
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

6-9-2016

Fast and Scalable Architectures and Algorithms for
the Computation of the Forward and Inverse
Discrete Periodic Radon Transform with
Applications to 2D Convolutions and Cross-
Correlations
Cesar Carranza

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Carranza, Cesar. "Fast and Scalable Architectures and Algorithms for the Computation of the Forward and Inverse Discrete Periodic
Radon Transform with Applications to 2D Convolutions and Cross-Correlations." (2016). https://digitalrepository.unm.edu/
ece_etds/44

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/44?utm_source=digitalrepository.unm.edu%2Fece_etds%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/44?utm_source=digitalrepository.unm.edu%2Fece_etds%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


i

Cesar Alberto Carranza De La Cruz

Candidate

Electrical and Computer Engineering

Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

MARIOS PATTICHIS , Chairperson

RAMIRO JORDAN

VINCE CALHOUN

DANIEL LLAMOCCA



ii

Fast and Scalable Architectures and
Algorithms for the Computation of the
Forward and Inverse Discrete Periodic
Radon Transform with Applications to

2D Convolutions and Cross-Correlations

by

Cesar Carranza

B.Sc., Electrical Engineering, Pontificia Universidad Católica del
Perú, 1994

M.Sc., Computer Science, Centro de Investigación Cient́ıfica y de
Educación Superior de Ensenada, 2010

M.Sc., Computer Engineering, University of New Mexico, 2012

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2016



iii

Dedication

To my family, for their support.



iv

Acknowledgments

I would like to thank my advisor, Professor Marios Pattichis, for his advice.



v

Fast and Scalable Architectures and
Algorithms for the Computation of the
Forward and Inverse Discrete Periodic
Radon Transform with Applications to

2D Convolutions and Cross-Correlations

by

Cesar Carranza

B.Sc., Electrical Engineering, Pontificia Universidad Católica del

Perú, 1994

M.Sc., Computer Science, Centro de Investigación Cient́ıfica y de

Educación Superior de Ensenada, 2010

M.Sc., Computer Engineering, University of New Mexico, 2012

PhD., Engineering, University of New Mexico, 2016

Abstract

The Discrete Radon Transform (DRT) is an essential component of a wide range of

applications in image processing, e.g. image denoising, image restoration, texture

analysis, line detection, encryption, compressive sensing and reconstructing objects

from projections in computed tomography and magnetic resonance imaging. A pop-

ular method to obtain the DRT, or its inverse, involves the use of the Fast Fourier



vi

Transform, with the inherent approximation/rounding errors and increased hardware

complexity due the need for floating point arithmetic implementations. An alterna-

tive implementation of the DRT is through the use of the Discrete Periodic Radon

Transform (DPRT). The DPRT also exhibits discrete properties of the continuous-

space Radon Transform, including the Fourier Slice Theorem and the convolution

property. Unfortunately, the use of the DPRT has been limited by the need to com-

pute a large number of additions O(N3) and the need for a large number of memory

accesses.

This PhD dissertation introduces a fast and scalable approach for computing

the forward and inverse DPRT that is based on the use of: (i) a parallel array of

fixed-point adder trees, (ii) circular shift registers to remove the need for accessing

external memory components when selecting the input data for the adder trees,

and (iii) an image block-based approach to DPRT computation that can fit the

proposed architecture to available resources, and As a result, for an N × N image

(N prime), the proposed approach can compute up to N2 additions per clock cycle.

Compared to previous approaches, the scalable approach provides the fastest known

implementations for different amounts of computational resources. For the fastest

case, I introduce optimized architectures that can compute the DPRT and its inverse

in just 2N+dlog2Ne+1 and 2N+3 dlog2Ne+B+2 clock cycles respectively, where

B is the number of bits used to represent each input pixel. In comparison, the prior

state of the art method required N2 +N + 1 clock cycles for computing the forward

DPRT. For systems with limited resources, the resource usage can be reduced to

O(N) with a running time of dN/2e (N + 9) + N + 2 for the forward DPRT and



vii

dN/2e (N + 2) + 3 dlog2Ne+B + 4 for the inverse.

The results also have important applications in the computation of fast con-

volutions and cross-correlations for large and non-separable kernels. For this pur-

pose, I introduce fast algorithms and scalable architectures to compute 2-D Lin-

ear convolutions/cross-correlations using the convolution property of the DPRT and

fixed point arithmetic to simplify the 2-D problem into a 1-D problem. Also an

alternative system is proposed for non-separable kernels with low rank using the LU

decomposition. As a result, for implementations with enough resources, for a an

image and convolution kernel of size P × P , linear convolutions/cross correlations

can be computed in just 6N + 4 log2N + 17 clock cycles for N = 2P − 1.

Finally, I also propose parallel algorithms to compute the forward and inverse

DPRT using Graphic Processing Units (GPUs) and CPUs with multiple cores. The

proposed algorithms are implemented in a GPU Nvidia Maxwell GM204 with 2048

cores@1367MHz, 348KB L1 cache (24KB per multiprocessor), 2048KB L2 cache

(512KB per memory controller), 4GB device memory, and compared against a se-

rial implementation on a CPU Intel Xeon E5-2630 with 8 physical cores (16 logical

processors via hyper-threading)@3.2GHz, L1 cache 512K (32KB Instruction cache,

32KB data cache, per core), L2 cache 2MB (256KB per core), L3 cache 20MB (Shared

among all cores), 32GB of system memory. For the CPU, there is a tenfold speedup

using 16 logical cores versus a single-core serial implementation. For the GPU, there

is a 715-fold speedup compared to the serial implementation. For real-time applica-

tions, for an 1021x1021 image, the forward DPRT takes 11.5ms and 11.4ms for the



viii

inverse.



ix

Contents

List of Figures xiii

List of Tables xxvi

1 Introduction 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Specific contributions for the Scalable and Fast DPRT and its

inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Specific contributions for the Fast 2-D Convolutions and Cross-

Correlations Using Scalable Architectures . . . . . . . . . . . . 7

1.2.3 Specific contributions for the computation of the DPRT and

its inverse on multi-core CPUs and GPUs . . . . . . . . . . . 9

1.3 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Scalable Fast Discrete Periodic Radon Transform and its inverse 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Notation summary . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Discrete Periodic Radon Transform and its Inverse . . . . . . 19

2.2.3 previous DPRT implementations . . . . . . . . . . . . . . . . 22

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



x

2.3.1 Partial DPRT . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Scalable Fast Discrete Periodic Radon Transform (SFDPRT) . 25

2.3.3 Inverse Scalable Fast Discrete Periodic Radon Transform (iSF-

DPRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Fast Discrete Periodic Radon Transform (FDPRT) and its

inverse (iFDPRT) . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5 Pareto-optimal Realizations . . . . . . . . . . . . . . . . . . . 41

2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Scalable Fast Discrete Periodic Radon Transform

(SFDPRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Inverse Scalable Fast Discrete Periodic Transform Implemen-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Fast 2-D Convolutions and Cross-Correlations Using Scalable Ar-

chitectures 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Separable decomposition for non-separable kernels . . . . . . . 77

3.2.3 The discrete periodic radon transform (DPRT) . . . . . . . . . 79

3.2.4 Circular convolutions using the DPRT . . . . . . . . . . . . . 80

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Computing 1-D circular convolutions using circular shifts . . . 81

3.3.2 Fast 1-D circular convolution hardware implementation . . . . 82



xi

3.3.3 Fast and scalable 2-D linear convolutions and cross-correlations 84

3.3.4 Scalable 2-D Linear Convolution using LU decomposition (S2-

DLCLU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.5 Overlap and Add for larger images . . . . . . . . . . . . . . . 95

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.2 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.3 Pareto comparisons . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Discrete Periodic Radon Transform implementation on GPUs and

multi-core CPUs 105

4.1 Architecture overview for multi-core CPUs and GPUs . . . . . . . . . 106

4.2 Parallel Algorithms for computing the forward and inverse DPRT . . 108

4.2.1 Analysis of the DPRT and iDPRT properties to parallelize the

processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.2 Parallel DPRT and iDPRT on a multi-core CPU system . . . 113

4.2.3 Parallel DPRT and iDPRT on a GPU . . . . . . . . . . . . . . 115

4.3 Implementation of proposed algorithms on a CPU and GPU processors118

4.3.1 Serial implementation of the DPRT and iDPRT on the HOST 123

4.3.2 Parallel implementation of the DPRT and iDPRT on the HOST123

4.3.3 Parallel implementation of the DPRT and iDPRT on the DE-

VICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Conclusions and future work 137

A List of publications 141

B Adder trees resource computation 144



xii

C Adder trees resource computation for Convolution 146

D Source code for the Serial DPRT and iDPRT on the HOST 147

E Source code for the Parallel DPRT and iDPRT on the HOST 152

F Source code for the Parallel DPRT and iDPRT on the DEVICE

(GPU GM204, Maxwell) 158

References 166



xiii

List of Figures

2.1 Illustration of the DPRT and its iDPRT for a function f of size

N ×N , where N is prime. Each row of R(m, d), denoted as a vector

Rk(d), k = 0, . . . , N , represents a projection of f(i, j). . . . . . . . . 20

2.2 DPRT Example for a 7 × 7 image. (a) Prime directions; (b) Main

image (at center with bold boxes) and its periodic extensions. Pixels

marked with ×: samples along periodic line for prime direction (1, 2),

pixels marked with × in grey boxes are added to compute R(2, 0) . 21

2.3 Scalable DPRT concept. The input image is divided into K strips.

The DPRT is computed by accumulating the partial sums from each

strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Top level system for implementing the Scalable and Fast DPRT

(SFDPRT). The SFDPRT core computes the partial sums. MEM IN

and MEM OUT are dual port input and output memories. A Finite

State Machine (FSM, not shown in the figure) is needed for control.

See text in Sec. ?? for more details. . . . . . . . . . . . . . . . . . 25

2.5 Top level algorithm for computing the scalable and fast DPRT (SFD-

PRT). Within each loop, all of the operations are pipelined. Then,

each iteration takes a single cycle. For example, the Shift, pipelined

Compute, and the Add operations of lines ??, ??, and ?? are always

computed within a single clock cycle. Refer to section ?? for the

notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



xiv

2.6 Running time for scalable and fast DPRT (SFDPRT). In this dia-

gram, time increases to the right. The image is decomposed into

K strips. Then, the first strip appears in the top row and the last

strip appears in the last row of the diagram. Here, H denotes the

maximum number of image rows in each strip, K = dN/He is the

number of strips, and h = dlog2He represents the addition latency. 28

2.7 System for implementing the inverse, scalable and fast DPRT (iSFD-

PRT). The system uses the iSFDPRT core core for computing partial

sums. The system uses dual port input and output memories, an

accumulator array and a Finite State Machine for control. See text

in Sec. ?? for more details. . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Top level algorithm for computing the inverse Scalable Fast Discrete

Periodic Radon Transform f(i, j) = <−1(R(m, d)). With the excep-

tion of the strip operations of lines ?? and ??, all other operations

are pipelined and executed in a single clock cycle. The strip opera-

tions require H clock cycles where H represents the number of rows

in the strip. See section ?? for the notation. . . . . . . . . . . . . . 31

2.9 Running time for computing the inverse, scalable, fast DPRT (iSFD-

PRT). Here, H denotes the maximum number of projection rows for

each strip, K = dN/He is the number of strips, h = dlog2He is the

addition latency, n = dlog2Ne, and B + 2n is the number of bits

used to represent the results before normalization. . . . . . . . . . . 32



xv

2.10 Projection computation example for the first two prime directions for

a 7×7 image. (a) Pixels are added along each column using an adder

tree for prime direction (1, 0). (b) Array of 7-operand adder tree for

performing the additions. (c) Detailed architecture of the 7-operand

adder tree p (fully pipelined) to compute the projection p, element

q. (d) For prime direction (1,1), pixels sharing the same gray-scale

value need to be added but are not aligned along the columns. (e)

Pixels are properly aligned along each column following the required

number of circular, left, shifts. (f) Circular Left-Shift (CLS) structure

for aligning image samples for prime direction of (1, 1), all shifts are

performed in parallel in a single clock cycle.. (g) Detalied architecture

for CLS(i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Algorithm for computing the Fast Discrete Periodic Radon Trans-

form R(m, d) = <(f(i, j)). . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Running time for fast DPRT (FDPRT). In this diagram, time in-

creases to the right. The DPRT is computed in N + 1 steps (pro-

jections). Each projection takes 1 + h clock cycles. Here, n =

dlog2Ne represents the addition latency. Pipeline structure: Since

fully pipelined adder trees are used, the computation of subsequent

projections can be started after one clock of the previous projection. 37



xvi

2.13 (a) Adder architecture example for N = 7. The fully pipelined 7-

operand adder tree used for the FDPRT is now modified to com-

pute the iFDPRT (i projection, element j): After the shift regis-

ters align the data, the adder tree receives all the terms to compute∑6
m=0R (m, 〈j −mi〉7) + R(7, i). Note that R(7, i) is an additional

term for the 7-operand adder tree (provided by an additional CLS(1)

holding RN(d)). After all the terms are added, S needs to be sub-

stracted and then divide the result by 7 to obtain f(i, j). In a full

implementation, 7 of those adders (j = 0, . . . , N − 1) are used to be

able to compute in parallel one projection, to obtain one complete

row of f . (b) Additional modified CLS(1) to hold RN(d) and provide

R(N, i) to all of the 7-operand adder trees on each projection i. . . 39

2.14 Algorithm for computing the Inverse Fast Discrete Periodic Radon

Transform f(i, j) = <−1(R(m, d)). Refer to section ?? for the nota-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.15 Memory architecture for parallel read/write. For the parallel load,

refer to Fig. ??. The memory allows to avoid transposition as de-

scribed in Fig. ??. The memory architecture refers to MEM IN and

MEM OUT in Fig. ??. Each RAM is a standard Random Access Mem-

ory with bus address A[0 : n− 1], separate data buses DI[0 : B − 1]

and DO[0 : B−1], and control signals W and E to select Read/Write

cycles and enable the memory respectively. MEM IN is a memory

with bus address AIN [0 : n−1], separate data buses DIN [0 : NB−1]

and DOUT [0 : NB − 1] with control signals WIN , EIN and MODE

to select Read/Write cycles, enable the memory and two addressing

modes respectively. The MODE signal selects between row or col-

umn reading, in other words, provides a complete row or column of

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



xvii

2.16 The implementation of Load shifted image(f) of Fig. ??. The

process shifts the input image during the loading process in order

to avoid the transposition associated with the last projection. The

shifting is performed using the circular left shift registers that are

available in SFDPRT core. . . . . . . . . . . . . . . . . . . . . . . . 45

2.17 Process for implementing Load strip(r, M) of Fig. ??. . . . . . . 45

2.18 The implementation of Add partial result of Fig. ??. The process

is pipelined where all the steps are executed in a single clock cycle. 46

2.19 SFDPRT core architecture. (a) Array of H-operand adder tree for

performing the H × N additions in parallel in one clock cycle. (b)

Circular Left-Shift (CLS) structure for aligning image samples, all

shifts are performed in parallel in a single clock cycle.. . . . . . . . 47

2.20 7 × 7 pattern example for storing f in MEM IN. (a) Original f . (b)

Shifted f . (c) Accessing column number 4 of f , note that each value

belongs to a different RAM, therefore all the values can be retrieved

in one clock cycle. (d) Accessing row number 4 of f , observe that

the data is shifted and needs to be un-shifted before computing the

DPRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.21 7 × 7 example of Loading image f into MEM IN using the algorithm

described in Fig. ?? with H = 4, N = 7. Then, K = dN/He = 2,

and the loading of f into MEM IN is divided in two parts. . . . . . . 50

2.22 7 × 7 example of Loading strips of f , into SFDPRT core using the

algorithm described in Fig. ?? with H = 4, N = 7, row mode.

Then, K = dN/He = 2, and the loading of f into SFDPRT core is

divided in two parts. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.23 7 × 7 example of Loading strips of f , into SFDPRT core using the

algorithm described in Fig. ?? with H = 4, N = 7, column mode

and K = dN/He = 2. Note that the loading of f into SFDPRT core

is divided in two parts. . . . . . . . . . . . . . . . . . . . . . . . . . 52



xviii

2.24 System for implementing the Scalable and Fast DPRT (SFDPRT).

The SFDPRT core computes the partial sums. MEM IN and MEM OUT

are dual port input and output memories. A Finite State Machine

(FSM) is used for control. See text in Sec. ?? for more details. . . . 54

2.25 System for implementing the inverse, scalable and fast DPRT (iSFD-

PRT). The system uses the iSFDPRT core core for computing partial

sums. The system uses dual port input and output memories, an

accumulator array and a Finite State Machine for control. See text

in Sec. ?? for more details. . . . . . . . . . . . . . . . . . . . . . . . 55

2.26 Fast DPRT (FDPRT) hardware. (a) FDPRT core and finite state

machine (FSM). (b) Structure of the FDPRT core including: pipeli-

ned adder trees, registers, multiplexers (for shifting and fast trans-

position) for N = 7. (c) Pipelined adder tree architecture for N = 7. 56

2.27 The fast inverse DPRT (iFDPRT) hardware implementation. The

iFDPRT core shows the adder trees, register array, and 2-input MUX-

es. Here, we note that the Z(i) correspond to the summation term in

(??) (also see Fig. ??). We note that the ‘extra circuit’ is not needed

for the forward DPRT. Also, for latency calculations, we note that

the ‘extra circuit’ has a latency of 1 +BO cycles. . . . . . . . . . . 57

2.28 The inverse scalable DPRT iSFDPRT core architecture for N = 7,

H = 4. Here, we note that the Z(i) correspond to the summation

term in (??) (also see Fig. ??). . . . . . . . . . . . . . . . . . . . . 58

2.29 Comparative running times for the proposed approach versus com-

petitive methods. Running times in clock cycles for: (i) the serial

implementation of [1], (ii) the systolic [2], and (iii) the FPGA im-

plementation of the SFDPRT for H = 2 and 16 are presented. The

measured running times are in agreement with Tables ?? and ??. . 61



xix

2.30 Resource functions: (i) number of adder tree flip-flops Aff(.), (ii)

number of 1-bit additions Afa(.), and (iii) number 2-to-1 multiplexers

Amux(.) for N = 251, B=8. Refer to Table ?? for definitions. . . . . 63

2.31 Comparative plot for the different implementations based on the

number of cycles and the number of flip-flops only. Refer to Fig.

?? for a comparative plot for the different implementations based on

the number of cycles and the number of 1-bit additions. Also, refer to

Table ?? for a summary of RAM and multiplexer resources. The plot

shows the Pareto front for the proposed SFDPRT for H = 2, . . . , 251,

for an image of size 251× 251. The Pareto front is defined in terms

of running time (in clock cycles) and the number of flip-flops used.

For comparison, the serial implementation from [1], and the systolic

implementation [2] is shown. The fastest implementation is due to

the FDPRT that is also shown. . . . . . . . . . . . . . . . . . . . . 64

2.32 Comparative plot for the different implementations based on the

number of cycles and the number of one-bit additions only (or equiv-

alent 1 bit full adders). Refer to Fig. ?? for a similar comparison

based on the number of flip-flops. Pareto front for the proposed

SFDPRT for H = 2, . . . , 251, for an image of size 251 × 251. The

Pareto front is defined in terms of running time (in clock cycles) and

the number of 1-bit additions. For comparison, the serial implemen-

tation from [1], and the systolic implementation [2] is shown. The

fastest implementation is due to the FDPRT. . . . . . . . . . . . . 65

2.33 FPGA slices for a Virtex-6 implementation for both the forward and

inverse DPRTs for H = 2, 16, N prime and 2 ≤ N ≤ 251. . . . . . . 66

3.1 Architecture for computing the 1-D circular convolution Fm = Gm⊗

Hm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xx

3.2 Algorithm for computing the 1-D circular convolution Fm = Gm ⊗

Hm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Running time for the implementation of the fast architecture for

computing 1-D Circular convolutions. In this diagram, time increases

to the right. The number of clock cycles for each term of Fm(d) is

shown on each strip. The strip on the right represents the total

running time. n = dlog2Ne represents the addition latency. . . . . 84

3.4 Fast and scalable algorithm for computing 2-D linear convolutions

and cross-correlations between g(i, j) and h(i, j) using the architec-

ture depicted in Fig. ??. . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Fast and scalable architecture system for computing 2D convolutions.

A modification is needed for computing fast cross-correlations (see

below). Refer to Fig. ?? for the sequence of operations. The DPRT

is computed by a fast and scalable block denoted by SFDPRT System.

SFDPRT System computes the DPRT of the zero padded input image

g. For regular convolution kernels, the DPRT of the zero-padded

convolution kernel h can be pre-computed and stored in the SFDPRT

Memory block as shown here. Alternatively, in adaptive filterbank

applications, it can be introduced an extra SFDPRT System block

for computing the DPRT in real time. Furthermore, for computing

cross-correlations in real-time, a fast transposition is needed before

applying the DPRT. It is computed J circular convolutions in paral-

lel (row-wise) using the SF1DCC System block. Control is performed

by a finite state machine (FSM block). . . . . . . . . . . . . . . . . . 88



xxi

3.6 Running time for computing J circular convolutions in parallel using

J fast convolution blocks (see basic block structure in Fig. ??). In

this diagram, time increases to the right. Here, it takes one cycle

to perform a parallel load for each block. Overall, it is required

J +N +n+ 1 to compute everything, where n = dlog2Ne represents

the addition latency. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7 Running time for computing N +1 1-D circular convolutions using J

fast convolution blocks operating in parallel. In this diagram, time

increases to the right. The convolution blocks need to be reloaded L

times, and is given by L = d(N + 1)/Je. For the last load, only J
′
=

〈N + 1〉J if 〈N + 1〉J 6= 0 convolution blocks are needed. Each row

shows the running time for performing J convolutions as described

in Fig. ??. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Custom SRAM architecture of size M ×N , B′ bits depth to hold an

image of M rows and N columns, capable to read/write a full row

in one clock cycle (MODE=1) and allows individual access up to J

SRAMs per clock cycle (MODE=0). See Table ?? for configuration

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.9 Fast 1-D linear convolver (F1DLC) block representation. Assume

P2 ≥ P1, Q2 ≥ Q1. GX size is P2 + Q2 − 1, HX size is Q2. Gray

boxes denotes the usage of the F1DLC. Bit usage is for full accuracy.

Recall, B is the number of bits for the input image, C for the kernel,

q1 = dlog2Q1e and q2 = dlog2Q2e. The set of Q2 multipliers is

represented by the ⊗ symbol, the input and output bits for each one

is indicated in the. All the multipliers are connected to a Q2-operand

adder tree. (a) Convolver processing rows. (b) Convolver processing

columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



xxii

3.10 Algorithm for computing the 1-D linear convolution between the

signal GIN and the preloaded row or column kernel HX. The output

is stored in MEM = MEM TMP for rows, or accumulated in MEM = MEM OUT

for columns. SG is the final size of the convolved signal, SH is the

size of the current kernel and x = 0, . . . , SG− SH. . . . . . . . . . 94

3.11 S2DLCLU System (top level diagram). Bus width is for maximum

accuracy. DANIEL must provide the final version with more detail. 94

3.12 Algorithm for computing the 2-D linear convolution between the

image g(i, j) and the non-separable kernel h(i, j) decomposed into r

separable kernels hR(i, j) for rows and hC(i, j) for columns. g′(i, j)

holds the results of the row-convolution in MEM TMP. The output is

stored in MEM OUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.13 Running time in clock cycles (normalized by image size N) versus

convolved image size for all methods. . . . . . . . . . . . . . . . . . 99

3.14 Running time in clock cycles (normalized by image size N) versus

convolved image size for the fastest methods. . . . . . . . . . . . . 100

3.15 Resources (1-bit FlipFlops) vs Running time. . . . . . . . . . . . . 102

3.16 Resources (1-bit Additions) vs Running time. . . . . . . . . . . . . 103

3.17 Resources (Multipliers) vs Running time. . . . . . . . . . . . . . . . 103

4.1 Top level block diagram of the CPU and GPU architecture. The

block on the lower-left represents the HOST system (the CPU).

The block on the right represents the DEVICE where all the com-

putations are performed (the GPU). Top-left shows the detail of one

CORE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Serial algorithm for computing the forward Discrete Periodic Radon

Transform R(m, d) of the image f(i, j) of size N ×N . . . . . . . . 109

4.3 Serial algorithm for computing the inverse Discrete Periodic Radon

Transform f(i, j) of the radon space R(m, d) of size (N + 1)×N . . 110



xxiii

4.4 Main parallel algorithm for computing the forward Discrete Periodic

Radon Transform R(m, d) of the image f(i, j) of size N × N on a

CPU with MC cores. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Kernel algorithm for each core on the HOST to compute one set of

prime directions of the Discrete Periodic Radon Transform R(m, d)

of the image f(i, j) of size N × N . Consecutive prime directions

dirIni through dirEnd are computed. . . . . . . . . . . . . . . . . 114

4.6 Main parallel algorithm for computing the inverse Discrete Periodic

Radon Transform f(i, j) of the radon spaceR(m, d) of size (N+1)×N

on a CPU with MC cores. . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Kernel algorithm for each core on the HOST to compute one set of

prime directions of the inverse Discrete Periodic Radon Transform

f(i, j) of the radon space R(m, d) of size (N + 1)×N . Consecutive

prime directions dirIni through dirEnd are computed. . . . . . . . 115

4.8 Main parallel algorithm for computing the forward Discrete Periodic

Radon Transform R(m, d) of the image f(i, j) of size N × N on a

GPU with MP ×NP cores. . . . . . . . . . . . . . . . . . . . . . . 118

4.9 Kernel algorithm for each core on the DEVICE to compute one ray of

the forward Discrete Periodic Radon Transform R(m, d) of the image

f(i, j) of size N ×N . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.10 Main parallel algorithm for computing the inverse Discrete Periodic

Radon Transform f(i, j) of the radon spaceR(m, d) of size (N+1)×N

on a GPU with MP ×NP cores. . . . . . . . . . . . . . . . . . . . . 120

4.11 Kernel algorithm for each core on the DEVICE to compute one ray

of the inverse Discrete Periodic Radon Transform f(i, j) of the radon

space R(m, d) of size (N + 1)×N . . . . . . . . . . . . . . . . . . . 120



xxiv

4.12 Input image of size N × N , N = 7. For the prime direction m = 0,

pixels with the same grayscale level are added to compute one output

pixel (radon space), i.e. 7 rays in parallel are computed. (a) 7 threads

in parallel start computing 7 rays. Red boxes highlight the first pixel

loaded for each thread. (b) Second set of pixels are highlighted.

(c) Last set of pixels are highlighted. Assuming the threads are

syncronized, note that all threads read the same row of pixels. . . . 126

4.13 Input image of size N × N , N = 7. For the prime direction m = 1,

pixels with the same grayscale level are added to compute one output

pixel (radon space), i.e. 7 rays in parallel are computed. (a) 7 threads

in parallel start computing 7 rays. Red boxes highlight the first pixel

loaded for each thread. (b) Second set of pixels are highlighted.

(c) Last set of pixels are highlighted. Assuming the threads are

synchronized, note that all threads read the same row of pixels. . . 126

4.14 Kernel algorithm for each core on the GPU to compute one ray of

the forward Discrete Periodic Radon Transform R(m, d) of the image

f(i, j) of size N × N . R(m, d) is mapped to a vector radon[k] and

f(i, j) is mapped to a vector img[k], both using row-major order. . 127

4.15 Kernel algorithm for each core on the GPU to compute one ray of the

inverse Discrete Periodic Radon Transform f(i, j) of the radon space

R(m, d) of size (N + 1)×N . R(m, d) is mapped to a vector radon[k]

and f(i, j) is mapped to a vector img[k], both using row-major order. 128

4.16 Comparative running time for different implementations of the for-

ward DPRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.17 Comparative running time for different implementations of the in-

verse DPRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.18 Speedup for different implementations of the forward DPRT with

respect to the serial implementation (fSER). . . . . . . . . . . . . . 134



xxv

4.19 Speedup for different implementations of the inverse DPRT with re-

spect to the serial implementation (iSER). . . . . . . . . . . . . . . 135

B.1 Required tree resources as a function of the number of strip rows or

number of blocks (X), and the number of bits per pixel (B). Refer

to Table ?? for definitions of Aff, AFA, Amux. For Aff, the resources do

not include the input registers, but do include the output registers

since they are implemented in SFDPRT core and iSFDPRT core. . . 145

C.1 Required tree resources as a function of the zero padded image (N),

and the number of bits per pixel (D). Refer to Table ?? for definitions

of Affb, AFA. Remove step ?? to compute Aff (without input buffers) 146



xxvi

List of Tables

2.1 Total number of clock cycles for computing the DPRT. In all cases,

the image is of size N × N , and H = 2, . . . , N is the scaling factor

for the SFDPRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Total number of clock cycles for computing the iDPRT. Here, the

image size is N ×N . B bits per pixel are used, and H = 2, . . . , N is

the scaling factor of the iSFDPRT. Add N clock cycles in the scalable

version if MEM IN is used. . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Resource usage for different DPRT and inverse DPRT implementa-

tions. Here, consider an image size of N × N , B bits per pixel,

n = dlog2Ne, h = dlog2He, K = dN/He, and H = 2, . . . , N . For

the adder trees, define Aff to be number of required flip-flops, and AFA

to be the number of 1-bit additions. For the register array, define Amux

to be the number of 2-to-1 MUXes. Aff, AFA, and Amux grow linearly

with respect to N and can be computed using the algorithm given

in the appendix (Fig. ??). For the inverse DPRT, note that each

divider is implemented using 3(B + 2n)2 flip-flops, (B + 2n)2 1-bit

additions, and (B + 2n)2 2-to-1 MUXes [3]. Here, the term “1-bit

additions” refers to the number of equivalent 1-bit full adders. . . . 62



xxvii

2.4 Total number of resources for RAM (in 1-bit cells) and MUXes (2-

to-1 muxes). The resources are shown for N = 251. Except for the

MUXes for the SFDPRT, the values refer to any H. The number of

MUXes for the SFDPRT refer to values of H that lie on the Pareto

front∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Resource usage for different 1-D Circular Convolutions implementa-

tions. Here, there are two zero padded images g and h of size N×N ,

B and C bits per pixel respectively and n = dlog2Ne. For the adder

tree, it is defined Affb to be number of required flip-flops including

input buffers, and AFA to be the number of 1-bit additions. Affb and

AFA grow linearly with respect to N and can be computed using the

algorithm given in the appendix (Fig. ??). For the multipliers, note

that each one is implemented using two inputs of size B + n and

C + n bits and an output of B + C + 2n bits. Here, the term “1-bit

additions” refers to the number of equivalent 1-bit full adders. . . . 89

3.2 SRAM System configuration. The Word size listed is for maximum

accuracy. Orientation refers to each SRAM holding either for a full

row or column of the image. The Accumulate mode needs external

adders to perform the accumulation and dual-port SRAMs for full

speed. Consider B as the number of bits of the input image, C bits

for kernel coefficients. q1 = dlog2Q1e, q2 = dlog2Q2e . . . . . . . . 92



xxviii

3.3 Resource usage for different Linear Convolvers implementations. He-

re, all the quantities are given for maximum accuracy. For the adder

tree, define Affb as the number of required flip-flops including input

buffers, and AFA to be the number of 1-bit additions. Affb and AFA

grow linearly with respect to Q2 and can be computed using the

algorithm given in the appendix (Fig. ??). For the multipliers, note

that each one is implemented using two inputs of size B + C + q2

and C bits and an output of B + 2C + q2 bits. Here, the term “1-

bit additions” is used to refer to the number of equivalent 1-bit full

adders. Recall N2 = P2 +Q2− 1. . . . . . . . . . . . . . . . . . . 92

3.4 Running time for a 2-D linear convolution between an image g(i, j)

and a large non-separable kernel h(i, j) with rank r, both of size

P × P . The convolved result f(i, j) has a size of N × N , where

N = 2P − 1, n = dlog2Ne and p = dlog2 P e. For ScaSys P needs

to be a composite number P = PA × PB. For FFTr2, D = 1, . . . , N

represents the number of 1-D FFT units running in parallel. . . . . 99

3.5 Resource usage for a 2-D linear convolution between an image g(i, j)

and a large non-separable kernel h(i, j), both of size P × P . The

convolved result f(i, j) has a size of N × N , where N = 2P − 1,

n = dlog2Ne and p = dlog2 P e. For ScaSys P needs to be a com-

posite number P = PA × PB. Define Affb (a, b) to be number of

required flip-flops inside the a-operand of b bits adder tree including

input buffers, Aff () without input buffers and AFA () to be the num-

ber of 1-bit additions, all grow linearly with respect to N and can be

computed using the algorithm given in the appendix (Fig. ??). . . 102

3.6 Memory usage for a 2-D linear convolution between an image g(i, j)

and a large non-separable kernel h(i, j) both of size 64 × 64. For

ScaSys PA = 2, 4, 8, 16. . . . . . . . . . . . . . . . . . . . . . . . . . 104



xxix

4.1 Technical specifications for the GPU GM204, compute capability 5.2

(Maxwell Architecture). . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Closest running time to 33.33ms for real time video applications of

fSER, fCPU and fGPU . . . . . . . . . . . . . . . . . . . . . . . . . 136



1

Chapter 1

Introduction

The Discrete Radon Transform (DRT) is an essential component of a wide range of

applications in image processing [4, 5]. Applications of the DRT include the clas-

sic application of reconstructing objects from projections in computed tomography,

radar imaging, and magnetic resonance imaging [4, 5]. Furthermore, the DRT has

also been applied in image denoising [6], image restoration [7], texture analysis [8],

line detection in images [9], and encryption [10]. More recently, the DRT has been

applied in erasure coding in wireless communications [11], signal content delivery

[12], and compressive sensing [13].

A popular method for computing the DRT involves the use of the Fast Fourier

Transform (FFT). The basic approach is to sample the 2-D FFT along different

radial lines through the origin and then use the 1-D inverse FFT along each line to

estimate the DRT. This direct approach suffers from many artifacts that have been

discussed in [6]. Assuming that the DRT is computed directly, Beylkin proposed an



2

exact inversion algorithm in [14]. A significant improvement to this approach was

proposed by Kelley and Madisetti by eliminating interpolation calculations [15].

The initial motivation of the current dissertation is to investigate the develop-

ment of DPRT algorithms that are both fast and scalable. Here, I use the term

fast to refer to the requirement that the computation will provide the result in the

minimum number of cycles. Also, I use the term scalable to refer to the requirement

that the approach will provide the fastest implementation based on the amounts of

available resources. The dissertation also develops new, efficient, parallel algorithms

for computing the DPRT and its inverse on GPUs and multi-core CPUs.

The scope of the dissertation was then expanded to cover convolution and cross-

correlation applications. The interest in convolution and cross-correlation is due to

the fact that these operations are essential in a wide range of applications in the field

of image and video processing. The performance of most image processing systems

is directly affected by the speed at which we can perform 2-D convolutions. There is

thus perennial interest in developing fast methods for computing 2-D convolutions.

There is also renewed interest in developing fast convolution methods that can fit in

new devices. The dissertation presents novel implementations of 2-D convolutions

and cross-correlations that can be computed as fast as O(N) clock cycles provided

that we have the available resources.



3

1.1 Thesis Statement

I believe that it is possible to develop fast and scalable architectures and algorithms

for the computation of the Discrete Periodic Radon Transform (DPRT) and its in-

verse (iDPRT), that will enable the application of the DPRT in different areas where

its use was limited due the lack of a fast implementation (e.g., in 2D convolutions

and cross-correlations). Furthermore, I believe that it is possible to develop highly

efficient, parallel DPRT and iDPRT algorithms on existing GPUs and multi-core

CPUs.

1.2 Contributions

A list of the main contribution includes:

• A scalable and fast framework for computing the DPRT and its inverse. The

dissertation develops a set of parallel algorithms and associated scalable archi-

tectures to compute the forward and inverse DPRT of an N × N image that

allows effective implementations based on different constraints on running time

and resources. In terms of resources and running time, the scalable framework

provides optimal configurations in the multi-objective sense. In terms of per-

formance, the fastest architecture computes the DPRT in linear time (with

respect to N). This is the fastest implementation to date.

• A scalable and fast framework for computing convolutions and cross correla-

tions for relatively large image sizes (of the order of the image size). Scalability



4

is based on the scalable DPRT framework, the scalable computation of 1D con-

volutions in the DPRT domain, LU decompositions, and the use of an overlap

and add approach. Similar to the FFT, the DPRT can be used for computing

linear convolutions using zero-padding. To compute 2-D linear convolutions

between an image of size P1×P2 and a relatively large (of the order of the im-

age size) and non-separable kernel Q1×Q2, we can use DPRTs of size of N×N

where N = NextPrime(max(P1+Q1−1, P2+Q2−1)). In terms of resources and

running time, each solution (by itself) is optimal in the multi-objective sense.

When the rank of the non-separable kernel is low, the framework based on the

LU decomposition becomes the optimal solution, and for high-rank kernels,

the framework based on the DPRT is the optimal solution. In terms of perfor-

mance, the fastest architecture based on the DPRT computes the 2-D linear

convolution in linear time (with respect to N). And for low rank kernels, the

fastest architecture based on the LU decomposition computes the 2-D linear

convolution in linear time.

• A scalable and fast framework for computing the forward and inverse DPRT

using GPUs and multi-coure CPUs. Scalability on the GPUs is a function of

the number of multi-processors (MIMD) and their associated cores (SIMD).

For the CPUs, scalability is a function of the number of cores (MIMD).



5

1.2.1 Specific contributions for the Scalable and Fast DPRT

and its inverse

Specific contributions over the best previous algorithms, architectures and practical

implementations of the DPRT are as follows:

• Fast and scalable architecture that can be adapted to available re-

sources : The proposed approach is designed to be fast in the sense that col-

umn sums are computed on every clock cycle. In the fastest implementation,

a prime direction of the FDPRT is computed on every clock cycle. More gen-

erally, the approach is scalable, allowing to handle larger images with limited

computational resources.

• Pareto-optimal DPRT and iDPRT based on running time and re-

sources : The proposed approach is shown to be Pareto-optimal in terms of

the required cycles and required resources. Thus, as compared to previous ap-

proaches, the scalable approach provides the fastest known implementations for

the given computational resources. As an example, in the fastest case, for an

N×N image (N prime), the DPRT is computed in linear time (2N+dlog2Ne+1

clock cycles) requiring resources that grow quadratically (O(N2)). In the most

limited resources case, the running time is quadratic (dN/2e (N + 9) + N + 2

clock cycles) requiring resources that grow linearly (O(N)). A Pareto-front

of optimal solutions is given for resources that fall within these two extreme

cases. All prior research in this area focused on the development of a single



6

architecture. Furthermore, when sharing comparable computational resources,

the proposed approach is always better than previously published approaches.

For example, in [2], the authors reported the fastest previous implementation

that required N2 + N + 1 clock cycles requiring resources that grow quadrat-

ically with N . Similar results are obtained for the inverse DPRT, although

results for this case were not previously reported.

• Fastest possible implementation of the FDPRT and iFDPRT : For

the fastest case, it is shown that the scalable architecture can be further reduced

to obtain the FDPRT and iFDPRT in 2N+dlog2Ne+1 and 2N+3 dlog2Ne+

B+ 2 cycles respectively (B is the number of bits used to represent each input

pixel).

• Parallel and pipelined implementation : Parallel and pipelined implemen-

tations are proposed providing an improvement over the sequential algorithm

proposed by [16] and used in [1],[2]. For H = 2, . . . , N , the scalable approach

computes N × H additions in a single clock cycle. Furthermore, shift regis-

ters are used to make data available to the adders in every clock cycle. Then,

additions and shifts are performed in parallel in the same clock cycle.

• Unique fast transposition method : A RAM-based architecture and asso-

ciated algorithm that provides a complete row or column of the input image in

one clock cycle. Using this parallel RAM access architecture, transposition is

avoided since the image can be accessed by either rows or columns.



7

• Generic architectures: The proposed architectures are not tied to any par-

ticular hardware. They can be applied to any existing hardware (e.g., FPGA

or VLSI).

1.2.2 Specific contributions for the Fast 2-D Convolutions

and Cross-Correlations Using Scalable Architectures

The contributions are listed in terms of the DPRT and LU based methods. We

begin with contributions for both the DPRT and LU frameworks and then present

the specific contributions for each framework.

Specific contributions over the best previous 2-D convolution/cross-correlation

systems for non-separable and relatively large kernels are as follows:

• Fast and scalable architectures that can be adapted to available re-

sources for both frameworks: The proposed approaches are designed to

be fast because of the mapping of 2-D convolutions into fast 1-D convolutions.

For the DPRT framework, scalability comes from the control of the number

of 1-D convolution kernels. For the LU framework, scalability comes from the

separability of the kernels and its decomposition into low-rank 1D kernels. For

the fastest implementations, a throughput of N convolved pixels per clock cycle

is achieved.

• Pareto-optimal 2-D convolutions and cross-correlations based on

running time and resources for both frameworks : The proposed ap-



8

proaches are shown to be Pareto-optimal in terms of the required cycles and

required resources. Thus, as compared to previous approaches, the scalable

approach provides the fastest known implementations for the given computa-

tional resources. For each framework, a Pareto-front of optimal solutions is

given for resources that fall within the fastest and the slowest running time.

The proposed approach is always better than previously published approaches

for large and non-separable kernels.

• Generic architectures for both frameworks : The proposed architectures

are not tied to any particular hardware. They can be implemented in an FPGA.

• Custom SRAM architectures to provide fast transposition and ac-

cumulation of the results for computing fast cross-correlations and

the LU framework : The dissertation presents different RAM-based archi-

tectures and associated algorithms that allow access, storage or accumulation

of the results from a row or column in a single clock cycle. Using the custom

SRAM architectures, transposition is avoided since the partial results can be

accessed by either rows or columns.

• Parallel and pipelined 1-D circular convolvers for the DPRT frame-

work : The DPRT framework loads N pixels in a single clock cycle and com-

putes one output pixel per clock cycle.

• Parallel and pipelined 1-D linear convolvers for LU framework :

The LU framework loads a complete row of pixels in a single clock cycle and



9

computes one output pixel per clock cycle.

1.2.3 Specific contributions for the computation of the DP-

RT and its inverse on multi-core CPUs and GPUs

The contributions are as follows:

• Parallel implementations of the DPRT and iDPRT on multi-core

CPUs : The parallel implementations distribute processing of the prime direc-

tions among all the logical cores available. Compared to a serial (single-core)

implementation, the proposed approach achieved a tenfold speedup with 16

logical cores (C and Pthreads implementation).

• New parallel and memory efficient DPRT and iDPRT implemen-

tations on GPUs : The proposed approach distributes the computation of

the prime directions among the multiprocessors (MP). Within each MP, the

rays associated with each prime direction are distributed among the cores. The

proposed algorithms were coded in C/CUDA where: (i) parallel threads were

synchronized to always read the same row of pixels at the same time, (ii) effi-

cient memory access is achieved by enforcing row-major ordering for reads and

writes, and (iii) further specific optimizations for the GPU Nvidia GeForce

GTX980 were applied (pixel width, optimal concurrency of warps, fast address

calculation and modulo operation masking). For 16 multi-process with 128

cores each, compared to a serial implementation, the speedup is of the order of

715 (max=853x for DPRT, max=873x for inverse DPRT).



10

1.3 Overview of Dissertation

This dissertation is organized into 5 chapters. The work described in each chapter

is presented below.

Chapter 2 presents a new scalable approach to compute the DPRT and its inverse

that balances the use hardware resources versus execution time.

Chapter 3 presents a fast and scalable framework for computing 2-D linear con-

volutions and cross-correlations for relatively large and non-separable kernels.

Chapter 4 presents new parallel algorithms for the computation of the forward

and inverse DPRT on CPUs and GPUs. The proposed algorithms are implemented

in currently available hardware.

Chapter 5 presents conclusions and future work.

Also, on the appendices I include a summary of my research (App. A), two

algorithms for the computation of flip-flops, full adders and muxes in adder trees

(App. B, C) and the source code for the CPU and GPU implementations of the

DPRT and its inverse (App. D, E,F).



11

Chapter 2

Scalable Fast Discrete Periodic

Radon Transform and its inverse

This chapter describes Fast and Scalable architectures and algorithms for computing

the DPRT and its inverse (iFDPRT). The work presented here has been published

in:

C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable computation of

the forward and inverse discrete periodic radon transform,”, IEEE Transactions on

Image Processing, vol. 25, no. 1, pp. 119-133, Jan 2016.

C. Carranza, D. Llamocca, and M. Pattichis, “A scalable architecture for imple-

menting the fast discrete periodic radon transform for prime sized images,” in 2014

IEEE International Conference on Image Processing (ICIP), Oct 2014, pp. 1208-

1212.

C. Carranza, D. Llamocca, and M. Pattichis, “The fast discrete periodic radon



12

transform for prime sized images: Algorithm, architecture, and vlsi/fpga implemen-

tation,” in 2014 IEEE Southwest Symposium on Image Analysis and Interpretation

(SSIAI), April 2014, pp. 169-172.

In what follows, the content of the first journal have been merged with extracts

of the other two in order to provide a better understanding to the reader.

The discrete periodic radon transform (DPRT) has been extensively used in ap-

plications that involve image reconstructions from projections. Beyond classic appli-

cations, the DPRT can also be used to compute fast convolutions that avoids the use

of floating-point arithmetic associated with the use of the Fast Fourier Transform.

Unfortunately, the use of the DPRT has been limited by the need to compute a large

number of additions and the need for a large number of memory accesses.

This chapter introduces a fast and scalable approach for computing the forward

and inverse DPRT that is based on the use of: (i) a parallel array of fixed-point

adder trees, (ii) circular shift registers to remove the need for accessing external

memory components when selecting the input data for the adder trees, (iii) an image

block-based approach to DPRT computation that can fit the proposed architecture

to available resources, and (iv) fast transpositions that are computed in one or a few

clock cycles that do not depend on the size of the input image.

As a result, for an N × N image (N prime), the proposed approach can com-

pute up to N2 additions per clock cycle. Compared to previous approaches, the

scalable approach provides the fastest known implementations for different amounts

of computational resources. For example, for a 251 × 251 image, for approximately



13

25% fewer flip-flops than required for a systolic implementation, the scalable DPRT

is computed 36 times faster. For the fastest case, optimized architectures are pre-

sented that can compute the DPRT and its inverse in just 2N + dlog2Ne + 1 and

2N + 3 dlog2Ne + B + 2 cycles respectively, where B is the number of bits used to

represent each input pixel. On the other hand, the scalable DPRT approach requires

more 1-bit additions than for the systolic implementation and provides a trade-off

between speed and additional 1-bit additions.

2.1 Introduction

Fixed point implementations of the DRT can be based on the Discrete Periodic

Radon Transform (DPRT). Grigoryan first introduced the forward DPRT algorithm

for computing the 2-D Discrete Fourier Transform as discussed in [17]. In related

work, Matus and Flusser presented a model for the DPRT and proposed a sequential

algorithm for computing the DPRT and its inverse for prime sized images [16]. This

research was extended by Hsung et al. for images of sizes that are powers of two [18].

Similar to the continuous-space Radon Transform, the DPRT satisfies discrete

and periodic versions of the the Fourier slice theorem and the convolution property.

Thus, the DPRT can lead to efficient, fixed-point arithmetic methods for comput-

ing circular and linear convolutions as discussed in [18]. The discrete version of the

Fourier slice theorem provides a method for computing 2-D Discrete Fourier Trans-

forms based on the DPRT and a minimal number of 1-D FFTs (e.g., [17, 19]).

A summary of DPRT architectures based on the algorithm described by [16] can



14

be found in [20]. In [16], the DPRT of an image of size N × N (N prime) requires

(N + 1)N(N − 1) additions. Based on the algorithm given in [16], a serial and

power efficient architecture was proposed in [1]. In [1], the authors used an address

generator to generate the pixels to add. The DPRT sums were computed using an

accumulator adder that stores results from each projection using N shift registers.

The serial architecture described in [1] required resources that grow linearly with the

size of the image while requiring N(N2 + 2N + 1) clock cycles to compute the full

DPRT.

Also based on the algorithm given in [16], a systolic architecture implementation

was proposed in [2]. The architecture used a systolic array of N(N + 1)(log2N) bits

to store the addresses of the values to add. The pixels are added using using (N + 1)

loop adder blocks. The data I/O was handled by N + 1 dual-port RAMs. For this

architecture, resource usage grows as O(N2) at a reduced running time of N2+N+1

cycles for the full DPRT.

The motivation for the current chapter is to investigate the development of DPRT

algorithms that are both fast and scalable. Recall that fast refers to the requirement

that the computation will provide the result in the minimum number of cycles. On

the other hand, scalable refers to the requirement that the approach will provide the

fastest implementation based on the amounts of available resources.

This chapter is focused on the case that the image is of size N×N and N is prime.

For prime N , the DPRT provides the most efficient implementations by requiring the

minimal number of N + 1 primal directions [21]. In contrast, there are 3N/2 primal



15

directions in the case that N = 2p where p is a positive integer [22]. On the other

hand, despite the additional directions, it is possible to compute the directional sums

faster for N = 2p, as discussed in [23, 24]. However, it is important to note that

prime-numbered transforms have advantages in convolution applications. Here, just

like for the Fast Fourier Transform (FFT), zero-padding can be used to extend the

DPRT for computing convolutions in the transform domain. Unfortunately, when

using the FFT with N = 2p, zero-padding requires the use of FFTs with double the

size of N . In this case, it is easy to see that the use of prime-numbered DPRTs

is better since there are typically many prime numbers between 2p and 2p+1. For

example, it can be shown that the n-th prime number is approximately n log(n)

which gives an approximate sequence of primes that are n log(n), (n + 1) log(n + 1)

which is a lot more dense than what can be accomplished with powers of two 2n, 2n+1

[25]. As a numerical example, there are 168 primes that are less than 1000 as opposed

to just 9 powers of 2. Thus, instead of doubling the size of the transform, It can be

used a DPRT with only a slightly larger transform.

This chapter introduces a fast and scalable approach for computing the forward

and inverse DPRT that is based on parallel shift and add operations. Preliminary

results were presented in conference publications in [26, 27]. The conference paper

implementations were focused on special cases of the full system discussed here, re-

quired an external system to add the partial sums, assumed pre-existing hardware

for transpositions, and worked with image strip-sizes that were limited to powers of

two. The current chapter includes: (i) a comprehensive presentation of the theory

and algorithms, (ii) extensive validation that does not require external hardware for



16

partial sums and transpositions, (iii) works with arbitrary image strip sizes, and

also includes (iv) the inverse DPRT. In terms of the general theory presented in

this chapter, the conference paper publications represented some special cases. The

contributions of the current chapter over previously proposed approaches are sum-

marized in the following paragraphs.

Overall, a fundamental contribution of the chapter is that it provides a fast and

scalable architecture that can be adapted to available resources. The approach is

designed to be fast in the sense that column sums are computed on every clock

cycle. In the fastest implementation, a prime direction of the DPRT is computed on

every clock cycle. More generally, the approach is scalable, allowing to handle larger

images with limited computational resources.

Furthermore, this chapter provides a Pareto-optimal DPRT and inverse DPRT

based on running time and resources measured in terms of one-bit additions (or

1-bit full-adders) and flip-flops. Thus, the proposed approach is shown to be Pareto-

optimal in terms of the required cycles and required resources. Here, Pareto-optimali-

ty refers to solutions that are optimal in a multi-objective sense (e.g., see [28]). Thus,

in the current application, Pareto-optimality refers to the fact that the scalable

approach provides the fastest known implementations for the given computational

resources. As an example, in the fastest case, for an N × N image (N prime),

the DPRT is computed in linear time (2N + dlog2Ne + 1 clock cycles) requiring

resources that grow quadratically (O(N2)). In the most limited resources case, the

running time is quadratic (dN/2e (N + 9) + N + 2 clock cycles) requiring resources



17

that grow linearly (O(N)). A Pareto-front of optimal solutions is given for resources

that fall within these two extreme cases. All prior research in this area focused on

the development of a single architecture. Similar results are obtained for the inverse

DPRT, although results for this case were not previously reported.

In terms of speed, this chapter describes the fastest possible implementation of

the DPRT and inverse DPRT. For the fastest cases, assuming sufficient resources for

implementation, the fast DPRT (FDPRT) and the fast inverse DPRT (iFDPRT) are

introduced to compute the full transforms in 2N+dlog2Ne+1 and 2N+3 dlog2Ne+

B+2 cycles respectively (B is the number of bits used to represent each input pixel).

To achieve the performance claims, parallel and pipelined implementations are

described providing an improvement over the sequential algorithm proposed by [16]

and used in [1],[2]. To summarize the performance claims, let the N×N input image

be sub-divided into strips of H rows of pixels. Then, for H = 2, . . . , (N − 1)/2, this

scalable approach computes N × H additions in a single clock cycle. Furthermore,

shift registers are used to make data available to the adders in every clock cycle.

Then, additions and shifts are performed in parallel in the same clock cycle.

In addition, the use of fast transpositions is presented. A unique transpositions

method is proposed based on a RAM-based architecture and associated algorithm

that provides a complete row or column of the input image in one clock cycle. Using

this parallel RAM access architecture, transposition is avoided since the image can

be accessed by either rows or columns.

Finally, a generic family of architectures is provided. Thus, the proposed archi-



18

tectures are not tied to any particular hardware. They can be applied to any existing

hardware (e.g., FPGA or VLSI).

The rest of the chapter is organized as follows. The mathematical definitions for

the DPRT and its inverse along with previous DPRT implementations are given in

section 2.2. The proposed approach is given in section 2.3. Section 2.4 describes the

architecture implementation details. Section 2.6 presents the results. Conclusions

and future work are given in section 2.7.

2.2 Background

The purpose of this section is to introduce the basic definitions associated with the

DPRT and provide a very brief summary of previous implementations. The notation

is introduced in section 2.2.1. Then the definitions of the DPRT and its inverse

are produced in section 2.2.2. A summary of previous implementations is given in

section 2.2.3.

2.2.1 Notation summary

Consider N ×N images where N is prime. Let ZN denote the non-negative integers:

{0, 1, 2, . . . , N − 1}, and l2(Z2
N) be the set of square-summable functions over Z2

N .

Then, let f ∈ l2(Z2
N) be a 2-D discrete function that represents an N × N image,

where each pixel is a positive integer value represented with B bits. Also, subscripts

are used to represent rows. For example, fk(j) denotes the vector that consists of



19

the elements of f where the value of k is fixed. Similarly, for R(r,m, d), Rr,m(d)

denotes the vector that consists of the elements of R with fixed values for r,m. Here,

note that all but the last index is fixed. 〈α〉β is used to denote the modulo function.

In other words, 〈α〉β denotes the positive remainder when α is divided by β where

α, β > 0.

To establish the notation, consider the following an example. For an 251 × 251

8-bit image, we have N = 251, B = 8, and f represents the image. Then, f1(j)

represents the row number one in the image. In 3-dimensions, R1,2(d) denotes the

elements R(r = 1,m = 2, d), where d id allowed to vary. For the modulo-notation,

〈255〉251 = 4 represents the integral remainder when 255 is divided by N = 251.

R(m, d) is used to denote the DPRT of f and R′(r,m, d) to index the r-th partial

sum associated with R(m, d). Here, R′ is used for explaining the computations

associated with the scalable DPRT.

2.2.2 Discrete Periodic Radon Transform and its Inverse

The definition of the DPRT and its inverse (iDPRT) based on [18] is given as follows.

Let f be square-summable. The DPRT of f is also square summable and given by:

R(m, d) =



N−1∑
i=0

f(i, 〈d+mi〉N), 0 ≤ m < N,

N−1∑
j=0

f(d, j), m = N,

(2.1)

where d ∈ ZN and m ∈ ZN+1. The row vector k of R(m, d) is denoted as Rk(d)

which represents the k projection of f(i, j). Fig. 2.1 provides an illustration of the



20

f(i,j)

j

R(m,d)

m

d

Â

0

0

N-1

N-1N-1

N

0

0
i

Â -1

Rk(d)

k

 
Figure 2.1: Illustration of the DPRT and its iDPRT for a function f of size N ×N ,
where N is prime. Each row of R(m, d), denoted as a vector Rk(d), k = 0, . . . , N ,
represents a projection of f(i, j).

DPRT applied to a discrete image f(i, j) of size N ×N , where N is prime; also the

k projection of f(i, j), Rk(d), is shown, k = 0, . . . , N .

Observe that the summations in (2.1) are done over the discrete periodic line

segment parameterized by (i, 〈d+mi〉N) for the projections captured with 0 ≤ m <

N and (d, j) for the projection captured with m = N . The projections are given

along the directional vectors (1,m) for 0 ≤ m < N and (0, 1) for m = N which

represent the prime directions. The prime directions of an 7 × 7 image f(i, j) are

shown in Fig. 2.2(a), and an example of one periodic line segment (defined by the

prime direction (1,2)) used to compute R(2, 0) is shown in Fig. 2.2(b).

The iDPRT recovers the input image as given by:

f (i, j) =
1

N

[
N−1∑
m=0

R (m, 〈j −mi〉N)− S +R (N, i)

]
(2.2)



21

i

j

(1,0) (1,1)

(1,2)

(1,3)

(1,4)
(1,5)
(1,6)

(0,1)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

j

i

(1,2)

 
(a)

i

j

(1,0) (1,1)

(1,2)

(1,3)

(1,4)
(1,5)
(1,6)

(0,1)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

j

i

(1,2)

(b)

Figure 2.2: DPRT Example for a 7× 7 image. (a) Prime directions; (b) Main image
(at center with bold boxes) and its periodic extensions. Pixels marked with ×:
samples along periodic line for prime direction (1, 2), pixels marked with × in grey
boxes are added to compute R(2, 0)

where:

S =
N−1∑
j=0

N−1∑
i=0

f(i, j). (2.3)

From (2.3), it is clear that S represents the sum of all of the pixels. Since each

projection computes the sums over a single direction, the results can be added from

any one of these directions to compute S as given by:

S =
N−1∑
d=0

R(m, d). (2.4)

Note that the DPRT as given by (2.1) requires the computation of N + 1 pro-

jections. All of these projections are used in the computation of iDPRT as given in

(2.2). In (2.2), the last projection computes R(N, i) that is needed in the summation.



22

2.2.3 previous DPRT implementations

DPRT implementations have focused on implementing the algorithm proposed in

[16]. The basic algorithm is sequential that relies on computing the indices i, j to

access f(i, j) that are needed for the additions in (2.1). For each prime direction, as

shown in (2.1), the basic implementation requires N2 memory accesses and N(N−1)

additions. For computing all of the prime directions (N + 1), (N + 1)N2 memory

accesses and (N + 1)N(N − 1) additions are required.

Based on [16], hardware implementations have focused on computing memory

indices, followed by the necessary additions [1], [2]. An advantage of the serial

architecture given in [1] is that it requires hardware resources that grow linearly

with N (for and N ×N image). Unfortunately, this serial architecture leads to slow

computation since it computes the DPRT in a cubic number of cycles (N(N2+2N+1)

clock cycles). A much faster, systolic array implementation was presented in [2].

The systolic array implementation computes N indices and N additions per cycle.

Overall, the systolic array implementation requires hardware resources that grow

quadratically with N while requiring N2 + N + 1 clock cycles to compute the full

DPRT.

The proposed architecture does not require memory indexing and computes the

additions in parallel. Furthermore, the new architecture is scalable, and thus allows

to consider a family of very efficient architectures that can also be implemented with

limited resources.



23

N

H

.

.

.

Strip 0

Strip K-1

.

.

.

Sequential 

processing 

of K strips

Partial DPRT 

computation of f

Image f(i,j)

N

H

R’(0,m,d)

å

j

i

m
d

.

.

.

Sequential output 

of K planes of

(N+1) x N

R(m,d) decomposed in K planes

R’(1,m,d)
R’(2,m,d)

R’(K-1,m,d)

...

N+1

H

áNñH

Strip 1

...

 

Figure 2.3: Scalable DPRT concept. The input image is divided into K strips. The
DPRT is computed by accumulating the partial sums from each strip.

2.3 Methodology

This section presents a new fast algorithm and associated scalable architecture that

can be used to control the running time and hardware resources required for the

computation of the DPRT. Additionally, the approach to the inverse DPRT (iDPRT)

is extended. At the end of the section, an optimized architecture implementation

that computes the DPRT and iDPRT in the least number of clock cycles is provided

.

2.3.1 Partial DPRT

For the development of scalable architecture implementations, the concept of the

partial DPRT is introduced. The basic concept is demonstrated in Fig. 2.3 and

formally defined below.

The idea is to divide f into strips that contain H rows of pixels except for the

last one that is composed of the remaining number of rows needed to cover all of the



24

N rows (see Fig. 2.3). Here, note that the height of the last strip will be 〈N〉H 6= 0

since N is prime. Now, let K be the number of strips, then K = dN/He. In what

follows, let r denote the r-th strip. the DPRT over each strip is computed using:

R(m, d) =



K−1∑
r=0

L(r)−1∑
i=0

f(i+ rH, 〈d+m(i+ rH)〉N),

0 ≤ m < N

K−1∑
r=0

L−1∑
j=0

f(d, j + rH), m = N

(2.5)

where

L(r) =


H, r < K − 1

〈N〉H r = K − 1.

(2.6)

Let R′(r,m, d) denote the r-th partial DPRT defined by:

R′(r,m, d) =



L(r)−1∑
i=0

f(i+ rH, 〈d+m(i+ rH)〉N),

0 ≤ m < N

L(r)−1∑
j=0

f(d, j + rH), m = N

(2.7)

where, r = 0, . . . , K − 1 is the strip number. Therefore, the DPRT can be computed

as a summation of partial DPRTs using:

R(m, d) =
K−1∑
r=0

R′(r,m, d). (2.8)

Similarly, the partial iDPRT of R(m, d) is defined using

f ′(r, i, j) =

L(r)−1∑
m=0

R(m+ rH, 〈j − i(m+ rH)〉N) (2.9)



25

+MEM_IN MEM_OUT

SFDPRT_core
f(i,j) R(m,d)

Strip

partial 

DPRT

Accumulated 

DPRT

 

Figure 2.4: Top level system for implementing the Scalable and Fast DPRT (SFD-
PRT). The SFDPRT core computes the partial sums. MEM IN and MEM OUT are dual
port input and output memories. A Finite State Machine (FSM, not shown in the
figure) is needed for control. See text in Sec. 2.3.2 for more details.

which allows to compute the iDPRT of R(m, d) using a summation of partial iDPRTs:

f(i, j) =
1

N

[
K−1∑
r=0

f ′(r, i, j)− S +R (N, i)

]
. (2.10)

In what follows, let n = dlog2Ne, h = dlog2He, and R′r,m(d) be an N -th dimensional

vector representing the partial DPRT of strip r.

2.3.2 Scalable Fast Discrete Periodic Radon Transform (SF-

DPRT)

In this section, the scalable DPRT hardware architecture is developed by imple-

menting the partial DPRT concepts presented in Fig. 2.3. The top-level view of the

hardware architecture for the scalable DPRT is presented in Fig. 2.4 and the associ-

ated algorithm in Fig. 2.5. Refer to Fig. 2.3 for the basic concepts. The basic idea

is to achieve scalability by controlling the number of rows used in each rectangular

strip. Thus, for the fastest performance, the largest pareto-optimal strip size that

can be implemented using available hardware resources is chosen. The final result is



26

computed by combining the DPRTs as given in (2.7).

An overview of the architecture is presented in Fig. 2.4. Here, we have three

basic hardware blocks: the input memory block (MEM IN), the partial DPRT com-

putation block (SFDPRT core), and output/accumulator memory block (MEM OUT).

The input image f is loaded into the input buffer MEM IN which can be implemented

using a customized RAM that supports access to each image row or column in a

single clock cycle. Partial DPRT computation is performed using the SFDPRT core.

SFDPRT core is implemented using an H × N register array with B bits depth so

as to be able to store the contents of a single strip. Each row of the SFDPRT core

register array is implemented using a Circular Left Shift (CLS) register that can be

used to align the image samples along each column. Each column of this array has

a H-operand fully pipelined adder tree capable to add the complete column in one

clock cycle. The output of the adder trees provide the output of the SFDPRT core,

which represents the partial DPRT of f . This combination of shift registers and

adders allows the computation of H ×N additions per clock cycle with a latency of

h. At the end, the outputs of the SFDPRT core are accumulated using MEM OUT. The

required computational resources are summarized in section 2.6.

A fast algorithm for computing the DPRT is summarized in Fig. 2.5. Also a

detailed timing diagram for each of the steps is presented in Fig. 2.6. For the timing

diagram, note that time increases to the right. Along the columns, each step and

the required number of cycles is labeled. Furthermore, computations that occur

in parallel will appear along the same column. To understand the timing for each



27

1: Load shifted image (f) in MEM IN

using CLS registers of SFDPRT core.
2: for r = 0 to K − 1 do
3: Load strip(r,‘row mode’) into the SFDPRT core

4: for k = 0 to N − 1 do
5: Shift in parallel all the H rows:

CLSa(H · r + a), a = 0, . . . , H − 1
6: Compute in parallel R

′

r,k(d)

7: Add partial result : Rk(d) = Rk(d) +R
′

r,k(d)
in MEM OUT

8: end for
9: end for

10: for r = 0 to K − 1 do
11: Load strip (r,‘column mode’) into the SFDPRT core

12: Compute in parallel R
′
r,N(d)

13: Add partial result : RN(d) = RN(d) +R
′
r,N(d)

in MEM OUT

14: end for

Figure 2.5: Top level algorithm for computing the scalable and fast DPRT (SFD-
PRT). Within each loop, all of the operations are pipelined. Then, each iteration
takes a single cycle. For example, the Shift, pipelined Compute, and the Add oper-
ations of lines 5, 6, and 7 are always computed within a single clock cycle. Refer to
section 2.2.1 for the notation.

computation, recall that N denotes the number of image rows, K denotes the number

of image strips where each strip contains a maximum of H image rows.

Furthermore, to explain the reduced timing requirements, note the special char-

acteristics of the pipeline structure. First, dual port RAMs (MEM IN and MEM OUT)

are used to allow to load and extract one image row per cycle. Thus, the computa-

tion of the first projection can be started while shifting (also see the overlap between

the second and third computing steps of Fig. 2.6). Second, note the use of fully

pipelined adder trees which allows to start the computation of the next projection

without requiring the completion of the previous projection (see overlap in projection



28

H H

H H

H H

...K strips

Load_rows Shift_rows Extract_shifted_rows

Shift_image:

K(H+1)

H+1 N h 1

H+1 N

H+1 N

...

DPRT (First N projections)

K(N+H+1)

H+1

H+1

H+1

DPRT (Last projection)

K(H+1)

Latency

h+1

Load_strip Partial_DPRT

Adder_latency

Store_in_MEM_OUT

Load_strip Adder_latency

N

Load

Image

1

1

1

h 1

h 1

h 1

h 1

h 1

Store_in_MEM_OUT

...

 

Figure 2.6: Running time for scalable and fast DPRT (SFDPRT). In this diagram,
time increases to the right. The image is decomposed into K strips. Then, the first
strip appears in the top row and the last strip appears in the last row of the diagram.
Here, H denotes the maximum number of image rows in each strip, K = dN/He is
the number of strips, and h = dlog2He represents the addition latency.

computations in Fig. 2.6).

Next, a summary of the entire process is depicted in Figs. 2.5 and 2.6. Initially,

a shifted version of the image is loaded into MEM IN. The significance of this step

is that the stored image allows computation of the last projection in a single cycle

without the need for transposition. Here, note that rows and columns of MEM IN can

be accessed in a single clock cycle. In terms of timing, the process of loading and

shifting in the image requires N +K(H + 1) cycles.

Then, the first N projections are computed by loading each one of the K strips

(outer loop) and then adding the partial results (inner loop). The partial DPRT for

the strip r is computed in the inner loop, (see lines 4 - 8 in Fig. 2.5). For computing

the full DPRT, the partial DPRT outputs are accumulated in MEM OUT. In terms of

timing, each strip requires N +H + 1 cycles as detailed in Fig. 2.6. Thus, it takes a

total of K(N +H + 1) cycles for computing the first N projections.

For the last projection, note the requirement for special handling (see lines 10-

14 in Fig. 2.5). This special treatment is due to the fact that unlike the first



29

N projections that can be implemented effectively using shift and add operations

of the rows, the last projection requires shift and add operations of the columns.

For this last projection requires K(H + 1) + h + 1 cycles which brings the total to

K(N + 3H + 3) + N + h + 1 cycles for computing the full DPRT. Furthermore,

the DPRT is represented exactly by using B + dlog2Ne bits where B represents the

number of input bits.

2.3.3 Inverse Scalable Fast Discrete Periodic Radon Trans-

form (iSFDPRT)

The scalable architecture for the iDPRT is given in Fig 2.7, and the associated

algorithm is given in Fig. 2.8. Here, we have three basic hardware blocks: (i) the

input memory block (MEM IN) (optional), (ii) the partial inverse DPRT computation

block (iSFDPRT core), and (iii) the output/accumulator memory block (MEM OUT).

The functionality of this system is the same as the SFDPRT (see Sec. 2.3.2) with the

exception of the extra circuit that performs the accumulation and normalization of

the output. Since there are many similarities between the DPRT and its inverse, the

focus is on explaining the most significant differences. The list of the most significant

differences include:

• Input size: The input is R(m, d) with a size of (N + 1)×N pixels.

• No transposition and optional use of MEM IN: A comparison between

(2.1) and (2.2) shows that second term of (2.1) is not needed for computing

(2.2). Thus, the horizontal sums that required fast transposition are no longer



30

+

MEM_OUTiSFDPRT_core
f(i,j)

R(m,d)

partial 

iDPRT

Accumulated 

iDPRT

-

S ¸

N

1

0

Last 

strip?
 

Figure 2.7: System for implementing the inverse, scalable and fast DPRT (iSFD-
PRT). The system uses the iSFDPRT core core for computing partial sums. The
system uses dual port input and output memories, an accumulator array and a Fi-
nite State Machine for control. See text in Sec. 2.3.3 for more details.

needed. As a result, MEM IN is only needed to buffer/sync the incoming data.

In specific implementations, MEM IN may be removed provided that the data

can be input to the hardware in strips as described in Fig. 2.8.

• Circular right shifting replaces circular left shifts: A comparison be-

tween (2.1) and (2.2) shows that the iDPRT index requires 〈j −mi〉N as op-

posed to 〈d+mi〉N for the DPRT. As a result, the circular left shifts (CLS) of

the DPRT becomes circular right shifts (CRS) for the iDPRT.

In terms of minor differences, note the special iDPRT terms of RN(d) and S in

(3.5) that are missing from the DPRT. These terms needed to added (for RN(d))

and subtracted (for S) for each summation term. Refer to Fig. 2.8 for details.

An optimized implementation that uses pipelined dividers with a latency of as

many clock cycles as the number of bits needed to represent the dividend is consid-



31

1: for r = 0 to K − 2 do
2: Load strip r into the iSFDPRT core

3: if r = 0 then
4: Compute S
5: end if
6: for k = 0 to N − 1 do
7: Shift in parallel all the H rows:

CRSa(H · r + a),
a = 0, . . . , H − 1

8: Compute in parallel f
′

r,k(j)

9: Add partial result fk(j) = fk(j) +R
′

r,k(j)
in MEM OUT

10: end for
11: end for
12: Load last strip into the iSFDPRT core

13: for k = 0 to N − 1 do
14: Shift in parallel 〈N〉H rows:

CRSa(H · r + a),
a = 0, . . . , 〈N〉H − 1

15: Compute in parallel f
′

r,k(j) +RN(d)

16: Add partial result: fk(j) = fk(j) + f
′

r,k(j) +RN(d)
17: Subtract S: fk(j) = fk(j)− S
18: Normalize by N: fk(j) = fk(j)/N

and store in MEM OUT

19: end for

Figure 2.8: Top level algorithm for computing the inverse Scalable Fast Discrete
Periodic Radon Transform f(i, j) = <−1(R(m, d)). With the exception of the strip
operations of lines 2 and 12, all other operations are pipelined and executed in a
single clock cycle. The strip operations require H clock cycles where H represents
the number of rows in the strip. See section 2.2.1 for the notation.

ered. Then, the total running time is K(N + H) + h + 3 + B + 2n as illustrated in

Fig. 2.9. Resource requirements are given in section 2.6.



32

H N

H N

H N

...

iDPRT (First K-1 strips):

(K-1)(H+N)

Partial_iDPRT Adder_latency

Partial_sum and

Store_in_MEM_OUT

K-1 strips

Load_strip

B+2nLast strip

iDPRT (Last strip):

H+N+h+3+B+2n

Substract_S

Normalizationh 2

h 2

h 1 1 1

Partial_sum

Store_in_MEM_OUT

 

Figure 2.9: Running time for computing the inverse, scalable, fast DPRT (iSFD-
PRT). Here, H denotes the maximum number of projection rows for each strip,
K = dN/He is the number of strips, h = dlog2He is the addition latency,
n = dlog2Ne, and B + 2n is the number of bits used to represent the results before
normalization.

2.3.4 Fast Discrete Periodic Radon Transform (FDPRT)

and its inverse (iFDPRT)

When there are sufficient resources to work with the entire image, there is no need to

break the image into strips. All the computations can be done in place without the

need to compute partial sums that will later have to be accumulated. In this case,

the use of the RAM is eliminated and simply hold the input in the register array.

For this case, the terms FDPRT and iFDPRT are used to describe the optimized

implementations. For the FDPRT, the register array is also modified to implement

the fast transposition that is required for the last projection (transposition time=1

clock cycle) as described in [26].

The basic idea to compute the FDPRT is to use a shift register architecture to

align the image samples that need to be added for each projection. Then, along



33

each shifted direction, an effective adder-tree approach can be used to provide for an

effective method for performing the additions.

To introduce the approach, consider projections along the prime directions given

by (1, p), p = 0, ..., N − 1 (note that the prime direction (0, 1) is not included yet).

Then, to compute the vector projection Rp(d) = R(p, d), d = 0, ..., N − 1, fixed p,

begin with the first prime direction (1, 0). The first projection is given by:

R0(d) =
N−1∑
i=0

f(i, d).

The computation of R0(d) is illustrated in Fig. 2.10(a) for a 7×7 image example.

Along each column, the addition can be carried out effectively using a multi-operand

fully-pipelined adder tree (see [29] and Fig. 2.10(c) for more details). As described in

[29], each adder tree generates an output per clock cycle with a latency of dlog(N)e

clock cycles. As shown in Fig. 2.10(b), the adder trees can work in parallel. Thus,

the architecture outlined in Fig. 2.10(b,c) can compute R0(d) in one clock cycle.

While the inputs to the adder tree are aligned for the direction of (1, 0), it is

important to note that they will not be properly aligned for the next prime direction

of (1, 1). To see this, note that the projection for (1, 1) is given by:

R1(d) =
N−1∑
i=0

f(i, 〈d+ i〉N).

See Fig. 2.10(d) for an illustration. To re-align the adder tree inputs, circular left

shift registers (CLS) are used, as illustrated in Fig. 2.10(e,f). The basic idea is

to apply different shift levels to each row so as to properly align the image sam-

ples with the adder trees. The appropriate shift amount is given by: CLS(i) =



34

CircularLeftShift(i). The structure of the shift registers is clearly illustrated in

Fig. 2.10(f,g). All shifts are performed in parallel in a single clock cycle.

The remaining prime directions can also be implemented using the circular shift

register array of Fig. 2.10(f).

The entire algorithm for computing the FDPRT is given in Fig. 2.11. For all of

the projections, except for the primal direction of (0, 1), the additions can be carried

out across each column. For (0, 1), the additions need to be done along the rows,

and there is no shift operation that would allow the additions to be carried out along

the columns. Thus, a transposition is needed. In general, the transposition requires

c cycles depending on the implementation. In an optimized implementation, the

transposition can be performed in a single cycle. Furthermore, it can be performed

in the same clock cycle with the last shift reducing c to c = 0. The result (last

projection) is then stored in RN(d).

To achieve the fastest implementation of the algorithm described in Fig. 2.11

additional optimizations must be enforced:

• Since the N-operand adder trees are fully pipelined and those N adder trees

work in parallel, in the same clock cycle the shift for the next projection can be

started. This means that Step 2 and Step 4 can start in the same clock cycle;

similarly, inside the loop, Step 5 (iteration p) and Step 4 (iteration p+ 1); and

Step 5 and Step 7 for the last loop iteration.

• The transpose in Step 8 can take several clock cycles, to reduce that to one

clock cycle, the register array holding f(i, j) can have the capability of move



35

f0,0

j

i
f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

å

R0(0)R0(1)R0(2)R0(3)R0(4)R0(5)R0(6)

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
0

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
1

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
2

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
3

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
4

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
5

7
-o

p
e

ra
n

d
 a

d
d

e
r tre

e
_
6

R0(0)R0(1)R0(2)R0(3)R0(4)R0(5)R0(6)

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6 CLS(6)

CLS(5)

CLS(4)

CLS(3)

CLS(2)

CLS(1)

f0,0

f1,1

f2,2

f3,3

f4,4

f5,5

f6,6

f0,1

f1,2

f2,3

f3,4

f4,5

f5,6

f6,0

f0,2

f1,3

f2,4

f3,5

f4,6

f5,0

f6,1

f0,3

f1,4

f2,5

f3,6

f4,0

f5,1

f6,2

f0,4

f1,5

f2,6

f3,0

f4,1

f5,2

f6,3

f0,5

f1,6

f2,0

f3,1

f4,2

f5,3

f6,4

f0,6

f1,0

f2,1

f3,2

f4,3

f5,4

f6,5

CLS

R1(0)R1(1)R1(2)R1(3)R1(4)R1(5)R1(6)

Dá0-iñ7

D0

Dá1-iñ7

D1

Dá2-iñ7

D2

Dá3-iñ7

D3

Dá4-iñ7

D4

Dá5-iñ7

D5

Dá6-iñ7

D6

å

j

i

f(0,q)

f(1,á q-pñ7)

f(2,á q-2pñ7)

f(3,á q-3pñ7)

f(4,á q-4pñ7)

f(5,á q-5pñ7)

f(6,á q-6pñ7)

+

+

+

+

+

+

R(p,q)

(a) (b) (c)

(d) (e) (f)

(g)
 

Figure 2.10: Projection computation example for the first two prime directions for a
7 × 7 image. (a) Pixels are added along each column using an adder tree for prime
direction (1, 0). (b) Array of 7-operand adder tree for performing the additions. (c)
Detailed architecture of the 7-operand adder tree p (fully pipelined) to compute the
projection p, element q. (d) For prime direction (1,1), pixels sharing the same gray-
scale value need to be added but are not aligned along the columns. (e) Pixels are
properly aligned along each column following the required number of circular, left,
shifts. (f) Circular Left-Shift (CLS) structure for aligning image samples for prime
direction of (1, 1), all shifts are performed in parallel in a single clock cycle.. (g)
Detalied architecture for CLS(i).



36

1: Load image f(i, j)
2: Compute and Store in parallel R0(d)
3: for p = 1 to N − 1 do
4: Shift in parallel the last N − 1 rows

CLS(i), i = 1, ..., N − 1
5: Compute and Store in parallel Rp(d)
6: end for
7: Shift in parallel the last N − 1 rows

CLS(i), i = 1, ..., N − 1
8: Transpose of the image
9: Compute and Store in parallel RN(d)

Figure 2.11: Algorithm for computing the Fast Discrete Periodic Radon Transform
R(m, d) = <(f(i, j)).

all the values to the transpose location in parallel in one clock cycle. Moreover,

this transposition can be started in the same clock cycle of Step 5 and Step

7 making the effective number of clock cycles for the transpose equal to zero

[26].

In terms of computational complexity, the timing diagram is depicted in Fig. 2.12.

Here, Note that time increases to the right. As before, the different computational

steps are depicted along the columns. Cycles associated with parallel computations

appear within the same column.

The details of the process and the total running time in terms of the required

number of cycles is given as follows. Initially, the image is loaded row-by-row. Thus,

image loading requires N cycles as depicted in the timing diagram of Fig. 2.12.

Shifting is performed in a single cycle along each row. The shifted rows are then

added along each column. Due to the fully pipelined architecture, it only takes N−1

cycles to compute the first N − 1 projections. The last two projections only require



37

First N-1 

projections
...

N-1 proj.
Latency

DPRT_computation 

Shift_rows
Adder_latency

N

Load

Image

1 n

1 n

1 n

DPRT_computation 

Shift_rows

Transpose

1 n

1 n

Nth 

proj.

N+1th 

proj.

DPRT_computation 

Shift_rows

 

Figure 2.12: Running time for fast DPRT (FDPRT). In this diagram, time increases
to the right. The DPRT is computed in N + 1 steps (projections). Each projection
takes 1+h clock cycles. Here, n = dlog2Ne represents the addition latency. Pipeline
structure: Since fully pipelined adder trees are used, the computation of subsequent
projections can be started after one clock of the previous projection.

two additional cycles. Note that the transposition is perfomed in the same clock cycle

of the last shift. Then, the final result is is only delayed by the latency associated

with the last addition (n = dlog2Ne). Thus, overall, it only takes 2N + n+ 1 cycles

to compute the FDPRT.

For the iFDPRT, let R(m, d) be the DPRT of f(i, j). To compute the iFDPRT of

R(m, d), the architecture used for the FDPRT can be used again, with the following

changes:

• The number of projections needed to perform the iFDPRT is now N .

• The summation
∑N−1

m=0R (m, 〈j −mi〉N) in Eq. 2.2 is done now over periodic

line segments perpendicular to the ones in the FDPRT. Therefore, a Circular

Right Shifting (CRS) is neeed to align the data to be added by columns. This



38

indicates that the architecture used for the FDPRT can be used for the iDPRT

with the change of the CLS registers by CRS registers.

• When loading the image, the last row (RN(d)) must not be included (this last

row will not be shifted). Instead, this vector must be stored in an additional

CLS(1) register; and when computing the projection i, the value R(N, i) must

be passed as an additional input for each adder tree (see Fig. 2.13(a), bottom

input, and Fig. 2.13(b) for an illustration).

• The value S (Eq. 2.3) must be computed before starting the computation

of the projections. The most convenient way to compute S is when R(m, d)

is being loaded, using and additional N-operand adder to do the summation

S =
∑N−1

d=0 R(m, d) with m = 0. S must be substracted from every output of

the adder tree. See Fig. 2.13(a), for an illustration.

• The normalizing factor 1/N in Eq. 2.2 must be applied to every value obtained

after the substraction of S. See Fig. 2.13(a), division, for an illustration.

Therefore, taking into account all the differences described above, the N -operand

adder tree needes to be modified (see Fig. 2.13 for a 7×7 example), the shift registers

now shift the data to the right; and the algorithm to perform the iFDPRT (shown

in Fig. 2.14, based on the algorithm for the FDPRT) is as follows: In parallel, R

will be loaded and S will be computed (Steps 1 and 2), after the first row R0(d) is

loaded, the computation of S can start and it will take dlog2Ne clock cycles, on the

other hand the loading takes one clock cycle per row, therefore a total of N cycles.



39

R(0,j)

R(1,á j-iñ7)

R(2,á j-2iñ7)

R(3,á j-3iñ7)

R(4,á j-4iñ7)

R(5,á j-5iñ7)

R(6,á j-6iñ7)

R(7,i)

+

+

+

+

+

+

+

-

S

7

¸
f(i,j)

(dividend)

(divisor)

 
(a)

D0D1D2D3D4D5D6

R(7,i)

(to 7-operand 

adder)

 
(b)

Figure 2.13: (a) Adder architecture example for N = 7. The fully pipelined 7-
operand adder tree used for the FDPRT is now modified to compute the iFDPRT
(i projection, element j): After the shift registers align the data, the adder tree
receives all the terms to compute

∑6
m=0R (m, 〈j −mi〉7) +R(7, i). Note that R(7, i)

is an additional term for the 7-operand adder tree (provided by an additional CLS(1)
holding RN(d)). After all the terms are added, S needs to be substracted and then
divide the result by 7 to obtain f(i, j). In a full implementation, 7 of those adders
(j = 0, . . . , N−1) are used to be able to compute in parallel one projection, to obtain
one complete row of f . (b) Additional modified CLS(1) to hold RN(d) and provide
R(N, i) to all of the 7-operand adder trees on each projection i.

Once R is loaded, the computation of each projection will start (note that the first

projection does not need shifting), since a fully pipelined adder tree is used, only one



40

clock cycle is required to start the computation of one projection (with a latency of

dlog2Ne + 1 + d, where d accounts for the latency of the divider at the end of the

adder tree), note note that the shifting can be performed in the same starting clock

cycle.

To sum up, the architecture is basically reduced to the CRS registers plus the

adder trees, where the additional CLS(1), the substraction of S and the normalizing

factor (1/N) can be embedded inside the adder trees (see Fig. 2.13 for a 7 × 7

architecture example). The total running time to compute the iFDPRT is now

2N + 3n+B + 2, using a full pipelined divider with a latency of d = B clock cycles.

The required resources for both FDPRT and iFDPRT are summarized in section

2.6.

1: Load R(m, d),
0 ≤ m, d ≤ N − 1

2: Compute S
3: Load RN(d)
4: Compute in parallel f0(j)
5: for i = 1 to N − 1 do
6: Shift in parallel the last N − 1 rows

CRSk(k), k = 1, . . . , N − 1
7: Compute in parallel fi(j)
8: end for

Figure 2.14: Algorithm for computing the Inverse Fast Discrete Periodic Radon
Transform f(i, j) = <−1(R(m, d)). Refer to section 2.2.1 for the notation.



41

2.3.5 Pareto-optimal Realizations

For the development of scalable architectures, restrict the attention to implemen-

tations that are optimal in the multi-objective sense. A similar approach was also

considered in [30].

Basically, the idea is to expect that architectures with more hardware resources will

also provide better performance. Here, consider architectures that will give faster

running times as the hardware resources are increased.

The set of implementations that are optimal in the multi-objective sense forms

the Pareto front [28]. Formally, an implementation is considered to be sub-optimal

if another (different) implementation can be found and can run at the same time

or faster for the same or less hardware resources, excluding the case where both

the running time and computational resources are equal. The Pareto front is then

defined by the set of realizations that cannot be shown to be sub-optimal.

For deriving the Pareto-front, the image size is fixed to N . Then, we want find

the number of rows in each image strip (values of H) that generate Pareto-optimal

architectures. Now, since N is prime, it cannot be divided by H exactly. The number

of strips is given by dN/He which denotes the ceiling function applied to N/H. To

derive the Pareto-front, we require that larger values of H will result in fewer strips

to process. In other words, we require that:⌈
N

H

⌉
<

⌈
N

H − 1

⌉
. (2.11)

In this case, using H rows in each strip will result in faster computations since fewer



42

strips are being processed and also processing a larger number of rows per strip. The

Pareto front is then defined using:

ParetoFront = {H ∈ S s.t. H satisfies eqn (2.11)} (2.12)

where S = {2, 3, . . . , (N − 1)/2} denotes the set of possible values for the number of

rows. To solve (2.11) and derive the ParetoFront set, simply plug-in the different

values of H and check that (2.11) is satisfied. Beyond the scalable approach, note

that an optimal architecture for H = N was covered in subsection 2.3.4. The Pareto

front will be presented in the Results section.

2.4 Implementation Details

In this section, the implementations details are presented for the scalable and fast

DPRTs and their inverses. A top-down description of the scalable architecture in

section 2.4.1 is provided. Then, in section 2.4.2 a discussion of the changes with re-

spect to the SFDPRT to obtain the the inverse DPRTs is presented. This is because,

the architectures for the forward DPRTs are closely related to the architectures for

the inverse DPRTs but simpler.

2.4.1 Scalable Fast Discrete Periodic Radon Transform

(SFDPRT)

In this section, the different processes that were presented in the top-down diagram

of Fig. 2.4 are described in detail. At the top level, block diagrams are presented for



43

the the memory components (MEM IN and MEM OUT) in Fig. 2.15.

ARAM[0]

DI

n

W

E

B

DOUT[0:B-1]

DIN[0:B-1]

DOUT[B:2B-1]

DIN[B:2B-1]

DO B

RAM[0]

WIN

EIN

ARAM[1]

DI

n

W

E

B

DO B

RAM[1]

WIN

EIN

...

DOUT[iB:(i+1)B-1]

DIN[iB:(i+1)B-1]

ARAM[i]

DI

n

W

E

B

DO B

RAM[i]

WIN

EIN

...

DOUT[(N-1)B:NB-1]

DIN[(N-1)B:NB-1]

ARAM[N-1]

DI

n

W

E

B

DO B

RAM[N-1]

WIN

EIN

Address Generator

AIN

n
n

n

MODE

n

...

ARAM[0]

ARAM[1]

ARAM[N-1]

AIN

n
DIN

NB

WIN

EIN

DOUT

NB

MODE

 

Figure 2.15: Memory architecture for parallel read/write. For the parallel load,
refer to Fig. 2.16. The memory allows to avoid transposition as described in Fig.
2.17. The memory architecture refers to MEM IN and MEM OUT in Fig. 2.4. Each
RAM is a standard Random Access Memory with bus address A[0 : n−1], separate
data buses DI[0 : B − 1] and DO[0 : B − 1], and control signals W and E to select
Read/Write cycles and enable the memory respectively. MEM IN is a memory with
bus address AIN [0 : n−1], separate data buses DIN [0 : NB−1] and DOUT [0 : NB−1]
with control signals WIN , EIN and MODE to select Read/Write cycles, enable the
memory and two addressing modes respectively. The MODE signal selects between
row or column reading, in other words, provides a complete row or column of f .

A brief description of the memory components is provided. Each RAM-block is a

standard Random Access Memory with separate address, data read, and data write

buses. The MODE signal is used to select between row and column access. For

row access, the addresses are set to the value stored in ARAM [0]. Column access is

only supported for MEM IN. The addresses for column access are determined using:



44

ARAM [i] = 〈ARAM [0] + i〉N , i = 1, . . . , N− 1.

The main process of Fig. 2.5 is summarized in four steps:

1. An N ×N image is loaded row-wise in MEM IN as shown in line 1 of Fig. 2.16.

2. Image strips are loaded into SFDPRT core, shifted and written back to MEM IN

as described in Fig. 2.16). At the end of this step, the image is rearranged so

that each diagonal corresponds to an image column. This allows to get each

row of the transposed image in one cycle.

3. Image strips are loaded into the SFDPRT core and then left-shifted once as de-

scribed in Fig. 2.17. For the first N projections, accumulate the results from

partial DPRTs computed for each strip as described in Fig. 2.18. To com-

pute the accumulated sums, use an adder array. Also, for pipelined operation,

MEM OUT is implemented as a dual port memory.

4. For the last projection, to avoid transposition, access the input image in column

mode. The rest of the process is the same as for the previous N projections.

The Transform is computed using exact arithmetic using B + dlog2Ne bits to

represent the output where the input uses B-bits per pixel.

To further ilustrate this process, full details of the design of each block of the

system is provided and also full explanation of each step including specific examples

is described.



45

1: Load image f into MEM IN

2: for z = 0 to K − 1 do
3: for y = 0 to H − 1 do
4: Move row (z ∗H + y) of f into SFDPRT core

in reverse-order (flipped)
5: if z > 0 then
6: Move the top row from SFDPRT core to

MEM IN in reverse-order at ((z − 1) ∗H + y)
7: end if
8: end for
9: Shift in parallel all the H rows into SFDPRT core

registers: CLS(z ∗H + a), a = 0, . . . , H − 1.
10: end for
11: for y = 0 to H − 1 do
12: Move the top row from SFDPRT core to

MEM IN in reverse-order at ((K − 1) ∗H + y)
13: end for

Figure 2.16: The implementation of Load shifted image(f) of Fig. 2.5. The
process shifts the input image during the loading process in order to avoid the trans-
position associated with the last projection. The shifting is performed using the
circular left shift registers that are available in SFDPRT core.

1: for z = 0 to H − 1 do
2: if M == ‘row mode′ then
3: Move MEM IN row (r ·H + z), mode M

into SFDPRT core.
4: else
5: Move MEM IN row (r ·H + z), mode M

into SFDPRT core in reverse-order (flipped).
6: end if
7: end for
8: Shift in parallel all the H rows:

CLSa(H · r + a), a = 0, . . . , H − 1

Figure 2.17: Process for implementing Load strip(r, M) of Fig. 2.5.

SFDPRT core design

The objective of this core is to compute Eq. (2.7) at high speed. An exaustive anal-

ysis of Eq. (2.7) reveals that for the first N projections, the data to be added can



46

1: Read accumulated Rk(d) from MEM OUT

2: if k = N then
3: Flip R

′

k(d)
4: end if
5: Add Rk(d) = Rk(d) +R

′

k(d)
6: Store Rk(d) in MEM OUT

Figure 2.18: The implementation of Add partial result of Fig. 2.5. The process
is pipelined where all the steps are executed in a single clock cycle.

be column aligned via CLS as follows: for the first projection the data on the strip

is already column aligned, then, all the H pixels on each column must be added, for

this purpose, it is used N H-operand fully pipelined adder trees (see Fig. 2.19(a))

that will add all the pixels in one clock cycle with a latency of h = dlog2He generat-

ing R′r,0(d). The next projection needs to CLS the data in the strip by the following

amount: CLSa(H×r+a), where r is the strip number, and a = 0, . . . , H−1 is the row

position inside the strip r (see Fig. 2.19(b)). Once the CLS is performed, the data on

each column can be added, obtaining R′r,1(d). All the subsequent projections need to

apply the same CLS and do the additions. An optimal architecture can perform on

the same clock cycle the colum additions and the CLS. Therefore, the running time

for the total computation of one partial DPRT is N clock cycles. Note that the last

projection is still missing, this is because it is not possible to align the data for the

last projection, to solve this issue, the transpose of f needs to be loaded, and just

perform the additions as it was done for the first projection (no CLS is needed), this is

possible to do without any additional hardware by using MEM IN in column mode.



47

H
_

o
p

e
ra

n
d

 a
d

d
e

r tre
e

_
0

H
_

o
p

e
ra

n
d

 a
d

d
e

r tre
e

_
1

...

N_operand CLS0(H*r+0)

N_operand CLSH-1(H*r+H-1)

(a)

(b)

..

.

N_operand CLS1(H*r+1)

H
_

o
p

e
ra

n
d

 a
d

d
e

r tre
e

_
N

-1

H
_

o
p

e
ra

n
d

 a
d

d
e

r tre
e

_
N

-2

 
Figure 2.19: SFDPRT core architecture. (a) Array of H-operand adder tree for per-
forming the H × N additions in parallel in one clock cycle. (b) Circular Left-Shift
(CLS) structure for aligning image samples, all shifts are performed in parallel in a
single clock cycle..

MEM IN and MEM OUT design

MEM IN is a memory that holds f , able to provide a complete row (or column) of

f in one clock cycle. Recall n = dlog2Ne, RAM be a Random Access Memory

with standard address, data and control buses; and recall that each pixel of f is

represented with B bits. MEM IN is defined as an array of RAMs: RAM [0 : N − 1]

(see Fig. 2.15 for a detailed description), where the Address Generator (via the signal

MODE) generates the effective address for each RAM as follows:

• row mode: Same address for each RAM [i], i.e. if the address for RAM [0] is

ARAM [0], then the address for the rest of the RAMs is the same: ARAM [i] =



48

f(i,j)

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

(a)

Shifted f

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

 (b)

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

ARAM[0] = 4, column_mode

 
(c)

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

ARAM[0] = 4, row_mode

 (d)

Figure 2.20: 7×7 pattern example for storing f in MEM IN. (a) Original f . (b) Shifted
f . (c) Accessing column number 4 of f , note that each value belongs to a different
RAM, therefore all the values can be retrieved in one clock cycle. (d) Accessing row
number 4 of f , observe that the data is shifted and needs to be un-shifted before
computing the DPRT.

ARAM [0] , i = 1, . . . , N − 1.

• column mode: Incremental address for each RAM [i], i.e. if RAM [0] has

the base address ARAM [0], then address for the other RAMs is ARAM [i] =

〈ARAM [0] + i〉N , i = 1, . . . , N − 1.

For writing data into MEM IN only row mode is needed. At this point, the archi-

tecture of MEM IN have been completely described, however, the mechanics of how to

store and access the data inside the memory is explained in the following sub-sections.

MEM OUT is similar to MEM IN with the only difference that only needs to read rows

of f . Finally, it is suggested to use RAMs with dual ports to reduce clock cycles

when reading/shifting/writing data.



49

Loading image to MEM IN

The particular design described in section 2.4.1 has a specific purpose for the SFD-

PRT: to able to read one complete row or column of f in one clock cycle, this

capability allows to avoid the transposition of the pixels for the last projection when

computing the DPRT. Since MEM IN is an array of RAMs, reading a complete row is

straightforward: Put the same address (row mode) on all RAMs and retrieve the N

pixels of a specific row. However, there is the need to read a complete column in one

clock cycle, which is not trivial. If f is stored in MEM IN in the same pattern as Fig.

2.20(a), it is not possible to read one column in one clock cycle, this is because each

RAM can only access one value per clock cycle, and all the values needed belong

to the same RAM. But, storing f in a shifted pattern (see Fig. 2.20(b)) and using

the column mode to read MEM IN, it is possible to read a complete column of f in

one clock cycle, because now, each value of the column needed belongs to different

RAMs (gray boxes in Fig. 2.20(c)). Observe that storing f with shift, also shifts

the data that is read in row mode (see Fig. 2.20(d)), that means that a correction

(undo shifting) when reading rows must be applied. Finally, the hardware needed

to do the shifting to store or read the image is the SFDPRT core itself, therefore no

additional hardware is needed.

Then, for an N×N image f , H = 2, . . . , N (height of the block in SFDPRT core),

K = dN/He (number of blocks in which the image f is divided), the algorithm to

Load Image f in MEM IN is shown in Fig. 2.16.

In a optimized implementation (including a dual port RAM), Steps 4-7 can be



50

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

xxxxxxx

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

xxxxxxx

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

Input Image f Data in MEM_INUn-shifted Data Shifted Data

Move data into the 

SFDPRT_core 

(with FLIP)

Part 0

Part 1

Circular Left 

Shift Data 

(CLS)

Move data 

into MEM_IN 

(with FLIP)

CLS(0)

CLS(1)

CLS(2)

CLS(3)

CLS(4)

CLS(5)

CLS(6)

CLS(x)

xxxxxxx

x = don’t care

Part 0

Part 1

 

Figure 2.21: 7 × 7 example of Loading image f into MEM IN using the algorithm
described in Fig. 2.16 with H = 4, N = 7. Then, K = dN/He = 2, and the loading
of f into MEM IN is divided in two parts.

done all in parallel in one clock cycle, similarly Step 12. Therefore, the total running

time is K(H + 1) + H. An example of filling f into MEM IN for a 7 × 7 image and

H = 4 is given in Fig. 2.21.

Loading one strip to SFDPRT core

According to the algorithm in Fig 2.5, a total of 2K strips are loaded into the

SFDPRT core, the first K strips are loaded in row mode, and the rest in column mode.

To correctly load the strip into the SFDPRT core, the data read from MEM IN must

be shifted and/or flipped before starting the partial computation of the SFDPRT.

Formally, when invoking the Load strip(r,M) procedure (r = strip number, M

= mode), the effective base address to read the strip is A = r ×H. Then, accessing

MEM IN, at address AR (row mode), it returns the row vector fAR
(j) Circular Right

Shifted AR positions (CRS(AR)), then to revert the shifting a CLS(AR) must be

performed and fAR
(j) with no shift is recovered. On the other side, accessing MEM IN

at address AC (column mode), it returns the column vector fAC
(i) Circular Left



51

Shifted AC positions (CLS(AC)), then to revert the shifting a CRS(AC) must be

performed and fAC
(i)) with no shift is recovered. However, the SFDPRT core can

do only CLS operations, therefore, the data, when loaded/extracted to/from the

SFDPRT core, must be flipped, this flipping converts the CRS into a CLS. The

algorithm to perform the load of a strip to the SFDPRT core is shown in Fig. 2.17.

In a optimized implementation, Steps 2-6 can be executed in parallel in one clock

cycle, and Step 8 takes one clock cycle. Therefore, the total running time to load

one strip into the SFDPRT core takes H + 1 clock cycles.

Recall that when extracting data from SFDPRT core (inserted in column mode),

it must be flipped. A final note, when the data inside the SFDPRT core is aligned

to compute the last projection (data loaded in ’column mode’), the elements trans-

ferred to the adders are shifted, however, this can be ignored since the addition is

commutative/associative. A complete example to load all the strips for a 7×7 image

with H = 4 is shown in Fig. 2.22 for Load strip(k,‘row mode’), and in Fig. 2.23 for

Load strip(k,‘column mode’).

Adding partial results to compute R(m,d)

Once the SFDPRT core computes the partial result R
′

k(d), this value needs to be

added with the accumulated sum of the previous partial results stored in MEM OUT

and then stored back in MEM OUT. Therefore, the steps to perform the accumulative

addition are described in the algorithm shown in Fig. 2.18.

Note that MEM OUT must be initialized to zero before starting the computation



52

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

Shifted Data Un-shifted Data

Move data into the 

SFDPRT_core

(row mode)

Circular Left 

Shift Data 

(CLS)

Compute 

the partial 

DPRT 

(Shifting/

Adding)
CLS(0)

CLS(1)

CLS(2)

CLS(3)

CLS(4)

CLS(5)

CLS(6)

CLS(x)

Part 0

Part 1

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

xxxxxxx

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

xxxxxxx

Data in MEM_IN

Part 0

Part 1

x = don’t care

 

Figure 2.22: 7 × 7 example of Loading strips of f , into SFDPRT core using the
algorithm described in Fig. 2.17 with H = 4, N = 7, row mode. Then, K =
dN/He = 2, and the loading of f into SFDPRT core is divided in two parts.

f0,0

f1,0

f2,0

f3,0

f0,1

f1,1

f2,1

f3,1

f0,2

f1,2

f2,2

f3,2

f0,3

f1,3

f2,3

f3,3

f0,4

f1,4

f2,4

f3,4

f0,5

f1,5

f2,5

f3,5

f0,6

f1,6

f2,6

f3,6

f4,0

f5,0

f6,0

f4,1

f5,1

f6,1

f4,2

f5,2

f6,2

f4,3

f5,3

f6,3

f4,4

f5,4

f6,4

f4,5

f5,5

f6,5

f4,6

f5,6

f6,6

xxxxxxx

Shifted Data Un-Shifted Data

Move data into the 

SFDPRT_core

(column mode with FLIP)

Circular Left 

Shift Data 

(CLS)

Compute 

the partial 

DPRT 

(Adding) 

and FLIP
CLS(0)

CLS(1)

CLS(2)

CLS(3)

CLS(4)

CLS(5)

CLS(6)

CLS(x)

Part 0

Part 1

xxxxxxx

Data in MEM_IN

f0,0f1,0f2,0f3,0

f0,1f1,1f2,1f3,1

f0,2f1,2f2,2f3,2

f0,3f1,3f2,3f3,3

f0,4f1,4f2,4 f3,4

f0,5f1,5 f2,5f3,5

f0,6 f1,6f2,6f3,6

f4,0f5,0f6,0

f4,1f5,1 f6,1

f4,2 f5,2f6,2

f4,3f5,3f6,3

f4,4f5,4f6,4

f4,5f5,5f6,5

f4,6f5,6f6,6

f0,0f1,0f2,0f3,0f4,0f5,0f6,0

f0,6f1,6f2,6f3,6f4,6f5,6f6,6

f0,5f1,5f2,5f3,5f4,5f5,5f6,5

f0,4f1,4f2,4f3,4f4,4f5,4f6,4

f0,3f1,3f2,3f3,3f4,3f5,3f6,3

f0,2f1,2f2,2f3,2f4,2f5,2f6,2

f0,1f1,1f2,1f3,1f4,1f5,1f6,1

xxxxxxx

Part 0

Part 1

 

Figure 2.23: 7 × 7 example of Loading strips of f , into SFDPRT core using the
algorithm described in Fig. 2.17 with H = 4, N = 7, column mode and K =
dN/He = 2. Note that the loading of f into SFDPRT core is divided in two parts.

of the SFDPRT, k is the address to access MEM OUT; and observe that in the last

projection (k = N) the output of the SFDPRT core must be flipped (See previous

sub-section, column mode for more details). In a optimized implementation, all the

steps can be done in parallel, therefore the total running time is 1 clock cycle.



53

2.4.2 Inverse Scalable Fast Discrete Periodic Transform Im-

plementations

In this section the necessary changes on the SFDPRT architecture and algorithm to

obtain the iSFDPRT is provided.

• As described in Sec. 2.3.3, at the top-level implementation, MEM IN becomes

optional because the horizontal prime direction is not needed. In case MEM IN

is used, only needs to have the row mode.

• The procedure Load shifted image is not needed, the image just need to be

loaded into MEM IN (if used), if not, the image strips should be directly loaded

into iSFDPRT core. This implies that the procedure Load strip r simply moves

the data from MEM IN (or received externally if MEM IN is not used), no shifting

or flipping is needed at all.

• An extra hardware is needed to compute the term S, the simple way to do it is

to grab the first row of the input image and add all the values. This suggests

the use of an extra N -operand adder tree.

• The accumulation of the partial DPRTs follows the same procedure as the

SFDPRT. But, at the end an extra step is required. The final output (per

pixel) needs to substract S, add R(N, i) (i is the row in MEM OUT) and normalize

by N . An example of this procedure is depicted in Fig. 2.13, just note that for

the scalable case, the operation is performed only with the last strip.



54

 

1

0

x
Z

(1
)

log2(N+1)

...

...

...

...

...

N

N

DRi

addr
we
en

addrx
wex
enx

DRix

s

log2N

NxB

NxB

DRo

DRox

SFDPRT

CORE

sE

..
.

B N

BO

BO

BO

B

B

B

H

log2(K+1)

K = N/H

s
c
lr
_
L

N
x
B

N
x
B

N
x
BDRo

rDRo

sDRo

1

0

X
(0

)
X

(1
)

X
(N

-1
)

..
.

BO = B + log2H

NO = B + log2N

Xo

NxB

NO

NO

NO

x
Z

(0
)

x
Z

(N
-1

)
..
.

+

+

+

..
.

N

DRi

addr
we
en

addrx
enx
wex

DRix

s

DRo

DRox

rXo

N
x
N

O

NO

NO

NO

N
x
N

O

s_a1     0

0

NxNO

o
R
A
M
_
Z
o

DRi

iRAM_sadd 0

iRAM_addr
iRAM_we
iRAM_en

iRAM_wex
iRAM_enx

sE

s
c
lr
_
L

NxNO
0

oRAM_addr
oRAM_we
oRAM_en

log2(N+1)
oRAM_addrx

oRAM_enx
0

NxNO

si
gn

ex
te

ns
io

n

oR
A

M
_D

R
i

oRAM_DRi:

N
x
N

O

...

...

...

...

...N
+

1

N

...

oRAM_Zox

B N NO N

Z
(N

-1
)

Z
(1

)
Z

(0
)

FSM

start
iwr

oRAM_we

s E

log2(K+1)

oRAM_we
Esh

log2H

oRAM_enxdl_oRAM_enx

dl_oRAM_addr log2(N+1)

oRAM_addrxdl_oRAM_addrx log2(N+1)

oRAM_ctrl

oRAM_en
oRAM_addr

shift register

shift register

shift register

shift register

iRAM_we
iRAM_en
iRAM_wex
iRAM_enx
iRAM_addr
iRAM_sadd

dl_oRAM_enx
dl_oRAM_addr
dl_oRAM_addrx
dl_s_a
dl_soDRi
oRAM_ctrl

s_adl_s_a
shift register

soDRi

1

0

soDRidl_soDRi
shift register

N+1N

N
x
N

O

last row

oRAM_rd
oRAM_xaddr

MEM_IN MEM_OUT

sclr_L
sDRo

Esh
done

Figure 2.24: System for implementing the Scalable and Fast DPRT (SFDPRT). The
SFDPRT core computes the partial sums. MEM IN and MEM OUT are dual port input
and output memories. A Finite State Machine (FSM) is used for control. See text in
Sec. 2.3.2 for more details.

• Bit-width for perfect reconstruction. Assuming the number of bits of each input

coefficient as B′ = B+ dlog2Ne before normalization the number of bits grows

up to B+2 dlog2Ne, and after normalization drops to B. Where B representes

the original number of bits of the image before applying the DPRT.

2.5 FPGA Implementation

In this section, an FPGA implementation is presented to show the applicability of

the proposed system. The implementation was done by Daniel Llamocca [3].

The top-level view of the hardware implementation for the scalable DPRT in

shown in Fig. 2.24 which pairs with the algorithm in Fig. 2.5 and the description in

2.3.2.



55

 

0

1

NO

NO

NO

1

0

x
Z

(1
)

log2N

...

...

...

...

...
N

N

DRi

addr
we
en

addrx
wex
enx

DRix

s

log2(N+1)

NxB

NxB

DRo

DRox

iSFDPRT

CORE

sE

..
.

B N

BO

BO

BO

B

B

B

H

log2(K+1)

s
c
lr
_
L

N
x
B X

(0
)

X
(1

)
X

(N
-1

)

..
.

SR

BQ

NO

NO

NO

x
Z

(0
)

x
Z

(N
-1

)
..
.

+

+

+

..
.

N

DRi

addr
we
en

addrx
enx
wex

DRix

s

DRo

DRox

N
x
N

O

s_a1     0

0

NxNO

o
R
A
M
_
F
o

DRi

0 0

iRAM_addr
iRAM_we
iRAM_en

sE

s
c
lr
_
L

NxNO
0

oRAM_addr
oRAM_we
oRAM_en

log2N
oRAM_addrx

oRAM_enx
0

NxNO

si
gn

ex
te

ns
io

n

oR
A

M
_D

R
i

N
x
N

O

...

...

...

...

...N
+

1
oRAM_Fox

B N NO N

Z
(N

-1
)

Z
(1

)
Z

(0
)

FSM

start
iwr

oRAM_we

s E

log2(K+1)

log2H+1

oRAM_enxdl_oRAM_enx

log2N

oRAM_addrxdl_oRAM_addrx log2N

oRAM_ctrl

oRAM_en
oRAM_addr

shift register

shift register

shift register

shift register

oRAM_rd
oRAM_xaddr

s
c
lr
_
L

iRAM_we
iRAM_en
iRAM_addr

dl_oRAM_enx
dl_oRAM_addr
dl_oRAM_addrx
dl_s_a
sL
oRAM_ctrl
Esh
done

s_adl_s_a
shift register

NN+1

N
x
N

O

BO = B + log2H

BQ = B + log2N
K = N/H NO = B + log2(N+1)

0

XTRA

N

XTRA

XTRA

sL

sL

oRAM_weEsh
shift register

dl_oRAM_addr
log2N

shift register

0

1

log2H+ 2 + NO

0
0
0

oRAM_addrp
sL

MEM_IN MEM_OUT

Figure 2.25: System for implementing the inverse, scalable and fast DPRT (iSFD-
PRT). The system uses the iSFDPRT core core for computing partial sums. The
system uses dual port input and output memories, an accumulator array and a Fi-
nite State Machine for control. See text in Sec. 2.3.3 for more details.

Similarly, the top-level view of the hardware implementation for the scalable

iDPRT in shown in Fig. 2.25 which pairs with the algorithm in Fig. 2.8 and the

description in 2.3.3.

An example of the FDPRT hardware implementation on an FPGA for an 7 × 7

image size is presented in Fig.2.26. that pairs with the description on 2.3.4

For the Inverse Fast Discrete Periodic Radon Transform (iFDPRT), the core of a

FPGA implementation for a 7× 7 image is shown as an example in Fig. 2.27 which

pairs with the algorithm in Fig. 2.14 and the description in 2.3.4.

A brief overview of the different components is provided. We use 2-input MUXes

to support loading and shifting as separate functions. The vertical adder trees gen-

erate the Z(i) signals. A new row of Z(0), Z(1), . . . , Z(N − 1) is generated for every



56

 

RO(6,4)RO(6,3) RO(6,5) RO(6,6)RO(6,2)RO(6,0)

FDPRT

CORE

E

..
.

B N

NO

NO

NO

B

B

B

X(0)

X(1)

X(N-1)

..
.

NO = B + log2N

Z(N-1)

Z(1)

RI(6,5)

RI(5,5)

RI(4,5)

RI(3,5)

RI(2,5)

RI(1,5)

RI(0,3)

RO(0,0)
RO(0,0)

RO(0,0)

E

RI(0,0) RI(0,1) RI(0,2) RI(0,4) RI(0,5) RI(0,6)

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

E E E E E E

RO(0,1)
RO(1,1)

RO(0,2)
RO(2,2)

RO(0,3)
RO(3,3)

RO(0,4)
RO(4,4)

RO(0,5)
RO(5,5)

RO(0,6)
RO(6,6)

RO(1,1)
RO(0,1)

E

RI(1,0) RI(1,1) RI(1,2) RI(1,3) RI(1,4) RI(1,6)

E E E E E E

RO(1,2)
RO(1,2)

RO(1,3)
RO(2,3)

RO(1,4)
RO(3,4)

RO(1,5)
RO(4,5)

RO(1,6)
RO(5,6)

RO(1,0)
RO(6,0)

RO(2,2)
RO(0,2)

E

RI(2,0) RI(2,1) RI(2,2) RI(2,3) RI(2,4) RI(2,6)

E E E E E E

RO(2,3)
RO(1,3)

RO(2,4)
RO(2,4)

RO(2,5)
RO(3,5)

RO(2,6)
RO(4,6)

RO(2,0)
RO(5,0)

RO(2,1)
RO(6,1)

RO(3,3)
RO(0,3)

E

RI(3,0) RI(3,1) RI(3,2) RI(3,3) RI(3,4) RI(3,6)

E E E E E E

RO(3,4)
RO(1,4)

RO(3,5)
RO(2,5)

RO(3,6)
RO(3,6)

RO(3,0)
RO(4,0)

RO(3,1)
RO(5,1)

RO(3,2)
RO(6,2)

RO(4,4)
RO(0,4)

E

RI(4,0) RI(4,1) RI(4,2) RI(4,3) RI(4,4) RI(4,6)

E E E E E E

RO(4,5)
RO(1,5)

RO(4,6)
RO(2,6)

RO(4,0)
RO(3,0)

RO(4,1)
RO(4,1)

RO(4,2)
RO(5,2)

RO(4,3)
RO(6,3)

RO(5,5)
RO(0,5)

E

RI(5,0) RI(5,1) RI(5,2) RI(5,3) RI(5,4) RI(5,6)

E E E E E E

RO(5,6)
RO(1,6)

RO(5,0)
RO(2,0)

RO(5,1)
RO(3,1)

RO(5,2)
RO(4,2)

RO(5,3)
RO(5,3)

RO(5,4)
RO(6,4)

RO(6,6)
RO(0,6)

E

RI(6,0) RI(6,1) RI(6,2) RI(6,3) RI(6,4) RI(6,6)

E E E E E E

RO(6,0)
RO(1,0)

RO(6,1)
RO(2,1)

RO(6,2)
RO(3,2)

RO(6,3)
RO(4,3)

RO(6,4)
RO(5,4)

RO(6,5)
RO(6,5)

+

Adder
tree

Z
(6

)

+

Adder
tree

Z
(5

)

+

Adder
tree

Z
(4

)

+

Adder
tree

Z
(3

)

+

Adder
tree

Z
(2

)

+

Adder
tree

Z
(0

)

+

Adder
tree

Z
(1

)

RO(0,1) RO(0,2) RO(0,3) RO(0,4) RO(0,5) RO(0,6)

RO(1,0) RO(1,1) RO(1,2) RO(1,3) RO(1,4) RO(1,5) RO(1,6)

RO(2,0) RO(2,1) RO(2,2) RO(2,3) RO(2,4) RO(2,5) RO(2,6)

RO(3,0) RO(3,1) RO(3,2) RO(3,3) RO(3,4) RO(3,5) RO(3,6)

RO(4,0) RO(4,1) RO(4,2) RO(4,3) RO(4,4) RO(4,5) RO(4,6)

RO(5,0) RO(5,1) RO(5,2) RO(5,3) RO(5,4) RO(5,5) RO(5,6)

RO(6,1)

s

E

(b)

2

s

Z(0)

(a)

..
...
.

vFSM
En

+

+

+

+

+

+

RO(0,i)

RO(1,i)

RO(2,i)

RO(3,i)

RO(4,i)

RO(5,i)

RO(6,i)

Z(i)

N=7

(c)

Figure 2.26: Fast DPRT (FDPRT) hardware. (a) FDPRT core and finite state
machine (FSM). (b) Structure of the FDPRT core including: pipelined adder trees,
registers, multiplexers (for shifting and fast transposition) for N = 7. (c) Pipelined
adder tree architecture for N = 7.

cycle. The horizontal adder tree computes SR. We recall that the SR computation

is the same for all rows as shown in (2.3). The latency of the horizontal adder tree

is dlog2Ne cycles. Note that SR is ready when Z(i) is ready, as the latency of the

vertical adder trees is dlog2(N + 1)e. The SR value is fed to the ‘extra units’, where

all Z(i)’s subtract SR and then divide by N (pipelined array divider [31] with a

latency of BO cycles). The term R(N, j) is included by loading the last input row

on the last register row, where the shift is one to the left. Note that it is always the

same element (the left-most one) that goes to all vertical adders.

A summary of bitwidth requirements for perfect reconstruction is provided. We

begin by assuming that the Radon transform coefficients use B′-bits. The number of



57

 

SR

+

RO(7,4)RO(7,0) RO(7,1) RO(7,2) RO(7,3) RO(7,5) RO(7,6)

RO(6,4)RO(6,0) RO(6,1) RO(6,2) RO(6,3) RO(6,5) RO(6,6)

RI(6,5)

RI(5,5)

RI(4,5)

RI(3,5)

RI(2,5)

RI(1,5)

RI(0,3)

RO(0,0)

RO(0,0)

E

RI(0,0) RI(0,1) RI(0,2) RI(0,4) RI(0,5) RI(0,6)

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

E E E E E E

RO(0,1) RO(0,2) RO(0,3) RO(0,4) RO(0,5) RO(0,6)

RO(1,6)

E

RI(1,0) RI(1,1) RI(1,2) RI(1,3) RI(1,4) RI(1,6)

E E E E E E

RO(1,0) RO(1,1) RO(1,2) RO(1,3) RO(1,4) RO(1,5)

RO(2,5)

E

RI(2,0) RI(2,1) RI(2,2) RI(2,3) RI(2,4) RI(2,6)

E E E E E E

RO(2,6) RO(2,0) RO(2,1) RO(2,2) RO(2,3) RO(2,4)

RO(3,4)

E

RI(3,0) RI(3,1) RI(3,2) RI(3,3) RI(3,4) RI(3,6)

E E E E E E

RO(3,5) RO(3,6) RO(3,0) RO(3,1) RO(3,2) RO(3,3)

RO(4,3)

E

RI(4,0) RI(4,1) RI(4,2) RI(4,3) RI(4,4) RI(4,6)

E E E E E E

RO(4,4) RO(4,5) RO(4,6) RO(4,0) RO(4,1) RO(4,2)

RO(5,2)

E

RI(5,0) RI(5,1) RI(5,2) RI(5,3) RI(5,4) RI(5,6)

E E E E E E

RO(5,3) RO(5,4) RO(5,5) RO(5,6) RO(5,0) RO(5,1)

RO(6,1)

E

RI(6,0) RI(6,1) RI(6,2) RI(6,3) RI(6,4) RI(6,6)

E E E E E E

RO(6,2) RO(6,3) RO(6,4) RO(6,5) RO(6,6) RO(6,0)

+++

++

+

Adder
tree

Z
(6

)

+

Adder
tree

Z
(5

)

+

Adder
tree

Z
(4

)

+

Adder
tree

Z
(3

)

+

Adder
tree

Z
(2

)

+

Adder
tree

Z
(0

)

+

Adder
tree

Z
(1

)

RO(0,1) RO(0,2) RO(0,3) RO(0,4) RO(0,5) RO(0,6)

RO(1,0) RO(1,1) RO(1,2) RO(1,3) RO(1,4) RO(1,5) RO(1,6)

RO(2,0) RO(2,1) RO(2,2) RO(2,3) RO(2,4) RO(2,5) RO(2,6)

RO(3,0) RO(3,1) RO(3,2) RO(3,3) RO(3,4) RO(3,5) RO(3,6)

RO(4,0) RO(4,1) RO(4,2) RO(4,3) RO(4,4) RO(4,5) RO(4,6)

RO(5,0) RO(5,1) RO(5,2) RO(5,3) RO(5,4) RO(5,5) RO(5,6)

s

E

F(0)

F(1)

F(N-1)

v

iFDPRT

CORE

FSM
En

E s

..
.

..
.

..
.

..
.

(a)

B N

BOX(0)

X(1)

X(N-1)

BO = B + log2(N+1)

BO

BO

B

B

B

RO(7,0) RO(7,1) RO(7,2) RO(7,3) RO(7,4) RO(7,5) RO(7,6)

SR

RI(7,5)

E

RI(7,0) RI(7,1) RI(7,2) RI(7,3) RI(7,4) RI(7,6)

E E E E E E

RO(7,1) RO(7,2) RO(7,3) RO(7,4) RO(7,5) RO(7,6) RO(7,0)

+ Adder
tree

F(6)

E
X

T
R

A

N

SR

(b)

+

+

+

+

+

+

RO(5,i)

RO(4,i)

RO(3,i)

RO(2,i)

RO(1,i)

RO(0,i)

Z(i)

+
RO(7,i)

RO(6,i)

F(5)

E
X

T
R

A

N

SR

F(4)

E
X

T
R

A

N

SR

F(3)

E
X

T
R

A

N

SR

F(2)
E

X
T

R
A

N

SR

F(1)

E
X

T
R

A

N

SR

F(0)

E
X

T
R

A

N

SR

BO = B + log2(N+1)

BO

(e)

BQ = B + log2(N)BQ

(c)

BO 

SR

-

C
O

N
S

T
A

N
T

D
IV

ID
E

RZ(i)

N

F(i)
BO 

BQ 

BO +

(d)

Figure 2.27: The fast inverse DPRT (iFDPRT) hardware implementation. The iFD-
PRT core shows the adder trees, register array, and 2-input MUXes. Here, we note
that the Z(i) correspond to the summation term in (2.2) (also see Fig. 2.14). We
note that the ‘extra circuit’ is not needed for the forward DPRT. Also, for latency
calculations, we note that the ‘extra circuit’ has a latency of 1 +BO cycles.

bits of the vertical adder tree outputs Z(i) are then set to BO = B′+ dlog2(N + 1)e.

The number of bits of SR need to be BQ = B′ + dlog2Ne. Assuming that the

input image f is B bits, we only need B bits to reconstruct it and the relationship

between B′ and B needs to be: B′ = B + dlog2Ne bits. For the subtractor, note

that Z(i) =
∑N−1

m=0R (m, 〈j −mi〉N)+R (N, i) and then Z(i) ≥ SR since f(i, j) ≥ 0.

Thus, the result of Z(i) − SR will always be positive requiring BO bits. Thus, for

perfect reconstruction, the result F (i) needs to be represented using BO bits.



58

 

RO(3,1) RO(3,2) RO(3,3) RO(3,4) RO(3,5) RO(3,6)RO(3,0)

RI(3,5)

RI(2,5)

RI(1,5)

RI(0,3)

RO(0,0)
RO(0,3)

RO(0,0)

E

RI(0,0) RI(0,1) RI(0,2) RI(0,4) RI(0,5) RI(0,6)

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

E E E E E E

RO(0,1)
RO(0,4)

RO(0,2)
RO(0,5)

RO(0,3)
RO(0,6)

RO(0,4)
RO(0,0)

RO(0,5)
RO(0,1)

RO(0,6)
RO(0,2)

RO(1,6)
RO(1,2)

E

RI(1,0) RI(1,1) RI(1,2) RI(1,3) RI(1,4) RI(1,6)

E E E E E E

RO(1,0)
RO(1,3)

RO(1,1)
RO(1,4)

RO(1,2)
RO(1,5)

RO(1,3)
RO(1,6)

RO(1,4)
RO(1,0)

RO(1,5)
RO(1,1)

RO(2,5)
RO(2,1)

E

RI(2,0) RI(2,1) RI(2,2) RI(2,3) RI(2,4) RI(2,6)

E E E E E E

RO(2,6)
RO(2,2)

RO(2,0)
RO(2,3)

RO(2,1)
RO(2,4)

RO(2,2)
RO(2,5)

RO(2,3)
RO(2,6)

RO(2,4)
RO(2,0)

RO(3,4)
RO(3,1)

E

RI(3,0) RI(3,1) RI(3,2) RI(3,3) RI(3,4) RI(3,6)

E E E E E E

RO(3,5)
RO(3,2)

RO(3,6)
RO(3,3)

RO(3,0)
RO(3,4)

RO(3,1)
RO(3,5)

RO(3,2)
RO(3,6)

RO(3,3)
RO(3,0)

Adder
tree

Z
(6

)

Adder
tree

Z
(5

)

Adder
tree

Z
(4

)

Adder
tree

Z
(3

)

Adder
tree

Z
(2

)

+

Adder
tree

Z
(0

)

Adder
tree

Z
(1

)

RO(0,1) RO(0,2) RO(0,3) RO(0,4) RO(0,5) RO(0,6)

RO(1,0) RO(1,1) RO(1,2) RO(1,3) RO(1,4) RO(1,5) RO(1,6)

RO(2,0) RO(2,1) RO(2,2) RO(2,3) RO(2,4) RO(2,5) RO(2,6)

s

E

+ + + + + +

(a)

s
c
lr
_
L

s=K

RO(2,1) RO(2,2)RO(2,0) RO(2,3) RO(2,4) RO(2,5) RO(2,6)

RO(2,5)
RO(2,2)

0

RI(2,5)

RO(1,0)

E E E E E E E

E

RI(2,0) RI(2,1) RI(2,2) RI(2,3) RI(2,4) RI(2,6)

E E E E E E

Z
(0

)

+ RO(1,1) RO(1,2) RO(1,3) RO(1,4) RO(1,5) RO(1,6)

Z
(1

)

+

Z
(2

)

+

Z
(3

)

+

Z
(4

)

+

Z
(5

)

+

Z
(6

)

+RO(2,6)
RO(2,3)

0

(b)
s=K

RO(1,6)
RO(1,3)

RO(1,1)

RI(1,5)

RI(0,3)

RO(0,0)
RO(0,4)

RO(0,1)

RO(0,0)

E

RI(0,0) RI(0,1) RI(0,2) RI(0,4) RI(0,5) RI(0,6)

X(0)

E E E E E E

RI(1,0) RI(1,1) RI(1,2) RI(1,3) RI(1,4) RI(1,6)

Adder
tree

Adder
tree

Adder
tree

Adder
tree

Adder
tree

Adder
tree

Adder
tree

RO(0,1) RO(0,2) RO(0,3) RO(0,4) RO(0,5) RO(0,6)

s

E

X(1) X(2) X(3) X(4) X(5) X(6)

RO(1,0)
RO(1,4)

RO(1,2)

RO(1,1)
RO(1,5)

RO(1,3)

RO(2,0)
RO(2,4)

0

RO(1,2)
RO(1,6)

RO(1,4)

RO(1,3)
RO(1,0)

RO(1,5)

RO(1,4)
RO(1,1)

RO(1,6)

RO(1,5)
RO(1,2)

RO(1,0)

RO(2,1)
RO(2,5)

0

RO(2,2)
RO(2,6)

0

RO(2,3)
RO(2,0)

0

RO(2,4)
RO(2,1)

0

RO(0,1)
RO(0,5)

RO(0,2)

RO(0,2)
RO(0,6)

RO(0,3)

RO(0,3)
RO(0,0)

RO(0,4)

RO(0,4)
RO(0,1)

RO(0,5)

RO(0,5)
RO(0,2)

RO(0,6)

RO(0,6)
RO(0,3)

RO(0,0)

+

SR

+

SR

Figure 2.28: The inverse scalable DPRT iSFDPRT core architecture for N = 7,
H = 4. Here, we note that the Z(i) correspond to the summation term in (2.10)
(also see Fig. 2.8).

Next, a summary of the core implementation for the Inverse Scalable Fast Discrete

Periodic Transform core (iSFDPRT core) is presented in Fig. 2.28. It shows an

instance of the iSFDPRT core for N = 7 and H = 4. Note that the core only

generates the partial sums Z(i). We still need to accumulate the partial sums,

subtract SR from it and divide by N .

A summary of the required hardware is provided. For each strip, we need to be

able to implement different amounts of right shifting. This is implemented using

(K + 1)-input MUXes. Since N is always prime, we will have at-least one row of the

register array that will be unused during computations for the last strip. The unused

row is used to load the term R(N, j). The vertical MUXes located on the last valid

row of the last strip ensure that the term R(N, j) is considered only when the last

strip is being processed. Here, for the last row of the last strip, we require the shift

to be one to the left. Also, the remaining unused rows are fed with zeros.



59

Recall that we presented the entire system in section 2.3.3. Beyond the iSFDPRT -

core, we have the input and output memories, an array of adders and divisors, and

ancillary logic. Here, we do not need to use the diagonal mode of the memories, flip

the data, or rearrange the input memory. The basic process consists of loading each

strip, processing it on the iSFDPRT core, accumulating it to the previous result, and

storing it in the output memory. For the last strip, we accumulate the result, but

we also need to subtract SR and divide by N .

2.6 Results and discussion

2.6.1 Results

Comprehensive results for both the scalable and the fast DPRTs and their inverses

are provided. Also, a comparison between the proposed approaches versus previously

published methods is presented.

First, the results as a function of image size are presented. Running times are

summarized (in terms of the number of cycles) for the forward and inverse DPRT in

Tables 2.1 and 2.2 respectively. For the forward DPRT, they are compared against

hardware implementations given by the serial implementation in [1] and the systolic

implementation in [2]. For the inverse DPRT, the computation times are similar.

However, there are no exact values to compare against. Also, comparative running

times for 2 < N < 256 for B = 8 bits per pixel in Fig. 2.29 are presented.

A summary of the computational resources are provided in Table 2.3. Also de-



60

Table 2.1: Total number of clock cycles for computing the DPRT. In all cases, the
image is of size N ×N , and H = 2, . . . , N is the scaling factor for the SFDPRT.

Method Clock cycles

Serial [16],[1] N3 + 2N2 +N

Systolic [16],[2] N2 +N + 1

Proposed Approaches:

- SFDPRT dN/He (N + 3H + 3) +N + dlog2He+ 1

- SFDPRT (H = 2)
lowest resource use

dN/2e (N + 9) +N + 2

- SFDPRT (H = N)
fastest running time

5N + dlog2Ne+ 4

- FDPRT 2N + dlog2Ne+ 1

Table 2.2: Total number of clock cycles for computing the iDPRT. Here, the image
size is N × N . B bits per pixel are used, and H = 2, . . . , N is the scaling factor of
the iSFDPRT. Add N clock cycles in the scalable version if MEM IN is used.

Proposed Approaches Clock cycles

iSFDPRT dN/He (N +H) + 2 dlog2Ne

+dlog2He+B + 3

iSFDPRT (H = 2)
lowest resource usage

dN/2e (N + 2) + 2 dlog2Ne+B + 4

iSFDPRT (H = N)
fastest running time

2N + 3 dlog2Ne+B + 3

iFDPRT 2N + 3 dlog2Ne+B + 2

tailed resource functions usage Aff, AFA, and Amux are provided for the 8-bit 251× 251

images in Fig. 2.30. In Fig. 2.30, resources as a function of the number of rows (H)



61

 

1

10

100

1000

10000

100000

1000000

10000000

1 51 101 151 201 251

C
lo

ck
 c

yc
le

s 

Image size (NxN), N prime 

Serial Systolic
SFDPRT(H=2) SFDPRT(H=16)
FDPRT iSFDPRT(H=2)
iSFDPRT(H=16) iFDPRT

Figure 2.29: Comparative running times for the proposed approach versus competi-
tive methods. Running times in clock cycles for: (i) the serial implementation of [1],
(ii) the systolic [2], and (iii) the FPGA implementation of the SFDPRT for H = 2
and 16 are presented. The measured running times are in agreement with Tables 2.1
and 2.2.

stored in each image strip are shown. Also, for N = 251 and B = 8, the required

number of RAM resources and the total number of MUXes in Table 2.4 are shown.

For comparing performance as a function of resources, the required number of cy-

cles are presented as a function of flip-flops in Fig. 2.31, and as a function of 1-bit

additions in Fig. 2.32.

A summary of the results for the inverse DPRT is also presented. For the fast

version (iFDPRT) running time and resources, refer back to Fig. 2.29 and Table

2.3. For the number of input bits, recall that B′ = B + dlog2Ne. Thus, overall, the

iFDPRT implementations require more resources and slightly more computational

times. Similar comments apply for the scalable, inverse DPRTs (iSFDPRT) shown

in Fig. 2.29 and Table 2.3.



62

Table 2.3: Resource usage for different DPRT and inverse DPRT implementations.
Here, consider an image size of N ×N , B bits per pixel, n = dlog2Ne, h = dlog2He,
K = dN/He, and H = 2, . . . , N . For the adder trees, define Aff to be number of
required flip-flops, and AFA to be the number of 1-bit additions. For the register array,
define Amux to be the number of 2-to-1 MUXes. Aff, AFA, and Amux grow linearly with
respect to N and can be computed using the algorithm given in the appendix (Fig.
B.1). For the inverse DPRT, note that each divider is implemented using 3(B+ 2n)2

flip-flops, (B+ 2n)2 1-bit additions, and (B+ 2n)2 2-to-1 MUXes [3]. Here, the term
“1-bit additions” refers to the number of equivalent 1-bit full adders.

Resources

Register array Adder trees Others: Dividers (B + 2n bits) or

(in bits) Number of flip-flops 1-bit additions RAM(in bits), 2-to-1 MUXes

Serial [16],[1] N(B + n) 3B + 2n (B + n) RAM: N2B

Systolic [16],[2] N(N + 1)n (N + 1)(3B + 2n) (N + 1)(B + n) RAM: N(N + 1)(B + n)

SFDPRT NHB NAff(H,B) NAFA(H,B) RAM: N2B +N(N + 1)(B + n)

+N(B + n) MUX: NHAmux(K + 1, B)

SFDPRT (H = 2) 2NB N(B + 1) NB RAM: N2B +N(N + 1)(B + n)

lowest resource usage +N(B + n) MUX: 2NAmux(dN/2e+ 1, B)

SFDPRT (H = N) N2B NAff(N,B) NAFA(N,B) RAM: N2B +N(N + 1)(B + n)

fastest running time +N(B + n) MUX: N2B

FDPRT N2B NAff(N,B) NAFA(N,B) MUX: 2N2B

iSFDPRT NH(B + n) (N + 1)Aff(H,B + n) (N + 1)AFA(H,B + n) RAM: N2(B + 2n), Dividers: N

+3N(B + 2n) +2N(B + 2n) MUX: NHAmux(K + 1, B + n)

iSFDPRT (H = 2) 2N(B + n) (N + 1)(B + n+ 1) (N + 1)(B + n) RAM: N2(B + 2n), Dividers: N

lowest resource usage +3N(B + 2n) +2N(B + 2n) MUX: 2NAmux(dN/2e+ 1, B + n)

iSFDPRT (H = N) N2(B + n) (N + 1)Aff(N,B + n) (N + 1)AFA(N,B + n) RAM: N2(B + 2n), Dividers: N

fastest running time +3N(B + 2n) +2N(B + 2n) MUX: N2(B + n)

iFDPRT N2(B + n) (N + 1)Aff(N,B + n) (N + 1)AFA(N,B + n) Dividers: N

+N(B + 2n) +N(B + 2n) MUX: N2(B + n)

For results on the FPGA implementation, we present the required number of

slices for a Virtex-6 implementation in Fig. 2.33. As N increases, we observe linear

growth in the number of slices as expected from our analysis in Table 2.3. On the

other hand, for smaller values of N , we have quadratic growth. The trends are due

to the optimizations performed by the Xilinx synthesizer. Overall, since Virtex-6



63

 

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

1
-b

it
 F

lip
Fl

o
p

s 
(A

ff
),

 1
-b

it
 A

d
d

it
io

n
s 

(A
FA

),
  

2
-t

o
-1

 M
u

xe
s 

(A
m

u
x)

 

H 

N=251, B=8, K=251/H 

Aff(H,8) AFA(H,8) 

Amux(K,8) 

Figure 2.30: Resource functions: (i) number of adder tree flip-flops Aff(.), (ii) number
of 1-bit additions Afa(.), and (iii) number 2-to-1 multiplexers Amux(.) for N = 251,
B=8. Refer to Table 2.3 for definitions.

devices use 6-input LUTS, implementations that utilize all 6 inputs provide better

resource optimization than implementations that use fewer inputs. For the entire

system, we have clock frequencies of 100 MHz for the Xilinx 6-series and 200 MHz

for the Xilinx 7-series (Virtex-7, Artix-7, Kintex-7).

Table 2.4: Total number of resources for RAM (in 1-bit cells) and MUXes (2-to-1
muxes). The resources are shown for N = 251. Except for the MUXes for the
SFDPRT, the values refer to any H. The number of MUXes for the SFDPRT refer
to values of H that lie on the Pareto front∗.

Method RAM MUXes

Serial [16],[1] 504, 008 Unknown

Systolic [16],[2] 1, 012, 032 Unknown

SFDPRT 1, 516, 040 506, 016∗

FDPRT 0 1, 008, 016



64

 

4056, 15939504 

516096, 63253 

1135022, 511 

500

5000

50000

500000

5000000

4000 40000 400000

C
lo

ck
 c

yc
le

s 

Resource usage (1-bit Flip-Flops) 

Serial

Systolic

SFDPRT: H=2, …, 251 

SFDPRT pareto

FDPRT

 6275, 33013 
H=2 

H=84 
 385285, 1777 

Figure 2.31: Comparative plot for the different implementations based on the number
of cycles and the number of flip-flops only. Refer to Fig. 2.32 for a comparative plot
for the different implementations based on the number of cycles and the number of
1-bit additions. Also, refer to Table 2.4 for a summary of RAM and multiplexer
resources. The plot shows the Pareto front for the proposed SFDPRT for H =
2, . . . , 251, for an image of size 251 × 251. The Pareto front is defined in terms of
running time (in clock cycles) and the number of flip-flops used. For comparison, the
serial implementation from [1], and the systolic implementation [2] is shown. The
fastest implementation is due to the FDPRT that is also shown.

We also provide a summary of our results for the inverse DPRT. For the fast

version (iFDPRT) running time and resources, we refer back to Figs. 2.29 and 2.33.

For the number of input bits, we recall that B′ = B + dlog2Ne. Thus, overall, the

iFDPRT implementations require more resources and slightly more computational

times. Similar comments apply for the scalable, inverse DPRTs (iSFDPRT) shown

in Figs. 2.29 and 2.33.



65

 

16, 15939504 

4032, 63253 

563244, 511 
500

5000

50000

500000

5000000

4 40 400 4000 40000 400000

C
lo

ck
 c

yc
le

s 

Resource usage (1-bit Additions) 

Serial

Systolic

SFDPRT: H=2, …, 251 

SFDPRT pareto

FDPRT

 6024, 33013 
H=2 

H=84 
 190509, 1777 

Figure 2.32: Comparative plot for the different implementations based on the number
of cycles and the number of one-bit additions only (or equivalent 1 bit full adders).
Refer to Fig. 2.31 for a similar comparison based on the number of flip-flops. Pareto
front for the proposed SFDPRT for H = 2, . . . , 251, for an image of size 251 ×
251. The Pareto front is defined in terms of running time (in clock cycles) and the
number of 1-bit additions. For comparison, the serial implementation from [1], and
the systolic implementation [2] is shown. The fastest implementation is due to the
FDPRT.

2.6.2 Discussion

Overall, the proposed approach results in the fastest running times. Even in the

slowest cases, the running times are significantly better than any previous implemen-

tation. Scalable DPRT computation has also been demonstrated where the required

number of cycles can be reduced when more resources are available. Significantly

faster DPRT computation is possible for fixed size transforms when the architecture

can be implemented using available resources. Furthermore, these results have been

extended for the inverse DPRT. However, in some cases, the better running times

come at a cost of increased resources. Thus, it is also needed a discuss how the



66

 

100

1000

10000

100000

1 51 101 151 201 251

Sl
ic

e
s 

Image Size (N x N), N prime 

FDPRT iFDPRT

SFDPRT(H=2) iSFDPRT(H=2)

SFDPRT(H=16) iSDFPRT(H=16)

Figure 2.33: FPGA slices for a Virtex-6 implementation for both the forward and
inverse DPRTs for H = 2, 16, N prime and 2 ≤ N ≤ 251.

running times depend on the number of required resources.

For an N×N image (N prime), the proposed approaches can compute the DPRT

in significantly less time than N2 cycles. The fastest architectures (FDPRT and

iFDPRT) compute the forward DPRT and inverse DPRT in just 2N + dlog2Ne+ 1

and 2N + 3 dlog2Ne+B+ 2 cycles respectively (where B is the number of bits used

to represent each input pixel). When resources are available, the scalable approach

can also compute the DPRT in a number of cycles that is linear in N . In the fastest

case, the scalable DPRT requires 2N + dlog2Ne + 1 clock cycles. However, when

very limited resources are available, the number of required clock cycles increases to

dN/2e (N + 9) +N + 2 for the case where only two image rows per strip H = 2 are

used.



67

Based on Fig. 2.31, the number of cycles as a function of the required number of

flip-flops are compared. From the Figure, note that systolic implementation requires

516, 096 flip flops to compute the DPRT for a 251×251 image in 63, 253 clock cycles

(square dot in Fig. 2.31). In comparison, with 25% less resources for H = 84,

the scalable DPRT is computed 36 times faster than the systolic implementation.

On the other hand, for the serial implementation, note that the proposed scalable

DPRT approaches are much faster but require more resources. The fast DPRT

implementation requires only 511 cycles that is vastly superior to any other approach.

Based on Fig. 2.32, the number of cycles are compared as a function of the

number of 1-bit additions. As expected, the serial implementation requires a single

16-bit adder. However, the serial implementation is very slow compared to all other

implementations. The systolic implementation requires only 4,032 1-bit additions

that is close to the two-row per strip (H = 2) implementation of the scalable DPRT.

However, in all cases, the systolic implementation is significantly slower than all

of the proposed implementations. Essentially, the scalable approach improves its

performance while requiring more 1-bit additions for larger values of H.

As detailed in section 2.3.5, the interest is only in Pareto-optimal implementa-

tions. Here, the Pareto-optimal cases represent scalable implementations that always

improve performance by using more resources. The collection of all of the Pareto-

optimal implementations form the Pareto-front and are shown in Fig. 2.31 and Fig.

2.32.

The proposed system can also be expanded for use in FPGA co-processor systems



68

where the FPGA card communicates with the CPU using a PCI express interface.

Clearly, the advantage of using the proposed architecture increases with N since

the image transfer overhead will not be significant for larger N . To understand the

limits, assume a PCI express 3.x bandwidth of about 16 GB/s and a general-purpose

microprocessor that achieves the maximum performance of 10 Giga-flops using 4 cores

at 2.5 GHz. In terms of CPU memory accesses, assume a 32GB/second bandwidth for

DDR3 memory. Furthermore, suppose that the interest is in computing the DPRT

of a 251 × 251 image. In this case, image I/O requires about 3.67 micro-seconds

per image transfer from the DDR3 to the FPGA card. The DPRT requires N2 ∗

(N + 1) ≈ 15.88 mega floating point operations for the additions. The additions can

be performed in 1.479 milli-seconds (1479 micro-seconds) on the CPU. In addition,

the CPU implementation will need 2N2 DDR3 memory accesses for implementing

the transposition and retrieving the matrix in shifted form. However, assuming that

these memory accesses are implemented effectively using DDR3 memory, that only

requires 3.67 micro-seconds. Hence, the CPU computation will be dominated by the

additions. On the other hand, DPRT computation on an FPGA operating at just

100 MHz for older devices (at half the 200 MHz of more modern FPGA devices), will

only require 2*251+9 cycles in about 5.11 micro-seconds. Thus, the speedup factor

is above (3.67 + 1479)/(3.67 + 5.11) ≈ 169.



69

2.7 Conclusions

The chapter summarized the development of fast and scalable methods for comput-

ing the DPRT and its inverse. Overall, the proposed methods provide much faster

computation of the DPRT. Furthermore, the scalable DPRT methods provide fast

execution times that can be implemented within available resources. In addition,

fast DPRT methods that provided the fastest execution times among all possible

approaches are presented. For an N ×N image, the fastest DPRT implementations

require a number of cycles that grows linearly with N . Furthermore, in terms of

resources, the proposed architectures only require fixed point additions and shift

registers.

The proposed architectures are not tied to any existing hardware, so it can be

applied to any current or future hardware architectures (like FPGAs or VLSI). This

work is the first one that presented a complete solution for the iDPRT. This work

introduced the novel concept of ’partial DPRT’ and ’partial iDPRT’ (math equations,

algorithm and architecture), which leads to be able to compute the DPRT/iDPRT

from a scalable point of view. Several optimizations have been proposed to the

architecture to be able to compute the DPRT in parallel at high speed. Including

simultaneous additions, shifting and transpositions, fast and fully pipelined adders,

substractors and dividers, and customized RAMs to read a complete row or column

of an image in one clock cycle.



70

Chapter 3

Fast 2-D Convolutions and

Cross-Correlations Using Scalable

Architectures

This chapter describes Fast and Scalable architectures and algorithms for computing

2-D linear convolutions for relatively large and non-separable kernels. The work

presented will be submitted to:

C. Carranza, D. Llamocca, and M. Pattichis, “Fast 2-D Convolutions and Cross-

Correlations Using Scalable Architectures,” IEEE Transactions on Image Processing.

Convolution and cross-correlation are essential tools for a wide range of applica-

tions in the field of image and video processing. Example applications include medical

imaging, computer vision, image restoration, multimedia, etc. [32, 33]. Further ex-

amples include feature Extraction [34], template matching [35], pattern recognition



71

[36], edge detection, filtering, deconvolution, segmentation, and denoising.

The performance of most image processing systems is directly affected by the

speed at which the 2-D convolutions can be performed. There is thus perennial

interest in developing fast methods for computing 2-D convolutions. There is also

renewed interest in developing fast convolution methods that can fit in new devices.

3.1 Introduction

The goal of the current chapter is to develop fast and scalable architectures that can

compute real-time convolutions with relatively large kernels. Above all, the paper is

focused on the development of fast architectures that can reduce the latency of the

convolution components of the system to be significantly below the number of ele-

ments in the image. At such speeds, it is clear that larger image processing systems

can benefit significantly from the use of much faster convolution components. It is

also clear that this requirement significantly exceeds the standard use of 2D FFT

architectures that serially compute O(N2 logN) flops for N ×N images. Similarly,

our basic design requirement also exceeds the standard use of systolic array imple-

mentations that process one pixel per cycle. The proposed transform-domain design

also outperforms spatial domain methods, as it is explained later in this section.

To support implementations in modern devices (e.g., FPGAs), there is also an

interest in scalable architectures. The basic idea is to make efficient use of hardware

resources to deliver the best possible performance. The scalability requirement is

split into performance and data scalability. For performance scalability, there is a



72

need to investigate implementations that can be fitted within available resources.

Thus, the current paper describes families of different hardware implementations

that can be fitted to available hardware resources. For data scalability, it is expected

that the hardware can be used to perform fast convolutions on large images without

having the data processing resources grow with image size.

Additionally, there is an interested in real-time applications where the convolu-

tion kernel can be varied in real-time. As an example, consider adaptive filtering

applications. During operation, a filter may have to be adjusted to meet differ-

ent constraints on power, energy, or accuracy. An example of such an application

can be found in our own research on Dynamically Reconfigurable Architectures for

Time-Varying Image Constraints (DRASTIC) [37]. In video processing applications,

the filtering coefficients can be adjusted to preserve energy, or provide more accu-

rate results during a scene change [38]. For real-time convolution applications, it is

thus desirable to be able to change the convolution kernel in real-time, without the

requirement for any offline computations.

A standard approach for developing efficient architectures for 2-D convolutions

would be to build the systems based on 2-D FFTs. As is well-known (e.g., see

[39, 40]), for sufficiently large kernels, the use of 2-D FFTs will give better results

than direct approaches. Unfortunately, the direct implementation of 2-D FFTs in

hardware requires the use of expensive (hardware-intensive) processing and control

units to implement complex arithmetic using floating point numbers. As a result,

the hardware scalability of using 2-D FFTs is fundamentally limited by the number



73

of 1-D FFT processors that can be fitted in any given hardware device. Refer to

[41, 42] for details of the latest implementation of this approach. As shown in [41],

performance can be improved by including up to 8 1-D FFT processors. Beyond 8

1-D FFT processors, performance degrades due to I/O issues.

Two-dimensional convolutions can also be computed in the transform domain

using the 2-D Discrete Periodic Radon Transform (DPRT). The DPRT can be com-

puted using summations along different directions [43]. Similar to the FFT, the

DPRT approach requires to first apply the DPRT of the image and the 2-D kernel.

Then, along each DPRT direction, 1-D convolutions between the DPRTs of the image

and the 2-D kernel are computed. The 2-D convolution result can then be computed

by taking the inverse DPRT of the previous result. For large, non-separable kernels,

it is developed a scalable family of DPRT-based architectures that leads to very

fast computations that range from O(N) to O(N2) cycles for N × N images. As

expected, the scalable family will produce faster implementations at the expense of

more computational resources.

In the spatial-domain, an important alternative comes from the use of systolic

arrays [44]. The standard systolic array implementation of 1-D convolutions com-

putes an output every clock cycle. Without using separability, a direct extension of

the 1-D systolic array approach would require to keep several image rows in memory

[45, 46]. As a result, the application of non-separable systolic array implementations

has been limited to small kernels. Furthermore, it is clear that parallelization by

using multiple copies of these non-separable implementation is impractical for larger



74

kernels, i.e in [45] the resource grows as O(N3).

In the spatial domain, there is a relatively recent emergence of fast convolution

using a sliding window [47]. At each image pixel, a sliding window of the same size

as the kernel is applied to compute one output pixel of the convolved image [48].

This comes at a cost of using as many multipliers and adders as the coefficients in

the kernel, and thus grows linearly with the number of coefficients in the kernel.

An important extension of the systolic approach can be derived by using sep-

arable approximations of non-separable kernels [49]. The basic idea is to express

non-separable kernels as a sum of separable kernels. Then, scalable hardware im-

plementations can be derived by controlling the number of efficient 1-D processors.

Furthermore, as it will be demostrated later in this paper, this approach can also

reduce the required number of 1-D kernels using the singular value decomposition

(SVD) [50].

Overall, the dissertation describes the development of two families of scalable

architectures that map 2-D convolutions into fast 1-D convolutions. For the first

family, the approach requires the pre-computation of (i) a spatial-domain separa-

ble decomposition based on an SVD-LU factorization (see Chapter 18 of [49]), and

(ii) a transform-domain separable decomposition of the Discrete Periodic Radon

Transform (DPRT). The first family is ideally suited for implementing non-separable

filterbanks where the filters can be computed ahead of time. For the second fam-

ily, the dissertation considers efficient architectures that compute all DPRTs and

the inverse DPRT in real-time so as to avoid any offline computations. The second



75

family is ideally suited for implementing cross-correlations, adaptive filterbanks, or

implementing filterbanks without requiring any preprocessing.

A summary of the primary architectural elements of the proposed design are:

• An array of circular-shift-registers: The image data is stored and pro-

cessed using an array of circular shift registers. The memory array is imple-

mented using a row of SRAMs where each SRAM stores a column of the image.

• Row-level parallel I/O: The scalable architectures load the image into mem-

ory using a sequence of parallel loads of rows of pixels. Thus, for an image with

N rows, The entire image can be loaded into memory in N cycles.

• Row-level parallel and pipelined processing: The proposed scalable ar-

chitectures are designed to process multiple rows at the same time. Thus,

for FPGA implementations, the idea is to implement as many row-processing

units as they can fit in the device. Then, each row-processor uses a pipelined

architecture that produces results after each cycle after an initial latency.

• Fast transpositions: A significant reduction in the transposition overhead

using an additional output memory array. The output memory array uses dual-

port memories to allow us to write the output results and read intermediate

values at the same time. Based on the proposed approach, rows and columns

can read and write in a single cycle as needed. Overall, in the pipelined design,

the net effect is that transposition is performed during computation and will

thus not require any additional cycles.



76

The scalability characteristics of the proposed architectures include:

• Data scalability using overlap and add: The overlap and add property

is used to allow processing of larger images. Furthermore, by controlling the

image block size, a trade-off between performance and resources is provided.

Convolutions can be computed faster by processing larger blocks subject to

available resources.

• Performance scalability by controlling the number of row-proce-

ssors in the DPRT and the 1-D convolutions: Refer to [3] for the

scalable DPRT implementation.

• Pareto optimality: Pareto-optimal designs are presented in the sense that

the proposed family of architectures provide the fastest implementations based

on available resources. In other words, additional resources always yield faster

performance.

• Fast 2-D Convolutions: The fastest architectures can compute 2-D convo-

lutions in O(L · N) cycles where N represents the number of pixels processed

with each row and L represents the total number of image blocks. On the other

hand, in the worst case scenario, with very limited resources, 2-D convolutions

can be computed in O(N2) cycles.

In addition, for the implementation of fast cross-correlations and convolutions with-

out pre-processing, the fast and scalable implementations of the DPRT that were

presented in [3] will be used.



77

The rest of the paper is organized as follows. The mathematical definitions for

the DPRT, its inverse, and the transformation property of the DPRT are given in

section 3.2. The proposed approach is given in section 3.3. Section 3.4 presents the

results. Conclusions and future work are given in section 3.5.

3.2 Background

3.2.1 Basic notation

Let g(i, j) denote an image of P1 rows with P2 pixels per row be of size P1×P2 with B

bits per pixel. The image g(i, j) is indexed using 0 ≤ i ≤ P1− 1 and 0 ≤ j ≤ P2− 1.

The access to an entire row is done using gi(j) and an entire column using gj(i). For

the convolution kernels, the symbol h is used and assume a size of Q1 ×Q2 with C

bits per pixel. f(i, j) is used for the output, with size N1×N2 where N1 = P1+Q1−1

and N2 = P2 +Q2 − 1, and simply use N for the special case of N1 = N2.

3.2.2 Separable decomposition for non-separable kernels

First, the 2-D Z-transform of the convolution kernel h is given by:

H(z1, z2) =

Q1−1∑
i=0

Q2−1∑
j=0

h(i, j)z−i1 z
−j
2 . (3.1)



78

To allow for separable decompositions, consider a matrix re-formulation of (3.1) [49]:

H(z1, z2) =

[
1 z−11 z−21 . . . z

−(Q1−1)
1

]


h(0, 0) h(0, 1) . . . h(0, Q2 − 1)

h(1, 0) h(1, 1) . . . h(1, Q2 − 1)

...
...

...
...

h(Q1 − 1, 0) h(Q1 − 1, 1) . . . h(Q1 − 1, Q2 − 1)




1

z−12

...

z
−(Q2−1)
2


= Z1

T H Z2 (3.2)

where all of the filter coefficients have been placed in H, and for i = 1, 2 Zi =

[1 z−1i z−2i . . . z
−(Qi−1)
i ]. Now that the filter coefficients are in matrix form, it can

be considered separable matrix approximations to H. First, consider the singular

value decomposition (SVD) for H: H = UΣVT . Then, H can be simplified by

zeroing out the smallest singular values of Σ. Let Σm denote the resulting Σ after

zeroing-out small singular values, an effective reconstructed approximation to H

using Hr = UΣrV
T where the r larges singular values of H are kept. In this case,

using the LU decomposition of Hr to get [49]:

Hr(z1, z2) =
r∑

k=1

(
Q1−1∑
i=0

lmkiz
i
1

)(
Q2−1∑
j=0

ujkz
j
2

)
(3.3)



79

where r also denotes the rank of Hr. In (3.3), it is expressed the original 2-D convo-

lution into a sum of r separable 1-D convolutions along the rows and columns. Fur-

thermore, it is clear that the separable decomposition also applies to non-separable

2-D kernels.

3.2.3 The discrete periodic radon transform (DPRT)

The DPRT of an image f of size N ×N , N prime, using [18] is defined as:

F (m, d) =



N−1∑
i=0

f(i, 〈d+mi〉N), 0 ≤ m < N,

N−1∑
j=0

f(d, j), m = N,

(3.4)

where d = 0, 1, . . . , N − 1, m = 0, 1, . . . , N , and < . >N denotes the positive remain-

der when an integer division by N is performed (e.g., < 128 >127= 1). In (3.4), m

indexes the prime directions. Along each prime direction, the pixels are added up

along each ray. In (3.4), d is used to index each the rays of each direction.

The inverse DPRT can be used to reconstruct the image from the forward DPRT

using:

f (i, j) =
1

N

[
N−1∑
m=0

F (m, 〈j −mi〉N)− S + F (N, i)

]
(3.5)

where:

S =
N−1∑
j=0

N−1∑
i=0

f(i, j). (3.6)

As noted in the definition, the size of the transform needs to be restricted to prime

numbers. This restriction is not imposed directly to the image and kernel sizes, but



80

to the result of the linear convolution of size N1 × N2, with N1 = P1 + Q1 − 1 and

N2 = P2 + Q2 − 1. Therefore, a minimal (or even none) zero padding is required

if the input sizes are selected conveniently. There are several reasons for imposing

this restriction. Most importantly though, for prime N , the DPRT provides the most

efficient implementations by requiring the minimal number of N+1 primal directions

[21]. It is important to note that prime-numbered transforms have advantages in

convolution applications. Here, just like for the Fast Fourier Transform (FFT), zero-

padding is used to extend the DPRT for computing convolutions in the transform

domain. Unfortunately, when using the FFT with N = 2p, zero-padding requires

to use FFTs with double the size of N . In this case, it is easy to see that the use

of prime-numbered DPRTs is better since there are typically many prime numbers

between 2p and 2p+1.

Refer to [3] for fast and scalable implementations of the DPRT. In the fastest

case, the full DPRT can be computed in just 2N + dlog2Ne + 1 clock cycles with

O(N2) growth in resource usage. In the scalable DPRT implementation, it is required⌈
N/2h

⌉
N + 2N + h cycles where h is used as the scalability parameter. A family of

scalable DPRT implementation is defined using h = 2, . . . , dlog2Ne with a resource

usage that varies between O(N) for h = 2 and O(N2) for h = dlog2Ne.

3.2.4 Circular convolutions using the DPRT

Consider the 2-D circular convolution f = g ⊗ h given by:

f(k, l) =
N−1∑
i=0

N−1∑
j=0

g(i, j)h(〈k − i〉N , 〈l − j〉N). (3.7)



81

To define the DPRT convolution property, let m denote a prime direction and de-

fine the DPRTs along the m-direction using: Fm(d) = F (m, d), Gm(d) = G(m, d),

Hm(d) = H(m, d). Then, the m-direction DPRTs are related through 1-D dimen-

sional circular convolution in the transform domain as given by [43]:

Fm(d) =
N−1∑
k=0

Gm(k)Hm(〈d− k〉N) (3.8)

Thus, the result of 2-D circular convolution can be computed in the transform domain

using 1-D circular convolutions along all of the prime directions as given by (3.8).

After computing the DPRT of the result along each direction, the inverse DPRT can

be applied to recover f .

3.3 Methodology

3.3.1 Computing 1-D circular convolutions using circular

shifts

In this section, 1-D circular convolutions using circular shifts is reformulated. Here,

the primary application will be to compute the circular convolutions in the DPRT

domain. Thus, the DPRTs of f, g, h are used in the derivation. Let Fm(d), Gm(d),

Hm(d) denote the DPRTs of f, g, h along the m-th prime direction.

A special flip operation H̆m = Hm is defined by:

H̆m(d) = Hm(N − 1− d), d ≥ 0,



82

and the circular right shift (CRS) by n using Hn
m = Hm that is defined by:

Hn
m(d) = Hm(〈d+ n〉N).

Then, using (3.8) to derive a shifted representation of the circular convolution:

Fm(d) =
N−1∑
k=0

Gm(k)Hm(〈d− k〉N)

=
N−1∑
k=0

Gm(k)Hm(〈N − 1− k + d+ 1〉N)

=
N−1∑
k=0

Gm(k)Hd+1
m (N − 1− k)

=
N−1∑
k=0

Gm(k) H̆d+1
m (k). (3.9)

From (3.9), note that Fm(d) can be expressed as the dot product between Gm and a

flipped and circular right shifted by d+1 positions version of Hm (denoted as H̆d+1
m ).

3.3.2 Fast 1-D circular convolution hardware implementa-

tion

In this section, a fast hardware implementation based on (3.9) is derived. The

hardware architecture is presented in Fig. 3.1, the associated algorithm in Fig. 3.2,

and the timing diagram in Fig. 3.3.

The sequence of operations is given in Fig. 3.2. Initially, parallel loads to transfer

both of the DPRTs to the G and H registers in a single clock cycle are used. Note

that flipping Hm into H̆m is performed by simply wiring the inputs in reverse as

shown in the upper register portion of Fig. 3.1. Starting with last convolution



83

output, there is a 3-step sequence of parallel multiplies, addition of the results, and

a circular right shift to prepare for the next output (lines 3-5). The multiplications

are performed in parallel in a single cycle using the parallel fixed-point multipliers

of Fig. 3.1 and added using a pipelined tree structure in just dlog2(N)e clock cycles

(e.g., see [3]). The resulting outputs are left-shifted in, one output sample at a time,

into the output F register shown in the lower-right portion of Fig. 3.1. A single

cycle is also needed to perform the circular right shift of H using the top-left register

of Fig. 3.1.

To derive the timing requirements, refer back to Fig. 3.3. Using a fully pipelined

approach, the next output sample computation starts after the parallel multiplication

occurs. It is easy to see that after the initial latency for the first sample, an output

sample is computed at every cycle. After adding the latency for the initial loads, the

adder latency, and the final left shift, a total of just N + dlog2(N)e+ 2 clock cycles

is needed.

3.3.3 Fast and scalable 2-D linear convolutions and cross-

correlations

In this section, the architectures, algorithms, bit requirements, and computational

efficiency for 2-D convolutions and cross-correlations are developed. Most impor-

tantly, the scalability of the proposed approach that allows for the most efficient

implementations based on available resources is discussed.

In what follows, refer to the sequence of operations for computing fast and scalable



84

 
C C C

H(0) H(1) H(N-1)

...

E_H
s_H

din
E
s_l

RIGHT
SHIFT

C C C
...

B B B
...

B B B
...

G(N-1) G(N-2) G(0)

E_G

P
(N

-1
)

P
(N

-2
)

P
(0

)

+ Adder
tree

NY = B+C + log2N

NY

ADT

E_H

B+C B+C B+C

P(N-1) P(N-2) P(0)

...

0

E
s_l

LEFT
SHIFT

NY NY NY
...

din

v_ADT

FSM

v

v_ADT

F(N-1) F(N-2) F(0)

B

C S1

1

resetn=0

v_ADT
0

S2

1
v_ADTv  1

0

clk

resetn

E_H

s_H

E_G

E_ADT

v_ADT

v

N=7

E
_A

D
T

B
+

C

B
+

C

B
+

C

Figure 3.1: Architecture for computing the 1-D circular convolution Fm = Gm⊗Hm.

1: Parallel load G = Gm, flipped load H = H̆m

2: for d = N − 1 downto 0 do
3: Parallel mult. P (k) = G(k)H(k), 0 ≤ k ≤ N − 1.

4: Parallel add F (d) =
∑N−1

k=0 P (k)

5: CRS by one H = H1

6: end for
7: Parallel output F

Figure 3.2: Algorithm for computing the 1-D circular convolution Fm = Gm ⊗Hm.

2D convolutions and cross-correlations as shown in Fig. 3.4. In the most efficient

implementation, the convolution kernel is available ahead of time thus the kernel

DPRT is pre-computed and stored in memory as shown in the hardware architecture

of Fig. 3.5. On the other hand, for adaptive filterbank applications, the DPRT of

the zero-padded convolution kernel can be computed in real-time. Furthermore, for

cross-correlation computations, a fast transposition is also needed as described in

Fig. 3.4.



85

1 1 n 1

1 n 1

1 n 1

1 n 1N... ºN 

terms

Load G & H Mult & Add Adder 

latency

Output

N

 

Figure 3.3: Running time for the implementation of the fast architecture for com-
puting 1-D Circular convolutions. In this diagram, time increases to the right. The
number of clock cycles for each term of Fm(d) is shown on each strip. The strip on
the right represents the total running time. n = dlog2Ne represents the addition
latency.

Scalability is achieved by setting: (i) J which is the number of 1D circular con-

volutions that can be computed in parallel, and (ii) H which is the number of image

rows that can be processed in parallel in the DPRT blocks as described in [3]. Fol-

lowing the computation of the 1D circular convolutions, an inverse DPRT is applied

for computing the final result.

A derivation of bit requirements is also presented. Let the input image g be of size

P1×P2 with B bits per pixel and the kernel h of size Q1×Q2 with C bits per pixel.

Then, it is easy to see that bit requirements include: (i) B + n bits for the DPRT of

g, C+n bits for the DPRT of h where n = dlog2Ne (also see [3]), (ii) B+C+3n bits

for the convolutions, and (iii) B + C + 4n bits just before the normalization step of

the inverse DPRT [3], and B+C+2n bits for the final result. For simplicity, assume

square image blocks. Then N = NextPrime(max(P1 +Q1 − 1, P2 +Q2 − 1)). Next,

to compute the required number of cycles based on J , H, and N (for square images),

computational complexity needs to be derived for: (i) the DPRT of the image, (ii)



86

the circular-convolutions, and (iii) the inverse DPRT for the final result. Here,

for adaptive filterbank computation, the DPRTs of the image and the convolution

kernel can be computed in parallel without any additional latency. Furthermore,

cross-correlation computation would only add an extra cycle for the transposition.

As summarized in section 3.2.3 and [3], scalable DPRT computation requires⌈
N/2h

⌉
N + 2N + h clock cycles that reduces to 2N + dlog2Ne + 1 clock cycles

for the fast DPRT. For computing the number of cycles required for the circular

convolutions, refer to Figs. 3.6 and 3.7. As shown in Fig. 3.6, by using J convolution

blocks working in parallel, it is required J + N + n + 1 clock cycles to compute

J convolutions, where n = dlog2Ne represents the addition latency. To compute

outputs for all of the N + 1 required DPRT directions, it is loaded and processed

up to J blocks at a time. After the J cycles required for the first set, we wait for

N additional cycles until the next set, and so on. Overall, it is required a total of

L(J + N) + n + 1 − (J − J ′
) clock cycles where L = d(N + 1)/Je, J ′

= 〈N + 1〉J ,

and n = dlog2Ne. Depending on available resources, the fastest running time for

J = N + 1 takes 2N + n + 2 clock cycles with resource usage of O(N2), and the

slowest for J = 1 at (N + 1)2 + n + 1 clock cycles with the lowest resource usage

O(N). A detailed analysis of computational resources is provided in section 3.4.

Lastly, the inverse DPRT is applied using the iSFDPRT System module. Similar

to the forward DPRT, scalability is controlled by H, the number of image rows

processed in parallel [3]. For this step, as mentioned earlier, the input data uses

B +C + 3n bits per pixel. Depending on available resources, the inverse DPRT can



87

1: Precompute/Compute
H = DPRT{ZeroPad{h}}
and store the results in memory.

. For cross-correlation, replace step 1 with:

. Transpose h in a single cycle

. using custom memory and

. Compute H = DPRT{ZeroPad{h}}
2: Compute G = DPRT{ZeroPad{g}}
3: for p = 0 to L− 1 do
4: Compute J directions in parallel:

FpJ+i = GpJ+i ⊗HpJ+i, for i = 0, . . . , J − 1.
5: end for
6: Compute f = DPRT−1{F}

Figure 3.4: Fast and scalable algorithm for computing 2-D linear convolutions and
cross-correlations between g(i, j) and h(i, j) using the architecture depicted in Fig.
3.5.

be computed in just 2N + 5n + B + C + 2 for H = N with O(N2) resource usage,

or as as slow as dN/2e (N + 2) + 4n + B + C + 4 for H = 2 for just O(N) resource

usage.

Overall, in the fastest case, convolutions and cross-correlations can be computed

in just O(N) clock cycles. Even in the slowest case, with the lowest resource require-

ments, it is only required O(N2) clock cycles. In section 3.4, carefull analysis for the

required amounts of resources and corresponding clock cycles for each case is done.

3.3.4 Scalable 2-D Linear Convolution using LU decompo-

sition (S2DLCLU)

Consider the 2-D linear convolution between g of size P1× P2 and a non-separable

kernel h of size Q1×Q2. From section 3.2.2, a non-separable kernel can be decom-



88

 

done_G
v_conv

done_inv

inv_iRAM_en
inv_iRAM_addr

GRAM_ZoSFDPRT

System

NxB
G_DRi

start
iwr

GRAM_addr
GRAM_en

oRAM_Zo

N
x
N

O
B

oRAM_Co

N
x
B

C

done_Gdone

log2(N+1)

NxBC

log2(N+1)
xoRAM_addr
xoRAM_en

xoRAM_addrx
xoRAM_enx
xoRAM_wex
xoRAM_DRix

DRi

start
iwr

NxBC

oRAM_Fo

N
x
B

C

done_invdone

log2(N)

log2(N+1)
iRAM_addr

iRAM_enoRAM_xaddr
oRAM_rd

iRAM_DRo

B H N BC
NOB = B + log2N

B BC

SFDPRT

Memory

H_DRi

start
owrH

HRAM_addr
HRAM_en oRAM_Zo

N
x
N

O
C

log2(N+1)
xoRAM_addrx
xoRAM_enx

DRi

start
owr

NOC N

B

ISFDPRT

System

SF1DCC

Gi

Hi

E_G
E_H
s_H

v

Fo

BC H N

B

NOB H BC

B BO

GRAM_Co

HRAM_Zo

oRAM_xaddr
oRAM_rd

BCO = BC + log2(N+1)

GRAM_DRix

v_conv

GRAM_addrx
GRAM_enx
GRAM_wex

inv_iRAM_addr
inv_iRAM_en

FSM

GRAM_en
HRAM_en
GRAM_enx
HRAM_enx
GRAM_addr
HRAM_addr
GRAM_addrx
start_inv
E_G
E_H

s_H

start_inv start

oRAM_Fo

E_G
E_H
s_H

NOC

C

NOC = C + log2N

N
x
N

O
C N+1

Figure 3.5: Fast and scalable architecture system for computing 2D convolutions. A
modification is needed for computing fast cross-correlations (see below). Refer to Fig.
3.4 for the sequence of operations. The DPRT is computed by a fast and scalable
block denoted by SFDPRT System. SFDPRT System computes the DPRT of the zero
padded input image g. For regular convolution kernels, the DPRT of the zero-padded
convolution kernel h can be pre-computed and stored in the SFDPRT Memory block as
shown here. Alternatively, in adaptive filterbank applications, it can be introduced
an extra SFDPRT System block for computing the DPRT in real time. Furthermore,
for computing cross-correlations in real-time, a fast transposition is needed before
applying the DPRT. It is computed J circular convolutions in parallel (row-wise)
using the SF1DCC System block. Control is performed by a finite state machine (FSM
block).

posed into r separable kernels. The 2-D convolution can then be computed using r

1-D convolutions with the separable kernels and accumulating the results.

The new S2DLCLU system is based on a modified version of the F1DCC con-

volver presented in section 3.3.2. The standard steps are then: (i) apply 1-D linear

convolution between each row of the image and the row-kernel, storing the results in

a temporal RAM, (ii) transpose the resulting image, (iii) apply 1-D linear convolu-

tion between each row of the resulting image and the column-kernel, accumulating

the results in an output RAM, (iv) repeat (i)-(iii) r times for the complete 2-D linear



89

Table 3.1: Resource usage for different 1-D Circular Convolutions implementations.
Here, there are two zero padded images g and h of size N × N , B and C bits per
pixel respectively and n = dlog2Ne. For the adder tree, it is defined Affb to be
number of required flip-flops including input buffers, and AFA to be the number of
1-bit additions. Affb and AFA grow linearly with respect to N and can be computed
using the algorithm given in the appendix (Fig. C.1). For the multipliers, note
that each one is implemented using two inputs of size B + n and C + n bits and an
output of B +C + 2n bits. Here, the term “1-bit additions” refers to the number of
equivalent 1-bit full adders.

Resources

Number of flip-flops 1-bit additions Multipliers

F1DCC N(2B + 2C + 5n) AFA(N,B + C + 2n) N

+Affb(N,B + C + 2n)

SF1DCC JN(2B + 2C + 5n) JAFA(N,B + C + 2n) JN

+JAffb(N,B + C + 2n)

1 n 1N

1 n 1N

1 n 1N

...
J

terms

Load data 1-D convolution Convolution 

latency

Output

J

º n 1NJ

 

Figure 3.6: Running time for computing J circular convolutions in parallel using J
fast convolution blocks (see basic block structure in Fig. 3.1). In this diagram, time
increases to the right. Here, it takes one cycle to perform a parallel load for each
block. Overall, it is required J+N+n+1 to compute everything, where n = dlog2Ne
represents the addition latency.

convolution.

However, the load of the data (row or column) and the transposition can slowdown

the processing. To develop a high-speed solution, the key is to avoid I/O limitations

and eliminate the transposition step. To this end, an SRAM system is used in



90

n 1NJ

n 1NJ

n 1NJ

...

n 1NJ’

L 

terms

 

Figure 3.7: Running time for computing N + 1 1-D circular convolutions using J
fast convolution blocks operating in parallel. In this diagram, time increases to
the right. The convolution blocks need to be reloaded L times, and is given by
L = d(N + 1)/Je. For the last load, only J

′
= 〈N + 1〉J if 〈N + 1〉J 6= 0 convolution

blocks are needed. Each row shows the running time for performing J convolutions
as described in Fig. 3.6.

four steps. First, MEM IN provides a full row of the image per clock cycle. Second,

MEM KER provides a full row or column of the filter coefficients in one clock cycle.

Third, MEM TMP is used for holding the temporal row-convolution, and is modified to

receive up to P1 values of the convolved rows per clock cycle, and also to provide

a full column per clock cycle. Fourth, MEM OUT is used for accumulating the final

result, while it can also add up to P2 + Q2 − 1 values of the convolved image per

clock cycle and perform reads of a full row of pixels in a single cycle.

All listed memories follow the architecture described in Fig. 3.8 and are con-

figured as shown in Table 3.2. Without loss of generality, from here assume that

P2 ≥ P1, Q2 ≥ Q1, and consequently N2 ≥ N1. Note that the DPRT is not needed

in this case.

In the worst case scenario (h is full rank, and all singular values are kept), r = Q1.

The 1-D linear convolution is carried out by the Fast 1-D Linear Convolver (F1DLC).

The block diagram of the F1DLC is presented in Fig. 3.9 and the associated algo-



91

DI

m

W

E

B’

DOUT[0:B’-1]

DIN[0:B’-1]

DOUT[B’:2B’-1]

DIN[B’:2B’-1]

DO B’

RAM[0]

WIN

EIN[0]

DI

W

E

B’

DO B’

RAM[1]

WIN ...

DOUT[(N-1)xB’:NxB’-1]

DIN[(N-1)xB’:NxB’-1]

DI

W

E

B’

DO B’

RAM[N-1]

WIN

EIN[N-1]

CS[0]

AIN

DIN

NxB’

WIN

EIN

DOUT

NxB’

MODE

CS[J]

CS[(L-1)xJ]

CIN[0]

L
élog2Lù

CS[1]
CS[J+1]

CS[(L-1)xJ+1]

CIN[1] CS[J-1]
CS[2J-1]

CS[LxJ-1]

CIN[J-1]

élog2Lù élog2Lù élog2Lù
L L L

J
CIN

0

1

L-1

0

1
0

1...

CS[i]
CS[0]

EIN[1]

EIN[i] MODE=0: Individual access

MODE=1: Row accessMODE

0

1

mxJ

AR[0]
AR[J]

AR[(L-1)xJ]

AIN[0:m-1] AR[1]
AR[J+1]

AR[(L-1)xJ+1]

AIN[m:2m-1] AR[J-1]
AR[2J-1]

AR[LxJ-1]

AIN[m(J-1):mJ-1]

élog2Lù élog2Lù élog2Lù
L L L

0

1

0

1
0

1...

m=élog2Mù

m

m m

m

ARAM[0]

L-1 L-1

L-1 L-1 L-1

m

m

m
ARAM[1]

m
ARAM[N-1]

i=0, … , N-1

AR[i]
AR[0] ARAM[i]

MODE

0

1

 

Figure 3.8: Custom SRAM architecture of size M × N , B′ bits depth to hold an
image of M rows and N columns, capable to read/write a full row in one clock cycle
(MODE=1) and allows individual access up to J SRAMs per clock cycle (MODE=0).
See Table 3.2 for configuration details.

rithm in Fig. 3.10. The running time is the same as F1DCC, replacing N by SG and

n to dlog2 SHe, i.e. SG + dlog2 SHe + 2 clock cycles. The resources grow linearly

with respect to SG (see Table 3.3 for exact values).

The complete S2DLCLU system to compute the 2-D linear convolution between

the image g(i, j) and the non-separable kernel h(i, j) using LU decomposition with

r separable kernels is shown in Fig. 3.11 and the associated algorithm in Fig. 3.12.

The scalability is controlled by the parameter J (number of F1DLC convolvers).



92

Table 3.2: SRAM System configuration. The Word size listed is for maximum accu-
racy. Orientation refers to each SRAM holding either for a full row or column of the
image. The Accumulate mode needs external adders to perform the accumulation
and dual-port SRAMs for full speed. Consider B as the number of bits of the input
image, C bits for kernel coefficients. q1 = dlog2Q1e, q2 = dlog2Q2e

SRAM MEM IN MEM KER MEM TMP MEM OUT

Quantity P2 Q2 P1 P2 +Q2− 1

Size P1 2Q2 P2 +Q2− 1 P1 +Q1− 1

Word B′ B C B + C + q2 B + 2C + q1 + q2 + r

Function g hR, hC g′ f

MODES 1 1 0/1 0/1

Orientation Column Column Row Column

WriteMode Store Store Store Accumulate

Let J ′R = 〈P1〉J if 〈P1〉J 6= 0, otherwise J ′R = J . Let J ′C = 〈P2 +Q2− 1〉J

if 〈P2 +Q2− 1〉J 6= 0, otherwise J ′C = J . Let LR = dP1/Je. And let LC =

d(P2 +Q2− 1)/Je. The running time is given by the row processing (LR(J + P2 +

Table 3.3: Resource usage for different Linear Convolvers implementations. Here,
all the quantities are given for maximum accuracy. For the adder tree, define Affb as
the number of required flip-flops including input buffers, and AFA to be the number of
1-bit additions. Affb and AFA grow linearly with respect to Q2 and can be computed
using the algorithm given in the appendix (Fig. C.1). For the multipliers, note that
each one is implemented using two inputs of size B + C + q2 and C bits and an
output of B + 2C + q2 bits. Here, the term “1-bit additions” is used to refer to the
number of equivalent 1-bit full adders. Recall N2 = P2 +Q2− 1.

Resources

Number of flip-flops 1-bit additions Multipliers

F1DLC N2× (B + C + q2) +Q2× C AFA(Q2, B + 2C + q2) Q2

+Affb(Q2, B + 2C + q2)

S2DLCLU J × (N2× (B + C + q2) +Q2× C J × AFA(Q2, B + 2C + q2) J ×Q2

+Affb(Q2, B + 2C + q2))



93

0 0… ...

Q2-1 P2

Q2

...

GX

HX

0 0… ...

Q1-1 P1

Q1

...

Gx

Hx

0 0...

0 0...

+

B

C
B+C B+C+q2

+

B+C+q2

C
B+2C+q2 B+2C+q1+q2

Q2 operand 

adder tree

Q1 operand 

adder tree

Store to 

MEM_TMP

Accumulate to 

MEM_OUT

(a)

(b)
 

Figure 3.9: Fast 1-D linear convolver (F1DLC) block representation. Assume P2 ≥
P1, Q2 ≥ Q1. GX size is P2 +Q2 − 1, HX size is Q2. Gray boxes denotes the usage
of the F1DLC. Bit usage is for full accuracy. Recall, B is the number of bits for the
input image, C for the kernel, q1 = dlog2Q1e and q2 = dlog2Q2e. The set of Q2

multipliers is represented by the ⊗ symbol, the input and output bits for each one is
indicated in the. All the multipliers are connected to a Q2-operand adder tree. (a)
Convolver processing rows. (b) Convolver processing columns.

Q2− 1)− (J − J ′R)), plus the column processing (LC(J +P1 +Q1− 1)− (J − J ′C)),

both added and repeated r times, plus the latency of the adder tree (dlog2Q1e+ 1).

Consider N = max {P2 +Q2− 1, P1 +Q1− 1}, then J = 1 gives the minimum



94

1: procedure F1DLC(GIN(x), SG, SH,MEM)
2: load GX[SH − 1 : SG− 1] = GIN(x)
3: load GX[0 : SH − 2] = 0
4: for s = 0 to SG− 1 do
5: in parallel multiply P (a) = GX[a]HX[a]

a = 0, . . . , SH − 1
6: in parallel add F [s] =

∑SH−1
j=0 P [j]

and store or accumulate in MEM
7: CLS by one GX
8: end for
9: return void

10: end procedure

Figure 3.10: Algorithm for computing the 1-D linear convolution between the
signal GIN and the preloaded row or column kernel HX. The output is stored
in MEM = MEM TMP for rows, or accumulated in MEM = MEM OUT for columns. SG
is the final size of the convolved signal, SH is the size of the current kernel and
x = 0, . . . , SG− SH.

+

MEM_IN

MEM_KER

F1DLC[1]

F1DLC[J-1]

F1DLC[0]

...

MEM_TMP

MEM_OUT

Convolver

DIN

DOUT

 

Figure 3.11: S2DLCLU System (top level diagram). Bus width is for maximum
accuracy. DANIEL must provide the final version with more detail.

resource usage O(N) with a running time of O(N2), J = P2 + Q2 − 1 gives the

fastest running time O(N) with resource usage O(N2). Refer to Tables 3.2 and 3.3

for detailed resource usage.



95

1: for q = 0 to r − 1 do
2: load HX[0 : Q2− 1] = hRq(j)
3: for p = 0 to LR − 1 do
4: in ‖ F1DLC(gpJ+a(j), P2 +Q2− 1, Q2, MEM TMP)

a = 0, . . . , J − 1
5: end for
6: load HX[0 : Q1− 1] = hCq(j)
7: for p = 0 to LC − 1 do
8: in ‖ F1DLC(g′pJ+a(i), P1 +Q1− 1, Q1, MEM OUT)

a = 0, . . . , J − 1
9: end for

10: end for

Figure 3.12: Algorithm for computing the 2-D linear convolution between the im-
age g(i, j) and the non-separable kernel h(i, j) decomposed into r separable kernels
hR(i, j) for rows and hC(i, j) for columns. g′(i, j) holds the results of the row-
convolution in MEM TMP. The output is stored in MEM OUT.

3.3.5 Overlap and Add for larger images

In a limited resources system, the SF2DLC or S2DLCLU systems that can compute

the linear convolution for P1 × P2 image sizes with Q1 × Q2 filter size, using the

overlap and add property for 2-D linear convolution. For this purpose, the original

input image or kernel or both are divided in smaller blocks and they are processed

sequentially.

For overlap-and-add, the original image is subdivided into U smaller blocks of

size P1×P2. The each block is processed serially through the SF2DLC or S2DLCLU

systems. Thus, the total running time is the product of U multiplied by the pro-

cessing time for each block. In terms of resources, there is no need of significant

additional resources for the convolution itself. Here, either SF2DLC or S2DLCLU

can perform the overlap and add operation on the output memory. The system is



96

implemented by expanding the FSM to provide the necessary control signals.

3.4 Results

The SF2DLC and S2DLCLU systems are compared in terms of running time and

resources against the following previous work: (i) convolution using serial systolic

arrays [45] (SerSys), (ii) convolution using scalable and parallel systolic arrays [46]

(ScaSys), (iii) convolution using sliding windows [51] (SliWin), and (iv) convolution

using the Fast Fourier Transform radix-2 [41] (FFTr2). Distributed arithmetic (DA)

solutions are not included because the internal ROM required for the DA operation

grows exponentially with the kernel size, making them not suitable for large kernels

[52]. For FFTr2, parallelism is achieved by using different numbers of 1-D FFTs.

3.4.1 Experimental setup

Consider the 2-D linear convolution f(i, j) = g(i, j)∗h(i, j) where g is of size P1×P2

and h is non-separable of size Q1 × Q2. The output f is of size N1 × N2 with

N1 = P1 +Q1− 1 and N2 = P2 +Q2− 1. To compare the different approaches for

large kernels set P1 = P2 = Q1 = Q2 = P , p = dlog2 P e. Then the output f(i, j)

has a size of N ×N , where N = 2P − 1, n = dlog2Ne. The image pixels use B = 8

bits. Kernel coefficients use C = 12 bits. After SFDPRT, the results are stored using

12 bits (not exact). The outputs of the multipliers and the adders also use 12 bits.

In the SF2DLC system, to balance the speed between the SFDPRT and the



97

F1DCC, set J = H, except for H = N , where J = N + 1 (optimal solution) is

used. Note that N is always an odd number, which is fine for SerSys, SliWin and

S2DLCLU. However, for SF2DLC, N is restricted to be a prime number. Similarly,

in the case of the FFTr2, N needs to be a power of two. We thus compare methods

for the case when N is prime and N + 1 = 2m for some m. For ScaSys, P needs

to be a composite number expressed as P = PA × PB. Thus, for ScaSys, P =

2 × 64, 4 × 32, 8 × 16, 16 × 8, 32 × 4. In all cases, it is assumed that the input data

is provided at the required rate.

3.4.2 Running time

For SF2DLC, the slowest case with the lowest resources occurs when J = H = 2.

For the fastest case, J = N +1 and the system is based on the FDPRT and iFDPRT

(instead of the SF2DLC). For the S2DLCLU, the slowest case occurs when J = 1

and the fastest for J = N . For all cases, the rank of h is taken as r = 2, N . Note

that for J = H = 2 and N odd, dN/2e = d(N + 1)/2e = (N + 1)/2

For the FFTr2, [41] does not provide detailed running time for the complete

convolution. Here, it is assumed that the point-to-point multiplication can be done

in parallel with the FFT computation (i.e. assume 0 clock cycles for that). Also, for

the latency of the FFTr2, 4N (load and output for rows and columns) is added.

Table 3.4 shows the running time as a function of N . In Figs. 3.13 and 3.14, it is

used N = 3, . . . , 255 and show the running time for different cases. For S2DLCLU,

J = 1 with full rank represents the serial solution of the convolution problem in



98

the spatial domain with time complexity of O(N3). The FFTr2 with D = 1 is also

a serial solution but lowers the time complexity to O(N2 log2N) in the frequency

domain. In terms of time complexity, the non-scalable solutions SliWin and SerSys

along with the scalable solutions ScaSys and SF2DLC at their lowest speed and the

S2DLCLU at two modes: J = 1, r = 2 and J = N require O(N2) cycles. The

scalable SF2DLC, S2DLCLU (r = 2) and Scasys have fastest speeds of O(N) clock

cycles and the FFTr2 with D = N (impossible to implement) at O(N log2N) cycles.

The S2DLCLU solutions offer good performance for non-separable kernels with

low rank. Then, as the rank increases, the SF2DLC becomes a better choice. For

non-separable, full-rank kernels and cross-correlation applications, the SF2DLC is

definitely a better choice. To achieve these speeds by alternatively methods, we will

need prohibitively large amounts of resources as demonstrated for ScaSys (PB = 4),

SF2DLC (J = N + 1 and FDPRT) and FFTr2 (D = N). Even with prohibitively

large resources, the proposed S2DLCU is still a better choice. Furthermore, in terms

of speed only, SerSys and SliWin produce implementations that fall between the

faster and slower realizations of the proposed, scalable implementations.

Due to the fact that there are much more primes than powers of 2 within a given

interval, we have much more size choices for the proposed scalable DPRT implemen-

tations. Fro example, the FFTr2 can only be implemented for N = 4, . . . , 256, only

7 compared to 53 available sizes for SF2DLC and 127 for S2DLCLU. For example,

for a convolved image of size 130, the FFTr2 needs to zero-pad to the next power of

two for N = 256 which wastes a lot of computational resources [53]. In contrast, the



99

Table 3.4: Running time for a 2-D linear convolution between an image g(i, j) and a
large non-separable kernel h(i, j) with rank r, both of size P×P . The convolved result
f(i, j) has a size of N ×N , where N = 2P − 1, n = dlog2Ne and p = dlog2 P e. For
ScaSys P needs to be a composite number P = PA × PB. For FFTr2, D = 1, . . . , N
represents the number of 1-D FFT units running in parallel.

Method Running time (in clock cycles)

SF2DLC (proposed) (N + 1)(3N + 13)/2 +N + 2n+ 19

J = H = 2

SF2DLC (proposed) 6N + 4n+ 17

J = N + 1,FDPRT

S2DLCLU (proposed) r × ((N + 1)(N + P )) + p+ 1

J = 1

S2DLCLU (proposed) r × (3N + P ) + p+ 1

J = N

SerSys [45] N2 + 2P − 2

ScaSys [46] dN2/PAe+ 2PA + PB + dlog2(P × PA)e

SliWin [51] N × P +N2 + 2 dlog2 P e+ 1

FFTr2 [41] (N2 log2N)/D + 4N

 

1

10

100

1000

10000

100000

0 50 100 150 200 250

R
u

n
n

in
g 

ti
m

e
 (

in
 (

cl
o

ck
 c

yc
le

s)
/N

) 

Convolved image size N x N 

ScaSys, PA=2

ScaSys, PB=4

SliWin

SerSys

S2DLCLU, J=1, Rank=2

S2DLCLU, J=N, Rank=2

S2DLCLU, J=1, FR

S2DLCLU, J=N, FR

SF2DLC J=H=2

SF2DLC J=N+1, FDPRT

FFTr2, D=1

FFTr2, D=N

Figure 3.13: Running time in clock cycles (normalized by image size N) versus
convolved image size for all methods.

scalable approach works with N = 131 which is the next prime number.



100

 

6

16

0 50 100 150 200 250

R
u

n
n

in
g 

ti
m

e
 (

in
 (

cl
o

ck
 c

yc
le

s)
/N

) 
in

 li
n

e
ar

 s
ca

le
 

Convolved image size N x N 

ScaSys, PB=4

S2DLCLU, J=N, Rank=2

SF2DLC J=N+1, FDPRT

FFTr2, D=N

Figure 3.14: Running time in clock cycles (normalized by image size N) versus
convolved image size for the fastest methods.

3.4.3 Pareto comparisons

This section provides comparisons of the amounts of resources and running times

associated with the different methods. For the FFT implementations, there is a

requirement for expensive floating point hardware that grow very large as compared

to what is needed for fixed-point implementations. For FFT implementations, the

comparisons will be made in terms of required FPGA resources.

The majority of the required resources can be summarized in terms of the num-

bers of: 1-bit flip-flops, 1-bit additions (full-adders), Multipliers and SRAM. Other

resources, such as the Finite State Machine, I/O with other systems and ancillary

logic will be accounted for in the next section after the target technology is selected.

For the running time, the results from Sec. 3.4.2 are used. The actual running time

(seconds) is computed in the next section after the target technology is selected and

the frequency of the system is set.



101

For resource usage, refer to Table 3.5. For the SF2DLC using the SFDPRT and

iSFDPRT, only two memories are needed. The two memories are reused as input and

output memory for each stage. Also, for the FDPRT and iFDPRT, no memories are

needed since the internal registers act as a memory. For the S2DLCLU, the resources

do not change for different kernel ranks.

The Pareto front is displayed in terms of resources and running times. The

Pareto plots in Figs. 3.15,3.16,3.17 show comparisons in terms of 1-bit FlipFlops,

1-bit Additions, and Multipliers. Memory comparisons are given in in Table 3.6.

It is clear that our proposed systems are Pareto-optimal among all methods. The

proposed systems offer a better trade-off between running time and resources. Sli-

Win, ScaSys and SerSys are not in the Pareto front. Among our proposed solutions,

S2DLCLU dominates the Pareto front for low rank kernels. However, as noted ear-

lier, as the rank increases, SF2DLU becomes a better solution. For high-speed, the

SF2DLC using the FDPRT is the best choice. In terms of memory usage, our meth-

ods use more memory, but still grow as O(N2) which is not a limitation for current

technologies. Also, our proposed systems and the SliWin have the advantage that

the kernel can be changed in running time.

3.5 Conclusions

This chapter describes two scalable and fast systems (SF2DLC and S2DLCLU) for

computing 2-D Linear convolutions with relatively large non-separable kernels. When

the non-separable kernel rank is low, the S2DLCLU works best. The chapter also



102

Table 3.5: Resource usage for a 2-D linear convolution between an image g(i, j) and
a large non-separable kernel h(i, j), both of size P × P . The convolved result f(i, j)
has a size of N ×N , where N = 2P − 1, n = dlog2Ne and p = dlog2 P e. For ScaSys
P needs to be a composite number P = PA × PB. Define Affb (a, b) to be number of
required flip-flops inside the a-operand of b bits adder tree including input buffers,
Aff () without input buffers and AFA () to be the number of 1-bit additions, all grow
linearly with respect to N and can be computed using the algorithm given in the
appendix (Fig. C.1).

Method FlipFlops (1-bit) 1-bit Addtitions Multipliers Memory

SF2DLC (proposed) J(36N + Affb(N, 12)) JAFA(N, 12) J ×N 24N(N + 1)

(using SFDPRT +N(8H + Aff(H, 8)) +NAFA(H, 8) + 12N Ker: 12N(N + 1)

and iSFDPRT) +12N(H + 3) + (N + 1)Aff(H, 12) +(N + 1)AFA(H, 12) + 2N(12 + n)

SF2DLC (proposed) (N + 1)(36N + Affb(N, 12)) JAFA(N, 12) J ×N ker: 12N(N + 1)

(using FDPRT +N(8N + Aff(N, 8)) +NAFA(N, 8)

iFDPRT, J=N+1) +12N2 + (N + 1)Aff(N, 12) +N(12 + n) +(N + 1)AFA(N, 12) +N(12 + n)

S2DLCLU (proposed) J(36P + Affb(P, 12)) J(AFA(P, 12) + 12) J × P 8P 2 + 12N(N + P )

Ker: 24P 2

SerSys [45] 4P 3 + 34P 2 − 10P − 12 12P (P + 1) P 2 Ker: 12P 2

ScaSys [46] PA(20P 2 + Affb(PAP, 12)) + 8P (P 2
A + PA − 1) PA(12P 2 + AFA(PAP, 12)) PAP

2 Ker: 12PAP
2

SliWin [51] 20P 2 + Affb(P
2, 12) AFA(P

2, 12) P 2 8PN + 8P 2 + 12N2

 

300

3000

30000

300000

3000 30000 300000 3000000

R
u

n
n

in
g 

ti
m

e
 (

cl
o

ck
 c

yc
le

s)
 

Resources (1bit Flip Flops) 

S2DLCLU, rank=2

S2DLCLU, full rank

SF2DLC with SFDPRT

SF2DLC with FDPRT

SerSys

ScaSys

SliWin

Figure 3.15: Resources (1-bit FlipFlops) vs Running time.

presents a novel parallel memory access system (by row/columns) that uses standard

SRAMs to provide high speed transfers and avoid transpositions.



103

 

300

3000

30000

300000

700 7000 70000 700000

R
u

n
n

in
g 

ti
m

e 
(c

lo
ck

 c
yc

le
s)

 

Resources (1bit additions) 

S2DLCLU, rank=2

S2DLCLU, full rank

SF2DLC with SFDPRT

SF2DLC with FDPRT

SerSys

ScaSys

SliWin

Figure 3.16: Resources (1-bit Additions) vs Running time.

 

300

3000

30000

300000

50 500 5000 50000

R
u

n
n

in
g 

ti
m

e 
(c

lo
ck

 c
yc

le
s)

 

Resources (Multipliers) 

S2DLCLU, rank=2

S2DLCLU, full rank

SF2DLC with SFDPRT

SF2DLC with FDPRT

SerSys

ScaSys

SliWin

Figure 3.17: Resources (Multipliers) vs Running time.



104

Table 3.6: Memory usage for a 2-D linear convolution between an image g(i, j) and
a large non-separable kernel h(i, j) both of size 64× 64. For ScaSys PA = 2, 4, 8, 16.

Method Memory (bits)

SF2DLC (proposed)
J = H

585216

SF2DLC (proposed)
J = N + 1, FDPRT

195072

S2DLCLU (proposed) 422156

SerSys [45] 49152

ScaSys [46] 49152×PA
SliWin [51] 291340



105

Chapter 4

Discrete Periodic Radon

Transform implementation on

GPUs and multi-core CPUs

Graphics Processing Units (GPUs) have been established as important alternatives to

general purpose microprocessors for performing large/complex computations. Real-

time image processing applications can significantly benefit from the hardware re-

sources available on GPUs. Similarly, real-time image processing applications can

also benefit from the emergence of multi-core CPUs.

Current algorithms to compute the forward and inverse DPRT are designed for

serial implementations [16],[18]. There are many I/O issues associated with paral-

lelizing these serial implementations. Instead, the proposed SFDPRT and iSFDPRT

presented in Chapter 2 avoid I/O issues by removing address calculations. Unfortu-



106

nately, such a direct approach is not possible on modern CPU/GPUs architectures.

Instead, this Chapter introduces a new set of algorithms that are specifically targeted

towards CPU/GPU implementations. As before, the ultimate goal is to minimize

the I/O bottleneck due to memory accesses.

In what follows, an architecture overview for CPUs and GPUs including an anal-

ysis of the I/O for memory accesses is presented in Section 4.1. The proposed parallel

algorithms for implementing the forward and inverse DPRT for CPU and GPU archi-

tectures are presented in Section 4.2. The implementation of the proposed algorithms

on a Xeon processor (CPU) and GM204 processor (GPU) are described in Section

4.3. Finally, results and conclusions are given in Section 4.4.

4.1 Architecture overview for multi-core CPUs

and GPUs

A typical architecture for parallel processing using CPUs and Graphic Processing

Units (GPUs) is shown in Fig. 4.1. A general description of the main components

given next.

The HOST system: The system consists of the Central Processing Unit (CPU)

using a Von-Neumann / Harvard architecture with MC cores, with a standard mem-

ory hierarchy (Cache L1/L2/L3, Main Memory and Storage memory) and a Pe-

ripheral Component Interconnect bus (PCI). A dispatch unit can provide different

instructions to the MC cores in parallel (MIMD). Each core has its own own set of



107

registers and local Fast SRAM (Cache L1/L2). The L3 cache is shared across cores.

Inside each core, there is an Arithmetic Logic Unit that can perform fixed-point or

floating-point multiplication/addition operations in one clock cycle.

The DEVICE system (the GPU): The system consists of MP Multiprocessors

(MP), connected with a shared Cache and a Device memory. Inside each MP, there

are NP processors (cores), each one with their own set of registers, a local Fast SRAM

(shared with all the processors inside the MP) and an Instruction unit capable to

dispatch, in parallel, the same instruction to the NP cores. Inside each core, there

is an Arithmetic Logic Unit, capable to perform a simple multiplication/addition in

one clock cycle. The operation can be fixed-point or floating point.

In what follows, let fD denote the clock frequency for each core. Also, in terms

of timing operations on the DEVICE, consider:

• Arithmetic operations: Each core is capable of performing one basic operation

per clock cycle.

• Load/Store operations: The following cases need to be considered separately:

1. Operations between registers require one clock cycle.

2. Fast SRAM access requires TS cycles (a few clock cycles).

3. Cache access requires TC cycles (tens of clocks cycles).

4. Cache misses cost TM cycles (hundreds of clock cycles).

For fast implementations, small images can be loaded in the fast SRAM of a

GPU. Unfortunately, the fast SRAM is not shared along all the MPs. Instead, fast



108

Cache Level 1

Cache Level 1

Device Memory

Core 1 Core 2 Core NP...
Registers Registers Registers

Fast SRAM

Instruction Unit

Cache

Multiprocessor 1

Multiprocessor 2

Multiprocessor MP

...

...

DEVICE (GPU)

System Memory

HOST (CPU)

PCI Bandwidth

Latency of TS

Latency of TC

Latency of TM

CORE

Dispatch Port

Floating 

Point 

Unit

Integer 

Unit

Result Queue

Core 

1

Core 

MC
...

Processor

 

Figure 4.1: Top level block diagram of the CPU and GPU architecture. The block
on the lower-left represents the HOST system (the CPU). The block on the right
represents the DEVICE where all the computations are performed (the GPU). Top-
left shows the detail of one CORE.

SRAM is shared by the cores associated with each MP. On the other hand, cache

memory is shared along all MPs. For the HOST, consider the L1/L2 cache of the

HOST as being analogous to the fast SRAM on the DEVICE.

4.2 Parallel Algorithms for computing the for-

ward and inverse DPRT

When computing the DPRT R(m, d) of an N × N image f(i, j) (Eq. (3.4)), the

process involves computing N−1 additions of N rays per prime direction, for a total



109

1: for m = 0 to N − 1 do
2: for d = 0 to N − 1 do
3: sum = f(0, d)
4: for i = 1 to N − 1 do
5: sum = sum+ f(i, 〈d+m× i〉N)
6: end for
7: R(m, d) = sum
8: end for
9: end for

10: for d = 0 to N − 1 do
11: sum = f(d, 0)
12: for j = 1 to N − 1 do
13: sum = sum+ f(d, j)
14: end for
15: R(N, d) = sum
16: end for

Figure 4.2: Serial algorithm for computing the forward Discrete Periodic Radon
Transform R(m, d) of the image f(i, j) of size N ×N .

of N + 1 prime directions. The entire DPRT requires (N − 1)N(N + 1) additions.

For comparison, a serial algorithm based on [16] to compute the DPRT is presented

in Fig. 4.2.

Similarly, when computing the inverse DPRT (iDPRT) f(i, j) of an (N + 1)×N

radon space R(m, d), the process involves computing N − 1 additions of N rays per

prime direction, for a total of N prime directions. Then, the entire iDPRT requires

(N − 1)N2 additions. Additionally, each output pixel in the row i requires two

extra additions and a division (terms −S, R(N, i) and divide by N from Eq. (3.5)

respectively). For the baseline case, a serial algorithm based on [16] is presented in

Fig. 4.3.

For the serial implementations, the number of required cycles is much higher than



110

1: S =
∑N−1

d=0 R(m, d), with m = 0
2: for i = 0 to N − 1 do
3: for j = 0 to N − 1 do
4: sum = R(0, j)
5: for m = 1 to N − 1 do
6: sum = sum+R(m, 〈j −m× i〉N)
7: end for
8: f(i, j) = (sum− S +R(N, i))/N
9: end for

10: end for

Figure 4.3: Serial algorithm for computing the inverse Discrete Periodic Radon
Transform f(i, j) of the radon space R(m, d) of size (N + 1)×N .

the number of additions because of:

1. The overhead in the loops (3 levels).

2. The computation of the address of the pixel to be read from memory.

3. The memory latency to load the pixel to be added. The latency can be in the

order of 1, TS, TC , TM clock cycles, which depends on the position of the pixel

in the memory hierarchy.

4. Storing in memory the output pixel (similar to (3) but for writing).

To parallelize the DPRT, consider a system with p processors where each proces-

sor requires (N − 1)N(N + 1)/p additions. Ideally, this will give a speedup factor of

p. The same speedup is expected for the iDPRT.

Now, to develop a parallel algorithm for computing the DPRT, there are different

scenarios on how to parallelize the DPRT and iDPRT depending on the number of p

available processors. Recall that the DPRT needs to compute (N + 1)N rays. Thus,



111

on a system with p processors:

1. If (N + 1)N > p, each processor will be assigned to compute d(N + 1)N/pe

rays and possibly 1 less for some cores.

2. If (N+1)N ≤ p, only N(N+1) processors are needed where each one computes

one ray.

For the iDPRT. only N2 rays need to be computed as given by:

1. If N2 > p, each processor will be assigned to compute dN2/pe rays and possibly

1 less for some cores.

2. If N2 ≤ p, only N2 processors are needed where each one computes one ray.

However, in both cases, the ideal speedup of p is not achievable with current parallel

architectures because of:

1. The overhead of launching, synchronizing and terminating the parallel process-

ing. Fortunately, this is of constant cost that is independent of N .

2. The need for concurrent reads/writes at block levels in the memory hierarchy.

The development of a solution to the problem of performing synchronized and con-

current reads/writes within the memory hierarchy is the primary contribution of this

chapter.



112

4.2.1 Analysis of the DPRT and iDPRT properties to par-

allelize the processing

The development of parallel algorithms relies on the following:

• Pixel usage: For each prime direction, each pixel is used only one time on the

computation of the N rays. Therefore, for each prime direction all the pixels

are needed. This implies that trying to partition the image in smaller blocks

for partial processing is not optimal.

• Address calculation: According to the radon equation (Eq. (3.4)), when com-

puting the address of the pixel to be added, the pattern of memory access for

each pixel changes per prime direction. Therefore, trying to speed up the mem-

ory access by fetching blocks of neighbors will not work for all prime directions.

• When adding pixels along one ray, the memory distance between pixels is fixed.

Therefore, the computation of the addresses of the pixels can be simplified to

just adding an offset and a modulo operation (due to the periodicity of the

transform).

• Word size: Because of the additions, the word size increases from B (for B bits

per pixel) to B+dlog2Ne for the DPRT outputs, and up to B+2 dlog2Ne before

normalization of the iDPRT. Then, word sizes need to be selected according to

the image size for full precision.

• When N2 ≤ p, the system can assign each ray computation to a different

processor, which leads to a linear running time of O(N). When N2 > p, there



113

are not enough processors for each ray. Thus, the theoretical running time

increases from linear (at p = N2) to quadratic (at p = N). Beyond this case

(p = N to p < N to p � N), running time starts to move from quadratic to

cubic order. Thus, as N increases, computational complexity is of order that is:

linear (N2 ≤ p), moves to linear-quadratic (N2 > p > N), and then becomes

quadratic-cubic (from N = p to N � p).

4.2.2 Parallel DPRT and iDPRT on a multi-core CPU sys-

tem

On current architectures for the HOST, a set of cores can also be used for parallel

processing. The multi-core CPU of the HOST is characterized as Multiple Instruc-

tion, Multiple Data (MIMD) [54]. Each core has a separate instruction and data

access to a (shared or distributed) program and data memory. In each step, each

core loads a separate instruction and a separate data element, applies the instruc-

tion to the data element, and stores a possible result back into the memory. The

processing elements work asynchronously and do not communicate with each other.

Let MC be the number of cores available on the HOST. Then, this model is

suitable to partition the DPRT serial algorithm into a set of MC threads, each

one processing asynchronously a set of prime directions d(N + 1)/MCe. In some

architectures, cores can process more than one thread. In this case, instead of MC ,

the total number of parallel cores is given by (Number of hardware cores) × (number

of parallel threads per core).



114

1: Partition the set of N + 1 prime directions into MC sets of consecutive prime
directions

2: Launch MC threads, assing each partitioned set to each thread to compute
R(m, d)

3: Wait for threads to finish

Figure 4.4: Main parallel algorithm for computing the forward Discrete Periodic
Radon Transform R(m, d) of the image f(i, j) of size N × N on a CPU with MC

cores.

1: procedure fDPRT HOST Kernel(dirIni, dirEnd)
2: if dirEnd = N then
3: for d = 0 to N − 1 do
4: sum = f(d, 0)
5: for j = 1 to N − 1 do
6: sum = sum+ f(d, j)
7: end for
8: R(N, d) = sum
9: end for

10: dirEnd = dirEnd− 1
11: end if
12: for m = dirIni to dirEnd do
13: for d = 0 to N − 1 do
14: sum = f(0, d)
15: for i = 1 to N − 1 do
16: sum = sum+ f(i, 〈d+m× i〉N)
17: end for
18: R(m, d) = sum
19: end for
20: end for
21: end procedure

Figure 4.5: Kernel algorithm for each core on the HOST to compute one set of prime
directions of the Discrete Periodic Radon Transform R(m, d) of the image f(i, j) of
size N ×N . Consecutive prime directions dirIni through dirEnd are computed.

The proposed parallel algorithm to compute R(m, d), the DPRT of an N × N

image f , using a HOST with MC cores is presented in fig. 4.4. Furthermore, the

kernel for each core is presented in fig 4.5.



115

1: Partition the set of N prime directions into MC sets of consecutive prime direc-
tions

2: Compute S =
∑N−1

d=0 R(m, d), with m = 0
3: Launch MC threads, assing each partitioned set to each thread to compute f(i, j)
4: Wait for threads to finish

Figure 4.6: Main parallel algorithm for computing the inverse Discrete Periodic
Radon Transform f(i, j) of the radon space R(m, d) of size (N + 1)×N on a CPU
with MC cores.

1: procedure iDPRT HOST Kernel(dirIni, dirEnd)
2: for i = dirIni to dirEnd do
3: for j = 0 to N − 1 do
4: sum = R(0, j)
5: for m = 1 to N − 1 do
6: sum = sum+R(m, 〈j +m× i〉N)
7: end for
8: f(i, j) = (sum− S +R(N, i))/N
9: end for

10: end for
11: end procedure

Figure 4.7: Kernel algorithm for each core on the HOST to compute one set of prime
directions of the inverse Discrete Periodic Radon Transform f(i, j) of the radon space
R(m, d) of size (N + 1) × N . Consecutive prime directions dirIni through dirEnd
are computed.

Similarly, the proposed parallel algorithm to compute f(i, j), the iDPRT of an

(N + 1)×N radon space R(m, d), using a HOST with MC cores is presented in fig.

4.6. Furthermore, the kernel for each core is presented in fig 4.7.

4.2.3 Parallel DPRT and iDPRT on a GPU

Current DEVICEs (GPUs) provide several cores for parallel processing. GPUs con-

sist of a set of MP Multiprocessors where each one can run a set of threads indepen-

dently of the others (like a MIMD architecture). However, inside each MP, there is a



116

set of NP cores that work according to the Single Instruction, Multiple Data (SIMD)

model [54]. Alternatively, the programming model is also called Single Instruction

Multiple Threads (SIMT) [55]. Each core has a private access to a shared memory.

On the other hand, there is only one program memory from which a special control

processor fetches and dispatches instructions. For each step, each core obtains from

the control processor the same instruction and loads a separate data element through

its private data access on which the instruction is performed. Thus, the instruction

is synchronously applied in parallel by all cores to different data elements. For ap-

plications with a significant degree of data parallelism the SIMD approach can be

very efficient [56].

The increased complexity of the architecture requires a more complex algorithm

to fully exploit the parallelism of the DEVICE. The proposed DPRT algorithm on a

GPU is derived as follows (the inverse is described later):

1. Consider a GPU with MP MPs based on a MIMD architecture model. Each

MP has NP cores with fast SRAM shared among local cores based on the SIMD

model. For all MPs, there is a shared Cache and a shared Device memory.

2. At the top level, DPRT computation is subdivided equally among the MP

multi-processors (similar to the parallel algorithm on the HOST) by having

each MP process a set of prime directions.

3. Since each prime direction generates a full row of the radon space, each MP

will generate a set of Pd rows of the radon space where Pd = d(N + 1)/MP e

for all except the last MP that will process the remaining directions. Each



117

MP will load on its own fast SRAM a copy of the complete input image f(i, j)

(possibly not the whole image at the same time).

4. Inside the MP, the SIMD model is used to process Pd prime directions. For

each prime direction, NP rays are processed in parallel until the completion of

computations for N rays. Then, the next prime direction is processed and so

on until the Pd prime directions are computed. Thus, per MP, the system will

launch Pd ×N threads to be processed by NP cores.

5. After a core computes one ray, the result is directly stored in the device memory.

There is no need to hold the results in the fast SRAM because there is no further

use of that result and there is no chance of concurrent writes.

6. During the process, the image f(i, j) is assumed to be on the device memory

and the result is stored in the same memory.

The proposed parallel algorithm using a DEVICE withMP×NP cores is presented

in Fig. 4.8. The kernel for each core is presented in fig 4.9.

For the iDPRT the process is very similar. The differences are: (i) iDPRT requires

only N prime directions (the horizontal one is not needed), and (ii) the final output

per ray needs two additional additions and one division. The proposed parallel

algorithm is presented in Fig. 4.10 and the kernel for each core is presented in Fig.

4.11.



118

B STEP1: Partition the (N+1) prime directions into MP sets, each set assigned
to a MP Pi = i, i = 0, . . . ,MP − 1

1: th = 〈N + 1〉MP

2: for i = 0 to MP − 1 do
3: if (Pi ≥ th) & (th > 0) then
4: primeSiz = (N + 1 +MP − 1)/MP − 1
5: primeStarti = th× (primeSiz + 1) + (Pi − th)× primeSiz
6: else
7: primeSiz = (N + 1 +MP − 1)/MP

8: primeStarti = Pi × primeSiz
9: end if

10: primeEndi = primeStart+ primeSiz − 1
11: end for

B STEP2: Launch the threads per MP to compute R(m, d)
12: for i = 0 to MP − 1 do
13: Launch (primeEndi − primeStarti + 1)×N threads for each MP Pi

to compute R(m, d). Each thread is indexed by
m = primeStart, . . . , primeEnd, d = 0, . . . , N − 1

14: end for
15: Wait for threads to finish

Figure 4.8: Main parallel algorithm for computing the forward Discrete Periodic
Radon Transform R(m, d) of the image f(i, j) of size N×N on a GPU with MP×NP

cores.

4.3 Implementation of proposed algorithms on a

CPU and GPU processors

In this section, the following implementations are presented:

1. Serial implementation on the HOST:: Using only one logical core, a serial

implementation using the Algorithms of Fig. 4.2 and Fig. 4.3 for the DPRT and

iDPRT respectively are presented. This implementation is used as a baseline

to compare other implementations.



119

1: procedure fDPRT DEV ICE Kernel(m, d)
2: sum = 0
3: if m = N then
4: for j = 0 to N − 1 do
5: sum = sum+ f(d, j)
6: end for
7: else
8: for i = 0 to N − 1 do
9: sum = sum+ f(i, 〈d+m× i〉N)

10: end for
11: end if
12: R(m, d) = sum
13: end procedure

Figure 4.9: Kernel algorithm for each core on the DEVICE to compute one ray of
the forward Discrete Periodic Radon Transform R(m, d) of the image f(i, j) of size
N ×N .

2. Parallel implementation on the HOST: Using all logical cores available

on the HOST, parallel implementations are developed using the algorithms of

Figs. 4.4 and 4.5 for the DPRT and algorithms of Figs. 4.6 and 4.7 for the

iDPRT.

3. Parallel implementation on the DEVICE: Using a GPU, parallel imple-

mentations are developed using the algorithms of Figs. 4.8 and 4.9 for the

DPRT and algorithms of Figs. 4.10 and 4.11 for the iDPRT.

The hardware used for the HOST is given by:

• CPU: Intel Xeon CPU E5-2630 v3 @3.2GHz, L1 cache 512K (32KB Instruc-

tion cache, 32KB data cache, per core), L2 cache 2MB (256KB per core), L3

cache 20MB (Shared among all cores), 8 cores (16 logical processors via hyper-

threading).



120

B STEP1: Partition the N prime directions into MP sets, each set assigned to a
MP Pi = i, i = 0, . . . ,MP − 1

1: th = 〈N〉MP

2: for i = 0 to MP − 1 do
3: if (Pi ≥ th) & (th > 0) then
4: primeSiz = (N +MP − 1)/MP − 1
5: primeStarti = th× (primeSiz + 1) + (Pi − th)× primeSiz
6: else
7: primeSiz = (N +MP − 1)/MP

8: primeStarti = Pi × primeSiz
9: end if
10: primeEndi = primeStart+ primeSiz − 1
11: end for

B STEP2: compute S
12: S =

∑N−1
d=0 R(m, d), with m = 0

B STEP3: Launch the threads per MP to compute f(i, j)
13: for i = 0 to MP − 1 do
14: Launch (primeEndi − primeStarti + 1)×N threads for each MP Pi

to compute f(i, j). Each thread is indexed by
i = primeStart, . . . , primeEnd, j = 0, . . . , N − 1

15: end for
16: Wait for threads to finish

Figure 4.10: Main parallel algorithm for computing the inverse Discrete Periodic
Radon Transform f(i, j) of the radon space R(m, d) of size (N + 1)×N on a GPU
with MP ×NP cores.

1: procedure iDPRT DEV ICE Kernel(i, j)
2: sum = 0
3: for m = 0 to N − 1 do
4: sum = sum+R(m, 〈j −m× i〉N)
5: end for
6: f(i, j) = (sum− S +R(N, i))/N
7: end procedure

Figure 4.11: Kernel algorithm for each core on the DEVICE to compute one ray of
the inverse Discrete Periodic Radon Transform f(i, j) of the radon space R(m, d) of
size (N + 1)×N .



121

• System memory: 64GB (4 x 16GB) 288-Pin DDR4 SDRAM ECC DDR4 2133

(PC4 17000).

• Storage memory: (Primary) Solid State Drive (SSD) Hynix SH920 2.5” 256GB,

SCSI device. Secondary: Western Digital RE WD4000FYYZ 4TB 7200 RPM

64MB Cache SATA 6.0Gb/s.

• System bus: PCI Express 3.0, PCI Express configurations x4, 8x, 16x.

• Software: Windows 8.1 Enterprise (64-bit operating system)

The hardware for the DEVICE is a GPU: Nvidia GeForce GTX 980 card (GM204

Maxwell architecture), installed in the PCI Express bus of the HOST, with the

following configuration:

• 4 Graphics Processing Clusters (GPCs).

• 16 Streaming Multiprocessors Maxwell (SMM, 4 per GPC).

• 4 Memory controllers (one per GPC), each has 64-bit data width, for a total

of 256bit memory bus width.

• 2048 CUDA Cores (128 per SMM) @1367 MHz.

• 1024K 32-bit registers (64K 32-bit registers per SMM)

• L1 Cache: 384KB (24K per SMM, shared by all cores inside a SMM).

• Shared SRAM: 1536KB (96KB per SMM, shared by all cores inside a SMM,

only up to 48KB per block of threads).



122

• L2 Cache: 2048K (512K per Memory controller, shared by all SMMs).

• Device memory (global memory, shared by all SMMs): 4 GB GDDR5, 256bit

data width, clock 7010 MHz (effective), bandwidth 224.3GB/s.

• I/O HOST-DEVICE: PCI Bus, type PCI-E 3.0.

System development was based on the following software:

• Microsoft Visual Studio 2013, v12.0.31101.00 Update 4: Integrated Develop-

ment Environment (IDE) for writing/compiling/executing and debugging pro-

grams for the HOST and DEVICE. Compiler for the HOST.

• Nvidia CUDA Toolkit 7.0 (Integrated in the MS VS2010, compiler, libraries,

and tools for the DEVICE).

• In all cases, the language used is C.

Since the memory is 1-D, a map from 2-D functions to 1-D memory is needed. De-

pending on the implementation, row-major or column-major order is needed. Then,

for this purpose, for a 2-D image f of size N1 × N2, the (i, j) position in the 1-D

memory is given by:

• Column-major ordering position =j ∗N1 + i

• Row-major ordering position =i ∗N2 + j



123

4.3.1 Serial implementation of the DPRT and iDPRT on the

HOST

The serial implementation directly follows from the algorithms of Figs. 4.2 and 4.3.

Column-major order is used. For the iDPRT before starting the computation of the

prime directions, the constant S needs to be computed. The complete code is given

in App. D.

4.3.2 Parallel implementation of the DPRT and iDPRT on

the HOST

To parallelize the DPRT and iDPRT computation on the HOST, set MC = 16 cores

(16 logical cores on the Xeon E5-2630, 8 physical cores, each one capable to process

2 threads in parallel). The HOST offers a mix of private and shared address space

within the physical CPU (i.e. each physical core on the Xeon E5-2630 has its own

cache L1 and L2 and a shared cache L3), and an off-chip System memory. Then

a natural programming model for this architecture is a thread model in which all

threads have access to shared variables. POSIX threads (also called Pthreads) define

a standard for the parallel programming with threads, based on the programming

language C. Then, Pthreads combined with the MIMD architecture of the HOST

allows us to produce a fast and parallel implementation. Again, column-major order

is used. The image is loaded in the system memory and it is available to each thread.

The HOST launches MC = 16 threads each one computing a set of prime directions



124

(as described in the algorithms in Figs. 4.4 and 4.6). There are concurrent reads and

no concurrent writes. For the iDPRT before starting the computation of the prime

directions, the constant S needs to be computed. The complete code is on App. E.

4.3.3 Parallel implementation of the DPRT and iDPRT on

the DEVICE

To parallelize the DPRT and iDPRT computation on the HOST, set TC = MP ×NC

cores (e.g. 2048 cores on the GTX980). The GPU has the ideal hardware to compute

the required additions at a rate of TC integer additions per clock cycle. However,

computing the address of the data to be added and moving the data from the device

memory to the core can take several clock cycles. A careful design of an algorithm

to minimize the memory access and address computation is required.

General Implementation (DPRT and iDPRT)

As described in 4.1, the transfer of the input image from the device memory to the

DEVICE cache and fast SRAM can result in significant processing delays. As a

result, it is not possible to efficiently assign a fraction of the input image to one MP.

Alternatively, if the complete image can be loaded in the fast SRAM of each MP,

a high processing speed will achieved. Unfortunately, current GPUs do not offer a

large fast SRAM. For example, the GTX980 has up to 48KB of fast SRAM per block

of threads which limits image sizes to N < (48×1024/4)0.5 = 111) when using 32-bits

per pixel. Thus, an efficient mechanism to load/drop pieces of the input image until



125

the complete image has been processed in one MP is needed.

For the DPRT, based on Eq. (3.4), note that each ray of the same prime direction

uses exactly one pixel of each row. Thus, if possible, the goal is to align parallel

processing so that the threads access the same row of pixels. To illustrate the idea,

consider N = 7. Then, for the first prime direction (m = 0), there are 7 threads

running in parallel computing one ray each. In the first step, all threads read the

first element of their respective ray (see Fig. 4.12(a)). In the second step, all threads

read the second element (see Fig. 4.12(b)), and so on, until the last element (See

Fig. 4.12(c)). For each step, a complete row of the image is used. Thus, for the

first prime direction, the data must be stored using row-major ordering to accelerate

access. Using row-major ordering, the GPU can then move blocks data from device

memory to the cores for efficient processing. For example, for the GTX980, one

memory access to the device memory transfers 128 bytes. Since each MP has 32

cores, assuming 32 bits per pixel, a single data transfer can move all the data needed

for the cores. The same property holds for the rest of the prime directions. For each

step, a complete row of the image is accessed as shown in Figs.4.13(a)-(c)).

The results from the parallel computations are also completed synchronously.

Thus, block writes are also possible using row-major ordering. On the other hand,

note that (non-blocked) concurrent writes are not possible. For address computation,

for a fixed prime direction m, pixel offsets are constant. An initial address for the

first pixel can be pre-computed before starting ray computations. Then, the constant

offset is added for successive pixel addresses. Fig. 4.14 presents the main kernel



126

f0,0

th0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

th1 th2 th3 th4 th5 th6

f0,0

th0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

th1 th2 th3 th4 th5 th6

f0,0

th0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

th1 th2 th3 th4 th5 th6

(a) (b) (c)

 
Figure 4.12: Input image of size N × N , N = 7. For the prime direction m = 0,
pixels with the same grayscale level are added to compute one output pixel (radon
space), i.e. 7 rays in parallel are computed. (a) 7 threads in parallel start computing
7 rays. Red boxes highlight the first pixel loaded for each thread. (b) Second set of
pixels are highlighted. (c) Last set of pixels are highlighted. Assuming the threads
are syncronized, note that all threads read the same row of pixels.

th0 th1 th2 th3 th4 th5 th6

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

th0 th1 th2 th3 th4 th5 th6

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

th0 th1 th2 th3 th4 th5 th6

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

(a) (b) (c)

 
Figure 4.13: Input image of size N × N , N = 7. For the prime direction m = 1,
pixels with the same grayscale level are added to compute one output pixel (radon
space), i.e. 7 rays in parallel are computed. (a) 7 threads in parallel start computing
7 rays. Red boxes highlight the first pixel loaded for each thread. (b) Second set of
pixels are highlighted. (c) Last set of pixels are highlighted. Assuming the threads
are synchronized, note that all threads read the same row of pixels.



127

1: procedure fDPRT GPU Kernel(radon, img,N,m, d)
2: if m = N then
3: offs = 0
4: incr = 1
5: init = d×N ;
6: else
7: offs = d
8: incr = N
9: init = 0;

10: end if
11: k = d+m×N
12: sum = 0
13: for i = 0 to N − 1 do
14: sum = sum+ img[init+ offs]
15: offs = 〈offs+m〉N
16: init = init+ incr
17: end for
18: radon[k] = sum
19: end procedure

Figure 4.14: Kernel algorithm for each core on the GPU to compute one ray of
the forward Discrete Periodic Radon Transform R(m, d) of the image f(i, j) of size
N × N . R(m, d) is mapped to a vector radon[k] and f(i, j) is mapped to a vector
img[k], both using row-major order.

(running in one core) for computing one ray d of a prime direction m of the image

f(i, j) stored in memory in row-major ordering.

Similar considerations apply for the iDPRT, with the difference being that the

number of prime directions is reduced to N . Fig. 4.15 presents the main kernel

(running in one core) for computing one ray j of a prime direction i of R(m, d)

stored in row-major ordering in radon(k) and storing the results in img(k).



128

1: procedure iDPRT GPU Kernel(img, radon,N, S, i, j)
2: k = j + i×N
3: sum = 0
4: offs = j
5: init = 0
6: for m = 0 to N − 1 do
7: sum = sum+ radon[init+ offs]
8: offs = 〈offs− i+N〉N
9: init = init+N
10: end for
11: img[k] = (sum− S + radon[N ×N + i])/N
12: end procedure

Figure 4.15: Kernel algorithm for each core on the GPU to compute one ray of the
inverse Discrete Periodic Radon Transform f(i, j) of the radon space R(m, d) of size
(N + 1) × N . R(m, d) is mapped to a vector radon[k] and f(i, j) is mapped to a
vector img[k], both using row-major order.

Specific Implementation details for GPU: Nvidia GeForce GTX980

This section provides implementation details that are specific to the GPU that was

used. Table 4.1 summarizes the technical specifications of the GPU GM204.

The Pixel bit-width for exact computation needs to be set to 32-bit so that

there are sufficient bits for all stages of the computation. In terms of bits, the

following bitwidths are used: (i) each pixel is assumed to be of B = 8 bits, (ii)

the DPRT requires B + dlog2Ne, (iii) the inverse DPRT uses up to B + 2 dlog2Ne

before normalization, with a final output of B bits. Arithmetic instructions can use

either 8, 16, 32, or 64 bits. Typically, grayscale images or each channel of a color

image use 8 bits. Thus, the use of 32-bits allows exact computation for sizes up to

N × N = 4093 × 4093. On the other hand, 16-bits is impractical except for very

small image sizes (up to 13× 13). Furthermore, the use of 64-bits is also impractical



129

Table 4.1: Technical specifications for the GPU GM204, compute capability 5.2
(Maxwell Architecture).

Technical specification Value

Maximum number of threads per block 1024
Warp size 32
Maximum number of resident blocks per multiprocessor 32
Maximum number of resident warps per multiprocessor 64
Maximum number of resident threads per multiprocessor 2048
Number of 32-bit registers per multiprocessor 64K
Maximum number of 32-bit registers per thread block 64K
Maximum number of 32-bit registers per thread 255
Maximum amount of shared memory per multiprocessor 96KB
Maximum amount of shared memory per thread block 48KB
Number of shared memory banks 32
Maximum number of instructions per kernel 512M

since it results in a significant slowdown from 128 additions per clock cycle per MP

to 1 addition per clock cycle per MP.

Initially, theN+1 prime directions are computed usingN threads per prime direc-

tion. Thus, there is a total of (N+1)N threads (each one running the fDPRT GPU -

Kernel ) that are scheduled to be executed on the GPU. From the programmer’s

point of view, each prime direction is assigned to a block of N threads and each block

is assigned to a MP. The partition of the N + 1 prime directions into MP = 16 sets

is done automatically by the scheduler (the blocks of the grid are enumerated and

distributed to MPs with available execution capacity).

By default, the memory hierarchy will move the data from the device memory



130

to the cores using the L2 cache as a buffer for the input image. Recall that the L2

cache memory is shared among all MPs. For each MP in the Maxwell Architecture,

there is a choice between the use of fast SRAM (shared memory) or the L1 cache

(that needs to be activated). The use of shared memory requires additional coding

versus the use of the L1 cache that can be handled automatically. There was no

advantage to manually programming the shared memory. Instead, the code uses the

L1 cache by compiling the CUDA code using the option -Xptxas -dlcm=ca. This

compile-time option forces that all reads are cached provided that the input is in

read-only mode, as is the case for the input image.

When a MP is given a group of blocks to execute, it partitions them into warps

and each warp gets scheduled by a warp scheduler for execution. The way a block is

partitioned into warps is always the same; each warp contains 32 threads of consecu-

tive, increasing thread IDs with the first warp containing thread 0. A warp executes

one common instruction at a time so full efficiency is realized when all 32 threads of

a warp agree on their execution path [55]. For the fDPRT GPU Kernel, the main

loop assures all the threads follow the same execution path. An apparent divergence

appears when an if statement is used to check for the last prime direction. Thus, in

the final implementation, a synchronization instruction is issued to ensure that the

execution path is properly synchronized after the if.

When a warp is scheduled, memory access optimization is also needed. To achieve

high bandwidth, either shared memory or cache L1 is divided into equally-sized mem-

ory modules, called banks, which can be accessed simultaneously. Let x denote the



131

number of addresses that need to be accessed. Any memory read or write request

made of the x addresses that fall in distinct memory banks can be serviced simulta-

neously. As a result, the overall bandwidth is x times as high as the bandwidth of a

single module. Since the warp is 32 threads in parallel, the ideal scenario is to have

32 addresses pointing to 32 different banks. However, if two addresses of a memory

request fall in the same memory bank, there is a bank conflict and the access has

to be serialized. The hardware splits a memory request with bank conflicts into as

many separate conflict-free requests as necessary, decreasing throughput by a factor

equal to the number of separate memory requests. For the fDPRT GPU Kernel,

when computing 32 rays (one warp) all the threads request consecutive 32-bit mem-

ory positions and thus avoid bank conflicts. On the other hand, it is possible to have

a wrap-around (DPRT periodicity) within those 32 memory accesses, but since N is

prime, after the wrap-around, all the 32 pixels will be loaded in different banks.

When a warp stalls (e.g., requiring device memory access), the warp scheduler

switches to another warp that is ready to execute. Thus, delays due to memory stalls

are minimized. Therefore, overall impact is minimized by having a large number of

warps ready for execution. As stated earlier, at launch time, all the rays of all prime

directions are scheduled for execution. As a result, each MP will be filled with as

many blocks as the MP can handle (e.g., 32 blocks per MP in GTX980). Furthermore,

the modulo operation is executed in parallel during a memory access so as to minimize

the impact of the main kernel loop. As stated by the GPU manufacturer, the modulo

operation maps to around 20 single-cycle assembly instructions which is still much

faster than the number of cycles for memory access.



132

All of the previous considerations also apply for the iDPRT. The two major

differences are: (i) N instead of N + 1 prime directions, and (ii) the extra two

additions and a division at the end of each ray computation. However, these two

differences do not change the implementation details.

The source code needed to compute the DPRT and iDPRT using the algorithms

of Figs. 4.14 and 4.15 including the necessary considerations is given in App. F.

4.4 Results and Conclusions

In this section, the 6 main algorithms are tested:

• fSER: Forward DPRT, serial on the host using one thread (CPU processor,

Xeon E5-2630 v3).

• fCPU: Forward DPRT, parallel on the host with Pthreads, using 16 threads

(CPU processor, Xeon E5-2630 v3).

• fGPU: Forward DPRT, parallel on the device (GPU processor, GM204).

• iSER: Inverse DPRT, serial the host using one thread (CPU processor, Xeon

E5-2630 v3).

• iCPU: Inverse DPRT, parallel on the host with Pthreads, using 16 threads

(CPU processor, Xeon E5-2630 v3).

• iGPU: Inverse DPRT, parallel on the device (GPU processor, GM204).



133

 

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

5

23 47 73

1
0

3

1
3

7

1
6

7

1
9

7

2
3

3

2
6

9

3
0

7

3
4

7

3
7

9

4
1

9

4
4

9

4
8

7

5
2

3

5
7

1

6
0

7

6
4

3

6
7

7

7
2

7

7
6

1

8
1

1

8
5

3

8
8

3

9
3

7

9
7

7

10
19

R
u

n
n

in
g 

ti
m

e 
(m

s)
 

Image size (NxN, in pixels) 

fSER fCPU fSFDPRT fGPU

Figure 4.16: Comparative running time for different implementations of the forward
DPRT.

To setup the system, forward and inverse DPRT are computed for 170 prime

numbers, from 5x5 up to 1021x1021 image sizes. For each case, the input image is

filled with random 8-bit integers. Since exact arithmetic is used, all the results have

zero error. Additionally, the proposed algorithms are compared against the SFDPRT

and iSFDPRT from Chapter 2 with H = 2 and fCLK = 100MHz.

The results are presented in Figs. 4.16, 4.17, 4.18, and 4.19. Fig. 4.16 shows

the running times for the forward implementations. Fig. 4.17 shows the running

time for each inverse implementations. Fig 4.18 shows the forward DPRT SpeedUp

with respect to the serial implementation. Here, the speedup is defined as the ratio

(Forward Parallel Running time) / (Forward Serial Running time). Fig 4.19 shows

the inverse DPRT SpeedUp with respect to the serial implementation.

From Fig. 4.16, the serial implementation fSER is the fastest possible for small

image sizes. This is because of the typical overhead associated with the parallel

implementations. When the image size becomes sufficiently large, the additions



134

 

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

5

23 47 73

1
0

3

1
3

7

1
6

7

1
9

7

2
3

3

2
6

9

3
0

7

3
4

7

3
7

9

4
1

9

4
4

9

4
8

7

5
2

3

5
7

1

6
0

7

6
4

3

6
7

7

7
2

7

7
6

1

8
1

1

8
5

3

8
8

3

9
3

7

9
7

7

10
19

R
u

n
n

in
g 

ti
m

e 
(m

s)
 

Image size (NxN, in pixels) 

iSER iCPU iSFDPRT iGPU

Figure 4.17: Comparative running time for different implementations of the inverse
DPRT.

 

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

5

2
3

4
7

7
3

10
3

13
7

16
7

19
7

23
3

26
9

30
7

34
7

37
9

41
9

44
9

48
7

52
3

57
1

60
7

64
3

67
7

72
7

76
1

81
1

85
3

88
3

93
7

97
7

10
19

Sp
ee

d
u

p
 

Image size (NxN, in pixels) 

fCPU fSFDPRT fGPU

Figure 4.18: Speedup for different implementations of the forward DPRT with respect
to the serial implementation (fSER).

dominate the running time. From Fig. 4.18, the fCPU implementation using all the

available cores of the CPU gives an speedup of around 10. For the GPU, besides the

overhead launching the threads, the processing is noticeable faster for small image

sizes because there are enough cores to process all the rays in parallel. As explained

earlier, for small image sizes, all of the cores can be used and the L1 cache (or fast

SRAM) will not saturate. Beyond N > 47, each core starts to process more than



135

 

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

5

2
3

4
7

7
3

10
3

13
7

16
7

19
7

23
3

26
9

30
7

34
7

37
9

41
9

44
9

48
7

52
3

57
1

60
7

64
3

67
7

72
7

76
1

81
1

85
3

88
3

93
7

97
7

10
19

Sp
ee

d
u

p
 

Image size (NxN, in pixels) 

iCPU iSFDPRT iGPU

Figure 4.19: Speedup for different implementations of the inverse DPRT with respect
to the serial implementation (iSER).

one ray, and around N > 79 the L1 cache (or fast SRAM) saturates and there is

a requirement to access slower memory. For N > 167, the speedup of fGPU levels

off around 600 ∼ 800. The hardware-based DPRT has the advantage of not having

I/O issues since all the additions are computed without delays. Consequenty, even

at a much slower clock frequency, compared with CPUs or GPUs, the running time

of the hardware-based DPRT is similar to the GPU.

For real time video processing, Table 4.2 provides maximum image sizes for which

performance stays above 30 frames per second. Here, note that the table only takes

into account DPRT computation. In an actual real-time application, either the

frame-rate or image size may need to be reduced to allow for additional computations.

For example, for the GPU implementation, the forward and inverse for a 1021x1021

image requires a total of 22ms, leaving 11ms for further processing.

For the inverse DPRT, the running time is given in Fig. 4.17 and the speedup in

Fig. 4.19. The results are virtually the same as the forward DPRT.



136

Table 4.2: Closest running time to 33.33ms for real time video applications of fSER,
fCPU and fGPU

Solution Time(ms) Image size

fSER 30.5 151× 151

fCPU 30.3 353× 353

fGPU 32.1 1471× 1472

In conclusion, the GPU implementations achieved significantly more speedup

than the CPU-based implementations. In terms of current cost, a Xeon E5-2630

v3 costs US$ 675 vs one GPU GTX980 that is priced at US$ 490 (retail prices at

11/28/2015).



137

Chapter 5

Conclusions and future work

Overall, my dissertation has led to the development of fast and scalable methods for

the computation of the DPRT and its inverse. The fast methods have enabled the

application of the DPRT to new areas that were not possible with implementations

that required O(N3) computations. My work offers two paths. First, using the

developed hardware implementation, the DPRT and its inverse can be computed in

linear time (with respect to N), provided that there are sufficient resources. On the

other hand, my methods provide the fastest running times that can be achieved with

available resources. Second, using the software implementation on current hardware

platforms (multi-core CPUs and GPUs), my parallel algorithms can compute the

DPRT in real time.

To demonstrate the application of the new hardware methods for the DPRT,

I presented a system to compute 2-D convolutions and cross-correlations with rel-

atively large and non-separable kernels based on the DPRT convolution property.



138

This approach converts the non-separable 2-D linear convolution/ cross-correlation

problem into a sequence of 1-D problems while also significantly reducing the com-

plexity of the calculations. Furthermore, the proposed system is scalable with re-

spect to available resources. Scalability implies that the system can compute the 2-D

convolution/cross-correlation in linear time in the fastest case with large resources

and slower (down to quadratic time) for cases with fewer hardware resources. In

all cases, the methods are Pareto optimal in the sense that they provide the fastest

implementations for available resources. Additional improvements can be derived

from the use of SVD-LU decompositions for low rank convolution kernels.

Beyond the development of efficient methods for DPRTs for prime N , future

research can focus on other values for N . For example, when N is a power of two:

N = 2m, the number of additions can be reduced to N2 log2N while the number

of prime directions increases to 3N/2 and the inverse DPRT needs to be computed

iteratively.

Another extension of this work is to explore the multi-objective space defined

by the accuracy, performance, and required resources of the DPRT and its appli-

cations in 2-D convolutions and cross-correlations. In this case, the goal will be to

find Pareto-optimal realizations that balance the different objectives. This type of

research involves the determination of optimal parameters such as: (i) the number

of bits that are needed at different stages, (ii) the number of singular values kept

on the SVD decompositions, and (iii) all other scalability parameters presented in

the dissertation. Furthermore, by including accuracy considerations, future research



139

can focus on determining optimality conditions for switching between the DPRT and

LU based implementations. Similarly, future research can explore accurate filtering

applications based on the DPRT implementations on GPUs.



140

Appendices



141

Appendix A

List of publications

This appendix list the publications related with my research.

Prior to University of New Mexico, I worked developing adaptive image restora-

tion methods:

[57] C. A. Carranza, V. Kober, and H. Hidalgo, “Image restoration with lo-

cal adaptive methods,” in Proc. SPIE, Applications of Digital Image Processing

XXXIII, vol. 7798, September 2010, pp. 779 827779 82712. [Online]. Available:

http://dx.doi.org/10.1117/12.860754

At University of New Mexico and related with the present dissertation, I started

parallelizing algorithms to speedup the running time.

[58] D. Llamocca, C. Carranza, and M. Pattichis, “Separable fir filtering in fpga

and gpu implementations: Energy, performance, and accuracy considerations,” in

2011 International Conference on Field Programmable Logic and Applications (FPL),

Sept 2011, pp. 363368.



142

[59] C. Carranza, V. Murray, M. Pattichis, and E. Barriga, “Multiscale am-fm

decompositions with gpu acceleration for diabetic retinopathy screening,” in 2012

IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), April

2012, pp. 121124.

Also, I started to work on optimization problems.

[60] D. Llamocca, C. Carranza, and M. Pattichis, “Dynamic multiobjective op-

timization management of the energy-performance-accuracy space for separable 2-d

complex filters,” in 2012 22nd International Conference on Field Programmable Logic

and Applications (FPL), Aug 2012, pp. 579582.

[61] D. Llamocca, M. Pattichis, and C. Carranza, “A framework for selfreconfig-

urable dcts based on multiobjective optimization of the power-performance- accu-

racy space,” in 2012 7th International Workshop on Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC), July 2012, pp. 16.

In 2013, my research focused on the development of an architecture to speedup

the computation of the DPRT.

[26] C. Carranza, D. Llamocca, and M. Pattichis, “The fast discrete periodic

radon transform for prime sized images: Algorithm, architecture, and vlsi/fpga im-

plementation,” in 2014 IEEE Southwest Symposium on Image Analysis and Inter-

pretation (SSIAI), April 2014, pp. 169172.

Once a high speed computation of the DPRT was achieved, the next step was to

make it scalable.

[27] C. Carranza, D. Llamocca, and M. Pattichis, “A scalable architecture for



143

implementing the fast discrete periodic radon transform for prime sized images,”

in 2014 IEEE International Conference on- Image Processing (ICIP), Oct 2014, pp.

1208-1212.

And the complete solution for the forward and inverse DPRT was presented in

2015.

[3] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable computation

of the forward and inverse discrete periodic radon transform,” IEEE Transactions on

Image Processing, vol. 25, no. 1, pp. 119-133, Jan 2016.

At University of New Mexico I also worked on image registration.

[62] E. Barriga, V. Chekh, C. Carranza, M. Burge, A. Edwards, E. McGrew, G.

Zamora, and P. Soliz, “Computational basis for risk stratification of peripheral neu-

ropathy from thermal imaging,” in 2012 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), Aug 2012, pp. 14861489.

[63] V. Chekh, S. S. Luan, M. Burge, C. Carranza, P. Soliz, E. McGrew, and

S. Barriga, “Quantitative early detection of diabetic foot,” in Proceedings of the

International Conference on Bioinformatics, Computational Biology and Biomedi-

cal Informatics, ser. BCB13. New York, NY, USA: ACM, 2013, pp. 86:8686:95.

[Online]. Available: http://doi.acm.org/10.1145/2506583.2506598



144

Appendix B

Adder trees resource computation

The architecture inside a fully pipelined X-operand adder tree is not unique. It

uses a combination of registers and 2-operand adders interconnected by a binary

tree structure. Furthermore, there is not a closed form equation to compute the

exact number of resources for an arbitrary X. However, one practical approach is to

use the algorithm shown in Fig. B.1 to compute the total number of 1-bit registers

and 2-operand B-bits adders used in an X-operand adder tree. Note that if it is

assumed each input data is represented with B bits, after each stage, the number

of bits is increased by one bit, therefore, on the stage i = 1, . . . , h, each register is

B + i bits wide, and the 2-operand adder is a (B + i− 1)-bits adder. To normalize

the size of the 2-operand adders, a 2-operand (B+ i− 1)-bits adder is expressed as a

(1+(i−1)/B) times 2-operand B-bits adder. Additionally, it is included the amount

of 2-to-1 muxes used in the register array.



145

1: procedure Tree Resources(X,B)
2: h = dlog2Xe
3: Aff = AFA = Amux = 0
4: a = X
5: for z = 1 to h do
6: r = 〈a〉2
7: a = ba/2c
8: AFA = AFA + a · (B + z − 1)
9: Amux = Amux + a ·B
10: a = a+ r
11: Aff = Aff + a · (B + z)
12: end for
13: return AFA, Aff, Amux
14: end procedure

Figure B.1: Required tree resources as a function of the number of strip rows or
number of blocks (X), and the number of bits per pixel (B). Refer to Table 2.3 for
definitions of Aff, AFA, Amux. For Aff, the resources do not include the input registers,
but do include the output registers since they are implemented in SFDPRT core and
iSFDPRT core.



146

Appendix C

Adder trees resource computation

for Convolution

1: procedure Tree Resources WIB(N,D)
2: n = dlog2Ne
3: Affb = AFA = 0
4: a = N
5: for z = 1 to n do
6: r = 〈a〉2
7: a = ba/2c
8: AFA = AFA + a · (D + z − 1)
9: a = a+ r
10: Affb = Affb + a · (D + z)
11: end for
12: Affb = Affb +X ·D . With Input Buffers (WIB)
13: return AFA, Affb
14: end procedure

Figure C.1: Required tree resources as a function of the zero padded image (N),
and the number of bits per pixel (D). Refer to Table 3.1 for definitions of Affb, AFA.
Remove step 12 to compute Aff (without input buffers)



147

Appendix D

Source code for the Serial DPRT
and iDPRT on the HOST

/* (c) 2015 Cesar Carranza

University of New Mexico

Serial implementation of the forward and inverse DPRT on the

HOST

Input data: None. f(i,j) is generated randomly

Output data: timing.txt (text file with the running time and

error difference ).

Image sizes: From 2x2 up to 1021 x1021

Data is stored in a vector , column -major ordering.

top -left pixel (0,0) is the 1st value on the vector.

*/

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <time.h>

int forwardDPRT(long *radon , clock_t *runTime , long *img ,

int N, int imgSize );

int inverseDPRT(long *img , clock_t *runTime , long *radon ,

int N, int radonSize );

int main()

{

const int numImgs = 172; // up to 1021 x1021



148

// First 172 prime numbers

const int imgSizes [172] = {

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229,

233, 239, 241, 251, 257, 263, 269, 271, 277, 281,

283, 293, 307, 311, 313, 317, 331, 337, 347, 349,

353, 359, 367, 373, 379, 383, 389, 397, 401, 409,

419, 421, 431, 433, 439, 443, 449, 457, 461, 463,

467, 479, 487, 491, 499, 503, 509, 521, 523, 541,

547, 557, 563, 569, 571, 577, 587, 593, 599, 601,

607, 613, 617, 619, 631, 641, 643, 647, 653, 659,

661, 673, 677, 683, 691, 701, 709, 719, 727, 733,

739, 743, 751, 757, 761, 769, 773, 787, 797, 809,

811, 821, 823, 827, 829, 839, 853, 857, 859, 863,

877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,

1019, 1021 };

int N; // Base image size of NxN

int imgSize;

int radonSize;

int status;

long *img; // Pointer to the image data

long *imgOut; // Pointer to the image after the inverse

long *radon; // Pointer to the radon data

int z,y,x;

int errorImg;

int r;

FILE *pun1;

clock_t timeForward = 0;

clock_t timeInverse = 0;

fopen_s (&pun1 , "timing.txt", "w");

// Main loop , one iteration per image size

for (x = 0; x < numImgs; x++)

{

N = imgSizes[x];

imgSize = N*N;

radonSize = (N + 1)*N;

img = (long *) calloc(imgSize , sizeof(long ));



149

imgOut = (long *) calloc(imgSize , sizeof(long ));

radon = (long *) calloc(radonSize , sizeof(long ));

// Generate random data for the input image

for (z = 0; z < imgSize; z++)

{

img[z] = rand() % 256;

}

// Compute forward DPRT

status = forwardDPRT(radon , &timeForward , img , N,

imgSize );

if (status != 0) {

fprintf(stderr , "forward RADON failed!");

return 1;

}

printf("Elapsed Forward time: %li\n", timeForward );

// Compute inverse DPRT

status = inverseDPRT(imgOut , &timeInverse , radon , N,

radonSize );

if (status != 0) {

fprintf(stderr , "inverse RADON failed!");

return 1;

}

printf("Elapsed time Inverse: %li\n", timeInverse );

// Error , should be zero (it is an exact transform !)

errorImg = 0;

for (z = 0; z < imgSize; z++)

{

errorImg = errorImg + abs(img[z] - imgOut[z]);

}

printf("Error difference for %dx%d size: %d \n\n",N,N,

errorImg );

fprintf_s(pun1 , "%d,%li ,%li ,%d\n", N, timeForward ,

timeInverse , errorImg );

}

fclose(pun1);

free(img);

free(radon);

free(imgOut );

return 0;

}



150

int forwardDPRT(long *radon , clock_t *runTime , long *img ,

int N, int imgSize)

{

int prime , ray , z, incr , init , radxy , sum;

clock_t start , finish;

start = clock ();

for(prime =0; prime < N+1; prime ++)

{

if (prime == N) // Special case for final prime direction

{

incr = N; // Increment to get the next value

}

else // First N prime directions

{

incr = prime * N + 1; // Increment to get the next value

}

for(ray=0;ray <N;ray++)

{

if (prime == N) // Special case for final prime dir.

{

init = ray; // Starting position to add

}

else // First N prime directions

{

init = ray * N; // Starting position to add

}

radxy = prime + ray * (N + 1); // Pos. in the radon

sum = 0;

for(z=0;z<N;z++)

{

sum = sum + img[init];

init = (init + incr) % imgSize;

}

radon[radxy] = sum;

}

}

finish = clock ();

*runTime = (clock_t )( finish - start );

return 0;

}

int inverseDPRT(long *img , clock_t *runTime , long *radon ,



151

int N, int radonSize)

{

int prime , ray , z, decr , init , radxy , sum;

int S;

clock_t start , finish;

start = clock ();

// Computing S

S = 0;

for (z = 0; z < N; z++)

{

S = S + radon[z*(N+1)];

}

for (prime =0;prime <N;prime ++)

{

decr = -prime * (N + 1) + 1; // Dec. to get the next value

for(ray=0;ray <N;ray++)

{

init = ray * (N + 1); // Starting position to add

radxy = prime + ray * N; // Position in the radon output

sum = 0;

for(z=0;z<N;z++)

{

sum = sum + radon[init];

init = (init + decr + radonSize) % radonSize;

}

img[radxy] = (sum - S + radon[prime*(N + 1) + N])/N;

}

}

finish = clock ();

runTime [0] = (finish - start);

return 0;

}



152

Appendix E

Source code for the Parallel DPRT
and iDPRT on the HOST

/* (c) 2015 Cesar Carranza

University of New Mexico

Parallel implementation of the forward and inverse DPRT on

the HOST

Input data: None. f(i,j) is generated randomly

Output data: timing.txt (text file with the running time and

error difference ).

Image sizes: From 2x2 up to 1021 x1021.

Data is stored in a vector , column -major ordering.

Top -left pixel (0,0) is the 1st value on the vector.

Using Pthreads for parallel processing.

*/

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <time.h>

#include <math.h>

#include <pthread.h>

// For Pthreads , use 16 logical cores , 8 physical

#define cores 16

long *img; // Pointer to the image data

long *imgOut; // Pointer to the image after the inverse



153

long *radon; // Pointer to the radon data

int N;

int imgSize;

int radonSize;

// Kernels for Pthreads

void *forwardDPRTkernel(void *arg)

{

int numTh ,primeSiz ,primeStart ,primeEnd , threshold;

int prime ,ray ,z,incr ,init ,radxy ,sum;

numTh = (int)arg; // Kernel ID

threshold = (N+1)% cores;

// Some threads have 1 less prime direction

if (numTh >= threshold && threshold > 0)

{

primeSiz = (N+1 + cores -1)/ cores - 1;

primeStart = threshold *( primeSiz +1)+

(numTh -threshold )* primeSiz;

primeEnd = primeStart+primeSiz;

} // Below the threshold , Each thread has the full amount

else

{

primeSiz = (N+1+cores -1)/ cores;

primeStart = numTh*primeSiz;

primeEnd = primeStart+primeSiz;

}

for(prime=primeStart;prime < primeEnd; prime ++)

{

if (prime == N) // Special case for final prime direction

{

incr = N; // Increment to get the next value

}

else // First N prime directions

{

incr = prime * N + 1; // Increment to get the next value

}

for(ray=0;ray <N;ray++)

{

if (prime == N) // Special case for final prime dir.

{

init = ray; // Starting position to add

}



154

else // First N prime directions

{

init = ray * N; // Starting position to add

}

radxy = prime + ray * (N + 1); // Pos. in the radon

sum = 0;

for(z=0;z<N;z++)

{

sum = sum + img[init];

init = (init + incr) % imgSize;

}

radon[radxy] = sum;

}

}

pthread_exit ((void*) 0);

}

void *inverseDPRTkernel(void *arg)

{

int numTh ,primeSiz ,primeStart ,primeEnd ,threshold;

int prime ,ray ,z,decr ,init ,radxy ,sum ,S;

numTh = (int)arg; // Kernel ID

threshold = N % cores;

// Some threads have 1 less prime direction

if (numTh >= threshold && threshold > 0)

{

primeSiz = (N + cores - 1)/ cores - 1;

primeStart = threshold *( primeSiz +1)+

(numTh -threshold )* primeSiz;

primeEnd = primeStart+primeSiz;

} // Below the threshold , Each thread has the full amount

else

{

primeSiz = (N + cores - 1)/ cores;

primeStart = numTh*primeSiz;

primeEnd = primeStart+primeSiz;

}

// Compute S

S = 0;

for (z = 0; z < N; z++)

{

S = S + radon[z*(N+1)];



155

}

for (prime=primeStart;prime <primeEnd;prime ++)

{

decr = -prime * (N + 1) + 1; // Dec. to get the next value

for(ray=0;ray <N;ray++)

{

init = ray * (N + 1); // Starting pos. to add

radxy = prime + ray * N; // Pos. in the radon

sum = 0;

for(z=0;z<N;z++)

{

sum = sum + radon[init];

init = (init + decr + radonSize) % radonSize;

}

imgOut[radxy] = (sum - S + radon[prime*(N + 1) + N])/N;

}

}

pthread_exit ((void*) 0);

}

int main()

{

const int numImgs = 172; // Up to 1021 x1021

// First 172 prime numbers

const int imgSizes [309] = {

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229,

233, 239, 241, 251, 257, 263, 269, 271, 277, 281,

283, 293, 307, 311, 313, 317, 331, 337, 347, 349,

353, 359, 367, 373, 379, 383, 389, 397, 401, 409,

419, 421, 431, 433, 439, 443, 449, 457, 461, 463,

467, 479, 487, 491, 499, 503, 509, 521, 523, 541,

547, 557, 563, 569, 571, 577, 587, 593, 599, 601,

607, 613, 617, 619, 631, 641, 643, 647, 653, 659,

661, 673, 677, 683, 691, 701, 709, 719, 727, 733,

739, 743, 751, 757, 761, 769, 773, 787, 797, 809,

811, 821, 823, 827, 829, 839, 853, 857, 859, 863,

877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,

1019, 1021 };



156

int z,y,x;

int errorImg;

int r;

FILE *pun1;

// Parallel version: Using Pthreads

pthread_attr_t attr;

pthread_t hisThr[cores ];

void *status1 ,* status2;

clock_t start , finish;

clock_t timeForward;

clock_t timeInverse;

// Make sure each thread is joinable

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE );

fopen_s (&pun1 , "timing_pthreads.txt", "w");

for (x = 0; x < numImgs; x++)

{

N = imgSizes[x];

imgSize = N*N;

radonSize = (N + 1)*N;

img = (long *) calloc(imgSize , sizeof(long ));

imgOut = (long *) calloc(imgSize , sizeof(long ));

radon = (long *) calloc(radonSize , sizeof(long ));

for (z = 0; z < imgSize; z++)

{

img[z] = rand() % 256;

}

start = clock ();

// Compute forward DPRT

// Launch the threads

for(z=0;z<cores;z++)

{

pthread_create (& hisThr[z], &attr , forwardDPRTkernel ,

(void *)z);

}

//Wait to finish

for(z=0; z<cores; z++)

{



157

pthread_join(hisThr[z], &status1 );

}

finish = clock ();

timeForward = finish - start;

printf("Elapsed Forward time: %li\n", timeForward );

// Compute inverse DPRT

start = clock ();

// Launch the threads

for(z=0;z<cores;z++)

{

pthread_create (& hisThr[z], &attr , inverseDPRTkernel ,

(void *)z);

}

//Wait to finish

for(z=0; z<cores; z++)

{

pthread_join(hisThr[z], &status2 );

}

finish = clock ();

timeInverse = finish - start;

printf("Elapsed time Inverse: %li\n", timeInverse );

// Check for zero error

errorImg = 0;

for (z = 0; z < imgSize; z++)

{

errorImg = errorImg + abs(img[z] - imgOut[z]);

}

printf("Error difference for %dx%d size: %d \n\n",N,N,

errorImg );

fprintf_s(pun1 , "%d,%li ,%li ,%d\n", N, timeForward ,

timeInverse , errorImg );

}

fclose(pun1);

free(img);

free(radon);

free(imgOut );

return 0;

}



158

Appendix F

Source code for the Parallel DPRT
and iDPRT on the DEVICE (GPU
GM204, Maxwell)

/* (c) 2015 Cesar Carranza

University of New Mexico

Parallel implementation of the forward and inverse DPRT on

the DEVICE: Nvidia GM204 - Card: GeForce GTX980

Input data: None. f(i,j) is generated randomly

Output data: timing.txt (text file with the running time and

error difference ).

Image sizes: From 2x2 up to 1021 x1021.

Data is stored in a vector , row -major ordering.

Top -left pixel (0,0) is the 1st value on the vector.

Using mixed code:

HOST (Xeon CPU) for launching the kernels.

DEVICE (GM203 GPU) executing the kernels.

use the compilation flag: -Xptxas -dlcm=ca

to activate Cache L1.

*/

#include <cuda.h>

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>



159

cudaError_t forwardDPRT(long *radon , float *timeKernel ,

long *img , int N, int imgSize );

cudaError_t inverseDPRT(long *img , float *timeKernel ,

long *radon , int N, int radonSize );

__global__ void fDPRTKernel(int *radon , const int *img ,

const int N, const int imgSize)

{

int init , offs , radxy , z, sum , incr;

if (blockIdx.x == N) // Special case for final prime dir.

{

offs = 0; // Starting position to add

incr = 1;

init = threadIdx.x*N;

}

else // First N prime directions

{

offs = threadIdx.x; // Starting position to add

incr = N;

init = 0;

}

radxy = threadIdx.x + blockIdx.x * N; // Pos. in rad.

sum = 0;

__syncthreads ();

// Add all values on prime dir. blockIdx.x, ray threadIdx.x

for (z = 0; z < N; z++)

{

sum = sum + img[init + offs];

offs = (offs + blockIdx.x) % N;

init = init + incr;

}

radon[radxy] = sum;

}

__global__ void iDPRTKernel(int *img , const int *radon ,

const int N, const int radonSize ,

const int S)

{

int radxy = threadIdx.x + blockIdx.x * N; //Pos.in img.out

int z;

int sum = 0;

int offs = threadIdx.x; // Starting position to add

int init = 0;



160

// Add all values on prime dir. blockIdx.x, ray threadIdx.x

for (z = 0; z < N; z++)

{

sum = sum + radon[init + offs];

offs = (offs - blockIdx.x + N) % N;

init = init + N;

}

img[radxy] = (sum - S + radon[N*N + blockIdx.x]) / N;

}

int main()

{

const int numImgs = 172; // Up to 1021 x1021

// First 172 prime numbers

const int imgSizes [172] = {

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229,

233, 239, 241, 251, 257, 263, 269, 271, 277, 281,

283, 293, 307, 311, 313, 317, 331, 337, 347, 349,

353, 359, 367, 373, 379, 383, 389, 397, 401, 409,

419, 421, 431, 433, 439, 443, 449, 457, 461, 463,

467, 479, 487, 491, 499, 503, 509, 521, 523, 541,

547, 557, 563, 569, 571, 577, 587, 593, 599, 601,

607, 613, 617, 619, 631, 641, 643, 647, 653, 659,

661, 673, 677, 683, 691, 701, 709, 719, 727, 733,

739, 743, 751, 757, 761, 769, 773, 787, 797, 809,

811, 821, 823, 827, 829, 839, 853, 857, 859, 863,

877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,

1019, 1021};

int N, i, j;

int imgSize;

int radonSize;

long *img; // Pointer to the image data

long *imgOut; // Pointer to the image after the inverse

long *radon; // Pointer to the radon data

int z, y, x;

int errorImg;

FILE *pun1;



161

float timeForward = 0;

float timeInverse = 0;

fopen_s (&pun1 , "timing_GPU.txt", "w");

for (x = 0; x < numImgs; x++)

{

N = imgSizes[x];

imgSize = N*N;

radonSize = (N + 1)*N;

img = (long *) calloc(imgSize , sizeof(long ));

imgOut = (long *) calloc(imgSize , sizeof(long ));

radon = (long *) calloc(radonSize , sizeof(long ));

for (z = 0; z < imgSize; z++)

{

img[z] = rand() % 256;

}

// Compute forward DPRT

cudaError_t cudaStatus = forwardDPRT(radon , &timeForward ,

img , N, imgSize );

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "forward RADON failed!");

return 1;

}

printf("Elapsed Forward time: %f\n", timeForward );

// Compute inverse DPRT

cudaStatus = inverseDPRT(imgOut , &timeInverse , radon ,

N, radonSize );

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "inverse RADON failed!");

return 1;

}

printf("Elapsed time Inverse: %f\n", timeInverse );

// Check the error. Should be zero!

errorImg = 0;

for (z = 0; z < imgSize; z++)

{

errorImg = errorImg + abs(img[z] - imgOut[z]);

}

printf("Error difference for %dx%d size: %d \n\n",

N, N, errorImg );



162

fprintf_s(pun1 , "%d,%f,%f,%d\n", N, timeForward ,

timeInverse , errorImg );

}

fclose(pun1);

free(img);

free(radon);

free(imgOut );

return 0;

}

cudaError_t forwardDPRT(long *radon , float *timeKernel ,

long *img , int N, int imgSize)

{

int *dev_img = 0;

int *dev_radon = 0;

cudaError_t cudaStatus;

// Allocate GPU buffers for input image and radon output.

cudaStatus = cudaMalloc ((void **)& dev_radon ,

(imgSize + N) * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMalloc dev_radon failed!");

goto Error;

}

cudaStatus = cudaMalloc ((void **)& dev_img ,

imgSize * sizeof(int ));

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMalloc dev_img failed!");

goto Error;

}

// Copy input image from host memory to GPU buffers.

cudaStatus = cudaMemcpy(dev_img , img , imgSize * sizeof(int),

cudaMemcpyHostToDevice );

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMemcpy failed!");

goto Error;

}

// Timing using cudaEvent

cudaEvent_t start , stop;

cudaEventCreate (&start );

cudaEventCreate (&stop);



163

cudaEventRecord(start );

// Launch a kernel on with block size of N, and N+1 blocks

fDPRTKernel << < N + 1, N >> >(dev_radon , dev_img , N,

imgSize );

cudaEventRecord(stop);

cudaEventSynchronize(stop);

cudaEventElapsedTime(timeKernel , start , stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

// Check for any errors launching the kernel

cudaStatus = cudaGetLastError ();

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "fDPRTKernel launch failed: %s\n",

cudaGetErrorString(cudaStatus ));

goto Error;

}

// Copy output vector from GPU buffer to host memory.

cudaStatus = cudaMemcpy(radon , dev_radon ,

(imgSize + N) * sizeof(int), cudaMemcpyDeviceToHost );

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMemcpy radon failed!");

goto Error;

}

Error:

cudaFree(dev_radon );

cudaFree(dev_img );

return cudaStatus;

}

cudaError_t inverseDPRT(long *img , float *timeKernel ,

long *radon , int N, int radonSize)

{

int *dev_img = 0;

int *dev_radon = 0;

cudaError_t cudaStatus;

// Allocate GPU buffers for input radon and image output.

cudaStatus = cudaMalloc ((void **)& dev_radon ,

radonSize * sizeof(int));

if (cudaStatus != cudaSuccess) {



164

fprintf(stderr , "cudaMalloc dev_radon failed!");

goto Error;

}

cudaStatus = cudaMalloc ((void **)& dev_img ,

(radonSize - N) * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMalloc dev_img failed!");

goto Error;

}

// Copy radon image from host memory to GPU buffers.

cudaStatus = cudaMemcpy(dev_radon , radon ,

radonSize * sizeof(int), cudaMemcpyHostToDevice );

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMemcpy failed!");

goto Error;

}

// Computing S

int S;

S = 0;

for (int z = 0; z < N; z++)

{

S = S + radon[z];

}

// Timing using cudaEvent

cudaEvent_t start , stop;

cudaEventCreate (&start );

cudaEventCreate (&stop);

cudaEventRecord(start );

// Launch a kernel with block size of N, and N blocks

iDPRTKernel << < N, N >> >(dev_img , dev_radon , N,

radonSize , S);

cudaEventRecord(stop);

cudaEventSynchronize(stop);

cudaEventElapsedTime(timeKernel , start , stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

// Check for any errors launching the kernel

cudaStatus = cudaGetLastError ();

if (cudaStatus != cudaSuccess) {



165

fprintf(stderr , "iDPRTKernel launch failed: %s\n",

cudaGetErrorString(cudaStatus ));

goto Error;

}

// Copy img from GPU buffer to host memory.

cudaStatus = cudaMemcpy(img , dev_img ,

(radonSize - N) * sizeof(int),

cudaMemcpyDeviceToHost );

if (cudaStatus != cudaSuccess) {

fprintf(stderr , "cudaMemcpy img failed!");

goto Error;

}

Error:

cudaFree(dev_radon );

cudaFree(dev_img );

return cudaStatus;

}



166

References

[1] S. Chandrasekaran and A. Amira, “High speed/low power architectures for the
finite radon transform,” in International Conference on Field Programmable
Logic and Applications, Aug 2005, pp. 450–455.

[2] S. Chandrasekaran, A. Amira, S. Minghua, and A. Bermak, “An efficient vlsi
architecture and fpga implementation of the finite ridgelet transform,” Journal
of Real-Time Image Processing, vol. 3, no. 3, pp. 183–193, 2008.

[3] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable computation of
the forward and inverse discrete periodic radon transform,” IEEE Transactions
on Image Processing, vol. 25, no. 1, pp. 119–133, Jan 2016.

[4] S. Deans, The Radon Transform and Some of Its Applications, ser. Dover Books
on Mathematics Series. Dover Publications, 2007.

[5] A. K. Jain, Fundamentals of Digital Image Processing. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1989.

[6] J.-L. Starck, E. Candes, and D. Donoho, “The curvelet transform for image
denoising,” IEEE Transactions on Image Processing, vol. 11, no. 6, pp. 670–
684, 2002.

[7] D. P. K. Lun, T. Chan, T.-C. Hsung, D. Feng, and Y.-H. Chan, “Efficient blind
image restoration using discrete periodic radon transform,” IEEE Transactions
on Image Processing, vol. 13, no. 2, pp. 188–200, 2004.

[8] K. Jafari-Khouzani and H. Soltanian-Zadeh, “Radon transform orientation esti-
mation for rotation invariant texture analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 6, pp. 1004–1008, June 2005.

[9] N. Aggarwal and W. Karl, “Line detection in images through regularized hough
transform,” IEEE Transactions on Image Processing, vol. 15, no. 3, pp. 582–591,
March 2006.

[10] A. Kingston and I. Svalbe, “Geometric shape effects in redundant keys used to
encrypt data transformed by finite discrete radon projections,” in Digital Image



167

Computing: Techniques and Applications, 2005. DICTA ’05. Proceedings 2005,
2005, pp. 16–16.

[11] N. Normand, I. Svalbe, B. Parrein, and A. Kingston, “Erasure coding with the
finite radon transform,” in 2010 IEEE Wireless Communications and Network-
ing Conference (WCNC), April 2010, pp. 1–6.

[12] B. Parrein, N. Normand, M. Ghareeb, G. D’Ippolito, and F. Battisti, “Finite
radon coding for content delivery over hybrid client-server and p2p architecture,”
in 2012 5th International Symposium on Communications Control and Signal
Processing (ISCCSP), May 2012, pp. 1–4.

[13] G.-W. Ou, D.-K. Lun, and B.-K. Ling, “Compressive sensing of images based
on discrete periodic radon transform,” Electronics Letters, vol. 50, no. 8, pp.
591–593, April 2014.

[14] G. Beylkin, “Discrete radon transform,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 35, no. 2, pp. 162–172, Feb 1987.

[15] B. Kelley and V. Madisetti, “The fast discrete radon transform. i. theory,” IEEE
Transactions on Image Processing, vol. 2, no. 3, pp. 382–400, Jul 1993.

[16] F. Matus and J. Flusser, “Image representation via a finite radon transform,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15,
no. 10, pp. 996–1006, 1993.

[17] A. Grigoryan, “Comments on: The discrete periodic radon transform,” IEEE
Transactions on Signal Processing, vol. 58, no. 11, pp. 5962–5963, Nov 2010.

[18] T. Hsung, D. P. K. Lun, and W.-C. Siu, “The discrete periodic radon transform,”
IEEE Transactions on Signal Processing, vol. 44, no. 10, pp. 2651–2657, 1996.

[19] I. Gertner, “A new efficient algorithm to compute the two-dimensional discrete
fourier transform,” IEEE Transactions on Acoustics, Speech and Signal Process-
ing, vol. 36, no. 7, pp. 1036–1050, Jul 1988.

[20] A. Ahmad, A. Amira, H. Rabah, and Y. Berviller, “Medical image denoising
on field programmable gate array using finite radon transform,” IET Signal
Processing, vol. 6, no. 9, pp. 862–870, Dec 2012.

[21] A. Kingston and I. Svalbe, “Projective transforms on periodic discrete image
arrays,” Advances in Imaging and Electron Physics, vol. 139, p. 76, 2006.

[22] M. S. Pattichis, “Novel algorithms for the accurate, efficient, and parallel com-
putation of multidimensional, regional discrete fourier transforms,” in 10th
Mediterranean Electrotechnical Conference, 2000. MELECON 2000., vol. 2.
IEEE, 2000, pp. 530–533.



168

[23] M. S. Pattichis and R. Zhou, “A novel directional approach for the scalable,
accurate and efficient computation of two-dimensional discrete fourier trans-
forms,” AHPCC2000-019, Albuquerque High Performance Computing Center,
The University of New Mexico, 2000.

[24] M. S. Pattichis, R. Zhou, and B. Raman, “New algorithms for computing direc-
tional discrete fourier transforms,” in icip, vol. 3, 2001, pp. 322–325.

[25] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Ox-
ford University Press, 1979.

[26] C. Carranza, D. Llamocca, and M. Pattichis, “The fast discrete periodic radon
transform for prime sized images: Algorithm, architecture, and vlsi/fpga imple-
mentation,” in 2014 IEEE Southwest Symposium on Image Analysis and Inter-
pretation (SSIAI), April 2014, pp. 169–172.

[27] ——, “A scalable architecture for implementing the fast discrete periodic radon
transform for prime sized images,” in 2014 IEEE International Conference on-
Image Processing (ICIP), Oct 2014, pp. 1208–1212.

[28] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[29] D. Llamocca, M. Pattichis, and G. A. Vera, “Partial reconfigurable
fir filtering system using distributed arithmetic,” Int. J. Recon-
fig. Comput., vol. 2010, pp. 4:1–4:14, Feb. 2010. [Online]. Available:
http://dx.doi.org/10.1155/2010/357978

[30] D. Llamocca and M. S. Pattichis, “A dynamically reconfigurable
pixel processor system based on power/energy-performance-accuracy op-
timization,” IEEE Transactions on Circuits and Systems for Video
Technology, no. 3, pp. 488–502, March 2013. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6252023

[31] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd ed.
New York, NY, USA: Oxford University Press, Inc., 2009.

[32] A. C. Bovik, Handbook of Image and Video Processing (Communications, Net-
working and Multimedia). Orlando, FL, USA: Academic Press, Inc., 2005.

[33] J. C. Russ and F. B. Neal, The Image Processing Handbook, 7th ed. Boca
Raton, FL, USA: CRC Press, Inc., 2015.

[34] M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for
Computer Vision, 3rd ed. London, UK: Academic Press, 2012.



169

[35] M. Anam and Y. Andreopoulos, “Throughput scaling of convolution for error-
tolerant multimedia applications,” Multimedia, IEEE Transactions on, vol. 14,
no. 3, pp. 797–804, June 2012.

[36] M. Anam, P. Whatmough, and Y. Andreopoulos, “Precision-energy-throughput
scaling of generic matrix multiplication and convolution kernels via linear pro-
jections,” Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 24, no. 11, pp. 1860–1873, Nov 2014.

[37] Y. Jiang and M. Pattichis, “A dynamically reconfigurable architecture
system for time-varying image constraints (drastic) for motion jpeg,”
Journal of Real-Time Image Processing, pp. 1–17, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11554-014-0460-8

[38] D. Llamocca and M. Pattichis, “Dynamic energy, performance, and accuracy
optimization and management using automatically generated constraints
for separable 2d fir filtering for digital video processing,” ACM Trans.
Reconfigurable Technol. Syst., vol. 7, no. 4, pp. 31:1–31:30, Dec. 2014. [Online].
Available: http://doi.acm.org/10.1145/2629623

[39] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Process-
ing. Prentice Hall Professional Technical Reference, 1990.

[40] K. R. Rao, D. N. Kim, and J.-J. Hwang, Fast Fourier Transform - Algorithms
and Applications, 1st ed. Springer Publishing Company, Incorporated, 2010.

[41] I. Uzun, A. Amira, and A. Bouridane, “Fpga implementations of fast fourier
transforms for real-time signal and image processing,” Vision, Image and Signal
Processing, IEE Proceedings -, vol. 152, no. 3, pp. 283–296, June 2005.

[42] Xilinx. (2012) Logicore ip, fast fourier transform v8.0. [Online]. Available:
www.xilinx.com/support/documentation/ip documentation/ds808 xfft.pdf

[43] D. P. K. Lun, T.-C. Hsung, and W. C. Siu, “On the convolution property of
a new discrete radon transform and its efficient inversion algorithm,” in IEEE
International Symposium on Circuits and Systems, 1995. ISCAS ’95., vol. 3,
Apr 1995, pp. 1892–1895 vol.3.

[44] H. Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp. 37–46,
Jan 1982.

[45] H. keung Kwan and T. Okullo-Oballa, “2-d systolic arrays for realization of 2-d
convolution,” Circuits and Systems, IEEE Transactions on, vol. 37, no. 2, pp.
267–233, Feb 1990.



170

[46] B. Mohanty and P. Meher, “Cost-effective novel flexible cell-level systolic archi-
tecture for high throughput implementation of 2-d fir filters,” Computers and
Digital Techniques, IEE Proceedings -, vol. 143, no. 6, pp. 436–439, Nov 1996.

[47] Y. Dong, Y. Dou, and J. Zhou, “Optimized generation of memory structure in
compiling window operations onto reconfigurable hardware,” in Reconfigurable
Computing: Architectures, Tools and Applications. Springer, 2007, pp. 110–121.

[48] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy com-
parison of fpgas, gpus, and multicores for sliding-window applications,” in Pro-
ceedings of the ACM/SIGDA international symposium on Field Programmable
Gate Arrays. ACM, 2012, pp. 47–56.

[49] A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters. New
York NY, USA: McGraw-Hill Education, 2005.

[50] W.-S. Lu, H.-P. Wang, and A. Antoniou, “Design of two-dimensional fir digital
filters by using the singular-value decomposition,” Circuits and Systems, IEEE
Transactions on, vol. 37, no. 1, pp. 35–46, Jan 1990.

[51] P. Cooke, J. Fowers, G. Brown, and G. Stitt, “A tradeoff analysis of
fpgas, gpus, and multicores for sliding-window applications,” ACM Trans.
Reconfigurable Technol. Syst., vol. 8, no. 1, pp. 2:1–2:24, Mar. 2015. [Online].
Available: http://doi.acm.org/10.1145/2659000

[52] P. Meher, S. Chandrasekaran, and A. Amira, “Fpga realization of fir filters by
efficient and flexible systolization using distributed arithmetic,” Signal Process-
ing, IEEE Transactions on, vol. 56, no. 7, pp. 3009–3017, July 2008.

[53] J. Fowers, G. Brown, J. Wernsing, and G. Stitt, “A performance and energy
comparison of convolution on gpus, fpgas, and multicore processors,” ACM
Trans. Archit. Code Optim., vol. 9, no. 4, pp. 25:1–25:21, Jan. 2013. [Online].
Available: http://doi.acm.org/10.1145/2400682.2400684

[54] M. Flynn, “Some computer organizations and their effectiveness,” Computers,
IEEE Transactions on, vol. C-21, no. 9, pp. 948–960, Sept 1972.

[55] NVIDIA. (2015) CUDA toolkit & SDK. [Online]. Available:
http://docs.nvidia.com/cuda

[56] T. Rauber and G. Rnger, Parallel Programming for Multicore and Cluster Sys-
tems, 2nd ed. New York, USA: Springer Berlin Heidelberg, 2013.

[57] C. A. Carranza, V. Kober, and H. Hidalgo, “Image restoration with local
adaptive methods,” in Proc. SPIE, Applications of Digital Image Processing
XXXIII, vol. 7798, September 2010, pp. 779 827–779 827–12. [Online]. Available:
http://dx.doi.org/10.1117/12.860754



171

[58] D. Llamocca, C. Carranza, and M. Pattichis, “Separable fir filtering in fpga and
gpu implementations: Energy, performance, and accuracy considerations,” in
2011 International Conference on Field Programmable Logic and Applications
(FPL), Sept 2011, pp. 363–368.

[59] C. Carranza, V. Murray, M. Pattichis, and E. Barriga, “Multiscale am-fm de-
compositions with gpu acceleration for diabetic retinopathy screening,” in Im-
age Analysis and Interpretation (SSIAI), 2012 IEEE Southwest Symposium on,
April 2012, pp. 121–124.

[60] D. Llamocca, C. Carranza, and M. Pattichis, “Dynamic multiobjective optimiza-
tion management of the energy-performance-accuracy space for separable 2-d
complex filters,” in 2012 22nd International Conference on Field Programmable
Logic and Applications (FPL), Aug 2012, pp. 579–582.

[61] D. Llamocca, M. Pattichis, and C. Carranza, “A framework for self-
reconfigurable dcts based on multiobjective optimization of the power-
performance-accuracy space,” in 2012 7th International Workshop on Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC), July 2012, pp.
1–6.

[62] E. Barriga, V. Chekh, C. Carranza, M. Burge, A. Edwards, E. McGrew,
G. Zamora, and P. Soliz, “Computational basis for risk stratification of pe-
ripheral neuropathy from thermal imaging,” in 2012 Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug
2012, pp. 1486–1489.

[63] V. Chekh, S. S. Luan, M. Burge, C. Carranza, P. Soliz, E. McGrew, and
S. Barriga, “Quantitative early detection of diabetic foot,” in Proceedings of
the International Conference on Bioinformatics, Computational Biology and
Biomedical Informatics, ser. BCB’13. New York, NY, USA: ACM, 2013, pp.
86:86–86:95. [Online]. Available: http://doi.acm.org/10.1145/2506583.2506598


