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ABSTRACT

Since the beginning of medical science, the human brain has remained an unsolved

puzzle; an illusive organ that controls everything- from breathing to heartbeats,

from emotion to anger, and more. With the power of advanced neuroimaging tech-

niques, scientists have now started to solve this nearly impossible puzzle, piece by

piece. Over the past decade, various in vivo techniques, including functional mag-

netic resonance imaging (fMRI), have been increasingly used to understand brain

functions. fMRI is extensively being used to facilitate the identi�cation of various

neuropsychological disorders such as schizophrenia (SZ), bipolar disorder (BP) and

autism spectrum disorder (ASD). These disorders are currently diagnosed based on

patients' self-reported experiences, and observed symptoms and behaviors over the

course of the illnesses. Therefore, e�cient identi�cation of biological-based mark-

ers (biomarkers) can lead to early diagnosis of these mental disorders, and provide

a trajectory for disease progression. By applying advanced machine learning tech-

niques on fMRI data, signi�cant di�erences in brain function among patients with

mental disorders and healthy controls can be identi�ed. Moreover, by jointly esti-

mating information from multiple modalities, such as, functional brain data and

genetic factors, we can now investigate the relationship between brain function

and genes.

Functional connectivity (FC) has become a very common measure to characterize

brain functions, where FC is de�ned as the temporal covariance of neural signals

between multiple spatially distinct brain regions. Recently, researchers are study-

ing the FC among functionally specialized brain networks which can be de�ned as
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a higher level of FC, and is termed as functional network connectivity (FNC, de-

�ned as the correlation value that summarizes the overall connection among brain

networks over time). Most functional connectivity studies have made the limiting

assumption that connectivity is stationary over multiple minutes, and ignore to

identify the time-varying and reoccurring patterns of FNC among brain regions

(known as time-varying FNC).

In this dissertation, we demonstrate the use of time-varying FNC features as po-

tential biomarkers to di�erentiate between patients with mental disorders and

healthy subjects. The developmental characteristics of time-varying FNC in chil-

dren with typically developing brain and ASD have been extensively studies in

a cross-sectional framework, and age-, sex- and disease-related FNC pro�les have

been proposed. Also, time-varying FNC is characterized in healthy adults and

patients with severe mental disorders (SZ and BP). Moreover, an e�cient classi�-

cation algorithm is designed to identify patients and controls at individual level.

Finally, a new framework is proposed to jointly utilize information from brain's

functional network connectivity and genetic features to �nd the associations be-

tween them. The frameworks that we presented here can help us understand the

important role played by time-varying FNC to identify potential biomarkers for

the diagnosis of severe mental disorders.
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CHAPTER 1

INTRODUCTION

Over the past two decades, expansions in neuroimaging techniques have helped us

unravel various mysteries of the human brain. One of the fastest growing tech-

niques, functional magnetic resonance imaging (fMRI), has since been extensively

applied to study development of brain functions, e�ects of long term abuses of

tobacco, alcohol and drugs. These studies have enlightened our understanding of

the brain functions, as well as the important factors that impact the critical func-

tions of the brain. Above all, the major �eld of research that immensely relies on

fMRI technique is discriminating various mental and neurodevelopmental disorder

with the help of neuroimaging features. By applying advanced machine learning

techniques on fMRI data, signi�cant di�erences in brain functions among patients

with mental disorders and healthy controls can be identi�ed. Moreover, by jointly

estimating information from multiple modalities, for example, fMRI and struc-

tural magnetic resonance imaging (sMRI), we can now investigate the relationship

between brain functions and structures.

1
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There is a growing interest in studying imaging measures related to the brain.

Functional neuroimaging is extensively being used to facilitate the identi�cation

of various neuropsychological disorders as schizophrenia (SZ), bipolar disorder

(BP) and autism spectrum disorder (ASD). These disorders are currently diag-

nosed based on patients' self-reported experiences, and observed symptoms and

behaviors over the course of the illnesses.

fMRI is used to measure indirect level of brain activity associated with a physical

or mental action, where brain activity refers to transfer of electrical and chemical

energy between neurons in di�erent regions of the brain. fMRI measures changes in

deoxygenated hemoglobin levels in blood vessels located nearby to neurons. This

process is known as blood oxygenation level-dependent or BOLD activity (Ogawa

et al., 1990b).

Functional connectivity (FC, de�ned as the temporal correlation between a seed

region and individual brain voxels (Cordes et al., 2002; Fox and Raichle, 2007)

shows promising predictive power to di�erentiate between patients with mental

illnesses and healthy subjects. Also, it has been shown that a set of distant and

functionally specialized brain regions demonstrates strong FC among them as they

interact and exchange information while performing a certain cognitive task or

during rest. Collectively these regions form a functional network of the brain, and

the connectivity among these functional networks is known as functional network

connectivity (FNC, de�ned as the correlation value that summarizes the overall

connection between independent brain maps over time (Arbabshirani et al., 2013a;

Jafri et al., 2008).

In this dissertation, we demonstrate the use of FNC features as potential biomark-

ers to di�erentiate between patients with mental disorders and healthy controls.
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An e�cient classi�cation algorithm is designed to identify patients and controls at

individual level. Moreover, a new framework is proposed to jointly utilize infor-

mation from brain's functional network connectivity and genetic features to �nd

the associations between them. Also, the developmental characteristics of FNC

with respect to age and sex in children with typically developing brain and autism

spectrum disorder have been extensively studies in a cross-sectional framework,

and age- and sex-related FNC pro�les have been proposed.

1.1 Functional Connectivity of the Brain

Human brain is a complex network that consists of spatially distributed but func-

tionally connected regions that continuously communicate and share information

with each other. Recent improvements in the acquisition and analysis of functional

neuroimaging data have given a boost to the investigation of brain's functional

connectivity. The conventional way to study FC is by measuring the statisti-

cal dependencies in terms of correlations among neuronal activation patterns of

anatomically separated brain regions across the time domain. More formally, FC

is de�ned as the temporal covariance of neural signals between multiple spatially

distinct brain regions (Friston et al., 1993). fMRI technique can be used to �rst

identify the functionally specialized regions, and then evaluation of FC can be done

through computation of the correlations between the activities of these regions.

FC analysis captures interactions among di�erent brain regions either during a

speci�c task or resting state.

Recently, FC has been used to examine the functional organization of brain net-

works in various psychiatric illnesses. Di�erent analytic tools have been applied to
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resting-state fMRI data to describe brain functional connectivity, including seed-

based analysis (Biswal et al., 1995; Greicius et al., 2003), data-driven methods,

such as independent component analysis (ICA) (Hyvärinen and Oja, 2000; Cal-

houn et al., 2001c; Damoiseaux et al., 2006; Fox and Raichle, 2007; Calhoun et al.,

2009b; Calhoun and Adali, 2012), clustering (Cordes et al., 2002), multivariate

pattern analysis (MVPA) (Norman et al., 2006; Zhu et al., 2008; Zeng et al., 2012),

graph theory (Achard et al., 2006; Buckner et al., 2009) and centrality Lohmann

et al. (2010). In seed-based approach, the connectivity patterns are based on a

selected seed region of interest (ROI), while ICA-based methods do not require

prior knowledge of brain activity or seed ROI selection (Erhardt et al., 2011a).

ICA-based FC is also widely known as FNC analysis, which is considered as a

higher level of FC.

1.2 Motivation for Time-Varying Connectivity

FNC of the brain has been proven to be substantially useful for di�erentiating be-

tween patients and healthy controls. Identi�cation of typical connectivity patterns,

both in developing children and adult subjects, can lead us to �nding potential

biomarkers for diagnosis of mental illness. Thus, the optimum utilization of the

features from brain's FNC is highly required.

1.2.1 Unpacking the 'Mean'

Studies on functional connectivity using fMRI data have shown to capture aber-

rant connectivity in various mental disorders. One of the highly investigated brain
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networks is the default mode network (DMN), which is consists of a set of brain re-

gions known to be activated during internally focused tasks and may be involved in

processes such as attention to internal emotional states, self-referential processing

or task- independent thoughts (Buckner et al., 2008). DMN data may distinguish

between mental disorders such as SZ and BP (Öngür et al., 2010; Calhoun et al.,

2011).

There are numerous studies suggesting abnormal default network connectivity in

SZ and BP (Zhou et al., 2007; Calhoun et al., 2008b; Zhou et al., 2007; Calhoun

et al., 2011). However, these studies have focused on the mean or average FNC

by assuming spatial and temporal stationarity throughout the whole scanning pe-

riod. This representation of mean FNC fails to capture spontaneous �uctuations

of activity and connectivity at di�erent scanning time points. Time-varying FNC

approach e�ciently unpacks the 'mean' of the connectivity into di�erent mean-

ingful connectivity states. By learning about various mental states experienced

during fMRI scans and how transitions between the states have occurred, we can

get the broader scenario of FNC. Therefore, looking beyond the mean FNC and

assessing dynamic changes in connectivity are necessary.

1.2.2 Dynamic Changes: Brain Connectivity is not station-

ary

The majority of FNC studies are primarily based on the assumption that FNC

is stationary throughout the entire scan session (or at least stationary during a

given task or resting-state condition) (Greicius, 2008; Camchong et al., 2011; Meda

et al., 2012; Sorg et al., 2013). Static FNC (sFNC) analysis overlooks the fact that
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individual subjects are likely to engage in slightly di�erent mental activities at dif-

ferent instances in time (Arieli et al., 1996; Makeig et al., 2004). The assumption of

stationarity was challenged in a recent work focused on time-varying multivariate

connectivity patterns (Sako§lu et al., 2010). The evidence of dynamic �uctuation

in FNC from several studies supports the idea of dynamic changes in FNC during

the experimental period. Recent studies have demonstrated the utilization of the

powerful information contained within the temporal features of spontaneous �uc-

tuation of BOLD signals (Hutchison et al., 2013a). These studies provide results

that cannot be detected with static functional connectivity analyses.

1.2.3 Quantitative Summary Measures

In sFNC analysis, node-level patterns of connectivity across a massive ma-

trix of information are identi�ed and assessed. In contrast, in time-varying FNC

analysis where have the FNC states, we are able to de�ne the state transition

matrix, mean dwell time (MDT), fraction of time (FT) spent in a speci�c state,

and the group-wise occupancy rate, allowing for a quantitative interpretation of a

given state as a whole (Allen et al., 2012a). These quantitative summary mea-

sures could potentially aid in simplifying interpretations of the complex networks'

information, which historically are often subjectively evaluated.

1.3 Research Aims and Contributions

Researchers have recently started to look beyond the mean connectivity, and

more into di�erent aspects of time-varying properties of FNC. The aims of this

doctoral work are to identify and characterize speci�c properties of time-varying
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FNC that will help di�erentiate between patients with various mental disorders

and healthy controls, and develop new algorithms to further classify subjects at

individual level based on these features of dynamic FNC. In addition, an imaging-

genetics framework based on parallel independent component analysis (parallel-

ICA, an extension of the conventional ICA algorithm that is used in analyzing

multiple modalities) algorithm is proposed that o�ers new insights, and can poten-

tially become a strong tool for exploring the relationships between genetic features

and dynamic FNC markers. The major contributions of this doctoral study are

brie�y discussed as follows:

1. The �rst aim of this project is to advance the application of time-varying FNC

approach to a large, population-based resting-state fMRI (rsfMRI) data on chil-

dren with normal development, as well as with autism spectrum disorder. Autism

spectrum disorder is often studied with little context of typical brain develop-

ment. In addition, most functional connectivity studies have made the limiting

assumption that connectivity is static over multiple minutes. In this work, we

employ a 'chronnectomic' approach (i.e., identifying time-varying and reoccurring

patterns of connectivity among brain regions) to evaluate transient states of con-

nectivity among brain networks. We investigate age-related aspects of functional

maturation during childhood with both modularized and disconnected dynamic

states. In addition, we characterized the "chronnectopathy" (i.e. dysfunctional

chronnectivity) associated with autistic traits.

2. Many of the severe mental disorders such as SZ and BP share signi�cant

overlap in clinical symptoms, brain characteristics, and risk genes, and both are

associated with dysconnectivity among large-scale brain networks. rsfMRI data

facilitates studying macroscopic connectivity among distant brain regions. Stan-

dard approaches to identifying such connectivity include seed-based correlation
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and data-driven clustering methods such as ICA, but typically focus on average

connectivity. In this study, we utilize ICA on rsfMRI data to obtain intrinsic

connectivity networks (ICNs) in cohorts of healthy control (HC) and age matched

SZ and BP patients. Subsequently, we investigated di�erence in FNC. Disease-

speci�c di�erences were identi�ed in connectivity within di�erent dynamic states.

Our results provide new information about these illnesses and strongly suggest that

state-based analyses are critical to avoid averaging together important factors that

can help distinguish these clinical groups.

3. A third aim is to develop e�cient classi�cation algorithms based on the time-

varying features of dynamic FNC (dFNC). Recently, FNC has been used to exam-

ine the functional organization of brain networks in various psychiatric illnesses.

dFNC is a recent extension of the conventional FNC analysis that takes into ac-

count FNC changes over short periods of time. While such dFNC measures may be

more informative about various aspects of connectivity, there has been no detailed

head-to-head comparison of the ability of sFNC and dFNC to perform classi�-

cation in complex mental illnesses. This study proposes a framework for auto-

matic classi�cation of SZ, BP and HC subjects based on their static and dynamic

FNC features. Also, we compare cross-validated classi�cation performance be-

tween static and dynamic FNC. Results show that dFNC has signi�cantly higher

predictive accuracy than sFNC. A three-way classi�cation methodology based on

static and dynamic FNC features discriminates individual subjects into appropri-

ate diagnostic groups with high accuracy. Our proposed classi�cation framework

is potentially applicable to additional mental disorders.

4. The fourth and �nal contribution of this work is to assess the impact of genet-

ics on brain's functional network connectivity by developing an imaging-genetics
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framework. Recently, resting-state studies have shown evidence of disrupted con-

nectivity between functional networks of the brain to underlie SZ. However, its

genetic basis is not well studied. In this work, we propose a framework to explore

the genetic underpinnings of the dFNC in SZ and HC subjects by using a multi-

variate approach, parallel-ICA. Here, we combine the power of neuroimaging to

characterize time-varying FNC with genetic data, and link the genetic variants

to imaging traits. Our framework provides evidence for genetic e�ects on time-

varying connectivity in the human brain, and also enables the identi�cation of

genetic risk factors mediating speci�c dynamic states for complex brain behavior

and psychiatric disease.

1.4 Organization of Dissertation

The rest of this dissertation describes concepts, techniques, and results that we

have implemented and analyzed in the course of application and development of

the time-varying FNC related framework. The dissertation will be organized as

follows:

Chapter 2 provides a brief description of the some of the basic conceptual back-

grounds on the conducted research, including BOLD fMRI mechanism, princi-

ple and common implementation of ICA, group independent component analysis

(GICA) and parallel-ICA approaches, various aspects of FNC, and concept of

imaging-genetics and single nucleotide polymorphism (SNP).

Chapter 3 demonstrates the underlying maturational properties of time-varying

FNC in a large, population-based cohort study with typically developing children,

and compared the results with respect to autistic traits and ASD.



Chapter 1. Introduction 10

Chapter 4 presents the application of time-varying FNC or dFNC analysis in adult

subjects, including both HC subjects and patients with severe mental disorders

(SZ and BP), and characterizes the group di�erences in terms of dFNC. This

chapter also outlines group-speci�c properties and group-wise di�erences between

controls and patients, as well as between the two patient groups.

Chapter 5 provides a novel classi�cation framework based on the sFNC and dFNC

features to di�erentiate the subjects at individual level. A comparison among the

proposed classi�cation algorithms developed using sFNC, dFNC and combined

FNC features is also presented in terms of classi�cation accuracy.

Chapter 6 presents a novel imaging-genetics framework using parallel-ICA algo-

rithm, to explore the association between time-varying FNC and genetic features

(SNP). Also, the preliminary results showing how genetics features may in�uence

brain's time-varying FNC are provided in this chapter.

Chapter 7 summarizes and concludes the project, and provides some scopes for

future work.



CHAPTER 2

BACKGROUND

2.1 BOLD fMRI

fMRI, a noninvasive imaging technique, is considered as one of the most thrilling

success stories in the �eld of modern neuroimaging. This powerful technique has

enhanced diagnostics of clinical data, as well as provided us insight into basic un-

derstanding on brain functions and dysfunctions. fMRI is widely employed study

brain functions and corresponding cognitive systems by measuring the BOLD sig-

nal (Ogawa et al., 1990a,b, 1993) by extending the use of magnetic resonance

imaging (MRI) technique. In MRI imaging technique, the magnetic moments re-

lated to the nuclear spin properties of the atom are utilized as the target object is

placed align a strong static magnetic �eld. This in�uences the randomly oriented

nuclear spins to be aligned with the direction of the external magnetic �eld, where

the alignment can either be at a low-energy state or parallel, or high-energy state

or antiparallel to the magnetic �eld. These aligned nuclear spins are then per-

turbed by an excitation pulse or radio wave at the resonant frequency. Once the

11
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excitation pulse is turned o�, the perturbed atoms naturally realign back to their

initial orientation after di�erent relaxation time depending on the tissue proper-

ties the atoms belong to. This di�erence can be captured into a MRI structural

image. By changing the resonant frequencies using magnetic �eld gradients, the

spatial and structural information can be obtained from MRI. In addition to all

the steps involved in MRI imaging, fMRI records the hemodynamic response in

di�erent brain regions that has occurred due to neural activity as described next

The basis of all hemodynamic-based neuroimaging techniques can be traced back

to an experiment that took place over a century ago. In 1890, Roy and Sherrington

experimentally showed that regional cerebral blood �ow (CBF) could re�ect the

neuronal activity in the brain (Roy and Sherrington, 1890). An increase in CBF

is considered to relate directly to the neuronal activities as the metabolic rate of

glucose and changes in CBF are tightly coupled. This has been the concept behind

mapping brain functions by measuring the changes in CBF that are induced by

stimulation. The coupling between glucose metabolism rate and changes in CBF

has led researchers to the assumption that cerebral metabolic rate of oxygen and

changes in CBF are also coupled. After more than a century later since the exper-

iment by of Roy and Sherrington took place, in 1990, Ogawa and colleagues �rst

reported that mapping of the brain functions is possible by utilizing the BOLD

contrast (de�ned above) of MRI (Ogawa et al., 1990a,b). The fact that deoxy-

genated hemoglobin is paramagnetic while oxygenated hemoglobin is not para-

magnetic makes the BOLD imaging technique work. The signal-producing atom

spins tend to dephase at an expedite rate in the presence of paramagnetic deoxy-

hemoglobin as they are in�uenced by the local magnetic �eld gradients produced

by paramagnetism. Higher concentration of oxygenated blood can be observed as

a result of increased blood �ow to the active brain regions, which ultimately leads
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to a higher level of MRI signal in those active brain regions.

2.2 Independent Component Analysis (ICA)

ICA is a data-driven, blind source separation technique, which is widely used in

fMRI-based neuroimaging research for both task-related (Calhoun et al., 2001a,c,d,

2004b; McKeown et al., 1997) and resting-state data (Beckmann et al., 2005;

Biswal et al., 1995; Calhoun et al., 2008a; Damoiseaux et al., 2006; Sorg et al.,

2007). ICA treats the observed data as a linear mixture of unknown indepen-

dent sources, and decomposes the observed data to extract the underlying sources

while maximizing the independence among them. Mathematical model for ICA is

as follows:

X = AS (2.1)

Where, X = [x1, x2, x3, .....xM ]T is a M-dimensional observed vector , and S =

[S1, S2, S3, .....SM ]T is a N-dimensional vector of independent sources. A is the

M-by-N unknown mixing matrix. ICA tries to estimate the N-by-M unmixing

matrix, W, and approximates the independent sources, Y, as follows:

Y = WX (2.2)

Note that, this estimation process of unmixing matrix W is typically performed

iteratively by updating W based on an objective function in order to optimize the

independence among the source components.

FMRI data is four-dimensional (4D) with a series of three-dimensional (3D) ma-

trices collected over time. The MRI signal from the brain at each of these time
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points are sampled over voxels, which de�nes the discrete grid of volume-related

elements. For a given time point, the entries from the data matrix represent the

magnitudes of the measured MRI signals for the corresponding voxels. These sig-

nals are considered as a linear contribution of signals generated by various biologi-

cal processes, many of which are assumed to be related to speci�c functional brain

activities. During ICA approach, the spatial activation maps and corresponding

time courses related to the activities of the function.

Many ICA algorithms have been developed and implemented including Infomax,

fast ICA, eigen-value decomposition (EVD), joint diagonalization of eigen-matrices

(JADE) and algorithm for multiple unknown signals extraction (AMUSE) (Bell

and Sejnowski, 1995; Cardoso and Souloumiac, 1993; Georgiev and Cichocki, 2001;

Hyvärinen and Oja, 1997; Tong et al., 1990). Among these algorithms Infomax

(Amari, 1998; Bell and Sejnowski, 1995) is a popular choice for neuroimaging data

given its high reliability (Correa et al., 2007). It is possible to perform ICA

and estimate independent signals over space (special ICA or SICA) or over time

(temporal ICA or TICA), as the fMRI data contain both spatial and temporal

information (Calhoun et al., 2001d). However, in practice, spatial ICA is the

most common choice for fMRI data. Figure 2.1 and Figure 2.2 show illustrations

of SICA and TICA.
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Figure 2.1: Illustration of two types of ICA on fMRI data: (a) Spatial ICA
(SICA) and (b) Temporal ICA (TIC) (Calhoun et al., 2001d).

Figure 2.2: Spatial ICA for fMRI data. Data matrix, is decomposed into
independent sources that are rows of matrix and corresponding time-courses
that are columns of the mixing matrix, A (Ylipaavalniemi and Vigário, 2008).

2.2.1 Group Independent Component Analysis (GICA)

Application of ICA analysis can also be executed at the group level, by �nding

the activation maps containing voxels with higher correlation among them, but

show maximum independence with all other set of voxels. See Figure 2.3 for an
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illustration of GICA approach. In GICA approach, �rst principle component anal-

ysis (PCA) is applied to reduce the dimensionality of each subject's data matrix,

which reduces the computational burden for ICA (McKeown et al., 2002). Then,

all of these reduced matrices are stacked, and another PCA is performed prior

to applying ICA. Finally, ICA is performed on the data to estimate independent

component commonly found among all the subjects. The subject-speci�c spatial

maps (SMs) and time-courses (TCs) can be obtained from the aggregate data using

a back-reconstruction technique as shown in Figure 2.4 (Erhardt et al., 2011b).

More details of GICA approach can be found in (Calhoun et al., 2001c).

Figure 2.3: An illustration of Group ICA approach (Cole et al., 2010).

Figure 2.4: Forward and backward estimation for ICA analysis (Calhoun
et al., 2009b).
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2.2.2 Parallel Independent Component Analysis

ICA can also be extended to examine the combined information from mul-

tiple modalities by jointly analyzing and estimating the numerical data. One of

the data fusion approaches is parallel-ICA, which �nds the hidden factors from

both modalities and the correlations between them, by estimating the indepen-

dent components of both modalities as well as their correlation (Liu et al., 2009).

To date parallel ICA has been applied in fusion of various modalities including

fMRI-electroencephalography (EEG) (Liu and Calhoun, 2007; Wu et al., 2010),

fMRI-Gene (SNP) (Liu et al., 2009; Meda et al., 2010) and gray matter - Gene

(SNP) (Jamadar et al., 2011; Jagannathan et al., 2010).

Parallel-ICA assumes that the data set from two modalities are mixed in a similar

manner (but not identical). The main focus of parallel ICA is to �nd individual

linked components and their correlations.

2.3 Functional Network Connectivity (FNC)

In section 1.1, we have brie�y discussed about FC of the brain. It has been

shown that a set of distant and functionally specialized brain regions interact and

exchange information while they perform a certain cognitive task. This set of

regions demonstrates strong FC among them, and collectively form a functional

network of the brain. This type of connectivity among brain's functional net-

works is known as FNC, which is indeed a higher level of FC (Jafri et al., 2008).

Figure 2.5 illustrates an example of functional network connectivity among di�er-

ent brain networks. FNC quanti�es the statistical dependencies among functional

brain networks, which is commonly measured as the pairwise correlations among
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the independent brain networks (Arbabshirani et al., 2013a; Jafri et al., 2008).

A functional network can be comprised of several brain regions that are anatom-

ically distant. Both within-network FNC (de�ned as the connectivity within the

functionally specialized brain regions or components that belong to the same func-

tional network) and among-network FNC (de�ned as the connectivity among the

brain regions or components that belong to di�erent functional networks) can be

observed.

Figure 2.5: Example of functional network connectivity among di�erent brain
regions.The FDR threshold (q< 0.05) is depicted on the color bar with red

arrows.
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2.3.1 Functional Specialization and Integration

There are two fundamental principles to explain the functional organization

of the brain: functional specialization and functional integration (Friston, 2011;

Tononi et al., 1998). The term functional specialization implies that a cortical

region is responsible for and specialized for some aspects of perceptual or motor

processing, where the specialization can be anatomically separated within the

cortex. The cells with common functional properties are grouped together to form

a functionally specialized region. Since the beginning of anatomical theories of the

brain, researchers had been focusing on identifying particular brain regions related

to speci�c function. After so many inconclusive studies and experiments, scientists

have only begun to successfully separate and understand localized functions of the

brain. In case of functional integration, these specialized functional areas unite

and integrate to perform higher-level cognitive and behavioral tasks. Note that,

functional specialization and integration are complementary to each other, where

they are only meaningful given the context of each other.

2.3.2 Resting-state Connectivity

Resting-state BOLD studies have proven useful recently to investigate abnormal

functional connectivity, as the absence of a speci�c task complements task-speci�c

study by measuring intrinsic functional brain organization without any di�erential

behavioral performance and task activity between diagnostic groups, and thus

makes it easier for cognitively compromised patients to participate in such studies.

Resting-state fMRI connectivity has been used to identify di�erences in multiple

patient groups including SZ (Calhoun et al., 2009b; Sako§lu et al., 2010; Calhoun
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et al., 2011), BP (Calhoun et al., 2011), Alzheimer's disease (Greicius et al.,

2004; Sorg et al., 2007), ASD (Starck et al., 2013), and others.

Recent studies showed consistent existence of most of the resting-state networks

(RSNs), also known as ICNs, not only during the resting-state but also during

performance of a task (Calhoun et al., 2008a; Harrison et al., 2008; Laird et al.,

2009; Smith et al., 2009). Also high reproducibility and reliability of the RSNs

have been demonstrated in several recent resting-state studies (Allen et al., 2011;

Franco et al., 2009). The absence of any speci�c task in rsfMRI studies makes

it less likely to show variability across di�erent data acquisition sites, allowing

reproducibility of the �ndings at di�erent laboratories. This also allows a wider

range of subjects including healthy controls, patients and young children to be

examined, and make it possible to study multiple cortical systems from one dataset

(Fox and Greicius, 2010). Moreover, connectivity maps with higher accuracy can

be identi�ed using rsfMRI data compared to task-based fMRI data (Xiong et al.,

1999).

The signi�cance of RSNs can be linked to the fact that the topography of these

networks closely corresponds to responses that are stimulated by a variety of sen-

sory, visual, motor and cognitive tasks. These RSNs are present even during eyes-

open or eyes-closed conditions, during sleep or drowsiness and general anesthesia

(Fukunaga et al., 2006; Vincent et al., 2007). Given the evidence of robustness

of these resting-state spontaneous �uctuations, it has been suggested that this

phenomenon related to intrinsic neuronal activity is a fundamental property to

maintain the functional integrity of the brain. However, the exact functions of

these RSNs are still not fully understood.

DMN is one of the most widely studied RSNs, which is de�ned by its unique



Chapter 2. Background 21

property to be more active at rest than during performance of a speci�c task.

Greicius and colleagues (Greicius et al., 2003) �rst identi�ed the DMN using

rsfMRI data, which was than successfully identi�ed and replicated in many other

studies using di�erent analysis methods.

2.3.3 Static and Dynamic Connectivity

Brain connectivity has become a major research area in both clinical and

cognitive neuroimaging. As discussed in section 1.1, di�erent analytic tools such

as seed-based methods or data-driven approaches have been applied to resting-

state fMRI data to describe brain functional connectivity. Until recently, most

functional connectivity approaches characterized the interaction among di�erent

brain regions in terms of stationarity by measuring the temporal correlation or

global data decomposition. Such static-like approaches collapsed the data across

their temporal domain, and ignored any transient and non-stationary nature of the

interactions among these brain regions. This stationarity approach restricts our

ability to fully comprehend the spatio-temporal dynamics of the interconnected

brain regions in terms of transient resource allocations as well as the dependencies

of connectivity in the brain across the temporal domain. Such dynamics of the

connectivity can occur at both short and long temporal scales. Therefore, to get a

more dynamic understanding of functional connectivity, it is necessary to obtain a

broader view on spatio-temporal non-stationarity, in addition to linking hemody-

namic measurements to electrophysiological activities. Recent studies showed that

connectivity dynamics could capture uncontrolled but reoccurring patterns of in-

teractions among ICNs during task or at rest (Sako§lu et al., 2010; Calhoun et al.,
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2014). A recent approach for studying dynamic connectivity is the sliding-window

correlation technique (Allen et al., 2012a; Hutchison et al., 2013b).

2.4 Classi�cation of Mental Disorders

Advances in neuroimaging technologies in the past two decades have opened

a new scope into the structure and function of the healthy human brain as well as

enlightening many brain disorders such as SZ. SZ is a devastating, chronic hetero-

geneous disease, which is usually characterized by disintegration in perception of

reality, cognitive problems and chronic course with lasting impairment (Heinrichs

and Zakzanis, 1998). Multiple structural and functional brain abnormalities are

widely reported in patients with SZ (Calhoun et al., 2009a; Shenton et al., 2001).

Most neuroimaging-based studies of SZ focus on showing abnormalities of some

features (structural or functional) in a patient group by comparing them with a

control group. While many of these �ndings are statistically signi�cant in the

average sense, discrimination ability of those features is questionable for classi�-

cation purposes on a individual basis. Since classi�cation provides information for

each individual subject, it is considered a much harder task than reporting group

di�erences. In the case of classifying SZ patients, a small number of training sam-

ples (subjects) and high dimensional data make it a challenging task to design an

accurate, robust classi�er for such a heterogeneous brain disorder.

There is an increasing interest in designing robust and accurate techniques to

classify subjects into groups using functional imaging data. For example, previous

studies showed the use of functional connectivity-based features for classi�cation

of SZ and BP patients at the individual level (Shen et al., 2010; Arbabshirani

et al., 2013b; Su et al., 2013). Shen et al. (2010) used an atlas-based method to
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extract mean time-courses of 116 brain regions in the resting-state for both HC

and SZ subjects. The correlation between these time-courses made the feature

vector for each subject. By applying feature selection and dimensionality reduction

methods, they reduced the dimensionality down to three where they classi�ed

patients from controls with a high accuracy. (Shinkareva et al., 2006) proposed a

classi�cation approach for SZ patients based on fMRI time-series from the voxels

showing between-group temporal dissimilarity using leave-one-out cross-validation

method. Another study combined both structural and functional MRI data for

classi�cation of SZ patients and created a training set by projecting the high

dimensional data onto a lower dimensional space using the PCA, achieving a high

classi�cation accuracy (Ford et al., 2002a). A recent study performed automatic

classi�cation of SZ using both structural and functional MRI features, and showed

that better classi�cation accuracy could be achieved by using both MRI features,

compared to using only a single feature (Silva et al., 2014). However, only a

few studies have focused on classi�cation analyses of both SZ and BP patients

(Calhoun et al., 2008b; Arribas et al., 2010; Costafreda et al., 2011). In (Calhoun

et al., 2008b), temporal lobe and default mode networks were used as features using

a leave-one-out cross-validation framework, and classi�ed SZ and BP patients at

individual level. In another classi�cation study (Costafreda et al., 2011), a support

vector machine (SVM) was applied on the verbal �uency task-based patterns of

regional brain responses to identify SZ and BP patients at the individual level.

To our best knowledge, no such study has provided a detailed comparison of both

static and dynamic FNC features in a cross-validated classi�cation analysis.
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2.5 Imaging Genetics

Recently a growing interest has been emerged in studying the role of genetic

variation in brain anatomy and function (Scharinger et al., 2010). As a recent

emerging �eld, imaging genetic studies aim to identify and characterize the ge-

netic variants (eg. SNP) that may in�uence the brain features as measured by

functional (eg. fMRI) or structural (eg. sMRI) neuroimaging techniques. It has

now become possible to examine the combined information from multiple modal-

ities by jointly analyzing and estimating the multimodal data using data fusion

approaches. Findings from these imaging genetics studies have shed more light

on the biological mechanisms involved in cognition and emotion. Mapping the

in�uence of certain polymorphisms for brain activation can ultimately help us

understand more about the underlying characteristics of di�erent brain disorders.

2.5.1 Single Nucleotide Polymorphism

The fundamental structural units of the gene are nucleotide. The four nucleobases

are guanine (G), Adenine (A), Thymine (T) and Cytosine (C). A single nucleotide

can show variation in deoxyribonucleic acid (DNA) sequences among the members

of a species. This type of genetic mutation is known as single nucleotide, and

called an allele. The more frequently observed from of nucleotide or base pair in

a population is denoted as the major allele. The more frequently observed form

of nucleotide or base pain in a population is denoted as major allele, whereas the

alternative form is termed as minor allele. DNA sequences can display genetic

variation among members of a species at a single nucleotide known as SNP, as

shown in Figure 2.6. In general, SNP is referred to as the genetic variation in

nucleotide where the minor allele frequency should be greater than 1%, which
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leads to at least 10 million common SNPs out of the 3 billion bases for the whole

human genome (Gibbs et al., 2003).

Figure 2.6: Illustration of a SNP with C/T polymorphism(from Wikipedia).

SNPs can occur at both coding and non-coding regions of the DNA, with a variety

of impacts at the phenotypic level. The structure or functions of the encoded

proteins can be a�ected by polymorphisms occurring in coding regions, which

may further lead to disease (Ferreira et al., 2011). However, the majority of the

SNPs fall into non-coding regions.



CHAPTER 3

TIME-VARYING CONNECTIVITY OF

TYPICAL DEVELOPMENT AND AUTISTIC

TRAITS

3.1 Motivation

A number of developmental disorders, including ASD, have demonstrated abnor-

mal FC (Uddin et al., 2013b). Further, atypical development of neural interac-

tions has been considered a major basis in theoretical models of neuropsychiatric

disorders (Geschwind and Levitt, 2007). Evidence suggests that short-range or

intra-network FC is more dominant during infancy (Fransson et al., 2007; Gao

et al., 2011) and decreases with age during childhood and adolescence, with long-

range or inter-network connectivity becoming more dominant in early adulthood

(Dosenbach et al., 2010; Fair et al., 2009). The majority of existing models ap-

plied to the connectome operate under the assumption that the brain's functional

architecture is static over a period of multiple minutes. This has been shown to

26
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be a major limitation, as important transient patterns of connectivity could be

overlooked (Calhoun et al., 2014). To our knowledge, no study has provided a

baseline to understand how the brain's dynamic FC (i.e. chronnectivity) matures

with age during childhood, and compared this baseline with the dysfunctional

chronnectopathy of emerging mental illness. In this work, we address these limi-

tations by performing chronnectivity analyses of typical development and autistic

traits.

Over the past decade, various in vivo techniques, including fMRI, have been in-

creasingly used to study patterns of functional connectivity in the developing brain,

particularly during rest (rs-fMRI). A wide array of methods has been used to cat-

egorize the brain into functionally interconnected parcels, or ICNs, such as the

DMN. Most recently, chronnectomic approaches relaxing traditional stationarity

assumptions aim to more accurately model the brain's ICNs, avoiding the omission

of transient, yet potentially relevant, patterns of functional connectivity (Allen

et al., 2012a). dFNC has already been shown to o�er unique chronnectomic in-

formation (Allen et al., 2012a; Hutchison and Morton, 2015) and is sensitive to

neurobiological features of normal brain development (Hutchison and Morton,

2015) and psychopathology (Rashid et al., 2014).

ASD is a heterogeneous neurodevelopmental condition, with central features of

impairment in reciprocal social interactions, as well as restricted, stereotypical be-

haviors. With an estimated prevalence between 1-3%, ASD is generally recognized

in early childhood and is accompanied by severe burden, both for the a�ected in-

dividual as well as for caregivers (Baxter et al., 2015). Despite the presence of an

extensive and expanding literature, the neurobiological etiology of autism spec-

trum disorder remains elusive. Along with most psychiatric disorders, ASD has

traditionally been conceptualized categorically, but is increasingly recognized as
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the severe end of a continuum of traits that extend into the general population

(Constantino and Todd, 2003). While not strictly pathological, such variation in

autistic traits in the general population serves as an important dimensional behav-

ioral phenotype for clinical autism. Thus, imaging studies using this phenotype

of quantitative social impairment can complement case-control studies to better

understand the underlying neurobiology of ASD. Irrespective of the classi�cation

approach, one of the prominent hypotheses on the origins of ASD is an aberrant

development of neuronal connections throughout the brain [i.e., "developmental

disconnection syndrome", (Geschwind and Levitt, 2007)].

Within this context, we utilized resting-state fMRI scans from a large, population-

based cohort study of children (Jaddoe et al., 2012; White et al., 2013), to search

for both underlying maturational and sex-speci�c properties of chronnectivity,

and an underlying neurobiological substrate of ASD traits in the general popu-

lation. We hypothesized the presence of dynamic connectivity states in children

that are similar to those already reported in adults, given many static connectiv-

ity networks are present at a young age (Gao et al., 2011). Speci�cally, a mean,

'static-like' state, a hypo-connected state, and a hyper-connected state that have

all previously been observed in dynamic connectivity studies of adults. Further

we hypothesized age-related correlates of dynamic connectivity to resemble adult-

like patterns, where increasing age is associated with states previously reported

in adults. Lastly, as previous work has shown aberrant connectivity dynamics in

psychopathology, we hypothesize to see an association between aberrant dynamic

connectivity and features of autism. As the static connectivity literature has un-

covered widespread patterns of both hyper- and hypo-connectivity in ASD, we

hypothesize multiple regions throughout the brain to associate with autistic traits

along a continuum. In particular, given numerous reports of the DMN have shown
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attenuated within- and between network connectivity in ASD, we hypothesize dy-

namic (hypo-)connectivity in this network to be of particular relevance. Results

showed that multiple ICNs that are widely recognized in studies of adults (e.g.,

sub-cortical, default-mode and sensorimotor), are also identi�ed in this large group

of young children. Results also reveal that the dynamic properties of connectiv-

ity vary with both age and sex. Speci�cally, stronger inter-network connectivity

was associated with age in the more mature, "adult-like" dFNC states; states in

which older children also demonstrated longer MDT (average time within a given

state) compared to younger children. Interestingly, children with more autistic

traits showed higher MDT in a globally disconnected state, which resembled the

connectivity dynamics observed in younger children. These results show a link be-

tween the typical and atypical developmental trajectories as captured by dynamic

FNC, where individuals with more autistic traits show both a delayed and muted

transition to spending time in the globally modularized or more heavily connected

states. Taken together, the present study provides a conceptual framework to

support further investigations of typical and atypical brain development in the

general population using novel neuroimaging methodology and clinical insight.

3.2 Method

3.2.1 Participants

The current study is embedded in the Generation R Study, which is a large,

population-based birth cohort in Rotterdam, the Netherlands (Jaddoe et al., 2012).

One thousand seventy children, ages 6-to-10 years, were scanned between Septem-

ber 2009 and July 2013 as part of a sub-study within the Generation R Study
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(White et al., 2013). General exclusion criteria for the current study include se-

vere motor or sensory disorders (deafness or blindness), neurological disorders,

moderate to severe head injuries with loss of consciousness, claustrophobia, and

contraindications to MRI. Raw fMRI data from 964 subjects were available for

our study, and after excluding children with bad data (e.g., motion, for details

see below) 774 datasets were available for statistical analysis. Informed consent

was obtained from the parents, and all procedures were approved by the Medi-

cal Ethics Committee of the Erasmus Medical Center. For more information on

participant see Tables A.6 and A.7).
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Figure 3.1: Graphical depiction of the analysis method and key �ndings.

3.2.2 Autistic Traits and Autism Spectrum Disorder

The Social Responsiveness Scale (SRS) was administered when children were

roughly age 6 years (range: 4.89-8.90 years) to measure autistic traits based on
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parental observation during the last six months (Constantino et al., 2013). The

Social Responsiveness Scale provides a valid, quantitative measure of subclinical

and clinical autistic traits, where higher scores indicate more symptoms related

to ASD (Constantino et al., 2013). We utilized the total score derived from the

abbreviated, 18-item short-form of the scale, which shows correlates of 0.93 and

higher with the full scale in three di�erent large studies (Blanken et al., 2015).

Cuto�s used in sensitivity analyses (described below) were based on recommenda-

tions for screening in population-based settings (consistent with weighted scores

of 1.078 for boys and 1.000 for girls) (Constantino et al., 2013).

3.2.3 Autism Spectrum Disorder diagnoses

At approximately age 7 years, children who scored in the top 15th percentile on

the Child Behavior Checklist (CBCL)-1.5-5 total score and those who scored in the

top 2nd percentile on the Pervasive Developmental Problems sub-scale underwent

a screening procedure for ASD using the Social Communication Questionnaire

(SCQ), a 40-item parent-reported screening instrument to assess characteristic

autistic behavior. SCQ scores ≥15 are considered positive for screening (Berument

et al., 1999). We approached the general practitioners of children who scored

screen-positive on the SRS, SCQ or for whom the mother reported a diagnosis of

ASD in order to con�rm this diagnosis with medical records. In the Netherlands,

the general practitioner holds the central medical records, including information

on treatment by (medical) specialists. In this sample, 22 children with usable MRI

data also had a con�rmed diagnosis of ASD.



Chapter 3. Time-varying Connectivity 33

3.2.4 MRI Data Acquisition

Magnetic resonance imaging data were acquired on a 3 Tesla scanner (Discovery

750, General Electric, Milwaukee, WI) using a standard 8-channel, receive-only

head coil. A three-plane localizer was run �rst and used to position all subsequent

scans. Structural T1-weighted images were acquired using a fast spoiled gradient-

recalled echo (FSPGR) sequence (TR = 10.3 ms, TE = 4.2 ms, TI = 350 ms,

NEX = 1, �ip angle = 16o, matrix = 256 × 256, �eld of view (FOV) = 230.4 mm,

slice thickness = 0.9mm). Echo planar imaging was used for the rs-fMRI session

with the following parameters: TR = 2000 ms, TE = 30 ms, �ip angle = 85 o,

matrix = 64 × 64, FOV = 230 mm × 230 mm, slice thickness = 4 mm. In order

to determine the number of TRs necessary for functional connectivity analyses,

early acquisitions acquired 250 TRs (acquisition time = 8min 20sec). After it was

determined fewer TRs were required for these analyses, the number of TRs was

reduced to 160 (acquisition time = 5min 20sec) (White et al., 2014). Children

were instructed to stay awake and keep their eyes closed during the rs-fMRI scan.

Further details on the entire scanning protocol can be found elsewhere (White

et al., 2013).

3.2.5 Image Preprocessing

Data preprocessing was performed using a combination of toolboxes (AFNI,

http://afni.nimh.nih.gov, SPM, http://www.�l.ion.ucl.ac.uk/spm, GIFT,

http://mialab.mrn.org/software/gift), and custom scripts were written in Mat-

lab. As mentioned above, some scans were collected with 250 volumes, which were

�rst trimmed at the end of the acquisition to match the majority of scans with 160

volumes. We performed rigid body motion correction using the INRIAlign (Freire



Chapter 3. Time-varying Connectivity 34

and Mangin, 2001) toolbox in SPM to correct for subject head motion followed

by slice-timing correction to account for timing di�erences in slice acquisition.

Then the fMRI data were despiked using AFNI's 3dDespike algorithm to miti-

gate the impact of outliers. The fMRI data were subsequently nonlinearly warped

to a Montreal Neurological Institute (MNI) template (http://www.mni.mcgill.ca)

and resampled to 3 mm3 isotropic voxels. The data were then smoothed with a

Gaussian kernel to 5 mm full width at half maximum (FWHM). Each voxel TC

was variance normalized prior to performing GICA as this has shown to better

decompose subcortical sources in addition to cortical networks. In order to limit

the impact of severe head motion, we excluded subjects' data with a maximum

translation of > 5 mm and/or with signal-to-noise �uctuation ratio (SFNR) <200

from our analyses, resulting in a �nal dataset with 774 subjects.

3.2.6 Group Independent Component Analysis (ICA)

After preprocessing the data, functional data were analyzed using spatial GICA

framework as implemented in the GIFT software (Calhoun et al., 2001b; Cal-

houn and Adali, 2012). Spatial ICA decomposes the subject data into linear

mixtures of spatially independent components that exhibit a unique time TC pro-

�le. A subject-speci�c data reduction step was �rst used to reduce 160 time point

data into 100 directions of maximal variability using principal component analysis.

Then subject-reduced data were concatenated across time and a group data PCA

step reduced this matrix further into 100 components along directions of maxi-

mal group variability. One hundred independent components were obtained from

the group PCA reduced matrix using the infomax algorithm (Bell and Sejnowski,

1995). To ensure stability of estimation, we repeated the ICA algorithm 20 times
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in ICASSO (http://www.cis.hut.�/projects/ica/icasso), and aggregated SMs were

estimated as the modes of component clusters (Himberg et al., 2004). Subject

speci�c SMs and TCs were obtained using the spatiotemporal regression back re-

construction approach (Calhoun et al., 2001c; Erhardt et al., 2011b) implemented

in GIFT software.

3.2.7 Post-ICA processing

Subject speci�c SMs and TCs underwent post-processing as described in our earlier

work (Allen et al., 2012a). Brie�y, we obtained one sample t-test maps for each

SM across all subjects and thresholded these maps to obtain clusters of voxels

with higher intensities for that component; we also computed mean power spectra

of the corresponding TCs.

The criteria for identifying independent components as ICNs were implemented in

a semi-automated framework. We identi�ed a subset of the independent compo-

nents to be classi�ed as ICNs (as opposed to physiological artifacts and motion-

related noisy components) in two steps. First, we used AFNI software to automati-

cally extract the peak MNI coordinates of each component and their corresponding

MNI regions. Next, we inspected the aggregate SMs and average power spectra of

each of the independent components (Figure 3.2 and Figure A.9). Three viewers

were provided with the MNI regions as extracted by AFNI, and they rated the

components from 0 (de�nite artifact) to 1 (de�nite ICN) based on expectations

that ICNs should exhibit cluster of voxels with higher intensities in gray matter,

low spatial overlap with known vascular, ventricular, motion, and susceptibility ar-

tifacts, and TCs dominated by low frequency �uctuations (Cordes et al., 2001). To

facilitate evaluation, power spectra of the components were characterized with two
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previously used metrics to classify components (Robinson et al., 2009): dynamic

range, de�ned by the di�erence between the peak power and minimum power at

frequencies to the right of the peak, and low frequency to high frequency power

ratio, the ratio of the integral of spectral power below 0.10 Hz to the integral of

power between 0.15 and 0.25 Hz ( Figure A.9). Combined votes from the three

raters were used to separate components into three broad classes: artifact (score

equal to zero), mixed (score between zero and three), and RSN (score of three

or greater and no votes equal to zero). This selection procedure resulted in 38

ICNs out of the 100 independent components obtained. Figures highlighting the

dynamic range (Figure A.9 ) and low frequency to high frequency power ratio

(Figure A.10 ) are provided in Appendix A.

The subject-speci�c TCs corresponding to the ICNs selected from the back-reconstructed

data were detrended, orthogonalized with respect to estimated subject motion pa-

rameters, and then despiked. The despiking procedure involved detecting spikes

as determined by AFNI's 3dDespike algorithm and replacing spikes by values ob-

tained from third order spline �t to neighboring clean portions of the data. The

despiking process reduces the impact/ bias of outliers on subsequent FNC mea-

sures (see Supplemental Fig. 1 in (Allen et al., 2012a)). Lastly, single-subject

post-ICA motion parameters regression from time-series at the voxel level was

performed. This step, in combination with despiking and the ability of GICA to

remove signals attributable to noise and artifact (including motion) ensures the

data are suitable for statistical analysis.
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Figure 3.2: Non-artifactual intrinsic connectivity networks (ICNs).

3.2.8 Static Functional Network Connectivity (sFNC)

We computed sFNC, de�ned as pairwise correlation between ICN TCs, as a mea-

sure of average connectivity among di�erent ICNs during the scan duration. In

this work, the FNC computed using the whole ICN TCs is referred to as sta-

tionary or sFNC. Since correlation among brain networks is primarily shown

to be driven by low frequency �uctuations in BOLD fMRI data (Cordes et al.,

2001), we band pass �ltered the processed ICN TCs between [0.01 � 0.15 Hz us-

ing 5th order Butterworth �lter prior to computing FNC between ICNs. The
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mean sFNC matrix was computed over subjects. For partitioning sFNC matrix

based on modularity, we followed our prior work (Allen et al., 2012a) to iden-

tify the main modules (sub-cortical, auditory, visual, sensorimotor, cognitive con-

trol, DMN and cerebellum), and using those same partitioned modules as our

main modules, rather than partitioning the frontal and attention-networks as seen

in some of the prior published work. For organization of the ICNs inside these

main modules, we applied the Louvain algorithm of the brain connectivity tool-

box (https://sites.google.com/site/bctnet), and arranged the ICN components ac-

cordingly. To address the stochastic nature of the Louvain algorithm, we ran the

Louvain algorithm 100 times and compared the number of times we got the same

arrangement of ICNs. Finally, we used the arrangement that occurred maximum

number of times. The rows of sFNC matrix were partitioned into sub-cortical

(SC), auditory (AUD), visual (VIS), sensorimotor (SM), a broad set of regions

involved in cognitive control (CC) and attention, DMN regions, and cerebellar

(CB) components as shown in Figure A.1.

3.2.9 Dynamic Functional Network Connectivity (dFNC)

As recent studies both in animals and humans have highlighted the nonstationary

nature of functional connectivity in BOLD fMRI data (Hutchison et al., 2013b), we

sought to determine whether the observed sFNC di�erences were primarily driven

by certain connectivity con�gurations (Hutchison et al., 2013b). dFNC between

two ICA TCs was computed using a sliding window approach with a window size of

22 TR (44 s) in steps of 1 TR (Figure 3.1). The window constituted a rectangular

window of 22 time points convolved with Gaussian of sigma 3 TRs to obtain

tapering along the edges (Allen et al., 2012a). Since estimation of covariance using
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time series of shorter length can be noisy, we estimated covariance from regularized

inverse covariance matrix (ICOV) (Smith et al., 2011; Varoquaux et al., 2010)

using the graphical LASSO framework (Friedman et al., 2008). We imposed an

additional L1 norm constraint on the inverse covariance matrix to enforce sparsity.

The regularization parameter was optimized for each subject by evaluating the

log-likelihood of unseen data of the subject in a cross-validation framework. After

computing dFNC values for each subject, these covariance values were Fisher-Z

transformed to stabilize variance prior to further analysis.

3.2.10 Clustering and Dynamic States Detection

Based on our observation that patterns of dFNC connectivity reoccur within sub-

jects across time and also across subjects, we used a k-means algorithm to clus-

ter these dFNC windows, subdividing the data into a set of separate clusters so

as to maximize the correlation within a cluster to the cluster centroid. Instead

of clustering all of the dFNC windows across all subjects, initial clustering was

performed on a subset of windows from each subject, called subject exemplars

hereafter, corresponding to windows of maximal variability in correlation across

component pairs. To obtain the exemplars (see Figure A.11), we �rst computed

variance of dynamic connectivity across all pairs at each window. We then selected

windows corresponding to local maxima in this variance TC. The optimal number

of centroid states was estimated using the elbow criterion, de�ned as the ratio of

within cluster to between cluster distances (see Appendix A.4 and Figure A.8

for detailed information). A k of 4 was obtained using this method in a search

window of k from 2 to 9. The correlation distance metric was chosen as it is more

sensitive to the connectivity pattern irrespective of magnitude.We repeated the
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clustering method using di�erent distance functions (cosine and L1-norm, rather

than the correlation function) and also found very similar results. These sets of

initial group centroids were used as a starting point to cluster all of the dFNC

windows from all subjects. Information on validation of the clustering approach

with respect to a null model can be found in Appendix A.7 and Figure A.12 and

Figure A.13.

Also, summary measures such as MDT and FT were computed from the state

transition vector. Using the following equations 3.1 and 3.4, we computed MDT

and FT for each subject:

MDT state(k) = mean(end_t− start_t) (3.1)

where,

startt = count(di�erence(state_vectorsubject(i), state) == 1) (3.2)

endt = count(di�erence(state_vectorsubject(i), state) == −1) (3.3)

FT state(k) =
sum(state_vectorsubject(i)) == state

Number of Windows
(3.4)

The pseudo code for computing MDT using equation 3.1 is as follows:

For each subject i and for each dynamic state k

1. Compute start_t by �rst taking the di�erence between the adjacent ele-

ments of the state vector for that particular subject, and then by �nding the

di�erences that are equal to 1.
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2. Compute end_t by �rst taking the di�erence between the adjacent elements

of the state vector for that particular subject, and then by �nding the dif-

ferences that are equal to -1.

3. If the �rst value of the state vector is equal to the current state k, store

start_t as [0; start_t].

4. If the last value of the state vector is equal to the current state k, store

end_t as [end_t, Number_of_windows].

5. subtract the start_t vector from the end_t vector, and take the mean of the

resulting vector to compute MDT of that subject on that particular state.

6. Repeat step 1 to step 5 for all subjects i and all states k.

3.2.11 Statistical Analyses

Statistical analyses were carried out in Matlab (version R2011b) using the statistics

toolbox and linear model class. Multiple linear regression was used to examine

associations between connectivity metrics and explanatory variables (i.e., age, sex,

and autistic traits). Two separate models were used to investigate associations

with sFNC, dFNC and summary metrics from dFNC such as MDT and FT: �rst,

a model where age and sex were entered as independent (predictor) variables and

main e�ects for each were examined, and a second model where autistic traits

(SRS) was entered as the independent variable and age and sex were added as

covariates. All of the results reported correspond to a false discovery rate multiple

comparison correction threshold p < 0.05.

Note that, we also started with a full model that included interaction terms (age-

sex and SRS-age and SRS-sex), and the backward model selection led us to a
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�rst-order model. In the backward model selection procedure, unimportant or less

signi�cant variables are eliminated one at a time. The process starts from the full

model, and isolates the least important predictor left in the model, and checks

its signi�cance. We used the Akaike information criterion (AIC), a penalized-

likelihood criteria of the relative goodness-of-�t of a statistical model to the ob-

served data. A 0.10 signi�cant level has been used for this strategy while dropping

the less signi�cant variables. Final results were corrected for false discovery rate

(FDR) at p <0.05 level. We have used step( ) function to employ this approach.

After backward model selection, the following models were used for investigating

associations with sFNC matrices:

Model1sFNC : sFNC ∼ β0 + β1agei + β2sexi + εi (3.5)

Model2sFNC : sFNC ∼ β0 + β1SRSi + β2agei + β3sexi + εi (3.6)

For dFNC analyses, we computed a subject median (computed element-wise) for

each subdivision from the subject windows that were assigned to that subdivision

as a representative pattern of connectivity of the subject for that state. To inves-

tigate if the observed e�ects of age, sex and SRS on sFNC are primarily driven

by certain dynamic FNC states, we used these subject medians for each state, as

well as the summary matrices for each state, and evaluated the associations using

two separate models as mentioned above, and are adapted for the dFNC below:

Model3dFNC : dFNC
state(k)
i ∼ β0 + β1agei + β2sexi + εi (3.7)

Model4dFNC : dFNC
state(k)
i ∼ β0 + β1SRSi + β2agei + β3sexi + εi (3.8)
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Similar to sFNCs, we started with a full model that included interaction terms

(age-sex, age-SRS and sex-SRS), and the backward model selection led us to a

�rst-order model. Pair-wise associations from the above mentioned models are

depicted in connectivity matrices and in connectograms (Langen et al., 2015).

The following models were used for investigating associations with summary met-

rics of dFNC (MDT and FT):

Model5MDT :MDTi ∼ β0 + β1agei + β2sexi + εi (3.9)

Model6MDT :MDTi ∼ β0 + β1SRSi + β2agei + β3sexi + εi (3.10)

Model7FT : FTi ∼ β0 + β1agei + β2sexi + εi (3.11)

Model8FT : FTi ∼ β0 + β1SRSi + β2agei + β3sexi + εi (3.12)

In order to ensure linear terms were the best �t for the data, quadratic and cubic

age terms were also tested, however model �ts were not improved when these higher

order terms were added. This has also been evaluated using several residual plots,

which showed linear trend of the data.

Several sensitivity analyses were run in order to ensure results were not in�uenced

various confounding factors, and are reported in Appendix A.3. First, to ensure

behavioral problems did not in�uence age- and sex-related associations, analyses

were run where children with high levels of behavioral problems were excluded.

Similarly, to test whether continuous associations between autistic traits and con-

nectivity were truly along a continuum and not driven by extreme cases, analyses

were run after excluding children scoring above the screening threshold on the SRS

and those with a clinical ASD diagnosis. In order to disentangle the e�ects of SRS
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and age, an SRS-by-age interaction term was added to MDT and FT models for the

sensitivity analysis. Further, for SRS models examining MDT and FT, the sam-

ple was re�ned into an age-restricted sample (ages 8-to-9 years only) to minimize

the residual confounding e�ects of age. Lastly, to ensure motion-related artifacts

were not responsible for any age-related or SRS-related associations, children with

more than 3mm maximum translation during rsfMRI acquisition were dropped

from analyses, and common motion parameters (e.g., frame-wise displacement)

were added to the models. Note that, the motion parameters were only added to

the models for the sensitivity analyses as presented in Appendix A.3.

3.3 Results

3.3.1 Characterizing static and dynamic functional network

connectivity in children

Our �rst goal was to characterize the connectivity in typical development through

age associations in a large sample of 774 school-age children. This was accom-

plished by evaluating the properties of both static and dynamic connectivity (Fig-

ure 3.1(A-D)) of the developing brain using 38 ICNs (extracted from a 100 compo-

nent group independent component analysis (Calhoun et al., 2001b)) grouped into

brain networks according to their anatomical and functional properties (Figure

3.2). The static FNC of the developing brain showed similar patterns as previous

large-scale analyses of adults (Allen et al., 2012a; Damaraju et al., 2014a) for both

intra- and inter-network connectivity. The default mode network was strongly

connected within itself, and less connected to other brain networks (Figure A.1).
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Figure 3.3: Dynamic functional network connectivity (FNC) states.The total
number and percentage of occurrences is listed above each centroid.

Dynamic connectivity analyses (Figure 3.3) identi�ed two modularized (i.e., bear-

ing resemblance to previously reported static connectivity con�gurations): State-

1: globally modularized, static-like, i.e., FNCs were present globally in intra- and

inter-network connectivity, and State-3: default-mode modularized, i.e., strong

intra-network positive connectivity and inter-network negative connectivity in
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DMN. In addition, a globally disconnected state was identi�ed (State-2: globally

loosely connected intra- and inter-network connectivity) and one globally hyper-

connected state (State-4: high positive connectivity found globally). Previous

dynamic connectivity studies in adults reported each of these dynamic states, ex-

cept for State-2, the globally disconnected state (Allen et al., 2012a).

3.3.2 Development of dynamic FNC states

Next, we evaluated the relationship of age and sex with the discrete dynamic

states to evaluate the development of transient states from less-to-more mature

representations of FNC (Equation (3.7) and Figure 3.4). Age-related associations

were mostly localized in (but not limited to) State-1, the globally modularized

dynamic state. In particular, positive age-related associations among frontal-

temporal components, and both positive and negative age-related associations

among frontal-parietal and temporal-parietal components were observed in State-

1. Also, sex di�erences were mostly localized in (but not limited to) State-3, a

state characterized by a modularized DMN. This particular dynamic state showed

greater connectivity among frontal-temporal and frontal-occipital components in

girls, and greater connectivity between a parietal component (right angular gyrus

(AG), also a DMN component) and a temporal component (right middle tem-

poral gyrus (MTG)) in boys. In other dynamic states, the age- and sex-speci�c

e�ects were mostly localized to the DMN. Speci�cally, the left middle cingulate

cortex (MCC) DMN component showed stronger inter-network connectivity with

age in all FNC states, and stronger intra-network connectivity with age in State-4.

Lastly, the left MCC showed higher inter-network connectivity for girls in all FNC

states, and higher intra-network connectivity for boys in State-3.
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Figure 3.4: Connectograms showing age and sex associations across the dy-
namic connectivity states.The FDR threshold (q<0.05) is depicted on the color

bar with red arrows.
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3.3.3 Dwell time in dynamic states: age associations and

sex di�erences

Next, we explored how di�erent quantitative summary metrics of dynamic connec-

tivity, such as MDT and FT, change as functions of age and sex (Equations (3.9),

(3.11) and Figure 3.5). For each of the dynamic FNC states, we computed the

MDT (how long an individual spends in a given state on average) and FT (total

time spent in a given state). We found that older children showed longer MDT

and FT in the globally modularized dFNC state (State-1). Conversely, younger

subjects showed longer MDT and FT in the globally disconnected state (State-2).

We also investigated sex di�erences in MDT and FT in the dynamic states and

found that boys showed higher FT in the disconnected state (State-2), whereas

girls showed higher MDT and FT in the DMN-modularized state (State-3). The

other two dynamic states, the globally modularized state (State-1) and the glob-

ally hyperconnected state (State-4) showed trend-level sex e�ects, where boys had

higher MDT and FT compared to girls in States-1 and -4.
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Figure 3.5: Summary metrics and age- and sex- e�ects. Here, MDT=mean
dwell time, FT=fraction of time

3.3.4 Characterization of dynamic chronnectopathy: autis-

tic traits and autism spectrum disorder

In addition to characterizing static and dynamic FNCs in typical development,

we also studied the chronnectopathy, or disruption of the typical dynamic con-

nectivity patterns, through autistic traits in the general population as well as in

clinical autism spectrum disorder. We assessed autistic traits using the SRS score

(Constantino et al., 2003) in a subset of children in the original sample (n=560).

For static connectivity, one component pair (the left supplementary motor area,

i.e. SMA, and the right supramarginal gyrus, i.e. SmG), showed an association

with autistic traits. Speci�cally, children with more autistic traits showed weaker

static connectivity. Interestingly, for dFNC State-3, children with more autistic

traits showed higher connectivity in three component pairs (right insula and left
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superior frontal gyrus (SFG), right SmG and left precuneus i.e. preC, and right

insula and left preC) and lower connectivity in two component pairs (right-insula

and right SmG, and left SMA and right SmG). Next, we assessed how MDT and

FT vary with respect to autistic trait scores (Equations (3.10), (3.12) and Fig-

ure 3.6). In the globally disconnected state (State-2), autistic traits showed a

positive association with MDT. In the DMN-modularized state (State-3), autistic

traits were negatively associated with MDT. Thus, children with high levels of

autistic traits had longer dwell times in the globally disconnected state (State-2)

and children with fewer traits had longer dwell times in the DMN-modularized

state (State-3). Results remained highly consistent when models were addition-

ally adjusted for non-verbal IQ. Further, a similar pattern of e�ects was observed

at the severe end of the spectrum, when a sub-sample of 22 children with clinical

ASD were compared to 88 age, sex and IQ matched controls (Figure A.6). In

order to assess whether the above-mentioned associations are a core feature of the

trait-continuum or if the associations were driven by the most severely a�ected

children, sensitivity analyses were run. When children with clinical ASD or an

autistic traits score above the screening threshold were excluded, results remained

consistent (Figure A.7), demonstrating that underlying neurobiological features

covary with sub-clinical and clinical autistic traits.
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Figure 3.6: Summary metrics and autistic trait e�ects. Here, MDT=mean
dwell time, FT=fraction of time.

3.4 Discussion

Here we apply a novel approach to the study of brain connectivity, both in typical

and atypical child development. Complementing the existing static functional con-

nectivity literature, we show age-related associations with discrete dynamic states

that illustrate higher order maturational e�ects on chronnectivity. We also provide

additional support for a disconnection construct in children with autistic traits and

clinical ASD using dynamic functional connectivity. Lastly, we demonstrate the

utility and potential clinical relevance of quantitative metrics that summarize large

amounts of complex chronnectomic information.
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3.4.1 The development of whole-brain dynamic connectivity

in young children

In a large group of young children with a narrow age-range, we demonstrate that

older children on average have longer dwell times in dynamic states typically ob-

served in healthy adults. Age-related associations with static connectivity were

consistent with previous reports, including increased integration and decreased

segregation of control networks (Fair et al., 2007). This validation of the existing

static connectivity literature is nicely complemented with new information where

assumptions of network stationarity are relaxed, and quantitative summary met-

rics, such as MDT, are examined (Hutchison and Morton, 2015). Interestingly,

evidence for sexual dimorphism in dynamic connectivity was also observed with

girls showing longer dwell times in the modularized default-mode state and boys

showing longer dwell times in the globally disconnected state. While no age-by-sex

interaction was observed, given the narrow age range, this could complement exist-

ing evidence showing neuromaturational processes begin earlier in girls (Simmonds

et al., 2014; Lenroot and Giedd, 2006).

3.4.2 Functional connectivity, autistic traits and autism spec-

trum disorder

Novel neuroimaging �ndings in combination with a characteristic early onset have

brought momentum to ASD being conceptualized as a developmental disconnec-

tion syndrome (Geschwind and Levitt, 2007). Previous studies of static FNC

in ASD have revealed mixed patterns of increased and decreased connectivity

strength Uddin et al. (2013b). Similarly, within the discrete dynamic FNC states,
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we found local patterns of stronger as well as weaker connection strength. Specif-

ically, we observed decreased connectivity between the right SmG and the right

insula, which is consistent with �ndings of lower insula activation in subjects with

ASD in a large number task-based neuroimaging studies, covering a range of social

processing tasks (Di Martino et al., 2009a). However, we also found hyperconnec-

tivitity in the right insula, with the preC and the left SFG. Hyperconnectivity

of the salience network, in which the insula is a key region, is particularly well

replicated in the context of childhood ASD (Uddin et al., 2013a). Our �ndings

in children in a similar age range suggest that the hyperconnectivity of the in-

sula may also extend beyond regions of the salience network. Further, divergent

�ndings of hypo- and hyperconnectivity in this region across studies, which have

been previously attributed to developmental di�erences between samples (Uddin

et al., 2013b), may be in fact be present at the same developmental stage, but

across di�erent dynamic states, and thus only be revealed simultaneously when

using dynamic connectivity approaches.

Here, for the �rst time, we demonstrate that children with higher levels of autistic

traits have longer dwell times in a globally disconnected state during rest, whereas

children with lower levels of autistic traits have longer dwell times in a globally

modularized state that more resembles an adult-like pattern of connectivity. Inter-

estingly, in SZ, another disorder frequently classi�ed as a disconnection syndrome,

patients also spend more time in weakly connected dynamic states compared to

HC (Rashid et al., 2014; Damaraju et al., 2014a). This also potentially �ts with

previous work in adults showing that, at the individual level, those with ASD may

have distinct, noisy patterns of connectivity that may even mask 'typical' patterns

of connectivity (Hasson et al., 2009). Higher levels of autistic traits were also asso-

ciated with lower dwell times in a default-mode modularized state; a state where
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nodes from the well-documented default-mode network were prominent. Despite

heterogeneity in much of the functional connectivity literature, there is a grow-

ing body of evidence suggesting that the default mode network is more weakly

connected in individuals with ASD (Jung et al., 2014; Stigler et al., 2011). In-

terestingly, task-based data examining the e�ect of a cognitive load on the DMN

has previously suggested the DMN does not 'deactivate' during a task in ASD

(Kennedy et al., 2006). However, in the context of our �ndings and other reports

of weaker connectivity in the DMN, it is possible that rather failing to deactivate,

the DMN actually fails to 'activate' in individuals with ASD; an alternative inter-

pretation that could be made from task-rest contrasts of BOLD activation. We

also demonstrated that, in the absence of clinically relevant cases, autistic symp-

toms in the general pediatric population are related to dynamic aspects of network

connectivity. This is further evidence that aspects of the neurobiology of autistic

traits, similar to the symptomatology, indeed lie on a continuum (Constantino and

Todd, 2003; Blanken et al., 2015; Di Martino et al., 2009b). In addition to the

dimensional trait approach, children with clinical ASD were compared to a group

of age- and sex-matched controls, revealing similar patterns of longer dwell time

within the globally disconnected state. Thus, we show that these dynamic func-

tional connectivity features of autistic traits are also present in the most severely

a�ected children. We propose the label "chronnectopathy" where patterns of dy-

namic functional connectivity in clinical groups deviate from those observed in the

reference group without the disorder. While autistic traits in the general popu-

lation are by no means pathological, this dimensional behavioral phenotype for

clinical autism, which is considered pathological, serves as the basis for the term

chronnectopathy. Interestingly, the longer mean dwell time in a less connected

state observed in children with autistic traits and ASD which mimics the patterns



Chapter 3. Time-varying Connectivity 55

in younger, typically developing children, potentially indicative of a delayed or

halted trajectory (Di Martino et al., 2014).

3.5 Conclusion and Additional Considerations

Strengths of this study include the large, population-based sample of children in

a narrow age range, enabling us to show subtle age e�ects during a crucial, pre-

adolescent period of development. Further, the age-range included in the current

study is particularly under-studied in the context of ASD (Uddin et al., 2013b).

Another major strength is the use of a dynamic approach to resting-state con-

nectivity combined with an e�cient and interpretable presentation of a wealth of

data. While there is some consistency in the expansive static connectivity litera-

ture in ASD, it is unfortunately plagued by heterogeneity in clinical characteristics

of the subjects, image acquisition, analysis strategy, and ultimately the core �nd-

ings (Uddin et al., 2013b; Hernandez et al., 2015). The quantitative summary

measures presented here could potentially aid in simplifying interpretations of

complex network information, which historically are often subjectively evaluated.

For instance, speci�c and isolated features of large (e.g., 80x80) connectivity ma-

trices are often summarized when undoubtedly more complex patterns are present.

While the present study also assigned labels to the four dynamic states, most of

the interpretation comes from quantitative metrics, such as MDT. The subjects

were all scanned on the same MRI scanner, which reduces vendor- and hardware-

dependent di�erences. Finally, the study of ASD is approached dimensionally as

well as from a traditional case-control perspective, revealing dynamic connectiv-

ity features of ASD that lie along a continuum in the general population. While

many studies of ASD include only boys, our sample was sex-balanced and also
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presented in the context of typical brain development. However, some limitations

deserve mention. While increased scan duration is likely to reveal the complex-

ity of dynamic connectivity states and their temporal aspects more accurately,

our rsfMRI scan was limited to just over 5 minutes to ensure high quality data

given the scale of the study and to minimize the burden on our young participants

(White et al., 2014). Further, our study was cross-sectional and all participants

were of school-age, so the interpretation of our results can not be extended to other

stages of development. Longitudinal studies are warranted to reveal trajectories

of dynamic connectivity in typical and atypical development.

In conclusion, our approach suggests that a hallmark of childhood is not limited to

the under-development of the frontal lobe, but also about the e�cient utilization

of vast interconnections; in essence, younger children are less frequently tapping

into the resources that they have. Also, children with higher levels of autistic

traits are even less likely to e�ciently use such connections and may have less

capacity in this regard. This study revealed novel aspects of psychopathology

and future studies should evaluate the utility of this methodology in, for example,

the classi�cation, evaluation and treatment response prediction of conditions like

ASD.



CHAPTER 4

CONNECTIVITY DYNAMICS OF HEALTHY

ADULTS AND PATIENTS WITH

SCHIZOPHRENIA AND BIPOLAR

4.1 Connectivity and Dysconnectivity: Compar-

ing Healthy and Diseased Brain

SZ and BP are two common psychiatric conditions characterized by gray and white

matter abnormalities and disrupted connectivity across large-scale brain networks

(Mohamed et al., 1999; Kubicki et al., 2007). Such dysconnectivity includes dis-

ruption of both structural (Kubicki et al., 2007; Rotarska-Jagiela et al., 2008, 2009)

and FC (Meyer-Lindenberg et al., 2001; Uhlhaas and Singer, 2006; Calhoun et al.,

2008a) that may be related to clinical symptoms, including cognitive dysfunction.

SZ is often referred to as a dysconnection syndrome, where the term "dysconnec-

tion" refers to over- or under-connection of neural circuits with respect to a HC

57
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group (Friston et al., 1993). Because changes in the function of a single brain

region cannot explain the range of impairments observed in SZ or BP (Achim and

Lepage, 2005; Van Snellenberg et al., 2006; Minzenberg et al., 2009; Ragland et al.,

2009; Wang et al., 2009; Chepenik et al., 2010) researchers need to identify altered

connectivity in relevant core brain networks.

Previous studies show both similarities and di�erences in static functional connec-

tivity between SZ and BP. Most prior studies focused on quantifying the underly-

ing characteristics of sensory, auditory, cognitive control and emotional processes

of the brain. For example, the DMN network, consists of a set of brain regions

known to be activated during internally focused tasks and may be involved in

processes such as attention to internal emotional states, self-referential processing

or task-independent thoughts (Buckner et al., 2008). DMN data may distinguish

between SZ and BP (Calhoun et al., 2011; Öngür et al., 2010). There are nu-

merous studies suggesting abnormal DMN connectivity in SZ and BP (Calhoun

et al., 2011; Zhou et al., 2007; Calhoun et al., 2008b; Zhou et al., 2008), although

both increased and decreased connectivity have been reported. Di�erent analyt-

ical techniques could account for these inconsistent �ndings, as seed-based and

data-driven analyses and varying preprocessing steps do not necessarily produce

the same results. Also each intrinsic brain network comprises a collection of mul-

tiple network components, only a few of which might be a�ected throughout a

speci�c period of illness. Here, we implement a recently published approach to

assess functional network connectivity dynamics between HC and SZ and BP pa-

tients, which includes spatial GICA, dFNC via sliding time window correlation,

and k-means clustering of windowed correlation matrices (Allen et al., 2012a). We

hypothesized that disrupted functional integration in SZ and BP patients can be



Chapter 4. Connectivity Dynamics 59

found in several brain regions including temporal, frontal, visual, and DMN net-

works as suggested by previous studies. To test our hypothesis we conducted group

di�erence analyses in connectivity using independent two sample t-tests. The re-

sults show that dynamic FNC captured by sliding time window analysis can reveal

signi�cant di�erences between patients and controls that cannot be found using

conventional stationary FNC analysis.

4.2 Analysis Methods

4.2.1 Participants

We assessed 159 total subjects comprising 61 screened healthy subjects [HC, age

35.44 ± 11.57 (range), 28 females], 60 patients diagnosed with SZ or schizoa�ective

disorder (SZ, age 35.85 ± 12.01, 13 females) and 38 bipolar subjects (BP, age

38.96 ± 10.90, 20 females), matched for age with no signi�cant di�erences among

three groups, where age: p= 0.303, F= 1.2031, DF=2. Signi�cant di�erences in

sex among three groups were found, where sex: p= 0.002, X2= 11.81, DF=2.

Diagnoses were based on detailed medical and psychiatric history, chart reviews,

and the Structured Clinical Interview for DSM Disorders (First et al., 1997). None

were acutely ill at the time of scanning. BP patients were a mixture of psychotic

and non-psychotic by history.
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4.2.2 Data Acquisition

rsfMRI scans were acquired at the Institute of Living, Hartford, CT, USA on a

3T Siemens Allegra head-only scanner with 40mT/m gradients and a quadra-

ture head coil. T2*-weighted functional images were acquired using gradient

echo planar imaging (EPI) method with repetition time (TR)=1.5 s, echo time

(TE)=27ms, �eld of view=24 cm, acquisition matrix 64 × 64, �ip angle=700,

voxel size=3.75mm × 3,75mm × 4mm, slice thickness=4 mm, gap=1 mm, num-

ber of slices=29, 210 frames and ascending acquisition. Subjects were instructed

to keep their eyes open, look at a �xation cross on a monitor display and to rest

quietly during the scan session.

4.2.3 Data pre-processing

Functional images were pre-processed using an automated pipeline based around

SPM 5. Pre-processing included the removal of the �rst four image volumes to

avoid T1 equilibration e�ects, realignment using INRIalign (Freire et al., 2002),

slice-timing correction using the middle slice as the reference frame, spatial normal-

ization into MNI space, reslicing to 3 mm × 3 mm × 3 mm voxels, and smoothing

with a Gaussian kernel (FWHM = 5 mm). Voxel timeseries were z-scored to

normalize variance across space, minimizing possible bias in subsequent variance-

based data reduction steps (Allen et al., 2012a).

In order to limit the impact of motion we excluded from analysis subject data

with a maximum translation of > 2 mm or with SFNR < 275. Patient and control

groups were age matched. Additional processing steps were taken to mitigate

against residual motion e�ects as described later.
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4.2.4 Group ICA and post-processing

Imaging data were decomposed into functional networks using a group-level spatial

ICA (Calhoun et al., 2001b; Calhoun and Adali, 2012). Group ICA was performed

using the GIFT toolbox (Calhoun et al., 2004a). In order to obtain functional

parcellation, we used a high model order ICA (number of components, C=100)

to decompose the functionally homogeneous cortical and subcortical regions ex-

hibiting temporally coherent activity (Kiviniemi et al., 2009; Smith et al., 2009;

Abou-Elseoud et al., 2010). In the subject-speci�c data reduction PCA step, 120

principal components were retained (retaining > 99% of the variance of the data).

Group data reduction retained C= 100 PCs using the expectation-maximization

(EM) algorithm as implemented in the GIFT toolbox. The Infomax group ICA

(Calhoun et al., 2001c) algorithm was repeated 20 times in ICASSO (Himberg and

Hyvarinen, 2003) and the resulting components were clustered to estimate the reli-

ability of the decomposition (Himberg et al., 2004). Subject-speci�c SMs and TCs

were estimated using the GICA1 back-reconstruction method based on PCA com-

pression and projection (Calhoun et al., 2001c; Erhardt et al., 2011b). Out of the

100 components obtained, we characterized 49 components as ICNs that depicted

peak cluster locations in gray matter with minimal overlap with white matter,

ventricles and edges of the brain and also exhibit higher low frequency temporal

activity. Subject speci�c TCs and SMs were obtained via back reconstruction.

Additional post-processing steps including linear, quadratic and cubic detrending,

multiple regression of the six realignment parameters and their temporal deriva-

tives, removal of detected outliers, and low-pass �ltering with a high frequency

cuto� of 0.15 Hz were applied to the component TCs in order to remove trends as-

sociated with scanner drift and movement-related artifacts. We have detected the
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outliers based on the median absolute deviation, as implemented in 3D DESPIKE

(Cox, 1996). Outliers were replaced with the best estimate using a third-order

spline �t to the clean portions of the TCs.

Figure 4.1: An overview of the sliding window analysis (Allen et al., 2012a).

4.2.5 FC estimation

The static FNC for each subject was estimated from the TC matrix, as the C

× C sample covariance matrix (see Figure 4.1(I)). In addition to the standard

FNC analyses, we computed correlations between ICN TCs using a sliding tem-

poral window (Tukey window (see Figure 4.1(II)) having a width of 22 TRs=33 s;

sliding in steps of 1 TR), resulting in W=180 windows to capture the variability

in connectivity. To characterize the full covariance matrix, we estimated covari-

ance from the regularized precision matrix or the inverse covariance matrix (Smith

et al., 2011). Following the graphical LASSO method of (Friedman et al., 2008),

we placed a penalty on the L1 norm of the precision matrix to promote sparsity.

The regularization parameter lambda was optimized separately for each subject by



Chapter 4. Connectivity Dynamics 63

evaluating the log-likelihood of unseen data (windowed covariance matrices from

the same subject) in a cross-validation framework. Final dynamic FC estimates

for each window, were concatenated to form a C × C × W array representing the

changes in covariance (correlation) between components as a function of time.

4.2.6 Dynamic states and clustering

From all of the dynamic windowed FNC matrices, we selected windows of higher

variability as subject exemplars and used K-means clustering to obtain group

centrotypes(see section 3.2.9 for details). We repeated the clustering method using

di�erent distance functions (correlation, cosine, rather than the L1-norm) and also

found very similar results. We determined the number of clusters to be 5 using the

elbow criterion of the cluster validity index. These centrotypes are then used as

starting points to cluster all of the dynamic FNC data. Group speci�c centrotypes

were computed. Subject speci�c centrotypes were used to perform independent

sample t-tests to probe for group di�erences.

4.3 Results

4.3.1 Intrinsic Connectivity Networks (ICNs)

ICA was successfully used to identify the iICNs in HC and patients with SZ and BP,

and to identify di�erences in functional network connectivity among these ICNs.

The SMs of 49 ICNs identi�ed with group ICA are shown in Figure. 4.2(A).

Intrinsic connectivity networks are grouped by their anatomical and functional

properties, which include the following: SC, AUD, SM, VIS, CC, DMN and CB
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components. The observed ICN networks are very similar to those found in pre-

vious studies with low model order ICA (Calhoun et al., 2008a) as well as high

model order ICA (Kiviniemi et al., 2009; Smith et al., 2009; Allen et al., 2011).

Figure 4.2: (A) Non-artifactual ICNs and (B) Group mean static FNC between
ICN timecourses.

4.3.2 Static FNC

Group mean functional connectivity or sFNC between ICN TCs is shown in Fig-

ure.4.2(B). The ICN components in the static FNC matrix were initially ordered

using algorithms in the brain-connectivity toolbox (Rubinov and Sporns, 2010)

that maximize modularity of the connectivity matrix. These were manually par-

titioned into subgroups as in our earlier work (Allen et al., 2012a). The average

connectivity matrix demonstrates strong positive connectivity within subcortical,

visual, sensorimotor, default-mode and cerebellar networks. A set of CC regions

also shows this positive connectivity among themselves and are also connected to
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certain visual networks. These CC and visual regions show anti correlation to

default-mode regions.

Two sample t-tests did not reveal any group di�erences in static or overall con-

nectivity. Previous studies have found di�erences in FNC in similar groups, but

not with such a high model order that produces more focus brain regions, but

also more comparisons. In our case, several FNC pairs showed a trend level of

signi�cance, but did not quite reach a corrected level of signi�cance for the static

FNC analysis.

However, we also computed an analysis of FNC di�erences within groups of com-

ponents (e.g. DMN components re-combined), called a network group (NG). To

do this we computed, for each NG, the average connectivity between it and all

other NGs (Repovs et al., 2011). We then applied an FDR correction for multiple

comparisons of the between- NG connectivity. Several between-NG pairs showed

signi�cant group SZ/control di�erences, including sub-cortical and sensory-motor,

sub-cortical and cognitive control, and default mode and cerebellum. One pair,

sub-cortical and cognitive control, showed a signi�cant di�erence between SZ and

BP patients. No between-NG connectivity di�erence was found between HC and

BP.
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Figure 4.3: Group-speci�c dynamic FNC states obtained from clustering ap-
proach for k=5.The total number and percentage of occurrences is listed above

each centroid.

4.3.3 Dynamic connectivity states and group di�erences

We use k-means clustering method to identify re-occurring pattern of FC states

(Figure 4.3). We used the common states for all the groups to estimate di�erences

in dynamic FNC. Dynamic FNC analysis suggests that patients make fewer tran-

sitions to some states (States 1, 2 and 4) compared to HC. Signi�cant di�erences

were found between groups in dynamic FNC states 1, 2, 3 and 4, between HC and

patient groups as well as between SZ and BP patients.
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Figure 4.4: Group di�erences in dynamic FC states as obtained using an inde-
pendent two-sample t-test between groups. The cells that have survived a FDR
threshold for multiple comparison correction are enclosed in black patch.Note
that, only the comparisons that survived FDR correction are presented here.

Figure 4.4 summarizes the di�erence between groups measured by the connectivity

between ICN component pairs. For better visualization purpose, brain connectome

for each of the signi�cant dynamic states is shown in Figure 4.5. Also, Figure 4.6

shows the rendering maps for main e�ects of dynamic connectivity for all the

subjects. To create the rendering maps, we �rst identi�ed the modularity in the

dynamic FC matrix for each state using the Brain Connectivity Toolbox (Rubinov

and Sporns, 2010). For each component, the average connectivity within a mod-

ule was computed and stored as "component weight vector". These positive or

negative weights were then used to create weighted SM containing all contribut-

ing components for a given dynamic state, and �nally the weighted SMs were

projected onto a 3-dimensional MNI surface using the AFNI-SUMA (Saad et al.,

2004).
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In State 1, two component pairs captured the di�erences between HC subjects and

SZ patients as well as between the two patient groups (Figure 4.4 and Figure 4.5).

Compared to HC subjects, SZ patients showed greater connectivity between the

component pair STG (C36) and left AG (C65), in the temporal-parietal region.

Also compared to BP, SZ patients showed greater connectivity between two frontal

components: right motor (C15) and dorso-medial prefrontal cortex or dMPFC

(C46).

Figure 4.5: Connectograms showing a visual summary of signi�cant connectiv-
ity di�erences in dynamic states between di�erent ICN components for control

and patient groups.
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Figure 4.6: Main dynamic FNC e�ects depicted in rendering map using the
AFNI-SUMA (Saad et al., 2004).

In dynamic connectivity State 2 (Figure 4.4 and Figure 4.5), HC showed greater

connectivity between a sub-cortical component, putamen tail (C78) and a frontal

component, ventral motor (C1), compared to the patients with SZ.

In dynamic State 3 (Figure 4.4 and Figure 4.5), most of the di�erences in con-

nectivity were captured between HC subjects and SZ patients, and between the

two patient groups . These connectivity di�erences were found in frontal, pari-

etal, occipital, temporal and cerebellar regions of the brain. SZ patients showed

greater connectivity between several temporal-parietal components, compared to

HC. The connectivity between most of the frontal-parietal and frontal-occipital

components was greater in HC compared to SZ patients, whereas the connectiv-

ity between most of the parietal-occipital components was greater in SZ patients.

Also greater connectivity in SZ was found between two frontal-parietal component

pairs, ventral motor and left supramarginal gyrus, and ventral motor and right

superior parietal lobule, compared to BP. This is the only dynamic state that

captured di�erences between these two patient groups.
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Dynamic State 4 revealed di�erences between HC and BP patients in temporal and

parietal regions, where greater connectivity in HC was found between two parietal

components, paracentral and superior parietal lobule, and greater connectivity

in BP was found between a temporal component bilateral fusiform gyrus and a

parietal component left supramarginal gyrus. Dynamic State 5 did not display

any signi�cant group di�erences in functional connectivity. Also, no signi�cant

correlation between symptoms and connectivity was found.

4.4 Discussion

We explored dynamic FC patterns with ICA, sliding windows, and clustering. Our

analysis of connectivity dynamics in a relatively large sample (n = 159) provides, to

our knowledge, the �rst whole-brain characterization of regional di�erences in FC

variability and distinction of discrete FC states among HC, SZ and BP patients.

We identi�ed several ICNs that di�erentiate SZ and BP from HC subjects.

Dynamic FC captures stable connectivity patterns that are not observed in the

stationary FC. FC of the brain is not stationary; rather it's changing over time.

Thus observing group-wise di�erences in connectivity across time as captured by

the discrete dynamic states gives us more valuable information that cannot be

found within the stationary or mean FC.

In Figure 4.3, each matrix represents the centroid of a cluster and signi�es a con-

nectivity state stably present within data. These dynamic connectivity states are

fully reproducible and present in numerous subjects. Dynamic State 1 resembles

the pattern of stationary FC. FC patterns in States 2-5 represent connectivity

show considerable deviation from the mean FC.
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One of the notable features that di�er between FC states is the connectivity within

DMN regions and, between DMN and other functional networks. In States 3 and 5,

the DMN regions show strong synchronous activation with themselves, and mostly

asynchronous activation with other functional networks. Particularly in State 3,

the DMN regions show strong asynchrony with most of the CC components. State

5 shows the similar nature of connectivity between DMN and CC components, but

with a reduced number of CC components. Also in States 3 and 5, several SM

components show negative correlations with the DMN system, which is not visible

in other states. In contrast, States 1, 2 and 4 do not show similar FC patterns be-

tween DMN and other ICN networks, where segregation of synchronized activation

between DMN and other ICN nodes can be observed.

State 2 captures the FC di�erences between cortical and subcortical components,

where strong asynchronous activation between SC regions (amygdala, putamen

head, putamen tail and thalamus) and SM, AUD and VIS were found. CB also

shows this asynchrony with these cortical regions. Also substantial reduction in

connectivity between DMN regions can be observed in this state. As mentioned in

several previous studies, reduced thalamocortical connectivity (Spoormaker et al.,

2010), increased subcortical connectivity (Larson-Prior et al., 2011) and a segre-

gation of DMN connectivity (Spoormaker et al., 2010; Larson-Prior et al., 2011)

indicated a state of light sleep or drowsiness. Also similar dynamic state related

to drowsiness was found among HC subjects in (Allen et al., 2012a).

In (Hutchison et al., 2013b), periods of hypersynchronization were described where

extremely high intra-network connectivity between all nodes of oculomotor and

motor networks were found in macaques and humans. This relates well to our

observed discrete FC states where States 1,2 and 4 show time windows with high

correlations throughout the motor system (and some motor components in State
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5), while State 3 and 5 represent periods with synchronous activation between

VIS areas. From our results, we can predict that periods of hypersynchronization

between motor nodes would also include synchronous activation of default mode

regions and segregated synchronous activation between the nodes in other ICNs.

Also, we can predict that hypersynchronization between VIS areas will be accom-

panied by synchronization of DMN regions and strong asynchronous activation

with other functional networks.

Note that, State 4 is the only dynamic state where we have found signi�cant dif-

ferences between HC and BP subjects. State 4 shows synchronous activity within

most of the network nodes except few VIS and CC components, which show anti-

correlation with themselves as well as with other ICN networks. The di�erences

between HC and BP were captured between a pair of SM component (paracentral

gyrus) and CC component(R SPL), and between a pair of SM component (left

SMA) and VIS component (bi-fusiform gyrus (bi-FFG)).

The di�erences between groups are not localized in a single dynamic state. Rather

the group di�erences are distributed across four dynamic states (States 1, 2, 3 and

4). This distributive nature of the group di�erences could be one reason they

were not detected in the static FNC, since that metric only shows the average

functional network connectivity for the run. Also the dynamic states in Figure

4.4 show higher p-values for several t-tests between ICN components for di�erent

groups, which did not pass multiple comparison correction tests. With a larger

sample size, more signi�cant group di�erence could be revealed.

Signi�cant between-group di�erences in connectivity strength were found in several

intrinsic networks including sub-cortical, visual, auditory, sensorimotor, cognitive

control, default mode and cerebellum networks. Several components in the DMN
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including dMPFC, right and left AG, and right and left preC showed signi�cant

connectivity di�erences with the components in VIS, CC , sensorimotor, AUD and

CB networks. Previous studies suggest that DMN may distinguish SZ and BP pa-

tients from HC (Calhoun et al., 2011; Zhou et al., 2007; Calhoun et al., 2008b;

Zhou et al., 2008). The majority of previous studies report reduced task-related

suppression in the DMN in SZ (Zhou et al., 2007, 2008; Jafri et al., 2008; Bluhm

et al., 2009; Jann et al., 2009; Kim et al., 2009; Park et al., 2009; Pomarol-Clotet

et al., 2010; Wang et al., 2011). Studies showed that failure to deactivate default-

mode regions corresponded to gray matter losses in the dorsal ACC and medial

prefrontal cortex regions (Zhou et al., 2008; Pomarol-Clotet et al., 2010; Skudlarski

et al., 2010; Salgado-Pineda et al., 2011). However, as mentioned earlier, both in-

creased and decreased functional connectivity have been reported in the DMN in

SZ. Medial prefrontal cortex is a region known to be associated with information

processing when more than one course of action may be required, such as repre-

senting the thoughts, actions, and feelings of others across time (Gilbert et al.,

2006). Several studies of both SZ and BP (Öngür et al., 2010; Meda et al., 2012;

Khadka et al., 2013) have reported subgenual and medial prefrontal abnormalities

in BP patients and dorsal medial prefrontal abnormalities in SZ patients. (Huang

et al., 2010) reported decreased amplitude of low frequency �uctuation (ALFF) in

the medial prefrontal regions in never treated SZ patients, and found to become

normalized with antipsychotic therapy (Sambataro et al., 2010; Lui et al., 2010).

Another DMN component found in our analysis is the AG, which is known to be

involved in language processing (Hall et al., 2005; Binder et al., 2009; Price, 2010;

Clos et al., 2014), as well as memory and social cognition. Therefore, AG dys-

regulation can help di�erentiate SZ and BP patients from HC. Our study showed

greater connectivity in SZ between the component pair STG and left AG. Notably,
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several studies also found functional connectivity abnormalities in STG, which is

a major part of the dominant hemisphere language network. Also both structural

and functional abnormalities in the STG have been demonstrated in SZ patients

in multiple studies as well as in psychotic BP and constitute the best-replicated

brain di�erences correlating with the severity of psychotic symptoms in SZ, most

speci�cally auditory hallucinations and formal thought disorder collectively; ab-

normalities in these regions likely underpin psychotic phenomena (Aguayo, 1990;

Swerdlow, 2010; Fusar-Poli et al., 2011). In our study, group variations in connec-

tivity strength were observed in several temporal lobe components (STG, bi-FFG)

and left inferior temporal gyrus (ITG)), known to process auditory information

Kim et al. (2009); Sui et al. (2011). This reinforces the fact that aberrant temporal

lobe coherence patterns may exhibit signi�cant abnormality in both SZ, and to a

lesser extent BP (Calhoun et al., 2008b; Pearlson, 1997). These �ndings may be

useful in explaining the language and thought disruptions in SZ.

Our study showed two other DMN components, left and right preC, which are

involved in a wide spectrum of highly integrated tasks, including episodic mem-

ory (Cabeza and Nyberg, 2000; Rugg and Henson, 2002), mental imagery recall

(Shallice et al., 1994; Gonzalo et al., 2000), and self-processing operations, such as

�rst-person perspective taking (Cavanna and Trimble, 2006). In (Garrity et al.,

2007), higher positive symptoms were correlated with increased deactivation in the

medial frontal gyrus, preC and the left middle temporal gyrus (MTG). Compared

to SZ patients, HC showed greater connectivity between left cerebellum and both

left and right preC. The cerebellum may in�uence motor systems by estimating

inconsistencies between intention and action and by adjusting the motor opera-

tions appropriately (Kandel et al., 2000), as well playing a role in cognition and
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emotion (Schmahmann and Caplan, 2006). Prior studies reveal impaired func-

tional integration of cerebellum in SZ (Honey et al., 2005; Becerril et al., 2011).

(Collin et al., 2011) proclaimed the functional connectivity to other brain regions

(left thalamus, middle cingulate gyrus and SMA) to be disconnected from the

cerebellum in SZ patients.

In our study, several sensorimotor components including SMA, right and left mo-

tor, ventral motor (VM), SmG and paracentral showed between-group connectiv-

ity di�erences that were distributed across di�erent dynamic states. (Jeong et al.,

2009) reported decreased correlation of the left inferior frontal gyrus (IFG) with

left MTG/ left superior temporal sulcus, left SPL/ SmG and other brain regions.

Our results showed connectivity di�erences between SmG and other brain com-

ponents (with lingual gyrus (LG) in HC<SZ; with VM in SZ>BP; with bi-FFG

in HC < BP). Previous studies found impaired functional connectivity between

cerebellum and LG in SZ patients (Collin et al., 2011).

Other �ndings in our analysis include connectivity di�erences in several cognitive

control components (left ITG, left MFG, MTG, left IFG, left superior medial

gyrus (SMG), and SPL) with components from other brain networks. Abnormal

functional connectivity in left IFG, MFG and IFG was found in SZ patients (Jeong

et al., 2009; Müller et al., 2013).

Another key �nding in our study is greater connectivity in HC between putamen

tail and ventral motor regions, compared to SZ patients. The putamen may be

involved in the generation of spontaneous language, and linked to auditory/verbal

hallucinations (Ho�man and Hampson, 2012). Several SZ studies showed func-

tional connectivity anomalies in the putamen (Ho�man and Hampson, 2012; Ho�-

man et al., 2011; Tu et al., 2012).
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4.5 Limitations and Future Directions

Several experimental and methodological limitations must be considered while

performing the sliding-window analysis method and interpreting results. One lim-

itation is that the non-stationary noise sources in fMRI time series can in�uence

changes in FC over time. Synchronous global modulations of fMRI time series can

be caused by variations in respiratory and cardiac rates, as they predominantly

occupy the low frequencies (<0.1 Hz) (Wise et al., 2004; Chang and Glover, 2009).

Also head motion could generate spatially structured artifacts in FC (Power et al.,

2012; Yan et al., 2013). Even though ICA reasonably separates the component

sources for sliding-window analysis, it may not have completely separated the ef-

fects from other sources of interest. Therefore, to interpret the dynamic results,

e�cient denoising as well as recording of respiration and cardiac events should be

considered. In the current study we performed careful quality control as well as

incorporating multiple motion regression steps to mitigate against the impact of

motion.

Another important issue for sliding-window analysis is the choice of window size.

(Sako§lu et al., 2010) reported that the ideal window size should be able to estimate

FC variability and capture the lowest frequencies of interest in the signal, as well

as to detect interesting short-term e�ects. In this study, dynamics were estimated

using an empirically validated �xed sliding-window of 22TRs (33s) similar to that

used in (Allen et al., 2012a). Future work should evaluate changes across a variety

of windows lengths that could be performed using separate windows (Cribben

et al., 2012) or perhaps combined with multi-scale approaches such as wavelet

transform (Chang and Glover, 2010).
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Several recent studies on microstate-based EEG-fMRI resting-state datasets have

showed that EEG microstates and some number of fMRI-based ICNs show corre-

spondence between themselves (Britz et al., 2010; Musso et al., 2010; Yuan et al.,

2012). A brain microstate can be de�ned as a functional/physiological state dur-

ing which speci�c neural processes occur (Musso et al., 2010). Using concurrent

EEG-fMRI data, the underlying physiological correlates of these dynamic states

can be well assessed as demonstrated in (Allen et al., 2013).

We characterized FC as the covariance between ICN TCs. Characterization of

FC matrices based on higher-order statistics (e.g. mutual information) or lag-

insensitive measures (e.g. cross-correlation) could e�ciently recover the underlying

biological structure of networks. Another limitation of the study is that smaller

acquisition parameters may not lead to optimum results by exploring all possible

aspects of dynamic changes in FC. Each subject in this study was scanned for only

5 minutes, which is probably not optimal for considering the rate of change in dy-

namic states. A longer acquisition time ( ∼ 10 min) is recommended for a more

accurate estimation of connectivity dynamics. To identify centroids of dynamic

FC we used k-means clustering, which has several limitations, including di�culty

in separating clusters with di�erent sizes and densities, and a high susceptibility

to outliers. Future work could include application of alternative clustering models

(fuzzy-clustering or density-based clustering techniques) in the connectivity dy-

namics. Future work focusing on an improved understanding of the association

between disease and connectivity dynamics could actually enrich our knowledge of

the dynamic properties of the healthy functional brain. In addition, recent work

has shown that there are time-varying changes not only in the covariance but also

in the associated spatial patterns (Ma et al., 2014). Future studies to characterize

both covariance and spatial changes over time are warranted.
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4.6 Conclusion

We have performed, to our knowledge, the �rst whole-brain characterization of

intrinsic regional di�erences in FC variability and a comprehensive analysis of

discrete FC states in SZ, BP and HC subjects. One key �nding was the aber-

rant functional connectivity patterns found in several DMN components including

dMPFC, bilateral AG, and bilateral preC, in the patient groups. Other signi�-

cant �ndings include connectivity anomalies in VIS, SM and CC networks in both

patient groups. These �ndings could be used as distinctive characteristic markers

in SZ and BP, and also could help diagnose the patients based on their biological

features, rather than exclusively depending on cross-sectional clinical symptoms

and information on longitudinal course and outcome.



CHAPTER 5

CLASSIFICATION OF MENTAL DISORDERS

USING FUNCTIONAL NETWORK

CONNECTIVITY FEATURES

5.1 Brain Connectivity Features for classi�cation

In this work, we conducted a classi�cation study of SZ, BP and HC subjects using

static and dynamic FNC features, as well as combined FNC features from both

FNC analyses. Several previous studies have shown that SZ and BP patients can

be discriminated at group-level by using the information on dysfunctional integra-

tion of the brain (Allen et al., 2012a; Arbabshirani et al., 2013a; Rashid et al., 2014;

Damaraju et al., 2014b; Friston, 2002). We hypothesized that disrupted functional

integration in SZ and BP patients as captured by FNC analysis reveal powerful

information for automatic discriminative analysis at subject-level. We expected

some connectivity measures to be better captured in a static model and others

in a dynamic model (Damaraju et al., 2014b). Static FNC provides information

79
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about the overall mean connectivity and may be more optimal for connectivity

that is persistent across the entire experiment than a dynamic FNC approach. On

the other hand, information on local connectivity changes at di�erent time win-

dows will be better captured by dynamic FNC. Thus, we hypothesize that both

static and time-varying FNC methods capture complementary aspects of connec-

tivity, and combining static and dynamic FNC features will improve classi�cation

performance beyond the achievable performance from each type of these features

individually. We present machine learning techniques to e�ectively combine these

two types of features for accurate classi�cation of SZ, BP and HC.

5.2 Analysis Methods and Proposed Approaches

Data acquisition, pre-processing, GICA analysis and post-processing, and FNC

estimation are described in sections 4.2.1, 4.2.2, 4.2.3, 4.2.4 and 4.2.5.

5.2.1 Classi�cation framework

We evaluated the classi�cation performance for static FNC, dynamic FNC and a

combination of both static and dynamic FNC (see Figure 5.1 for illustration of the

proposed approaches). Our main focus was to extract reliable features from the

FNC matrices and apply proposed classi�cation methods, rather than investigat-

ing the performance on di�erent classi�ers. For all of the FNC-based classi�cation

approaches, we used a linear SVM classi�er to evaluate the classi�cation perfor-

mance.
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Figure 5.1: An overview of proposed classi�cation approach.

5.2.1.1 Static FNC approach

In order to reduce the dimensionality and extract reliable features from this high-

dimensional feature vector, we used the double input symmetric relevance (DISR)

method (Meyer and Bontempi, 2006) during the cross-validation step. DISR is a

mutual information based method which is designed to extract features by �nding a

combination of variables that can return more information on the output class than

the sum of the information returned by each of the variables taken individually.

For classi�cation using SFNC features, the DISR method was run once per cross-

validation fold. We used a 10-fold cross-validation strategy for estimating the

generalization error of the proposed classi�er. The details on the feature selection
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process using DISR are given in the Figure B.1 and section B.1. In each cross-

validation run, 100 features were selected using the DISR method from the training

samples. A linear SVM classi�er was then trained using the features from training

data and then tested on held out testing samples (the same 100 features were

selected from the testing data).

Algorithm 1: classi�cation based on static FNC features

1. Estimate static FNC matrices for all the subjects using corresponding ICA

time-courses.

2. De�ne the 10-fold cross validation groups as GHC , GSZ and GBP by �rst

performing a single split of the data into 10 folds, where each fold comprises

6 subjects from the HC group, 6 subjects from the SZ group and 4 subjects

from the BP group. These subjects form the testing set (16 testing subjects

at each iteration). The remaining subjects comprised the training set for

each iteration. We de�ne this step as "test step".

3. For dimensionality reduction and feature selection, apply DISR method and

select the top 100 static FNC features (FDISR).

4. Using the selected FDISR features, train a linear SVM classi�er.

5. With the left out testing subjects in Step 2, build the testing set and select

those identi�ed FDISR features using the DISR method.

6. Classify the subjects in the testing set using the trained classi�ers and record

the classi�cation performance.

7. Return to Step 2 (test step) and repeat Step 2 through Step 6 in order to

iterate over all cross-validation folds.
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5.2.1.2 Dynamic FNC approach

For classi�cation using the dynamic FNC matrix, we also used a 10-fold cross-

validation for estimating the generalization error. In each cross-validation run,

we performed group-wise k-means clustering on dynamic FNC matrix from the

training samples. For each of the three groups, we obtained 5 cluster centroids or

states. We then grouped these states together and formed a regression matrix with

15 states in total. We call these 15 states the feature states. Note that at each time

point the FNC matrix is assumed to be a linear combination of these states. Then

for each FNC time point, we regressed out the dynamic FNC matrix against these

15 feature states and obtained the corresponding regression coe�cients. We used

the mean of these regression coe�cients and �nalized 15 features for each subject

for classi�cation. Details on dynamic feature selection method are provided in the

Figure B.2 and section B.2. A linear SVM was then trained using the training

features and then tested on held out testing samples.

Algorithm 2: Classi�cation based on dynamic FNC features

1. Estimate dynamic FNC matrices for all the subjects using a windowed FNC

approach (Allen et al., 2012a; Rashid et al., 2014; Calhoun et al., 2014).

2. De�ne the 10-fold cross validation groups as GHC , GSZ and GBP by �rst

performing a single split of the data into 10 folds, where each fold comprises

6 subjects from the HC group, 6 subjects from the SZ group and 4 subjects

from the BP group. These subjects form the testing set (16 testing subjects

at each iteration). The remaining subjects comprised the training set for

each iteration. We de�ne this step as "test step".
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3. Apply group-wise k-means clustering to the windowed FNC matrices of the

training groups. Based on the elbow criterion, select the optimum number

of cluster centroids per group (dynamic connectivity states). In our dynamic

FNC analysis the optimum number of cluster centroids was 5 per group.

4. Form a regression matrix, Rgroups×entroud centroids with these group-speci�c

cluster centroids.

5. Regress out the windowed FNC matrices at each time points using the re-

gression matrix. Record the beta coe�cients, β, at each time window. In

our analysis, we estimated and saved 15 β coe�cients for each time window.

6. Compute the mean β coe�cients for all the time windows for each subject.

In our analysis, we have 15 mean β coe�cients for each subject. These mean

β coe�cients are the dynamic FNC features, FeatdFNC , for the classi�cation

analysis.

7. Using these FeatdFNC features, train a linear SVM classi�er.

8. With the left out subjects in test step (Step 2), build the testing set and

select the testing features by computing mean β coe�cients using the same

approach as training data.

9. Classify the testing subjects using the trained classi�ers and record the clas-

si�cation performance.

10. Return to Step 2 (test step) and repeat Step 2 through Step 9 to iterate over

all of the cross-validation folds.
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5.2.1.3 Combined static and dynamic FNC approach:

For the combined static and dynamic FNC approach, 100 features from static FNC

feature vector after dimensionality reduction (as mentioned above in static FNC

approach section), and 15 beta coe�cient features from the dynamic FNC after

regression against the states (obtained similar way as mentioned in dynamic FNC

approach section) were used for classi�cation purpose. Also SVM classi�ers and a

10-fold cross-validation strategy were applied in a similar way as mentioned above

for other two classi�cation approaches.

Algorithm 3: Classi�cation based on both static and dynamic FNC features

1. Estimate both static and dynamic FNC matrices for all the subjects as men-

tioned in algorithm 1 and algorithm 2.

2. De�ne the 10-fold cross validation groups as GHC , GSZ and GBP by �rst

performing a single split of the data into 10 folds, where each fold comprises

6 subjects from the HC group, 6 subjects from the SZ group and 4 subjects

from the BP group. These subjects form the testing set (16 testing subjects

at each iteration). The remaining subjects comprised the training set for

each iteration. We de�ne this step as "test step".

3. To select static FNC features for the training set, follow these steps:

(a) For dimensionality reduction and feature selection, apply DISR method

on the static FNC of the training set and select top 100 static FNC

features, FeatsFNC.

To select dynamic FNC features for the training set, follow these steps:
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(a) Apply group-wise k-means clustering to the windowed FNC matrices

of the training groups. Based on elbow criterion, select the optimum

number of cluster centroids per group (dynamic connectivity states).

In our dynamic FNC analysis the optimum number of cluster centroids

was 5 per group

(b) Form a regression matrix, Rgroups×entroud with these group-speci�c clus-

ter centroids.

(c) Regress out the windowed FNC matrices at each time points using the

regression matrix. Record the beta coe�cients, β, at each time window.

In our analysis, we have recorded 15 β coe�cients for each time window.

(d) Compute the mean β coe�cients for all the time windows for each

subject. In our analysis, we have 15 mean β coe�cients for each subject.

These mean β coe�cients are the dynamic FNC features, FeatdFNC , for

the classi�cation analysis.

4. Combine both FeatsFNC and FeatdFNC features for the training set, FeatsFNC+dFNC

5. Using these FeatsFNC+dFNC features, train a linear SVM classi�er.

6. With the left out subjects in step 1, build the testing set and select the

testing features as follows:

(a) select same FsFNC features using DISR method as mentioned for the

training data.

(b) select FdFNC features by computing mean β coe�cients using the same

approach as training data.

(c) Combine these FsFNC and FdFNC features for the testing set.
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7. Classify the testing subjects using the trained classi�ers and record the clas-

si�cation performance.

8. Return to Step 2 (test step) and repeat Step 2 through step 7 to iterate over

all of the cross-validation folds.

5.3 Results

5.3.1 Intrinsic Connectivity Networks

ICA was successfully used to decompose the functionally homogeneous cortical

and subcortical regions with temporally coherent activity. Out of the 100 com-

ponents obtained, we characterized 49 components as ICNs that depicted peak

cluster locations in gray matter with minimal overlap with white matter, ventri-

cles and edges of the brain and also exhibit higher low frequency temporal activity

. We used the time-courses of these 49 ICNs to compute static and dynamic

FNC matrices. The spatial maps of 49 ICNs identi�ed with group ICA are shown

in Figure 5.2. ICNs are grouped by their anatomical and functional properties,

which include the following: sub-cortical (SC), auditory (AUD), visual (VIS), sen-

sorimotor (SM), cognitive control (CC), default mode (DM) and cerebellar (CB)

components. The observed ICN networks are very similar to those found in pre-

vious studies with low model order ICA (Calhoun et al., 2008a) as well as high

model order ICA (Kiviniemi et al., 2009; Smith et al., 2009; Allen et al., 2011).



Chapter 5. Classi�cation using FNC 88

Figure 5.2: Thresholded group mean spatial maps of 49 ICNs.

5.3.2 Static FNC Features

For the static FNC classi�cation algorithm, �rst we computed the pair-wise cor-

relation (covariance) between the time-courses of 49 ICNs for each subject. Thus,

for static FNC, each subject has a feature vector containing
(
49
C2

)
=1176 elements,

resulting in a high-dimensional FNC matrix for all the subjects (subject× FNC

=159 × 1176). Out of these 1176 static FNC features, we then extracted top

100 contributing pair-wise correlations or static FNC features between ICNs using

DISR. Figure 5.3 highlights the top 15 contributing features used from HC, SZ
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and BP groups for classi�cation analysis using static FNC (for simplicity we are

only showing top 15 static FNC features). Both positive and negative connectivity

between these top components were found. This �gure summarizes the connec-

tivity strengths between the top component pairs, by dividing them into brain

networks. Here, static FNC component pairs that showed connectivity di�erences

across groups include connectivity between putamen and inferior occipital gyrus

(IOG), ITG and SmG, inferior frontal gyrus (IFG) and SPL, interior parietal lob-

ule (IPL) and middle cingulate cortex (MCC), lingual gyrus (LG) and SMA, insula

and calcarine, and IOG and postcentral gyrus. Also, detailed information for each

spatial map such as regions of activation, Brodmann area, volume and peak acti-

vation t-value and coordinates for top 15 components are provided in Tables 5.3

and 5.4.
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Figure 5.3: Connectograms showing top 15 static FNC features (a) across
groups, and (b) their group di�erences.
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5.3.3 Dynamic FNC features FNC estimation

For dynamic FNC analysis, we �rst applied the sliding-window approach (Allen

et al., 2012a; Rashid et al., 2014) and computed the pair-wise correlation between

the time-courses of 49 ICNs at each dynamic window (see section 2.5), resulting

into a dynamic FNC matrix, (subject×time×FNC =159×180×1176). We then

obtained the dynamic FNC features by regressing out the dynamic FNC matrix

against the feature states (formed by the regression matrix) at each FNC time

point, and computing the mean beta coe�cients for each subject. For more details

on dynamic FNC feature selection method, see section B.2.

The k-means clustering was applied and 5 centroids were obtained for each of the

HC, SZ and BP groups at each CV run. For each of the groups and for each of the

5 dynamic states, we computed the correlation between dynamic states. These

group-wise centroids almost always showed very high correlations across all the

CV runs. Table B.1 provides the mean correlation for each of the dynamic states

computed across 10 CV runs.

Figure 5.4 displays the training and testing dynamic FNC features. In �gure 5.4A

(top), the group-wise mean training beta coe�cients and �gure 5.4A (bottom)

the bar plot showing group-wise mean training features (represents the summary

of the information provided in �gure 5.4A (top)) for 15 feature states have been

presented. While the plot on the top of �gure 5.4A is showing the actual values,

the bar plots are showing these information in an average sense. Recall that, we

combined the 5 dynamic states for each group and formed a regression matrix with

a total of 15 states (feature states) for all three groups. Based on the formation of

our regression matrix, HC group is expected to dominate between state 1 and state

5 in terms of dFNC feature values. Similarly we expect the SZ and BP groups to
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show dominating dFNC feature values between state 6 and state 10, and between

state 11 and state 15, respectively. We will also refer to the states ranging from 1

to 5 as HC feature states, 6 to 10 as SZ feature states, and 11 to 15 as BP feature

states.

Figure 5.4: Mean training and testing features for dynamic FNC classi�cation
approach.

From �gure 5.4A (top), we can see that the HC group shows greater mean beta

values (i.e. more dynamic FNC feature values) for the HC feature states, and

nearly zero for all other feature states. The bar plot in �gure 5.4A (bottom) also

con�rms this trend where the mean beta value of the HC group for the HC feature

states is 1.26 and nearly zero for the SZ and BP feature states. It was expected

that the SZ group would show dominating feature values in SZ feature states, and

nearly zero values for other feature states. However, the SZ group shows a mean

of 0.39 in HC feature states, 1.12 in SZ feature states, and negative -0.56 in BP

feature states. Also in the bar plot, BP group shows a mean beta value of 1.16 in

BP feature states.
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Similar trends for mean dFNC features in the testing set were found, and shown

in �gure 5.4(B). Here, HC group shows a mean beta value of 1.26 in HC feature

states and nearly zero value otherwise. Similarly, the SZ group showed a mean

feature value of 0.18 for the HC feature states, 1.2 for the SZ feature states, and

-0.24 for the BP feature states. Also, the BP group shows a mean beta value of

0.05 for the HC feature states, -0.02 for the SZ feature states, and 1.15 for the BP

feature states.

5.3.4 Classi�cation Framework

Table.5.1 shows the confusion matrices for proposed classi�cation approaches using

static, dynamic and combined FNC features as obtained from the 10-fold cross-

validation framework. Also, using the confusion matrices we computed: overall

classi�cation accuracy, group-wise sensitivity, speci�city, positive predictive value

(PPV) and negative predictive value (NPV) with Wilson's binomial 95% con�-

dence interval (CI) (Wilson, 1927) (Table 5.2 and �gure 5.5.)
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Figure 5.5: Performance evaluation of proposed classi�cation approaches.Here,
PPV=positive predictive value and NPV=negative predictive value.
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The static FNC approach shows an overall classi�cation accuracy of 59.12% and

CI of [51.05, 66.84]. The dynamic FNC approach showed an overall classi�cation

accuracy of 84.28% and CI of [77.67, 89.56]. The combined static and dynamic

FNC approach showed an overall accuracy of 88.68% and CI of [82.7, 93.15]. The

results from statistical signi�cance levels among three classi�ers for these statistical

measures are provided in �gure 5.5.

To determine the chance levels (see section B.3 and Figure B.3 for details) for

individual classi�er accuracy, we performed 300-run permutation tests in a 10-

fold cross-validation framework . Our results show that, for classi�ers using

sFNC, dFNC and combined FNC features, the average accuracy is around 35%

(sFNC=34.88%, dFNC=34.56% and Combined=34.82%), which is very close to

the random chance level (33.33%).

Figure 5.6: Dynamic states for three groups averaged across all 10 cross-
validation folds.
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5.4 Discussion

We investigated whether resting-state FNC features are able to discriminate be-

tween SZ patients, BP patients and HC subjects. Using ICA, the dataset was

decomposed into independent subject-speci�c SMs and corresponding TCs. Both

static and dynamic FNCs were computed between each pair of functional net-

works. For dynamic FNC, the time-course of each subject was windowed and then

clustered into discrete dynamic states. For all classi�cation approaches, SVM clas-

si�ers were trained and then evaluated using a 10-fold cross-validation framework.

In our classi�cation approach using static FNC, top static FNC features show

group di�erences in both connectivity strength (greater or weaker connectivity)

and directionality of connectivity (positively or negatively connected). Note that,

in this study we did not perform any univariate test between component pairs to

investigate signi�cant group di�erences. Our static classi�er di�erentiates the sub-

jects at a multivariate level by considering the whole pattern from static features.

Component pairs that show di�erences in the directionality of connectivity be-

tween control and patient groups include IFG (frontal component) and SPL (pari-

etal component) (controls showing positive connectivity and both patient groups

showing negative connectivity), IPL (parietal component) and MCC (default-mode

component) (controls showing positive connectivity and both patient groups show-

ing negative connectivity), LG (occipital component) and SMA (frontal compo-

nent) (controls showing positive connectivity and both patient groups showing

negative connectivity), and ITG (temporal component) and SmG (parietal com-

ponent) (controls showing negative connectivity and both patient groups showing

positive connectivity).



Chapter 5. Classi�cation using FNC 98

Another top component that di�erentiated BP from HC and SZ groups is putamen

head and IOG (occipital component) (HC and SZ showing positive connectivity

and BP showing negative connectivity). Other component pairs that showed di�er-

ences in connectivity strength across groups include insula (temporal component)

and calcarine gyrus (HC showing greater connectivity, SZ showing weaker connec-

tivity, and BP showing the weakest connectivity), and IOG and postcentral gyrus

(both patient groups showing greater connectivity than control group).

Note that, the temporal lobe has consistently been shown to play an important role

in discriminating between HC subjects and patients with SZ and BP (Altshuler

et al., 2000; Calhoun et al., 2008b; Johnstone et al., 1989). Previous functional

connectivity studies also showed abnormal fronto-temporal functional connectivity

in SZ (Wolf et al., 2007; Spoletini et al., 2009; Ford et al., 2002b). However, to

further link the �ndings to prior literature and speculate about how connectivity

in these top features relates to SZ symptoms, information such symptom pro�les

for SZ patients are required

Interestingly, in the dynamic FNC classi�cation approach, SZ shows dominating

feature values for the non-SZ feature states (Figure 5.4). This supports the over-

lapping �ndings of the SZ group with both HC and BP groups. Our dynamic

FNC approach was able to utilize this characteristic of the SZ group to reliably

di�erentiate them from the HC and BP groups.

Figure 5.6 shows the 15 dynamic states averaged across 10-fold runs. These dy-

namic states show distinct patterns such as DMN showing strong positive within-

network correlation and negative between-network correlation with AUD, SM and

CC (state 1 and 5), negative correlation between SC and AUD, VIS and SM net-

works (state 3). Among these dynamic states, several similar states were found
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in the previous studies. For example, similar dynamic states as states 1, 3 and 5

were found in (Damaraju et al., 2014b; Allen et al., 2012a).

Note that, the 15 dynamic states, which had played a signi�cant role while ob-

taining dynamic features, were not the features that were used by the classi�er

(that is, the di�erences in pairwise correlation across di�erent states and di�erent

groups were not used as dynamic features, rather the states were used as regres-

sion matrix while obtaining dynamic features or beta coe�cients). In the higher

dimensional space, our classi�er separated the patterns from these 15 states, and

computed the �tness score or beta coe�cients.

This study shows that using static and dynamic connectivity features we can

reliably discriminate HC, SZ and BP at the individual subject-level. Previous

studies showed group-level discrimination of SZ and BP from HC subjects by using

disconnected FNC properties in these patient groups. Using FNC approaches,

these studies have identi�ed disrupted connectivity patterns in SZ and BP patients

during rest and task in several brain regions (Arbabshirani et al., 2013a; Rashid

et al., 2014; Calhoun et al., 2014; Hutchison et al., 2013b). Also our previous work

reported disrupted connectivity in several dynamic states for SZ and BP patients

(Rashid et al., 2014). The improved classi�cation accuracies in this current study

for the dynamic FNC approach and the combined static and dynamic approach

also support a dysconnection hypothesis in SZ and BP (Friston and Frith, 1995;

Bokde et al., 2006; Jafri et al., 2008).

Dynamic FNC provides the information about how the connectivity changes over

time, rather than representing the mean FC (Calhoun et al., 2014). It provides

the local functional connectivity at each time window. This is likely capturing

important information that is missed in static FNC approach and indeed, the
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dynamic FNC approach provides the higher overall accuracy rate compared to

the static FNC approach. Moreover, when both static and dynamic FNC features

were combined, the classi�cation approach achieved the highest overall accuracy

rate (thought not signi�cant in the statistical sense); as this approach utilizes the

information from overall mean FNC that may not be captured by the dynamic

FNC approach.

5.5 Limitations and Future Directions

There are several methodological and experimental limitations associated with

sliding-window analysis method and result interpretations. One issue for sliding-

window analysis is the choice of appropriate window size. Is has been reported in

(Sako§lu et al., 2010) that the ideal window size should be able to estimate FC vari-

ability, capture lowest frequencies of interest in the signal, and detect interesting

short-term e�ects. Our dynamic FNC approach was based on an empirically vali-

dated �xed sliding-window of 22TRs (33sec) similar to that used in (Allen et al.,

2012a).Evaluation of changes across variety of window lengths performed using

separate windows (Cribben et al., 2012) and comparisons with time-frequency ap-

proaches which do not require windowing at all (Yaesoubi et al., 2015) will be

interesting to examine in future work.

It is very di�cult to make comparisons between di�erent automatic classi�cation

approaches of mental disorders, as there are several limitations and considerations

associated with these studies. Factors such as study size, MRI scanner parameters,

nature of extracted features, type of classi�er, medication and disease severity in

the patient group e�ects the classi�cation frameworks. Also, without standard

training and testing datasets, comparison of di�erent approaches based only on
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the classi�cation accuracy rate becomes highly ambiguous. It would be interesting

to compare classi�cation performance for diagnosis using the DSM criteria versus

a Biotype-style approach as promoted in the BSNIP study (Keshavan et al., 2013),

where biological features are used as the initial classi�er to derive new diagnostic

entities not based on traditional clinical classi�cations of mental illness.

Also, potential factors such as awareness or subject's anxiety level at the scanner

were not available for our subjects. These factors could potentially contribute to

e�ectively di�erential groups given that both awareness and anxiety are known

to a�ect patterns of brain. Thus, the factors may be important and should be

investigated in future studies, in order to fully interpret the results.

In this study we showed that both resting state static and dynamic FNC features

could be successfully used for automatic discrimination between three groups in-

cluding HC, SZ and BP patients. To the best of our knowledge this the �rst study

using resting-state dynamic FNC features as well as combined static and dynamic

FNC features to classify SZ and BP patients. Here we separated the data into

training and testing dataset during the cross-validation folds. Our approach has

some bias as the whole dataset was �rst processed together, group ICA was per-

formed together, and the FNCs were computed together. To resolve this issue,

separate training and testing preprocessing, group ICA analysis and FNC com-

putation is recommended. However, given that we were interested primarily in a

comparison of static, dynamic, and combined connectivity features, and all used

the same input, this should have little to no impact on our results.
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ICN regions BA tmax
Peak (mm)
(X Y Z)

Subcortical Networks
Putamen (78)

R Putamen 63.69 30 0 3
L Putamen 58.3 -27 -6 9

Putamen (91)
L Putamen 34 73.94 -24 9 -6

Auditory Networks
STG (36)

L Superior Temporal Gyrus 41 50.57 -48 -30 12
R Superior Temporal Gyrus 13 39.86 45 -15 3

Visual networks
Lingual Gyrus (10)

L Lingual Gyrus 18 58.58 -108
Inferior Occipital Gyrus (11)

R Inferior Occipital Gyrus 18 54.54 -129
L Middle Occipital Gyrus 18 54.21 27 -99 -6

Cuneus (16)
L Cuneus 18 64.24 0 -81 24

Calcarine (29)
R Calcarine 30 62.36 12 -69 9

Inferior Occipital Gyrus (32)
L Inferior Occipital Gyrus 19 44.72 -114

R Fusiform Gyrus 18 17.32 30 -78 0
Lingual Gyrus (33)

R Lingual Gyrus 19 51.03 21 -54 -9
Middle Occipital Gyrus (54)

L Middle Occipital Gyrus 19 47.16 -33 -90 12
R Middle Occipital Gyrus 19 47.35 30 -93 12

Sensorimotor Networks
Postcentral (14)

L Postcentral Gyrus 4 51.81 -36 -24 51
Superior Medial Gyrus (27)

L Superior Medial Gyrus 8 43.82 3 30 54
SMA (35)

R supplementary motor area 24 43.01 12 -6 51
SupraMarginal (38)

L SupraMarginal Gyrus 3 45.53 -60 -21 36
R Postcentral Gyrus 3 40.27 57 -18 33

L Inferior Frontal Gyrus 44 21.43 -54 9 24
R Inferior Frontal Gyrus 9 15.86 60 12 27

Table 5.3: Regions of activation, Brodmann area (BA), peak activation t-value
and coordinates for top 15 static FNC feature components
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ICN regions BA tmax
Peak (mm)
(X Y Z)

Cognitive Control
Inferior Temporal Gyrus (64)

L Inferior Temporal Gyrus 37 47.57 -108
R Inferior Temporal Gyrus 37 20.76 54 -48 -9

Middle Temporal Gyrus (92)
R Middle Temporal Gyrus 21 51.2 57 -21 -9
L Middle Temporal Gyrus 21 41.31 -93

Superior Parietal Lobule (60)
R Superior Parietal Lobule 7 48.93 15 -51 63

Inferior Parietal Lobule (63)
L Inferior Parietal Lobule 40 47 -57 -42 36
R SupraMarginal Gyrus 40 47.42 57 -45 33
R Inferior Frontal Gyrus 47 16.04 51 18 -6

Inferior Frontal Gyrus (57)
R Inferior Frontal Gyrus 9 50.3 45 12 30
L Inferior Frontal Gyrus 46 30.38 -45 18 27

Right Inferior Parietal Lobule 40 16.96 36 -51 51
Insula Lobe (98)

R Insula Lobe 47 58.98 42 12 -3
L Insula Lobe 47 48.66 -39 18 -3

Default Mode Networks
Middle Cingulate Cortex (75)

R Middle Cingulate Cortex 31 59.83 6 -33 33
Cerebellar Networks

Cerebellum (3)
L Cerebellum (VIII) 56.24 -135

R Cerebellum (Crus 2) 21.93 42 -54 -39

Table 5.4: Regions of activation, Brodmann area (BA), peak activation t-value
and coordinates for top 15 static FNC feature components



CHAPTER 6

INFLUENCE OF GENETICS ON

TIME-VARYING FUNCTIONAL NETWORK

CONNECTIVITY IN SCHIZOPHRENIA

6.1 Genetics of the Brain Dynamics

It has been evident from several studies that a majority of complex behaviors and

psychiatric disorders have a highly heritable component (Sullivan et al., 2000).

However, identifying these particular genes and understanding the neural mecha-

nisms that relate them to speci�c behavioral problem remain very di�cult (Meyer-

Lindenberg and Weinberger, 2006). Studies suggest that the genetic e�ects on

behavior should be naturally mediated. Thus, the most e�cient approach to un-

derstand the functional impact of genetic variation would be to study the in�uence

of genes on the human brain.

105
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SZ is a psychotic disorder characterized by disintegration in perception of real-

ity, thought processes, and behaviors problems cognitive functionality and chronic

course with lasting problem (Heinrichs and Zakzanis, 1998). SZ can be distin-

guished by gray and white matter abnormalities and disrupted connectivity across

large-scale brain networks (Mohamed et al., 1999). Recent studies show that

connectivity dynamics can capture uncontrolled but reoccurring patterns of inter-

actions among intrinsic networks during a task or at rest that cannot be detected

with static functional connectivity analyses. Some of these studies proposed novel

approaches to study dynamic connectivity and investigated group di�erence in

connectivity between patients and controls (Calhoun et al., 2014; Rashid et al.,

2014). However, the underlying genetic basis of SZ remains elusive.

An e�cient strategy to unravel the genetic risk factors of SZ is through investigat-

ing the e�ects of genetic variations on intermediate phenotypes such as aberrant

brain structure and function, as they are more related to biological mechanisms

compared to behavioral measures. A recent study showed that compared to behav-

ioral measures, SZ risk variant were found to show more e�ects at brain anatomy

and function (Rose and Donohoe, 2013). Imaging genetics o�ers opportunity to

establish neurogenetic risk mechanism associated with brain structure and func-

tion. Thus, this approach makes it possible to identify neural systems in mediating

genetic risk for mental disorders by associating the genetic variants with neuropsy-

chiatric, behavioral or cognitive phenotypes.

Previous FC studies strongly implicate disrupted dFNC as a potential biomarker

for SZ. However, to our knowledge, there has not been any work to characterize

both genetic and imaging aspects together, using dFNC. We studied 61 SZ pa-

tients and 87 HC with good-quality genome-wide SNP data and fMRI data. A

pre-�ltering step was applied to locate potentially susceptibility based on a large
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cohort. These potential causal loci were then analyzed for multivariate associations

with dFNC states using parallel-ICA (Liu and Calhoun, 2000). As a multivari-

ate approach, parallel-ICA extracts genetic and imaging components, respectively

from the SNP data and dFNC states to capture clusters of SNPs or connectivity

between functional networks exhibiting co-variations across subjects which simul-

taneously emphasizing imaging-genetic associations in order to identify genetic

factors explaining variation in dFNC states. This approach also enables us to

study genetic variants clustered into components at a pathway level, potentially

providing more insight into the underpinnings of SZ. To guard against over�tting

issue, the identi�ed dFNC-SNP associations were evaluated with a permutation

test.

6.2 Analysis Methods and Proposed Approaches

6.2.1 Participants

We used rsfMRI data and SNP data obtained from 163 HC (117 males, 46 females;

mean age 36.9) and 151 age- and gender matched patients with SZ (114 males,

37 females; mean age 37.8) during eyes closed condition at 7 di�erent sites across

United States and pass data quality control. Informed consent was obtained from

each participant prior to scanning in accordance with the Internal Review Boards

of corresponding institutions. A total of 162 volumes of echo planar imaging BOLD

fMRI data were collected with a TR of 2 s on 3T scanners. After preprocessing, we

obtained data from a total of 148 participants (87 HC and 61 SZ patients matched

for age) for which both fMRI and SNP data were collected.
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6.2.2 Imaging Data Acquisition and Pre-processing

Imaging data was collected on a 3T Siemens Tim Trio System and on a 3T General

Electric Discovery MR750 scanner at one site. rsfMRI scans were acquired using

a standard gradient-echo echo planar imaging paradigm: FOV of 220 × 220 mm

(64 × 64 matrix), TR = 2 s, TE = 30 ms, FA = 770, 162 volumes, 32 sequential

ascending axial slices of 4 mm thickness and 1 mm skip. Subjects had their eyes

closed during the resting state scan.

Data processing was performed using a combination of toolboxes (AFNI, SPM,

GIFT) and custom code written in Matlab. We performed rigid body motion cor-

rection using the INRIAlign (Freire and Mangin, 2001) toolbox in SPM to correct

for subject head motion followed by slice-timing correction to account for timing

di�erences in slice acquisition. Then the fMRI data were despiked using 3dDespike

algorithm from AFNI to mitigate the impact of outliers. The fMRI data were sub-

sequently warped to a MN) template and resampled to 3 mm3 isotropic voxels.

Instead of Gaussian smoothing, we smoothed the data to 6 mm FWHM using

AFNI3s BlurToFWHM algorithm, which performs smoothing by a conservative

�nite di�erence approximation to the di�usion equation. This approach has been

shown to reduce scanner speci�c variability in smoothness providing "smoothness

equivalence" to data across sites (Friedman et al., 2008). Each voxel time course

was variance normalized prior to performing group independent component analy-

sis as this has shown to better decompose subcortical sources in addition to cortical

networks.

After preprocessing the data, functional data from both control and patient groups

were analyzed using spatial GICA1 framework as implemented in the GIFT soft-

ware (Calhoun et al., 2001c; Erhardt et al., 2011b). Spatial ICA decomposes the
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subject data into linear mixtures of spatially independent components that exhibit

a unique TC pro�le. A subject-speci�c data reduction step was �rst used to reduce

162 time point data into 100 directions of maximal variability using principal com-

ponent analysis. Then subject reduced data were concatenated across time and

a group data PCA step reduced this matrix further into 100 components along

directions of maximal group variability. One hundred independent components

were obtained from the group PCA reduced matrix using the infomax algorithm

(Bell and Sejnowski, 1995). To ensure stability of estimation, we repeated the ICA

algorithm 20 times in ICASSO, and aggregate SMs were estimated as the modes

of component clusters. Subject speci�c SMs and TCs were obtained using the

spatiotemporal regression back reconstruction approach (Calhoun et al., 2001c;

Erhardt et al., 2011b) implemented in GIFT software.

For dynamic FNC analysis, we computed correlations between ICN TCs using a

tapered sliding temporal window (Tukey window having a width of 22 TRs=44

sec; sliding in steps of 1 TR) to capture the variability in connectivity. Final

dynamic FNC estimates for each window were concatenated to form a C×C×W

array representing the changes in correlation between components as a function of

time. We performed k-means clustering on dynamic FNC matrix and obtained 5

cluster centroids or dynamic states based on the elbow criteria.

6.2.3 SNP Data Collection and Pre-processing

The genotyping and genetic quality control procedures were same as described in

our previous work (Chen et al., 2012), which is brie�y summarized here. DNA

was extracted from saliva sample collected from the participants. Genotyping for

all subjects was performed at the University of California at Irvine using a custom
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made assay by selecting In�nium MEGAEx chip as well all SNP loci on the Psych

chip. BeadStudio was used to make the �nal genotype calls and PLINK (Purcell

et al., 2007) was employed for a series of quality controls including: (a) gender

consistency check, (b) sample relatedness (not closer than second degree relatives),

(c) genotyping call rate (>90% at both the individual and SNP level), (d) Hardy

� Weinberg equilibrium in the control population (p < 1 × 106), (e) minor allele

frequency (MAF > 0.05), and (f) missing calls were replaced using high linkage

disequilibrium (LD) loci if available or otherwise removed. A total of 977,242 SNP

loci were retained after quality control and discrete numbers were then assigned

to the categorical genotypes: 0 (no minor allele), 1 (one minor allele), and 2 (two

minor alleles). With PCA, three principal components were identi�ed as ethnicity-

related and eliminated from the data. A pre-�ltering step was conducted leveraging

the Psychiatric Genomic Consortium SZ study (Sullivan, 2010), and we located

1546 SNPs, discriminating patients from controls via a univariate SNP-wise test

with p-values less than 5× 10−7 uncorrected.

6.2.4 Imaging Genetics Framework

Figure 6.1 provides an illustration of the proposed imaging genetics approach.

parallel-ICA was performed through the Fusion ICA Toolbox (FIT,

http://mialab.mrn.org/software/�t/index.html) using the imaging (dynamic states)

and genetic (SNPs) features. The algorithm was con�gured with a threshold of

0.25 for constrained correlations to avoid false positive associations and to only

constrain one pair of components. An endurance parameter was set to -5 × 10−4

to control the decreasing slope of the entropy term and avoid over �tting. We also
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performed a permutation test to assess the validity of identi�ed dFNC-SNP asso-

ciation by investigating the occurrences of inter-modality correlations by chance

in permuted dFNC and SNP datasets. The null distribution was constructed with

the top correlation obtained from each test run. We then counted the instances

with correlations greater than that observed from the original data and calculated

the two-tail probability as the signi�cance level.

Resting-state

RAW data

Pre-processing
Group ICA

YiT

V

Spiral map, Si

Time course, Ri

Si

Ri

C

T

K-means Centroids

Imaging FeaturesParallel ICAGenetic Features

Ri

Dynamic FNC

Preprocessing

Raw Genetic data

Subject x windows x correlation-pairs

Subject x SNPs

Select related imaging-genetic componentsSNP-dFNC Components

V

C

Back-reconstruction

Figure 6.1: An overview of proposed imaging genetics approach.
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6.3 Results

Figure 6.2 illustrates the �ve dynamic FNC states for HC and SZ patients obtained

using k-means clustering, and their state-wise group di�erences as computed using

two-sample t-tests.

Figure 6.2: Dynamic FNC states for healthy (HC), schizophrenia (SZ) and
group di�erence between HC and SZ. Note that, this �gure corresponds to the

Figure 6.1 "Imaging Features" box.

parallel-ICA identi�ed one dFNC-SNP pair components with a signi�cant correla-

tion (r = 0.52, p-value < 6.95×109). The �nal set of associated SNPs was selected

from the results of entire dataset. In a 1000-run permutation test, the absolute

values of the dFNC-SNP top correlations ranged from 0.15 to 0.67 with a median

of 0.26, yielding a p-value of 0.011. In Figure 6.3, both z-scored dFNC and SNP

signi�cant component values resulting from the parallel ICA algorithm is shown.
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Figure 6.3: Results from parallel-ICA showing signi�cantly correlated dFNC
component (top), and SNP component (bottom).

The signi�cant dFNC component values were then thresholded at |z|>3, extracting

top 5% connectivity between ICN pairs from the �ve dynamic states (Figure 6.4),

where the signi�cant SNP component values were thresholded at |z|>2, as seen

in the Manhattan plot in Figure 6.3. Most of the high positive and negative

component values were observed in the dynamic state 1, a state that was found
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to be dominated by the HC subjects in terms of occupancy. On the other hand,

the SNP component showed higher component values at chromosome 6.

Figure 6.4: Connectograms showing the top component pairs observed in
State-1 and State-5 after thresholding the signi�cant dFNC component at |z|>3

as obtained from the imaging features.

The top signi�cant dFNC observed in the signi�cant dFNC component is shown

as connectograms in Figure 6.4, where the contributions were limited to state 1

and state 5.

Figure 6.5 presents the scatterplot for loading parameter of the signi�cantly asso-

ciated components, and group-wise violin plots and summary statistics for both

dFNC and SNP loadings. From ANOVA test, the group mean of dFNC loading

was signi�cantly lower in the patients with SZ (mean=0.0066, standard devia-

tion=0.0159) compared to controls (mean=0.0152, standard deviation=0.0212).

Also, the ANOVA results showed that the group mean of SNP loading was lower in

SZ group (mean=-0.0265, standard deviation=0.0977) compared to HC (mean=-

0.0069, standard deviation=0.1012), although not statistically signi�cant.
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(a) (b)

(c)

(d)

(e)

dFNC Loading Parameter (group-wise difference)

SNP Loading Parameter (group-wise difference)

Figure 6.5: (a) Scatterplot showing dFNC loading parameters versus SNP
loading parameters from the signi�cant parallel-ICA component.(b) Group-wise
violin plots of dFNC loading parameters. (c)Group-wise violin plots of SNP
loading parameters.(d)Table showing group-wise statistics for dFNC loading pa-
rameter. (e) Table showing group-wise statistics for SNP loading parameter

We also computed the correlations between the polygenic risk scores and both

dFNC and SNP components' loadings. The scatterplots of polygenic risk scores

versus component loadings are shown in Figure 6.6. The correlation between the

risk scores and dFNC loadings was -0.2561(p-value=0.0017), whereas the corre-

lation between the risk scores and SNP loadings was -0.5401 (p-value= 1.4024 ×

10−12).
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Figure 6.6: Scatterplots showing polygenic risk scores versus dFNC loading
parameters (left), and SNP loading parameter (right) for the signi�cant parallel-

ICA component.

The signi�cant SNP component was predominantly contributed to by 83 SNPs (top

5% based on absolute values of the component weights). 24 SNPs were mapped to

13 unique genes using UCSC hg19 assembly (http://hgdownload.cse.ucsc.edu/),

while the rest were from inter-genic regions. We examined the genetic architecture

of our �ndings using Reactome Pathway Analysis (RPA: https://www.reactome.org),

where the 13 genes were compared with the whole genome as background. The

results obtained from RPA are provided in Table 6.2. We also analyzed our query

genes to �nd the biological functions of these top genes, which are provided in

Table 6.3.

6.4 Discussion

In this study we investigated the genetic underpinnings of dysfunctional dynamic

FNC in SZ. A multivariate approach, parallel-ICA, was used to extract SNP and

dFNC components, and retrieve intermodality associations. Due to the limited

sample size compared to genome-wide SNPs, we preselected 1546 risk loci based
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upon group di�erence to focus the dFNC-SNP association analysis on polymor-

phisms likely relevant to SZ. Finally one signi�cant dFNC-SNP pair was identi�ed

and the permutation test indicated a low possibility that the observed correlation

was due to over�tting, though the current result still awaits further validation in

a larger cohort.

Most of the signi�cant component pairs with both positive and negative com-

ponent scores were captured by dynamic state 1 (Figure 6.4). Dynamic state 1

represents a state that is dominated by the HC in terms of occupancy rate (Table

6.1; HC=22% and SZ=14%). The results from Figure 6 also con�rm that, the

higher the polygenic risk score is for a given subject, the less likely it is to be in

state 1.

Our �ndings on top dynamic FNC component pairs (Figure 6.4) included both

positive and negative connectivity among a limbic component, posterior cingulate

cortex (PCC) and several frontal, temporal, parietal and occipital components.

Previous studies also reported aberrant FNC in SZ subjects associated with many

of these components, for example, dMPFC (Huang et al., 2010).

The result obtained from GeneMANIA report that 40.49 % of the 13 listed genes

show co-expression. There is 59.51% genetic interaction among the query genes.

Reactome Pathway Analysis (RPA) further shows that these selected genes are

involved in di�erent cellular processes including the immune system, metabolism

and neuronal systems (Table 6.2).

Among the top 13 genes, CHRNA3, ATXN7 and SMG6 are previously found to be

involved in neurological, psychological and developmental disorders, while RERE
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State# #dFNC Cells Occupancy (HC/SZ)
1 23 22%/14%
2 0 32%/11%
3 0 20%/18%
4 0 9%/32%
5 2 16%/27%

Table 6.1: Signi�cant dynamic FNC cells and group-wise occupancy rate across
each state

and HLA-C are involved in immunological disease (Table 6.3). It would be inter-

esting to further explore these genes and the corresponding SNPs in correlation to

neuroimaging studies and SZ.

The proposed parallel-ICA framework, to our best knowledge, is the �rst study to

identify interactions between dynamic functional connectivity and genetic infor-

mation. Our �ndings showed that genetic SNP factors could be investigated by

using endophenotypic neuroimaging �ndings in a multivariate format.



Chapter 6. In�uence of Genetics on FNC 119

T
a
b
l
e
6
.2
:
R
ea
ct
om

e
P
at
h
w
ay

A
n
al
y
si
s
u
si
n
g
th
e
to
p
ge
n
es

C
a
n
o
n
ic
a
l
P
a
th
w
a
y

P
-v
a
lu
e

G
e
n
e
N
a
m
e

N
e
u
ro
n
a
l
S
y
st
e
m

0.
60
42
02

C
H
R
N
A
3

N
e
u
ro
tr
a
n
sm

it
te
r
R
e
ce
p
to
r
B
in
d
in
g
A
n
d

D
o
w
n
st
re
a
m

T
ra
n
sm

is
si
o
n
In

T
h
e
P
o
st
sy
n
a
p
ti
c
C
e
ll

0.
31
36
69

C
H
R
N
A
3

T
ra
n
sm

is
si
o
n
a
cr
o
ss
C
h
e
m
ic
a
l
S
y
n
a
p
se
s

0.
43
10
53

C
H
R
N
A
3

Im
m
u
n
e
S
y
st
e
m

9.
28
E
-0
5

H
L
A
-C

M
e
ta
b
o
li
sm

0.
06
43
22

SL
C
44
A
4,
A
T
X
N
7

G
e
n
e
E
x
p
re
ss
io
n

0.
86
65
56

E
H
M
T
2,
T
H
O
C
7,
SM

G
6



Chapter 6. In�uence of Genetics on FNC 120

T
a
b
l
e
6
.3
:
B
io
lo
gi
ca
l
fu
n
ct
io
n
s
of

th
e
to
p
ge
n
es

F
u
n
ct
io
n
s

P
-v
a
lu
e

G
e
n
e
N
a
m
e

N
e
u
ro
lo
g
ic
a
l
D
is
e
a
se
,
P
sy
ch
o
lo
g
ic
a
l
D
is
o
rd
e
rs

4.
64
E
-0
2

C
H
R
N
A
3

H
e
re
d
it
a
ry

D
is
o
rd
e
r,
N
e
u
ro
lo
g
ic
a
l
D
is
e
a
se

6.
78
E
-0
4

A
T
X
N
7

M
o
le
cu
la
r
T
ra
n
sp
o
rt
,
R
N
A
T
ra
�
ck
in
g

3.
10
E
-0
4

SM
G
6,
T
H
O
C
7

V
is
u
a
l
S
y
st
e
m

D
e
v
e
lo
p
m
e
n
t
a
n
d
F
u
n
ct
io
n

4.
45
E
-0
2

A
T
X
N
7

C
e
ll
M
o
rp
h
o
lo
g
y,
E
m
b
ry
o
n
ic
D
e
v
e
lo
p
m
e
n
t

6.
76
E
-0
3

C
C
H
C
R
1

N
e
rv
o
u
s
S
y
st
e
m

D
e
v
e
lo
p
m
e
n
t
a
n
d
F
u
n
ct
io
n
,
T
is
su
e
M
o
rp
h
o
lo
g
y

1.
55
E
-0
2

A
T
X
N
7

D
e
v
e
lo
p
m
e
n
ta
l
D
is
o
rd
e
r,
N
e
u
ro
lo
g
ic
a
l
D
is
e
a
se

3.
34
E
-0
2

SM
G
6

Im
m
u
n
o
lo
g
ic
a
l
D
is
e
a
se

1.
08
E
-0
2

R
E
R
E

Im
m
u
n
o
lo
g
ic
a
l
D
is
e
a
se
,
In
�
a
m
m
a
to
ry

D
is
e
a
se
,
In
�
a
m
m
a
to
ry

R
e
sp
o
n
se

6.
78
E
-0
4

H
L
A
-C



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

In this doctoral dissertation, we developed and presented time-varying FNC-based

methods for functional neuroimaging by applying two main concepts- Independent

Component Analysis (ICA) and automatic classi�cation approach using support

vector machine (SVM). While ICA has been used to decompose the fMRI data into

functionally specialized brain components and then group them into functional

networks to assess the FNC among di�erent networks, SVM has been used for

training these connectivity features for automatic classi�cation purpose. We have

extended these concepts to formulate new methods for time-varying FNC, multi-

modal data analysis and classi�cation algorithms.

In this thesis, we employed a 'chronnectomic' approach (i.e., identifying time-

varying and reoccurring patterns of connectivity among brain regions) to evaluate

transient states of connectivity among brain networks in a large, population-based

121
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cohort study with typically developing children. We investigated age-related as-

pects of functional maturation during childhood with both modularized and dis-

connected dynamic states. In addition, we characterized the "chronnectopathy"

(i.e. dysfunctional chronnectivity) associated with autistic traits. Dynamic FNC

was evaluated using a sliding-window approach, and revealed four transient states.

Inter-network connectivity increased with age in modularized dynamic states, illus-

trating an important pattern of connectivity in the developing brain. Furthermore,

we demonstrated that higher levels of autistic traits were associated with longer

dwell times in a globally disconnected state. These results provide a roadmap to

the chronnectomic organization of the developing brain and suggest that charac-

teristics of functional brain maturation are related to autistic traits.

To extend our understanding on time-varying FNC in adult subjects, including

both HC subjects and patients with severe mental disorders, we utilized ICA on

rsfMRI data to obtain ICNs in cohorts of HC and age matched SZ and BP patients.

Subsequently, we investigated di�erence in FNC between HC and patients. We

quanti�ed di�erences in both static (average) and dynamic (windowed) connec-

tivity during the entire scan duration. Disease-speci�c di�erences were identi�ed

in connectivity within di�erent dynamic states. Notably, results suggest that pa-

tients make fewer transitions to some states (states 1, 2 and 4) compared to HC,

with most such di�erences con�ned to a single state. SZ patients showed more

di�erences from HC subjects than did BP, including both hyper and hypo connec-

tivity in one common connectivity state (state 3). Also group di�erences between

SZ and BP patients were identi�ed in patterns (states) of connectivity involv-

ing the frontal (dynamic state 1) and frontal-parietal regions (dynamic state 3).

These results provide new information about these illnesses and strongly suggest

that state-based analyses are critical to avoid averaging together important factors
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that can help distinguish these clinical groups.

We developed new classi�cation algorithms for automatic classi�cation of SZ, BP

and HC subjects based on their static and dynamic FNC features. We also pre-

sented comparison based on classi�cation performance between static and dynamic

FNC. Results show that dynamic FNC has signi�cantly higher predictive accuracy

than static FNC. However, static and dynamic FNC have distinct advantages and

appear to capture complementary aspects of connectivity. Combining static and

time-varying FNC features improved (but not statistically signi�cant) the classi�-

cation performance beyond each type of feature alone. A three-way classi�cation

methodology based on static and dynamic FNC features discriminates individual

subjects into appropriate diagnostic groups with high accuracy. Results from this

study further justify the necessity of studying time-varying FNC more extensively.

Our proposed classi�cation framework is potentially applicable to additional men-

tal disorders.

We also introduced a novel imaging-genetics framework using parallel-ICA algo-

rithm, to explore the association between time-varying FNC and genetic features

(SNP). Our preliminary results suggest that genetics features as captured by SNP

data can in�uence brain's time-varying FNC, which may potentially explain the

dysfunctional connectivity in patients with SZ. By jointly analyzing the features

from both modalities, we may therefore be able to develop relevant biomarkers to

diagnosis severe mental disorders such as SZ.

The published frameworks and results (Rashid et al., 2014, 2015, 2016a,c,b), also

presented in this dissertation, show considerable improvement over existing meth-

ods and have proved to be viable for uncovering new and improved FNC-related

biomarkers in typical development, as well as patients with mental disorders. We
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sincerely hope that this work contributes to signify the important role played by

time-varying FNC as measured from fMRI data for diagnosis of severe mental

disorders.

7.2 Future Work

There are still many aspects to be explored in the future regarding the method-

ological development and application of FNC analysis. As mentioned in Chapter

3, our developmental FNC study was cross-sectional and all participants were

of school-age, so the interpretation of our results can not be extended to other

stages of development. A future work should include longitudinal studies to reveal

trajectories of dynamic FNC in typical and atypical development.

Another future work can include evaluation of di�erent window sizes in sliding-

window analysis. Throughout our FNC analyses, we employed a �xed window

size of 22 TR to perform sliding-window approach. FNC changes across a variety

of windows sizes should be compared in order to optimally estimate connectivity

variability and capture the lowest frequencies of interest in the signal, as well as

to detect interesting short-term e�ects..

Our proposed classi�cation algorithms in Chapter 5 only included fMRI data and

incorporated FNC-related featured. There are several biomarkers based on di�er-

ent modalities for mental disorders such as SZ (see Chapter 6). Future work may

include comparing and combining features from multiple modalities, such as FNC

measures from fMRI data and genetic variations from SNP data for more robust

and accurate classi�cation framework. Recently, only a few studies have combined

two or three modalities for classi�cation purposes. Yang et al., combined fMRI
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and genetics data for automatic classi�cation of SZ patients from HC (Yang et al.,

2010). Another recent study proposed a classi�cation framework by combining

fMRI, di�usion tensor imaging (DTI) and sMRI to classify SZ patients (Sui et al.,

2011).
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APPENDIX A

A.1 Static connectivity results

Figure A.1 shows the mean static FNC for all 774 subjects. To assess how the

static FNC develops and forms the adult-like connectivity patterns, we searched for

age- and sex-speci�c static FNC pro�les. Both positive and negative associations

between connection strength and age were found in the static FNC. In particular,

for CC components, the within-network connectivity showed decreasing patterns

with age, and between-network connectivity mostly showed increasing patterns

with age. We speci�cally focused on the default-mode connectivity as functions

of age and sex. In the DMN, the average between-network connectivity were

increasing with age for DMN components left MCC, right AG and left preC, and

decreasing with age for DMN components right preC and left AG (Figure A.2).

Also, both male and female dominated connectivity patterns were found in static

FNC. The average between-network connectivity were greater for girls for DMN

126
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components left MCC and left preC, and greater for boys for DMN components

right AG, right preC and left AG (Figure A.2).

Figure A.1: Mean static functional network connectivity (sFNC) map for 774
subjects.
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Figure A.2: Age- and sex-related associations in static FNC. For age analyses,
red indicates positive association between that particular pairwise connection
and age, whereas blue indicates a negative age association. For analyses of
sex, red indicates where female subjects showed stronger connectivity than male
subjects, and blue indicate where male subjects showed stronger connectivity
compared to female subjects. All the results presented here survived the false
discovery rate (FDR) multiple comparison correction threshold of pFDR = 0.05.
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A.2 Validation framework for connectivity mea-

sures

A.2.1 Reproducibility of clusters

Figure A.3: Reproducibility of clusters was established via non-overlapping
split-half samples of subjects. For half-split cross-validation, the subjects were
split into two groups with equal number of subjects, and the k-means algorithm
was applied with 500 repetitions to the subject exemplars in that group (∼1500
instances). The total number and percentage of occurrences is listed above each

centroid.

A.3 Sensitivity analyses of dynamic connectivity

�ndings

A.3.1 Sensitivity analysis based on behavioral problems

In order to ensure that the results were not driven by subjects with higher levels

of behavioral problems as measured by CBCL scores, sensitivity analyses were run.

To perform the sensitivity analysis, we excluded all the subjects showing any child
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behavioral problem using CBCL scores from the original dataset (after exclusion,

number of subjects=531). We then computed the age- and sex-speci�c e�ects on

dynamic FNC (Figure A.4) and summary measures of the dynamic FNC such as

MDT and FT (Figure A.5). These results also produced the same direction of

e�ects for each of these connectivity measures, as found with the whole dataset.

Figure A.4: Results from age- and sex-related associations across dynamic
connectivity states after excluding subjects with higher levels of behavioral prob-
lems. For age analyses, red indicates positive association between that particular
pairwise connection and age, whereas blue indicates a negative age association.
For analyses of sex, red indicates where female subjects showed stronger connec-
tivity than male subjects, and blue indicate where male subjects showed stronger
connectivity compared to female subjects. All the results presented here sur-
vived the false discovery rate (FDR) multiple comparison correction threshold
of pFDR = 0.05, and the FDR threshold is depicted on the color bar with red

arrows.
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Figure A.5: Bar plots showing the summary metrics from the four dynamic
connectivity states in relation to age and sex after excluding subjects with higher
levels of behavioral problems. Asterisks (*) indicate the results survived the false
discovery rate (FDR) multiple comparison correction threshold of pFDR = 0.05.
The rendering brain maps are showing modularized positive (red) and negative

(blue) connectivity for the corresponding dynamic states.

A.3.2 Case-control study for autism

We also designed a case-control study for subjects with ASD and autistic traits,

where we had age, sex and IQ matched 88 healthy subjects and 22 subjects with

autistic traits and ASD. We assessed the di�erence in dynamic FNC states between

HC and autistic traits and ASD groups (Figure A.6). Note that, these results are
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showing group di�erences between HC and ASD in state-1 and state-4, two of the

dynamic states that did not capture any SRS e�ects (e�ects of autistic trait) in

terms of MDT and FT for the original analyses with 774 subjects

Figure A.6: The medians of cluster centroids by state for HC (top) and ASD
(middle) along with the count of subjects that had at least one window in each
state are shown. The bottom row shows the FDR-corrected (indicate p< 0.05)
results of two-sample t-test performed across subject median dFNC maps by

state.

A.3.3 Sensitivity analysis based on autistic trait and autism

We also performed a sensitivity analysis to evaluate the e�ects of SRS scores on

summary measures of the dynamic states (MDT and FT). We removed the subjects

who are diagnosed with ASD, as well as the subjects with SRS scores above the

screening cuto�. Using this subset of the subjects (after exclusion, number of

subjects=528), we performed the analyses for SRS score e�ects on MDT and FT

(Figure A.7). The SRS sensitivity analysis did not reveal any FDR-corrected e�ect
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of autistic traits. However, the direction of the e�ects remained the same as the

original analysis (with 774 subjects).

Figure A.7: Bar plots showing summary metrics from the 4 dynamic connec-
tivity states in relation to autistic traits after removing subjects with autistic
traits and ASD. The rendering brain maps are showing modularized positive
(red) and negative (blue) connectivity for the corresponding dynamic states.

A.3.4 IQ-adjusted analyses

As ASD is often accompanied by de�cits in cognition, it was important to also

rule-out that any observed associations between autistic traits and dynamic con-

nectivity were not simply a re�ection of general intellectual ability. Analyses asso-

ciating autistic traits with dynamic connectivity remained largely unchanged after

adjusting for non-verbal IQ. Speci�cally, for whole-matrix associations in the four

dynamic states, the general pattern of association remained. For the summary
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measure MDT, regression coe�cients did not change more than 5%, suggesting

the association is not confounded by IQ.

A.3.5 Analyses of motion parameters

A.3.5.1 Analyses using original 5mm cut-o� for maximum translation:

We investigated the e�ect of mean framewise-displacement (FD; calculated as the

total absolute displacement in all dimensions (Power et al., 2012)) in the current

sample (774 subjects, maximum translation <5mm), using the following regression

models:

Modelmax_trans<5mm :MDTi ∼ β0 + β1agei + β2sexi + β3FD
mean
i + εi (A.1)

Modelmax_trans<5mm :MDTi ∼ β0+β1SRSi+β2agei+β3sexi+β3FD
mean
i +εi (A.2)

The following Table A.1 highlight the results from this analyses, where no asso-

ciation between mean FD and MDT was observed, and the original age, sex and

SRS score associations with MDT remained highly consistent in terms of both

directionality and signi�cance of the e�ect.

Also, note that, no signi�cant correlation between mean FD, and age, sex and SRS

score was found in this follow-up analysis.

A.3.5.2 Analyses using 3mm cut-o� for maximum translation:

(i)Age and Sex associations
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State 1 State 2 State 3 State-4

Age
β 0.0113 0.0048 -0.1136 -0.0443
ρ 0.9249 -2.0628 0.7902 0.9287

Sex
β -0.2260 -2.4168 4.2423 -1.0998
ρ 0.7581 0.1009 <2E-10 0.2707

SRS
β 0.9516 10.4629 -4.6043 -0.4676
ρ 0.4753 0.0003 0.0079 0.8082

Table A.1: Association of age, sex and SRS with mean dwell time with maxi-
mum translation <5mm

Sample size <3mm <5mm
Age and sex 689 774

SRS 500 560

Table A.2: sample sizes with maximum translation cut-o�s 3mm and 5mm

First, we exclude subjects with maximum translation greater than 3mm. This new

and conservative exclusion criterion resulted in 689 subjects with both age and sex

information, and 500 subjects with age, sex and SRS score information. Table A.2

summarizes the sample sizes for original exclusion criterion (maximum translation

> 5mm) and the conservative exclusion criterion (maximum translation >3mm).

Next, we performed linear regression analysis to �nd the association between MDT

and age and sex using the subjects from conservative (3mm) inclusion criterion.

The following tables show the e�ect of age and sex on MDT. These results in Table

A.3 con�rm that the directionality and signi�cance of age and sex associations

even with this conservative cut-o� have remained highly consistent and do not

change the conclusions (where age is showing negative association with the MDT

in state-2, and sex is showing positive association with MDT in state-3).

Modelmax_trans<5mm :MDTi ∼ β0 + β1agei + β2sexi + εi (A.3)

We wanted to see if the mean FD correlates with MDT of the subjects after

applying the new 3mm inclusion criterion. To do this, we used the following
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State 1 State 2 State 3 State 4

Age
β 0.7633 -1.8050 -0.5327 -0.0310
ρ 0.0515 0.0054 0.2426 0.9499

Sex
β -0.5505 -1.9088 4.2280 -1.1953
ρ 0.4842 0.1428 < 2E − 10 0.2280

Table A.3: Association of age and sex with mean dwell time with maximum
translation <3mm

regression model:

Modelmax_trans<3mm :MDTi ∼ β0+β1SRSi+β2agei+β3sexi+β3FD
mean
i +εi (A.4)

The results from the above linear regression analysis model also showed no asso-

ciation between mean FD and MDT, while the associations between age and sex

with MDT remained highly consistent and not changing the conclusions

(ii) SRS score association

We also performed linear regression analyses on MDT and SRS scores with and

without providing mean FD as a covariate in the model (for subjects with 3mm

cut-o�). The following Table A.4 shows that the results remained highly consistent

and do not change any conclusions in terms of signi�cance and directionality, with

no association between MDT and mean FD.

Modelmax_trans<5mm :MDTi ∼ β0 + β1agei + β2sexi + εi (A.5)

Modelmax_trans<3mm :MDTi ∼ β0+β1SRSi+β2agei+β3sexi+β3FD
mean
i +εi (A.6)

Again, note that, no signi�cant correlation between mean FD, and age, sex and

SRS score was found in this follow-up analysis.
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SRS e�ect State 1 State 2 State 3 State 4

Standard Model
β 0.6470 6.2354 -2.0674 -0.6791
ρ 0.6381 0.0060 0.1964 0.6950

FD-Adjusted
β 0.6441 6.2237 -2.100 -0.6640
ρ 0.6399 0.0061 0.1894 0.7017

Table A.4: Association of SRS with mean dwell time with maximum transla-
tion <3mm, with and without additionally adjusting for framewise-displacement

A.4 Elbow criterion for k-means clustering

In k-means clustering approach, a dataset is grouped into a user-de�ned number

(k) of clusters. This algorithm clusters the data into k clusters, even if the number

of clusters de�ned by the user for the given dataset is not correct. Thus, while

using this algorithm, it is required to determine the optimum number of clusters.

One of the commonly used methods to validate the optimum number of clusters

is the elbow criterion (Kodinariya and Makwana, 2013).

For elbow criterion, k-means clustering algorithm is repeatedly run on the same

dataset for a range of values of k (for example, choose k from 2 to 20 in Figure

A.8), and for each value of k, calculate the sum of squared errors (SSE). Finally,

a line chart of the SSE for each value of k is plotted and investigated. If the line

chart resembles an arm, then the 'elbow' on the arm is the best or optimum value

of cluster number k. The main idea is to obtain a small SSE, while considering

the fact that SSE tends to decrease to 0 as the value of k is increased. In fact, the

SSE is exactly 0 when k is equal to the number of data point. Thus, in order to

choose a small value of k that still has a low SSE, the elbow from the line chart

guides the user where the decreasing values with increasing k will start.
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Figure A.8: Elbow criterion for k-means clustering algorithm. The red curve
is showing the observed values of the average within-cluster sum of square for
cluster size, k=2 to 20. The black curve is the best �t of the elbow-shaped
curve to the observed data (red curve), by minimizing the distance between the
observed data and the elbow-shaped curve. Here, optimum number of clusters

is 4 as shown by the elbow-shaped curve.

A.5 Intrinsic connectivity network selection

For all independent components or ICs, we computed what percentage of the

thresholded component spatial maps overlap with gray matter. If the overlap

with gray matter was above 60% (showing high overlap with gray matter, and

low spatial overlap with known vascular, ventricular, motion, and susceptibility

artifacts, and time courses dominated by low frequency �uctuations), we consid-

ered that component as ICN. Otherwise we excluded it. Also, we investigated the

spectral characteristics of the component time courses using two previously used

metrics to classify components (Robinson et al., 2009):
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1. Dynamic range: it is de�ned by the di�erence between peak power and

minimum power at frequencies to the right of the peak. The following Figure

A.9 shows depiction of dynamic range.

Figure A.9: Example of the average power spectrum of an independent compo-
nent illustrating the features used to compute dynamic range and low frequency

to high frequency power ratio (Allen et al., 2012a).

2. (ii) Low frequency to high frequency power ration: it is de�ned by the ratio

of the integral of spectral power below 0.10 Hz to the integral of power

between 0.15 and 0.25 Hz. A component is highly likely to be an ICN if it

has a higher low frequency spectral power (that is, the ratio of low frequency

to high frequency power would be higher). Figure A.10 shows an example of

scatterplot of low frequency to high frequency ratio, versus dynamic range

for components characterized as ICN, artifacts or mixture of both types.
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Figure A.10: Example of scatter plot of low frequency to high frequency power
ratio versus dynamic range for independent components. Component spatial
maps were used to characterize components as ICNs, artifacts or mixture of the

two (Allen et al., 2012a).

A.6 Subject exemplars selection and k-means clus-

tering algorithm

As mentioned in chapter 3, we initialized the cluster centroid by using the subject

exemplars (most variable FC windows) to �nd a starting point. Previous studies on

dynamic connectivity using fMRI, EEG and MEG modalities have suggested that,

k-means clustering is very sensitive to the starting point, and by using a better

staring point, k-means can perform optimally. This choice of starting points for

clustering may a�ect the �ndings of dynamic states, as without any initial starting

point, or even with a bad starting point, the clustering results would not be well
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optimized. Figure A.11 shows the subject exemplars selection during k-means

clustering approach.

Figure A.11: K-means clustering approach and subject exemplars selection
(Allen et al., 2012a).

A.7 Validation of dynamic clustering approach

To evaluate whether 'random' or 'spurious' dynamics are a concern in our multi-

variate clustering approach, we performed simulations where an inconsistent phase

randomization in the Fourier domain was applied to original ICN time courses to

create new, 'synthetic-like' times courses with a random phase shift. We em-

ployed a similar approach as shown in (Handwerker et al., 2012), where we �rst

preserved the important properties of the phase randomized time series, such as

power spectrum and autocorrelation, while creating the null model. We then com-

puted dFNC correlation matrices using these phase-randomized time courses for
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all subjects. We performed k-means clustering on the dFNC matrices and com-

pared the observed cluster centroids to those obtained using original nonrandom-

ized data. To ensure that the correlation magnitudes (which will be di�erent in

the phase-randomized data versus the original data) were not driving the observed

structure in cluster centroids, we demeaned the dFNC correlation time series prior

to clustering for both original and phase-randomized datasets.

For the multivariate clustering approach, the cluster centroids from k-means clus-

tering of original data (Figure A.12) show structured modular patterns whereas

the centroids obtained from dFNC matrices from phase-randomized time courses

show no structure. To quantify this apparent di�erence, we calculated the total

distance between centroids (de�ned as sum of pairwise Euclidean distances be-

tween all �ve k-means cluster centroids) for the cluster centroids derived using

phase randomized ICN time courses and for the observed data. As seen in Figure

A.13, the observed distance between centroids (red triangle) is much larger and

shows no overlap with the null distribution of distances (histogram bar plots), gen-

erated by clustering the dFNC matrices of phase-randomized time courses (n =

500 iterations). Note that, the distance between centroids in the original nonran-

domized data should be much greater than the null distribution of the distances

between centroids, which are expected to be very close to each other.

The phase randomization approach that we applied here for generating the null

model is appropriate and attractive since it preserves both the spectral power as

well as the temporal autocorrelation of the original timeseries. These simulations

suggest that the multivariate clustering approach to detect connectivity dynamics,

which is based on patterns of connectivity rather than variability per se, is indeed

uncovering e�ects that are clearly distinguishable from a null.



Appendix A. FNC in Typical Development 143

Figure A.12: A) Centroids obtained from k-means clustering of demeaned
dFNC correlation time courses computed using ICN time courses from 774 sub-
jects. B) Centroids obtained from k-means clustering of the same data as shown
in A, except that ICN time courses were phase randomized in the Fourier do-

main.

Figure A.13: Null distribution of total Euclidean distances (de�ned as sum of
pairwise Euclidean distances between all �ve k-means cluster centroids) between
cluster centroids derived using phase randomized ICN time courses (histogram

bar plots) and the actual (un-randomized) data (red triangle).
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A.8 Signal-to-�uctuation-noise Ratio (SFNR)

To measure the temporal stability, we computed the signal to �uctuation noise

ratio or SFNR (Friedman and Glover, 2006), by using the following equation:

SFNR =
average(average(Sobjectvoxel_intensity

))time

stdtemporal(average(Sobjectvoxel_intensity
))

(A.7)

Where, ROI: 20x20 voxels at the center of the object (in this case, the brain)

Signal: the average voxel intensity in all the ROIs de�ned in the object, averaged

across time. Fluctuation noise: the (temporal) standard deviation of the (spatial)

average in the same ROIs, after the slow drift (quadratic) has been removed from

the temporal series.

A.9 Normalization with a study-speci�c template

We have also performed a sub-analysis for this speci�c sample, where we �rst cre-

ated an age appropriate, study-speci�c structural template (GenR template) by

taking the average of the middle volume of all the subjects, and then re-normalizing

the group aggregate maps of the independent components as found by our original

group-ICA approach using this study-speci�c template. We also re-normalized a

subset of 50 subjects' data to this study speci�c template. Using these study-

speci�c normalized data, we performed spatial-temporal regression (STR) anal-

ysis and generated back-reconstructed spatial maps and time-courses for those

subjects. Finally, we computed the static FNC matrix for these 50 subjects us-

ing the STR back-reconstructed time-courses, and compared it with the original

static FNC matrix for the same 50 subjects. We found no signi�cant statistical
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Association of
MDT and SRS

Sample=560 Beta p-value
State-2 12.07 0.0003
State-3 -5.90 0.008

Sample=208 Beta p-value
State-2 17.92 <2E-10
State-3 -3.68 0.156

Table A.5: Association of MDT and SRS for original sample and restricted-age
analysis.

di�erence between the two static FNC matrices. This is expected and is one of

the bene�ts of using the group ICA approach, which we have shown is relatively

robust to spatial variability among subjects (Allen et al., 2012b).

A.10 Analyses of co-linearity between age and SRS

e�ects

In order to verify if there is any co-linearity between the e�ects of age and those of

SRS (even though little/no interaction between age and SRS score was observed),

we ran a restricted-age analysis, where we took a sub-group of 8-to-9-year-old

subjects (total 208 children). Restricting the age-range in the study limits the

potential for residual age-related confounding. We then performed the regression

analysis on the MDT of this sub-group and checked if the associations that we

observed with full dataset (560 subjects) still hold. In general, in instances of

residual confounding, we would expect to see highly attenuated e�ect estimates

and non-signi�cant p-values in a restricted sample such as this. However, results

are consistent with the original study, and in some cases even become stronger,

suggesting minimal residual age-related confounding. Results in states that showed

signi�cant e�ects in the original study are given in the below Table A.5:
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Child Characteristics (n=774)
Age at MRI 7.99±1.01
Gender (% boy) 52.1
Ethnicity (%)

Dutch 71.8
Other Western 6.5
Non-Western 21.7

Social Responsiveness Scale weighted total score 0.27±0.31
Age(years) at Social Responsiveness Scale assessment 6.2±0.46
No-verbal IQ 102±14.5

Table A.6: Participant characteristics

Cognitive
Measures

Full Sample
n=774

Con�rmed
Cases
n=19

Mean Range Mean Range
Non-verbal intelligence 102 50-140 99 67-122

Language Comprehension
Score

22 12-26 22 13-26

Word production 30
months, no of words

244 2-310 230 60-301

Non verbal intelligence was measured using two subsets of the Snijders-Oomen
Neit-verbale

Table A.7: Additional participant characteristics

Also, we computed the spearman correlation between age and SRS for the full

sample and found no correlation between age and SRS (r=0.03, p-value =0.5248).
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Table S2 
Peak activations of ICN spatial maps. Coordinate 
= max coordinate (mm) in MNI space, following 
LPI convention. 

ICN Region Coordinate 
Sub-cortical networks    
IC: 37   
Right Putamen [18  13  -6] 
IC: 13  
Left Putamen [-27   0   3] 
Right Putamen [27   3   3] 
IC: 60  
Right Thalamus [12 -30   9] 
Auditory networks  
IC:99  
Left Superior Temporal 
Gyrus 

[-51 -27   9] 

Right Superior Temporal 
Gyrus 

[60 -18   9] 

Sensorimotor networks   
IC:21  
Left SMA [-3   6  48] 
IC: 51  
Right SupraMarginal Gyrus [54 -33  27] 
IC: 24  
Right SupraMarginal Gyrus [-58 -24  41] 
IC: 3  
Left Precentral Gyrus [-36 -24  57] 
IC: 6  
Right Paracentral Lobule [6 -30  66] 
IC: 8  
Right Postcentral Gyrus [54  -9  33] 
Left Postcentral Gyrus [-51 -12  33] 
Visual networks  

 IC: 53 
 Right Fusiform Gyrus [27 -45 -12] 

Left Fusiform Gyrus [-24 -48  -9] 
IC: 77 

 Left Lingual Gyrus [-9 -57   0] 
IC: 26 

 Left Calcarine Gyrus [-12 -60  18] 
IC: 57 

 Right Fusiform Gyrus [30 -78  -6] 
IC: 61 

 Left Cuneus [3 -84  24] 
IC: 62 

 Left Cuneus [12 -72  36] 
IC: 80 

 Right Superior Occipital 
Gyrus 

[30 -66  45] 
 

IC: 81  [21 -66  9] 
Right Superior Occipital 
Gyrus  
 
 

 

 
Table S2 (continued) 
 

ICN Region Coordinate 
Cognitive control 
networks 

!Left!Superior!Medial!Gyrus! [46!!55!!!9]!
IC:!47!

!Left!Middle!Frontal!Gyrus! [424!!48!!25]!
! !IC:!31!
Left!Superior!Frontal!Gyrus! [418!!22!53]!
IC:!89!

!Right!Middle!Temporal!Gyrus! [45!460!!12]!
IC:!67!

!Left!Middle!Temporal!Gyrus! [448!457!!12]!
IC:!71!

!Right!Middle!Frontal!Gyrus! [42!!7!!40]!
IC:!73!

!Right!Middle!Frontal!Gyrus! [33!!45!!12]!
IC:!96!

!Left!Inferior!Frontal!Gyrus! [448!!15!!27]!
IC:!90!

!Right!Inferior!Parietal!Lobule! [48!439!!48]!
IC:!98!

!Right!Insula!Lobe! [45!!!3!!!6]!
IC:!83!

!Right!Middle!Temporal!Gyrus! [51!439!!!6]!
IC:!79!

!Left!Superior!Parietal!Lobule! [430!454!!48]!
Default-mode networks 

 IC:!34!
!Right!Precuneus! [3!465!!55]!

IC:!95!
!Right!Middle!Cingulate!

Cortex! [6!!30!!30]!
IC:!12!

!Left!Middle!Cingulate!Cortex! [0!!!0!!33]!
IC:!92!

!Right!Angular!Gyrus! [48!457!!39]!
IC:!19!

!Left!Precuneus! [0!457!!33]!
IC:!50!

!Left!Angular!Gyrus! [445!460!!36]!
Cerebellar networks 

 IC:!2!
!Left!Cerebellum! [433!466!442]!

IC:!7!
!Right!Cerebellum! [36!463!439]!

!

Figure A.14: Table showing peak coordinates of ICN spatial maps.Coordinates
= max coordinate (mm) in MNI space, following LPI conversion.
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APPENDIX B

B.1 Feature selection using DISR method

Figure B.1 shows the information on how many of the 10 cross-validation (CV)

runs selected the same features using the double input symmetric relevance (DISR)

method (Meyer and Bontempi, 2006) . Note that total number of features that

were selected at least once in the 10 CV 124. Here, to be consistent with the

number of features used in static FNC classi�cation, we are just showing the

counts for top 100 features. Here, �rst we obtained 100 static featured for each

cross-validation iteration. Then we computed how many of the 10 CV runs had

these features in common. For convenience, we labeled the 100 features from

the �rst CV run as (feat 1, feat 2, ..., feat 100), and used them as a reference

while comparing the features from all other CV runs. Out of those 100 features

obtained using DISR method at each CV run, 70 features (feat 1 through feat 70)

were consistently found across all 10 CV runs. 9 features (feat 71 through feat

79) were consistent across 9 CV runs. 15 features (feat 80 through feat 94) were

148
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present across 8 CV runs. The remaining 6 features (feat 95 through feat 100)

were obtained consistently in 7 CV runs.

Figure B.1: Plot showing features that were consistently selected across dif-
ferent cross-validation runs using DISR method.

Also, as we increased the number of features obtained using DISR method, the

number of CV runs with consistent features decreased. For our analysis, we thresh-

olded at minimum of 7 CV folds where features selected by DISR method were

commonly found.

B.2 Dynamic FNC feature selection method

Figure B.2 shows an illustration of the dynamic FNC feature selection procedure.

For each cross-validation run and for each training subject, the regression anal-

ysis was performed at each windowed FNC matrix (using the regression matrix

obtained for that CV run using k-means clustering). Then, 15 beta coe�cients
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or �tness scores were obtained at each of these windows, resulting in 180 × 15β

from all the dynamic windows for each training subject. Once the β coe�cients

were obtained for all the training subjects across all the dynamic windows, we

then computed mean β coe�cient across dynamic windows (each subject with 15

β). The classi�er �nally used these β coe�cients as dynamic FNC features.

Figure B.2: An illustration showing the dynamic FNC feature selection pro-
cedure.
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B.3 Computation of chance level for classi�cation

accuracy

Figure B.3 shows the null distributions of classi�cation accuracy from the empirical

tests with 95% con�dence intervals for all three classi�ers. To determine the chance

levels for individual classi�er accuracy, we performed 300-run permutation tests.

For each permutation run, we randomly shu�ed the group labels, and followed the

original classi�cation analyses using sFNC, dFNC and combined FNC features. We

then recorded the overall accuracy for the classi�ers at the end of each permutation

run. Our results show that, for classi�ers using sFNC, dFNC and combined FNC

features, the average accuracy is around 35% (sFNC=34.88%, dFNC=34.56% and

Combined=34.82%), with p-value <0.005 for all three chance levels.
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Mean correlation ([minimum, maximum])
Dynamic
States

HC Group SZ Group BP Group

State 1
0.927 0.849 0.735

([ 0.635 , 0.983]) ([0.769 , 0.977]) ([0.56 , 0.927])

State 2
0.981 0.982 0.893

([0.941 , 0.992]) ([0.965 ,0.990 ]) ([0.859 , 0.934])

State 3
0.991 0.957 0.636

([0.976 , 0.998 ]) ([0.887 , 0.993]) ([0.385 , 0.925 ])

State 4
0.984 0.866 0.959

([0.970 , 0.993]) ([0.668 , 0.973]) ([0.882 , 0.998 ])

State 5
0.969 0.879 0.762

([ 0.896 , 0.993]) ([0.775 , 0.952 ]) ([0.613 , 0.932])

Table B.1: Group-wise mean correlation for individual dynamic states

Figure B.3: Chance levels for classi�cation accuracy based on the permutation
test.
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B.4 Details on proportion test

To evaluate the statistical signi�cance across all statistical measures (overall ac-

curacy, sensitivity, speci�city, PPV and NPV among all three classi�ers, we per-

formed 2-sample test for equality of proportions with 95% con�dence level using

the built-in R function prop.test ( ). Following parameters were used to perform

the proportion tests:

prop.test
(
c(Astat_count, Bstat_count), c(Atotal_count, Btotal_count)

)
(B.1)

where

Astat_count= count of group 'G' for a particular statistical measure for clas-

si�er 'A'.

Atotal_count= total number of subjects in group 'G' for classi�er 'A'.

Bstat_count= count of group 'G' for a particular statistical measure for clas-

si�er 'B'.

Btotal_count= total number of subjects in group 'G' for classi�er 'A'.

G = [HC,SZ,BP ]
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Overall Accuracy (%)
Static FNC Dynamic FNC Combined FNC

Classi�cation with all
159 subjects

59.12 84.28 88.68

Classi�cation with
156 subjects

58.97 83.97 87.17

Di�erence between
two classi�cation models

0.15 0.31 1.51

Table B.3: Di�erence in classi�cation accuracy for analyses with 159 subjects
and 156 subjects (after removing 3 outliers)
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