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ABSTRACT 

 
 Concrete under tension exhibits a great degree of post-peak non-linearity.  

Current design codes assume the tensile strength of concrete to be negligible, 

which is not only a gross oversimplification of the fracture process of concrete in 

tension, but is also overly conservative.  However, research in the field of fracture 

mechanics has produced models that can accurately predict crack propagation in 

concrete using fracture parameters determined from testing.  One of these 

models, which is both simple and reasonably accurate, estimates the post-peak 

tensile behavior of concrete as a bilinear approximation of the softening curve, 

known as the bilinear cohesive crack model. 

 The American Concrete Institute’s Committee 446 is developing a draft 

test method, ACI 446-5, which determines the key fracture parameters of the 

bilinear cohesive crack model using three-point bend notched beam tests.  ACI 

446-5 currently contains errors and some impractical methods, combined with 

complex and often obscure equations for the determination of the bilinear 

cohesive fracture parameters.   

To remedy this, the equations for the calculation of the fracture 

parameters of the bilinear cohesive crack model are derived, and the 

experimental methods examined and criticized.  Experiments of normal strength 
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concrete notched beams of three different sizes were also performed using the 

guidelines for Level II testing, provided in Chapters 2 and 4 of ACI 446-5, with 

modifications as needed in the case of ambiguity or impracticality.  The results 

are analyzed and discussed, and potential size dependence of the fracture 

parameters is discussed.  With the corrections provided in this thesis, ACI 446-5 

is concluded to be adequate for the determination of the fracture parameters of 

the bilinear cohesive crack model, and modifications are suggested to improve 

the test method. 
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1 INTRODUCTION 

 Considerable effort has been expended in the attempt to model the 

behavior of concrete under tensile forces.  Due to the complex behavior of 

concrete under tension, most modern design codes neglect the tensile strength 

of concrete altogether.  This conservative assumption denies designers the 

ability to not only cut costs through the extra strength in tension concrete can 

offer, but also completely ignores the process of crack propagation.  Researchers 

have long been aware of these problems, and throughout the years have 

developed several models that attempt to use the material properties of concrete 

to predict both failure and the process of crack propagation.  Due to its complex 

structure and heterogeneity, replicating the behavior of concrete using classic 

analytical methods from mechanics of materials and other computational models 

has proven quite difficult.   

 However, the field of fracture mechanics has shown much promise in 

predicting crack propagation of concrete under tensile forces.  In particular, the 

American Concrete Institute (ACI) is in the process of developing a standard 

testing method to determine key fracture parameters and material properties of 

concrete using simple three-point bend notched beam tests that can be 

performed in any modern materials laboratory.  In March, 2010, ACI Committee 

446 released a draft test method for fracture toughness testing of concrete, 

known as notched beam level II (NBLII) tests. This test method will be the focus 

for this thesis.  In particular, this thesis provides the results of trial runs of NBLII 

tests of three different beam sizes of normal strength concrete, as well as 

adaptations, criticisms, and an in-depth discussion of the proposed testing 

method and the calculations of the key fracture parameters.   

 

1.1 Motivation 

 Although the field of fracture mechanics has been broadly studied for 

many decades, its practical applications in design are currently limited.  In 

particular, design codes for structures using reinforced concrete generally only 

use the uniaxial compressive strength of concrete, f’c, to determine failure and 
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serviceability criteria.  Although the equations for design using f’c have proven to 

be adequate in most cases, they make gross assumptions concerning the 

behavior of concrete, where using parameters such as the fracture toughness of 

concrete would be more appropriate.   

 Part of the reason for the popularity of f’c comes from the fact that the tests 

to determine compressive strength are very simple, repeatable, and only one 

calculation needs to be made; dividing the ultimate uniaxial force by the cross-

sectional area of the specimen.  By contrast, in the field of fracture mechanics of 

concrete, there currently exists no agreed upon standard testing method to 

determine key fracture parameters.  In fact, there is still no agreement on a single 

theoretical model that can be used to describe crack propagation. 

 Despite this, it is expected in the future that the principles of fracture 

mechanics will be used in design codes.  In order for this to occur, a 

standardized and agreed upon theoretical model and testing method must be 

developed.  ACI Report 446-5 on Fracture Toughness Testing (ACI 446-5) 

provides two such standards with Level I and Level II beam tests, but is still in the 

developmental phase and requires further rigorous scrutiny.  One of the 

motivations for this thesis is to provide such scrutiny, and to determine if the 

Level II testing method provided by ACI 446-5 is an adequate and reasonable 

method for determining the key fracture parameters of concrete.  Also, the 

equations to calculate the fracture parameters listed in Chapter 4 of ACI 446-5 

are very complex and often have obfuscated origins.  Thus, this thesis provides a 

guide to the equations in Chapter 4 of ACI 446-5 by showing derivations where 

needed and providing scientific reasoning and criticism where appropriate.  

 

1.2 Background 

 Concrete under tension exhibits a large degree of non-linearity close to 

and beyond its tensile strength. While simple tests to discover the tensile 

strength of concrete are reasonably well established, the tensile strength alone 

does nothing to describe concrete behavior past the peak load.  In general, 

normal-strength concrete under tension exhibits approximately linear-elastic 
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behavior up to its peak tensile strength.  After reaching peak tensile stress, 

concrete exhibits strain-softening behavior by gradually losing load-carrying 

capacity as deformation increases.  In a typical load-deformation curve, after 

reaching maximum load, load asymptotically approaches zero as deformation 

increases.  This behavior differs greatly from classically brittle materials, such as 

glass, which suddenly lose all load-carrying capacity after reaching maximum 

load, disallowing any further deformation.  It also differs from typically ductile 

materials, such as steel, which exhibit yielding where deformation increases 

without increases in load, and eventually strain hardening, in which greater load 

is needed for further deformation.  Concrete thus has been labeled as a quasi-

brittle material, and falls under the realm of quasi-brittle fracture mechanics. 

 From a mechanics perspective, strain-softening in concrete occurs due to 

the existence of micro-cracks in the cementitious material surrounding the 

aggregate.  In brittle materials, a single crack propagates through the material, 

with a very small fracture process zone in front of the crack.  By contrast, 

concrete has a very long, but narrow fracture process zone due to micro-cracks 

forming at relatively large distances in front of the main crack, with a typical 

characteristic size in the range of 0.15 m – 0.40 m [Bazant & Planas, 1998].  With 

such a large fracture process zone, concrete does not fall under the realm of 

linear-elastic fracture mechanics, and thus other models have been developed in 

an attempt to replicate the crack-propagation of concrete. 

 One of the first of these models is the fictitious crack model developed by 

Hillerborg, which proposed the notion of a crack that has the ability to transfer 

tensile stress across the crack faces [Hillerborg, 1978].  The idea of this 

“cohesive zone” was later employed by Guinea et al. into what is known as the 

bilinear cohesive crack model [Guinea 1994], which assumes a bilinear 

approximation of the softening curve of concrete.  This model is the basis for ACI 

446-5 testing methods, and will be explored in detail in Chapter 2 of this thesis. 
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1.3 Objectives and Scope 

 The primary purpose of this thesis is to determine whether ACI 446-5 

Level II test method is suitable as a standard for fracture toughness testing. For 

this conclusion to be satisfied, several criteria must be met.  Primarily, the test 

must be relatively simple, inexpensive to perform, and repeatable.  Also, the 

issue of potential dependence of the fracture parameters upon specimen size 

must be explored.    

 In fulfillment of the above requirements, the equations defining the bilinear 

cohesive crack model are explained and derived.  Also, a thorough and 

descriptive examination of the testing procedures of ACI 446-5 is provided by 

performing several experimental trials using the proposed method, along with in-

depth discussion and criticism where appropriate.  Results of the tests are then 

analyzed to determine if the testing procedure delivers realistic and objective 

values, and conclusions are drawn with respect to the validity of the testing 

method.   

 Chapter 2 focuses on the theoretical background of the NBLII test method, 

providing the provenance of the calculations required to determine the cohesive 

crack model parameters utilized by ACI 446-5.  Chapter 3 provides an in-depth 

description, criticism, and discussion of the NBLII testing methods, along with the 

raw experimental results of the experiments.  Chapter 4 analyzes and discusses 

the results from the experiments, providing the key fracture parameters and 

bilinear approximations of the cohesive model for concrete.  Lastly, Chapter 5 

draws conclusions about the experimental methods and makes 

recommendations for further research and testing. 
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2 THE BILINEAR COHESIVE FRACTURE PARAMETERS 

 The ACI 446-5 NBLII testing method and the testing presented in this 

document follow what is known as the bilinear cohesive crack model, originally 

developed by Guinea et al., to create a four-parameter fracture mechanics model 

to describe the post-peak behavior of concrete as a bilinear approximation of the 

softening curve [Guinea et al., 1994].  This chapter is dedicated to the origins of 

the cohesive crack model, including the background and the provenance of the 

equations used to calculate the fracture parameters of the bilinear approximation 

of the softening curve of concrete.  Section 2.1 discusses Hillerborg’s fictitious 

crack model and the determination of the fracture energy, GF, while Section 2.2 

discusses the four-parameter bilinear cohesive crack model of Guinea et al. and 

the calculation of the fractures parameters in Chapter 4 of ACI 446-5. 

 

2.1 Hillerborg’s Model and the Determination of GF 

 As discussed in Chapter 1, concrete is a quasi-brittle material with a large 

fracture process zone, and thus the principles of linear elastic fracture mechanics 

(LEFM) are not applicable. LEFM assumes that stresses at the crack tip 

approach infinity, where in reality the maximum stress achievable is the tensile 

strength of the material, ft . Hillerborg reconciled this discrepancy by providing a 

fictitious crack ahead of the crack tip that imposes closing forces within the 

fracture process zone [Hillerborg, 1978].  As the crack widens, the closing forces 

within the cohesive zone decrease from ft as the crack opening increases, and 

thus allows for the generation of the softening behavior seen in tension tests of 

concrete.   Figure 1 depicts a graphical representation of this concept, where the 

maximum tensile stress, ft , is reached, and as the crack opening, w, increases 

the stress, �, decreases non-linearly until a critical crack opening displacement, 

wc, is reached where the cohesive stress is reduced to zero.   

 The fracture energy dissipated per unit of crack area, GF, is then defined 

as the area under the stress vs. crack opening displacement curve. GF is  
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Figure 1: Graphical description of the cohesive zone, and accompanying stress vs. crack 
opening displacement curve 

a material property of the concrete and represents the amount of external applied 

energy required to fully break a unit surface area of the cohesive crack.  

Hillerborg contended that GF could be determined through the load-deformation 

curve data from three-point bend notched beam tests (without compensation for 

self-weight) by dividing the area under the load-deformation curve by the notched 

cross-sectional area of the specimen [Hillerborg, 1985]. However, the literature 

has shown that GF exhibits considerable dependence on specimen size using 

Hillerborg’s methods [Shah et al., 1995].  The primary reason for this size 

dependence is attributed to not accounting for energy dissipated at the tail end of 

the curve, where theoretically the load-deformation curve asymptotically 

approaches zero.  ACI 446-5 provides an equation for GF that takes into account 

the tail of the curve, as well as using slight over-compensation for self-weight, 

which will be discussed further in Section 3.2.2, to prevent dynamic instability 

before a full softening curve can be developed.  To fully understand the origin of 

the ACI 446-5 NBLII method for the determination of GF, one must explore its 

development.   In particular, the work by Peterson is summarized next [Peterson, 

1981]. 
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Figure 2: Load-deflection curve for a three-point bend test 

 Figure 2 shows a theoretical load-deformation curve using no weight 

compensation.  With no weight compensation, the self-weight of the specimen 

contributes to the overall load in the system, and must be accounted for.  The 

self-weight of the specimen is acting upon the system before testing begins, and 

thus the test actually starts at a non-zero load before any load by the testing 

machine is applied. The center-span moment due to this non-zero load of 

specimen self-weight, for a simply supported beam, is mgS/8, where m is the 

total mass of the beam, g is the acceleration of gravity and S is the span length 

of the test setup. Subsequently, an equivalent center-span load of PR = mg/2, 

would cause the same moment at mid-span, and is referred to as the residual 

load.   Thus, the recorded test data would occur in the shaded area of Figure 2, 

beginning at point 1 and ending in sudden unstable failure due to the beam’s 

self-weight at point 2.  The entire load-deformation curve, including the effect of 

self-weight, is represented by both the un-shaded and shaded areas of Figure 2. 

Integrating under the entire load-deformation curve (A1 + A2 + A3 + A4), and 

dividing by the cross-sectional area of the notched section, will yield the fracture 

A
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energy, GF.  A1 is easily obtained from the test data by means of trapezoidal 

integration.  The rest of the curve, however, is interpolated, as described next.   

 Generally, A4 can be neglected as it is very small, normally 1 – 2% of the 

entire area [Peterson, 1981].  Knowing the deformation and residual load at point 

2 (�0 and PR respectively) from the recorded test data, A2 can be calculated as 

follows: 

 �� � ������	  (1) 

 

 

Figure 3: Graphical description and free body diagram of beam behavior toward the end of 
the test 

 To determine A3, several assumptions must be made about the geometry 

of the area at the far tail of the curve.  Toward the end of the test, one can 
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assume the beam acts as two separate rigid rectangular pieces held together 

only through the cohesive zone, as depicted in Figure 3 (a), where the cracked 

surfaces remain plane, the depth of the cohesive zone, d, varies based upon the 

displacement, �, and the critical crack opening displacement, wc, is always 

constant at depth d.  This is an approximation as it assumes the stress in the 

compression zone of the beam is concentrated at a single point, seen as force C 

in Figure 3 (b). In reality there will always be a compressive zone of finite depth 

at the top of the beam.  Using the beam geometry as seen in Figure 3 (a), with 

the foregoing assumptions and with a real crack propagating, the depth of the 

cohesive zone, d, is inversely proportional to the deformation of the beam, �, i.e.: 

 � � ���
�� ���	 (2) 

In Figure 3 (b), the stress distribution of the cohesive zone is shown as a function 

of the vertical axis z, and the tensile portion of this function is labeled as f(z), 

where the resultant, T is: 

 � � �� �������
�

!"�
����� (3) 

where B is the width of the beam. The resultant tensile force, T, is located at a 

distance from the top of the beam that is proportional to d, denoted by a 

constant, K0, times d. Summing moments about point O, we get the following: 

 # � $��� %&'�( ) ��� ) &'�� �	 (4) 

Rearranging equation (4), we get: 

 
�
� *� %

&'
 + � $�����	 (5) 

Defining the load function P(�) = P + mg/2, we get: 

 
�����
� � $�����	 (6) 

We know from the geometry in Figure 3 (a) that w can be related to d as the 

following: 

 � � �
� ���, �� �

��
�� ��	 (7) 

Substituting equation (7) into equation (3), we get: 
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 � � ��� ���� ����
-.

-"�
����	 (8) 

We also know from the definition of GF that 

 /0 ��� ����
-.

-"�
����	 (9) 

With d being an independent variable, and wc a constant, equation (8) becomes: 

 � � ��� /0����� (10) 

and thus, T is proportional to d. Knowing this, and solving for P(�) in equation (6), 

the equation becomes: 

 ���� � $� ��/0��� ��
���� (11) 

Substituting in d from equation (2) into equation (11), and knowing that wc, S, GF 

and K0 are constants, for simplicity we can combine them into a single constant, 

K1, and equation (11) becomes: 

 ���� � �$1�� �� � $1 � 2
���$�/0�����	 (12) 

Referring back to Figure 2, we now have an approximate function of the curve 

over area A3 for large deformations.  A3 can be calculated by integrating the 

function as follows:  

 �3 � � ������� � � � $1
�� ��� �

$1
�� �� �

$1
��� �����

4

56

4

56
 (13) 

which then, knowing that P(�0) = PR, and substituting equation (12) into equation 

(13), we find: 

 �3 � ���� ������	 (14) 

 Now that all the areas are approximately accounted for, the fracture 

energy can be calculated as the entire area under the curve in Figure 2 divided 

by the cross-sectional area of the cracked section as follows: 

 /0 � ��1 % �����
��7 ) 8�� ��� (15) 

where B is the beam width, D is the beam depth, and a0 is the notch depth.  
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 However, equation (15) assumes that when �=�0, the specimen is very 

close to the complete failure. This is an incorrect assumption, especially for 

larger beams where PR can be a significant fraction of the peak load, due to the 

beam failing dynamically due to self-weight before a satisfactory softening curve 

can be developed.  Thus, size dependence is expected for this testing method.   

 It should be noted that Hillerborg gave an alternate method and equation 

where the beam can be tested upside-down to eliminate self-weight as the cause 

of size dependence.  However, not only was this method relatively unsafe, but 

size dependence was still observed in tests following this procedure [Shah et al., 

1995].  In an attempt to eliminate size dependence, the far tail of the softening 

curve needs further examination.  To achieve this, significant data from the far 

tail of the softening curve is needed, and thus weight compensation must be 

used in some form to counter-act the tendency of beams to fail prematurely due 

to self-weight before the curve can be satisfactorily developed.  The use of 

counterweights at the ends of the beams to create a balancing negative moment 

has proven to be the most practical solution to this problem.  However, this 

creates some other challenges in the calculation of GF.      

 Ideally, a beam would have weight compensation so that no internal 

moment exists at center span.  This is unrealistic due to the variability in casting 

of specimens and the heterogeneity of concrete, and thus it is more practical to 

provide a slight overcompensation, which achieves stability toward the end of the 

test and is also easier to correct for in the calculations.  The correction terms for 

the calculation of GF used in Chapter 4 of ACI 446-5 are in part related to the 

derivation developed in the book by Bazant and Planas, which is summarized 

below [Bazant & Planas, 1998]. 

 Figure 4 depicts a typical load-deformation curve for a load-compensated 

beam similar to that of Figure 2, with a few key differences.  The test is ended at 

the point �R and the curve asymptotically approaches a load, P’0, which is the 

equivalent center-span downward force necessary to equilibrate the negative 

moment provided by the counterweights.   
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Figure 4: Load-deformation curve for overcompensated three-point bend test 

 PR is defined, once again, as the residual load at the end of the test, which 

is taken directly from the testing data. P’R then is the difference between PR and 

P’0. For illustrative purposes, P’0, P’R and PR are all grossly exaggerated, as with 

slight overcompensation they would only be small fractions of the peak load.  It 

should also be noted that P’0 is difficult to know in advance, but as will be shown 

is not necessary in the final calculation of area.  For convenience, another term is 

also introduced, known as the work of fracture, WF, which represents the entire 

shaded area under the load-deformation curve in Figure 4, similar to the sum of 

the areas from Figure 2 (A1 + A2 + A3 + A4). The term WFM represents the area 

under the curve obtained directly from the test data through trapezoidal 

integration, which is equivalent to A1 in Figure 2.  Lastly, �A represents the 

displacement at a load PR near the beginning of the test, and �R represents the 

displacement at the end of the test.  �R is known from the test data, and �A can 

be interpolated from the data lying in the initial linear portion of the curve.  Using 

the same logic to determine A3, employed in equation (14), and with the new 
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definition of WF and WFM, the total area of under the curve can be calculated as 

follows: 

 90 � 90: % ��;����	 (16) 

 From equation (12), without weight compensation, it is approximated that 

at the end of the test that P(�) = K1/�
2, where K1 is a constant.  With weight 

compensation and for the large displacements at the far tail of the curve, 

equation (12) is then modified as follows: 

 � ) ��; � �
�� ) �<����� (17) 

where A = K1, and is referred to as the far tail constant.  Note that equation (17) 

is slightly different from that of equation (12) since the curve has been shifted 

upward by an amount P’0 and to the right by an amount �A due to the 

overcompensation by the counterweights.      

 The far tail constant, A, can then be calculated using the least squares 

method with data obtained from the far end of the curve.  P’0 is technically not 

necessary for the calculation of A, and the fitting curve can be forced through the 

point �R. Thus, equation (17) can be manipulated as follows: 

 �� ) ��; � ��; � �
��� ) �<����	 (18) 

Eliminating P’0, and with some algebraic manipulation, equation (18) then 

becomes: 

 � ) �� � � = 2
�� ) �<�� )

2
��� ) �<��>��	 (19) 

Then, data obtained from the end of the test can be used to perform a least-

squares fit to determine A.  Once A is known, the work of fracture can be 

calculated by substituting P’R from equation (18) into equation (16), which yields: 

 90 � 90: %  �
��� ) �<���	 (20) 

Finally, the fracture energy is calculated as: 

 /0 � 90
��7 ) 8����	 (21) 
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Note that equations (20) and (21) correspond to the equations in Sections 9.6.4 

and 9.6.5 respectively in Chapter 4 of ACI 446-5. 

 However, equation (19) does not match up exactly to the equation in 

Section 9.3.4 of Chapter 4 of ACI 446-5, which is used to calculate the far tail 

constant, A.  ACI 446-5 switches values of displacement for those of crack mouth 

opening displacement (CMOD), with a geometrical factor to relate CMOD to �. It 

is noted that the reasoning for this cannot be found in the literature. Above, we 

assumed that toward the end of the test the beam acts as two rigid pieces, and 

therefore CMOD is proportional to �.  However, the forgoing assumption is only 

an approximation, and due care should be taken by ACI 446-5 to justify this 

assumption of proportionality, as even small errors and approximations can have 

significant influence on the fracture parameters (discussed further in Chapter 4 of 

this thesis). 

 With the above assumption, the manipulation of equation (19) to that of 

the equation in Section 9.3.4 in Chapter 4 of ACI 446-5 is fairly straight forward. 

By using the same logic employed in equation (2), and substituting the cohesive 

zone depth, d, for the full depth of the beam, D, and the critical crack opening 

displacement, wc, for the crack mouth opening displacement, wM, and, finally, 

solving for the displacement, �, we get: 

 � � ��:
�7 ���	 (22) 

 For simplicity, the term P – PR from equation (19) is replaced with what 

ACI 446-5 refers to as the corrected load, P1, where P is the recorded load data, 

and PR is the known residual load at the end of the test. As will be discussed in 

Chapter 3, a pre-load of 5-10% of the recorded peak load is also applied before 

testing begins to allow for testing setup seating.  Data is not recorded during pre-

loading, and thus the test begins at a load P equal to the pre-load.  Testing is 

completed when the final CMOD reaches a value of 4D/300, as per Section 7.6.3 

of Chapter 2 of ACI 446-5. 

 Section 9.3 of Chapter 4 of ACI 446-5 details the method to obtain A by 

least squares analysis. First, P1 is first plotted against measured values of 
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CMOD.  A typical plot of P1 vs. CMOD is shown in Figure 5, where wMA is the 

CMOD corresponding to a corrected load of P1 = 0, and wMR is the last point of 

CMOD on record.   

 

Figure 5: Plot of corrected load, P1 vs. CMOD 

 It should be noted that Section 9.3.1 of Chapter 4 of ACI 446-5 contains 

some confusing language, where it appears to suggest that all data 

corresponding to a CMOD greater than 2 mm should be excised.  This 

requirement is curious, as there’s no obvious reason to excise data collected 

beyond CMOD = 2 mm.  Also, with larger depth specimens, Chapter 2 of ACI 

446-5 allows for data to be collected to CMOD = 4D/300, which could easily 

exceed the 2 mm requirement. The author recommends that this requirement be 

removed.     

 Note in Figure 5 that the corrected load-deformation curve appears nearly 

asymptotic to a corrected load of zero.  This is due to the expectation that with 

weight compensation, it is possible to achieve a long tail of the softening curve. 

Also, it is expected that some of the initial linear portion of the corrected curve 

will be negative, as the overcompensation by the counterweights will cause a 
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slightly positive residual load at the end of the test, which when adjusted for will 

move the curve downward. The value wMA then is determined through 

interpolation of the corrected data where the initial linear portion of the curve 

crosses the x-axis in Figure 5. Substituting equation (22) into equation (19), and 

P1 for P – PR we get:  

 �1 � � ?�7� @
�
= 2
��: ) �:<�� )

2
��:� )�:<��>��� (23) 

where wM is CMOD data taken from the far tail of the curve. In accordance with 

Section 9.3.4 of Chapter 4 of ACI 446-5, data corresponding to loads less than or 

equal to 5% of P1max from the far tail of the curve is collected for the least squares 

analysis to determine A.   

   To assist in the calculation of A, ACI 446-5 creates another term, X, so 

that P1 = AX.  X is calculated as follows for each data point of wM: 

 A � ?�7� @
�
= 2
��: ) �:<�� )

2
��:� ) �:<��>��	 (24) 

Section 9.3.5 of Chapter 4 of ACI 446-5 allows for a simple linear regression to 

determine A.  However, when plotting P1 vs. X, ACI 446-5 suggests the curve 

more closely resembles a quadratic equation as follows:  

 � � A�� % $A��� (25) 

where K is a constant that is not needed for any further calculations.  Note that 

equations (24) and (25) are exactly those of the equations in Section 9.3.4 and 

9.3.5 respectively of Chapter 4 of ACI 446-5. Performing a least-squares fit of 

equation (25) provides A, and is recommended by ACI 446-5 over a simple linear 

regression (although a linear regression is allowed).  It should be noted the 

reasoning for this is not cited, and the author recommends that ACI 446-5 

provide some explanation for using a quadratic equation over a linear one.  

 The far tail constant, A, can now be plugged into equation (20) to obtain 

WF, and then GF. As will be discussed in Section 2.2, A will also be used, in part, 

to calculate the initial portion of the softening curve, the fracture energy, and the 

critical crack opening displacement. 
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 One area of contention is that should the residual load be less than that of 

the pre-load (the small amount of un-recorded loading before testing to eliminate 

seating non-linearities, usually between 5-10% of the expected peak load), there 

will be no initial negative corrected load data.  Instead, the first corrected load 

data point will be positive. This particular circumstance was observed in 

specimens with a well-developed softening tail, and will be discussed further in 

Chapter 4.  ACI 446-5 does not have any provisions for this situation, so using a 

value of wMA = 0 in this case is a practical assumption given that a typical value 

of wMA is usually between 10 to 20 microns, which is on the order of wMR x 10-5. 

 Although GF is a useful fracture parameter, it alone is not entirely sufficient 

in describing the post-peak behavior of concrete, as the shape of softening curve 

is never taken into account.  It’s well within the realm of possibility that two 

concretes with the same GF could exhibit different post-peak behavior, and thus 

more parameters are needed to better describe the fracture process. 

 

2.2 Bilinear Cohesive Crack Model 

 As discussed above, GF represents the energy condition required for crack 

propagation and completely controls fracture when the fracture process zone is 

considerably smaller than the size of the specimen [Elices et al. 2002]. However, 

it alone is not enough to fully describe the post-peak behavior of concrete.  By 

contrast, when the fracture process zone is large compared to size of the 

specimen, the tensile strength and initial slope of the softening curve begin to 

control several properties, such as the strength of the specimen [Elices et al. 

2002].  The reason is that for relatively small specimen sizes, the peak load 

occurs at very small crack opening displacement values, and therefore the 

strength of the specimen relies entirely on the initial portion of the softening 

curve. Thus to better describe the post-peak behavior of concrete, a new model 

must be created that provides fracture parameters that also take into account the 

initial portion of the softening curve.  Guinea et al. proposed such a model with 

four fracture parameters that approximate the stress vs. crack opening 
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displacement softening curve of concrete as bilinear, described as the bilinear 

cohesive crack model [Guinea et al., 1994].     

 As discussed in Chapter 1, ACI 446-5 uses the bilinear cohesive crack 

model as the basis for calculations of the fracture parameters determined from 

NBLII tests. The calculation of these fracture parameters are an adaptation of the 

equations and methods developed by Hillerborg, discussed above in Section 2.1, 

and by Guinea et al., discussed further below.  These methods have gone 

through many modifications over the years, which have led to changes of several 

of the original equations found in the literature.  In select cases, the equations 

listed in Chapter 4 of ACI 446-5 cannot be found in the literature.  In general, the 

equations are also complex and in some cases sensitive to small changes, 

discussed further in Chapter 4, making them error-prone. Thus, careful 

consideration of the assumptions of each of the equations listed in ACI 446-5 is 

required. 

 The bilinear cohesive crack model developed by Guinea et al. is a simple 

approximation of the softening curve shown in Figure 1, where the softening 

curve of concrete is approximated by two linear functions, as shown in Figure 6.  

This bilinear approximation is completely defined by the following terms, which 

are represented graphically in Figure 6: 

• The total fracture energy: GF 

• The splitting tensile strength: ft 

• The initial horizontal intercept: w1 

• The critical crack opening: wc 

• The initial fracture energy: Gf 

 The first term, GF, is calculated from load-deformation curve data using 

equation (21), derived in Section 2.1.    The other terms are discussed in detail 

below, with the initial portion of the softening curve discussed in Section 2.2.1, 

and the critical crack opening displacement, wc, discussed in Section 2.2.2.  
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Figure 6:  Bilinear approximation of softening curve 

  

2.2.1 The Initial Portion of the Softening Curve  

 The term ft, shown in Figure 6, represents the tensile strength of the 

concrete which is obtained from Brazilian split cylinder tests.  It should be noted 

that the experiments and theoretical analysis performed by Rocco et al. 

determined that the Brazilian tests show a great deal of dependence on the size 

of the specimen with respect to the width of the wooden strips used along the top 

and bottom of the specimen [Rocco et al., 1999].  Rocco et al. also showed that ft 

asymptotically approaches a minimum value as the size of the specimen 

becomes large compared with the width of the strips.  Thus, as long as 

sufficiently slender strips are used, the Brazilian test provides a valid measure for 

the tensile strength of the concrete.  

 The term w1 represents the horizontal intercept of the initial linear portion 

of the softening curve.  As discussed above, this term, combined with ft, can fully 

describe the post-peak behavior of relatively small specimens.  However, it is still 

of interest to determine the initial fracture parameters for specimens of larger 

size.  Thus, to describe the peak load dependence of geometrically similar 

specimens on their size, Elices et al. introduced another term known as the 
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brittleness length, l1 [Elices et al. 2002].  l1 is similar to the characteristic length of 

concrete, in that it is a material property proportional to the length of the fracture 

process zone, and thus can be used in adjusting the fracture parameters for 

specimens of larger sizes, discussed further below. Elices et al. defined l1 as a 

function of w1 and ft by the following equation: 

 B1� � � C�1�D �� (26) 

where E is the elastic modulus of the material [Elices et al. 2002].   

 As one can see, in order to determine w1, l1 must first be known.  Knowing 

that l1 is a material property independent of specimen size, the peak load of the 

specimen must be a function of l1 and the specimen geometry. We create a non-

dimensional equation relating the peak load (translated to a peak stress, �NU) 

and the tensile strength to a characteristic dimension of the specimen (in this 

case, the beam depth, D).  The resulting equation is:  

 
EFG
�D � �H ?7B1@��� (27) 

where I is a dimensionless function. Equation (27) can then be numerically 

inverted to aid in the calculation of l1 as follows: 

 
7
B1 � �J ?EFG�D @��� (28) 

where K is the inverse function of H. Solving for l1, we get: 

 A0 � 6�
I�DEFK�C���	 (29) 

 Using inverse numerical methods, and a specific span-to-depth ratio of 4, 

Planas et al. determined that l1 can be calculated explicitly through known values 

as the following: 

 A0 � L6 < 1M	11�N ( 1�� $
	O'
N =��� (30) 

where: 

L � 1 ( P�0	QR����N � � S� �C
DEF ����S� � �1 ( P��������T�U���P� � 7�

6 ��� 
where a0 is the notch depth [Planas et al., 1998]. Then, w1 can then be calculated 

as the following: 
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 �0� � � �CA0B �� (31) 

which is the equation in Section 9.5.2 of Chapter 4 of ACI 446-5.   

 However, the NBLII experimental procedures of ACI 446-5 require a span-

to-depth ratio of 3, which alters the forgoing equation for l1 slightly.  Equation 4.3 

of ACI 446-5, which calculates l1, cannot be found in the literature, and thus 

some measure of confidence for the altered equation must be provided.    

 To determine the brittleness length, ACI 446-5 provides the following 

equation: 

 A0 � L6 < 11	
�N� ( 1�� $

	MOV
N� = �� (32) 

where 

L � 1 ( P���0	W����N � � �C�X ��������T�U���P� � 7�K6 

 The term fp is introduced by ACI 446-5, defined as the net plastic flexural 

strength, and is analogous to the maximum nominal applied stress, �NU, for very 

small specimens.  In the limiting case where l1 is very large with respect to the 

beam depth, D, the beam behaves as if it were perfectly plastic in tension and 

rigid in compression, as shown graphically in Figure 7.   

 

Figure 7: Graphical description of net plastic strength 
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 �X � �YZ[�
�\� �� (33) 

where Pmax is the effective maximum peak load. Note that equation (33) is exactly 

that of Equation 4.2 in ACI 446-5.  

 To obtain Pmax, we must add the corrected peak load (P1max shown in 

Figure 5) to the residual load excluding any additional load to counteract the 

counterweights, which is P’R shown in Figure 4.  From equation (18), we know 

that:   

 ��: � �
��� ( �;����� (34) 

where A is the far tail constant defined above in Section 2.1. Thus, the equation 

to calculate Pmax is: 

 �YZ[ � �0YZ[ $ �
��� ( �;����	 (35) 

 However, the equation in Section 9.4.1 from Chapter 4 of ACI 446-5 uses 

values of CMOD instead of displacement, and is as follows: 

 �YZ[ � �0YZ[ $ �
��9� ( �9;����	 (36) 

 The author believes that equation (36) is incorrect, as no translation from 

values of CMOD to displacement is included.  It is possible that this was simply 

an oversight by ACI 446-5 due to the change of a span-to-depth ratio from 4 to 3.  

For S/D = 4, the term 4D/S = 1, and thus is eliminated.  However, with a different 

S/D ratio, equation (36) becomes: 

 �YZ[ � �0YZ[ $ >�6� ?
� �
��9� ( �9;����	 (37) 

Equation (37) is then substituted into equation (33) to determine fp.  Note that the 

difference between equations (36) and (37) is not trivial (with the term [4D/S]2 � 

1.8 for S/D = 3) and the effects of this difference will be explored further in 

Chapter 4 of this thesis.  

 Knowing fp, the brittleness length now can be determined through similar 

logic applied in equation (27), where fp is normalized to ft as a dimensionless 

function of l1 and D as follows:  
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�X
�C � �G >6A0? (38) 

 Once again, inverse numerical methods are needed to determine l1 

explicitly as a function of fp.  An email correspondence with Dr. Jaime Planas of 

the Universidad Politéncia de Madrid gave some insight as to how the equation 

shown in ACI 446-5 was determined using inverse numerical methods, which are 

outside the scope of this thesis.  Therefore, a finite element code modeling a 

notched beam under center-span loading with a span-to-depth ratio of 3 

developed by Dr. Walter H. Gerstle of the University of New Mexico was run to 

provide a measure of confidence of Equation 4.3 of ACI 446-5,.  For simplicity, 

the program creates a half-beam, utilizing symmetry, and translates the beam 

mesh into a super-element, retaining nodes only along the crack face, top, and at 

the support, shown in Figure 8.  Nodal displacements are then applied at the top 

of the beam above the notch, and using non-linear Newton-Rhapson iteration the 

element is solved to calculate stresses and displacements at each node, from 

which Pmax can be determined. 

 

Figure 8: Sketch of half-beam FEM  

Figure 9 shows values calculated by the program during its first iterations 

for, in this case, a 29X29 element half-beam mesh, and Figure 10 shows the final 

values for the same beam.   
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Figure 9: COD opening and cohesive stresses at start of program 

 

Figure 10: COD opening and cohesive stresses at end of program 
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As expected, the crack opening, calculated as twice the horizontal 

displacement from the node at the top of the notch, grows as larger 

displacements are applied.  The stress profile also takes a reasonable shape 

and, as expected, the point of maximum stress occurs upwards along the notch 

tip with further iteration.     

Once a solution has converged on Pmax, the brittleness length is then 

calculated for several different depths, and plots of the normalized process zone 

length, l1/D, versus the normalized strength, fp/ft, are created and compared to 

values using the Equation 4.3 of ACI 446-5.  The program was run several times 

for different mesh sizes, and some measure of confidence can be provided so 

long as finer meshes appear to converge on Equation 4.3 of ACI 446-5. Lastly, 

Figure 11 shows the normalized curves for the solutions calculated by the 

program for several different sized meshes, where the rows and columns of 

elements of each mesh are specified. 

 

Figure 11: Comparison of FEM analysis to ACI equation 
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finest mesh that the computer available could handle. However, it is seen as the 

meshes get finer that the results appear to converge very close to the equation 

given by ACI 446-5.  Although this should not be used as a definitive or exclusive 

measure of provenance, it does show that the equation is realistic and conforms 

to conventional fracture mechanics theory. 

 Lastly, the modulus of elasticity, E, must be calculated before w1 can be 

determined. While the modulus of elasticity can be determined through 

standardized tests of concrete cylinders, it can also be determined from the initial 

linear portion of the load-CMOD curve.  This is desirable, as the casting of 

additional cylinders for modulus of elasticity tests is then unnecessary.  The 

calculation of E can be determined through some straight-forward manipulations 

of equations provided by the work of Guinea et al., recounted below [Guinea et 

al., 1998]. Guinea et al. showed the relationship between CMOD and E as 

follows: 

 �9 � �DE7�
B ]0�P���� (39) 

where wM is the CMOD as a function of the maximum applied stress, �N, at 

center span of the beam, a0 is the notch depth, and  V1(�) is function 

representing the geometry of the beam, specified as: 

 

]0�P� � "	' ( 1	^P $ 	�P� $ "	OO
�1 ( P�� $

�6
� �("	"� ( "	V'P $ 1	�^P� ( 	"�P2��� 

(40) 

where S is the span length and � = a0/D [Guinea et al. 1998].   

 Using statics analysis of a three-point bend beam, the maximum applied 

stress is related to the applied center-span point load, P, as follows: 

 DE � M��
�6���� (41) 

where B is the width of the beam.  Substituting equation (41) into equation (39), 

the expression for wM becomes: 

 �9 � O��7�
�6�B ]0�P���	 (42) 

Finally, solving for E we get: 
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 B � O�7�
_`�6� ]0�P���� (43) 

where Ci is the initial compliance of the specimen, defined as wM/P for the initial 

linear portion of the load-CMOD curve, shown in Figure 12. To determine Ci, 

Section 9.2.1 and 9.2.2 of Chapter 4 of ACI 446-5 states that data from the initial 

linear segment of the load-CMOD curve be taken to determine the compliance, 

using data values between 15 and 55% of the recorded maximum peak load, 

Pmax [ACI, 2010].  A plot of CMOD vs. P is then created for said initial values, and 

the compliance is determined as the slope of the function as follows: 

 _` ��a�_bc6�a� �� (44) 

 

 

Figure 12: Initial compliance taken from the linear portion of the curve.

 
 Finally, equation (44)  is slightly modified to include the depth of the knife 

edges used to hold the clip gauges in places as follows: 

 B � � O�7�_`�6� ]0�P�
: ��� (45) 

where �’0 is: 
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 P�: � 7� $ d
6 $ d �� (46) 

where h is the thickness of the knife edges, or the distance from the measured 

CMOD to the specimen surface.  Note that equations (45) and (46)  are exactly 

that of the equations listed in Section 9.2.3 in Chapter 4 of ACI 446-5. 

 Thus, with l1 and E known, the initial horizontal intercept, w1, can now be 

calculated using equation (31). 

2.2.2 The Critical Crack Opening Displacement 

 The last point on the softening curve, wc, is calculated using the geometric 

configuration of the bilinear approximation.  By introducing a new term 

representing the abscissa of the center of gravity of the area under the bilinear 

approximation, wG, the full approximation of the bilinear curve can be defined and 

will allow us to solve for wc.  Figure 13 (a) shows a graphical representation of wG 

and where it lies on the stress-COD softening curve.  

 Using the geometry shown in Figure 13 (b), we can relate the crack 

opening displacement, w, to any distance, z, from the top of the beam through 

the following equation: 

 � � �
���� (47) 

where � is assumed to be small (i.e. sin � � �.)     

 Following similar logic to that employed in equation (3), the resultant 

tensile force of the cohesive zone is as follows: 

 � � �� D������
�

�
������ (48) 

where d is the depth of the notched cross-section. Then, summing moments 

about point O, we get: 

 
��
� � �� D������

�

�
������� (49) 

where B is the width of the beam. Substituting values of w for z and solving for P 

we get: 

  � � �
�
�� D���

,e

�
������� (50) 
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where wn is the crack opening displacement at the initial notch tip. 

 

Figure 13: a) Abscissa of the center of gravity of the area under the �-COD curve, b) free-
body diagram of the half-beam section 

   When wn > wc (i.e. after the full softening function has been developed), 

by the definition of center of gravity, we know wG from the graph in Figure 13 (a) 

is the following: 

 �f � g D���,e
� �����
g D�����,e
�

��	 (51) 

Also, knowing that GF is the area under the stress-COD curve, or: 

 ./ � � D�����
,e

�
��� (52) 

we can conclude that by multiplying wG and GF we get: 
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 ./�f � � D�������
,e

�
��� (53) 

and thus, substituting equation (53) into equation (50), we get: 

 � � �./�f
�
� ��	 (54) 

Recall from Figure 3 (a) that � can be related to the displacement � by the 

following equation: 

 
 � �
� ��� (55) 

and thus substituting equation (55) into equation (54), we get: 

 � � ��.h�f
��� ��	 (56) 

Then, substituting equation (17) for P, we get: 

 
�

�� ( �;�� $ ��
: � ��.h�f

��� ��	 (57) 

Since P’0 is very small (assuming perfect weight compensation), it along with �A 

can be neglected.  Then finally, solving for wG, we get:  

 �f � ��
��./ ��� (58) 

which is the equation in Section 9.7.1 of Chapter 4 of ACI 446-5. 

 

Figure 14: Geometry of the bilinear approximation 
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 Knowing wG, w1 and GF it is now possible to calculate wc using the 

geometry of the bilinear approximation, shown in Figure 14, where A1 represents 

the area of the initial linear portion of the softening curve (defined in Figure 6 as 

the initial fracture energy, Gf) and A2 is the remaining area, so that A1 + A2 = GF.     

 The geometry of Figure 14 is defined entirely by the following equations, 

representing the linear equations of the initial and tail sections of the bilinear 

approximation: 

 

D � �C >1 ( �
�0?��� � ijk�" l � l �m

D � Dm > � ( ��
�m ( ��?��� � ijk��m l � l ��

D � "���� ijk�� n ��������
 (59) 

where wk and �k are the COD and stress coordinates respectively of the kink 

point.   Knowing these coordinates, the areas can be found through simple 

geometry as follows: 

 �0 � �C�0
 ��T�U���� � Dm��� ( �0�

 ��	 (60) 

Then, knowing that GF is the sum of A1 and A2, we get: 

 ./ � �C�0
 $�Dm��� (�0� ���	 (61) 

Solving for �k and simplifying algebraically, we get: 

 Dm � �C ./K�C ( �0��� ( �0 ���	 (62) 

It should be noted that section 9.8.2 of Chapter 4 of ACI 446-5 introduces a 

simplifying term, known as the characteristic crack opening, wch = GF/ft, which 

has units of length.  Inserting wch into equation (62), we get: 

 Dm � �C ��o ( �0��� ( �0 ���� (63) 

which is the equation in Section 9.8.4 of Chapter 4 of ACI 446-5  

 Next, equation (63) can be substituted into the top expression of equation 

(59) to obtain the following: 

  �C >1 ( �m�0? � �C ��o ( �0��� ( �0 ���	 (64) 

Solving for wk, we get: 
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  �m � �0�� ( ��o��� ( �0 ���� (65) 

which is the equation in Section 9.8.5 of Chapter 4 of ACI 446-5.  

 The last unknown is the critical crack opening displacement, which can be 

found by utilizing the definition of wG.  The abscissa of the center of gravity of the 

geometry shown in Figure 14 is defined as: 

 �f � �0�f;0 $ ���f;��
�0 $ �� ���� (66) 

where wGA1 and wGA2 are the abscissa of the center of gravity of areas A1 and A2 

respectively, represented by dots in Figure 15 .  Using this geometry, wGA1 and 

wGA2 are as follows: 

 �f;0 � �0
M ���T�U����f;� � �m $ �0 $ ��

M ���	 (67) 

 

Figure 15: Geometry of the center of gravity of areas A1 and A2 (not to scale) 

Then, substituting A1 and A2 from equation (60) and wGA1 and wGA2 from equation 

(67) into equation (66), and knowing GF = A1 + A2, we get: 
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 �f � �C�0� $ Dm��� ( �0���m $ �0 $ ���
O./ ���	 (68) 

Then, by substituting �k and wk from equations (63) and (65) respectively into 

equation (68), and wch for GF/ft we get: 

 �f �
�0� $ ���o ( �0� )�0�� ( ��o��� ( �0 $ �0 $ ��*

O��o ���	 (69) 

Equation (69) can then be arranged into a binomial format, which can then be 

solved for wc.  It should be noted that the algebra required to do this is not trivial, 

and thus many steps are omitted for the sake of brevity.  The binomial 

rearrangement of equation (69) is as follows: 

 

��� ( �� O�f���o� ( �0���o����o� ( �0 $
O�f�0���o� ( ��0���o��

���o� ( �0 � "���� 
(70) 

which is the same equation provided in the work by Guinea et al. [Guinea et al., 

1994]. The quadratic equation can now be used to solve for the roots of wc in 

equation (70) using the following: 

 �� � (\ $ p\� ( �7q7 ���� (71) 

where: 

 

7 � 1��������� 

\ � O�f���o� ( �0���o�
���o� ( �0 �����T�U� 

q � O�f�0���o� ( ��0���o��
���o� ( �0 ����� 

(72) 

Note that we are only interested in the positive root, as wc must be positive. By 

substituting the parameters from equation (72) into equation (71), we can get an 

exact expression for wc with known values.  Once again, the algebraic 

simplification is not trivial, and for the sake of brevity many steps have been 

omitted.  After simplifying, we get the following: 
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 �� � ��o 2,rs,t
�,-us,t <1 $ v1 (

�,t�2,rs�,-u���,-us,t�
,-u�2,rs,t�w =����  (73) 

which is the equation in Section 9.8.3 of Chapter 4 of ACI 446-5.  

 With wc calculated exclusively using previously determined parameters, it 

is now possible to calculate the kink point coordinates using equations (63) and 

(65), and the bilinear approximation is then completely defined.  Knowing the four 

parameters defining the bilinear approximation of the cohesive curve, it should 

now be possible to replicate the original test data (P vs. � and P vs. CMOD) 

using a nonlinear finite element analysis.  This is advisable, given the complexity 

of the foregoing inverse analysis procedure, and the many approximations that 

have been made. Knowing the derivation and background of the equations to 

calculate the fracture parameters of the bilinear cohesive crack model, we can 

now explore the experimental procedures of the notched beam tests, discussed 

next in Chapter 3. 
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3 NOTCHED BEAM TESTS 

 One of the purposes of ACI 446-5 is to provide a relatively simple and 

reliable way of determining key fracture parameters of concrete in what it 

describes as “Notched Beam Level II (NBLII)” testing of concrete [ACI, 2010].  

The NBLII testing procedure requires that notched concrete beams are placed 

under three-point bending and run under closed-loop CMOD control.  During the 

course of the experiment, load, CMOD and load point displacement (LPD) are 

recorded versus time.   From this data, fracture parameters of the bilinear 

cohesive crack model can then be determined.  A graphical depiction of the test 

setup and control system is shown in Figure 16.  

 

 

 Following Chapter 2 of ACI 446-5, NBLII tests were performed on beams 

of three different sizes.  In the remainder of this chapter, Section 3.1 discusses 

the specimen properties, Section 3.2 discusses the test setup, Section 3.3 

discusses the loading procedure, and Section 3.4 reports the results from the 

experiments.   

 

3.1 Specimen Properties 

 Specimens for the NBLII tests were cast in accordance with ASTM C192 

“Practice for Making and Curing Concrete Test Specimens in the Laboratory” as 
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Figure 16: Schematic of Test Setup and Control System [ACI, 2010] 
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required by Chapter 2 of ACI 446-5.  Section 3.1.1 discusses the concrete 

characterization, and Section 3.1.2 discusses the specimen geometries.  

 

3.1.1 Concrete Characterization 

 All concrete specimens were cast on March 15th, 2010 with concrete mix 

proportions to achieve an expected 28 day compressive strength, f’c, of 28 MPa.   

Table 1 shows the concrete mix proportions 

 

Table 1: Concrete mix design 

Ingredient Amount / yd3 

Rio Grande type I/II cement 566 lbs. 

SRMG Class F Fly Ash 168 lbs. 

Placitas Fine Aggregate 960 lbs. 

Placitas Coarse Aggregate #6 1067 lbs. 

Placitas Coarse Aggregate #8 640 lbs. 

Water 270 lbs. 

BASF Glenium Superplasticizer 58 oz. 

Air entrainer 34 oz. 

  

Target Slump: 3 in. 

Water/Cementitious Ratio: 0.37 

  

 The specimens were cast in two separate batches due to limited size of 

the concrete mixer.  Twelve beams were cast for notched beam testing, along 

with eight 4” diameter cylinders to determine the compressive and splitting tensile 

strength of the concrete.  Figure 17 shows the concrete being mixed on the day 

of casting, Figure 18 shows the slump of the concrete, and Figure 19 shows the 

casting of the beam specimens. 
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Figure 17: Mixing of concrete, day of casting 

 

 
Figure 18: Concrete slump on day of casting 
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Figure 19: Casting of beam specimens 

 
 Compressive strength tests were performed after 100 days of moist curing 

on the first batch of concrete in accordance with the ASTM C39 / C39M - 10 

“Standard Test Method for Compressive Strength of Cylindrical Concrete 

Specimens” specifications.  Under ideal circumstances, compressive strength 

tests would be performed for both batches.  However, to conserve cylinder 

specimens, compressive tests were only performed on the first batch of concrete. 

The parameters of the cohesive crack model do not require the compressive 

strength, and thus learning the compressive strength of the concrete is only a 

curiosity, not a necessity. Table 2 shows the compressive strength of three 4” 

diameter cylinders taken from the first batch of concrete, their average strength, 

and standard deviation.  It is assumed that the second batch of the same mix 

proportions had similar compressive strength properties. 
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Table 2: Concrete compressive strength 

Sample f’c (psi) 

S1 5756 

S2 5016 

S3 5774 

Average 5515 

Standard Deviation 432.7 

 

 The splitting tensile strength of the concrete, ft, of both batches was also 

tested after 100 days of moist curing in accordance with ASTM C496 / C496M - 

04e1 “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete 

Specimens” specifications.  Figure 20 and Figure 21 show the split specimens 

from the first batch of concrete.  

 

 

Figure 20: Splitting tensile test specimen 
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Figure 21: All splitting tensile specimens from Batch 1 

 Wooden loading strips ½” wide were used between the loading plate and 

the cylinders.  For the 4” cylinders, it is assumed that the wooden loading strips 

were sufficiently slender in comparison to the cylinder diameter to assure 

minimization of size effect on the results, as discussed in Chapter 2.  Table 3 

shows the splitting tensile strength of both batches.  It should be noted that the 

third sample for Batch 1 was unavailable due to a miscalculation of the amount of 

concrete needed for a third sample.     

Table 3: Concrete splitting tensile strength 

Batch 1  Batch 2 

Sample ft (psi)  Sample ft (psi) 

S1 399.0  S1 406.1 

S2 548.5  S2 514.8 

S3 N/A  S3 594.6 

Average 473.7  Average 505.2 

Standard 

Deviation 
105.7  

Standard 

Deviation 
94.59 
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L  > 3D + 2 in. 

 S = 3D (± 5%)

B 

N < 0.02D 

 ao= D/3 ± 10% ao 

D 

 Ho  CMOD 

3.1.2 Specimen Dimensions 

 ACI 446-5 test requires that the specimens conform to a specific geometry 

based upon the depth of the specimen.  The geometry of the beams is specified 

in Figure 22. 

 

 

 

 

 

 

 

 

 

 The total length, L, of the specimen must be larger than the span length, 

S, to accommodate room for the supports, as well as room to attach 

counterweights.  According to Section 7.3.3 of Chapter 2 of ACI 446-5, to prevent 

unstable failure before the end of the test, counterweights are to be placed to 

create a small negative bending moment at mid-span, M, such that WS/32 < M < 

WS/16, where S is the span length and W is the total weight of the specimen 

[ACI, 2010].  ACI 446-5 provides guidance for selecting the total length of the 

specimen, which is detailed in Figure 23.  Figure 23 (a) shows the specimen 

dimensions required when using the beam’s self-weight as a counterweight, 

while Figure 23 (b) shows specimen dimensions when using attached 

counterweights, where Wc represents the weight of a counterweight, and Q 

represents the distance from the support to the center of gravity of the counter 

weight.   

 For specimens requiring counterweights, calculations were made on the 

day of testing to assure the placement of the counterweights created a negative 

moment at the center of the beam within the range specified above in Section 

7.3.3 of Chapter 2 of ACI 446-5.  This procedure is discussed further in Section 

3.2.2.  

Figure 22: Specimen geometry, Figure 2.1 ACI 446-5 [ACI, 2010] 
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 As discussed in Section 3.1.1, twelve beam specimens were cast in three 

different sizes, with four beams per size.  Their nominal dimensions are listed in 

Table 4.   

Table 4: Nominal beam dimensions 

Beam 

Group 

Depth 

(mm) 

Width 

(mm) 

Length 

(mm) 

Span 

(mm) 

a0  

(mm) 

Notch 

Width (mm) 

D3 76.2  152.4  558.8  228.6  25.4 2.54  

D6 152.4  152.4  762.0  457.2  50.8  2.54  

D9 228.6  152.4  889.0  685.8  76.2  2.54  

 It should be noted that the author believes there was an oversight in 

Figure 2.5 of ACI 446-5 regarding the suggested dimensions in Figure 23.  Note 

that the total length of the specimens in Beam Group D3 should be 2S, or 457.2 

mm.  However, a uniform specimen with the total length twice the span length 

would create zero moment in the middle of the beam, instead of the negative 

moment that is required.  Thus, the specimens were cast with a slightly longer 

total length of 558.8 mm to create the required negative bending moment in the 

middle of the beam conforming to Section 7.3.3 of Chapter 2 of ACI 446-5.   

 After the beams in group D3 had cured, they were weighed to assure that 

an appropriate negative moment would be achieved during testing.  It should also 

be noted that notch width of Beam Group D3 does not conform to ACI 446-5 

Figure 23: Counterweight system for a.) self-weight; b.) attached counterweights, Figure 
2.5, ACI 446-5 [ACI 2010] 

S/2 S/2 S/2 S/2 

Wc Wc 

(a) 

(b) 

S/2 S/2 � � 
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specifications in Section 6.3.6 of Chapter 2, where the required saw blade 

maximum width is 0.02*D, or 1.52 mm. The actual notch was 2.54 mm wide, as it 

was the thinnest concrete blade available. It should be noted, however, that this 

requirement is not explained or referenced.  It could prove useful to relax this 

requirement for the testing of smaller beam sizes. 

 Lastly, measurements of the cross-sectional dimensions were taken once 

testing had been completed, as the dimensions of interest are along the cracked 

cross-section.  Section 8.3.2 of Chapter 2 of ACI 446-5 requires four 

measurements of each dimension to be taken to the nearest 0.1 mm; two 

measurements from each half of the beam.  For these experiments, a digital 

caliper with a precision of 0.01 mm was used to take all the measurements of the 

cracked beam cross-sections.  The four measurements were then averaged, and 

are shown in Table 5 for each beam group. The naming convention for each 

specimen shows which concrete batch, and which sample from each batch (e.g. 

B1S1 represents Sample 1 of Batch 1.)  Figure 24 shows an example of the 

locations of two measurements for notch depth on one half of a cross section of a 

specimen after testing.   

Table 5: Average measured beam dimensions 

Beam Group D3  Beam Group D6 

Specimen 
Depth 
(mm) 

Width 
(mm) 

a0 

(mm) 
 

Specimen 
Depth 
(mm) 

Width 
(mm) 

a0 

(mm) 

B1S1 77.43 154.12 25.53  B1S1 154.55 155.56 49.88 

B1S2 77.22 154.91 24.43  B1S2 152.97 157.69 49.14 

B2S1 76.77 155.05 24.80  B2S1 153.37 153.45 49.10 

B2S2 76.96 156.65 24.46  B2S2 151.35 154.33 49.17 

 

Beam Group D9 

Specimen 
Depth 
(mm) 

Width 
(mm) 

a0 

(mm) 

B1S1 231.85 151.28 80.11 

B1S2 228.50 151.48 78.76 

B2S1 231.39 151.28 80.40 

B2S2 233.41 152.12 80.99 
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Figure 24: Example of the location of measurements taken for notch depth, a0, in two 
places on one half of the fractured cross-section.  Two more measurements were then 

taken on the other half, totaling four measurements.  

 
3.2 Test Setup 

 The test setup requires that the beams be placed under three-point 

bending with CMOD control for the duration of the entire test, as shown in Figure 

16.  The test setup elements fall into two broad categories: those needed for the 

support system, and those needed to record the measurements of LPD, CMOD, 

and load for the duration of the test.  Previous experimentation performed by 

Larry Lenke at the University of New Mexico using the NBLII tests had only used 

specimens 152 mm deep, and thus this experimental program required the 

manufacture of several new elements for the test setup. Section 3.2.1 discusses 

the loading apparatus and support system, Section 3.2.2 discusses the 

development of the counterweight system, Section 3.2.3 discusses the 

development of the reference frame to hold the LVDTs, and Section 3.2.4 

discusses the final specimen preparation prior to testing, including the notching 

of the beams and the clip gauge placement.  
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3.2.1 Loading Apparatus and Support System 

 Figure 25 shows a graphical representation of the beam placed in the 

testing apparatus upon the supports.  

 

 

 The points of interest in Figure 25 are as follows: (a) load cell; (b) 

hardened steel shaft; (c) rotating loading block; (d) hardened steel bearing 

plates; (e) hardened steel rollers; (f) fixed support; (g) rotating support; (h) 

hardened steel shaft; (j) stiff steel beam; (k) machine frame.  It is important to 

note that one of the supports is free to rotate in both lateral and transverse 

directions to minimize torsional forces.  The rollers and support surfaces are also 

machined so that frictional forces are minimized.  The parts listed in Figure 25, 

with the exception of the stiff steel beam in Figure 25 (j), were previously 

manufactured by Larry Lenke, and used in prior NBLII tests that were not part of 

this experimental program. 

 A new support beam was manufactured to accommodate the different 

sizes of beams and span lengths, as the previous support beam only had bolt 

holes for the supports in one position, used for the 152 mm (6 in.) deep 

specimens.  The new support beam was taken from a section of W6X16 Steel 

beam, 48” in length, and had markings scored on the top flange to accommodate 
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Figure 25: Sketch of loading apparatus, Figure 1.2 ACI 446-5 [ACI 2010] 
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the supports at the three required span lengths. Figure 26 shows a photograph of 

the support beam and Figures 27 through 29 show each different beam size 

resting upon the supports. 

 

 

 

Figure 27: Setup for 76 mm (3 in) deep beam  

Figure 26: Photograph of support beam 
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Figure 28: Setup for 152 mm (6 in) deep beam  

 

Figure 29: Setup for 229 mm (9 in) deep beam 
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 As shown in Figure 26, the W6X16 beam was not wide enough to use the 

bolt holes to secure the support blocks, so the supports were instead glued into 

place using cyanoacrylate-based glue.  

 

3.2.2 Counterweight System 

 As discussed in Chapter 2, it is desirable to provide a slight over-

compensation for self-weight for stability purposes, creating a small negative 

moment at mid-span. To assure a negative moment at center span of the 

concrete beams, a counterweight system was developed.  As discussed in 

Section 3.1.2, the procedures for the NBLII tests outlined in ACI 446-5 contained 

an error regarding the specimen length. This led to previous NBLII tests 

achieving zero moment in the middle as opposed to the required negative 

moment.   Preliminary testing using dummy specimens 152 mm deep had 

weights stacked perilously upon the overhangs, as shown in Figure 30.   

 

Figure 30: Dummy specimen with stacked counterweights on overhangs 
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 The above setup is not sufficient for safety reasons.  At the end of the test, 

the specimen experienced dynamic unstable fracture, which caused the loose 

weights to dangerously fall to the floor. Combined with safety concerns was the 

discovery of the need for negative moment at the center of the beam, requiring 

much more weight to be stacked.  Thus, the stacking of weights upon the 

overhangs was no longer acceptable for the experiment, and a new 

counterweight system was constructed. 

 With safety concerns at the forefront of the counterweight system 

development, the weights needed to be clamped to the beam without interfering 

with the test, and the moment arm had to be increased significantly to reduce the 

amount of weight needed to create the required negative moment.  Figure 31 and 

Figure 32 show the new counterweight system.  A ¼” thick, 4” wide and 12” long 

steel plate was used to hold the counterweights, while smaller steel plates with 

machined holes were bolted to threaded rods that clamped to the top and bottom 

of the beam. 

 

Figure 31: New counterweight system clamped to beam 
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Figure 32: View of counterweights and clamping by threaded rods bolted to steel plates  

 

Figure 33: Detail showing counterweight holding plate does not interfere with LVDT 
reference frame 

 To assure the safest configuration, the counterweight holding-plate was 

placed as close as possible to the LVDT reference frame without interfering with 

it. Figure 33 shows the plate positioned roughly ¼” clear of the edge of the LVDT 

reference frame. 
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 Several dummy tests of 152mm (6”) deep specimens showed the new 

counterweight system provided a much safer alternative to stacking the weights 

on the overhangs.  However, dynamic instability still caused the weights to fall 

perilously to the floor.  Concrete blocks were placed on the end of the support 

beam to “catch” the specimens in the event of dynamic instability, but these 

efforts proved inadequate in most cases.  For safety, a method to catch the 

broken halves of the specimen is still needed.  

 To determine the needed amount of counterweight, a simple closed-form 

equation was developed, using statics analysis, given the weight of the 

counterweight system, the weight of the beam, and the placement of the 

counterweights. Figure 34 depicts a free-body diagram of the half-beam with the 

following definitions: M is the negative internal moment at the center of the beam, 

C is the added counterweight, W1 is the weight of the plates holding the 

counterweight, Z1 is the distance from the support to the center of gravity of C, Z2 

is the distance of the center of the support to the center of gravity of W1, S is the 

span length, WB is the weight of the half-beam, and Q is the length of the 

overhang from the end of the beam to the support.      

 

Figure 34: Half-beam dimensions used to calculate counterweight values 

S/2 Q 
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 Assuming static equilibrium and by summing moments about the support, 

the following equations determine the range of counterweight needed, as well as 

the internal negative moment developed at the center of the beam once the 

counterweights are attached: 

 _ � � xb (�80y� �$ ��%&z {
��
� (�|�}�~ Ky0��� (74) 

and 

 b ��80y� $�_�y0 $%&z x|� (�
��
� ~���� (75) 

where m is the mass of the beam, g is the acceleration due to gravity, and L is 

the total length of the beam.  After determining the range of the center-span 

negative moment required for the beam, as discussed in Section 3.1.2, the first 

equation is then used to determine the range of the required counterweight.  

Once an appropriate counterweight is chosen, the second equation is then used 

as a check to assure the internal moment at midspan is within the required 

range. 

 Table 6 shows the calculated values for internal center-span moment of 

each beam group and the counterweight masses used.  Note that for the 

calculations of internal center-span moment, the counterweight masses were 

converted into Newtons.  

 

Table 6: Counterweights and internal moment ranges 

Beam Group D3 

Specimen 
Mass 

(kg) 

Counterweight 

Mass (kg) 

Allowable Internal 

Moment Range         

(N-mm) 

Center-Span 

Moment  

(N-mm) 

B1S1 14.8 0 1,040 < M < 2,070 1,840 

B1S2 14.8 0 1,040 < M < 2,070 1,840 

B1S3 14.8 0 1,040 < M < 2,070 1,840 

B1S4 14.8 0 1,040 < M < 2,070 1,840 
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Table 6 (cont.) 

Beam Group D6 

Specimen 
Mass 

(kg) 

Counterweight 

Mass (kg) 

Allowable Internal 

Moment Range         

(N-mm) 

Center-Span 

Moment  

(N-mm) 

B1S1 40.4 4.53 5,660 < M < 11,300 9,120 

B1S2 40.4 4.53 5,660 < M < 11,300 9,120 

B2S1 40.4 4.53 5,660 < M < 11,300 9,120 

B2S2 40.1 4.53 5,630 < M < 11,300 9,220 

 

Beam Group D9 

Specimen 
Mass 

(kg) 

Counterweight 

Mass (kg) 

Allowable Internal 

Moment Range         

(N-mm) 

Center-

Span 

Moment     

(N-mm) 

B1S1 70.8 20.40 14,890 < M < 29,800 22,300 

B1S2 68.9 20.40 14,490 < M < 29,000 23,400 

B1S3 68.9 20.40 14,490 < M < 29,000 23,400 

B2S1 70.7 20.40 14,860 < M < 29,700 22,300 

 

3.2.3 LVDT Reference Frame 

 As discussed in Chapter 2, the load vs. load point displacement curve is 

needed to determine the work of fracture of the beam.  This is achieved by rigidly 

fastening LVDT’s to a reference frame placed upon the beam, with the moving 

LVDT rods resting upon steel plates (knife edges) as shown in Figure 35. The 

LVDT measurements of load point displacement were taken from opposite sides 

of the notch on either side of the beam, which were averaged.  Figure 35 also 

shows both knife edges, where the second LVDT (not in view) would be resting 

upon the opposite knife edge on the opposite side of the beam. 
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Figure 35: Photograph of LVDT attached to reference frame, resting upon knife edge 

 To obtain an accurate load point displacement, measurements need to be 

taken so that no local deformations or settlements of the testing equipment 

interfere with the readings.  The energy dissipated by local deformations and 

settlements can be a significant percentage of GF and is not of interest, so care 

was taken to assure that the reference frame rests directly above the center of 

the supports. Sections 7.5.1 and 7.5.3 of Chapter 2 of ACI 446-5 also require that 

a sufficiently stiff LVDT reference frame be placed upon the top of the beam so 

that it rests directly above the supports on conical screws (two over one support, 

one over the other.)  Section 7.5.2 requires that the reference frame must also be 

adequately stiff so that it does not deflect under self-weight more than 0.002 mm 

(8 X 10-5 in.)   A frame had been previously manufactured for 152 mm (6 in) deep 

specimens for notched beam testing conforming to these requirements, and was 

used again in this experimental program.   

 Unfortunately the frame was not useable for the span lengths for the other 

sizes of specimens, so new reference frames had to be constructed.  Due to cost 

concerns, a similar machined reference frame for the other sizes was not 

possible, and a more economical solution was needed.  

 For the 76 mm (3”) deep specimens, a reference frame was constructed 

using perforated steel angle, cut and bent so that the two ends could be 

connected into the proper shape for a reference frame.  These parts were then 
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connected by gluing them together with pieces of aluminum angle with holes 

drilled to accommodate the LVDTs.  Figure 36 shows a photo of the completed 

frame. 

 To mount the LVDTs, metal collars with set screws were glued to the tops 

of the aluminum angles.  The set screws proved adequate to assure the LVDTs 

were fixed properly to the frame.  Lastly, the conical screws used to rest upon the 

beam were bolted to the frame through the perforated holes in the steel angle 

with washers and nuts.  

 

Figure 36: LVDT reference frame for 76 mm (3 in) deep specimens 

 The LVDT reference frame for the 229 mm-deep (9”) specimens was 

crafted using pieces of steel angle bolted to bent pieces of steel plate.  Holes 

were drilled in the steel angle to accommodate the LVDTs, as well as in the steel 

plate to accommodate the conical screws.  Once again, metal collars with set 

screws were glued to the tops of the steel angles to provide for fixing the LVDTs 

to the frame, and the conical screws were attached to the steel plates by 

washers and nuts.  Figure 37 shows a picture of the LVDT reference frame used 

for the 229 mm (9 in) deep specimens.  It should be noted that the frame in 

Figure 37 was damaged after the last test of the experimental program, and thus 

is misaligned in the photograph.   
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Figure 37: LVDT reference frame for 229 mm (9 in) deep specimens 

3.2.4 Specimen Preparation 

 On the day of testing, several preparations were made before testing 

could begin.  According to Section 6.4.2 of Chapter 2 of ACI 446-5, the 

specimens are to be kept wet during pre-test preparation through the use of 

spray bottles and wet towels to assure the concrete remains moist.  Due to the 

potential of electrical interference, the specimens were not kept wet once the clip 

gauges and LVDTs were attached.  In the author’s opinion, keeping the beams 

moist throughout the test is rather impractical, and suggestions are made to 

change this requirement in ACI 446-5. 

 The rest of this section discusses the process of beam preparation in full. 

Section 3.2.4.1 discusses the beam notching, Section 3.2.4.2 discusses the 

attachment of the knife edges, and Section 3.2.4.3 discusses the clip gauge and 

LVDT attachment and preparation.   

 

3.2.4.1 Beam Notching 

 Notching was performed several days before testing.  Beams were taken 

from the curing tank and kept moist during the entire notching procedure before 
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being placed back into the curing tank. Each specimen was notched with a saw 

blade with nominal thickness of 2.54 mm (0.1 in) to the nominal depths specified 

in Table 4. 

 To obtain an even notch depth, the saw blade was set in a fixed position, 

and the beam, resting on a traveling table, was slowly pushed into the blade, 

cutting away material until the notch depth was even across the specimen.  After 

the first pass through, the depth of the notch was checked using a digital caliper, 

and adjustments were made to the saw blade height if the notch depth was too 

shallow.  Special care was taken to avoid creating a notch that was too deep to 

begin with, and often multiple passes were needed to obtain the correct notch 

depth for each specimen. 

 

3.2.4.2 Knife Edges 

 On the day of testing, specimens were taken from the curing tank so that 

the knife edges could be attached using a cyanoacrylate-based glue.  The knife 

edges were placed on both sides of the notch so that clip gauges could be 

attached to measure the crack mouth opening displacement.  Figure 38 shows a 

conceptual detail of the clip gauge and knife edges attached to both sides of the 

notch. 

 The beam was then placed on a platform, and the area near the notch 

was dried with towels to clear all standing water so the glue could set.  Although 

the concrete around the notch was still somewhat moist, there were no problems 

with the glue setting so long as no standing water was visible in the area to be 

glued.  Figure 39 shows a picture of the beam on the platform before the knife 

edges were glued to the surface.  A liberal layer of glue was then applied to one 

knife edge, and placed on one side of the notch, with care taken to assure it was 

parallel to the notch.   

 Once the glue had cured on one side, glue was applied to the other knife 

edge.  The second knife edge was then placed, using spacers 2.54 mm (0.1 in) 

thick to assure even spacing between the knife edges along the notch.  Figure 40 

shows the knife edges after they had been glued into place. 
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Figure 39: Picture of beam before attaching knife edges 

   

H0 = 0.1a0 max 

0.25a0 max 

0.25a0 max 

a0 

Figure 38: Detail of clip gauge and knife edges [ACI, 2010] 
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Figure 40: Photograph of beam after gluing knife edges   

 Lastly, a clip gauge was placed at several points along the notch with 

readings taken to assure that the spacing was even and that the knife edges 

would not pop loose from the force exerted by the clip gauge.  It should be noted 

that it was impractical to keep this area of concrete moist until after the glue had 

cured.  However, whenever possible the concrete was sprayed with water or had 

wet towels draped over it to hold in as much moisture as possible until testing. 

 

3.2.4.3 Clip Gauge and LVDT Attachment 

 Before attachment of the knife edges, two MTS Model 632.02 clip gauges 

and two LVDTs were calibrated using readings from the testing machine software 

and a conventional micrometer as a reference.  The clip gauges were calibrated 

to operate between -0.5 to 2 mm, while the LVDTs were calibrated to operate 

between -10 to 10 mm.   

 After attaching the knife edges, the beam was immediately placed upon 

the steel bearing plates on the supports in the testing apparatus.  The beam was 
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then centered on the supports, and the placement measured and adjusted if 

needed to assure the proper overhang. Figure 41 shows a photograph of the 

specimen in the testing apparatus. 

  

 

Figure 41: Picture of specimen after being placed upon the supports 

 At this point, if necessary, the counterweights were attached as discussed 

in Section 3.2.4.1. The LVDT reference frame was then placed so that the 

conical screws rested directly above the supports.  From here, the LVDTs were 

attached and adjusted in the steel collars with set screws so that they produced 

close to zero-voltage through the machine readings.  The clip gauges were then 

inserted between the knife edges on opposite sides of the notch.  Figure 42 

shows a photograph of the LVDT reference frame with the attached LVDTs, and 

Figure 43 shows the attached clip gauges. 
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Figure 42: Photograph of LVDT reference frame attached to beam 

 

Figure 43: Photograph of clip gauges attached to knife edges on underside of beam 



 

   62 

 Once the instrumentation had been attached, the specimen was ready for 

testing.  At this point, it was no longer practical to keep the concrete moist, as the 

spray bottles could cause electrical interference with the clip gauges or LVDTs.   

 

3.3 Loading Procedure 

 In order to calculate key fracture parameters of the concrete, ACI 446-5 

requires that specimens be placed under closed-loop CMOD control for the 

duration of the test.  Theoretically, this should allow for the specimen to achieve 

a well-developed softening curve as the machine adjusts the stroke of the 

loading apparatus to achieve specific a CMOD at a specific time.   

 First, to minimize any seating non-linearity, each specimen was placed 

under an initial pre-load.  Section 8.2.3 of Chapter 2 of ACI 446-5 requires that 

the pre-load be between 5-10% of the estimated peak load, not to exceed 15% of 

the peak load.  Table 7 shows the pre-load used for each specimen. 

Table 7: Pre-load for each specimen 

Beam Group D3  Beam Group D6  Beam Group D9 

Specimen 

Pre- 

Load 

(N) 

 

Specimen 

Pre-

Load 

(N) 

 

Specimen 

Pre- 

Load 

(N) 

B1S1 392  B1S1 48  B1S1 678 

B1S2 230  B1S2 10  B1S2 730 

B1S3 257  B2S1 37  B1S3 698 

B1S4 287  B2S3 146  B1S4 932 

  

 It should be noted that the specimens in Beam Group D6 do not conform 

to the specifications because the pre-load is too small.  The specimens in Beam 

Group D6 were the first specimens tested, and due to a misunderstanding of the 

specifications an inadequate pre-load was applied, which should have been in 

the range of 600 to 1,200 N. However, as will be discussed in Chapter 4, this did 

not severely affect the outcome of the experiments.  Thus, it may be practical to 

remove the pre-loading requirement in ACI 446-5. 
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 Once the pre-load had been applied and recorded, all the measurement 

instrumentation was zeroed, and testing could begin, which was typically around 

30-40 minutes after the specimen had been removed from the curing room. 

However, during preliminary testing, it was discovered that using CMOD control 

was not an optimal solution for achieving the full softening curve.  In order to 

overcome this problem, a different testing technique was developed.  Section 

3.3.1 discusses the difficulties in achieving the full softening curve, Section 3.3.2 

discusses the use of CMOD control, and Section 3.3.3 discusses the use of 

machine stroke control 

 

3.3.1 Achieving the Full Softening Curve 

 During preliminary testing, it was discovered that the specimen 

experienced dynamic instability rapidly leading to failure of the test setup before 

a complete softening curve could be developed.  Section 7.6.3 of Chapter 2 of 

ACI 446-5 declares that testing may be terminated when the CMOD reaches a 

value of 4D/300, where D is the depth of the specimen.  For the 152 mm (6”) 

deep specimens, this translates to a CMOD � 2.0 mm.   

 However, the preliminary tests revealed that using CMOD control would 

achieve a final CMOD as low as 0.3 mm at the point when dynamic instability 

took place.  This phenomenon is illustrated in Figure 44, which shows a typical 

load-CMOD curve for a 152 mm (6”) specimen, where the test ends prematurely 

around 0.3 mm, with the dotted line representing what the curve should look like 

if a full softening curve were achieved.  

 It appears that this problem is not isolated to the testing done in this 

experimental program, as ACI 446-5 contains a figure that shows similar 

behavior. Figure 45 shows the typical response curve of load vs. CMOD as seen 

in Section 8.3.2 of Chapter 2 of ACI 446-5.  As one can see, the CMOD only 

reaches 0.4 mm, and does not appreciably approach being asymptotic before the 

test has ended. 
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Figure 44: Typical load-CMOD curve of 152 mm (6”) specimens for CMOD controlled test 

 

Figure 45: Load vs. CMOD response, Figure 2.9 in ACI 446-5 [ACI, 2010] 

 Investigation into this phenomenon revealed that the machine would over-

compensate for unpredictable jumps in CMOD, which would lead to dynamic 
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instability, thus ending the test.  Video of this phenomenon was taken, showing 

that the specimen would suddenly fracture, causing the clip gauges to fall from 

the knife edges, and the machine would turn off due to tripping pre-defined safety 

measures set up to prevent the machine from displacing beyond the boundaries 

of the experiment.  Several methods were attempted to correct this dynamic 

instability, described next. 

 

3.3.2 CMOD Control 

 The loading procedure from the testing machine’s software followed a 

simple algorithm for CMOD control.  Section 8.2.5 of Chapter 2 of ACI 446-5 

suggests the following piecewise functions for the closed-loop servo-hydraulic 

machine to achieve a specific CMOD at a specific time: 

 _bc6 � ��� � ��� ��ijk���� � � ���� (76) 

and 

 _bc6 � �����
CsC5C5 ��ijk���� n � ���� (77) 

where 

w0 = nominal CMOD at the peak load 

t = time 

t0 = nominal time to peak load (3 to 5 minutes.) 

Given these functions, the expected time to completion, according to Section 

8.2.5 of Chapter 2 of ACI 446-5, should be between 15 and 25 minutes.   

 It should be noted that the software used in this experimental program did 

not average the readings from the clip gauges during testing, so only one of the 

clip gauges was used to measure the CMOD.   

 During the test, the machine software recorded data points for load, 

CMOD, LPD, machine stroke, and time every 0.1 seconds for each specimen 

until the test completed.  Data points were taken from the CMOD and LPD using 

two clip gauges and two LVDT’s respectively, which were later averaged during 

data analysis. In general, the first specimen of the series was used to determine 

and adjust the expected nominal CMOD at the peak load, w0, if the peak load 

was not achieved within the specified time of 3 to 5 minutes. 
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 The loading procedure was split up into 3 to 4 minute time frames, where 

the machine would try to achieve a specific CMOD by the end of a time period. 

As an example, Table 8 shows the loading procedure used for specimen B1S2 

from Beam Group D6. 

Table 8: Example of testing machine CMOD control procedure for specimen B1S2 from 

Beam Group D6 

Time range (minutes) Target CMOD (mm) 

0 < t < 5 0.0350 

5 < t < 9 0.0750 

9 < t < 12 0.140 

12 < t < 16 0.220 

16 < t < 20 0.460 

20 < t < 25 1.000 

25 < t < 30 2.000 

 

 As discussed above, it was observed that this method pre-maturely ends 

the test through dynamic full fracture well before a full softening curve can be 

developed.  In the case of specimen B1S2 from Beam Group D6, the test ended 

when the CMOD reached a value of 0.45 mm, occurring 19 minutes and 40 

seconds into the test.  An alternative loading procedure was therefore developed, 

as discussed further in Section 3.3.3.   

 The testing procedure above also does not closely follow the equations 

outlined in Section 8.2.5 of Chapter 2 of ACI 446-5 for CMOD control.  In an 

attempt to prevent dynamic instability, the rate of CMOD growth was significantly 

slowed down, although to little effect.  In the first run of experiments, all the 

specimens in Beam Group D6 relied solely on CMOD control before an 

alternative method was developed, described next.      

 

3.3.3 Stroke Control 

 After testing of Beam Group D6 was completed, several more dummy 

tests were performed in an attempt to discover a way of achieving stable 
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behavior up to the maximum allowed final CMOD.  Slowing down the rate of 

CMOD growth had little effect, so another approach was developed.  While 

Section 8.2.5 of Chapter 2 of ACI 446-5 suggests that CMOD control be used 

throughout the experiment, the only requirement is to keep the CMOD growth 

rate at a value between 0.001 and 0.01 mm/s, stated in Section 7.6.1.  This rate 

can theoretically be achieved through other means, such as LPD control or 

machine stroke control.  The latter proved the most useful, since all machine 

procedures at their base software functions rely on the machine stroke (i.e. to 

increase force, the machine stroke displaces a certain amount until the force is 

achieved.)  Applying this logic, a new loading procedure was created to use a 

hybrid of CMOD control to start the experiment, and switching to machine stroke 

control before the specimen entered dynamic instability.  Table 9 shows the 

loading procedure for specimen B1S4 from Beam Group D3.   

 

Table 9: Example of testing machine hybrid control procedure for specimen B1S4 from 

Beam Group D3 

Time range (minutes) CMOD (mm) 

0 < t < 5 0.025 

5 < t < 9 0.055 

9 < t < 12 0.100 

12 < t < 16 0.200 

t > 16 
Stroke Downward, 

0.01 mm/min 

 
 Once the machine entered stroke control, the machine stroke was set to 

displace vertically downward at a rate of 0.01 mm/min.  This rate kept the CMOD 

growth rate within the bounds specified above, while also preventing any 

dynamic instability from occurring.  Figure 46 shows the load vs. CMOD curve 

from specimen B1S4 from Beam Group D3.  As one can see, the softening curve 

is well developed, and becomes appropriately asymptotic out to 4D/300 = 1 mm 

of CMOD.  
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Figure 46: Load vs. CMOD curve for specimen B1S4 from Beam Group D3 

 This method was considered successful and was used for the remaining 

specimens in the experiment.  However, no strict formula to determine when to 

engage stroke control has been developed yet.  The process of determining 

when to enter stroke control and what rate of stroke control to use was 

determined largely by trial and error. Generally, the first specimen of the series 

was used to determine when stroke control was appropriate, along with adjusting 

the CMOD values for attaining the peak load within the 3 to 5 minute time frame. 

 Also, more recent NBLII experiments for high-strength concrete, 

performed by Ebadollah Honarvar Gheitenbaf of the University of New Mexico, 

that have attempted to use the stroke control method for high strength concretes 

have not been successful.  Preliminary observations show that the CMOD opens 

rapidly at the start of stroke control, violating the provisions of Section 7.6.1 of 

Chapter 2 of ACI 446-5.  This could be due to a number of phenomena, the most 

obvious being machine snap-back.  Since the stiffness of high strength concrete 

is much higher than normal strength concrete, the ratio of stiffness between the 

machine and the specimen is much lower, and could cause a snap-back 
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phenomenon. It is possible that with higher machine stiffness stroke control could 

be useful for high strength concretes, but more research in this area is needed.  

 

3.4 Experimental Results 

 In accordance with Section 7.6.2 of Chapter 2 of ACI 446-5, data was 

recorded during testing every 0.1 s for the LVDTs, clip gauges, force, and 

machine stroke.  Immediately after testing, the completely fractured specimens 

were weighed and pertinent dimensions measured according to the procedure 

outlined in Section 3.1.2.  Any anomalies during testing were also recorded in 

accordance with Section 9.1.6 of Chapter 2 of ACI 446-5.   

 Data was recorded for load, CMOD and LPD, where load was measured 

by a load cell, CMOD was measured using the clip gauges, and LPD was 

measured using LVDTs.  This section primarily focuses on what is considered 

raw data of the loads and readings of the clip gauges and LVDTs. 

At no point in Chapter 2 of ACI 446-5 is it specified that pre-loading data must be 

recorded, and thus for this experimental program, pre-loading data was not 

recorded.  After pre-loading, the instrumentation was zeroed, and thus the 

recorded load data were adjusted by adding the zeroed-out pre-load back into 

each data point.   Curves were then created of load vs. CMOD and load vs. LPD 

based upon the measurements from the instrumentation. The analysis and 

manipulation of these curves to obtain the key fracture parameters of the bilinear 

cohesive crack model are discussed further in Chapter 4.   

 For several specimens, pictures and video were taken during the final 

minutes of the test to record any machine instability as well as to observe 

whether the beam-halves lifted up at the center after complete fracture, proving 

that internal negative moment at center span was indeed available.  In every 

case, video showed that negative moment was available at the center of the 

beam. 

 Table 10 reports the dates of each test, the recorded peak loads, and any 

anomalies observed on the day of testing. Figures 46 through 49 show the load 
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vs. CMOD curves for each specimen, while Figures 50 through 52 show the load 

vs. LPD curves for each specimen.   

 Lastly, Figure 53 and Figure 54 show the load vs. CMOD and load vs. 

LPD curves for each beam group, respectively. 

Table 10: Dates of tests and record of anomalies 

Beam Group D3 

Specimen Date of Test Anomalies 

B1S1 8/4/2010 None observed 

B1S2 8/3/2010 
-CMOD growth rate > 0.01 during stroke control 

-Data anomaly at 16 minutes and 40 seconds 

B1S3 8/3/2010 None observed 

B1S4 8/4/2010 None observed 

 

Beam Group D6 

Specimen Date of Test Anomalies 

B1S1 6/25/2010 Dynamic unstable failure at CMOD = 0.45 mm 

B1S2 7/8/2010 Dynamic unstable failure at CMOD = 0.46 mm 

B2S1 7/9/2010 Dynamic unstable failure at CMOD = 0.53 mm 

B2S2 7/9/2010 
Hump in data at peak load  

Dynamic unstable failure at CMOD = 0.61 mm 

 

Beam Group D9 

Specimen Date of Test Anomalies 

B1S1 8/4/2010 None observed 

B1S2 8/3/2010 None observed 

B1S3 8/3/2010 None observed 

B2S1 8/4/2010 Dynamic unstable failure at CMOD = 0.47 mm 
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 Lastly, Table 11 shows the recorded peak load for each beam. 
 

Table 11: Recorded peak loads 

Beam Group A 
Specimen Peak Load (N) 

B1S1 5,976 
B1S2 5,897 
B1S3 6,642 
B1S4 7,315 

 
Beam Group B 

Specimen Peak Load (N) 
B1S1 10,071 
B1S2 12,076 
B2S1 10,213 
B2S2 10,347 

 
Beam Group C 

Specimen Peak Load (N) 
B1S1 12,130 
B1S2 13,885 
B1S3 11,519 
B2S1 13,318 

 
 As expected, the peak loads and the areas under both the load vs. CMOD 

and load vs. LPD curves increase with size.  With the full curves, the data can be 

analyzed to procure the key fracture parameters of the concrete.  Chapter 4 

discusses the results and analysis of the data and the fracture parameters in 

detail.   
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4 RESULTS AND ANALYSIS 

 Given the load-deformation and load-CMOD curves of the specimens, the 

fracture parameters of concrete can be calculated using the equations in Chapter 

4 of ACI 446-5, with their derivations and explanations provided in Chapter 2 of 

this thesis.  The four parameters of interest to create the bilinear approximation 

of the softening curve of the concrete specimens are shown in Figure 55, and are 

defined as follows: 

• ft = tensile strength (obtained from splitting tension tests) 

• w1 = horizontal intercept of the initial portion of the softening curve 

• wc = critical crack opening displacement 

• GF = fracture energy, area under the softening curve 

 

 

 Only the four above parameters are needed to completely define the 

bilinear approximation geometry, as wk and �k are found through simple 

geometrical relationships.   Also, in the calculation of these parameters, it will be 

shown that they are somewhat sensitive to small changes, and thus are prone to 

crack opening displacement, w 

stress, σσσσ 

softening curve 

w1 

ft 

σσσσk 

wk wc 

bilinear approximation 

Figure 55: Bilinear approximation of the softening curve 
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measureable errors.  The major contributor to these errors is the length of the far 

tail of the softening curve of the load-LPD and load-CMOD data. ACI 446-5 does 

not provide a lower limit either for the CMOD or LPD, only mentioning that the 

test may be ended after the CMOD has reached a value of 4D/300, as discussed 

above in Chapter 3.  Due to having no restraint for minimum CMOD or LPD, tests 

with little data of the softening curve can be considered valid, which is an 

incorrect application of the cohesive crack model.  Thus, a minimum achieved 

CMOD based upon the geometry of the specimen should be included in ACI 446-

5 for the test to be valid.  The author recommends a minimum final value of 

CMOD = D/100, based upon the acceptable data obtained from Beam Group D9 

at a similar final CMOD values.    

 Section 4.1 of this chapter provides the bilinear approximations and 

analysis of the results for the specimens tested in Chapter 3, and Section 4.2 

discusses the sensitivity of the fracture parameters to the length of the softening 

curve.   

 

4.1 Bilinear approximations of the �-COD curve 

 Using the corrected equations in Chapter 4 of ACI 446-5 (discussed in 

detail in Chapter 2 of this thesis), the fracture parameters for each specimen 

were calculated, and then for each beam size the results were averaged.  The 

averaged values of the fracture parameters l1, w1, GF, wc, wk, and �k are provided 

in Table 12.    

Table 12: Fracture parameters for each beam series 

Beam 
Group 

l1 (mm) w1 (µm) 
GF 

(N/m) 
wc (µm) wk (µm) 

�k 
(MPa) 

Gf 

(N/m) 
D3 144.23 33.17 124.55 499.90 30.45 0.31 56.34 
D6 125.79 27.90 88.95 280.04 25.24 0.35 47.38 
D9 110.43 24.03 104.15 352.06 21.18 0.41 40.81 

 As noted in Section 2.2.1 of this thesis, the author believes the equation in 

Section 9.4.1 of Chapter 4 of ACI 446-5 for the calculation of Pmax is incorrect.  

The values in Table 12 use equation (37) in lieu of the equation in ACI 446-5 to 

determine Pmax.  It is of interest to see what effect this change has on the final 
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calculation of the fracture parameters.  For curiosity’s sake, calculations were re-

done using the incorrect equation to see the dependence of the fracture 

parameters upon the variation of Pmax.  The results are provided in Table 13.  

Table 13: Fracture parameters using incorrect equation for Pmax 

Beam 
Group 

l1 (mm) w1 (µm) 
GF 

(N/m) 
wc (µm) wk (µm) 

�k 
(MPa) 

Gf 

(N/m) 
D3 137.06 31.52 124.55 477.01 28.73 0.33 53.52 
D6 111.20 24.66 88.95 248.85 21.73 0.43 41.88 
D9 106.97 23.29 104.15 347.16 20.40 0.43 39.55 

 As expected, small variations are evident in the parameters that utilize 

Pmax.  Although the changes are small, the results of Table 13 are still an 

incorrect application of the theory of the bilinear cohesive crack model, and  the 

equation in Section 9.4.1 of Chapter 4 of ACI 446-5 must still be changed. 

  Using the correct values in Table 12 , the data points were plotted on 

graphs of stress vs. crack-opening displacement.  Bilinear approximations were 

determined for every specimen for comparison purposes.  Figure 56, Figure 58 

and Figure 60 show the averaged bilinear approximation for Beam Groups D3, 

D6 and D9 respectively, while Figure 57, Figure 59 and Figure 61 show bilinear 

approximations for each individual specimen compared to other specimens in 

that beam Group.  Lastly, Figure 62 shows a comparison between beam groups 

of the averaged bilinear approximations. 

 As one can see, the results for each beam size match up fairly well.  The 

major anomalies come from Beam Group D6, where there is a noticeable 

decrease in the fracture energy, GF, and subsequently a drastic decrease in the 

critical crack opening displacement.  This makes some sense, as due to the 

problems in achieving a full softening curve discussed in Chapter 3, the work of 

fracture was much less.  Theoretically, the far tail constant should compensate 

for this problem, but it relies on the assumption that the tail is asymptotically 

approaching zero-load, which may not be the case for data close to the initial 

linear portion of the stress vs. COD curve. 
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Figure 56: Bilinear approximation for Beam Group D3 

 

Figure 57: Comparison of bilinear approximations, Beam Group D3 
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Figure 58: Bilinear approximation for Beam Group D6 

 

Figure 59: Comparison of bilinear approximations, Beam Group D6 
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Figure 60: Bilinear approximation for Beam Group D9 

 

Figure 61: Comparison of bilinear approximations, Beam Group D9 
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Figure 62: Comparison of bilinear approximations, all beam groups 

 Note that while the averages of the bilinear approximations do not show a 

great degree of variation, this cannot be said for the individual specimens in each 

beam group. The high degree of variability among the results of specimens within 

a beam group is concerning, and the author believes further testing using a large 

number of specimens should be conducted so a statistical analysis of the 

variability can be performed. 

 Initially, it appears that the far tail constant does not do a sufficient job in 

correcting for the lack of a long softening tail if a sufficiently large CMOD is not 

reached before testing is ended.  However, before this can be concluded, further 

analysis must be done to determine the effect of the length of the tail of the 

softening curve on the calculation of the key fracture parameters.  This is shown 

later in Section 4.2, which provides a sensitivity analysis of the tail of the 

softening curve for each of the major fracture parameters. Unfortunately, due to 

the anomalous data from Beam Group D6, it is not possible to draw definite 

conclusions about any potential size dependence of this test method.     
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 However, it is possible to make some conclusions on size dependence for 

the initial portion of the softening curve, represented by the initial fracture energy 

Gf. The averaged values of Gf for each beam group are shown in Table 14. 

 

Table 14: Values of Gf for each beam type 

Beam Group Gf (N/m) 

D3 56.34 

D6 47.38 

D9 40.81 

Standard 

Deviation 
7.792 

 

 As one can see, there is a downward trend, showing some size 

dependence, with the difference between Beam Group D3 and D9 being over 

20%.     

 

Figure 63: Stress-COD curve for Stiff Tension Test 

   Lastly, for comparison purposes, a stiff tension test conforming to the 
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notched cylinder under direct tension in a stiff testing apparatus that confines all 

but the central portion of the cylinder so that stable and predictable crack grown 

will occur [Lenke & Gerstle, 2001]. Using the data from the test, a stress vs. 

crack opening displacement curve was plotted, and the fracture energy, GF found 

by integrating under the curve.  The graph and results from the test are shown in 

Figure 63 alongside the average bilinear approximation of all the NBLII tests.  

 As one can see, the results are similar to that of the NBLII tests, with the 

stiff tension test resulting in a calculated GF = 93.9 N/m.  It is noted that wc 

appears to be very different, however this is easily explained as the variability of 

wc is high even amongst the NBLII tests (note from Table 12 the average value of 

wc for Beam Group D6 is 0.242 mm, which appears to match well with the stiff 

tension test).  Despite these obvious differences, the results received from the 

stiff tension test provide at least a measure of confidence of the validity of ACI 

446-5 test method through the similarity of the calculated fracture parameters. 

  

4.2 Sensitivity analysis of the softening curve 

 As discussed in the results above, investigation of the sensitivity of the 

calculation of the fracture parameters to the length of the softening curve is 

required in light of to the large difference in the fracture parameters calculated 

from the data in beam group D6 from the other sizes.  In general, the specimens 

in beam group D6 obtained roughly 20% of the recommended final CMOD value, 

while the specimens from beam groups D3 and D9 in general performed much 

better with the utilization of the stroke control testing method.  For comparison 

purposes, it is feasible to truncate data from beam groups D3 and D9 to mimic 

real tests that end before the maximum allowable CMOD is reached, and a 

sensitivity analysis can be performed to see how the fracture parameters change 

as more and more data is truncated.  The methodology of this sensitivity analysis 

is explained below.  

 Figure 64 depicts a graphical representation of a typical load vs. CMOD 

curve from an NBLII test, where the test is cut off at a maximum value wMR. For 

the sensitivity analysis, iterations were performed where larger and larger 
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portions of data were excised, and the parameters of GF, w1, and wc were 

recalculated. The value X represents the amount of data excised, where all data 

corresponding to a CMOD greater than wMR – X would be excised.  One hundred 

iterations were performed using this process, from 0.2wMR � X � wMR. 

 A MATLAB® program was written by the author to automate this process, 

seen in Appendix A.  The program reads in raw data from a text file specified by 

the user, as well as a text file with specimen dimensions, and then performs all 

the calculations of Chapter 4 of ACI 446-5, determining the fracture parameters.  

It also has the capability to perform the sensitivity analysis by truncating data at a 

user-specified interval.  

 The program was repeated for six specimens in total, three from beam 

group D3, and three from beam group D9.  Specimen B1S2 from group D3 was 

not used due to an anomaly in the data curve, and Specimen B2S1 from group 

D3 was not used due to the specimen having an insufficiently long softening 

curve.  

 Figures 65 through 67 show the sensitivity of GF, w1, and wc respectively 

from beam group D3, while Figures 68 through 70 show the same values for 

beam group D9. 

 

Figure 64: Load-deformation curve where X represents the amount of excised data 
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CMOD 

wMR 
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Figure 65: Sensitivity of GF, 3in specimens 

 

Figure 66: Sensitivity of w1, 3in specimens 
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Figure 67: Sensitivity of wc, 3in specimens 

 

Figure 68: Sensitivity of GF, 9in specimens 
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Figure 69: Sensitivity of w1, 9in specimens

 

 

Figure 70: Sensitivity of wc, 9in specimens 
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 As one can see, in many cases the parameters show considerable 

sensitivity to the length of the softening curve.  In particular, the specimens in 

beam group D3 appear to have a wide range of variability.  However, this 

variability may be exaggerated by a few factors.  It is possible that due to the 

large size of the aggregate with respect to the beam depth that the data obtained 

from the tests are more erratic than with the other-size beams due to the 

behavior of crack propagation around the relatively large aggregate.  The 

analysis of the specimens from beam group D9 show more stable behavior, and 

in the case of w1 and GF, they vary only slightly, by as much as 5-10%, showing 

general trends toward reaching a single value as more data is available at the 

end of the softening curve.  The value of wc varies by as much as 40% between 

tests, though it also shows a general trend of approaching a single value as more 

data is available at the end of the softening curve.     

 Given the high degree of variability of these fracture parameters with the 

excising of data from the softening curve, it can be concluded that achieving a 

fuller softening curve is a necessity for proper calculation of the fracture 

parameters using the test methods outlined in ACI 446-5, of which the author 

makes the recommendation of a final CMOD = D/100 in Chapter 3.   

 This analysis also casts into doubt the values obtained from the 

specimens in beam group D6, as had more data from the softening curve been 

obtained, the calculated fracture parameters may have more closely matched 

those of the specimens in beam groups D3 and D9.  

 Based upon the results and analysis of these tests, several 

recommendations will be made for improvement of the test method proposed by 

ACI 446-5; these will be discussed further in the final chapter. 
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5 SUMMARY AND CONCLUSIONS 

 As design codes become more sophisticated, it is inevitable that the 

research performed in the field of fracture mechanics will be implemented in one 

fashion or another.  However, for design of concrete structures, currently even 

the most contemporary design codes still use the compressive strength, f’c, as 

the primary, and in many cases the only material property determined from 

experiments.  Not only does f’c do a poor job in describing the post-ultimate 

behavior of concrete, it also has shown much size dependence, and is ultimately 

an inadequately and grossly overly-simplistic parameter.  

 However, f’c does, for the most part, meet the criteria outlined in Chapter 1 

for a good test method.  The determination of f’c is a simple, inexpensive test 

method with a single simple calculation to determine its value.  Part of the 

popularity of f’c is due to its simplicity and applicability.  For the parameters 

derived from fracture mechanics to eventually find themselves in modern design 

codes, the test methods to determine them must also show similar qualities to 

that of the compressive strength test. ACI 446-5 NBLII test takes a step in the 

right direction by providing a relatively simple and inexpensive method for 

determining key fracture parameters of concrete using notched beam tests.  

However, there are several faults with the method that must be addressed.  

Discussed below, Section 5.1 will summarize the test method and results found 

in this thesis in a general way, as well as providing conclusions about the 

applicability of ACI 446-5. Lastly, Section 5.2 will provide recommendations for 

alterations and for further research to supplement and improve upon ACI 446-5. 

 

5.1 Summary and Conclusions 

 Three different beam sizes of normal-strength concrete were tested using 

the NBLII testing method outlined in ACI 446-5 and their fracture parameters 

calculated assuming a bilinear cohesive crack model.  While no size effect 

conclusions could be made due to anomalous data with beam group D6, the test 

method itself proved to be as simple as apparently possible.  Many of the major 

concerns in the calculation of these fracture parameters have been put to rest by 
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careful consideration by the writers of the test method in determining the outside 

factors that may influence the test method.   

 However, several issues arose from the tests performed and described in 

this thesis.  In select cases, there are non-trivial errors, ambiguities and 

impractical testing methods that must be modified before a final test method is 

adopted.  For instance, the equation in Section 9.6.3 of Chapter 4 of ACI 446-5 is 

obviously incorrect, and must add a term to translate values of displacement to 

those of CMOD.  Luckily, as shown in Chapter 4, the fracture parameters are not 

particularly sensitive to the needed change, but it is worrisome that the error in 

this equation was overlooked. 

 Secondly, the provenance and reasoning for several equations in ACI 

446-5 are not properly cited, and in some cases do not exist in the literature.  

Although some measure of provenance has been provided in this thesis, the 

testing method itself needs to be the subject of more scrutiny before it is adopted. 

 Lastly, an important problem was discovered in determining that the 

fracture parameters are quite sensitive to the amount of data available in the tail 

of the softening curve.  ACI 446-5 makes no effort to define a minimum CMOD 

that must be achieved for the test to be valid.  Thus, specimens that experience 

dynamic instability leading to the end of testing can be considered valid, when 

the fracture parameters calculated from such tests could vary by as much as 

40% compared with specimens with a well-developed softening curve.  

 To help solve these problems, recommendations for improvement are 

made below by the author. 

 

5.2 Recommendations 

 ACI 446-5 contains some errors, ambiguities and impractical testing 

methods, as is expected from a draft test method.  A major objective of this 

thesis was to identify such errors and provide suggested corrections and 

recommendations for changes to ACI 446-5. While many of these problems are 

rather trivial and easily corrected, some of them require further research to 

assure the NBLII testing method of ACI 446-5 is a valid and practical testing 
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procedure for the determination of key fracture parameters.  The author 

recommends a series of changes to the ACI 446-5, in both general and specific 

cases. Below is a detailed list of specific recommendations by the author for 

changes to sections of Chapters 2 and 4 of ACI 446-5, followed by a list of more 

general recommendations: 

• Chapter 2, Section 6.4.2:  It is impractical to keep the specimen surfaces 

moist during the entirety of the test, and this requirement should be 

relaxed or eliminated.  The author suggests keeping the specimen 

surfaces moist only until the clip-gauges and LVDTs have been 

attached, after which there is no requirement to keep the specimen 

surfaces moist.  However, a requirement of the test being completed 

within 45 minutes to 1 hour of the concrete starting to dry is reasonable.  

• Chapter 2, Section 7.3.3:  Figure 2.5 (a) is in error, where the double-

span sized specimen creates zero moment at center-span, when it 

should produce a slight negative moment.  Figure 2.5 (a) should be 

changed to reflect a center-span negative bending moment.   

• Chapter 2, Section 7.4.3: It is often impractical to glue within 0.25a0 from 

the notch centerline for smaller specimens, and gluing larger sections 

does not appear to have any impact on the test results.  This 

requirement should be removed, or fully explained with cited works. 

• Chapter 2, Section 7.6.3: It is not explicitly said whether a test is valid if 

the test ends before a CMOD value of 4D/300.  Based upon the findings 

of this thesis, the author recommends that a minimum CMOD value of 

D/100 be achieved for a test to be considered valid.   

• Chapter 2: Section 8.2.3: The author recommends that this section be 

deleted, as the pre-loading has little, if any, effect on the results.  In 

particular, any initial seating non-linearity was unnoticeable in specimens 

that had little to no pre-load.  In lieu of this, the section contains 

ambiguous language, and should specifically state whether the pre-load 

is to be recorded as part of the useable test data, or excised.       
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• Chapter 2, Section 8.2.5: Exclusive CMOD control has proven 

inadequate for attaining a full softening curve, and an alternative method 

should be developed using machine stroke control to prevent 

dynamically unstable breaking of the specimen.  This should be left open 

to the user, as different machines will have differing control 

requirements. 

• Chapter 4, Section 9.3: A provision should be made in the case that the 

pre-load is larger than the residual load, so that wma and �a can be 

assumed to be a reasonable value of zero.  

• Chapter 4, Section 9.3.1:  Remove the requirement of choosing P’R 

corresponding to a CMOD = 2 mm or the nearest point on record, and 

instead have P’R correspond to the last point on record, with a provision 

to use engineering judgment to excise data in the case of any outlying 

final data points.  

• Chapter 4, Section 9.3.4: An in-line citation, explanation or appendix 

should be added to clarify the need to use values of CMOD over those 

found in the literature using values of LPD. 

• Chapter 4, Section 9.4.1: The equation for Pmax should be changed to 

match that of either equation (35) or equation (37) to account for the 

change of a span-to-depth ratio of 3.   

• Chapter 4, Section 9.5.1:  An in-line cited reference or appendix should 

be added to explain or derive the equation to determine l1. 

• Chapter 4, Section 9.8.3: A cited reference or appendix should be added 

to explain the derivation of the equation to determine wc. 

• Appendix 4.1: The author suggests that the following references from 

this thesis be added to the reference list  

o Guinea et al. (1998)  

o Bazant and Planas (1998) 

o This thesis 

• In general: In-line citations for the originations of the equations used in 

Chapter 4 of ACI 446-5 could prove very useful to many testers, as even 
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the basic principles of the cohesive crack model are complex and 

require a good deal of research to understand.   

 Finally, the author suggests several areas where further research is 

necessary to determine the validity of the NBLII test of ACI 446-5. The most 

pressing area needing of further research is in addressing the issues with the tail 

of the softening curve. It was found by the author that switching to machine 

stroke control after initially using CMOD control proved sufficient in developing a 

long softening curve tail that regularly reaches to the maximum allowable CMOD 

outlined in ACI 446-5.  However, the method for finding the appropriate timing 

and rate of machine stroke control is based heavily upon trial and error, and is 

only a temporary solution to a greater problem. More research is suggested in 

this area to fully understand why specimens experience dynamic instability at 

relatively high residual loads.  By examining how machine stroke is applied over 

time based upon CMOD control, it is possible that a new method that only uses 

stroke control to prevent dynamic instability could be developed.  Currently, the 

method outlined in this thesis only has proven useful for normal strength 

concretes, as higher strength concretes exhibit sizeable and sudden crack 

growth at the onset of stroke control, thus violating the maximum CMOD growth 

rate allowed by ACI 446-5. 

 Also, further research should be conducted to find an acceptable minimum 

allowable CMOD value for the test to be considered valid.  The author’s 

suggestion of a CMOD = D/100 is based off of only three successful test 

specimens of one size. More testing must be done to assure that this value is 

appropriate for different sized specimens and concrete types.  

 Lastly, it is suggested that further testing be done in an attempt to 

determine the existence of size dependence of this testing method.  Due to the 

sensitivity of the fracture parameters of the cohesive crack model to the tail of the 

softening curve, the tests for beam group D6 must be considered invalid, and 

consequently size effect cannot be determined definitively from this thesis.  It 

may be useful and prudent to do large numbers of tests at different sizes so that 

statistical analysis may also be used. 
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Appendix A 

 This Appendix contains the MATLAB® functions used to determine the 

bilinear cohesive properties from raw data obtained from testing.  

function bilinear_approximation 
% This function determines key fracture parameters for the NBLII test. 
% Written by: Scott Chapman 
% Modified: 8/02/2011 
%pre_load = 730.00; %pre-load in Newtons 
ft = 3.396363147; %splitting tensile strength in MPa, taken from 

Brazilian tests 
specimen = 'spec64.txt'; 
S = 25.4*18; %Span length, mm 
% D = 228.50; %Average Depth of specimen, mm; 
% B = 151.48; %Average Width of specimen, mm; 
% a0 = 80.40; %Average Notch Depth of specimen, mm; 
[dim, Pc, LPDc, CMODc] = get_data(specimen); 

  
D = dim(1); 
B = dim(2); 
a0 = dim(3); 
b = D-a0; 
h = 1.5748; %Distance of the knife edges to specimen surface, mm 

  
max_CMOD = 2; %Max crack mouth opening displacement allowed, mm 
%Read in all relevant data 

  

  
%Sensitivity analysis begins at 100% of the desired final CMOD range, 

and 
%then does a number of iterations down to 20% of the final CMOD and 

finds 
%key fracture parameters for each iteration.  This tests the validity 

of 
%the far tail constant, A, and its effect on the fracture parameters 

  
num_iter = 100;%number of iterations for sensitivity analysis 

  
%read in data for sensitivity analysis 
percent_reduction = 0.8/num_iter; 
CMOD_holder = max_CMOD; 
for j = 1:num_iter 
    for i = 1:length(Pc) 
        if CMODc(i) < CMOD_holder 
            P(i,1) = Pc(i); 
            CMOD(i,1) = CMODc(i); 
            LPD(i,1) = LPDc(i); 
        end 
    end 
    [E(j,1), fp(j,1), l1(j,1), w1(j,1), GF(j,1), wg(j,1), wch(j,1), 

wc(j,1)... 
        , ok(j,1), wk(j,1), Gf(j,1)]= 

fracture_toughness(P,LPD,CMOD,B,D,... 
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        a0,ft,S, max_CMOD,b,h); 
    %prep CMOD_holder for next iteration 
    CMOD_holder = CMOD_holder * (1 - percent_reduction);  
    %free up memory 
    P = []; 
    CMOD = []; 
    LPD = []; 
end 

  
%Data to be used in excel files 
props = [E, fp, l1, w1, GF, wg, wch, wc, ok, wk, w1, Gf]; 

  
return 

 

 

function [E, fp, l1, w1, GF, wg, wch, wc, ok, wk, Gf] = ... 
    fracture_toughness(P,LPD,CMOD, B, D, a0, ft, S, max_CMOD,b,h) 
%This function determines key fracture parameters given load vs. LPD 

and 
%load vs. CMOD data from a notched beam level II test. 
%Inputs: arrays for the following: 
%        Load, P 
%        Crack Mouth Opening Displacement, CMOD 
%        Load Point Displacement, LPD 
%Returns: 
%          Young's Modulus, E 
%          Plastic Flexural Strength, fp 
%          Brittleness Length, l1 
%          Horizontal intercept of initial portion of softening curve, 

w1  
%          Fracture Energy, GF 
%          Critical crack opening, wc 
%          Kink point stress, ok 
%          Kink point crack opening, wk       
%Written by: Scott Chapman 
%Modified: 2/28/2011 

  
%Sensitivity analysis bug fix: Delete any 0 data points at end 
while CMOD(end) == 0 
    CMOD(end) = []; 
    P(end) = []; 
    LPD(end) = []; 
end 
Pm = max(P); %max recorded peak load 
%Find location of max P 
Pholder = 1; 
for i = 1:length(P) 
    if Pholder < P(i); 
        Pholder = P(i); 
        location = i; 
    end 
end 
%9.2.2 
%This section gets the values of CMOD and P and calculates the initial 
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%compliance, Ci 
j = 1; %counter variable 
for i = 1:location 
    if P(i) > 0.15*Pm && P(i) < 0.55*Pm 
        Ptemp(j) = P(i); 
        Ctemp(j) = CMOD(i); 
        j = j+1; 
    end 
end 
%Find Ci coefficient as CMOD / P 
C = polyfit(Ptemp, Ctemp, 1); 
Ci = C(1); 
%9.2.3 
alpha = (a0 + h)/(D + h);  

  
%Calculation of Stress Intensity Factor 
V1 = 0.8 - 1.7*alpha + 2.4*alpha^2 + 0.66/(1-alpha)^2 + ... 
     4*D/S * (-0.04 - 0.58*alpha + 1.47*alpha^2 - 2.04*alpha^3); 

  
%Calculation of Young's Modulus 
E = 6*S*a0 / (Ci*B*D^2) * V1;  

  
%Re-load matrices as neccessary so that CMOD(end) <= max_CMOD 
data_length = length(P); 
for i = 1:data_length 
    if CMOD(i) >= max_CMOD 
        CMOD(i) = -1; 
    end 
end 
%delete unneccesary data 
while CMOD(end) == -1 
    P(end) = []; 
    LPD(end) = []; 
    CMOD(end) = []; 
end 
%Get Residual Load 
R = P(end); 
%Get corrected peak load, P1 
P1 = P - R; 

  
%Find location of max P 
Pholder = 1; 
for i = 1:length(P1) 
    if Pholder < P(i); 
        Pholder = P(i); 
        location = i; 
    end 
end 
P1max = max(P1); 

  
%Determine far tail constant, A, using equation in section 9.3.4.  
%Get all data correlated with P1 <= 5% of P1max 

  
counter = 1; 
for i = location:length(P1) 
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    if P1(i) <= 0.05*P1max; 
        wm(counter) = CMOD(i); 
        P1x(counter) = P1(i); 
        counter = counter+1; 
    end 
end 

  
%Get CMOD and LPD at end of test, wmr, and CMOD when P1 = 0, wma. 
wmr = CMOD(end); 
del_r = LPD(end); 
%Special case, P1 does not cross x-axis on P vs. CMOD curve,  
%so wma and del_a are 0; 
counter = 1; 
if P1(1) > 0  
    wma = 0; 
    del_a = 0; 
else 
    %Otherwise, find location where P1 crosses x-axis on P vs. CMOD 

curve 
    while P1(counter) < 0; 
        counter = counter+1; 
    end 
    wma = CMOD(counter); 
    del_a = LPD(counter); 
    %Adjust P1, CMOD, LPD so that there are no data correlated to P1 < 

0 
    j = 1; 
    for i=counter:length(P1) 
        P1(j) = P1(i); 
        CMOD(j) = CMOD(i); 
        LPD(j) = LPD(i); 
        j = j+1; 
    end 
    %Delete left over data 
    for i = length(P1) - counter:length(P1) 
        P1(end) = []; 
        CMOD(end) = []; 
        LPD(end) = []; 
    end 
end 

  
%Get X values, 9.3.4 
for i = 1:length(P1x) 
    X(i) = ((4*D)/S)^2 * (1/(wm(i) - wma)^2 - 1/(wmr - wma)^2); 
end 

  
%Perform least squares fit to get far tail constant, A 
p = get_A(X,P1x); 
A = p(2); 

  
%Get effective Peak Load, Pmax 
Pmax = P1max + A/(wmr - wma)^2; 

  
%Get plastic flexural strength, fp, 9.4.2 
fp = Pmax*S/(2*B*(D-a0)^2); 
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%Get brittleness length, l1, 9.5.1 

  
%parameters 
alpha_0 = a0/D; 
k = 1 - alpha_0^1.7; 
x = ft/fp; 

  
l1 = k*D*(11.2/(x^2-1)^2 + 2.365/x^2); 

  
%Get horizontal intercept, w1 in micrometers, 9.5.2 
w1 = 1000*2*ft*l1/E; 

  
%Get work of fracture from area under P1 vs. LPD curve 
Wfm = trapz(LPD,P1); 

  
%Get the total work of fracture 
WF = Wfm + 2*A/(del_r - del_a); 

  
%Get the fracture energy, GF, in N/m 
GF = 1000*WF/(B*b); 

  
%Get center of gravity of area under softening curve, wg, 9.7.1  
wg = 4*A/(B*S*GF)*10^6; 

  
%Get characteristic crack opening, wch, 9.8.2 
wch = GF/ft; 

  
%Get critical crack opening of bilinear approximation, wc, 9.8.3 
wc = wch*(3*wg-w1)/(2*wch-w1) * (1 + sqrt(... 
    1 - 2*w1*(3*wg-2*wch)*(2*wch-w1)/(wch*(3*wg-w1)^2))); 

  
%Get stress at kink point, ok, 9.8.4 
ok = ft*(2*wch - w1)/(wc - w1); 

  
%Get crack opening at kink point, wk, 9.8.5 
wk = w1*(wc - 2*wch)/(wc - w1); 

  
%Get fracture energy Gf as area under initial part of softening curve 
Gf = 0.5*w1*ft; 
return 

 

 

function [dim, P, LPD, CMOD] = get_data(filename) 

  
%Function "get_data" reads in the values from a text file and outputs 

the  
%relavent data.   
%Returns: P, the load (mm) 
%         LPD, the load point displacement (mm) 
%         CMOD, the crack mouth opening displacement (mm) 
%Written by: Scott Chapman 
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%Modified: 8/2/2011 

  

  
%Load dimension data  
%from comma-separated or tab-delimited values   
%Note: This section is very specific to a particular set of data. 
%Change as needed, or comment out entirely and manually input specific  
%data for your specimens 

  
%Name of specimen dimensions file.  Specimen dimensions should be in 

the 
%following form: 
%D, B, a0, preload 
data = load('spec_dimensions.txt'); 
if strcmp(filename, 'spec31.txt') == 1 
    dim = data(1,:); 
elseif strcmp(filename, 'spec32.txt') == 1 
    dim = data(2,:); 
elseif strcmp(filename, 'spec33.txt') == 1 
    dim = data(3,:); 
elseif strcmp(filename, 'spec34.txt') == 1 
    dim = data(4,:); 
elseif strcmp(filename, 'spec61.txt') == 1 
    dim = data(5,:); 
elseif strcmp(filename, 'spec62.txt') == 1 
    dim = data(6,:); 
elseif strcmp(filename, 'spec63.txt') == 1 
    dim = data(7,:); 
elseif strcmp(filename, 'spec64.txt') == 1 
    dim = data(8,:); 
elseif strcmp(filename, 'spec91.txt') == 1 
    dim = data(9,:); 
elseif strcmp(filename, 'spec92.txt') == 1 
    dim = data(10,:); 
elseif strcmp(filename, 'spec93.txt') == 1 
    dim = data(11,:); 
elseif strcmp(filename, 'spec94.txt') == 1 
    dim = data(12,:); 
end 

  
%get pre-load 
pre_load = dim(4);  

  
%get specimen data 
data2 = load(filename); 

  
P = -1*data2(1:end,2) + pre_load; 
for i = 1:length(P) 
    LPD(i) = (data2(i, 4)+ data2(i, 5))/2; 
    CMOD(i) = -1*(data2(i, 6)+ data2(i, 7))/2; 
end 
return 
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function [p] = get_A(x,y) 
% This function fits a curve of P1 vs X (x and y inputs) and fits a 

curve 
% of the order P1 = KX^2 + AX.  The function outputs the coefficients 

of 
% the quadratic fit as p = [K A 0] 
% This method was taken from the following mathworks solution webpage: 
% http://www.mathworks.com/support/solutions/en/data/1-

12BBUC/?product=OP&s 
% olution=1-12BBUC 
%  

  
%plot the original curve 
plot(x,y); 

  
x0 = 0; 
y0 = 0; 

  
%reshape the data into a column vector 
x = x(:);  
y = y(:); 

  
% 'C' is the Vandermonde matrix for 'x' 
n = 2; % Degree of polynomial to fit 
V(:,n+1) = ones(length(x),1,class(x)); 
for j = n:-1:1 
    V(:,j) = x.*V(:,j+1); 
end 
C = V; 

  
% 'd' is the vector of target values, 'y'. 
d = y; 

  
% There are no inequality constraints in this case, i.e., 
% We use linear equality constraints to force the curve to hit the 

required point. In 
% this case, 'Aeq' is the Vandermoonde matrix for 'x0' 
Aeq = x0.^(n:-1:0); 
% and 'beq' is the value the curve should take at that point 
beq = y0; 

  
p = lsqlin( C, d, [], [], Aeq, beq ); 

  
% We can then use POLYVAL to evaluate the fitted curve 
yhat = polyval( p, x ); 

  
% Plot original data 
plot(x,y,'.b-') 
hold on 
% Plot point to go through 
plot(x0,y0,'gx','linewidth',4) 
% Plot fitted data 
plot(x,yhat,'r','linewidth',2) 
hold off  
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