratio, ν, of 0.33.   The analytical solution was found using the standard 

buckling load equation for columns as seen in Equation 1. 

2

2

)(KL

EI
Pcr


      (Eqn. 1) 

Where, 

lbs
inch

inchpsi
Pcr 1.803

)40*1(

)01302.0)(000,000,10(
2

42




    (Eqn. 2) 

For this equation K is dependent on the constraints of the plate at each end.   In the 

analysis, the base of the plate is fixed from displacement in the X- and Y-direction.  The 

top constraint is a ‘roller’ that resists displacement in the X-direction but allows 

displacement in the Y-direction. For a plate with hinged-hinged boundary condition at the 
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two ends, the Effective Length Factor (K) is 1 (Hibbeler, 2008).  The calculated bucking 

load is 803.1 pounds (Eqn 2).  This value was used to compare the results of the finite 

element buckling analysis models.   

 The first model created was a two dimensional deformable wire model.  This type 

of model is shown in 2-D but can have 3-D geometry applied to it.  The length of the 

model was first described (40 inches).  Next the material properties and cross section of 

the plate were created (10 inches by 0.25 inches).  The cross sectional and material 

properties were applied to the whole 40 inch long 2-D wire.  Although the model looks to 

be a simple wire, as seen in Figure 2.1, it is actually modeling a 3-D object.   The same 

constraints were applied to this model as previously described.  

 

Figure 2. 1: 2-D wire model deformed shape mode shape 1 

 After the model was created the bucking analysis was run.  Abaqus™ uses the 

mode shapes of the deformed object and calculates the Eigenvalues corresponding to the 

Mode 1: Eigenvalue = 803.61 
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mode shapes.  Typically, in space structures design the fundamental frequency that 

corresponds to the first mode is of interest.  The bucking load is equal to the load applied 

multiplied by the Eigenvalue.  Simply applying a load of one pound results in the 

Eigenvalue being equal to the bucking load.  The buckling load for the deformable wire 

model was 803.61 pounds; very close to the analytically calculated buckling load (803.1 

pounds); the negligible difference of 0.06 percent verified that the calculated solution and 

the modeled solution are acceptable. 

 The next model created was a 3-D solid element model of the plate with the same 

material properties and dimensions as the previous cases.  To apply the same constraints, 

the base was fixed from displacement in the X-, Y-, and Z-directions and a roller was 

again applied to the top of the plate restricting motion only along the long edge of the top 

of the plate.  Once again, a load of one pound was applied to the top of the plate.  

 For this analysis a mesh must be generated to calculate the buckling load.  The 

mesh size is input by the user.  In this case the dimensional units for the mesh were in 

inches, so a mesh size of one generates a grid of nodes and elements that are spaced at 

one inch intervals.  The type of element used in this analysis was a C3D8R, which is a 8-

node linear brick, reduced integration, hourglass control element.  This is the default 

element type for this mesh. 

  A mesh size of 2 was selected for creating the nodes needed for the analysis, see 

Figure 2.2.  The bucking load from the analysis was 669.72 pounds, an error of 16.6 

percent compared to the theoretical calculation.  A convergence study with progressive 

mesh refinement was conducted. 
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Figure 2. 2: 3-D plate model mesh size 2 mode shape 1 

  

 Table 1 shows the effect of different mesh sizes that were tried, the resulting 

buckling load, and percent difference compared to the previous buckling load.  When 

using finite elements, typically a smaller mesh size, generating more elements, will yield 

better results. As the mesh size decreased the buckling load decreased as well, but the 

percent error increased.  As seen in Table 1, the lower mesh sizes produced a result that 

converges around 609 pounds.  The mesh size of 0.20 was the smallest mesh size the 

computer could run before running out of memory.  While the solution converges at the 

higher number of elements, the error is about 24 percent compared to the analytical 

solution (803.1 pounds). 

Mode 1: Eigenvalue = 669.72 
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Table 1: Mesh size, buckling load, and percent difference for solid elements 

Mesh 
Size 

Buckling 
Load (lbs) 

Percent 
Difference 

2 669.72 - 

1 633.81 5.5 % 

0.50 611.90 3.5 % 

0.25 609.46 0.4 % 

0.20 609.33 0.02 % 
 

 It can be observed that mesh refinement reduces the buckling load due to the 

added flexibility. It is presumed that the lower buckling load from the 3-D analysis is also 

a consequence of the added flexibility and movement in 3-D (from Poisson’s effect) as 

opposed to the restricted movement and added stiffness in the 2-D model.  Figure 2.3 

shows the deformed shape of the plate in its first mode shape using the mesh size of 0.20.  

 

  

Figure 2. 3: 3-D plate model mesh size 0.2 mode shape 1 

Mode 1: Eigenvalue = 609.33 
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 The last model created was a 3-D shell element model.  This model used the same 

dimensions and material properties as the previous models.  The same constraints were 

applied to the base, fixed from displacement in the X-, Y-, and Z-directions, and a roller 

was again applied to the top of the plate restricting motion only along the long edge of 

the top of the plate.  Once again, a load of one pound was applied to the top of the plate. 

 This model also required a mesh size to run the analysis.  Various mesh sizes 

were applied to the model to create another convergence study.   Table 2 shows a 

convergence of the buckling load near 809 pounds.  It is evident that the shell element 3-

D model better simulates the buckling of the plate compared to the solid element 3-D 

model. 

 

Table 2: Mesh size, buckling load, and percent difference for shell elements 

Mesh 
Size 

Buckling 
Load (lb) 

Percent 
Difference 

4 821.48 
 2 812.58 1.08% 

1 810.11 0.30% 

0.5 809.45 0.08% 

0.25 809.24 0.03% 
 

 As a result of the buckling analysis study two key lessons were learned.  The 

analytical calculation gave a buckling load of 803.1 pounds.  The 2-D wire model gave a 

bucking load of 803.6 pounds and the 3-D shell element model gave a buckling load of 

809.2 pounds.  These three different analyses gave a reasonably close result when solving 

the same problem.  The 3-D solid element model gave a buckling load of 609.3 pounds, 

which is not within a reasonable range of the other results.  This shows that using the 

proper element type is crucial when running a finite element model.  The results of this 
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buckling analysis showed that the finite element software could be properly used to 

create other finite element models with confidence in the results.   

 

2.2 Energy Storage During Large Deformation/Rotation of a Plate 

 The purpose of doing the buckling analysis accomplished three goals.  The first 

was to get familiar with the software that is being used for this project.  Next, the 

buckling analysis allowed the computer output to be compared to a known analytical 

solution.  The primary goal was to analyze the large deformation folding of thin 

materials.  Since a rotation of up to 180 degrees is the desired outcome for complete 

stowage (folding), the problem becomes nonlinear as the plate begins to have large 

deformations. Hence a nonlinear finite element program must be used to evaluate the 

conditions of bending the plate.  Using Abaqus™ allows for many ways to approach the 

problem.  With the inputs known, after the model has run successfully, the user can then 

obtain output data from the model.  This output data can be anything from stresses and 

displacements to internal energy values. 

 Accurate determination of stored energy is an important parameter for safety and 

accurate deployment. To increase confidence in the determination of stored energy during 

nonlinear deformation, a plate folding model was run. The model used all of the same 

dimensions and material properties as in the buckling analysis.  The base was fixed from 

displacement in all directions and the top of the plate was bounded by a roller so that it 

was free to move in the vertical direction but not the horizontal direction.  A load case 

with a single point load was applied to the top center of the plate.  
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2.3 A Two Step Approach to Fold the Plate  

 To get the plate to fold through the full 180 degrees, a unique method was 

applied.  This method consisted of loading the plate in two steps.  The first step applied a 

very small horizontal load at the midpoint of the plate to generate a slight bow in the 

plate.  This small deformation of the plate would help the plate to bend because it would 

no longer be a straight member.  The second step would apply the vertical load at the top 

of the plate.  Figure 2.4 shows an example of the two step loading process 

 

 

Figure 2. 4: Two Step loading process: arrows indicate point loads and 'fans' 

indicate boundary conditions 

 

 

Step 1: horizontal load 

Step 2: vertical load 
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 Using the two step method allows the plate to bend because the member is no 

longer perfectly straight.  If the member stayed perfectly straight and the applied load 

was exactly vertical, the plate would only compress even if the load was well beyond the 

buckling capacity due the exact nature of the analysis program. 

 When there are multiple loadings, as with this method, the loads can be controlled 

by the ‘step’ command in Abaqus™.  The horizontal load was applied in the first step and 

the vertical load was applied in the second step.  The user has the option to either 

continue to run the first step while the second step is run, or the first step can be 

inactivated at the beginning of the second step.  For this case the first step was inactivated 

once the second step was begun.  The purpose of the first step is to create a slight 

imperfection in the member before the vertical load is applied.  Continuing the horizontal 

force while loading the plate vertically would not represent the problem being modeled. 

 Another modification was made to the model to help produce larger deformations 

to the plate.  This was the use of the ‘nonlinear geometry tool’ found within the ‘Edit 

Step’ dialogue box.  When the ‘nonlinear geometry tool’ is on, Abaqus™ accounts for 

any geometric nonlinearity during the course of the step.  This feature allowed the plate 

to bend in a nonlinear fashion as will be shown later.   

 To help the program run better and capture the deformation more precisely, the 

‘step incrementation’ was changed.  This parameter helps reduce errors when analyzing 

the part.  The increment size was changed from the default of 0.1 to 0.01.  Smaller 

increments, or time steps, help the program produce results when running the ‘nonlinear 

geometry tool’.  While a smaller time step increases the total time for the job to run, a 

large time step may be too large and produce an error in the analysis. 
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 The new plate model included the modifications previously mentioned.  The plate 

still had the same dimensions, 40 inches tall by 10 inches wide by 0.25 inches thick.  It 

had the same material properties of aluminum, 10,000 ksi and a Poisson’s ratio of 0.33.  

The material is considered to be linear elastic and yielding was not taken into account for 

the analysis.  The plate was pinned in all directions at the bottom and had a roller at the 

top face of the plate to restrain movement in the Z-direction.  The horizontal load of one 

pound was applied at the middle of the plate, one on each edge as shown in Figure 2.4.   

 The load followed ‘the global coordinate system’ in order to keep the applied load 

in the Y-direction.  This is an important detail as the loads can be set to follow the ‘nodal 

rotation’ throughout the simulation.  The results of the plate bending test are discussed in 

the following section. 

 

2.4 Determination of Moment-Curvature Relationship 

 The outcome of the plate folding model was to produce a moment-curvature 

graph.  In order to do that, the output data had to be obtained and analyzed.  To obtain the 

moment due to the force, the internal energy values would be used to calculate the 

moment values.  This seemed to be the easiest way to calculate the moment because the 

internal energy is a default output value for all models in Abaqus™.  The second reason 

was through much trial and error, a method of directly applying a moment to the plate 

yielded no results. 

  To determine if the energy could be accurately calculated from the FEM analyses, 

a simple energy problem was modeled to see if the Abaqus™ results would match the 

calculated energy.  The problem considered was an arbitrary simple beam with 
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dimensions of 2 inches tall by 2 inches wide by 48 inches long.  The beam was simply 

supported with a pin on one end and a roller on the opposite end.  The material properties 

were taken as the same aluminum properties as previously discussed and there was a 

point load of 200 pound applied directly at the center of the beam. 

 

 

Figure 2. 5: Undeformed and deformed shape of the simple beam model 

 

 The simply supported beam model can be seen above in Figure 2.5.  The vertical 

deflection at the center of the beam was 3.24 inches.  The ‘internal energy’ of the beam 

given by Abaqus™ was 323.5 inch-pounds.  Using the value of the deflection and 

Equation 3, the energy of the beam was calculated to compare the results. 

PYEnergy **
2

1
                       (Eqn. 3) 
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Where, 

ΔY = maximum deflection, inches 

P = applied load, pounds 

lbinEnergy *324200*24.3*
2

1
      (Eqn. 4) 

Comparing the two results it is easy to see that the calculated solution, 324 inch-pounds, 

matches almost exactly to the value produced by Abaqus™, 323.5 inch-pounds.  This 

simple comparison gave confidence to move forward using the internal energy values that 

Abaqus™ calculates. 

 The next step in the process was to apply this method to the plate model that has 

been developed throughout this paper.  Once again the same aluminum plate was used 

with the same dimensions and boundary conditions, and the two step method was used.  

The first step remained the same, loading the plate horizontally at the midpoint with a one 

pound load at each of the two edges.  The load case, a point load at the top of the center 

of the plate, was applied. 

 Table 3, shown on the next page, displays the results of a number of different 

magnitude loads applied to the plate.  The first column in the table shows the magnitude 

of the load that was applied to the plate.  Notice that the loading starts at 775 pounds and 

increases by increments of 25 pounds.  At 950 pounds the plate begins to show 

significant deformation.  Some values increased by more than 25 pounds.  Not every load 

produced a vertical displacement, due to numerical errors experienced while running the 

analysis.  The range of values is still good enough to get a representation of the 

relationship between loading and the rotation of the plate. 
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 The second column gives the vertical displacement of the top of the plate.  This 

displacement was used to calculate the angle of rotation of the plate.   The column 

labeled Abaqus™ energy is the internal energy of the plate that was calculated by 

Abaqus™. 

 

Table 3: Results due to a veritcal point load on the plate 

Load 
(lbs) 

Vertical 
Displacement 

(in) 

Abaqus™ 
Energy (in-

lb) 
Ѳ (deg) 

Moment 
(in-lb) 

0 0 0 0 0 

750 0.002 1.1 0.0 177 

800 0.003 1.2 0.0 177 

850 0.003 1.3 0.0 177 

900 0.003 1.5 0.0 177 

950 5.8 5,306 26.1 205 

1050 12.4 11,851 55.8 238 

1150 18.0 18,007 81.0 265 

1200 21.2 21,742 95.4 281 

1250 22.3 23,171 100.4 286 

1500 30.6 34,578 137.7 326 

1550 32.0 36,606 144.0 333 

1600 33.2 38,526 149.4 339 

1650 34.4 40,443 154.8 345 

1700 35.4 42,251 159.3 350 

1725 36.0 43,139 162.0 353 

1730 36.1 43,318 162.5 353 
 

The column labeled moment shows the calculated moment based on the amount of 

bending that was experienced.  Due to the plate’s highly nonlinear deformation, the 

equation to calculate the moment takes into account the plastic region of the moment-

curvature relationship.  The moment was calculated based on Equation 5. 
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)( 12   MEnergy      (Eqn. 5) 

Where, 

M = moment, inch-pounds 

θ = rotation, radians 

 

Simplifying Equation 5 and solving for the moment, 

 

d

dE
M       (Eqn. 6) 

 

 

Figure 2. 6: Internal energy as a function of rotation 

  

 The Internal Energy vs. Rotation data (Figure 2.6) was plotted from Table 2.  A 

polynomial trendline was fit to the data along with the line’s equation to help solve 

y = 0.5421x2 + 177.13x + 49.532 
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Equation 6.  To solve for the moment, Equation 6 was diferentiated resulting in Equation 

7.  Equation 7 provides the moment as a function of rotation and is plotted in Figure 2.7. 

 

13.1770842.1  M      (Eqn. 7) 

 

 

Figure 2. 7: Moment as a function of rotation 

 

 Finally, Figure 2.8 shows the plate at its maximum rotation.  The maximum 

rotation was 162.5 degrees due to a point load of 1,730 pounds.  Beyond that load the 

plate became unstable.  It can be seen in Table 3 that the values of internal energy are 

close to and somewhat smaller than the product of the applied load and the resulting 

displacement. This is consistent with what is expected in the post-buckling nonlinear 

regime of this analysis. 
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Figure 2. 8: 1,730 pound point load produced 162.5 degrees of rotation 

  

 In summation, there were a number of tasks associated with these models and 

many of them were accomplished.  To begin, it was shown with the buckling analysis 

that a buckling load for a plate could be found using Abaqus™ and verified by traditional 

buckling equations.  It was also found that the shell element gave a more accurate result 

than the solid element for this plate.  The next goal was to try to fold a plate through 

significant geometrically nonlinear deformation.  The task to compare internal energy 

outputs to load-deformation and moment-curvature relationship was accomplished.  The 

internal energy method required the use of the tools of Abaqus™, some equation 

manipulation, and finally a review of the results.  In all of these analyses, the project 

progress and the knowledge of the program increased.  These flat plate models helped 

guide the progression of this project into the next phase. 
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Chapter 3 

 Two Axis Folding of a Tape Spring Hinge 

 

3.1 An Optimum Method of Folding a Tape Spring Hinge 

 This study looks into the most efficient method of folding tape spring hinges in an 

effort to minimize the moment (or force) and stored energy.  Rather than simply folding a 

tape spring by applying moments at both ends and folding about the short axis, this study 

investigates the effects of folding about two axes.  By first flattening a middle segment of 

the tape spring (folding about the long axis, axis of rotation and moment being along the 

length of the tape spring), the moment of inertia of the cross section is lowered.  

Subsequent folding about the short axis (typical folding of a tape spring with the axis of 

rotation being perpendicular to the length of the tape spring), requires significantly less 

applied moment due to the flattened cross section. It also minimizes potential for 

damaging the material from large stresses. 

 This analysis was run when folding the tape spring in the opposite-sense 

direction.  Opposite-sense folding requires a greater peak moment, Figure 1.9, than equal-

sense folding.  In an effort to reduce the greatest peak moment required to fold the tape 

spring, only the case of opposite-sense folding was studied.   

 

3.2 Properties of Tape Spring Hinges  

 The dimensions of a tape spring were the same as that used by Soykasap (2007). 

There are four dimensions and two material properties needed to model a tape spring.  

These dimensions include; the thickness of the material, t, the arch length that is specified 
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by the angle, α, multiplied by the radius, R, and last, the length of the tape spring, L.  

Figure 3.1 gives a visual reference to these parameters.  Since only geometric 

nonlinearities are of interest and to prevent damage, the material is to be kept in the 

elastic domain, the two material properties required are the Young’s modulus, E, and the 

Poisson’s ratio, ν. 

 

Figure 3. 1: Tape spring parameters (Aglietti, 2007) 

 

 Tape spring hinges can be made from a number of different materials.  The most 

common materials used are typically steel or a composite material.  When made from a 

composite material, the direction of the fibers have an effect on the behavior of the 

moment-curvature relationship, Figure 3.2.  Different fiber oreintations with respect to 

the X- and Y-axis have been studied such as 0°, 90°; ±45°; 0°, ±60° (J.C.H. Yee, 2004).  

Due to the nature of the tape spring, the material stays in the linear elastic range 

throughout the bending process.  This is true for both 180 degree folding in the equal and 

opposite-sense directions. 
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Figure 3. 2: Fiber directions in composite material tape spring (J.C.H. Yee, 2004) 

  

3.3 Deployment of a Tape Spring Using Abaqus™  

 The dimensions and material properties used to model the tape spring were the 

following: 

t = 0.115 mm 

α = 86.55° 

R = 16.91 mm 

L = 140 mm 

E = 210 Gpa 

ν = 0.30 

 

  Soykasap’s paper obtains data using lab experiments and Abaqus™ modeling to 

compare the results.  The peculiar dimensions reflect that of an actual tape spring.  Their 

paper outlines some of the parameters used in Abaqus™ to get the most accurate results 

to match the experiments run in the lab and helped to set up the tape spring model that 

would be created for this project. 

 Reading literature about how to model the tape spring lead to a new method to 

gather the results needed for the analysis of the tape spring.  The model was created using 

shell elements rather than solid elements.  Shell elements are generally used when the 

thickness is small compared to the other dimensions.  The tape spring was created using 
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the default SR4, 4-node doubly curved shell element.  This was the element type most 

commonly used by others that modeled tape springs in the literature. 

 A new feature that was used for the tape spring model was reference points.  In 

Abaqus™, a reference point is a point that can be added to the model where boundary 

conditions can be applied.  Two reference points RP-1 and RP-2 were added to the model 

as seen in Figure 3.3.   

 

Figure 3. 3: Location of reference points 

 

 The location of the reference points is at the centroid of the arc at both ends of the 

tape spring. The boundary conditions were then applied to the reference points.  

Reference point one was set to have zero displacement in the X-, Y-, and Z-directions, 

and was set to have zero rotation about the Y- and Z-axes.  The rotation about the X-axis 

was set to rotate by a specified amount of radians.  Reference point two was set to have 

zero rotation about the Y- and Z-axes while the X-component of rotation was also 

specified.  Reference point two was set to zero displacement in the X- and Y-directions, 

but the Z-direction was free to move to allow for the bending to take place. 

RP-1 

RP-2 
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 The reference points needed to be connected to the model in order for the 

boundary conditions to apply to the tape spring.  This was accomplished through the 

‘constraints’ command.  A ‘rigid body constraint’ was selected.  The constraints were 

applied through the ‘tie nodes’ option.  The end arc of the tape spring was selected to be 

the rigid body, and through the ‘tie nodes’ option all of the nodes along the arc were tied 

together and held rigid.  The associated reference points were then selected to be applied 

to this constraint.   Using this constraint keeps the two ends of the tape spring rigid 

throughout the bending of the tape spring as if they were clamped into the structure.  The 

reference points act as a place to grip the model and apply a specified rotation. 

 The last modification that differs from the plate models is in the ‘nonlinear 

geometry tool’.  In the ‘nonlinear geometry selection box’, there is an option to set a 

‘stabilization parameter’.  For the tape spring, setting the ‘automatic stabilization 

parameter’ to a specified damping factor was chosen.  When Abaqus™ is solving the 

nonlinear problem, it introduces artificial damping to help with stabilization of the model.  

If the damping factor is specified, the model will give results that match more closely 

with experimental data (Soykasap, 2007).  Many have found through trial and error that 

this specified damping factor should be set somewhere between 1 x 10
-6 

and 1 x 10
-8

.  For 

a steel tape spring 1 x10
-6

 has shown accurate results when compared to experimental 

data.  For this simulation, using steel as the material, the artificial damping factor of 1 

x10
-6

 was applied. 

 The tape spring model was completely folded, 180 degrees, in the equal-sense and 

opposite-sense directions.  This showed that the model was working correctly and that the 

deformed shapes matched those seen in other models.  These results are displayed in 
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Figures 3.4 and 3.5.  Notice in both figures the ends of the tape spring have the same 

cross sectional arc due to the fact that they were set to be rigid. 

 

Figure 3. 4: Complete opposite-sense folding 

 

 

Figure 3. 5: Complete equal-sense folding 



38 

 

 To determine the results using these parameters a specified rotation was applied 

and the reaction moment at the reference point was obtained.  A moment-rotation graph 

could be created by specifying rotations in increments that ranged from 0 to 180 degrees 

and gathering the respective reaction moments.  This was done in increments of five 

degrees per reference point as shown by Table 4. The first column is the applied rotation 

in degrees.  It only goes to 90 degrees because it is the rotation of one of the two 

reference points.  Column two is the conversion from degrees to radians because 

Abaqus™ uses radians.  The third column is the total rotation of the tape spring and the 

last column is the resulting moment due to the rotation.  This was only analyzed for 

opposite-sense bending. 

Table 4: Results of opposite-sense bending 

θ (deg) θ (rad) ф (deg) 
Moment 
(N-mm) 

0 0.000 0 0.0 

5 0.087 10 14.2 

10 0.175 20 26.0 

15 0.262 30 39.9 

20 0.349 40 49.7 

25 0.436 50 56.9 

30 0.524 60 61.0 

35 0.611 70 61.7 

40 0.698 80 51.5 

45 0.785 90 49.0 

50 0.873 100 48.0 

55 0.960 110 48.0 

60 1.047 120 48.0 

65 1.134 130 48.0 

70 1.222 140 48.0 

75 1.309 150 48.0 

80 1.396 160 48.0 

85 1.484 170 48.0 

90 1.571 180 48.0 
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 Figure 3.6 is the moment-rotation graph of the data from Table 4.  The results 

look to be very reasonable by comparing the trend in Figure 3.6 to the general trend for 

opposite-sense bending in Figure 1.9.  This proves that the model and its parameters are 

correct, and additional analyses with this model should give accurate results. 

 

 

Figure 3. 6: Moment-rotation plot for opposite-sense bending 

 

3.4 Reducing the Peak Moment by Flattening the Middle Section 

 Tape springs have a higher moment of inertia because of their curved cross 

section than that of a strip of material that has a flat cross section of the same width and 

thickness.  This higher moment of inertia makes it more difficult to bend the tape spring, 

which is both a positive and a negative property for the application of a hinge.  The high 

moment of inertia creates a stiffer member when it is in the straight position, which is 

desired once the structure is in its deployed configuration.  The negative aspect of the 
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higher moment of inertia is the higher moment required to fold the tape spring when 

trying to reduce the structures size for packing purposes. 

 Figure 3.6 is a good example of what takes place during the folding of a tape 

spring.  In order for the tape to significantly bend, local buckling must take place.  As the 

moments increase on both ends of the tape, the cross section at the middle of the tape 

begins to transition from a curved cross section to a flat cross section.  Once the cross 

section becomes flat the tape has a lower moment of inertia and the tape buckles under 

the increasing moment.  In Figure 3.6, flattening of the cross section takes place right at 

the peak of the trend line.  After the peak, or flattening of the cross section creating local 

bucking, a lower moment is required to either continue to fold the tape farther or to hold 

the tape at that angle. 

 In an attempt to reduce the peak that is observed in Figure 3.6, the idea 

investigated in these analyses was to flatten the middle section of the tape spring before 

applying the end moments, thus reducing the amount of energy needed to fold the tape 

spring hinge.  Before local buckling normally takes place, all of the energy applied to the 

tape spring is being used to flatten the cross section of the tape spring.  If the cross 

section is flattened prior to folding, a lower peak moment should result. 

 This new approach required the creation of an additional step to the tape spring 

model.  The model was broken up into three pieces, two end pieces and a middle section 

that would be flattened.  The analysis would run in two steps just as the plate folding 

model was a two step process.  The first step would be the flattening of the middle 

section of the tape spring followed by the second step of applying the rotation to the ends 

of the tape spring. 
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 To create the first step the size (length) of the middle section to be flattened 

needed to be determined.  Since the tape spring is 140 mm long, a 40 mm middle section 

was arbitrarily chosen leaving 50 mm ends on either side.  The model would now include 

four reference points.  The two previous reference points remained in the model while 

two new reference points were added on each side of the middle of the tape.  The ‘tie 

nodes rigid’ constraints were also added to the sides of the middle section to help flatten 

the middle section using the new reference points.  These features can be seen in Figure 

3.7. 

 

Figure 3. 7: New reference points and constraints 

 

 Step one included associating reference points three and four with the new ‘tie 

nodes rigid’ constraints.  Then as previously described, boundary conditions were added 

to the reference points to apply a specified rotation that would flatten the middle section.  

Reference point three was set to have zero displacement in the X-direction, but was free 
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to move in the Y- and Z-directions.  The rotations about the X- and Y-axes were set to 

zero while the Z-component was set to rotate -0.7549 radians about the Z- axis.  

Reference point four was free to displace in all directions.  The rotations about the X- and 

Y-axes were set to zero and the Z-component was set to rotate 0.7549 radians about the 

Z- axis.  The value of 0.7549 radians is half of the angle, α, that specifies the tape 

spring’s curvature.  This rotation flattened the cross section for the middle segment of the 

tape as shown in Figure 3.8.  Step one was then held while step two was applied to fold 

the tape spring.   

 

Figure 3. 8: Flattened middle section before step 2 begins 

 

 This new method was applied to the model.  The first step was run to flatten the 

middle portion of the tape and hold it flat.  The second step folded the tape spring in the 

opposite-sense direction.  The process of collecting the data was the same so that a 

moment-rotation graph could be produced to compare to Figure 3.6.  The reaction 

moment of flattening the middle section was also obtained to see how much force was 
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required to flatten it.  Below are the results corresponding to the flattened 40 mm middle 

section. 

 

Table 5: Results of opposite-sense bending after flattening 40 mm middle section 

θ (deg) θ (rad) ф (deg) 
Moment 
(N-mm) 

0 0.000 0 0.0 

5 0.087 10 4.5 

10 0.175 20 15.6 

15 0.262 30 24.4 

20 0.349 40 31.6 

25 0.436 50 37.4 

30 0.524 60 41.9 

35 0.611 70 45.2 

40 0.698 80 47.5 

45 0.785 90 48.9 

50 0.873 100 49.5 

55 0.960 110 49.5 

60 1.047 120 49.1 

65 1.134 130 48.0 

70 1.222 140 47.5 

75 1.309 150 47.0 

80 1.396 160 47.0 

85 1.484 170 47.0 

90 1.571 180 47.0 
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Figure 3. 9: Moment-rotation plot for opposite-sense bending of 40 mm flattened 

middle section 

  

 The results from Figure 3.9 appear to have reduced the peak and flatten the hump 

in the trend line seen in Figure 3.6 which did not involve flattening of the mid-section.  

The peak moment from Table 4, normal bending, was 61.7 N-mm.  Comparing the peak 

moment from Table 5, flattening a 40 mm middle section before applying rotation, the 

peak moment was 49.5 N-mm.  This shows that by first flattening the middle section of 

the tape spring the peak moment needed to fold the tape spring could be reduced. 

 The other value that the analysis provided was the moment required to flatten the 

middle section.  For a 40 mm middle section, the required moment to flatten the section 

was 92.3 N-mm.  While the peak moment could be reduced by first flattening the middle 

section, it required a larger moment to flatten the section than to bend the tape spring 

without first flattening it.   
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 To varify that the flattening moment was the correct value, a moment-curvature 

equation was applied to check the flattening moment.  The equation used was a beam 

curvature equation, shown in Equation 8. 

EI

M
Curvature        (Eqn. 8) 

Where, 

Curvature = 1/R, mm 

M = moment, N-mm 

E = modulus of elasticity, Pa 

I = moment of inertia, mm
4
 

 

Solving for I, 

4
33

00506.0
12

115.0*40

12
mm

mmmmbh
I    (Eqn. 9) 

 

Rearranging Equation 8 and solving for M, 

EI
R

M *
1

      (Eqn. 10) 

NmmmmmmNx
mm

M 9.62)00506.0*101.2(*
91.16

1 425   (Eqn. 11) 

 

 The calculated moment turned out to be 62.9 N-mm, which is lower than the 92.3 

N-mm that Abaqus™ calculated.  This discrepancy is due to the fact that the equation 

only looks at a 40 mm segment and ignores the ends that are attached to the rest of the 

tape spring, a portion of which is also partially flattened in the FEM analyses.  The ends 

would increase the value of the moment as they would add some resistance to the middle 
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part of the tape as it was being flattened.  The numbers are reasonably close, giving 

confidence that the Abaqus™ ‘moment’ output is accurate. 

 Additional analyses were conducted to see what would happen if the length of the 

middle section was reduced.  Flattening the middle section by 40 mm before trying to 

fold the tape spring lowered the peak moment, but it took a higher moment to flatten the 

section.  Flattening of smaller middle sections 30 mm, 20 mm, and 10 mm were 

conducted, while keeping a total length of 140 mm. Results are presented and discussed 

next. 
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Table 6: Results of opposite-sense bending after flattening 30 mm middle section 

θ (deg) θ (rad) ф (deg) 
Moment 
(N-mm) 

0 0.000 0 0.0 

5 0.087 10 5.0 

10 0.175 20 15.2 

15 0.262 30 23.4 

20 0.349 40 30.2 

25 0.436 50 35.8 

30 0.524 60 40.4 

35 0.611 70 43.8 

40 0.698 80 46.2 

45 0.785 90 47.7 

50 0.873 100 48.5 

55 0.960 110 48.7 

60 1.047 120 48.5 

65 1.134 130 48.5 

70 1.222 140 47.0 

75 1.309 150 47.0 

80 1.396 160 46.5 

85 1.484 170 46.5 

90 1.571 180 46.5 
 

 

Figure 3. 10: Moment-rotation plot for opposite-sense bending of 30 mm flattened 

middle section 
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 Reducing the length of the middle section showed to have a better result.  The 

peak end moment was lowered from 49.5 N-mm from the 40 mm middle section to 48.7 

N-mm with the 30 mm middle section.  The hump in the graph also flattened a little more 

in Figure 3.10 than the hump of Figure 3.9.  The moment required to flatten the middle 

portion of the tape was also reduced to 77.5 N-mm for the 30 mm middle section.  This 

moment is still higher than the intial peak moment to fold the tape spring, 61.7 N-mm, 

but as the length of the middle section was reduced the moment to flatten that section was 

also reduced.  By shortening the middle section from 40 mm to 30 mm the flattening 

moment was reduced by 16%.  Reducing the size of the middle section was continued to 

see if this trend would continue. 
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Table 7: Results of opposite-sense bending after flattening 20 mm middle section 

θ (deg) θ (rad) ф (deg) 
Moment 
(N-mm) 

0 0.000 0 0.0 

5 0.087 10 6.1 

10 0.175 20 15.4 

15 0.262 30 22.6 

20 0.349 40 28.6 

25 0.436 50 33.8 

30 0.524 60 38.3 

35 0.611 70 41.9 

40 0.698 80 44.8 

45 0.785 90 46.8 

50 0.873 100 48.1 

55 0.960 110 48.6 

60 1.047 120 48.7 

65 1.134 130 48.5 

70 1.222 140 48.0 

75 1.309 150 47.5 

80 1.396 160 47.3 

85 1.484 170 47.0 

90 1.571 180 47.0 
 

 

Figure 3. 11: Moment-rotation plot for opposite-sense bending of 20 mm flattened 

middle section 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

0 20 40 60 80 100 120 140 160 180 

M
o

m
e

n
t 

(N
-m

m
) 

Rotation (Degrees) 



50 

 

Table 8: Results of opposite-sense bending after flattening 10 mm middle section 

θ (deg) θ (rad) ф (deg) 
Moment 
(N-mm) 

0 0.000 0 0.0 

5 0.087 10 10.1 

10 0.175 20 19.6 

15 0.262 30 26.1 

20 0.349 40 30.6 

25 0.436 50 34.0 

30 0.524 60 37.0 

35 0.611 70 39.8 

40 0.698 80 42.4 

45 0.785 90 44.6 

50 0.873 100 46.3 

55 0.960 110 47.6 

60 1.047 120 48.3 

65 1.134 130 48.5 

70 1.222 140 48.3 

75 1.309 150 48.0 

80 1.396 160 47.5 

85 1.484 170 47.3 

90 1.571 180 47.0 
 

 

Figure 3. 12: Moment-rotation plot for opposite-sense bending of 10 mm flattened 

middle section 
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 The results from Tables 7 and 8 along with Figures 3.11 and 3.12 show that the 

trend continued.  As the middle section contiuned to get smaller, the peak in the graphs 

were lowered and the hump turned into more of a curve.  For the 20 mm middle section, 

the flattening moment was reduced again to 59.1 N-mm.  This flattening moment was 

now lower than the moment of 61.7 N-mm, which was the peak moment of the tape 

spring without flattening the middle section. 

 When the middle section was 10 mm long, the flattening moment was reduced to 

41.4 N-mm.  This moment is now much lower than the moment required to bend the tape 

spring without a flattened middle section.  The 41.4 N-mm flattening moment is also less 

than the peak folding moment, 48.5 N-mm, to bend the tape spring with a 10 mm middle 

section.  With the middle section small enough, the flattening moment is no longer the 

governing moment.  When the flattening moment was plotted against the middle section 

length, in Figure 3.13, the result is nearly linear. 

 

 

Figure 3. 13: Flattening moment as a function of section length 
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 The results of this tape spring study show an interesting outcome.  By flattening 

the middle cross section of the tape spring before applying the folding moments, the 

magnitude of the required folding moment can be decreased.  However, if the length of 

the middle section that is flattened is too long, an even greater moment than the peak 

folding moment is required to flatten the tape spring.  By flattening a small length of the 

cross section, the peak moment can be reduced making it easier to fold the hinge.  In this 

example the peak moment went from 61.7 N-mm down to 48.5 N-mm.  This reduced the 

amount of applied moment by 21% to completely fold the hinge in the opposite-sense 

direction. 

 

 

Figure 3. 14: Stresses in the 10 mm tape spring when folded 180 degrees 
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3.5 Analysis of the Tape Spring Unfolding About the X-Axis 

 The tape spring hinge was further analyzed by looking at the unfolding 

characteristics.  The same moment-curvature graph was developed for the case of 

unfolding.  As the tape spring is unfolded from the full 180 degrees back to its initial 

configuration, the cross section of the tape spring goes through a transition.  When the 

tape spring was folded a portion of the middle section of the tape spring was flattened 

before folding.  When the tape spring is released and allowed to unfold, the stored 

moment allows the two ends of the tape spring to unfold.  During the unfolding process, 

the cross section of the tape spring goes from being flat (Figure 3.15) to its initial curved 

shape (Figure 3.16).  The analysis focused on the effect on the moment-curvature graph 

as the tape spring was unfolded back to its original shape.  

 

 

 

Figure 3. 15: 10 mm middle section is flat at 180 degerees of bending 
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Figure 3. 16: 10 mm middle section regaining its curvature durning unfolding 

  

 The analysis procedure was the same as previously described for the folding of 

the tape spring hinge with the addition of one step to the analysis.  The analysis was now 

a three step process.  The first step flattened a specified length of the cross section and 

held it flat.  The second step folded the tape spring from 0 to 180 degrees while the 

middle section was held flat.  The new third step now allowed the tape spring to unfold 

from 180 to 0 degrees.  To make the third step run properly, the first and second steps 

were inactivated during the unfolding step.  Removing the flattening boundary condition 

allowed the middle cross section to transition from flat back to its original curvature.  The 

third step was run incrementally and the reaction moments were obtained to create the 

unfolding moment-curvature graph. 

  The unfolding analysis was only run for the 10 and 20 mm middle sections 

because these had been shown to be the most efficient ways of flattening the middle 

section.  The other two tests, 30 and 40 mm middle sections, showed that the moment 

required to flatten the middle section was greater than the moment to fold the tape spring 

without flattening the middle section.  
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Table 9: Results of unfolding the 20 mm middle section 

ф (deg)  
Moment 
(N-mm) 

180 50.0 

170 49.6 

160 49.3 

150 49.0 

140 48.9 

130 49.0 

120 49.7 

110 51.1 

100 53.9 

90 58.6 

80 63.6 

70 66.4 

60 66.0 

50 62.5 

40 54.9 

30 44.0 

20 31.0 

10 16.0 

0 0.0 
 

  

Figure 3. 17: Moment-curvature graph for folding and unfolding the 20 mm middle 

section 
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 Figure 3.17 shows the behavior of the tape spring as it is folded (lower curve) and 

then unfolded (upper curve).  By flattening the middle section before folding the tape 

spring, the peak moment is reduced and a flat looking curve is observed.  When the tape 

spring is allowed to unfold and the middle section is also allowed to return to its natural 

shape a greater moment can be seen.  The middle section returning to its natural curviture 

increases the moment during unfolding.  

 

Table 10: Results of unfolding the 10 mm middle section 

ф (deg)   
Moment 
(N-mm) 

180 48.0 

170 48.1 

160 48.2 

150 48.3 

140 48.4 

130 48.5 

120 48.6 

110 48.7 

100 49.0 

90 50.0 

80 61.6 

70 64.0 

60 63.0 

50 59.0 

40 52.0 

30 42.0 

20 29.0 

10 15.0 

0 0.0 
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Figure 3. 18: Moment-curvature graph for folding and unfolding the 10 mm middle 

section 

 

 An important outcome is the sustained moment at complete folding.  The tape 

spring required 48.0 N-mm to hold the tape spring at 180 degrees of bending in the case 

where the middle section was not flattened before bending.  This is an important value, 

because in order to deploy the structure attached to the tape spring hinge, the hinge must 

have some stored internal moment.  When the middle of the tape spring was flattened, the 

moment at full bending was only slightly lowered.  In the case of the 10 mm middle 

section, the moment at the 180 degree bend was only reduced by 1.0 N-mm to 47.0 N-

mm.  The stored deployment moment was not affected by flattening the cross section 

 

3.6 Calculating the Energy of the System 

 Folding the tape spring requires energy and that energy is stored in the tape spring 
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graphs.  The amount of energy to fold the hinge and the energy released during unfolding 

was calculated for both figures.  Trapezoidal integration was used to calculate the areas 

under the curves.  The unfolding curve has a greater area in both cases which means that 

more energy is released in the unfolding of the tape spring than the energy required to 

fold the tape spring.  This difference is due to the fact that the cross section of the tape 

spring is returning to its natural curvature producing a greater unfolding moment. 

 

Table 11: Energy calculations for the 20 mm middle section 

ф (deg) 
Moment 
(N-mm) 

Unfolding 
(N-mm) 

Area 
Under 
Folding 

Area 
Under 

Unfolding 

0 0.0 0.0 30.5 80.0 

10 6.1 16.0 107.5 235.0 

20 15.4 31.0 190.0 375.0 

30 22.6 44.0 256.0 494.5 

40 28.6 54.9 312.0 587.0 

50 33.8 62.5 360.5 642.5 

60 38.3 66.0 401.0 662.0 

70 41.9 66.4 433.5 650.0 

80 44.8 63.6 458.0 611.0 

90 46.8 58.6 474.5 562.5 

100 48.1 53.9 483.5 525.0 

110 48.6 51.1 486.5 504.0 

120 48.7 49.7 486.0 493.5 

130 48.5 49.0 482.5 489.5 

140 48.0 48.9 477.5 489.5 

150 47.5 49.0 474.0 491.5 

160 47.3 49.3 471.5 494.5 

170 47.0 49.6 470.0 498.0 

180 47.0 50.0     

  
SUM = 6855.0 8885.0 

  
Difference 2030.0   

  
Energy = 0.354 N-m 
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Table 12: Energy calculations for the 10 mm middle section 

ф (deg) 
Moment 
(N-mm) 

Unfolding 
X (N-mm) 

Area 
Under 
Folding 

Area 
Under 

Unfolding 

0 0.0 0.0 50.5 75.0 

10 10.1 15.0 148.5 220.0 

20 19.6 29.0 228.5 355.0 

30 26.1 42.0 283.5 470.0 

40 30.6 52.0 323.0 555.0 

50 34.0 59.0 355.0 610.0 

60 37.0 63.0 384.0 635.0 

70 39.8 64.0 411.0 628.0 

80 42.4 61.6 435.0 558.0 

90 44.6 50.0 454.5 495.0 

100 46.3 49.0 469.5 488.5 

110 47.6 48.7 479.5 486.5 

120 48.3 48.6 484.0 485.5 

130 48.5 48.5 484.0 484.5 

140 48.3 48.4 481.5 483.5 

150 48.0 48.3 477.5 482.5 

160 47.5 48.2 474.0 481.5 

170 47.3 48.1 471.5 480.5 

180 47.0 48.0     

  
SUM = 6895.0 8474.0 

  
Difference 1579.0   

  
Energy = 0.276 N-m 

 

 Tables 11 and 12 show the incremental area of each trapezoid in ten degree 

segments for both the folding and unfolding curves.  The sums of the folding and 

unfolding columns give the total area under each respective curve.   

 It may appear that when the tape spring unfolded it released a larger amount of 

energy than the amount of energy that was used to fold the hinge.   This is because during 

the unfolding step, two actions are taking place; the tape spring is unfolding about the 

short axis while the cross section of the tape spring is returning to its original curvature 
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about the long axis.  This extra energy contribution comes from the flattened cross 

section releasing its stored energy to the system as the tape spring unfolds. 

 To satisfy the basic law of conservation of energy there should be no difference in 

the amount of input energy and the amount of energy released by the system.  To verify 

the total input energy matches the total energy released, the energy to flatten the middle 

section of the tape spring must also be calculated.  The energy to flatten the middle 

section should be equal to the energy difference between the folding and unfolding of the 

tape spring.  The analysis was done by incrementally flattening the cross section and 

obtaining the reaction moment resulting from the applied rotation. 

 

Table 13: Engergy calculations for flattening the 20 mm middle section 

θ (deg) 
Moment Z 

(N-mm) 

Area 
Under 

Flattening 
 

 0 0.0 17.5 
 5 7.0 53.0 
 10 14.2 88.3 
 15 21.1 122.8 
 20 28.0 179.8 
 25 43.9 213.8 
 30 41.6 224.5 
 35 48.2 257.3 
 40 54.7 186.1 
 43.27 59.1 

  
 

SUM = 1342.8 
 

 
Energy = 0.234 N-m 
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Table 14: Energy calculations for flattening the 10 mm middle section 

θ (deg) 
Moment Z 

(N-mm) 

Area 
Under 

Flattening 
 

 0 0.0 12.0 
 5 4.8 36.3 
 10 9.7 60.5 
 15 14.5 84.3 
 20 19.2 108.0 
 25 24.0 132.0 
 30 28.8 155.8 
 35 33.5 179.5 
 40 38.3 130.3 
 43.27 41.4 

  

 
SUM = 898.6 

 

 
Energy = 0.157 N-m 

 

 Tables 13 and 14 show the calculation for the energy required to flatten the 

middle section.  ‘Sum’ is the total area under the moment-curvature graph in units of N-

mm-degrees.  ‘Energy’ is the unit conversion from N-mm-degrees to N-m-radians.  These 

energy values from Tables 11 through 14 were evaluated using Equation 12 to investigate 

the energy balance for the system.  Flattening and folding involve energy inputs (stored 

strain energy) into the tape spring while unfolding results in the release of energy. The 

release of energy is in the form of kinetic energy which needs to be damped out. The 

energy stored or released during the 3 separate steps should satisfy the conservation of 

energy principle as depicted in Eqn. 12: 

 

0 UnfoldingFoldingFlattening     (Eqn. 12) 

For the 20 mm middle section, 

687888568551343   N-mm-degrees   (Eqn.13) 
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For the 10 mm middle section, 

68084746895899   N-mm-degrees   (Eqn.14) 

 

It can be seen that while energy is conserved to within 8% of the total (difference 

in Eqn. 13 and 14 are less than 8% of the energy stored or released), there is some 

unexplained stored energy (687.2 and 680.4 N-mm in Eqns. 13 and 14), This discrepancy 

is due to the following. During the initial flattening, nodes on the side of the flattened 

section are constrained in displacement. This constraint is later removed after the tape-

spring has been folded resulting in a small adjustment of the internal energy state (notice 

the small jump at the right end of Figures 3.17 and 3.18). Additional displacement caused 

by the release of these boundary conditions result in some additional strain energy that 

could not be captured in this analysis.  The artificial damping used in the analysis also 

contributes to the energy difference. 

 

3.7 Conclusion 

 A nonlinear finite element analysis was conducted to evaluate the complete 180 

degree folding and unfolding of a curved tape spring. The analysis can be used for 

complex geometries, for any elastic material (such as composites) and can also be 

extended to inelastic materials. 

This study of tape springs and the mechanics of folding tape springs showed that 

flattening a small portion of the cross section at the middle of the tape spring can reduce 

the peak moment of folding the tape spring. This can help reduce the cost and weight of 

actuators needed for stowage and deployment.  By flattening the cross section, the 
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moment of inertia was reduced making it easier to fold the tape spring about the short 

axis.  

It is known that in the absence of inelastic behavior (damage or plastic 

deformation), energy put into the system will be stored and subsequently released by the 

system.  While the peak folding moment about the short axis was reduced, and the energy 

to fold the tape spring about the short axis was also reduced. During the unfolding 

process, the applied energy of the system is released as the tape spring unfolds while 

simultaneously regaining its initial curved cross section.  The energy released is 

important for determining the dynamics of the structural system and designing adequate 

damping methods. Damping of the extra energy is important to avoid the possibility of 

the overshoot effect, osculating, and vibration in the structure.   

 Ability to analytically determine the moment-curvature and energy release is 

important for designing space-based sensor structures that are very fragile or have very 

sensitive equipment attached.   
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