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Abstract 

This dissertation describes the development of a control algorithm that transitions a robotic linkage 

system between stabilized states producing responsive locomotion. The developed algorithm is 

demonstrated using a simple robotic construction consisting of a few links with actuation and 

sensing at each joint. Numerical and experimental validation is presented. 

In this algorithm, transitioning excitations, called rhythms, are formulated using terminal state 

control solutions. Rhythms are constrained to be low order parameterized functions allowing for 

the optimal control problem to be replaced by a parametric optimization problem with a limited set 

of easily solved unknowns.  

This algorithm is developed and demonstrated using a simply linkage system consisting of only two 

links joined at a knee, called a two-link. The two-link can exist in a number of different 



 

x 

configurations of various dynamic orders. The highest order configuration occurs when the two-

link is in flight. Transition from a higher order to a lower order configuration occurs when a link 

impacts or parts from the ground. A “no rebound” condition at the point of impact is assumed. An 

increase in order occurs as the result of a link parting from the ground such as would occur in the 

presence of control actuation. 

Rhythms can be cascaded together using state transition logic to produce locomotion. Sequential 

two-link rhythms to stand, crouch, and continuous hop produce responsive locomotion. 

Uncertainty reduction and controllability is not continuous but intermittent, adding to the 

complexity of the control problem.  

The derived algorithm was validated by hardware implementation. Solid models of two-link parts 

were generated in SolidWorks and printed using an Ultimaker 2+ 3D printer. Printed solids were 

assembled with mechanical and electrical substructure to produce instrumentality. Control was 

hierarchical. High level communications were transmitted via an I2C interface from a Raspberry Pi 3 

model B microcomputer to A/D and D/A converters while low level communication within the two-

link occurred between mid-range microchip PIC processors and motor drivers. Rhythms that 

allowed the two-link to stand, crouch, hop and lie down were programmed in Raspberry Pi 

software. 
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Chapter 1 

1 Introduction 

This dissertation describes the development of a control algorithm that, given a set of connected 

linkages with actuators and sensors at every joint, uses a set of open loop control inputs, called 

rhythms, to transition between or through stabilized states resulting in locomotion. These rhythms 

are simple discontinuous functions of low parametric order. 

1.1 Motivation 

The economic incentive for a replacement for the human in high risk environments and in the 

menial work environment has driven the search for a viable level of cognition integrated with 

dexterous instrumentality [1, 2, 3, 4]. Qureshi and Syed [1] discuss the inevitability of robotics in 

the work force with special focus on the health care industry [5]. They cite the success that robotics 

has played already in a number of industries [6,7], but warned that robotic integration must be 

balanced by maintaining employee motivation. Hanson [3] gives a long-term perspective of the 

benefits of machine intelligence and its relationship to wages, and Laird [4] gives a concise 

overview of the need for unmanned systems in the armed forces. These articles infer that the past, 

present, and future impact of bipedal robotics in industry and the service sectors has been, is, and 

will be significant. Our motivation for this work is to improve the knowledge basis required to bring 

such a technology development to the market place by developing a control algorithm which can be 

used to mimic anthropomorphic behavior. 

1.2 Literature review 

A number of review articles on the development of bipedal robotic control exist [8, 9, 10, 11]. 

Although these reviews are extensive, they are also limited due to the overwhelming amount of 

information in the area. Likewise, due to the extended nature of the field, an all-encompassing 

review is not attempted here. The following focuses only on those articles with the greatest 

relevance to the remaining sections of the dissertation.  
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With some variation, most review articles divide biped control methods into six or seven general 

categories. These categories are:  

 Inverted Pendulum Methods (IPM));  

 Passive Dynamics (PD) walking methods;  

 Zero-Moment Point (ZMP) methods;  

 Optimization-Based Methods (OBM)  

 Hopper Control Methods (HCM)  

 Virtual Model Control (VMC) and  

 Control Theoretical Methods (CTM).  

Each of these categories is discussed below. 

1.2.1 Inverted Pendulum Mode (IPM) methods 

The inverted pendulum mode (IPM) method [12, 13, 14, 15, 16, 17, 18, 19] models biped dynamics 

as an inverted pendulum with a rigid connection between a planted pivot foot and the center of 

mass (COM). Kajita, Yamaura, and Kobayashi [12] are often cited as the first to implement the 

inverted pendulum method in hardware and to prove the utility of the method for walking over a 

flat surface. They derived a control scheme which maintained the COM at a constant height above 

the surface for a robot with low mass legs. Later Kajita and Tani [13] showed through simulation 

that the IPM method can be applied to walking over uneven surfaces as well. Kajita, Matsumoto and 

Muneharu [14] expanded the concept further by deriving the equations of motion and a control 

algorithm for a three dimensional system.  As shown in Figure 1, they considered that all of the 

mass of the biped was concentrated at the COM and that the planted foot acted as a pivot point. The 

projection of the COM on the ground produced a trajectory that was initially moving towards the 

pivot foot. Without enough energy to overcome gravity this trajectory is pushed away from the 

planted foot resulting in a repulsive orbital like response.  At the proper time, the planted foot is 
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switched (variable structure control [59]) and the process continues. Kajita et. al. [15] took this 

work even future by developing an automatic pattern generator for inverted pendulum walking.  

 

Figure 1. An illustration of the inverted pendulum mode 

Park and Kim [16] expanded the IPM method by adding swing leg dynamics. As part of their 

derivation they assumed that inertial forces were small but included gravitational forces. Their 

approach is referred to as the Gravity-Compensated Inverted Pendulum Mode (GCIPM). Albert and 

Gerth [17] expanded upon the GCIPM method by including the neglected inertial swing leg forces. 

Their method is referred to as the Two Masses Inverted Pendulum Mode (TMIPM). Luo, Sheng and 

Chang [18] included the effect of impacts.  

Over the limited time between foot impacts, the response of the IPM system is close to marginally 

stability. For the situation where there is no error, the limit cycle can be stabilized by switching feet 

(i.e. variable structure control) at the proper time. Nevertheless, for the situation where there is 

error, without compensation for this error, uncertainty grows. Figure 2 shows the response of an 

IPM system for the set of given parameters. This figure shows the response of a system with no 

uncertainty (i.e.  Δ = 0.00); the response of the system with a very small amount of uncertainty (i.e. 

 Δ = 0.01); and the response of a system will the same amount of uncertainty but with a limited 
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level of feedback torque from the ankle. With only a small amount of additive uncertainty and no 

feedback, the final variation in the response after one stride is over half the amplitude of the sway. 

Nevertheless, as shown below, feedback can be used to mitigate most of this deviation.  

 

Figure 2. An illustration of IPM dynamics with and without and feedback 

Feedback can be implemented a number of different ways. One way is by adding a foot. Figure 3 

shows an inverted pendulum with a foot of given width. Under the condition of additive uncertainty 

in (1.1b), the center of pressure (COP) on the foot is moved from the nominal location to an inside 

location. This produces a restoring force on the inverted pendulum. This restoring force 

compensates for model uncertainty but only up to the point where the COP is at the foot’s edge [19]. 

 

Figure 3. An illustration of stabilization using a foot 
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The major limitation with the IPM is that one foot must always be planted. A biped using this 

control method of control cannot jump, hop or skip. It is limited to a rather unnatural tottering form 

of walking.  

1.2.2 Passive Dynamics (PD) methods 

In passive dynamics (PD) [20, 21, 22, 23, 24, 25] there are no internal energy sources which 

produce locomotion. All energy is derived from a loss of gravitational potential. Mochon and 

McMahon [20] are often cited as the first to develop a mature mathematical representation of 

passive walking. The first hardware implementation of this method is by McGeer [21]. Mochon and 

McMahon termed this type of walking “ballistic walking.” McGeer coined the phrase for which is 

known today, “passive walking”. 

Passive walking is of interest considering that it represents a form of locomotion that requires very 

little energy. McGeer claimed over an order of magnitude reduction in energy per step using a PD 

biped compared to an active system. For this reason, passive gaits have been studied and analyzed 

in detail. Goswami, Espiau and Keraman [22] analyzed the gait of a passive biped, its limit cycle 

characteristics and the limited energy required for it to walk.  Lui, Tian et. al. [23] expanded upon 

Goswami, Espiau and Keramans’ work by including knee motion and by using a more detailed 

impact model.  

The number of gaits that can be produced by the same PD walker has been shown to be numerous. 

Borzova and Hurmuzlu [24] studied three separate gaits and showed bifurcations using a Poincare 

map.  They suggested the integration of dampers and springs to produce a more predictable 

response. In general, PD walkers can produce a rich set of responses, even to the point of chaos.  

Although PD walkers are even more limited than IPM bipeds, their gaits are of great interest to 

researchers since they represent a highly efficient method of locomotion. We take from this review 

an understanding of the need for a minimal energy solution. We also recognize the need for some 

representation of impact dynamics [25] – a recurrent theme throughout this literature review. 
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1.2.3 Zero-Moment Point (ZMP) methods 

Zero-moment point (ZMP) methods [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] have been 

successfully implemented in hardware [40, 41] and have set the ground work for many future 

developments. The zero-moment point (ZMP) is the location on the ground where the sum of the 

inertial and gravitational moments is zero (hence the name, ZMP). It has come to serve as a stability 

condition for many bipedal algorithms.  

Figure 4 illustrates a stable and an unstable system using ZMP when inertial forces are small (i.e. 

the biped is moving slowly). When the ZMP resides in the area between and including the feet, the 

system is stable. When the ZMP is outside of this region, the biped is unstable. In this regard, the 

bipedal structure and the feet behave much like a table which supports its COM. If the COM is too 

far in one direction or the other the table tips over. 

 

Figure 4. An illustration of stabilization using the zero moment point method 

To understand how the ZMP is used to produce walking in its simplest form, consider the slow 

moving biped in Figure 5. As shown in this figure, the biped starts with the ZMP between it two feet. 

This is a stable configuration. The COM is shifted such that the ZMP is moved to below one foot. At 

this time, the other foot can be lifted off the ground. Lifting this foot reduces the span of the 

supporting base. The leg that the lifted foot is attached to is called the swing leg. The swing leg can 
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be brought forward; however, while doing this, the stance of the rest of the biped must be adjusted 

such that the COM produces a ZMP that is within the support of the planted foot. As the swing leg is 

brought forward, the ZMP moves from the heel to the toes of the foot. By the time in which the ZMP 

has moved to the tip of the toes, the swing leg foot must be planted. Planting the swing leg foot 

increases the span of the supporting base and the ZMP can be moved to its center. The process is 

then repeated. At all times, the biped is completely controllable. 

 

Figure 5. An illustration of walking using the zero moment point method  

The difficulty with using the ZMP is in finding a gait that will move the COM in such a way that the 

ZMP moves in a coordinated fashion with the feet such that stability is always maintained. This can 

be done quasi-statically as shown in the figure; however, this is difficult to do dynamically. To limit 

complexity, inertial effects can be reduced; however, this results in a very slow moving biped.  

Vukobratoić [26, 27, 28] is most often cited with the development of the ZMP method. The number 

of papers referencing his work is extensive making a full review of this rich area of research beyond 

the scope of this discussion. For the interested reader a notable application of the ZMP method is 
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given in the 1996 paper by Yamaguchi et. al. [29] who present both theoretical and experimental 

results for a WABIAN biped. Yamaguchi et. al discuss the complete process used to develop a 

walking robot including modeling; the derivation of the ZMP equations; and the computation of 

motion. Inertial forces are included within their analysis – impacts are not. 

The process of determining bipedal motion relative to the ZMP constraint is called path planning. In 

earlier papers path planning was determined from start to finish with little ability to adapt. 

However, more recent ZMP work has focused on improving the ability for the biped to adapt [30, 

31, 32, 33, 34, 35, 36, 37]. Uncertainty in modeled dynamics has also gained some attention [38, 

39].  

As with the IPM method, the ZMP method requires that one foot always be planted resulting in 

somewhat unnatural motion. Minimum energy solutions are not a necessary aspect of the method; 

however, coupled with optimization methods, they give unique solutions out of a plethora of 

possible trajectories. 

1.2.4 Optimization Based Methods (OBM) 

Most optimization based methods (OBMs) [42, 43, 44, 45, 46] were developed for biomedical 

applications. This synergistic field of research focuses on mimicking the gait of humans for the 

purpose of improving the well-being of patients. OBMs fall into two categories: 

Inverse dynamics (ID): In this situation the gait is measured and is imposed upon a model by 

determining control inputs that minimize the error between the gait of the model and the 

measured gait. The optimized model is then used to determine internal forces.  

Forward dynamics (FD): In this situation optimal control input are applied to the model and the 

resulting gait is examined. These inputs are determined using a terminal state condition along 

with the minimization of an integral optimality condition such as minimum energy. The 

resulting model gait and measured gaits are then compared. 
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In this paper we are primarily interested in the second category of optimization methods – forward 

dynamics (FD). This category involves the solution of a terminal constraint, open-loop optimal 

control problem with integral weighting. In this regard, a FD OBM is also a control theoretic method 

(CTM).  

In recent years FD OBMs have produced impressive results. Eriksson [42] formulated the optimal 

control problem for linkages using temporal finite element (TFEM) with Hermitian shape functions. 

His formulation reduces the temporal optimization problem into a nonlinear parameter 

optimization problem which can solved using a number of commercial global optimization 

packages [55]. Kaphle and Eriksson [43] went on to use this method to solve for the control inputs 

for a jumping three-link system and Eriksson and Nordmar [44] expanded upon Eriksson’s original 

work by showing how the original formation could be derived from a predecessor to the Euler 

Lagrange (EL) equations [47]. Kwon et. al. showed how Eriksson’s formulation could be used to 

control a (backwards) walking biped. Nevertheless, in order for Kwon et. al. to maintain stability 

they had to use the ZMP method. That is, one foot had to always be on the ground. Similar stability 

limitations exist for other OMB solutions [46].   

A FD OBM can be used to solve for an open-loop optimal control (OLOC) solution [48].  However, 

using a FD OBM to solve an OLOC problem, although initially attractive, is no panacea for success. 

FB OBMs require the solution of a large set of nonlinear algebraic equations which may have one, 

many or no solutions. The FD OBM relies heavily on global search methods to obtain a solution. In 

many cases this requires a very good initial guess.  

1.2.5 Hopper Control Methods (HCM) 

The ZMP method requires complete controllability at all times. That is, at any time, joint actuators 

can drive the state of the system to any desired state. In comparison, PD’s do not have actuators and 

therefore, their motion is uncontrolled but stable limit cycle motion. Hoppers [49, 50, 51], like PD’s, 

produce stable limit cycles. Nevertheless, unlike PD’s, they can actively change direction and speed.  
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Raibert [49, 50, 51] is often cited as the initial pioneer of the HCM method. Raibert and Brown [49] 

produced a two dimensional hopper actuated by pneumatics as early as 1984. They controlled the 

speed of the hopper by altering the impact location of the foot. Figure 6 shows some of the 

nomenclature applied to their hopper. The hopper can be in two configurations – a stance 

configuration where the foot is in contact with the ground and a flight configuration where the foot 

is off the ground and the hopper is in flight.  Figure 6 shows the hopper at the moment of contact 

with the ground. The hopper enters the stance configuration with the leg at an angle 𝜃1 and leaves 

the stance configuration with the leg at an angle −𝜃1. The velocity of the hopper in the horizontal 

direction is �̇� and therefore, the distance between the foot and the COM at the time of impact is 
�̇�𝑇𝑠

2
 

where 𝑇𝑠 is the total time in which the hopper is in the stance configuration. The simple 

proportional control law  

 ∆𝑥 =
�̇�𝑇𝑠

2
+ 𝐾(�̇� − �̇�𝑑) (1.2) 

was used to speed the hopper up or to slow it down where �̇�𝑑 is the desired speed. 

 

Figure 6. An illustration of the Raibert and Brown hopper  
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If the foot is forward from its expected impact location, the hopper slows down. If the foot is behind 

this location, the hopper speeds up. To maintain speed, the feedback gain, 𝐾(�̇� − �̇�𝑑), increases or 

decreases speed until the desired speed is obtained.  

The Raibert and Brown hopper is a system with different levels of controllability. The orientation of 

the leg is controllable during flight but is uncontrollable during stance. Vertical displacement is 

uncontrollable during flight but is controllable during stance, and horizontal displacement is 

uncontrollable during stance and flight; nevertheless, due to coupling between stance and flight 

dynamics, the limit cycle which drives horizontal displacement is controllable.  

Raibert went on to develop a three dimensional hopper [50, 51] based upon his two dimensional 

efforts. In more recent years, Hyon and Emura have proposed an energy efficient biped hopper 

[52]. In their formulation, legs containing springs that store and return energy to the system are 

employed. Long Murphey and Lynch [53] developed a control system for a hopper that climbs by 

transitioning between stationary walls. 

Raibert’s hoppers are often cited as successful examples of locomotion producing limit cycle robots. 

Nevertheless, they are limited in ways that most other walking robots are not in that they cannot 

simply stand. That is, they must continuously be hopping.  

1.2.6 Virtual Model Control (VMC) 

If a biped were rigidly supported at the hips by a moving table, the resulting table would produce 

forces and moments that would maintain stability. As the table is moved, these forces and moments 

change. In the virtual model control (VMC) method, the force and moments applied to the legs are 

chosen to be from such a virtual support. This is illustrated in Figure 7.  

Pratt et. al. [54] showed how these virtual forces can be related back to the forces and moments 

applied to the legs using the method of virtual work. They went on to show how this method of 

control could be used to produce locomotion over both flat and rough surfaces. As with the IPM, PD, 

and ZMP method, a planted foot is always required. 
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Figure 7. An illustration of virtual model control 

1.2.7 Control Theoretic Methods (CTM) 

CTMs are methods that are more closely correlated with the control theoretic literature. They 

include the use of open-loop optimal control (OLOC) and the zero dynamic method (ZDM). These 

and adaptive control approaches are discussed below. 

1.2.7.1 Open-Loop Optimal Control (OLOC) 

Open-loop optimal control (OLOC) is a CTM which may be used to produce open loop control inputs 

for terminal constraints and the minimization of an integral performance metric. As stated above, 

Eriksson transformed the biped OLOC into a FD OBM which he solved using a commercial nonlinear 

programming package [55]. The logic for such a transformation is that the OLOC formulation 

results in a two-point boundary-value problem (TPBVP) which has historically also been difficult to 

solve. Some TPBVPs can be solved using a shooting method [48, 56, 57] however for large-order 

systems and extended simulation times this requires a very good initial estimate of the solution 

[56].  Bryson [57] offers several solutions for solving the OLOC problem which do not require 

parameter optimization or a shooting method. He presents several improved gradient solutions 
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with dynamic constraints enforced through the use of Lagrange multipliers. Although an 

improvement over past methods, his methods are still limited to relatively simple dynamics. 

1.2.7.2 Zero-Dynamics (input-output linearization) Method (ZDM) 

Other control-based methods have been presented with promising results. E. Westervelt et. al. [ 58] 

produced bipedal walking simulations through the use of input-output linearization [59]. Using this 

method, nonlinear dynamics are subtracted from the dynamical system through feedback reducing 

the system to a linear one. A second loop is then used to produce command following.  

Following Grizzle et. at. [8, 58] and Khalil [59], the dynamical linkage system with no impacts can be 

represented in first-order affine form by 

 �̇⃗� = 𝑓(�⃗�) + 𝑔(�⃗�)�⃗⃗� (1.2a) 

 �⃗� = ℎ(�⃗�) (1.2b) 

where �⃗� is a state vector and �⃗� are a set of outputs. The total time derivative of the output is taken 

until the control shows up in the output. That is, for the first derivative 

 �̇⃗� =
𝜕ℎ(�⃗⃗�)

𝜕�⃗⃗�
�̇⃗� =

𝜕ℎ(�⃗⃗�)

𝜕�⃗⃗�
{𝑓(�⃗�) + 𝑔(�⃗�)�⃗⃗�} . (1.2c) 

however if the time derivative of the output is not a function of the control (i.e. �̇⃗� ≠ �̇⃗�(�⃗⃗�)) then  

 �̇⃗� =
𝜕ℎ(�⃗⃗�)

𝜕�⃗⃗�
�⃗� =

𝜕ℎ(�⃗⃗�)

𝜕�⃗⃗�
 𝑓(�⃗�). (1.2d) 

and the process is repeated until �⃗�𝑝 = �⃗�𝑝(�⃗⃗�) where 𝑝 is called the relative degree of the system. 

The derivatives in (1.2c) are Lie derivatives [59] with the special notation 

 𝐿𝑓ℎ(�⃗�) =
𝜕ℎ(�⃗⃗�)

𝜕�⃗⃗�
𝑓(�⃗�)  and 𝐿𝑔ℎ(�⃗�) =

𝜕ℎ(�⃗⃗�)

𝜕�⃗⃗�
𝑔(�⃗�). 

Following this notion, taking Lie derivatives up until the relative degree gives 

 �⃗�𝑝 = 𝐿𝑓
𝑝ℎ(�⃗�) + 𝐿𝑔

𝑝{𝐿𝑓
𝑝−1ℎ(�⃗�)}�⃗⃗� . (1.2e) 

The control input is then represented as the sum of two inputs – one used to negate nonlinear 

dynamics and the other to stabilize the output. That is 

 �⃗⃗� = �⃗� + 𝜈. (1.2f) 
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If we let 

 �⃗� = −[𝐿𝑔
𝑝{𝐿𝑓

𝑝−1ℎ(�⃗�)}]
−1
𝐿𝑓
𝑝

ℎ(�⃗�) (1.2g) 

then (1.2e) becomes 

 �⃗�𝑝 = 𝜈, (1.2h) 

a simple linear system with all of its poles at the origin. The control input 𝜈 can then be chosen such 

that �⃗�(𝑡) is (asymptotically stable).  

Using the above mathematical formulation, a biped can be held to a desired trajectory �⃗�𝑑(𝑡) by 

letting  

  𝑒 = �⃗�(𝑡) − �⃗�𝑑(𝑡)  (1.2i) 

where �⃗�𝑑(𝑡) is the desire output. That is, the above control approach is one of input-output 

linearization followed by command following.  The functions �⃗�𝑑(𝑡) are chosen to produce a limit 

cycle for locomotion through an optimization process. In the work by Grizzle et. al. these functions 

are parameterized using B�́�zier polynomials [60].  

Grizzle et. al. notes one issue of concern – impact dynamics [61]. The above formulation does not 

take into account the biped striking the ground. In general, the impact condition is stated as  

 �⃗�+ = ∆(�⃗�−) (1.2j) 

where �⃗�+ are the states after the impact and �⃗�− are the states before the impact. The function ∆ 

maps the pre-impact state to the post-impact state. A ZDM does not consider these dynamics. 

The above method also assumes that [𝐿𝑔
𝑝{𝐿𝑓

𝑝−1ℎ(�⃗�)}] has an inverse in (1.2g). This is a 

controllability condition. This condition is valid for a robot that has complete controllability, but, 

when in flight, this controllability is lost. 

Another issue is uncertainty. Control is based upon a model, but considering that no model is 

perfect, perfect linearization can never occur. The question then becomes how good of a model is 

really needed? The literature tends to disagree on this issue with IPM researchers using very simple 
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dynamical models and ZDM researchers using very complex representations even to the point of 

requiring the use of symbolic manipulation [58].  

1.2.7.3 Adaptive Control Methods (ACM) 

Adaptive control is often characterized in terms of direct adaptive control and indirect adaptive 

control [62]. Direct adaptive control performs adaptation of the controller in the feedforward or the 

feedback paths without the need to produce a model of the system. Indirect adaptive control uses a 

realization of system produced directly from experimental data which can then be used to develop 

a controller off-line.  

Direct adaptive approaches have been successfully applied to nonlinear robotic systems [63]; 

however, they are limited to systems (or subsystems) which are fully controllable. There seems to 

be no limitation as to their use on the controllable portion of a bipedal system; however, there is no 

evidence of their use in the literature to date.  

An indirect adaptive approach does not have any of the above limitations; however, it requires a 

nonlinear realization of the system. It, in effect, is simply an OLOC solution using an experimentally 

derived model. The use of these methods has also been limited. 

1.2.8 Conclusions from literature review 

Neglecting model development, the underlying issue that emerges from the literature is the lack of 

OLOC solutions for linkage systems. If an OLOC solution existed, why use an IPM, VMC or ZMP? An 

optimal control solution could produce similar results with additional optimality constraints in 

energy or time – a relevant requirement as highlighted in the PD literature. Even the impact 

condition reviewed in the above ZDM discussion could be included within an optimal control 

framework since there are no limitations as to the use of this method across a discontinuity (see 

appendix C for the general OLOC solution with discontinuities).  This leads to the below question: 

Question: Why are OLOCs not more frequently applied to linkage system?  
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From the literature review, we deduce the follow answer. 

Answer: Although OLOC necessary conditions are relatively easy to derive, finding 

numerical solutions that satisfy these conditions are not.   

Due to the lack of ability to solve the OLOC problem using shooting methods, Bryson spent years 

developing gradient methods [56, 57]; however, even with these years of development, the 

complexity of the problem that he could solve was limited. In these formulations the control input 

was discretized allowing for the calculation of permutations that would move the performance 

metric toward a minimum. The temporal finite element formulation by Eriksson [42, 44] is simply 

another type of discretization. Like Bryson’s solutions, due to the number of unknowns (on the 

order of 100’s to 10,000’s), it is difficult to find a solution in a prodigious number of local minimum. 

1.3 Approach 

Our technical approach to the above dilemma is to solve a simpler problem. Depending on the 

physics, a large number of unknown may not be needed to describe the control input. In this 

dissertation, it will be shown that the dynamics for which we are concerned is simple enough that 

the control input can be described in terms of simple functions defined using just a few parameters. 

In essence this approach is the same as the FD OBM developed by Eriksson; however instead of 

using a prodigious number of unknowns, we rely on just a few (less than 10). This insight allows for 

the development of open loop control (OLC) solutions that can be found using a limited search. It 

will be shown that some of these solutions are even near to the minimum energy optimum.  

This simplification is a novel improvement over existing pedal control methods allowing for 

numerically tractable OLC solutions.  We will then use these solutions, called rhythms, with state 

transition logic to produce responsive robotic locomotion. 
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1.4 Overview of thesis 

In chapter 1, the literature is reviewed and the thesis approach is presented. The underlying 

approach is to solve for control input described using just a few parameters resulting in numerical 

tractable problems. This assumption is physics dependent.  

In chapter 2 linkage dynamics are investigated. The dynamics of a simple system are derived for a 

number of different configurations. For some configurations, these dynamics will be fully 

controllable. For others, they will only be stabilizable. It will be shown that the dynamics of the 

highest order configuration contains the dynamics of all lower order configurations where 

reduction in model order can be imposed through the use of an equality constraint and impact 

dynamics. An increase in model order can be imposed through the removal of this constraint and by 

imposing continuity in the states. Impact dynamics are derived using Newton’s third law under the 

assumption that there is no rebound at the point of impact. 

In chapter 3 a set of OLC problems will be solved. The solution to these problems is referred to as 

rhythms. These solutions are based upon the idea that the control input can be represented by a set 

of parameterized functions that can be solved for using a global search over a limited parameter 

space.  

In chapter 4 rhythms developed in chapter 3 will be integration into state transition logic to 

produce robotic locomotion. A number of examples are presented. 

In chapter 5 the hardware construction of a robotic system is presented. This robotic this use to 

validate the control algorithm through the implementation of rhythms. Electrical and mechanical 

hardware detail will be presented. Mechanical detail includes 3D print of structural parts and the 

used of welded substructure. Electrical detail includes the description of two electrical subsystems 

– a high power system to drive the motors and the lower power system to control the motor drives. 
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Chapter 6 contains are discussion of results. In this section the number of unknown used to define a 

rhythm will be reduced through the use of virtual constrains. This will allow for the experimental 

determination of rhythms without the use of a numerical model. 

Chapter 7 contains conclusions and proposed future work.  
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Chapter 2 

2.0 Dynamics 

In this chapter robot dynamics are investigated. In general, robot dynamics are nonlinear, rigid 

body dynamics. This means that the vibratory response of linkages can be neglected or is included 

within other representation of physics such as impact losses.   

Of special importance to the bipedal robot problem are changes in state order due to changes in 

configuration. Transitions between configurations occur due to links impacting or parting from 

ground. Impacts are represented as impulsive loadings. Impacts can take different forms. They may 

be elastic in which all energy is conserved or plastic in which all vibratory energy is lost. They can 

also be defined relative to the resulting boundary constraint. In this dissertation it is assumed that 

after impact, the point of impact remains in contact with the ground. This implies that there is 

enough energy absorption with the structure such that the normal velocity of the impact location 

goes to zero. To do this we part from a more traditional virtual work formation and used Newton’s 

third law integrated in time.  

The purpose of this chapter is to investigate dynamics. This does not require the study of a system 

with a large number of links. Quite the opposite, such a system would only obscure our 

understanding considering that it would be difficult to determine such dynamics in closed form 

limiting our ability to mathematically dissect the results.  Instead we focus on the simplest possible 

problem. This will allow us to derive dynamics in closed form to investigate mathematical 

connections between dynamics of different order. Using this approach, we will show that a lower 

order dynamic system and the reaction forces that impose its boundary conditions can be derive 

from higher order dynamics.   

The first section of this chapter is dedicated to a discussion of a simple robotic system in various 

configurations. We will show how the highest order dynamical system can be used to represent 

lower order systems. The second section discusses dynamic transitions. Impact dynamics as well as 
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a continuity of state will be discussed in this section. In the third section linearized representations 

used for state stabilization will be discussed and in the fourth section actuator dynamics will be 

discussed.  

 

Figure 8. An illustration of a two-link robot  

2.1 Rigid body dynamics 

We focus on the dynamics of a simple robot – the two-link [64]. The two-link, shown in Figure 8, 

consists of two links called the first link and the second link. In this discussion, each link contains 

two masses, a large mass, 𝑀, and a small mass, 𝑚. The first node of the first link is called the foot 

and the second node of the second link is called the body. Control torques can be represented in 

terms a foot torque, 𝛼1, knee torque, 𝛼2, or the torques about the center of mass (COM) of the links, 

𝜏1 and 𝜏2. These torques are related by the equations 

 {
𝛼1
𝛼2
} = [

1 1
1 − 1

] {
𝜏1
𝜏2
} and {

𝜏1
𝜏2
} =

1

2
[
1 1
1 − 1

] {
𝛼1
𝛼2
}. (2.1)  

The length of each link is 𝐿. The mass, 𝑀, is located at one end of each link and the mass, 𝑚, is 

located at the midpoint of each link. Kinematics are defined by angular rotations 𝜃1and 𝜃2 about the 

COM and the 𝑥 and 𝑦 location of the foot. The reaction forces on the foot are 𝐹𝑥 and 𝐹𝑦. Neither the 
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foot nor the knee are allowed to slide along the ground. The body is allowed to slide with no 

frictional resistance. The reaction forces on the foot are 𝐹𝑥 and 𝐹𝑦. As shown in the upper left of 

Figure 8, the reaction force, 𝐹𝑦, is transmitted from the ankle to foot. Given 𝐹𝑦, for a foot of length 

𝐿𝑓𝑜𝑜𝑡  , the maximum torque that can be applied to ankle by the foot 𝑚𝑎𝑥(𝛼1) is 

  𝑚𝑎𝑥(𝛼1) = 𝐿𝑓𝑜𝑜𝑡𝐹𝑦 ≥ |𝛼1| . (2.2) 

2.1.1 Dynamic configurations 

The two-link may be in a number of different possible configurations where a configuration is 

determined by which of its three nodes (knee, foot, and/or body) are in contact with the ground.  

Two-link configurations are shown in Figure 9. A short discussion of the dynamics associated with 

of these configurations is given below. 

Free dynamics occurs when the two-link system is free to move through space in the 

presence of gravity and a knee torque. No nodes are in contact with the ground. Free 

dynamics continue until one of the three nodes impacts with the ground. This 

impact produces an impulsive load on the linkage transferring the dynamics to that 

of another configuration. It is assumed that all impacts are such that no rebound 

occurs. In free dynamics, four states, {𝑥, 𝑦, 𝜃1, 𝜃2}, are required to describe the 

motion of the two-link. The free dynamics configuration is not completely 

controllable. Controllability implies the ability to move the state from one state to 

another. 

 Body dynamics occurs when the body is in contact with the ground. In this situation, 

the end is allowed to slide along the ground. Three variable, {𝑥, 𝜃1, 𝜃2}, are required 

to describe this motion. When the body reaction force becomes negative, body 

dynamics become free dynamics. If the foot contacts, the ground body dynamics 

become bent dynamics. Body dynamics are not completely controllable. 
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Figure 9. An illustration of two-link configurations 
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 Pinned dynamics occurs when the foot is at ground and the other two nodes are not. 

The foot is allowed to rotate but not translate (i.e. pinned). The torque produced at 

the knee producing a resulting reaction force at the foot. This force must be positive. 

If 𝐹𝑦 goes to zero, two-link dynamics becomes free dynamics. If the knee or body 

impacts the ground, the dynamics transition from pinned dynamics to knee 

dynamics or bent dynamics. Only the rotation of the links,{𝜃1, 𝜃2}, are needed to 

describe motion in pinned dynamics. Pinned dynamics are completely controllable. 

 Bent dynamics occurs when the foot and the body are in contact with the ground. It 

is assumed that the foot cannot slip but the head can slide allowing the two-link to 

bend at the knee. Bent dynamics are completely controllable. 

 Knee dynamics occurs when the knee is in contact with the ground. It is assumed 

that the knee does not translate. Knee dynamics are not completely controllable. 

 First and second link dynamics are the dynamics of a single pinned link.  These 

dynamics are completely controllable so long as reaction forces are positive. 

 In the prone position, there are no dynamics; however, there are a number of 

configurations. Only one of these configurations is shown in Figure 9.  

In the following, the dynamics of the two-link in the free, pinned, and bent configurations is given. 

Other dynamics are not presented here.  

2.1.2 Derivation of free dynamics  

A Lagrangian approach (see Appendix A) is used to determine the linkage equations of motion. This 

requires the production of the Lagrangian, ℒ, which is comprised of the kinetic and potential energy 

of the system. To describe the kinetic energy, 𝑇, and the potential energy, 𝑉, of the two-link during 

free dynamics, four state variables,  {𝑥, 𝑦, 𝜃1, 𝜃2}, are required. The Lagrangian is given by 

 ℒ = 𝑇 − 𝑉 . (2.3a) 
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The Euler-Lagrange (EL) equations for this situation are given by 

𝑑

𝑑𝑡

𝜕

𝜕�̇�1
ℒ −

𝜕ℒ

𝜕𝜃1
= 𝜏1, (2.3b)  

𝑑

𝑑𝑡

𝜕

𝜕�̇�2
ℒ −

𝜕ℒ

𝜕𝜃2
= 𝜏2 . (2.3c) 

𝑑

𝑑𝑡

𝜕

𝜕�̇�
ℒ −

𝜕ℒ

𝜕𝑥
= 𝐹𝑥 (2.3d)  

𝑑

𝑑𝑡

𝜕

𝜕�̇�
ℒ −

𝜕ℒ

𝜕𝑦
= 𝐹𝑦 (2.3e)  

where 𝜏1 and 𝜏2 are torques at the origin of the generalized coordinate for each link and 𝐹𝑥 and 𝐹𝑦 

are the forces on the foot. The kinetic energy at any time is given by 

 𝑇 =
1

2
{𝐷1 +𝐷2 + 𝐷3 + 𝐷4}  (2.4a) 

where  𝐷1 =  𝑚 {
𝐿2

4
�̇�1
2 + �̇��̇� 𝐿 cos(𝜃1) − �̇��̇� 𝐿 sin(𝜃1) + �̇�

2 + �̇�2} 

𝐷2 =  𝑚{𝐿
2�̇�1

2 +
𝐿2

4
�̇�2
2 + 2𝐿�̇��̇�1 𝐿 cos(𝜃1) + 𝐿�̇��̇�2 𝐿 cos(𝜃2)

− 2𝐿�̇��̇�1 sin(𝜃1) − 𝐿�̇��̇�2 sin(𝜃2) + 𝐿
2�̇�1�̇�2  cos(𝜃1 − 𝜃2) + �̇�

2 + �̇�2} 

𝐷3 =  𝑀{𝐿
2�̇�1

2 + 𝐿2�̇�2
2 + 2𝐿�̇��̇�1 𝐿 cos(𝜃1) + 2𝐿�̇��̇�2 𝐿 cos(𝜃1)

− 2𝐿�̇��̇�1 sin(𝜃1) − 2𝐿�̇��̇�2 sin(𝜃2) + 2𝐿
2�̇�1�̇�2  cos(𝜃1 − 𝜃2) + �̇�

2 + �̇�2} 

𝐷4 =  𝑀{�̇�
2 + �̇�2} 

and the potential energy is given by 

𝑉 = 𝑚𝑔
𝐿

2
 𝑐𝑜𝑠(𝜃1) + 𝑚𝑔𝐿 {cos(𝜃1) +

1

2
cos(𝜃2)} + 𝑀𝑔𝐿{cos(𝜃1) + cos(𝜃2)} + {2𝑚 + 2𝑀}𝑔𝑦  (2.4b). 

Substituting (2.4) into (2.3) gives the result 

𝐾
𝑑2�⃗⃗�

𝑑𝑡2
= [

𝐴 𝐵
𝐶 𝐷

]

{
 

 
�̈�1
�̈�2
�̈�
�̈� }
 

 

= 𝑓(�⃗�, 𝜏1, 𝜏2, 𝐹𝑥 , 𝐹𝑦) = {

𝑓1
𝑓2
𝑓3
𝑓4

} (2.5a) 

where 

�⃗� =  [𝜃1, 𝜃2, 𝑥, 𝑦]
𝑇 

𝐴 = [
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚 +𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚+𝑀)𝐿2

] (2.5b) 
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𝐵 = 𝐶𝑇 = [
(
3

2
𝑚+𝑀)𝐿 𝑐𝑜𝑠(𝜃1) − (

3

2
𝑚+𝑀)𝐿 𝑠𝑖𝑛(𝜃1)

(
1

2
𝑚 +𝑀)𝐿 𝑐𝑜𝑠(𝜃2) − (

1

2
𝑚+𝑀)𝐿 𝑠𝑖𝑛(𝜃2)

] (2.5c) 

𝐷 = (2𝑚 + 2𝑀) [
1 0
0 1

] (2.5d) 

𝑓1 = −(
1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1 (2.5e) 

𝑓2 =     (
1

2
𝑚+𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚+𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2 (2.5f) 

𝑓3 =   (
3

2
𝑚 +𝑀)𝐿�̇�1

2 sin(𝜃1) + (
1

2
𝑚 +𝑀)𝐿�̇�2

2 sin(𝜃2)+𝐹𝑥 (2.5g) 

𝑓4 =  (
3

2
𝑚 +𝑀)𝐿�̇�1

2 cos(𝜃1) + (
1

2
𝑚 +𝑀)𝐿�̇�2

2 cos(𝜃2) − (2𝑚 + 2𝑀)𝑔 + 𝐹𝑦. (2.5f) 

Equation (2.5) is a complex equation which will not be reduced further. Nevertheless, we will show 

that other forms of dynamics can be derived from these dynamics.  

2.1.2 Derivation of pinned dynamics 

Following a similar approach to that for free dynamics, the kinetic energy of the pinned dynamic 

system is given by 

𝑇 =
1

2
{𝐷1 + 𝐷2 + 𝐷3}  (2.6a) 

where 

𝐷1 = 
𝑚

4
𝐿2�̇�1

2 ,  

𝐷2 =  𝑚𝐿
2 {�̇�1

2 + �̇�1�̇�2 cos(𝜃1 − 𝜃2) +
1

4
�̇�2
2},  

𝐷3 =  𝑀𝐿
2{�̇�1

2 + �̇�1�̇�2 cos(𝜃1 − 𝜃2) + �̇�2
2}.  

The potential energy is given by 

𝑉 =
𝑚

2
𝐿 𝑐𝑜𝑠(𝜃1) + 𝑚 {𝐿 cos(𝜃1) +

𝐿

2
cos(𝜃2)} +𝑀{𝐿 cos(𝜃1) + 𝐿 cos(𝜃2)}.  (2.6b) 

Substituting (2.6) into these equations and reducing gives 
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[
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚 +𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚 +𝑀)𝐿2

] {
�̈�1
�̈�2
} =

                                         {
− (

1

2
𝑚+𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1

(
1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2

}. (2.7a) 

Equation (2.7a) can further reduced as 

�̈�1 = 𝑓1 =  −  
{
𝑚

4
+𝑀}{

𝑚

2
+𝑀}sin(𝜃1−𝜃2)�̇�2

2

∆
 +

 {
𝑚

4
+𝑀}{

3𝑚

2
+𝑀}

𝑔

𝐿
sin(𝜃1)

∆
  

−
{
𝑚

2
+𝑀}

2
sin(𝜃1−𝜃2)cos(𝜃1−𝜃2)�̇�1

2

∆
−
{
𝑚

2
+𝑀}

2𝑔

𝐿
cos(𝜃1−𝜃2)𝑠𝑖𝑛(𝜃2)

∆
+ 

{
𝑚

4
+𝑀}{𝜏1 𝐿2⁄ }

∆
− 

{
𝑚

2
+𝑀}cos(𝜃1−𝜃2)𝜏2 𝐿2⁄

∆
 

 (2.7b) 

�̈�2 = 𝑓2 =   
{
𝑚

2
+𝑀}

2
 sin(𝜃1−𝜃2)cos(𝜃1−𝜃2)�̇�2

2

∆
−
 {
𝑚

2
+𝑀}{

3𝑚

2
+𝑀}

𝑔

𝐿
cos(𝜃1−𝜃2) 𝑠𝑖𝑛(𝜃1)  

∆
  

+
{
5𝑚

4
+𝑀}{

𝑚

2
+𝑀}sin(𝜃1−𝜃2)�̇�1

2

∆
+
 {
5𝑚

4
+𝑀}{

𝑚

2
+𝑀} 

𝑔

𝐿
𝑠𝑖𝑛(𝜃2)

∆
 − 

 {
𝑚

2
+𝑀}cos(𝜃1−𝜃2) {𝜏1 𝐿2⁄ }

∆
+ 

{
5𝑚

4
+𝑀}𝜏2 𝐿2⁄

∆
  

 (2.7c) 

where ∆= {
5𝑚

4
+𝑀} {

𝑚

4
+𝑀} − {

𝑚

2
+𝑀}

2
cos2(𝜃1 − 𝜃2). 

The reaction forces at the foot of the two-link in pinned dynamics can be calculated by applying 

Newton’s  law to the COM of the system. The COM {𝑥𝑐𝑔, 𝑦𝑐𝑔} is given by 

{2𝑚 + 2𝑀}𝑥𝑐𝑔 = ∑ 𝑚𝑖𝑥𝑖𝑖 = 𝑚 {
3𝐿

2
𝑠𝑖𝑛(𝜃1) +

𝐿

2
sin (𝜃2)} + 𝑀{𝐿𝑠𝑖𝑛(𝜃1) + 𝐿sin (𝜃2)}  

{2𝑚 + 2𝑀}𝑦𝑐𝑔 = ∑ 𝑚𝑖𝑦𝑖𝑖 = 𝑚 {
3𝐿

2
𝑐𝑜𝑠(𝜃1) +

𝐿

2
cos (𝜃2)} + 𝑀{𝐿𝑐𝑜𝑠(𝜃1) + 𝐿cos(𝜃2)} . 

Applying Newton’s second law gives 

𝐹𝑥 = {2𝑚 + 2𝑀}�̈�𝑐𝑔 = −[𝑚 {
3𝐿

2
𝑠𝑖𝑛(𝜃1)(�̇�1)

2
+
𝐿

2
𝑠𝑖𝑛 (𝜃2)(�̇�2)

2
} −  𝑚 {

3𝐿

2
𝑐𝑜𝑠(𝜃1)�̈�1 +

𝐿

2
cos (𝜃2)�̈�2} +

          𝑀 {𝐿𝑠𝑖𝑛(𝜃1)(�̇�1)
2
+ 𝐿𝑠𝑖𝑛(𝜃2) (�̇�2)

2
} −  𝑀{𝐿𝑐𝑜𝑠(𝜃1)�̈�1 + 𝐿𝑐𝑜𝑠 (𝜃2)�̈�2}]   

 if 𝐹𝑦 > 0 else 𝐹𝑥 = 0   

  (2.8a) 
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𝐹𝑦 = {2𝑚 + 2𝑀}�̈�𝑐𝑔 + 2{𝑚 +𝑀}𝑔 = − [𝑚 {
3𝐿

2
𝑐𝑜𝑠(𝜃1)(�̇�1)

2
+
𝐿

2
cos (𝜃2)(�̇�2)

2
} +  𝑚 {

3𝐿

2
𝑠𝑖𝑛(𝜃1)�̈�1 +

𝐿

2
sin (𝜃2)�̈�2} +𝑀 {𝐿𝑐𝑜𝑠(𝜃1)(�̇�1)

2
+ 𝐿𝑐𝑜𝑠(𝜃2) (�̇�2)

2
} +  𝑀{𝐿𝑠𝑖𝑛(𝜃1)�̈�1 + 𝐿𝑠𝑖𝑛 (𝜃2)�̈�2}] + 2{𝑚 +𝑀}𝑔   

if 𝐹𝑦 > 0 else  𝐹𝑦 = 0 

                      (2.8b) 

For 𝐹𝑦 greater than zero, the two-link dynamics maintains pinned dynamics; however as soon as 𝐹𝑦 

goes to zero, the dynamics switch from pinned dynamics to free dynamics.  

Equations (2.7a,b) and (2.8a) and (2.8b) can also be obtained directly from (2.5a) by imposing the 

equality constraint 

 𝑆(�⃗�, 𝜏1, 𝜏2, 𝐹𝑥 , 𝐹𝑦) = {
�̈�
�̈�
} = 0, for 𝑦 = 0 (2.8c) 

in equation (2.5a). Equation (2.7b) comes from the upper left LHS (the A matrix) of (2.5a) and the 

upper RHS of (2.5a). Equation (2.8a) comes from the resulting third row and (2.8b) comes from the 

resulting fourth row. In addition to these equations an impulsive load must be applied at the time of 

impact such �̇� and �̇� are driven to zero. That is, pinned dynamics are simply free dynamics with the 

(2.8c) constraint imposed. When 𝐹𝑦 goes to zero, the (2.8c) constraint is lifted and pinned dynamics 

become free dynamics as required by the (2.8b) inequality constraint. 

2.1.3 Derivation of bent dynamics 

In bent dynamics only one state variable is required to define the energies of the system due to the 

constraint 

 𝜃1 + 𝜃2 − 𝜋 = 0. (2.10a) 

Using this constraint and its derivatives, the kinetic and potential energy of the system are given by 

 𝑇 =
1

2
{𝐷1 + 𝐷2}  (2.10b) 

where 

 𝐷1 = 
𝑚

2
𝐿2�̇�1

2 ,  (2.10c) 

 𝐷2 =  2(𝑚 + 2𝑀)𝐿2 cos(𝜃1) �̇�1
2,  (2.10d) 
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and  𝑉 = 𝑚𝐿𝑔 cos(𝜃1). (2.10e) 

The Euler-Lagrange (EL) equations for this configuration are equations (2.3a) and (2.3b). 

Substituting (2.10a-e) into these equations and reducing gives 

 {𝑚 + 4{𝑚 + 2𝑀} cos2(𝜃1)}�̈�1 =  4{𝑚 + 2𝑀} cos(𝜃1)sin(𝜃1) �̇�1
2 + 2𝑚

𝑔

𝐿
sin(𝜃1) + 𝛼/𝐿

2 . 

  (2.10f) 

 

Figure 10. An illustration of bent dynamics reaction forces 

To determine the reaction force at the body, an angular momentum balance about the foot must be 

performed. As shown in Figure 10, we introduce a reaction force at that body, 𝐹𝑦2
. The normal 

reaction force at the foot is given by 𝐹𝑦1. A momentum balance is performed by calculating the 

displacement to each mass, taking the time derivative to find the velocity of that mass, calculating 

the angular momentum using a cross product, and applying Newton’s second law to determine the 

reaction force at the body.  

The displacement to the first mass is given by 

𝑟1 =
𝐿

2
sin(𝜃1) 𝑖̂ +

𝐿

2
cos(𝜃1) 𝑗̂  (2.11a) 

where 𝑖 ̂ and 𝑗̂ are unit vectors in the 𝑥 and 𝑦 directions. The velocity of the first mass is the 

derivative of (2.11a) 

𝑟1
̇ =

𝐿

2
cos(𝜃1) �̇�1𝑖̂ −

𝐿

2
sin(𝜃1)�̇�1 𝑗̂  (2.11b) 
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and the angular momentum of the first mass is given by 

𝑀1 = 𝑚{𝑟1
̇ × 𝑟1} = 𝑚 |

𝐿

2
cos(𝜃1) �̇�1 −

𝐿

2
sin(𝜃1)�̇�1

𝐿

2
sin(𝜃1)

𝐿

2
cos(𝜃1)

| = 𝑚
𝐿2

4
�̇�1. (2.11c) 

Performing the same process on the other two moving masses gives 

𝑀2 = 𝑚
3𝐿2

4
�̇�1, (2.11d) 

𝑀3 = 0. (2.11e) 

Therefore, using Newton’s second law, 

 2𝐿 sin(𝜃1)𝐹𝑦2 − 2𝐿𝑀𝑔sin
(𝜃1) − 2𝑚𝐿𝑔sin(𝜃1) = −

𝑑

𝑑𝑡
{𝑀1 +𝑀2 +𝑀3} = −𝑚𝐿

2�̈�1 and  

𝐹𝑦2 =
{𝑀 +𝑚}𝑔 −

𝑚𝐿�̈�1
2 sin(𝜃1)

 . (2.11f) 

Moreover, from Newton’s second law in the 𝑦 direction, 

𝐹𝑦1 = 2(𝑀+𝑚)𝑔−𝑚𝐿 {𝑐𝑜𝑠(𝜃1)�̇�1
2
+ 𝑠𝑖𝑛(𝜃1)�̈�1} − 𝐹𝑦2

 (2.11g) 

Similar as before, the dynamics described by (2.7b) (the higher order system) contains the 

dynamics described by (2.10f) (the lower order system). If we subtract the first row of (2.7a) from 

the second row of (2.7a), apply (2.10a) constraint and reduce, we obtain (2.10f) where 𝛼 in (2.10f) 

is 𝜏1 − 𝜏2 = 𝛼2 in the resulting subtraction (as expected).  

If we add the first row of (2.7a) to the second row of (2.7a) and apply (2.10a) we obtain  

 𝜏1 + 𝜏2 = 𝐿
2�̈�1 − 2{𝑀 +𝑚}𝐿𝑔 sin(𝜃1) . (2.11h) 

But this is the same as (2.11f) where  

 −2 𝐹𝑦2𝐿 sin
(𝜃1) = 𝜏1 + 𝜏2, (2.11i) 

the added torque due to the reaction force needed to produce the (2.10a) constraint condition.  

2.2 Dynamic transitions 

As shown on the left and right side of Figure 9, the two-link can transition from one set of dynamics 

to another changing order with transition. During these transitions we assume that only one node is 

allowed to change its relationship with the ground at a time (for multiple contact problems see 
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references 65, 66 and/or 67). For example, to reach the prone position from the free position one 

possibility is for the foot to impact, transitioning to pinned dynamics; from pinned dynamics the 

body may impact, transitioning to bent dynamics; and from bent dynamics the knee may impact, 

transitioning to the prone position.  

Two-link dynamics are altered by a node impacting or leaving the ground. The resulting post-

impact response is calculated using impact (sometimes called impulse) dynamics. An impact 

reduces order. When a reaction force which constrains a node goes to zero, order is augmented. For 

example, if the two-link is crouching in a stabilized pinned dynamic configuration and control is 

applied at the knee, the reaction force at the foot will initially be positive. As the momentum of the 

two-link increases this force will go to zero. At this instance the two-link transitions from pinned 

dynamics to a free dynamics and the states are augmented by {𝑥, 𝑦} where the initial conditions of 

the augmented states is equal to the location of the foot at the time of departure. Gravity drives the 

two-link back to earth. At the time of impact, the order is reduced back to that of pinned dynamics.  

Transitions involving a node leaves the ground is mathematically straight forward; however, 

determining state transitions when a node impacts the ground is non-trivial. To find the change in 

state velocities due to impact, a virtual approach method could be used [58, 68]; however in this 

paper, a more instructive Newtonian approach is used. In this dissertation we assumed that after 

impact, the point of impact has zero velocity normal to the ground. The Newtonian approach allows 

us to solve this problem.  

The integral of Newton’s second law with an impulsive force 𝐹𝛿(𝑡) acting on a mass, 𝑚, is given by 

 𝑚{𝑣+ − 𝑣−} = 𝐹 (2.15) 

where 𝑣+ is the velocity of the mass instantaneously prior to the impulse, 𝑣− is the velocity of the 

mass instantaneously after the impulse and 𝐹 is the magnitude of the impulsive load. In the 

following, a similar nomenclature will be used to describe the response of the two-link -- a 

superscript with a minus sign stands for the state just prior to the impulse and a superscript with a 
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plus sign stands for the state just after the impulse. The process used to determine the resulting 

state is to apply (2.15) at the instance of impact to each link and to apply motion constraints at the 

point of impact. This impact does not change the instantaneous location of the linkage system but 

alters its velocities in such a way that the boundary conditions for the configuration that the two-

link is transitioning to are satisfied.  

Figure 11 shows the impulse loads and the altered state velocities on the linkages during an 

arbitrary impact. There are eleven (11) possible unknowns 𝑣𝑥,1
+ , 𝑣𝑦,1

+ , �̇�1
+, 𝑣𝑥,2

+ , 𝑣𝑦,2
+ , �̇�2

+, 𝐹𝑥1, 𝐹𝑦1
, 𝑓𝑥, 

𝑓𝑦, and 𝐹𝑦2
. Velocities are defined about the center of mass (COM) of each link. Some of the knowns 

are 𝑣𝑥,1
−  , 𝑣𝑦,1

− , �̇�1
−, 𝑣𝑥,2

− , 𝑣𝑦,2
− , and �̇�2

− along with the orientation of the linkages 𝜃1 and 𝜃2. Other 

knowns are associated with constraint conditions.  

 

Figure 11. An illustration of the impulsive forces on a two-link 

Applying (2.15) to the COM of each link gives 

(𝑚 +𝑀)𝑣𝑥,1
− = (𝑚 +𝑀)𝑣𝑥,1

+ − 𝐹𝑥1 + 𝑓𝑥 , (2.16a) 

(𝑚 +𝑀)𝑣𝑦,1
− = (𝑚 +𝑀)𝑣𝑦,1

+ − 𝐹𝑦1 + 𝑓𝑦 ,       (2.16b) 
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(𝑚+𝑀)𝑣𝑥,2
− = (𝑚 +𝑀)𝑣𝑥,2

+ − 𝑓𝑥 , (2.16c) 

(𝑚 +𝑀)𝑣𝑦,2
− = (𝑚 +𝑀)𝑣𝑦,2

+ − 𝑓𝑦 − 𝐹𝑦2 .       (2.16d) 

Applying angular momentum to the COM of each link gives 

𝐼1�̇�1
− = 𝐼1�̇�1

+ + 𝐹𝑥1 𝐿𝑐𝑔 cos(𝜃1) − 𝐿𝑐𝑔 𝐹𝑦1 sin
(𝜃1) + 𝑓𝑥  (𝐿 − 𝐿𝑐𝑔)cos(𝜃1) − 𝑓𝑦(𝐿 − 𝐿𝑐𝑔) sin(𝜃1)(2.16e) 

𝐼2�̇�2
− = 𝐼2�̇�2

+ + 𝑓𝑥(𝐿 − 𝐿𝑐𝑔) cos(𝜃2) − 𝑓𝑦(𝐿 − 𝐿𝑐𝑔) sin(𝜃2) + 𝐿𝑐𝑔𝐹𝑦2 sin
(𝜃2)  (2.16f) 

where 𝐼1 = 𝐼2 = 𝑚 {𝐿𝑐𝑔 −
𝐿

2
}
2
+𝑀{𝐿𝑐𝑔}

2
 and 𝐿𝑐𝑔 =

𝐿

2
{

𝑚

𝑀+𝑚
}. 

Applying kinematic constraints at the knee just after impact gives 

0 = 𝑣𝑥,1
+ − 𝑣𝑥,2

+ + �̇�1
+(𝐿 − 𝐿𝑐𝑔) cos(𝜃1) + �̇�2

+(𝐿 − 𝐿𝑐𝑔) cos (𝜃2) ,    (2.16g) 

0 = 𝑣𝑦,1
+ − 𝑣𝑦,2

+ − �̇�1
+(𝐿 − 𝐿𝑐𝑔,1) sin(𝜃1) − �̇�2

+(𝐿 − 𝐿𝑐𝑔) sin (𝜃2).    (2.16h) 

Applying kinematic constraints for zero motion at the foot gives 

0 = 𝑣𝑥,1
+ − �̇�1

+𝐿𝑐𝑔cos (𝜃1) ,         (2.16i) 

0 = 𝑣𝑦,1
+ + �̇�1

+𝐿𝑐𝑔sin (𝜃1) .         (2.16j) 

Applying kinematic constraints for zero motion at the end head gives 

0 = 𝑣𝑥,2
+ + 𝐿𝑐𝑔cos (𝜃2) , (2.16k) 

0 = 𝑣𝑦,2
+ − �̇�2

+𝐿𝑐𝑔sin (𝜃2) .         (2.16l) 

Equations (2.16a) through (2.16h) apply for any impact conditions. However, equations (2.16i) 

through 2.16l) apply depending on the node undergoing impact and the resulting boundary 

condition. For the situation where the knee is not on the ground, the form of the matrix relationship 

representing these relationships is given by 

𝜙 = 𝐴𝜓 (2.17a) 

where  

𝜙 = [𝜙𝑢
𝑇 𝜙𝑙

𝑇]𝑇 is a vector of knowns, 

𝜓 = [𝜓𝑢
𝑇 𝜓𝑙

𝑇]𝑇 is a vector of unknowns, 
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𝜙𝑢 = [𝑣𝑥,1
− 𝑣𝑦,1

− �̇�1
− 𝑣𝑥,2

− 𝑣𝑦,2
− �̇�2

− 0 0]
𝑇

,  𝜙𝑙 is a function of the node undergoing impact , 

𝜓𝑢 = [𝑣𝑥,1
+ 𝑣𝑦,1

+ �̇�1
+ 𝑣𝑥,2

+ 𝑣𝑦,2
+ �̇�2

+ 𝑓𝑥 𝑓𝑦]
𝑇

, 𝜓𝑢 is a function of the node undergoing impact, 

and the resulting boundary condition 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

], 𝐴21 = ℛ
𝑁𝑜𝑥8, 𝐴12 = ℛ

8𝑥𝑁𝑜, 𝐴22 = 0
𝑁𝑜𝑥𝑁𝑜 

𝑣𝑥,1
− =   (𝐿 − 𝐿𝑐𝑔)𝑐𝑜𝑠(𝜃1)�̇�1

−, 

𝑣𝑦,1
− = −(𝐿 − 𝐿𝑐𝑔)sin (𝜃1)�̇�1

−, 

𝑣𝑥,2
− =    𝐿𝑐𝑜𝑠(𝜃1)�̇�1

− + (𝐿 − 𝐿𝑐𝑔)𝑐𝑜𝑠(𝜃2)�̇�2
−,  

𝑣𝑦,2
− = −𝐿𝑠𝑖𝑛(𝜃1)�̇�1

− − (𝐿 − 𝐿𝑐𝑔)𝑠𝑖𝑛(𝜃2)�̇�2
−, 

𝐴11 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 1 (𝑚 +𝑀)⁄ 0

0 1 0 0 0 0 0 1 (𝑚 +𝑀)⁄

0 0 1 0 0 0 (𝐿 − 𝐿𝑐𝑔) cos(𝜃1) 𝐼1⁄ −(𝐿 − 𝐿𝑐𝑔) sin(𝜃1) 𝐼1⁄

0 0 0 1 0 0 −1 (𝑚 +𝑀)⁄ 0

0 0 0 0 1 0 0 −1 (𝑚 +𝑀)⁄

0 0 0 0 0 1  (𝐿 − 𝐿𝑐𝑔) cos(𝜃1) 𝐼2⁄ −(𝐿 − 𝐿𝑐𝑔) sin(𝜃1) 𝐼2⁄

−1 0 −(𝐿 − 𝐿𝑐𝑔) cos(𝜃1) 1 0 − (𝐿 − 𝐿𝑐𝑔)cos (𝜃2) 0 0

0 −1 (𝐿 − 𝐿𝑐𝑔) sin(𝜃1) 0 1  (𝐿 − 𝐿𝑐𝑔)sin (𝜃2) 0 0 ]
 
 
 
 
 
 
 
 

,(2.17b) 

In the following sections, quantification of 𝐴12 and 𝐴21 is performed for a limited set of impact 

transitions. 

2.2.1 Transition: free to pinned dynamics 

For this situation the unknowns are  𝑣𝑥,1
+ , 𝑣𝑦,1

+ , �̇�1
+, 𝑣𝑥,2

+ , 𝑣𝑦,2
+ , �̇�2

+, 𝑓𝑥, 𝑓𝑦, 𝐹𝑥1, and 𝐹𝑦1, and equations 

(16a) through (16j) are applicable. For this situation, 𝑁𝑜 = 2 and 

𝜙𝑙 = [0 0]𝑇 ,  (2.18a) 

𝜓𝑙 = [𝐹𝑥1 𝐹𝑦1]
𝑇

, (2.18b) 

𝐴12 =

[
 
 
 
 
 
 
 
−1 (𝑚 +𝑀)⁄

0
𝐿𝑐𝑔 cos(𝜃1) 𝐼1⁄

0
0
0
0
0

0
−1 (𝑚 +𝑀)⁄

−𝐿𝑐𝑔 sin(𝜃1) 𝐼1⁄

0
0
0
0
0 ]

 
 
 
 
 
 
 

. (2.18c) 
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𝐴21 = [
1 0 −𝐿𝑐𝑔cos (𝜃1) 0 0 0
0 1 𝐿𝑐𝑔sin (𝜃1) 0 0 0

], (2.18d) 

Matrix 𝐴21 represent the constraint condition at the foot, and matrix 𝐴12 represents the additional 

inertial loads and moments resulting from foot reaction loads. 

2.2.2 Transition: pinned to bent dynamics 

For this situation the unknowns are  𝑣𝑥,1
+ , 𝑣𝑦,1

+ , �̇�1
+, 𝑣𝑥,2

+ , 𝑣𝑦,2
+ , �̇�2

+, 𝑓𝑥, 𝑓𝑦, 𝐹𝑥1, 𝐹𝑦1
, and 𝐹𝑦2

. For this 

situation, 𝑁𝑜 = 3 and 

𝜙𝑙 = [0 0 0]𝑇,  (2.19a) 

𝜓𝑙 = [𝐹𝑥1, 𝐹𝑦1
, 𝐹𝑦

2
]
𝑇

,  (2.19b) 

𝐴12 =

[
 
 
 
 
 
 
 
−1 (𝑚 +𝑀)⁄

0
𝐿𝑐𝑔 cos(𝜃1) 𝐼1⁄

0
0
0
0
0

0
−1 (𝑚 +𝑀)⁄

−𝐿𝑐𝑔 sin(𝜃1) 𝐼1⁄

0
0
0
0
0

0
0
0
0

−1 (𝑚 +𝑀)⁄

𝐿𝑐𝑔 sin(𝜃2) /𝐼2
0
0 ]

 
 
 
 
 
 
 

. (2.19c) 

𝐴21 = [

1 0 −𝐿𝑐𝑔cos (𝜃1)

0 1 𝐿𝑐𝑔sin (𝜃1)

0 0 0

0 0
0 0
0 1

0 0 0
0 0 0

−𝐿𝑐𝑔sin (𝜃2) 0 0
], (2.19d) 

This transition is only valid for the situation where 𝐹𝑦1 is greater than zero.  

Other transitions exit; however, their derivations are not presented here. 

2.3 Actuator dynamics 

In sections 2.1 and 2.2 we discussed dynamics and transitions. These are related to rigid body 

dynamics; however, these are not all of the dynamics in the system. Actuator dynamics must also be 

considered. Figure 12 shows the elements of a simplified model of motor dynamics. The input 

voltage 𝑉 is divided between the voltage across the internal resistance, 𝑅, and the motor voltage 𝑣𝑚. 

This motor voltage produces a torque at the motor shaft 𝜏𝑚. This torque is then amplified through a 

gear box with ratio, 𝐺𝑅. We assume that inductive motor effects can be neglected. 



 

35 

 

Figure 12. An illustration of actuator (motor) components 

Transduction between the electrical and mechanical response is given by 

𝜏𝑚 = 𝐾𝑄 𝑖 (2.22a) 

𝑣𝑚 =
Ω𝑚

𝐾𝑣
 (2.22b) 

where 𝐾𝑄 and 𝐾𝑣 are a function of the motor.  Performing a voltage balance gives 

𝑉 = 𝑅 𝑖 − 𝑣𝑚. (2.22c) 

Solving (2.22a) through (2.22c)  for 𝜏𝑚 in terms of the inputs (𝑣 , Ω𝑚) gives 

𝜏𝑚 =
𝐾𝑄

𝑅
𝑣 − 

𝐾𝑄

𝑅 𝐾𝑣
Ω𝑚. (2.22d) 

Two curves are commonly given for motor characteristic – 𝑖  versus 𝜏𝑚 at nominal voltage and Ω𝑚 

versus 𝜏𝑚 at nominal voltage. These plots are shown in Figure 13. The slope of the 𝑖  versus 𝜏𝑚 

determines 𝐾𝑄 from (2.22a). Other parameters are determined from the  Ω𝑚 versus 𝜏𝑚, at nominal, 

voltage curve. As shown in Figure 13 the maximum shaft speed Ω𝑚𝑎𝑥 occurs when 𝜏𝑚 = 0. The 

maximum shaft torque 𝜏𝑚𝑎𝑥 occurs when Ω𝑚 = 0. This is also called the stall torque. Solving (2.22f) 

for these two conditions gives 

𝐾𝑣 =
Ω𝑚𝑎𝑥

𝑣𝑛𝑜𝑚
 (2.22e) 

𝑅 =
𝑣𝑛𝑜𝑚

𝑖𝑚𝑎𝑥
 . (2.22f) 

𝑉 

+ 

- - 

- + 

+ 

𝑣𝑚 

𝑅 

𝐺𝑅 

𝜏𝑠, Ω𝑠 

𝑖 

𝜏𝑚, Ω𝑚 
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Figure 13. An illustration of motor characteristics 

The gear box behaves are a transformer between mechanical inputs and responses where 

 𝜏𝑠 = 𝐺𝑅 𝜏𝑚, (2.22d) 

Ω𝑠 =
Ω𝑚

𝐺𝑅
. (2.22e) 

Applying these equations to (2.22d) gives 

𝜏𝑠 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉 − 

𝐾𝑄

𝑅 𝐾𝑣
Ω𝑠]. (2.22f) 

Equation (2.22f) allows for the inputs in sections 2.1 through 2.3 to be modified to include the 

effect of actuator dynamics. Applying the nomenclature used in the above sections to this equation 

gives 

𝛼1 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉1 − 

𝐾𝑄

𝑅 𝐾𝑣
�̇�1] (2.23a) 

𝛼2 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉2 − 

𝐾𝑄

𝑅 𝐾𝑣
(�̇�1 − �̇�2)] (2.23b) 

where 𝑣1 is the voltage into the foot motor and 𝑣2 is the voltage into the knee motor and 𝛼1 and 𝛼2 

are torques defined in Figure 8. 
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2.4 Dynamics for state stabilization 

The control approach used in this paper is to transition the state of the linkage system through state 

space using a rhythm to a termination state which is stabilized through the use of feedback control.   

In this thesis, the two-link is assumed to be stabilized about three states, standing, crouching right, 

and crouching left. These three stabilized states are associated with pinned dynamics as described 

in (2.7). To stabilize these states a linearized representation of the dynamics is required. The 

linearization of (2.7) about �⃗�∗ = { 𝜃1, �̇�1, 𝜃2, �̇�2}
𝑇
= {𝜃1

∗, 0, 𝜃2
∗, 0}, under the influence of the 

equilibrium control, �⃗⃗� = {𝑣1
∗ 𝑣2

∗}𝑇 is 

𝑑

𝑑𝑡

{
 
 

 
 
𝜃1 − 𝜃1

∗

�̇�1 − �̇�1
∗

𝜃2 − 𝜃2
∗

�̇�2 − �̇�2
∗
}
 
 

 
 

=

[
 
 
 
 
 
 
 
0 1 0 0

∂𝑓1

∂𝜃1
|
�⃗⃗�∗

∂𝑓1

∂�̇�1
|
�⃗⃗�∗

∂𝑓1

∂𝜃2
|
�⃗⃗�∗

∂𝑓1

∂�̇�2
|
�⃗⃗�∗

0 0 0 1

∂𝑓2

∂𝜃1
|
�⃗⃗�∗

∂𝑓2

∂�̇�1
|
�⃗⃗�∗

∂𝑓2

∂𝜃2
|
�⃗⃗�∗

∂𝑓2

∂�̇�2
|
�⃗⃗�∗]
 
 
 
 
 
 
 

{
 
 

 
 
𝜃1 − 𝜃1

∗

�̇�1 − �̇�1
∗

𝜃2 − 𝜃2
∗

�̇�2 − �̇�2
∗
}
 
 

 
 

+

[
 
 
 
 
 
0

∂𝑓1

∂𝑣1
|
�⃗⃗�∗

    0
∂𝑓1

∂𝑣2
|
�⃗⃗�∗

0
∂𝑓2

∂𝑣1
|
�⃗⃗�∗

    0
∂𝑓2

∂𝑣2
|
�⃗⃗�∗]
 
 
 
 
 

{
𝑣1 − 𝑣1

∗

𝑣2 − 𝑣2
∗}  

 (2.20a) 

where the terms in (2.20a) are given in appendix B. Equation (2.20a) is written in compact form as 

 
𝑑

𝑑𝑡
�⃗� = 𝐴�⃗� + 𝐵�⃗⃗� .  (2.20b) 

The standing position is a stabilized state with nominal states defined by  

�⃗�∗ =

{
 

 
𝜃1
�̇�1
𝜃2
�̇�2}
 

 

= {

0
0
0
0

} under the steady state excitation 𝑣1
∗ = 𝑣2

∗ = 0. (2.21a) 

Crouching positions are stabilized states defined by the crouching angle 𝜃∗ where 

�⃗�∗ =

{
 

 
𝜃1
�̇�1
𝜃2
�̇�2}
 

 

=

{
 
 

 
 

𝜃∗

0

𝑠𝑖𝑛−1 {−
3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃∗)}

0 }
 
 

 
 

 under the steady-state excitation  
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𝑣1
∗ = 0, 𝑣2

∗ =
2𝑅

𝐺𝑅 𝐾𝑄
{3𝑚 + 2𝑀}sin (𝜃∗).     (2.21b,c) 

2.5 Summary of chapter 

This chapter presents a study of the dynamics of a simple robotic system called a two-link. In the 

first section we examined the rigid body dynamics of this robot in a number of different 

configurations. It was shown that once the highest order dynamic system (i.e. free dynamics) was 

known, the dynamics of all lower order systems can be determined along with the reaction forces 

required to maintain any constraint conditions.  

In the second section we examined dynamic transitions. The approach used in this section was 

different from most of what is found in the literature. In this section we assumed that, post impact, 

the impact location has no normal velocity. A Newtonian approach could be used to determine the 

resulting velocity of links.   

In the third section actuator dynamics were discussed. This discussion outlined a simple dynamical 

model for a motor.   

In the fourth section, the linearized dynamics of the two-link are presented. These dynamics are 

necessary for producing stabilized states.  

In the following chapter, the nonlinear dynamics presented in this chapter will be used to derive 

open loop control (OLC) inputs, called rhythms.  These rhythms will be used to drive the robotic 

system from one stabilized state to another producing locomotion.  This will be demonstrated in 

chapter 4. In chapters 5 and 6, hardware is built to validate theoretical development in chapters 2 

through 4. 
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Chapter 3 

3.0 Control 

Chapter 2 presents closed form representations of two-link dynamics. These representations 

allowed for an understanding of the relationship between the dynamics of different configurations 

as well as serving as a numerical tool that can be used to investigate OLC methods.  

As stated in chapter 1, finding solutions to satisfy OLOC necessary conditions can be difficult. As an 

alternative, we will take a more numerically tractable approach. We parameterize the control input 

using a sparse number of parameters and then optimize these parameters to solve for a suboptimal 

solution.  

Consider the following two simple examples. In problem 1 we solve an OLOC problem using the 

calculus of variations of solution given in appendix C. In problem 2 we solve the same problem 

using a OLC method assuming a simplified control input form. We show that both methods produce 

similar results. 

__________________________________________________________________________________________________________________ 

Problem 1: Solution to a OLOC using the shooting method 

Given: 

�̇� = −𝑎𝑥 + 𝑏𝑢(𝑡), 𝑥(𝑡𝑜) = 𝑥𝑜 

Find: 

𝑢(𝑡) such that 𝑥(𝑡𝑓) = 𝑥𝑓 such that 𝐼𝑃 = ∫ 𝑢(𝑡)2
𝑡𝑓
𝑡𝑜

 𝑑𝑡 is mimimized 

Solution: 

The necessary conditions for this problem is a subset of the equations in appendix C 

�̇� = −
𝜕𝐻

𝜕𝑥
,  (3.1a) 

�̇� = −𝑎𝑥 + 𝑏𝑢, 𝑥(𝑡𝑜) = 𝑥𝑜, and 𝑥(𝑡𝑓) = 𝑥𝑓 (3.1b) 

with 𝑢(𝑥, 𝜆, 𝑡) is chosen such that 
𝜕𝐻

𝜕𝑢
(𝑢, 𝑥, 𝜆) = 0 (3.1c) 
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where 𝐻 = 𝑢2 + 𝜆(−𝑎𝑥 + 𝑏𝑢). 

The above set of equations represents a two-point boundary value problem (TPBV). There are two 

ordinary differential equations, (3.1a, and b), where the initial and final temporal boundary 

conditions of (3.b) are completely defined. The boundary conditions of (3.1a) are undefined. 

Equations (3.1a) and (3.1b) are coupled equations through the control input (3.1c). The TPBV 

solution determines boundary condition for 3.1a that will make 3.1b true. 

A solution can be found using the shooting method. If the initial conditions of both (3.1a) and (3.1b) 

(𝑥(𝑡𝑜) and 𝜆(𝑡𝑜)) were known, a solution could be found by performing a forward integration of 

(3.1a,b) where 𝑢(𝑡) is determined at any integration time from (3.1c).  Using a shooting method 

numerous forward iterations are performed for various 𝜆(𝑡𝑜) until 𝑥(𝑡𝑓) = 𝑥𝑓.  For each iteration, a 

new estimate of 𝜆(𝑡𝑜) is developed based upon the previous results until the proper final state is 

obtained. 

For 𝑎 = 1, 𝑏 = 2, 𝑥𝑓 = 2, 𝑡𝑜 = 1, and 𝑡𝑓 = 1, the solution is shown (in red) in Figure 14. An initial 

guess of  𝜆(𝑡𝑜) = 0.5 produces a terminal value of 2.338 (too high) and an initial guess of 𝜆(𝑡𝑜) =1.0 

produces a terminal value of 1.1684 (too low). The next guess was produced by interpolation 

𝜆(𝑡𝑜)~ 
2.0 − 1.169

2.338 − 1.169
 ( (−1.0) − (−0.5)) + (−0.5) = −0.8554 

which results in an initial condition which is very close to the desired terminal state value.  In 

general, for nonlinear systems, numerous iterations are needed to produce convergence. 

In general, the shooting method is a poor approach to finding a solution to OLOC necessary 

conditions. For systems with higher order dynamics applied over longer time frames, the shooting 

methods requires a very good initial estimate for 𝜆(𝑡𝑜) [57].  A gradient method could be used to 

solve this problem but this solution can result in a prodigious number of minimums.  

The OLOC input is shown in Figure 15. Notice that this solution is almost a straight line. If we knew 

this prior to starting the problem, we might have attempted to use a straight line approximation of 

the control input defined by an initial value and a slope. We could then perform a global search on 
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these two parameters to determine a near optimal OLC solution. By doing this we would have 

recast the OLOC problem into a FD OBM problem. 

 

Figure 14. Problem 1 solution using the shooting method 

 

Figure 15. Problem 1 optimal control input 

__________________________________________________________________________________________________________________ 

From insight gained by solving the above optimal control problem, we now assume that the control 

input is linear and solve the same problem. 
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__________________________________________________________________________________________________________________ 

Problem 2: Solution to problem 1 by functional approximation, OLC 

Given: 

�̇� = −𝑎𝑥 + 𝑏𝑢(𝑡), 𝑥(𝑡𝑜) = 𝑥𝑜 

Find: 

𝑢(𝑡) such that 𝑥(𝑡𝑓) = 𝑥𝑓 such that 𝐼𝑃 = ∫ 𝑢(𝑡)2
𝑡𝑓
𝑡𝑜

 𝑑𝑡 is minimized  

where 

a) 𝑢(𝑡) = 𝜐 + 𝛾𝑡. 

b) 𝑢(𝑡) = 𝜐 

Solution: 

Part a) This is a constraint optimization problem 

𝐼𝑃 = 𝛼0𝜐
2 + 2𝛼1𝜐𝛾 + 𝛼2𝛾

2 + 𝜆(𝑥(𝑎𝑜, 𝑎1, 𝑡𝑓) − 𝑥𝑓)   

where 𝛼0 = ∫ 𝑑𝑡
𝑡𝑓
𝑡𝑜

, 𝛼1 = ∫ 𝑡 𝑑𝑡
𝑡𝑓
𝑡𝑜

, 𝛼2 = ∫ 𝑡2 𝑑𝑡
𝑡𝑓
𝑡𝑜

 and 𝜆 is a Lagrange multiplier. In this 

representation we note that the simulated final state 𝑥(𝜐, 𝛾, 𝑡𝑓) is a function of the control variables. 

Necessary conditions are 

𝜕𝐼𝑃

𝜕𝜐
= 2𝛼0𝜐 + 𝛼1𝛾 + 𝜆

𝜕𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝜐
= 0  

𝜕𝐼𝑃

𝜕𝛾
= 𝛼1𝜐 + 2𝛼2𝛾 + 𝜆

𝜕𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝛾
= 0  

𝜕𝐼𝑃

𝜕𝜆
= 𝑥(𝑎𝑜, 𝑎1, 𝑡𝑓) − 𝑥𝑓 = 0  

To find a solution to these conditions we use a gradient solution.  If not at the optimal solution these 

conditions become 

𝜕𝐼𝑃

𝜕𝜐
= 2𝛼0𝜐 + 𝛼1𝛾 + 𝜆

𝜕𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝜐
= 𝜖1  

𝜕𝐼𝑃

𝜕𝛾
= 𝛼1𝜐 + 2𝛼2𝛾 + 𝜆

𝜕𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝛾
= 𝜖2  

𝜕𝐼𝑃

𝜕𝜆
= 𝑥(𝜐, 𝛾, 𝑡𝑓) − 𝑥𝑓 = 𝜖3  
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We would like to drive 𝜖𝑇𝜖 to zero. To do this define 

𝑅 =

[
 
 
 
 
 
 
𝜕𝜖1
𝜕𝜐

𝜕𝜖1
𝜕𝛾

𝜕𝜖1
𝜕𝜆

𝜕𝜖2
𝜕𝜐

𝜕𝜖2
𝜕𝛾

𝜕𝜖2
𝜕𝜆

𝜕𝜖3
𝜕𝜐

𝜕𝜖3
𝜕𝛾

𝜕𝜖3
𝜕𝜆 ]
 
 
 
 
 
 

 

where  

𝜕𝜖1
𝜕𝜐

= 2𝛼𝑜 + 𝜆
𝜕2𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝜐2
 

𝜕𝜖1
𝜕𝜐

= 2𝛼1 + 𝜆
𝜕2𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝜐𝜕𝛾
 

𝜕𝜖1
𝜕𝜆

=
𝜕𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝜐
 

𝜕𝜖2
𝜕𝜐

= 2𝛼1 + 𝜆
𝜕2𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝜐𝜕𝛾
 

𝜕𝜖2
𝜕𝜐

= 2𝛼2 + 𝜆
𝜕2𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝛾2
 

𝜕𝜖2
𝜕𝜆

=
𝜕𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝛾
 

𝜕𝜖3
𝜕𝜐

=
𝜕𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝜐
 

𝜕𝜖3
𝜕𝜐

=
𝜕𝑥(𝜐, 𝛾, 𝑡𝑓)

𝜕𝛾
 

𝜕𝜖3
𝜕𝜆

= 0 

Approximations to the above partial derivatives are given by 

𝜕𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝜐
~
𝑥(𝜐+ℎ,𝛾,𝑡𝑓)−𝑥(𝜐−ℎ,𝛾,𝑡𝑓)

2ℎ
+𝐻𝑂𝑇  

𝜕𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝛾
~
𝑥(𝜐,𝛾+ℎ,𝑡𝑓)−𝑥(𝜐,𝛾−ℎ,𝑡𝑓)

2ℎ
+𝐻𝑂𝑇  

𝜕2𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝜐2
~
𝑥(𝜐+ℎ,𝛾,𝑡𝑓)−𝑥(𝜐,𝛾,𝑡𝑓)+𝑥(𝜐−ℎ,𝛾,𝑡𝑓)

ℎ2
+𝐻𝑂𝑇  
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𝜕2𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝛾2
~
𝑥(𝜐,𝛾+ℎ,𝑡𝑓)−𝑥(𝜐,𝛾,𝑡𝑓)+𝑥(𝜐,𝛾−ℎ,𝑡𝑓)

ℎ2
+𝐻𝑂𝑇  

𝜕2𝑥(𝜐,𝛾,𝑡𝑓)

𝜕𝜐𝜕𝛾
~
𝑥(𝜐+ℎ,𝛾+ℎ,𝑡𝑓)−𝑥(𝜐+ℎ,𝛾−ℎ,𝑡𝑓)−𝑥(𝜐−ℎ,𝛾+ℎ,𝑡𝑓)+𝑥(𝜐−ℎ,𝛾−ℎ,𝑡𝑓)

4ℎ2
+𝐻𝑂𝑇 . 

Now define a vector of estimates of unknowns 𝜙𝑛 = [𝜐 𝛾 𝜆]𝑇 where 𝜙𝑛 represents the 𝑛𝑡ℎ 

estimate. Then to first order 

𝜙𝑛+1 = 𝜙𝑛 − 𝜇𝑅
−1𝜖  

where 𝜇 is a small number and 𝑅 is re-evaluated every iteration. 

Performing 1000 iterations with 𝜇 = 0.01 for  𝑎 = 1, 𝑏 = 2, 𝑥𝑓 = 2, 𝑡𝑜 = 1, and 𝑡𝑓 = 1,  𝜖𝑇𝜖 =

7.78𝑒 − 04, a number close to zero. The solution and control input are shown in Figure 16 and 

Figure 17. Also shown in these figures is the problem 1 solution. These solutions are very similar. 

They have almost the same performance, 𝐼𝑃~2.35 (within numerical error). 

 

 

 

Figure 16. OLOC and OLC state response comparison 
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Figure 17. OLOC and OLC control input comparison 

Part b) In this part, there is only one unknown, 𝜐. Given one terminal constraint condition, 

𝑥(𝜐, 𝑡𝑓) = 𝑥𝑓 , the unknown is uniquely determined. Therefore, it is not possible to also minimize an 

integral performance metric. In this dissertation, this form of solution is called a degenerate 

solution. 

The necessary condition for this problem is simply  

𝑥(𝜐, 𝑡𝑓) − 𝑥𝑓 = 𝜖  

This can be solved using the same gradient approach as in part a). Using this method gives 𝜐 =

1.587. The state response is given in Figure 18. Notice that the path is different however the 

terminal constraint is maintained.  

A comparison of control input is given in Figure 19. Even through a minimization of control energy 

was not part of the formulation, it can still be calculated. For this problem the integral control 

energy is 𝐼𝑃 = 2.52 which is within 6% error from the optimal solution given in problem 1. 
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Figure 18. OLOC and OLC state response comparison, degenerate solution 

 

Figure 19. OLOC and OLC control input comparison 

------------------------------------------------------------------------------------------------------------------------------------------

The above problems illustrate how OLC solutions can be used (for some dynamic systems) to 

produce near optimal minimal energy solutions.  

A possible complaint of this method is that this requires knowledge as to the form of the control 

input. This is not a strong limitation considering that if we are uncertain as to the form of the 

control input, several forms can be explored to find the one that gives the best performance.   
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3.1 Functional approximations 

Following the above assumption, we assume that control inputs can be represented using simple 

piecewise continuous functions as illustrated in Figure 20. 

 
Figure 20. An illustration of piecewise linear control inputs 

These inputs 𝜏𝑗(𝑡), 𝑗 ∈ [1,2] that can be generalized as 

 𝜏𝑗(𝑡) = ∑ {𝜐𝑖 + 𝛾𝑖𝑡 + 𝛽𝑖𝑡
2…}{𝐻(𝑡𝑖) − 𝐻(𝑡𝑖+1)}

𝑁𝑚−1
𝑖=0   (3.1a) 

where 𝑡𝑁𝑚 = 𝑡𝑓 , 𝐻(𝑡𝑖) is the Heaviside step function and 𝑁𝑚 is the number piecewise sections that 

comprise the input.   

To find an OLC solution, necessary conditions are formulated. To do this we minimize the control 

energy, 

min
𝜐1,𝛾1,𝛽1,𝜐2,𝛾2…

𝐼𝑃 = ∫ 𝜏1(𝑡)
2 + 𝜏2(𝑡)

2

𝑡𝑓

𝑡𝑜

…𝑑𝑡 ⟺ min
𝜐1,𝛾1,𝛽1,𝜐2,𝛾2…

𝐼𝑃 = 𝛼𝑜𝜐𝑜
2 + 𝛼1𝜐𝑜𝛾𝑜 +⋯ 

 with respect to the terminal constraints. 

�⃗�(𝑡𝑓) = [𝜃1(𝑡𝑓), 𝜃2(𝑡𝑓), �̇�1(𝑡𝑓), �̇�2(𝑡𝑓)]
𝑇
= �⃗�𝑓 = [𝜃1,𝑓, 𝜃2,𝑓 , �̇�1,𝑓 , �̇�2,𝑓]

𝑇
 

Substituting (3.1) into the above integral results in a parametric optimization problem 

min
𝜐1,𝛾1,𝛽1,𝜐2,𝛾2…

𝐼𝑃 = 𝛼𝑜𝜐𝑜
2 + 𝛼1𝜐𝑜𝛾𝑜 +⋯+ 𝜆

𝑇(�⃗�(𝑡𝑓) − �⃗�𝑓)  
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where  𝜆 = [𝜆1, 𝜆2, 𝜆3, 𝜆4 ] (for the two-link).  

Necessary conditions then become 

𝜕𝐼𝑃

𝜕𝜐
= 2𝛼0𝜐 + 𝛼1𝛾 +⋯ 𝜆

𝑇 𝜕�⃗⃗�(𝑡𝑓)

𝜕𝜐
= 0  (3.1b) 

𝜕𝐼𝑃

𝜕𝛾
= 𝛼1𝜐 + 2𝛼2𝛾 + 𝜆

𝑇 𝜕�⃗⃗�(𝑡𝑓)

𝜕𝛾
= 0  

⋮ 

𝜕𝐼𝑃

𝜕�⃗⃗⃗�
= 𝑋(𝑡𝑓) − 𝑋𝑓 = 0. 

Equation 3.1b represents a set of nonlinear algebraic equation when must be solved numerically. 

This is similar to the work performed by Eriksson using TFEM [44]; however, the number of 

unknowns is far less allowing for a tractable solution. 

A number of approaches can be used to find a solution to these equations. Here we use a gradient 

approach. Using this approach, we look at the situation where (3.1b) are evaluated off the optimal. 

In this case (3.1b) becomes 

𝜕𝐼𝑃

𝜕𝜐
= 2𝛼0𝜐 + 𝛼1𝛾 +⋯ 𝜆

𝑇 𝜕�⃗⃗�(𝑡𝑓)

𝜕𝜐
= 𝜖1  (3.1c) 

𝜕𝐼𝑃

𝜕𝛾
= 𝛼1𝜐 + 2𝛼2𝛾 + 𝜆

𝑇 𝜕�⃗⃗�(𝑡𝑓)

𝜕𝛾
= 𝜖2  

⋮ 

𝜕𝐼𝑃

𝜕𝜆1
= 𝜃1(𝑡𝑓) − 𝜃1,𝑓 = 𝜖𝑀+1. 

⋮  

𝜕𝐼𝑃

𝜕𝜆4
= �̇�2(𝑡𝑓) − �̇�2,𝑓 = 𝜖𝑀+4. 

where 𝑀 is the number of parameters used to describe all control inputs.   

We define  𝜖 = [𝜖1, 𝜖2, … ]
𝑇, and neglecting 𝛽𝑖′𝑠 (assuming linear piecewise functions), let  

�⃗⃗� = [𝜐𝑜 𝛾𝑜 𝜐1 𝛾1 𝜐2 …  𝜆𝑇]
𝑇, (3.1d) 

a vector of 𝑀 unknowns.  Expanding 𝜖 in a Taylor series and keeping the first term gives 
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𝜖 = 𝑅{�⃗⃗� − �⃗⃗�∗}  

where �⃗⃗�∗ is the solution which zeros (3.1c) and  

𝑅 =

[
 
 
 
 
 
 
 
𝜕𝜖1
𝜕𝜐𝑜

𝜕𝜖1
𝜕𝛾𝑜

𝜕𝜖1
𝜕𝜐1

⋯
𝜕𝜖1
𝜕𝜆1

𝜕𝜖1
𝜕𝜆2

𝜕𝜖1
𝜕𝜆3

𝜕𝜖1
𝜕𝜆3

𝜕𝜖2
𝜕𝜐𝑜

𝜕𝜖2
𝜕𝛾𝑜

𝜕𝜖2
𝜕𝜐1

⋯
𝜕𝜖2
𝜕𝜆1

𝜕𝜖2
𝜕𝜆2

𝜕𝜖2
𝜕𝜆3

𝜕𝜖2
𝜕𝜆4

𝜕𝜖3
𝜕𝜐𝑜

𝜕𝜖3
𝜕𝛾𝑜

𝜕𝜖3
𝜕𝜐1

⋯
𝜕𝜖3
𝜕𝜆1

𝜕𝜖3
𝜕𝜆2

𝜕𝜖3
𝜕𝜆3

𝜕𝜖3
𝜕𝜆4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ]
 
 
 
 
 
 
 

 ∈ ℛ𝑀+4,𝑀+4 

Solving for �⃗⃗�∗ gives 

 �⃗⃗�∗ = �⃗⃗� − 𝜇𝑅−1휀⃗ (3.1e) 

where 𝜇 = 1. In general, a first order approximation is not sufficient and (3.1e) must be applied 

repeatedly with 𝜇 ≪ 1.  

For the situation where 𝑀 = 4, the solution becomes degenerate. In this case, an integral 

optimization cannot be performed since there are only enough unknowns to maintain terminal 

constraints. In this situation the necessary conditions are 

𝜃1(𝑡𝑓) − 𝜃1,𝑓 = 0  

⋮  

�̇�4(𝑡𝑓) − �̇�4,𝑓 = 0.  

This set of equations is solved using the same gradient approach discussed given.  

For the situation where 𝑀 < 4,  a unique solution does not exist. 

 

In the following, we will develop OLC solutions for the two-link dynamics presented in chapter 2. 

Initially we start with the simplest of two-link dynamics where we are able compare the OLC 

solution to the OLOC minimum energy solution. As we progress to move complicated dynamics, 

obtaining a OLOC solution will not be possible; however, a OLC solution under the (3.1a) 

assumption is tractable. 
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Problem 3. Two-link minimum energy solution, a comparison 

Given: 

 Two-link parameters given in appendix D 

 Pinned dynamics as given by (2.7a) 

[
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚 +𝑀)𝐿2

] {
�̈�1
�̈�2
} =

{
−(

1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1

(
1

2
𝑚+𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2

}. 

 (2.7a) 

 The final time 𝑡𝑓 = 0.1 (sec). 

 The initial condition  

�⃗�𝑜 =

{
 
 

 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

,   

and the desired final condition 

�⃗�𝑓 =

{
 
 

 
 

𝜃1 = 0 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

. 

Find: 

a) The optimal control solution which minimizes  

𝐼𝑃 = ∫ {𝜏1
2 + 𝜏2

2}
𝑡𝑓
0

𝑑𝑡 with respect to (2.7a) dynamics 
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b) A terminal state solution which assumes that the control voltage inputs are simple linear 

function.  

That is, 

 𝜏1 = 𝜐1 + 𝜈1𝑡/𝑡𝑓 and 𝜏2 = 𝜐2 + 𝜈2𝑡/𝑡𝑓 

Solution: 

Optimal control necessary conditions are a subset of the necessary conditions given in appendix C. 

These conditions were solved for using a shooting method. The solution for part b was solved for 

using the above gradient approach. The solution for part b was a degenerate solution. Both 

solutions are shown below. 

 

 

 

Figure 21. Problem 3: comparison of minimum energy solutions, displacement 
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Figure 22. Problem 3: comparison of minimum energy solutions, rate 

 

Figure 23. Problem 3: comparison of the minimum energy solutions, control 

The optimal control minimum energy solution produces an 𝐼𝑃 = 0.32. Calculating the same 

performance metric for part b) gives 𝐼𝑃 = 0.33 - a variation of less than 3% from part a) results.  

_____________________________________________________________________________________ 
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Problem 3 shows that for a class of systems a linear control input is a very good assumption 

producing an error from the minimum energy solution within 3%.  

Through-out the rest of this dissertation we assume that control inputs can be represented as given 

in (3.1a).  In the next problems, we develop rhythms using this assumption. As part of this 

development, we increase complexity by including actuator dynamics and variations in state order 

due to changes in configuration. Finding an OLOC solution for this problem will be difficult. Finding 

a OLC under the (3.1a) assumption is tractable. 

___________________________________________________________________________________ 

Problem 4. Rhythm: Crouching right to standing (cr2s) 

Given: 

 Two-link parameters given in Appendix D. 

 Pinned dynamics as given by (2.7a) 

[
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚 +𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚 +𝑀)𝐿2

] {
�̈�1
�̈�2
} =

{
−(

1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1

(
1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2

}. 

 (2.7a) 

 The reaction force at the foot given as by (2.8b) 

𝐹𝑦 = −[𝑚 {
3𝐿

2
𝑐𝑜𝑠(𝜃1)(�̇�1)

2
+
𝐿

2
cos (𝜃2)(�̇�2)

2
} +  𝑚 {

3𝐿

2
𝑠𝑖𝑛(𝜃1)�̈�1 +

𝐿

2
sin (𝜃2)�̈�2} +

𝑀 {𝐿𝑐𝑜𝑠(𝜃1)(�̇�1)
2
+ 𝐿𝑐𝑜𝑠(𝜃2) (�̇�2)

2
} +  𝑀{𝐿𝑠𝑖𝑛(𝜃1)�̈�1 + 𝐿𝑠𝑖𝑛 (𝜃2)�̈�2}] + 2{𝑚 +𝑀}𝑔 .  (2.8b) 

 Actuator dynamics are given by (2.23a) and (2.23b) 

𝛼1 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉1 − 

𝐾𝑄

𝑅 𝐾𝑣
�̇�1] (2.23a) 

𝛼2 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉2 − 

𝐾𝑄

𝑅 𝐾𝑣
(�̇�1 − �̇�2)] (2.23b) 
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where from (2.1) 

{
𝜏1
𝜏2
} =

1

2
[
1 1
1 − 1

] {
𝛼1
𝛼2
}. (2.1) 

 The initial condition  

�⃗�𝑜 =

{
 
 

 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

,   

and the desired final condition 

�⃗�𝑓 =

{
 
 

 
 

𝜃1 = 0 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

. 

 The final time 𝑡𝑓 = 0.6 (sec). 

 A total foot size which is 0.2 times the length of a link (i.e. 𝐿𝑓𝑜𝑜𝑡 = 0.08 𝑚𝑒𝑡𝑒𝑟𝑠). 

Find: 

a) A solution that assumes that the control voltage inputs are simple linear function,  

That is, 

 𝑉1 = 𝜐1 + 𝜈1𝑡/𝑡𝑓 and 𝑉2 = 𝜐2 + 𝜈2𝑡/𝑡𝑓 

b) If the size of foot is sufficient to maintain full actuation 

c) A suitable gear ration for the motor gearbox. 

Solution: 

a) The solution for the situation where the control input is linear is shown in the below figures. 
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Figure 24. Problem 4: Displacement response, (cr2s) 

 

Figure 25. Problem 4: Velocity response, (cr2s) 
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Figure 26. Problem 4: Control input, (cr2s) 

b) The foot torque, 𝛼1, is limited by the size of the foot 𝐿𝑓𝑜𝑜𝑡  as given in (2.2). To determine if 

the foot is of suitable foot size we plot 𝐹𝑦𝐿𝑓𝑜𝑜𝑡  (the maximum allowable torque)and |𝛼1|as a 

function of time. For sufficiency |𝛼1| must be below 𝐹𝑦𝐿𝑓𝑜𝑜𝑡 for all time. As shown in Figure 

27, 𝐿𝑓𝑜𝑜𝑡 = 0.08 𝑚𝑒𝑡𝑒𝑟𝑠 satisfies this condition. 

 

Figure 27. Problem 4: Foot inequality constraint, (cr2s) 
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d) The gear ratio of the motor is determined by modifying the ratio until the torque and rpm 

are within the motor specifications. Motor torques and rotational speeds are given below 

for a gear ratio of 40. They are below the maximum levels define for these motors. 

 

Figure 28. Problem 4: Motor torques, (cr2s) 

 

Figure 29. Problem 4: Motor rpm’s, (cr2s) 
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_____________________________________________________________________________________ 

Problem 5. Rhythm: Standing to crouching right (s2cr) 

Given: 

The same conditions and parameters as given in problem 4 accept: 

The initial condition is given by 

�⃗�𝑜 =

{
 
 

 
 

𝜃1 = 0 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

,  

and the desired final condition is given by 

�⃗�𝑓 =

{
 
 

 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

. 

 The final time 𝑡𝑓 = 1.0 (sec). 

Find: 

 A solution which assumes that the control voltage inputs are simple linear function.  

That is, 

 𝑉1 = 𝜐1 + 𝜈1𝑡/𝑡𝑓 and 𝑉2 = 𝜐2 + 𝜈2𝑡/𝑡𝑓 

Solution: 

 Results are given below. 
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Figure 30. Problem 5: Displacement response, (s2cr) 

 

Figure 31. Problem 5: Velocity response, (s2cr) 
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Figure 32. Problem 5: Control input, (s2cr) 

_____________________________________________________________________________________ 

3.2 Control of a system with changing dynamic order 

Consider the situation of moving from a prone position to a crouching position. The two-link, in the 

prone positions, has only one input. It attempts to move to the intermediate state (𝜃1, 𝜃2) = (0, 𝜋) 

however, somewhere before reaching this position, its head must leave the ground and the number 

of control inputs increases to two. It then uses both control inputs to drive to the stabilized 

crouching state.  

 

Problem 6. Rhythm: Prone right to crouching right (p2cr) 

Given:  

 Two-link parameters given in Appendix D, 

 Nonlinear bent dynamics given by  (2.10f) 

𝑚 + 4{𝑚 + 2𝑀} cos2(𝜃1) �̈�1 =  4{𝑚 + 2𝑀} cos(𝜃1)sin(𝜃1) �̇�1
2 + 2𝑚

𝑔

𝐿
sin(𝜃1) + 𝛼/𝐿

2  (2.10f) 

and the reaction forces at the foot and head given by (2.11f) and (2.11g) 

𝐹𝑦2 =
{𝑀 +𝑚}𝑔 –

𝑚𝐿�̈�1
2 sin(𝜃1)

  (2.11f) 
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𝐹𝑦1 = 2(𝑀 +𝑚)𝑔 −𝑚𝐿 {𝑐𝑜𝑠(𝜃1)�̇�1
2
+ 𝑠𝑖𝑛(𝜃1)�̈�1} − 𝐹𝑦2

. (2.11g) 

 Nonlinear pinned dynamics given by (2.7)  

[
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚 +𝑀)𝐿2

] {
�̈�1
�̈�2
} =

{
−(

1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1

(
1

2
𝑚+𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2

}.  (2.7a) 

and the reaction force as given by (2.8b) 

𝐹𝑦 = −[𝑚 {
3𝐿

2
𝑐𝑜𝑠(𝜃1)(�̇�1)

2
+
𝐿

2
cos (𝜃2)(�̇�2)

2
} +  𝑚 {

3𝐿

2
𝑠𝑖𝑛(𝜃1)�̈�1 +

𝐿

2
sin (𝜃2)�̈�2} +

𝑀 {𝐿𝑐𝑜𝑠(𝜃1)(�̇�1)
2
+ 𝐿𝑐𝑜𝑠(𝜃2) (�̇�2)

2
} +  𝑀{𝐿𝑠𝑖𝑛(𝜃1)�̈�1 + 𝐿𝑠𝑖𝑛 (𝜃2)�̈�2}] + 2{𝑚 +𝑀}𝑔 . 

                      (2.8b) 

Actuator dynamics as given by (2.23a) and (2.23b) 

𝛼1 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉1 − 

𝐾𝑄

𝑅 𝐾𝑣
�̇�1] (2.23a) 

𝛼2 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉2 − 

𝐾𝑄

𝑅 𝐾𝑣
(�̇�1 − �̇�2)] (2.23b) 

 The initial condition  

�⃗�𝑜 =

{
 
 

 
 
𝜃1 = 90 ⋅

𝜋

180

�̇�1 = 0

𝜃2 = 90 ⋅
𝜋

180

�̇�2 = 0 }
 
 

 
 

,  

and the desired final condition 

�⃗�𝑓
𝑑
=

{
 
 

 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

. 

Find: An 𝑉1(𝑡) and 𝑉2(𝑡) that will move the two-link from �⃗�𝑜 to �⃗�𝑓
𝑑

 with limited foot torque. 
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Solution: 

The solution consists of two parts. Initially, in part 1, the two-link is in the prone configuration 

(𝜃1, 𝜃2) = (𝜋 2⁄ , 𝜋 2⁄ ) and its dynamics are bent dynamics. It begins by attempting to reach the 

state (𝜃1, 𝜃2) = (0, 𝜋) using a linear control excitation as given in (3.1a) for N=1. The state 

response and the time history of the reaction forces are given in the below figures. The head 

reaction force goes to zero at about 0.24 seconds.  

 

Figure 33. Problem 6: Displacement response before transition, (p2cr) 

 

Figure 34. Problem 6: Velocity response before transition, (p2cr) 

Part 1: 

Part 1: 
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Figure 35. Problem 6: Control input before transition, (p2cr) 

 

Figure 36. Problem 6: Reaction force before transition, (p2cr) 

 As shown in Figure 36, the reaction force at the head goes negative at 0.24 seconds. At this time, 

the head must leave the ground and the dynamics must change from bent dynamics to pinned 

dynamics.  Slightly before a negation of the reaction force is the end of part 1 and the beginning of 

part 2 of the solution. In part 2, control drives the two-link into a crouching right position. 

Part 1: 

Part 1: 
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Figure 37. Problem 4: Displacement response of two-link, (p2cr) 

 

Figure 38. Problem 6: Velocity response of two-link, (p2cr) 

Part 1: 

Part 2: 

Part 1: 

Part 2: 
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Figure 39. Problem 6: Control input, (p2cr) 

 

Figure 40. Problem 6: Reaction force at the foot and the head, (p2cr) 

As before, the inequality constraint must be satisfied. During the first part of the solution, this 

condition is naturally satisfied considering that there is no foot torque; however, in part 2, a foot 

torque is used to upright the two-link. 

Part 1: 

Part 1: 

Part 2: 

Part 2: 
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Figure 41. Problem 6; Inequality constraint, eq. (2.1) 

_________________________________________________________________________________________________________________ 

 

The below problem illustrates the derivation of a controlled fall from a crouching right position to a 

prone position.  

Problem 7. Rhythm: Crouching right to prone right (cr2p) 

 

Given:  

 Two-link parameters given in Appendix D, 

 Nonlinear pinned dynamics given by (2.7) 

[
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚 +𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚 +𝑀)𝐿2

] {
�̈�1
�̈�2
} =

{
−(

1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1

(
1

2
𝑚+𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2

},  (2.7a) 

and the reaction force as given by (2.8b) 

Part 1: 

Part 2: 
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𝐹𝑦 = −[𝑚 {
3𝐿

2
𝑐𝑜𝑠(𝜃1)(�̇�1)

2
+
𝐿

2
cos (𝜃2)(�̇�2)

2
} +  𝑚 {

3𝐿

2
𝑠𝑖𝑛(𝜃1)�̈�1 +

𝐿

2
sin (𝜃2)�̈�2} +

𝑀 {𝐿𝑐𝑜𝑠(𝜃1)(�̇�1)
2
+ 𝐿𝑐𝑜𝑠(𝜃2) (�̇�2)

2
} +  𝑀{𝐿𝑠𝑖𝑛(𝜃1)�̈�1 + 𝐿𝑠𝑖𝑛 (𝜃2)�̈�2}] + 2{𝑚 +𝑀}𝑔 , 

                      (2.8b) 

 Actuator dynamics are given by (2.23a) and (2.23b) 

𝛼1 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉1 − 

𝐾𝑄

𝑅 𝐾𝑣
�̇�1] (2.23a) 

𝛼2 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉2 − 

𝐾𝑄

𝑅 𝐾𝑣
(�̇�1 − �̇�2)] (2.23b) 

where from (2.1) 

{
𝜏1
𝜏2
} =

1

2
[
1 1
1 − 1

] {
𝛼1
𝛼2
}. (2.1) 

 Nonlinear bent dynamics given by (2.10f)  

𝑚 + 4{𝑚 + 2𝑀} cos2(𝜃1) �̈�1 =  4{𝑚 + 2𝑀} cos(𝜃1)sin(𝜃1) �̇�1
2 + 2𝑚

𝑔

𝐿
sin(𝜃1) + 𝛼/𝐿

2 , (2.10f) 

and the reaction forces at the foot and head given by (2.11f) and (2.11g) 

𝐹𝑦2
= {𝑀 +𝑚}𝑔 –

𝑚𝐿�̈�1
2 sin(𝜃1)

 , (2.11f) 

𝐹𝑦1 = 2(𝑀 +𝑚)𝑔 −𝑚𝐿 {𝑐𝑜𝑠(𝜃1)�̇�1
2
+ 𝑠𝑖𝑛(𝜃1)�̈�1} − 𝐹𝑦2

, (2.11g) 

 Impact dynamics given by (2.17), and (2.19) 

𝜙 = 𝐴𝜓 (2.17a) 

where  

𝜙 = [𝜙𝑢
𝑇 𝜙𝑙

𝑇]𝑇 , 

𝜙𝑢 = [𝑣𝑥,1
− 𝑣𝑦,1

− �̇�1
− 𝑣𝑥,2

− 𝑣𝑦,2
− �̇�2

− 0 0]
𝑇

, 𝜙𝑙 = [0 0 0]𝑇 , 

𝜓 = [𝜓𝑢
𝑇 𝜓𝑙

𝑇]𝑇 , 

𝜓𝑢 = [𝑣𝑥,1
+ 𝑣𝑦,1

+ �̇�1
+ 𝑣𝑥,2

+ 𝑣𝑦,2
+ �̇�2

+ 𝑓𝑥 𝑓𝑦]
𝑇

, 𝜓𝑙 = [𝐹𝑥1, 𝐹𝑦1, 𝐹𝑦2
]
𝑇

, 

𝑣𝑥,1
− =   (𝐿 − 𝐿𝑐𝑔)𝑐𝑜𝑠(𝜃1)�̇�1

−, 

𝑣𝑦,1
− = −(𝐿 − 𝐿𝑐𝑔)sin (𝜃1)�̇�1

−, 
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𝑣𝑥,2
− =    𝐿𝑐𝑜𝑠(𝜃1)�̇�1

− + (𝐿 − 𝐿𝑐𝑔)𝑐𝑜𝑠(𝜃2)�̇�2
−,  

𝑣𝑦,2
− = −𝐿𝑠𝑖𝑛(𝜃1)�̇�1– (𝐿 − 𝐿𝑐𝑔)𝑠𝑖𝑛(𝜃2)�̇�2

−, 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

], 

𝐴11 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 1 (𝑚 +𝑀)⁄ 0

0 1 0 0 0 0 0 1 (𝑚 +𝑀)⁄

0 0 1 0 0 0 (𝐿 − 𝐿𝑐𝑔) cos(𝜃1) 𝐼1⁄ − (𝐿 − 𝐿𝑐𝑔) sin(𝜃1) 𝐼1⁄

0 0 0 1 0 0 −1 (𝑚 +𝑀)⁄ 0

0 0 0 0 1 0 0 −1 (𝑚 +𝑀)⁄

0 0 0 0 0 1  (𝐿 − 𝐿𝑐𝑔) cos(𝜃1) 𝐼2⁄ −(𝐿 − 𝐿𝑐𝑔) sin(𝜃1) 𝐼2⁄

−1 0 −(𝐿 − 𝐿𝑐𝑔) cos(𝜃1) 1 0 − (𝐿 − 𝐿𝑐𝑔)cos (𝜃2) 0 0

0 −1 (𝐿 − 𝐿𝑐𝑔) sin(𝜃1) 0 1  (𝐿 − 𝐿𝑐𝑔)sin (𝜃2) 0 0 ]
 
 
 
 
 
 
 
 

,  

 (2.17b) 

𝐴12 =

[
 
 
 
 
 
 
 
−1 (𝑚 +𝑀)⁄

0
𝐿𝑐𝑔 cos(𝜃1) 𝐼1⁄

0
0
0
0
0

0
−1 (𝑚 +𝑀)⁄

−𝐿𝑐𝑔 sin(𝜃1) 𝐼1⁄

0
0
0
0
0

0
0
0
0

−1 (𝑚 +𝑀)⁄

𝐿𝑐𝑔 sin(𝜃2) /𝐼2
0
0 ]

 
 
 
 
 
 
 

. (2.19c) 

𝐴21 = [

1 0 −𝐿𝑐𝑔cos (𝜃1)

0 1 𝐿𝑐𝑔sin (𝜃1)

0 0 0

0 0
0 0
0 1

0 0 0
0 0 0

−𝐿𝑐𝑔sin (𝜃2) 0 0
], (2.19d) 

𝐴22 = 0
𝑁𝑥𝑁. 

 The initial condition  

�⃗�𝑜 =

{
 
 

 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0 }
 
 

 
 

,  

and the desired final condition 
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�⃗�𝑓
𝑑
=

{
 
 

 
 
𝜃1 = 90 ⋅

𝜋

180

�̇�1 = 0

𝜃2 = 90 ⋅
𝜋

180

�̇�2 = 0 }
 
 

 
 

. 

Find: An 𝛼1(𝑡) and 𝛼2(𝑡) that will allow the two-link to fall from a crouching right position into a 

prone position. 

Solution: 

As in problem 6, the solution is comprised of multiple parts. Responses and control inputs are given 

below 

 

Figure 42. Problem 7: Displacement response, (cr2p) 

Part 1: 

Part 2: 

Part 3: 
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Figure 43. Problem 7: Velocity response, (cr2p) 

 

Figure 44. Problem 7: Control inputs, (cr2p) 

Part 1: Part 2: 

Part 3: 

Part 1: Part 2: Part 3: 
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Figure 45. Problem 7: Inequality constraint, (cr2p) 

 

Problem 7 involved a limited level of control. In essence it was a controlled fall.  

__________________________________________________________________________________________________________________ 

Problem 8. Rhythm: Jumping to crouching right (j2cr) 

Given:  

 Two-link parameters given in Appendix D, 
 Nonlinear pinned dynamics given by (2.7)  
 Nonlinear free dynamics given by (2.5)  
 Free to pinned impact dynamics given by (2.17) and (2.18)  
 The initial condition  

�⃗�𝑜 =

{
 
 
 
 
 

 
 
 
 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0
𝑥 = 𝑥𝑜
�̇� = 0
𝑦 = 0
�̇� = 0 }

 
 
 
 
 

 
 
 
 
 

, 

and the desired final condition 

Part 2: 

Part 3: 

Part 1: 
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�⃗�𝑓 =

{
 
 
 
 
 

 
 
 
 
 

𝜃1 = −40 ⋅
𝜋

180

�̇�1 = 0

𝜃2 = 𝑠𝑖𝑛
−1 {−

3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃1)}

�̇�2 = 0
𝑥 = 𝑥𝑓
�̇� = 0
𝑦 = 0
�̇� = 0 }

 
 
 
 
 

 
 
 
 
 

 where 𝑥𝑓 > 𝑥𝑜. 

Find: An 𝛼1(𝑡) and 𝛼2(𝑡) that will allow the two-link to hope to 𝑥𝑓 > 𝑥𝑜. 

Solution:  

The jump solution consists of four parts. 

1) The jump: The two-link extends effort at the knee joint while tilting forward with the foot. 

The reaction force at the foot will be positive for only a limited time during this extension. 

When this force goes to zero, the two-link transitions to flight dynamics.  

2) The flight: The two-link undergoes under-actuated control through the knee torque. This 

control changes the orientation of the two-link on impact.  

3) The impact: When the foot impacts the ground, the dynamics of the two-link shifts back 

from flight dynamics to pinned dynamics. The effect of this impact is to alter the velocity 

states such that the motion of the impacting foot goes to zero. If the kinetic energy of the 

two-link just after impact is too high, recovering back to a crouching position is difficult. To 

minimized this energy, the orientation of the two-link during fight is adjusted  

4) The recovery: After impact, the two-link will be off-balance. It must exert a set of torques 

that moves it back to the couching state.  
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Figure 46. Problem 8: The jump, flight, impact, and recovery 
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Figure 47. Problem 8: Angular displacements of two-link, (j2cr) 

 

Figure 48. Problem 8: Displacement of two-link foot, (j2cr) 
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Figure 49. Problem 8: Angular velocity response of two-link, (j2cr) 

 

Figure 50. Problem 8: Velocity response of two-link foot, (j2cr) 
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Figure 51. Problem 8: Input voltages, (j2cr) 

____________________________________________________________________________________ 

 

Figure 52. An illustration of the capture subdomain and uncertainty reduction 
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3.3 Stabilizing controllers 

As shown in Figure 52 the OLC input throws the dynamics of the system through the state space 

where it is captured in a stabilized subspace. If this pitch is too much in error, the trajectory misses 

the subspace and a capture may not occur.  For a capture to occur, the pitch does not have to be 

perfect. The pitch need only be as accurate as is necessary to land within the capture subspace. 

Once in this subspace, closed loop control is used to pull the trajectory to a smaller subspace about 

the stabilized state. Pratt et. al [69] define a similar concept called a capture point. This is “the point 

on the ground where the robot can step in order to bring itself to a complete stop.”    

In this section a linear quadratic regulator (LQR) is used to capture dynamics. In later chapters 

discussing two-link hardware implementation, we show that a proportional controller works just 

as well. The time response of the LQR is dependent upon the minimum depth of the closed loop 

poles (i.e. 𝑒𝑖𝑔{𝐴 − 𝐵𝐾}) into the left half plane (LHP). If 𝑄 = 𝛾𝐼8𝑥8  as 𝛾 become progressively 

larger the weighting on states is increased and the relative weighting on the control is reduced. The 

poles of the closed-loop system migrate deeper into the LHP however this migration is bounded. 

Neglecting foot size, this implies that the speed at which the system can respond after capture is 

bounded.  

The size of the foot limits response times since a higher gain controller will require a greater torque 

from the foot but the size of the foot is limited and therefore, so is this torque. Bounded torque 

implies bounded response time. In the following problem, a capture region is quantified by 

calculating the distance along the axis of a hyper-ellipsoid in state space that will capture system 

dynamics. 
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Problem 9. Stabilizing controller: Standing upright (bals) 

Given: 

 Two-link parameters given in Appendix D. 

 Linearized dynamics as given by (2.20.a) ( Appendix D ), and (21.a) 

𝑑

𝑑𝑡

{
 
 

 
 
𝜃1 − 𝜃1

∗

�̇�1 − �̇�1
∗

𝜃2 − 𝜃2
∗

�̇�2 − �̇�2
∗
}
 
 

 
 

=

[
 
 
 
 
 
 
 
0 1 0 0

∂𝑓1

∂𝜃1
|
�⃗⃗�∗

∂𝑓1

∂�̇�1
|
�⃗⃗�∗

∂𝑓1

∂𝜃2
|
�⃗⃗�∗

∂𝑓1

∂�̇�2
|
�⃗⃗�∗

0 0 0 1

∂𝑓2

∂𝜃1
|
�⃗⃗�∗

∂𝑓2

∂�̇�1
|
�⃗⃗�∗

∂𝑓2

∂𝜃2
|
�⃗⃗�∗

∂𝑓2

∂�̇�2
|
�⃗⃗�∗]
 
 
 
 
 
 
 

{
 
 

 
 
𝜃1 − 𝜃1

∗

�̇�1 − �̇�1
∗

𝜃2 − 𝜃2
∗

�̇�2 − �̇�2
∗
}
 
 

 
 

+

[
 
 
 
 
 
0

∂𝑓1

∂𝑣1
|
�⃗⃗�∗

    0
∂𝑓1

∂𝑣2
|
�⃗⃗�∗

0
∂𝑓2

∂𝑣1
|
�⃗⃗�∗

    0
∂𝑓2

∂𝑣2
|
�⃗⃗�∗]
 
 
 
 
 

{
𝑣1 − 𝑣1

∗

𝑣2 − 𝑣2
∗}  

 (2.20a) 

�⃗�∗ = {

𝜃1

�̇�1
𝜃2

�̇�2

} = {

0

0
0

0

} under the steady state excitation 𝑣1
∗ = 𝑣2

∗ = 0. (2.21a) 

 Nonlinear dynamics as given by (2.7) 

[
(
5

4
𝑚 +𝑀)𝐿2 (

1

2
𝑚+𝑀)𝐿2cos (𝜃1 − 𝜃2)

(
1

2
𝑚 +𝑀)𝐿2cos (𝜃1 − 𝜃2) (

1

4
𝑚 +𝑀)𝐿2

] {
�̈�1
�̈�2
} =

{
−(

1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2
+ (

3

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃1) + 𝜏1

(
1

2
𝑚 +𝑀)𝐿2𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1

2
+ (

1

2
𝑚 +𝑀)𝑔𝐿𝑠𝑖𝑛(𝜃2) + 𝜏2

}. 

 (2.7a) 

 Actuator dynamics are given by (2.23a) and (2.23b) 

𝛼1 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉1 − 

𝐾𝑄

𝑅 𝐾𝑣
�̇�1] (2.23a) 

𝛼2 = 𝐺𝑅 [
𝐾𝑄

𝑅
𝑉2 − 

𝐾𝑄

𝑅 𝐾𝑣
(�̇�1 − �̇�2)] (2.23b) 

where from (2.1) 
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{
𝜏1
𝜏2
} =

1

2
[
1 1
1 − 1

] {
𝛼1
𝛼2
}. (2.1) 

Find: 

a) A LQG feedback controller with 1 ℜ𝑒(𝜆𝑚𝑖𝑛) < 0.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠⁄ . 

b) For the controller in a), the extent of the capture subspace. 

Solution: 

a) The linearized equations of motion give 

𝐴 = [

0 1
451 −225

0 0
−378 73.2

0 0
−486 253

0 1
459 −78

], 𝐵 = [

0 0
−7.64 206
0 0
22.9 −237

] 

The open loop poles of the system given by (2.20a) and (2.21a) are 

𝜆𝑖 =  [−310  − 4.33   2.36    7.39]. 

As expected, the system is unstable. Setting 𝛾 = 20 and 𝑄 = [

1 0
0 10

0 0
0 0

0 0
0 0

1 0
0 10

] gives a LQR 

feedback matrix of  

𝐹 = [
    5.08 1.05  2.99 0.960
3.85 −0.236 −3.96 −0.552

]. 

This results in a set of closed loop eigenvalues 

𝜆𝑖 =  [−384   − 11.2   − 2.07   − 2.66] 

which are all real and negative. The eigenvalue closest to the imaginary axis has a time 

constant of  

1 ℜ𝑒(𝜆𝑚𝑖𝑛) < 0.483 𝑠𝑒𝑐𝑜𝑛𝑑𝑠⁄  

which meets the requirements.  

b) An estimate of the capture subspace is found by implementing the LQR solution on (2.7a) 

and perturbing the initial conditions. For the situation where �⃗�(𝑡 = 0) = �⃗�∗, the solution 

remains at �⃗� and the foot torque, , 𝛼1 is zero.  For the situation where one of the states is 

perturbed  𝛼1 is time varying; however since the foot toque is bounded by (2.2), 
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perturbations are limited. The limits of these perturbations define an estimate of the 

capture subdomain.  

For example, for  �⃗�(𝑡 = 0) = {

𝛿1 = 0.08
0
0
0

}, the reaction force times the foot length as a 

function of time and |𝛼1| as a function of time are as given in Figure 53. Between zero and 

0.025 seconds, the (2.2) constraint is violated. This perturbation of  �⃗� is outside of the 

capture subdomain as defined here. 

 

Figure 53. Problem 9: Foot torque, failure of (2.2) inequality constraint, (bals) 

If we reduce the perturbation by letting  �⃗�(𝑡 = 0) = {

𝛿1 = 0.055
0
0
0

}, the reaction force times 

the foot length as a function of time and |𝛼1| as a function of time are as given in Figure 54 . 

This perturbation is within the capture subdomain. 

Perturbed response 
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Figure 54. Problem 9: Foot torque: (2.2) inequality constraint is satisfied, (bals) 

  By probing the state space around a stabilized state, a capture subdomain can be estimated. More 

complete estimate of this subdomain are summarized in Table 1. 

 

Table 1. Problem 3: Extent of capture subdomain 

 𝛿1, (𝜃1 axis) 𝛿2, (�̇�1 axis) 𝛿3, (𝜃2 axis) 𝛿4, (�̇�2 axis) 

maximum 0.055 (radians) 0.21 (rad/sec) 0.087 (radians) 0.28 (rad/sec) 

minimum -0.055 (radians) -0.21 (rad/sec) -0.087 (radians) -0.28 (rad/sec) 

 

Figure 55. Problem 9: Extent of capture subdomain 
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Future simulations show that as the time constant of the system is lowered, the control response at 

the foot increases and, for a given foot length, the capture subdomain is reduced in extent.  

 

3.4 Summary of chapter 

This chapter presents the development of OLC solutions that transition two-link dynamics between 

stabilized states.  The underlying assumption is that control inputs have a simple form being 

defined using only a few parameters. With only a few parameters, the process of finding a solution 

is vastly simplified from a OLOC method.  In the later part of the chapter, state stabilization and 

uncertainty reduction using LQR was discussed. In this chapter several rhythms were derived. 

In the next chapter, the solutions from this chapter will be will be integrated into state transition 

logic to produce robotic locomotion. 
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Chapter 4 

4.0 Locomotion 

In this chapter a set of rhythms required developed for a two-link with mass and geometric 

properties given in Appendix D will then be integrated into state transition logic to produce 

locomotion. 

4.1 Crouching to standing (cr2s), (cl2s) 

The rhythm cr2s was determined in problem 2. The cl2s rhythm is simply the negation of the cr2s 

rhythm. The cr2s rhythm is summarized in Appendix E.  

4.2 Standing to crouching (s2cr), (s2cl) 

The rhythm (s2cr) was determined in problem 5. The s2cl rhythm is simply the negation of the s2cr 

rhythm. The s2cr rhythm is summarized in Appendix E. 

4.3 Prone to crouching (p2cr), (p2cl) 

The p2cr rhythm was solved for in problem 6. The p2cl rhythm is its negation. A summary of the 

p2cr rhythm is given in Appendix E. 

4.4 Crouching to prone (cr2p), (cl2p) 

The cr2p rhythm is the controlled fall rhythm that was solved for in Problem 7. The cl2p rhythm is 

its negation. A summary of the cr2p rhythm is given in Appendix E. 

4.5 Jumping from a couched position to a couched position (j2cr), (j2cl) 

Jumping from a crouched position back into a couching right position was covered in  

__________________________________________________________________________________________________________________ 

Problem 8. The (j2cl) is it negation. A summary of the (j2cr) and (j2cl) rhythms are given in 

Appendix E. 
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4.6 Balancing in a stabilized position (bals), (blcr), (blcl) 

As shown in Problem 9 balancing in a stabilized position may be achieved using the linear quadratic 

regulator (LQR) formulation given by equations (3.6c), (3.6d), and (3.6e).  The LQR solution is 

applied locally. That is, a rhythm is used to transition the state of the two-link without closed-loop 

control. This results in error in the final state. Once in the capture zone, LQR control is applied to 

pull the two-link closer to the stabilized state. 

4.7 State Transitions using Rhythms 

 

Figure 56. An illustration of stabilized states and transitions  

The Figure 56 state-transition diagram contains a number of stabilized stated. These are the 

standing, crouching left, and crouching right states. Transitions between stabilized states occur 

through the use of rhythms. For example, the sequence of rhythms p2cr, j2cr, cr2s, s2cl, j2cl,cl2p 

will move the two-link from the prone position to the crouching position; make it jump once to the 
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right; make it stand and crouch to the left; make it jump back to the left; and then make it lie down 

to the right.  

 

 

 

_____________________________________________________________________________________ 

Problem 10. Locomotion through Rhythms 

Given:   

 The rhythms defined in appendix E 

 The dynamics of a two-link 

Find:  A control input that will move the two-link from a prone left position to a standing position; 

allow it to jump across the page; turn around; jump back and then lie down in a prone position. 

Solution: Simulation results of the two-link beginning in a prone left position; standing and then 

jumping across the page to the right; stopping; standing; and jumping back across the page before 

lying down in a prone position is given on the following pages.  The state transition diagram for this 

range of motions is given in Figure 58. Rhythms are color coded.  Captures are used after each 

rhythm to minimize uncertainty. 
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Rhythm(1): p2cl 

Rhythm(2): cl2s 
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Rhythm(4): j2cr 

Rhythm(3): s2cr 

Rhythm(5): j2cr 

Rhythm(6): j2cr 

Rhythm(7): j2cr 

Rhythm(8): j2cr 

Rhythm(9): j2cr 

Rhythm(10): j2cr 
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Rhythm(11): cr2s 

Rhythm(12): s2cl 

Rhythm(13): j2cl 

Rhythm(14): j2cl 

Rhythm(15): j2cl 

Rhythm(16): j2cl 
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Figure 57. Two-link locomotion 

 

Figure 58. Problem 10. State transitions  
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4.8 Summary of chapter 

In this chapter OLC solutions derived in chapter 3 where used to produce rhythms. These rhythms 

were used to move through state transition logic to produce responsive two-link locomotion. 

Periodically captures were used to minimize uncertainty. 

In the next chapter, experimental analysis will be used to validate of the above control algorithm.  
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Chapter 5 

5.0 Hardware implementation 

In the previous chapters the theoretical development of a control algorithm for robotic linkage 

systems was presented.  Although useful for development, important and often unexpected 

dynamics can be missed through the use of theory alone. To mitigate this risk, experimental 

validation is necessary. In pursuing validation, a two-link robot was manufactured, code was 

developed and theory was implemented in hardware. This validation process is discussed in this 

and the next chapter. A photo of the manufactured two-link discussed in this chapter is shown in 

Figure 59.  

 
Figure 59. Realization of the Two-Link 
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The two-link consists of a set of additive manufactured (AM) solid parts bolted and pressed 

together with integrated motors, gears, drive shafts, bearings, circuit boards and weld substructure. 

These solid and integrated parts can be categorized into two general subsystems – the mechanical 

subsystem and the electrical subsystem. 

                

Figure 60. Mechanical structure comprising the two-link 

5.1 Mechanical subsystem 

Mechanical subsystem fabrication was performed using AM and tungsten inert gas (TIG) welding. 

AM substructure allowed for timely successive designs iterations converging to a functional 

solution. The structure was built, modified and remanufactured over a dozen times. AM 

substructure was embedded with metal substructure consisting of 6 mm bar stock, gears, motors 

and bearings. An illustration of this substructure is presented in Figure 60.  A listing of parts 

comprising AM substructure is given in Appendix F. 
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5.1.1 Additive manufactured (AM) substructure 

AM parts were produced on a Ultimaker 2+ printer [70] using either ABS or PLA plastic. The 

process used to produce AM parts was  

 to construct solid models in SolidWorks [71]; 

 to build a virtual system using solid models connected by constraints; 

 to perform design checks by exercising assemblies in software; 

o tolerances were check to insure that part mated together property; 

o the kinematics of assemblies were checked to identify unexpected collisions; 

 to save these solid modes in stereo lithograph (STL) files;  

 to convert STL files to g-code files using the Cura software (supplied by Ultimaker [70]);  

 to down load this g-code file into the Ultimaker 2+ for printing and;  

 to print and then clean the part.  

For PLA material, no preparation of the print table was needed prior to part production. For ABS, 

preparation of the print table was performed by spreading a solution of ABS in acetone onto the 

table. This solution was used to ensure that the ABS print adheres to the table. A photo of an ABS 

part undergoing construction is shown in Figure 61. Present modifications in ABS material have 

eliminated the need to undergo this preparation for the Ultimaker 2+. Printing at a high honey 

comb density with supporting structure is recommended. 

Upon completion of a print, the part was cleaned. Parts are manufactured with supporting structure 

which can be removed by fracturing this structure near to a surface and then sanding the remains 

using a low speed Dremel tool or melting this structure with a hot knife. Parts are then integrated 

using sliding interfaces, bolts and contact glue. 
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Figure 61. Three dimensional printing of two-link robotic part 

 

Figure 62. Welded joints 
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5.1.2 Metal substructure 

Metal substructure consists of hardened steel rods, bolts, nuts, gears, washers, and bearings. Steel 

rods were used to reduce stress concentrations within AM substructure. These rods exist at each 

joint and at the head of the two-link. Rods were manufactured using TIG welding to assemble 6mm 

diameter stock. A photo of this process is given in Figure 62.  

Developmental testing of the two-link showed that accuracy was of importance to performance. 

Gear slop (a dead band phenomena) produced a non-repeatable response making control difficult. 

To minimize this effect, washers were used to minimize gaps between mating teeth. These washers, 

shown in Figure 63, were iteratively machined on a Craftsman micro mill until a tight fit was 

achieved.  

Threaded connections were undergoing high torque were problematic. Gears and couplers were 

held in place using threaded set screws which would loosen during impacts. To minimize this 

problem, set screws were replaced by those which produced very tight fits and shafts were 

machined flat under screw heads to avoid slip. Set screws were so tight that after assembly it was 

no longer possible to remove them. Bearings were used throughout the two-link to minimize wear 

and to maximize repeatability.   

 

Figure 63. Structure used to minimize the dead band in gears 
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A listing of the parts used to produce integration metal substructure is given in Appendix G and H.  

5.2 Electrical subsystem 

The electrical subsystem is illustrated in Figure 64. There are two subsystems within this 

subsystem – a low power signal subsystem and a high power driver subsystem. The low power 

signal subsystem controls the high power driver subsystem which provides power to the motors.  

 

Figure 64. Electrical subsystem 
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5.2.1 Low power electrical subsystem 

The low power signal subsystem consists of a Raspberry Pi (Raspi) B+ card size microcomputer, a 

voltage shifter, two Adafruit MCP4725 breakout boards, two Adafruit ADS1115 breakout boards, 

two Microchip PIC16F873 midrange microprocessors and a set of potentiometers integrated into 

voltage dividers.  

Control signals are sent from the Raspi to the Adafruit MCP4725 using the inter-integrated circuit 

(I2C) interface.  The MCP4725 produces a 0 to 5 V analog output which drives the analog input of 

the PIC16F873. The PIC16F873 produces two pulse width modulated (PWM) signals – one driving 

a motor in the forward direction and the other driving the same motor in the opposite direction. 

Motor driver H-bridges are crossover components from the low power signal subsystem to the high 

power driver subsystem. PWM signals drive H-bridges producing mirror images of their inputs but 

at higher voltage and amperage. Motor voltages are 12 V with a maximum current into of 20 A. A 

Radio shack, 12V, 20 A power supply powers the H-bridges. India Robotics brushed motors and 

gear boxes drive power trains which drive potentiometers. Potentiometers are integrated into 

voltage bridges producing voltages that are measured by Adafruit ADS1115 breakout boards. These 

voltages are proportional to the angular rotation of the foot and knee. The Adafruit ADS1115 

breakout boards communicate these voltages back to the Raspi using the I2C interface. Raspi 

software (in C) closes the loop by relating measured voltages from the ADS1115 boards to applied 

voltages sent to the MCP4725 boards.   

Control can be overridden by switching PWM inputs from the microcontrollers to an outside PWM 

source. This allows for the two-link to be moved to a given configuration without using the Raspi as 

a controller – a convenience needed for testing.  

I2C communications occurs by the Raspi sending the seven-bit address of the board that it wishes to 

talk to followed by sending or receiving two eight bit words of data. Between each transmission the 

receiving board sends an acknowledgement – a single bit long. The Raspi must be configured to use 



 

98 

the I2C interface. There are several web based tutorials that explain how to set this configuration 

[72]. With the Raspi configured, a number of internal subroutines can be used in a C program to 

send and receive data from the Adafruit break out boards. 

For example, to produce a 3.0V output on the MCP4725 with address b1100010 (0X62) the 

following set of C program lines are required 

:  
int D2A_address0 = 0x62;   //Define the address of the MCP4725 

uint8_t D2A_writeBuf0[3];  //declare a 3 word, 8 bit binary array 

: 

// open the D2A for writing address 0 

D2A_I2CFile0 = open("/dev/i2c-1",O_RDWR); 

ioctl(D2A_I2CFile0, I2C_SLAVE, D2A_address0); 

: 

V_out_0 = 3.0;   //Set the output voltage to the desired 

value 

: 

// convert V_out_0 to a Hexadecimal number 

a     = (int)2000*v_out_0+2048; 

b     = a/16; 

h1    = a%16; 

a     = b; 

b     = a/16; 

h2    = a%16; 

h3    = b; 

: 

//compute the high and low decimal number and output  

D2A_writeBuf0[0] = h3; 

D2A_writeBuf0[1] = 16*h2+h1; 

write(D2A_I2CFile0,D2A_writeBuf0,2); 

: 
// close out the i2c interface 

close(D2A_I2CFile0);  

 

The Raspi B+ general purpose input/output (GPIO) port is shown in Figure 65. Pin 3 is the data line 

and pin 5 is the clock line used to implement the I2C interface. Figure 66 shows the response of 

these pins on an oscilloscope as the Raspi attempts to communication with address b1100010. The 

clock is in green and the data is in yellow.  When the clock line drops from high to low, the first bit is 

read. Sequential bits are read each time the clock goes high. As shown in this figure, the seven-bit 

address of the device that the Raspi is trying to communicate with is b1100010 (0x62). The next bit 

is a zero followed by a zero acknowledgement from the MCP4725; followed by an 8-bit word 
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followed by an acknowledgement; followed by another 8-bit word; followed by a final 

acknowledgement. The MCP4725 uses the last four bits of the first word and the full eight bits of 

the second word to produce a 12-bit word which it converts to an analog signal between 0 to 5 

volts. The first four bits of the first word are used to set the configuration of the device. For more 

detail as to the functioning of these configuration bits see reference 73. The bit rate is 100kHz. Since 

27 bits are required to send one 12-bit word, the maximum data rate is 3.7kHz – a limited 

bandwidth but sufficient for robotic control. 

 

Figure 65. Raspi general pin input/output (GPIO) configuration and MCP4725 and ADS1115 breakout 
boards 
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Figure 66. I2C communication, address b1100010 

Writing through the I2C interface to the ADS1115 can be performed by using the below code: 

: 

int A2D_address0 = 0x48; 
: 
// declare buffers 

uint8_t A2D_writeBuf0[3]; 

uint8_t A2D_readBuf0[2]; 

int16_t A2D_val0; 

: 
// open the A2D for reading address 0 

A2D_I2CFile0 = open("/dev/i2c-1",O_RDWR); 

ioctl(A2D_I2CFile0, I2C_SLAVE, A2D_address0); 
: 
// set parameters for address 0 A2D 

A2D_writeBuf0[0] = 1; 

A2D_writeBuf0[1] = 0b11000001; 

A2D_writeBuf0[2] = 0b11100011; 

write(A2D_I2CFile0, A2D_writeBuf0, 3); 

 

// is the address 0 A2D ready to read?   

A2D_readBuf0[0] = 0; 

A2D_readBuf0[1] = 0; 

while ((A2D_readBuf0[0] & 0x80) == 0) 

{ 

read(A2D_I2CFile0, A2D_readBuf0, 2); 

} 
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: 

// A2D is ready to read, read data, address 0 

A2D_writeBuf0[0] = 0; 

write(A2D_I2CFile0, A2D_writeBuf0, 1); 

read(A2D_I2CFile0, A2D_readBuf0, 2); 

 

// compute input angles 

A2D_val0  = A2D_readBuf0[0]<<8|A2D_readBuf0[1]; 

v_in_0 = (float)A2D_val0*6.144/32767; 

v_in_0 =-(v_in_0-1.63); 

v_in_0 = 90.0/2.053*v_in_0; 

: 

// close out the i2c interface 

close(A2D_I2CFile0); 

 
For more detail on the ADS1115 see reference 74. 
 
 

The MCP4725 outputs a 0 to 5V analog signal. This signal is feed into the analog to digital converter 

of the PIC16F873.  The PIC16F873 produces two PWM signals that are used to drive a motor 

forward and in reverse. Only one set of PWM signals are non-zero at a time. We will refer to the 

PWM signal that drives a motor forward as PWM_fwd and the PWM signal that drives a motor in 

reverse as PWM_rev.   

An illustration of PWM_fwd and PWM_rev for various voltage inputs is given in Figure 67. PWM 

signals are “on” (at 5 volts) or “off” at (0 volts). The PWM “on/off” voltage excitation is used to 

drive the motor hard during a limit period of time overcoming dead band effects due to friction. The 

duration of the pulse is then used to determine the speed of the motor. As shown in Figure 67, zero 

occurs for a PIC input voltage of 2.5 volts. For a voltage slightly greater, the pulse width of 

PWM_fwd jumps to a finite but small value while PWM_rev is zero. For a voltage slightly lower than 

2.5 volts, PWM_fwd goes to zero and PWM_rev jumps to the same small pulse width value. This 

small jump it is used to eliminate the effect of the dead band.  Pin outputs are shown in Figure 68. In 

the next section we will see below how PWM_fwd and PWM_rev are used to drive a motor through 

an H-bridge. 

 



 

102 

 
Figure 67. Pulse width modulated signals as a function of PIC input voltage, 𝑽𝒊𝒏 
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Figure 68. Pin output/input of the PIC16F873 

5.2.2 High power electrical subsystem 

Transition from low power 0 to 5V signals to high power 0 to 12V drive voltages occurs through the 

use of an H-bridge. For the two-link in Figure 59, a “Simple-H” H-bridge was used [75]. The “Simple-

H” is a 20A, 12V H-bridge driven by 0 to 5 volt PWM inputs. An H-bridge like the “Simple-H” takes 

the circuit form shown in Figure 69. The transistors in this figure are high frequency, high 

amperage MOSFET transistors with internal diodes. The PWM_fwd and PWM_rev signals drive the 

H-Bridge through a bipolor transistor or an optically coupled transistor. When PWM_fwd is high 

(i.e. 5V) and PWM_rev is low (ie. 0V), MOSFET power transistors Q1 and Q4 are off and transistors 

Q2 and Q4 are on. This allows for high amperage current to flow through the motor in the forward 

direction. When PWM_fwd is low and PWM_rev is high, Q1 and Q4 are on and Q3 and Q3 are off. 

This allows current to flow in the opposite direction. When both PWM_fwd and PWM_rev are low, 

the motor is not driven. Internal diodes within each power MOSFET allow any inductive motor 

current to flow back toward the 12V source. In general, the repetition rate of the PWM_fwd and 

PWM_rev signals are on the order of 20kHz. This produces acoustic responses from the motors that 

are ultrasonic - a frequency undetectable by the human ear, but detectable by most animals.  
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Figure 69. H-bridge 
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5.3 Summary of chapter 

In this chapter we discussed the hardware construction of the two-link robot. The two-link has two 

major subsystems – a mechanical subsystem and an electrical subsystem. The mechanical 

subsystem is comprised of additive manufactured parts integrated with components. The electrical 

subsystem is further divided into subsystems - a low power signal subsystem and a high power 

driver subsystem. Two-link control is coded on a card size Rasberry Pi microcomputer. In this code 

rhythms are implemented.  

In the next chapter, we will show how these rhythms will be used to produce robotic locomotion. 

Through part of this locomotion the robot is completely controllable. At other times it will be only 

partially controllable. As the robot moves, its state order changes.   
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Chapter 6 

6.0 Experimental results 

In Chapter 3 we assumed that open loop control inputs, called rhythms, can be represented as 

simple piecewise functions. In this Chapter we discuss the experimental derivation of these 

rhythms and show how they can be used to produce robotic locomotion.  

6.1 Experimentally derived virtual constraints 

As the linkage system moves, it must do so in a coordinated fashion. For example, to move from a 

prone configuration to a crouching configuration the foot must stay planted while the legs move. In 

the theoretical development of this work, these constraints were imposed using control input. In 

this chapter, they will be imposed using virtual constraints.  

 

Figure 70. Virtual constraint for bent dynamics 

Virtual constraints can be experimentally derived by measuring joint locations while the two-link 

moves.  Figure 70 show the experimentally derived virtual constrain for bent dynamics. In this 

figure the measurement coordinate system is defined in terms of 𝛾1 = −𝜃1 and 𝛾2 = 𝜃1 − 𝜃2. This 

relationship was found by moving the links of the two-link (using the bypass switch in Figure 64) 
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and measuring the output at a finite set of points. These point were then curve fit with a low order 

polynomial function. In equation form, the virtual constraint is given by 

 𝛾1 = 0.0015 𝛾2
2 − 0.3218 𝛾2 − 85.7955 . (6.1) 

This constraint is implement in code by measuring 𝛾2, calculating 𝛾1 and then using a proportional 

control loop to enforce 𝛾1.  

A different constraint is required for pinned and free dynamics. Figure 71 contains an illustration of 

this constraint. 

 

Figure 71. Virtual constraint for pinned and free dynamics 

Using the same approach as above, this virtual constraint can be stated mathematically as 

 𝛾1 = −0.0205 𝛾2
2 − 4.6956 𝛾2 − 253.5337 . (6.2) 

6.2 Experimentally derived rhythms 

As stated in section 3.1, we assumed that the form of the control input is a simple set of low order 

functions. For example, to move the two-link from the prone position to the start of the pinned 

position, a transitional state, the form of the control rhythm is assumed to be  

 𝜏2 = 𝐴𝑡 + 𝐵 for 0 < 𝑡 < 𝑡1 (6.3) 

where A and B are constants. This is used with the virtual constraint, equation 6.1, and the 

proportional feedback law 
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 𝜏1 = 𝐾(𝛾1̂ − 𝛾1)  (6.4) 

where 𝛾1̂ is the measure angle, 𝛾1 is the angle given from 6.1 (the virtual constraint) and K  is a 

proportional control gain. The duration of time over which equation 6.3 is imposed, 𝑡1, is found by 

the condition 𝛾2̂ > 𝛾2𝑓 where 𝛾2𝑓, like A, B, and K are control parameters. There are so few 

unknowns in the above algorithm that it is possible to solve for these unknowns by adjusting the 

parameters experimentally, using the two-link as a simulation tool.  A model of the system was not 

needed. After only a limited number of refinements, a suitable control scheme was found. We call 

this rhythm “p2t”. 

After reaching the transitional state between the prone to the pinned configuration, a capture can 

occur. A proportional controller is sufficient to perform this capture. The capture is maintained up 

until time 𝑡3.  

After capture, the control rhythm that moves the two-link into a crouching right state is    

 𝜏2 = 𝐶 for 𝑡3 < 𝑡 < 𝑡4 (6.5) 

where C  is another control variable. This is used with equation 6.2 and the proportional feedback 

law. 

 𝜏1 = 𝐾(𝛾1̂ − 𝛾1). (6.6) 

Time, 𝑡4, is found from the condition 𝛾2 > 𝛾2𝑓 where again 𝛾2𝑓 is a set defined value.  We call this 

rhythm “t2cr”. 

Jumping occurs using a simple on/off rhythm. 

  𝜏2 = {
−𝐷 for 𝑡4 < 𝑡 < 𝑡5
   𝐸 for 𝑡5 < 𝑡 < 𝑡6

   (6.7) 

where 𝐷, 𝐸, 𝑡5 − 𝑡4, and 𝑡6 − 𝑡5 are variables. Again, the number of unknown variables is limited 

allowing for a solution through the experimental adaptation of the parameters. We call this rhythm 

“j2cr”.  
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Rhythms are implemented in code in Appendix I. The parameters that are used in this code are a 

function of processor speed. For implementation on a Raspberry pi B+ processor, these parameters 

are given in Table 2 

 

Table 2. Definition of parameters used to define rhythms 

rhythm p2t t2cr j2cr 

parameter A B C D E 

value 0.35 -0.35 0.25 -0.12 0.90 

 

6.3 Robotic locomotion 

The above rhythms were used to move the two-link from a prone position to a couching position, to 

make it hop across a table and then to force it back into the prone position. The response of the 

two-link is given in Figure 72.  

In this figure the p2t rhythm is used to move the robot to the transition between the prone and 

pinned configuration. This rhythm is implemented by equations 6.1, 6.3 and 6.4. The robot is then 

captured using a proportional controller. The robot then moves from this transitional state to a 

crouching position using the t2cr rhythm. This rhythm is implemented using equations 6.2, 6.5 and 

6.6. The robot is captured again. The robot then hops three times with very short captures in 

between. The rhythm that implements this motion is given in equation 6.7. Final, the robot returns 

to the transition between the pinned and bent configurations and lies down.   
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Figure 72. Robotic locomotion through rhythms 
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Figure 72. Robotic locomotion through rhythms 
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6.4 Summary of chapter 

In this Chapter we have shown how theory developed in Chapters 2 through 4 can be used to 

control a physical two-link robot.  Virtual constraints were used to impose displacement conditions 

between DOFs such that the two-link maintains its configuration. Each rhythm could be solved for 

one at a time by using the hardware as a simulation tool.  
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Chapter 7 

7.0 Discussion 
The Chapters in this dissertation take us from a review of the literature into dynamic modeling, 

theoretical developments, and hardware implementation.  

In Chapter 1 a literature review was performed.  The question that emerged from this review was: 

Why aren’t optimal control solutions used more often for robotic systems? The answer given in this 

Chapter is that although necessary conditions are easy to derive, solving for these conditions is very 

difficult. A possible option for avoiding this issue would be to constrain the complexity of the 

control input and to solve the limited number of variables that define it.  This is the underlying 

thesis that this dissertation is based upon. 

In Chapter 2 the dynamics of a simple robotic system was studied. It was found that higher order 

dynamics could be used to represent lower order dynamics. Transitions between configurations of 

different order could be obtained using state continuity and impact dynamics. It was assumed that 

when a linkage system impacts the ground the normal velocity at the point of impact goes to zero.  

In the Chapter 3 a control algorithm was present using the Chapter 2 model. This algorithm is based 

upon the assertion that the input could be represented as a simple function called a rhythm. For a 

simple problem, it was shown that this assumption produced control inputs that were close to the 

optimal minimum energy solution. It was then used to solve more complex problems which could 

not be solved otherwise.  In Chapter 4, rhythms for the two-link were derived and used to produce 

simulated locomotion.  

In Chapter 5, the construction of a two-link robot was discussed and in chapter 6 it was 

implemented with rhythms to produce locomotion.  

7.1 Conclusions 

In this dissertation an algorithm for the control of a linkage system was presented. This algorithm is 

based on the principle that the control input required to move a robotic linkage system from one 
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configuration to another can be represented by a simple set of open loop piecewise functions called 

rhythms. Proving this (for a limited set of dynamics) was the major contribution of this 

dissertation. Complex calculus of variations or high order parameter optimization solutions were 

not needed. Simple functions whose parametric values can be easily solved for performed  well. 

  

7.2 Future work  

Proposed future work consists of the following: 

1) The low power signal subsystem used Adafruit breakout broads to communicate 

with the Raspi. These were not needed considering that I2C communications can 

occur directly with mid-range Microchip processors. Nevertheless, to implement 

this requires an enhanced level of machine coding which was beyond the scope of 

the present work. It is suggested that the microprocessors be reprogrammed to 

handle both PWM generation as well as I2C communication. This will allow the 

microprocessor to take any address between 0 and 27=128 while reducing the foot 

print of the electronics. This foot print can be further reduced by the integration of 

the H-bridge onto the circuit board producing an integrated motor controller. 

2) The power to weight ratio of a linkage system determines its ability to jump. The 

Chapter 5 two-link weighted about 2 Kg. The maximum power that the supply could 

deliver was 12 V x 20 A = 240 W. This gives a maximum power to weight ratio of 

120 W/Kg.  As shown in Table 2, the j2cr rhythm used a voltage input of 0.90. The 

maximum that this number can be is 1.0 and therefore, the robot was close to its 

maximum power to weight ratio. It barely made it off the ground. 

If on board Li-ion batteries were used to power the two-link an increase in weight of 

about ½ Kg would occur. This would result in a reduction in the maximum power to 

weight ratio by 20% (i.e. 96 W/Kg) leaving it earth bound. It is suggested that both 
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the batteries and Raspi be brought on board to form an autonomous unit; however, 

to do so requires that structural weight be reduced.   

3) Using a model or physical hardware, it is suggested that higher levels of learning be 

developed. With so few parameters, the rhythms in chapter 6 could derive by 

modifying values on line. With this ease of learning, it is reasonable to believe that 

learning can be performed completely autonomously.   

4) A mathematical model of two-link hardware was not necessary nor was it 

determined. Nevertheless, such a model would be helpful to aid in further research. 

The mass properties of the two-link could be found experimentally and other 

properties (such as friction and voltage to torque transduction) could be found by 

fitting dynamic data. An experimentally derived solution for two-link rigid body 

dynamics is included in Appendix K. Further analysis is required to determine other 

relevant parameters.  

The long term goal of this work is to aid in the production of a robotic system that can take 

the place of humans in high consequence environments. With the present evolution in 

manufacturing and electronics, it is reasonable to believe that this will occur someday. The 

real question then is: When?  There is a need, but the solution does not exit.   
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Appendix A: The Euler-Lagrange (EL) equations 
The below discussion follows the work of Crandell, et. al. [47]. A connection of links can be 
considered to be a set of masses. These internal masses are acted upon by two types of forces – a 
set of forces applied to the links which transmit load to the mass and gravity.  For the thi mass  

 fi −
∂

∂t
pi = 0 (A1) 

where fi is the total force on the mass (including both applied loads and gravity) and pi is its 

momentum. Multiplying equation A1 by the variation in the response of the mass, δ𝑅 and summing 
over all masses, we obtain 

 ∑ (fi −
∂

∂t
pi)

𝑁
𝑖=1 δ𝑅𝑖 = 0. (A2) 

Equation A2 consists of two terms where the first term on the left is the total virtual work done on 
the system. This is convenient since it can be equated to the virtual work done on the system 
written in term of generalized coordinates as  

 ∑ fi
𝑁
𝑖=1 δ𝑅𝑖 = − V + ∑ Ξ𝑗𝛿휀𝑗

𝑛
𝑗=1 0 (A3) 

where V is the variation of the potential energy of the system due to gravity and  j

n

j

j



1

 is 

the virtual work done on the system by applied loads, 
j is the generalized load of the thj

generalized coordinate, and 
j  is the variation of the thj generalized coordinate. There are 𝑛 

generalized coordinates.  

The second term in equation A3 is the virtual momentum of the system which can be expanded 
using the change rule as   

 ∑ −
𝑑�⃗�𝑖

𝑑𝑡
⋅ 𝛿�⃗⃗�𝑖

𝑁
𝑖=1 = ∑ −

𝑑

𝑑𝑡
(�⃗�𝑖 ⋅ 𝛿�⃗⃗�𝑖)

𝑁
𝑖=1 + ∑ �⃗�𝑖 ⋅

𝑑

𝑑𝑡

𝑁
𝑖=1 (𝛿�⃗⃗�𝑖) (A4) 

The goal now is to represent this momentum in terms of generalized coordinates. With this goal in 
mind, the second term on the right hand side is identified to be the total virtual kinetic co-energy of 
the system. That is  

 𝛿𝑇∗ = ∑ �⃗⃗⃗�𝑖 ⋅
𝑑

𝑑𝑡
𝑁
𝑖=1 (𝛿�⃗⃗⃗�𝑖) = ∑ �⃗⃗⃗�𝑖 ⋅

𝑁
𝑖=1 (𝛿�⃗⃗⃗�)  (A5) 

where 𝛿�⃗⃗� =
𝑑

𝑑𝑡
(𝛿�⃗⃗�𝑖). Although Crandell, et. al. [47] makes the point that (A5) is the virtual kinetic 

co-energy; however, for Newtonian dynamics, the kinetic co-energy and kinetic energy are the 
same. That is *TT   whereT is the kinetic energy of the system – a term which can be described 
in term of the generalized coordinates of the system. 

Substituting eq. A3, A4, and A5 into A2 gives 

 𝛿𝑇 − 𝛿𝑉 + ∑ Ξ𝑗𝛿휀𝑗
𝑛
𝑗=1 − ∑ −

𝑑

𝑑𝑡
(�⃗⃗⃗�𝑖 ⋅ 𝛿�⃗⃗⃗�𝑖)

𝑁
𝑖=1 = 0.  (A6) 

The last term on the left hand side of equation A6 is the only term with reference to the internal 
masses of the system; however limiting ourselves to solutions with well-defined initial and final 
condition, we can let 

iR


 =0 at the end times to eliminate its effect after integrating over all time to 

obtain  

 ∫ (𝛿𝐿 + ∑ Ξ𝑗𝛿휀𝑗
𝑛
𝑗=1 )𝑑𝑡 = 0

𝑡2
𝑡1

 (A7) 

where VTL   (called the Lagrangian). Notice that all of the terms in equation A7 can be defined 
solely in terms of the generalized coordinates of the system.  
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The goal now is to mathematically massage the Lagrangian such that it can be represented as a set 
of terms times the variation of the generalized coordinate,

j  allowing for 
j  to be taken outside of 

the integral.  

Following this approach, the Lagrangian can be expanded as 

 𝛿𝐿 = ∑ (
𝜕𝐿

𝜕�̇�𝑗
𝛿휀�̇� +

𝜕𝐿

𝜕𝜀𝑗
𝛿휀𝑗)

𝑛
𝑗=1  (A8) 

where 휀�̇� =
𝑑𝜀

𝑑𝑡
. Substituting equation A8 into equation A7, performing integration by parts on the 

first term and using the fact that the variation is zero at the time limits gives 

  

 −𝛿휀𝑗 ∫ ∑ [
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝜀𝑗
− Ξ𝑗] 𝑑𝑡 = 0

𝑛
𝑗=1

𝑡2
𝑡1

. (A9) 

In order for this equation to be true and 0j , each member of the sum within the in integral 

must be zero. This results in the Euler-Lagrange equations 

 .
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝜀𝑗
= Ξ𝑗. (A10) 
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Appendix B: MATLAB coding of dynamics and transitions 
The below code has been included so that the interested reader can copy this code directly allowing 

for the minimization of coding errors.   

Free dynamics: equations (2.5a) through (2.5f) 

function [theta1,dtheta1,theta2,dtheta2,x,dx,y,dy,Nf,flag] = ... 
              integration_free(m,M,L,grav,dt,N, ... 
              theta1o,dtheta1o,theta2o,dtheta2o,xo,dxo,yo,dyo,tau1,tau2) 
%------------------------------------------------------------------------------------------------ 
% EQUATIONS (2.5a) through (2.5f) 
%------------------------------------------------------------------------------------------------ 
% 
% INPUTS: 
% [m,M,L,grav]                 - geometric and mass parameters 
% dt                                  - time step 
% N                                   - desired number of time steps 
% [theta1o,dtheta1o,theta2o,dtheta2o,xo,dxo,yo,dyo] – initial state 
% [tau1,tau2]                     - control inputs 
% 
% OUTPUTS: 
% [theta1,dtheta1,theta2,dtheta2,x,dx,y,dy] – state response 
% Nf                                  - number of time steps 
% flag                                - configuration of final state 
%                                       1, free dynamics 
%                                       2, pinned dynamics 
%                                       3, other 
% 
%-------------------------------------------------------------------------- 
  
%set initial conditions 
theta1(1)   = theta1o; 
dtheta1(1) = dtheta1o; 
theta2(1)   = theta2o; 
dtheta2(1) = dtheta2o; 
x(1)            = xo; 
dx(1)         = dxo; 
y(1)           = yo; 
dy(1)         = dyo; 
t(1)            = 0; 
X  = [theta1(1);dtheta1(1);theta2(1);dtheta2(1);x(1);dx(1);y(1);dy(1)]; 
  
%integrate 
for it=1:N 
   
  A        = [ (5/4*m+M)*L^2   (1/2*m+M)*L^2*cos(theta1(it)-theta2(it)); ... 
               (1/2*m+M)*L^2*cos(theta1(it)-theta2(it)) (1/4*m+M)*L^2 ]; 
  B        = [ (3/2*m+M)*L*cos(theta1(it)) –(3/2*m+M)*L*sin(theta1(it)); ... 
               (1/2*m+M)*L*cos(theta2(it)) –(1/2*m+M)*L*sin(theta2(it))]; 
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  C          =  B’; 
  D          = (2*m+2*M)*[1 0;0 1]; 
  Mx      = [A,B;C,D]; 
  f1        = -(1/2*m+M)*L^2*sin(theta1(it)-theta2(it))*dtheta2(it)^2 ... 
                +(3/2*m+M)*grav*L*sin(theta1(it)) + tau1(it); 
  f2        =  (1/2*m+M)*L^2*sin(theta1(it)-theta2(it))*dtheta1(it)^2 ... 
                +(1/2*m+M)*grav*L*sin(theta2(it)) + tau2(it); 
  f3        =  (3/2*m+M)*L*dtheta1(it)^2*sin(theta1(it)) ... 
                +(1/2*m+M)*L*dtheta2(it)^2*sin(theta2(it)); 
  f4        =  (3/2*m+M)*L*dtheta1(it)^2*cos(theta1(it)) ... 
                +(1/2*m+M)*L*dtheta2(it)^2*cos(theta2(it)) ... 
                -(2*m+2*M)*grav; 
  RHS    =  [f1;f2;f3;f4]; 
  LHS     = Mx\RHS; 
  
  ddtheta1(it)   =   LHS(1); 
  ddtheta2(it)   =   LHS(2); 
  ddx(it)           =   LHS(3); 
  ddy(it)           =   LHS(4); 
   
  G        =   [dtheta1(it);ddtheta1(it);dtheta2(it);ddtheta2(it); ... 
                dx(it);ddx(it);dy(it);ddy(it)]; 
  X        =   G*dt +X; 
   
  theta1(it+1)   =   X(1); 
  dtheta1(it+1) =   X(2); 
  theta2(it+1)   =   X(3); 
  dtheta2(it+1) =   X(4); 
  x(it+1)           =   X(5); 
  dx(it+1)         =   X(6); 
  y(it+1)           =   X(7); 
  dy(it+1)         =   X(8); 
   
  %break if the foot is at ground, switch to pinned dynamics (user place holder) 
  flag = 1; 
   
end; 
 
Nf = it; 
 
return; 
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Pinned dynamics: equation (2.7a),  (2.8a), (2.8b) 

function [theta1,dtheta1,theta2,dtheta2,x,dx,y,dy,Fx1,Fy1,Nf,flag] = ... 
              integration_pinned(m,M,L,grav,dt,N, ... 
              theta1o,dtheta1o,theta2o,dtheta2o,xo,dxo,yo,dyo,tau1,tau2) 
%-------------------------------------------------------------------------------------------------- 
% EQUATION (2.7a), (2.8a), (2.8b) 
%-------------------------------------------------------------------------------------------------- 
% 
% INPUTS: 
% [m,M,L,grav]                 - geometic and mass parmeters 
% dt                                  - time step 
% N                                   - desired number of time steps 
% [theta1o,dtheta1o,theta2o,dtheta2o,xo,dxo,yo,dyo] – initial state 
% [tau1,tau2]                     - control inputs 
% 
% OUTPUTS: 
% [theta1,dtheta1,theta2,dtheta2,x,dx,y,dy]     - state response 
% [Fx,Fy]                          - foot reaction forces 
% Nf                                  - number of time steps 
% flag                                - configuration of final state 
%                                       1, free dynamics 
%                                       2, pinned dynamics 
%                                       3, bent dynamics 
%-------------------------------------------------------------------------- 
  
%set initial conditions 
theta1(1)  = theta1o; 
dtheta1(1) = dtheta1o; 
theta2(1)  = theta2o; 
dtheta2(1) = dtheta2o; 
x(1)       = xo; 
dx(1)     = 0; 
y(1)       = 0; 
dy(1)     = 0; 
t(1)       = 0; 
X          = [theta1(1);dtheta1(1);theta2(1);dtheta2(1)]; 
  
%integrate 
for it=1:N 
   
  %compute the states 
   
  Mx          = [ (5/4*m+M)*L^2   (1/2*m+M)*L^2*cos(theta1(it)-theta2(it)); ... 
                      (1/2*m+M)*L^2*cos(theta1(it)-theta2(it)) (1/4*m+M)*L^2 ]; 
            
  RHS(1,1) =  -(1/2*m+M)*L^2 * sin(theta1(it)-theta2(it)) * dtheta2(it)^2 ... 
                     +(3/2*m+M)*grav*L*sin(theta1(it)) + tau1(it); 
  RHS(2,1) =    (1/2*m+M)*L^2*sin(theta1(it)-theta2(it))*dtheta1(it)^2 ... 
                     +(1/2*m+M)*grav*L*sin(theta2(it)) + tau2(it); 
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  LHS      =  Mx\RHS; 
   
  ddtheta1(it)   =   LHS(1); 
  ddtheta2(it)   =   LHS(2); 
   
  G              =   [dtheta1(it);ddtheta1(it);dtheta2(it);ddtheta2(it)]; 
  X              =   G*dt + X; 
   
  theta1(it+1)   =   X(1); 
  dtheta1(it+1) =   X(2); 
  theta2(it+1)   =   X(3); 
  dtheta2(it+1) =   X(4); 
  x(it+1)           =   x(it); 
  dx(it+1)         =   0; 
  y(it+1)           =   0; 
  dy(it+1)         =   0; 
  t(it+1)            =   t(it) + dt; 
   
  % compute the reaction forces, equations (2.8a), (2.8b)  
  fx  =  (3*m/2+M)*L*( -sin(theta1(it))*dtheta1(it)^2+cos(theta1(it))*ddtheta1(it) ) ... 
        +(  m/2+M)*L*( -sin(theta2(it))*dtheta2(it)^2+cos(theta2(it))*ddtheta2(it) ); 
  fy  = -(3*m/2+M)*L*(  cos(theta1(it))*dtheta1(it)^2+sin(theta1(it))*ddtheta1(it) ) ... 
        -(  m/2+M)*L*(  cos(theta2(it))*dtheta2(it)^2+sin(theta2(it))*ddtheta2(it) ) ; 
  fy  =  fy +(2*m+2*M)*grav; 
  Fx1(it+1)     =   fx; 
  Fy1(it+1)     =   fy; 
   
  %if the reaction force goes negative go to pinned dynamics (user place holder) 
  flag = 2; 
   
end; 
  
Nf=it+1; 
  
return; 
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Bent dynamics: equation (2.10f) 

function [theta1,dtheta1,theta2,dtheta2,x,dx,y,dy,Fy1,Fy2,Nf,flag] = ... 
              integration_bent(m,M,L,grav,dt,N, ... 
              theta1o,dtheta1o,theta2o,dtheta2o,xo,dxo,yo,dyo,alpha) 
%-------------------------------------------------------------------------------------------------- 
% EQUATION (2.10f) 
%-------------------------------------------------------------------------------------------------- 
% 
% INPUTS: 
% [m,M,L,grav]            - geometric and mass parameters 
% dt                             - time step 
% N                              - desired number of time steps 
% [theta1o,dtheta1o,theta2o,... 
%    dtheta2o,xo,dxo,yo,dyo]     - initial state 
% alpha                          - control inputs 
% 
% OUTPUTS: 
% [theta1,dtheta1,theta2, ... 
%    dtheta2,x,dx,y,dy]      - state response 
% [Fy1,Fy2]                      - foot reaction forces 
% Nf                                 - number of time steps 
% flag                               - configuration of final state 
%                                       1, free dynamics 
%                                       2, pinned dynamics 
%                                       3, bent dynamics 
%-------------------------------------------------------------------------- 
  
%initial conditions 
theta1(1)   = theta1o; 
dtheta1(1) = dtheta1o; 
theta2(1)   = theta2o; 
dtheta2(1) = dtheta2o; 
x(1)           = xo; 
dx(1)         = dxo; 
y(1)           = yo; 
dy(1)         = dyo; 
t(1)           = 0; 
X              = [theta1(1);dtheta1(1);theta2(1);dtheta2(1)]; 
  
%integrate 
for it=1:N 
   
  %compute the state response  
  DEN            =    m+4*(m+2*M)*cos(theta1(it))^2; 
   
  ddtheta1(it)  =  ( 4*(m+2*M)*cos(theta1(it))*sin(theta1(it))*dtheta1(it)^2 ... 
                     + 2*m*grav/L*sin(theta1(it)) + alpha(it)/L^2 )/DEN;      
  G                  =   [dtheta1(it);ddtheta1(it)]; 
  X                   =   G*dt +X; 
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  theta1(it+1)   =   X(1); 
  dtheta1(it+1)  =   X(2);  
  theta2(it+1)    =   pi-theta1((it+1); 
  dtheta2(it+1)  =  -dtheta1(it+1); 
  x(it+1)            =   x(it); 
  dx(it+1)          =   0; 
  y(it+1)            =   0; 
  dy(it+1)          =   0; 
   
  % compute the reaction forces    
  fy2 =  -m*L*ddtheta1(it)/(2*sin(theta1(it))) + (M+m)*grav; 
  fy1 =  -m*L*(cos(theta1(it))*dtheta1(it)^2 ... 
          +sin(theta1(it))*ddtheta1(it))-fy2 + 2*(M+m)*grav; 
  Fy1(it+1)      =        fy1; 
  Fy2(it+1)      =        fy2; 
  t(it+1)           =   t(it)+dt; 
  
  % determine the configuration (user place holder) 
  flag=3 
   
end; 
  
return; 
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Free to pinned transition: equations (2.18a) through (2.18d) 

function [dtheta1p,dtheta2p,fx1,fy1] = ...            
transition_free_2_pinned(m,M,L,theta1,dtheta1,theta2,dtheta2,dx,dy) 
%---------------------------------------------------------------------------------------- 
% EQUATIONS (2.18a) through (2.18d) 
%---------------------------------------------------------------------------------------- 
% 
% INPUTS: 
% [m,M,L] – geometric parameters 
% [theta1,dtheta1,theta2,dtheta2]-state prior to impact 
% 
% OUTPUTS: 
% [dtheta1p,dtheta2p]-velocities after impact 
% [fx1,fy1] – impulsive forces 
% 
%---------------------------------------------------------------------------------------- 
  
%impact dynamics 
Lcg      = L/2*(m/(m+M)); 
I1         = m*(Lcg-L/2)^2 + M*(Lcg^2); 
I2         = I1; 
vx1m   =  (L-Lcg)*cos(theta1)*dtheta1 + dx; 
vy1m   = -(L-Lcg)*sin(theta1)*dtheta1 + dy; 
vx2m   =       L *cos(theta1)*dtheta1 + (L-Lcg) * cos(theta2)*dtheta2 + dx; 
vy2m   =      -L *sin(theta1)*dtheta1 – (L-Lcg) * sin(theta2)*dtheta2 + dy; 
z          = [vx1m,vy1m,theta1,vx2m,vy2m,theta2,0,0,0,0]’; 
const1 = (L-Lcg)*cos(theta1)/I1; 
const2 = (L-Lcg)*sin(theta1)/I1; 
const3 = (L-Lcg)*cos(theta2)/I2; 
const4 = (L-Lcg)*sin(theta2)/I2; 
A11 = [ ... 
 1  0                    0 0 0                     0 1/(m+M)        0; ... 
 0  1                    0 0 0                     0       0  1/(m+M); ... 
 0  0                    1 0 0                     0  const1  -const2; ... 
 0  0                    0 1 0                     0 -1/(m+M)       0; ... 
 0  0                    0 0 1                     0       0 -1/(m+M); ... 
 0  0                    0 0 0                     1  const3  -const4; ... 
-1  0 –(L-Lcg)*cos(theta1) 1 0  -(L-Lcg)*cos(theta2)       0        0; ... 
 0 -1  (L-Lcg)*sin(theta1) 0 1   (L-Lcg)*sin(theta2)       0        0]; 
A12 = [              -1/(m+M)                       0     ; ... 
                            0                -1/(m+M)     ; ... 
           Lcg*cos(theta1)/I1     -Lcg*sin(theta1)/I1     ; ... 
                            0                       0     ; ... 
                            0                       0     ; ... 
                            0                       0     ; ... 
                            0                       0     ; ... 
                            0                       0     ];  
  
A21 = [ 1 0   -Lcg*cos(theta1) 0 0 0 0 0; ... 
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        0 1    Lcg*sin(theta1) 0 0 0 0 0]; 
A22 = zeros(2,2); 
A           = [A11,A12;A21,A22]; 
zf          = A\z; 
vx1p        = zf(1); 
vy1p        = zf(2); 
dtheta1p    = zf(3); 
vx2p        = zf(4); 
vy2p        = zf(5); 
dtheta2p    = zf(6); 
fx1         = zf(9); 
fy1         = zf(10); 
  
return; 
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Pinned to bent transition: equation (19.a) through (19.d) 

function [dtheta1p,dtheta2p,fx1,fy1,fy2] = ... 
         transition_pinned_2_bent(m,M,L,... 
         theta1,dtheta1m,theta2,dtheta2m) 
%------------------------------------------------------------------------------------------ 
% EQUATIONS (19.a) through (19.d) 
%------------------------------------------------------------------------------------------- 
% 
% INPUTS: 
% [m,M,L] – geometric parameters 
% [theta1,dtheta1,theta2,dtheta2]-state prior to impact 
% 
% OUTPUTS: 
% [dtheta1p,dtheta2p]-velocities after impact 
% [fx1,fy1,fy2] – impulsive forces 
% 
%------------------------------------------------------------------------------------------ 
      
%impact dynamics 
Lcg   = L/2*(m/(m+M)); 
I1    = m*(Lcg-L/2)^2 + M*(Lcg^2); 
I2    = I1; 
vx1m  =  (L-Lcg)*cos(theta1)*dtheta1m; 
vy1m  = -(L-Lcg)*sin(theta1)*dtheta1m; 
vx2m  =       L *cos(theta1)*dtheta1m + (L-Lcg) * cos(theta2)*dtheta2m; 
vy2m  =      -L *sin(theta1)*dtheta1m – (L-Lcg) * sin(theta2)*dtheta2m; 
z     = [vx1m,vy1m,theta1,vx2m,vy2m,theta2,0,0,0,0,0]’; 
const1 = (L-Lcg)*cos(theta1)/I1; 
const2 = (L-Lcg)*sin(theta1)/I1; 
const3 = (L-Lcg)*cos(theta2)/I2; 
const4 = (L-Lcg)*sin(theta2)/I2; 
A11 = [ ... 
 1  0                    0 0 0                     0 1/(m+M)        0; ... 
 0  1                    0 0 0                     0       0  1/(m+M); ... 
 0  0                    1 0 0                     0  const1  -const2; ... 
 0  0                    0 1 0                     0 -1/(m+M)       0; ... 
 0  0                    0 0 1                     0       0 -1/(m+M); ... 
 0  0                    0 0 0                     1  const3  -const4; ... 
-1  0 –(L-Lcg)*cos(theta1) 1 0  -(L-Lcg)*cos(theta2)       0        0; ... 
 0 -1  (L-Lcg)*sin(theta1) 0 1   (L-Lcg)*sin(theta2)       0        0]; 
A12 = ... 
 [          -1/(m+M)                       0                       0  ; ... 
                   0                -1/(m+M)                       0  ; ... 
  Lcg*cos(theta1)/I1     -Lcg*sin(theta1)/I1                       0  ; ... 
                   0                       0                       0  ; ... 
                   0                       0                -1/(m+M)  ; ... 
                   0                       0       Lcg*sin(theta2)/I2 ; ... 
                   0                       0                       0  ; ... 
                   0                       0                       0 ];  
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A21 = [ 1 0 –Lcg*cos(theta1) 0 0                0 0 0; ... 
        0 1  Lcg*sin(theta1) 0 0                0 0 0; ... 
        0 0                0 0 1 -Lcg*sin(theta2) 0 0]; 
A22 = zeros(3,3); 
A             = [A11,A12;A21,A22]; 
zf             = inv(A)*z; 
vx1p        = zf(1); 
vy1p        = zf(2); 
dtheta1p  = zf(3); 
vx2p        = zf(4); 
vy2p        = zf(5); 
dtheta2p  = zf(6); 
fx1         = zf(9); 
fy1         = zf(10); 
fy2         = zf(11); 
  
return; 
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State derivatives of the Hamiltonian: equations (2.7b) and (2.7c) and their state derivatives 

%----------------------------------------------------------------------------------------------------------------- 
% EQUATIONS (19.a) through (19.d) 
%----------------------------------------------------------------------------------------------------------------- 
% 
% INPUTS: 
% [m,M,L,grav] – geometric parameters and gravity 
% [theta1,dtheta1,theta2,dtheta2]-state prior to impact 
% 
% OUTPUTS: 
% [f1,f2] – equations (2.7b) and (2.7c) 
% [d1dth1,d1ddth1,d1dth2,d1ddth2] = df1/d(th1), df1/d(dth1/dt), df1/d(th2), df1/d(dth2/dt) 
% [d2dth1,d2ddth1,d2dth2,d2ddth2] = df2/d(th1), df2/d(dth1/dt), df2/d(th2), df2/d(dth2/dt) 
%------------------------------------------------------------------------------------------------------------------ 
 

function [f1,f2,df1dth1,df1ddth1,df1dth2,df1ddth2,... 
          df2dth1,df2ddth1,df2dth2,df2ddth2]= ... 
      funcval2(m,M,L,grav,theta1,dtheta1,theta2,dtheta2,tau1,tau2) 
   
  % compute the derivatives of the Hamiltonian with respect to the states 
  DEN                =  (m/4+M)*(5/4*m+M)-(m/2+M)^2*cos(theta1-theta2)^2; 
   
  f1                 =  (- (m/4+M)*(m/2+M)*sin(theta1-theta2)*dtheta2^2 ... 
                         + (m/4+M)*(3/2*m+M)*grav/L*sin(theta1) ... 
                         - (m/2+M)^2*sin(theta1-theta2)*cos(theta1-theta2)*dtheta1^2 ... 
                         - (m/2+M)^2*grav/L*cos(theta1-theta2)*sin(theta2) ... 
                         + tau1/L^2*(m/4+M) ... 
                         -tau2/L^2*(m/2+M)*cos(theta1-theta2))/DEN; 
                     
  f2                  =  (  (m/2+M)^2*sin(theta1-theta2)*cos(theta1-theta2)*dtheta2^2 ... 
                         - (m/2+M)*cos(theta1-theta2)*(3/2*m+M)*grav/L*sin(theta1) ... 
                         + (5/4*m+M)*(m/2+M)*sin(theta1-theta2)*dtheta1^2 ... 
                         + (5/4*m+M)*(m/2+M)*grav/L*sin(theta2) ... 
                         - (m/2+M)*cos(theta1-theta2)*tau1/L^2 ... 
                         +(5*m/4+M)*tau2/L^2 )/DEN; 
  
  df1dth1            =  (- (m/4+M)*(m/2+M)*cos(theta1-theta2)*dtheta2^2 ... 
                         + (m/4+M)*(3/2*m+M)*grav/L*cos(theta1) ... 
                         - (m/2+M)^2*cos(theta1-theta2)^2*dtheta1^2 ... 
                         + (m/2+M)^2*sin(theta1-theta2)^2*dtheta1^2 ... 
                         + (m/2+M)^2*grav/L*sin(theta1-theta2)*sin(theta2) ... 
                         +  tau2/L^2*(m/2+M)*sin(theta1-theta2))/DEN ...   
                           ... 
                        +  f1/DEN ... 
                        *(-2*(m/2+M)^2*cos(theta1-theta2)*sin(theta1-theta2)); 
  
  df1ddth1          =   - (m/2+M)^2*sin(theta1-theta2)*cos(theta1-theta2)*dtheta1/DEN; 
  df1ddth1          =   2*df1ddth1; 
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  df1dth2           =  (  (m/4+M)*(m/2+M)*cos(theta1-theta2)*dtheta2^2 ... 
                       + (m/2+M)^2*cos(theta1-theta2)^2*dtheta1^2 ... 
                       - (m/2+M)^2*sin(theta1-theta2)^2*dtheta1^2 ... 
                       - (m/2+M)^2*grav/L*sin(theta1-theta2)*sin(theta2) ... 
                       - (m/2+M)^2*grav/L*cos(theta1-theta2)*cos(theta2) ... 
                       -  tau2/L^2*(m/2+M)*sin(theta1-theta2))/DEN ... 
                          ... 
                       +  f1/DEN ... 
                       *( 2*(m/2+M)^2*cos(theta1-theta2)*sin(theta1-theta2)); 
  
  df1ddth2          =  - (m/4+M)*(m/2+M)*sin(theta1-theta2)*dtheta2/DEN; 
  df1ddth2          =   2*df1ddth2;   
   
   
   
  df2dth1           =  ( (m/2+M)^2*cos(theta1-theta2)^2*dtheta2^2 ... 
                       - (m/2+M)^2*sin(theta1-theta2)^2*dtheta2^2 ... 
                       + (m/2+M)*sin(theta1-theta2)*(3*m/2+M)*grav/L*sin(theta1) ... 
                       - (m/2+M)*cos(theta1-theta2)*(3*m/2+M)*grav/L*cos(theta1) ... 
                       + (5/4*m+M)*(m/2+M)*cos(theta1-theta2)*dtheta1^2 ... 
                       + (m/2+M)*sin(theta1-theta2)*tau1/L^2)/DEN ... 
                         ... 
                       +  f2/DEN ... 
                       *(-2*(m/2+M)^2*cos(theta1-theta2)*sin(theta1-theta2)); 
  
  df2ddth1          =    (5/4*m+M)*(m/2+M)*sin(theta1-theta2)*dtheta1/DEN; 
  df2ddth1          =   2*df2ddth1; 
  
  df2dth2           =  (- (m/2+M)^2*cos(theta1-theta2)^2*dtheta2^2 ... 
                       + (m/2+M)^2*sin(theta1-theta2)^2*dtheta2^2 ... 
                       - (m/2+M)*sin(theta1-theta2)*(3*m/2+M)*grav/L*sin(theta1) ... 
                       - (5/4*m+M)*(m/2+M)*cos(theta1-theta2)*dtheta1^2 ... 
                       + (5/4*m+M)*(m/2+M)*grav/L*cos(theta2) ... 
                       - (m/2+M)*sin(theta1-theta2)*tau1/L^2)/DEN ... 
                                                                  ... 
                       +  f2/DEN ... 
                       *( 2*(m/2+M)^2*cos(theta1-theta2)*sin(theta1-theta2)); 
  
  df2ddth2          =   (m/2+M)^2*sin(theta1-theta2)*cos(theta1-theta2)*dtheta2/DEN ; 
  df2ddth2          =   2*df2ddth2;  
  
  
   
  return; 
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Appendix C: Open Loop Optimal Control (OLOC) necessary conditions 

Necessary conditions for terminal constraint control with changing in state order and impact 

dynamics are analytically derived.  

Consider the situation of minimizing 

 𝐼𝑃 = 𝜙 (�⃗�(𝑡𝑓)) + ∫ 𝐿{�⃗�(𝑡), �⃗⃗�(𝑡)}
𝑡𝑓
𝑡𝑜

𝑑𝑡 (C.1) 

subject to  the dynamics 

 
𝑑

𝑑𝑡
�⃗� = 𝑓(�⃗�, �⃗⃗�) , 𝑡 ∈ [𝑡𝑜, 𝑡1

−), 𝑡 ∈ (𝑡1
+, 𝑡2], (C.2) 

 �⃗�(𝑡1
+) = ∆(�⃗�(𝑡1

−)), 𝑡 ∈ [𝑡1
−, 𝑡1

+] (C.3) 
with initial condition  

 �⃗�(𝑡 = 0) = �⃗�𝑜, (C.4) 
terminal constraint condition   

 �⃗⃗� (�⃗�(𝑡𝑓)) =0, (C.5) 

and inequality constraints on the control 
  |𝑢𝑖| ≤ 𝑢𝑚𝑎𝑥. (C.6) 

𝐿{�⃗�(𝑡), �⃗⃗�(𝑡)} is an integral weighting such as would be needed to minimize total state energy (i.e. 

the instantaneous state energy integrated over time from 0 to 𝑡𝑓), 

𝜙 (�⃗�(𝑡𝑓)) is a weighting on the terminal state. This is often called a soft constraint. Constraints 

which are rigidly enforced are called hard constraints. 

�⃗⃗� (�⃗�(𝑡𝑓)) is a vector of hard constraints between the final states.  

Multiplying (C.1e) by the Lagrange multipliers 𝜈𝑇 and adding to (C.1); solving (C.2) for zero (i.e. 

−�̇⃗� + 𝑓(�⃗�, �⃗⃗�) = 0), multiplying by Lagrange multipliers, 𝜆𝑇, integrating over time and adding the 

result to (C.1a); and multiplying  gives, 

 𝐼𝑃 = 𝜑 (�⃗�1(𝑡𝑓)) + 𝜈
𝑇 𝜓⃗⃗⃗⃗ (�⃗�(𝑡𝑓)) + {∫ 𝐿{�⃗�(𝑡), �⃗⃗�(𝑡)} + 𝜆𝑇 {−�̇⃗� + 𝑓(�⃗�, �⃗⃗�)}

𝑡1
−

𝑡𝑜
} 𝑑𝑡 

 +{∫ 𝐿{�⃗�(𝑡), �⃗⃗�(𝑡)} + 𝜆𝑇 {−�̇⃗� + 𝑓(�⃗�, �⃗⃗�)}
𝑡𝑓

𝑡1
+ } 𝑑𝑡 . (C.8) 

Equation (C.8) is simply equation (C.1) with the additional Lagrange multipliers 𝜈𝑇, 𝜆𝑇, and 𝑐𝑇 

added for the purpose of insuring that (C.2), (C.5) and (C.6) are satisfied. Taking the variation of 𝐼𝑃 

𝛿𝐼𝑃 = [{
𝜕𝜑{�⃗�(𝑡)}

𝜕�⃗�
+ 𝜈𝑇

𝜕𝜓{�⃗�(𝑡)}

𝜕�⃗�
} 𝛿�⃗�(𝑡)]

𝑡=𝑡𝑓

+∫ {
𝜕ℋ(�⃗�, 𝜆𝑇 , �⃗⃗� )

𝜕�⃗�
𝛿�⃗� − 𝜆𝑇𝛿�̇⃗�}

𝑡1
−

𝑡𝑜

𝑑𝑡 

+∫ {
𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,�⃗⃗⃗� )

𝜕𝑥
𝛿�⃗� − 𝜆𝑇𝛿�̇⃗�}

𝑡𝑓

𝑡1
+ 𝑑𝑡 + ∫ {

𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,�⃗⃗⃗� )

𝜕�⃗⃗⃗�𝑇
− �̇⃗�}

𝑡1
−

𝑡𝑜
𝛿𝜆𝑇𝑑𝑡 + ∫ {

𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,�⃗⃗⃗� )

𝜕�⃗⃗⃗�𝑇
− �̇⃗�}

𝑡𝑓

𝑡1
+ 𝛿𝜆𝑇𝑑𝑡   

+∫ {
𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,�⃗⃗⃗�)

𝜕�⃗⃗⃗�
}𝛿�⃗⃗�

𝑡1
−

𝑡𝑜
𝑑𝑡 + ∫ {

𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,�⃗⃗⃗�)

𝜕�⃗⃗⃗�
}𝛿�⃗⃗�

𝑡𝑓

𝑡1
+ 𝑑𝑡. (C.9) 
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where ℋ(�⃗�, 𝜆𝑇 , 𝑐𝑇 , �⃗⃗� ) = 𝐿{�⃗�(𝑡), �⃗⃗�(𝑡)} + 𝜆𝑇𝑓(�⃗�, �⃗⃗�).  

Using integration by parts on ∫ 𝜆𝑇�̇⃗�𝑑𝑡
𝑡𝑏
𝑡𝑎

= 𝜆𝑇�⃗�|
𝑡𝑎

𝑡𝑏
− ∫ 𝜆

̇𝑇�⃗�𝑑𝑡
𝑡𝑏
𝑡𝑎

 and substituting the result into (C.9) 

gives 

𝛿𝐼𝑃 = [{
𝜕𝜙

𝜕�⃗�
(𝑡) + 𝜈𝑇

𝜕�⃗⃗�

𝜕�⃗�
(𝑡) − 𝜆𝑇(𝑡)} 𝛿�⃗�(𝑡)]

𝑡=𝑡𝑓

+ [𝜆𝑇(𝑡)𝛿�⃗�(𝑡)]
𝑡=0

 

+∫ {ℋ𝑥(�⃗�, 𝜆
𝑇 , �⃗⃗�) + 𝜆

̇𝑇} 𝛿�⃗�
𝑡1
−

𝑡𝑜
𝑑𝑡 + ∫ {ℋ𝑥(�⃗�, 𝜆

𝑇 , �⃗⃗�) + 𝜆
̇𝑇} 𝛿�⃗�

𝑡𝑓

𝑡1
+ 𝑑𝑡  

−{𝜆𝑇(𝑡1
+) − 𝜆𝑇(𝑡1

−) [�⃗�(𝑡1
−)�⃗⃗�(𝑡1+)]} 𝛿�⃗�(𝑡1

+) 

+∫ {ℋ�⃗⃗⃗�(�⃗�, 𝜆
𝑇 , �⃗⃗� ) − �̇⃗�}

𝑡1
−

𝑡𝑜
𝛿𝜆𝑇𝑑𝑡 + ∫ {ℋ�⃗⃗⃗�(�⃗�, 𝜆

𝑇 , �⃗⃗� ) − �̇⃗�}
𝑡𝑓

𝑡1
+ 𝛿𝜆𝑇𝑑𝑡   

+∫ {ℋ�⃗⃗⃗�(�⃗�, 𝜆
𝑇 , �⃗⃗� )}𝛿�⃗⃗�

𝑡1
−

𝑡𝑜
𝑑𝑡 + ∫ {ℋ�⃗⃗⃗�(�⃗�, 𝜆

𝑇 , �⃗⃗� )}𝛿�⃗⃗�
𝑡𝑓

𝑡1
+ 𝑑𝑡 (C.10) 

where  ℋ�⃗⃗�(�⃗�, 𝜆
𝑇 , �⃗⃗� ) =

𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,𝑐𝑇,�⃗⃗⃗� )

𝜕�⃗⃗�
. 

Minimizing (C.10) results in the below equations:  

 

From the sixth and seventh term of (C.10) 

 �̇⃗� = 𝑓(�⃗�, �⃗⃗�)  for 𝑡 = [𝑡𝑜, 𝑡1
−) and 𝑡 = (𝑡1

+, 𝑡𝑓]. (C.11) 

From the third and fourth term of (C.10) 

 𝜆
̇𝑇 = −ℋ𝑥(�⃗�, 𝜆

𝑇 , �⃗⃗�) for 𝑡 = [𝑡𝑜, 𝑡1
−) and 𝑡 = (𝑡1

+, 𝑡𝑓]. (C.12) 

From the second term of (C.10) and 𝛿�⃗�(𝑡𝑜) = 0, for �⃗�(𝑡𝑜) specified 

  �⃗�(𝑡0) = �⃗�𝑜. (C.13) 

From the first term of (C.10), for 𝛿�⃗�(𝑡𝑓) ≠ 0,  �⃗�(𝑡𝑓) unspecified  

 𝜆𝑇(𝑡𝑓) =
𝜕𝜙

𝜕𝑥
(𝑡𝑓) + 𝜈

𝑇 𝜕�⃗⃗⃗⃗�

𝜕𝑥
(𝑡𝑓). (C.14) 

From the fifth term of (C.10), 

 𝜆𝑇(𝑡1
+) = 𝜆𝑇(𝑡1

−) [�⃗�(𝑡1
−)�⃗⃗�(𝑡1+)]  𝑡 ∈ [𝑡1

−, 𝑡1
+] (C.15) 

and from the (C.3) impact condition 

 �⃗�(𝑡1
+) = ∆(�⃗�(𝑡1

+)), 𝑡 ∈ [𝑡1
−, 𝑡1

+]  

For the situation where the control is not hard bounded, �⃗⃗� is chosen such that 
𝜕ℋ(�⃗⃗�,�⃗⃗⃗�𝑇,𝑐𝑇,�⃗⃗⃗�)

𝜕�⃗⃗⃗�
= 0 ; 

however, in general, the optimal control �⃗⃗�∗ can be hard bounded (as given in (C.7)) and  

 �⃗⃗�∗ = min
�⃗⃗⃗�
ℋ(�⃗�, 𝜆𝑇 , �⃗⃗�). (C.16)  

Equations (C.11) through (C.16) are the necessary conditions for the minimization/maximization 

of (C.1). 
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Appendix D: Two-link properties used in the example problems 
The example problems used throughout this thesis have properties that are given in Table 3.  

Table 3. Two-link properties 

property Value Description 

𝑚 0.06 (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚) Leg mass 
𝑀 0.18 (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚) Head and foot mass 
𝐿 8 ∗ 0.0254 (𝑚𝑒𝑡𝑒𝑟) Length of leg 
𝜃∗ 40𝑜, −40𝑜, 0𝑜 Crouching angle 

From Figure 8 summing the moments about the foot gives 

𝑚𝑔
𝐿

2
𝑠𝑖𝑛(𝜃1) + 𝑚𝑔 {𝐿 sin(𝜃1) +

𝐿

2
𝑠𝑖𝑛(𝜃2)} + 𝑀𝑔{𝐿 sin(𝜃1) + 𝐿𝑠𝑖𝑛(𝜃2)} = 0 

Solving for  𝜃∗ = −𝜃1gives the (2.21b) state condition 

{
 

 
𝜃1
�̇�1
𝜃2
�̇�2}
 

 

=

{
 
 

 
 

𝜃∗

0

𝑠𝑖𝑛−1 {
3

2
𝑚+𝑀

1

2
𝑚+𝑀

sin (𝜃∗)}

0 }
 
 

 
 

. 

The steady state excitation which will produce this state is determined from (2.7a). Setting all time 

terms to zero and using (2.1) gives 𝛼2
∗ = {3𝑚 + 2𝑀}sin (𝜃∗) for 𝛼1 = 0.     

 

Motor properties were taken from the RKI-1188 data sheet produced by Robokits India [76] (see 

spec sheet below).  

Table 4. Motor properties 

From Table 4, motor parameters can be calculated. 

𝐾𝑣 =
Ω𝑚𝑎𝑥
𝑣𝑛𝑜𝑚

= 157.1 (
𝑟𝑎𝑑/𝑠𝑒𝑐

𝑉
) 

𝑅 =
𝑣𝑛𝑜𝑚
𝑖𝑚𝑎𝑥

= 1.59 (Ω) 

𝐾𝑄 =
τ𝑚𝑎𝑥
𝑖𝑚𝑎𝑥

= 0.0132 (
𝑁 ⋅ 𝑚

𝐴
) 

𝐾𝑄
𝑅
= 0.0083 (

𝑁 ⋅ 𝑚

𝑉
) 

𝐾𝑄

𝑅𝐾𝑣
= 5.28𝑒 − 5 (

𝑁⋅𝑚

𝑟𝑎𝑑/𝑠𝑒𝑐
). 

property Value from Spec. Sheet Value in MKS units Description 

Ω𝑚𝑎𝑥 18000 (rpm) 1885 (rad/sec) No-load speed 

𝑣𝑛𝑜𝑚 12 (V) 12 (V) Nominal voltage 

𝑖𝑚𝑎𝑥 7.8 (A) 7.8 (A) No-load current 

𝜏𝑚𝑎𝑥 1010 (g-cm) 0.103 (N-m) Stall torque 

G    
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Appendix E: Two-link rhythms: Theoretical development 
Rhythm: crouching right to standing (cr2s) 
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Rhythm: crouching standing to crouching right (s2cr) 
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Rhythm: prone to crouching right (p2cr) 
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Rhythm: crouching right to prone (cr2p) 
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Rhythm: jump to crouching right (j2cr) 
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Appendix F: Additive manufactured parts 

 

Part Name: First link, foot 
Material: ABS 
Drawing units: mm 

Part Name: First link, knee 
Material: ABS 
Drawing units: mm 

The following pages 

show the solid models 

used to produce the 

additive manufactured 

substructure in the 

two-link robot.  Rough 

dimensions are given.   
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Part Name: Second link, knee 

Material: ABS 

Drawing units: mm 

Part Name: Second link, head 

Material: ABS 

Drawing units: mm 
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Part Name: Leg 

Material: ABS 

Drawing units: mm 

Part Name: Foot 

Material: ABS 

Drawing units: mm 
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Part Name: motor strap 

Material: ABS 

Drawing units: mm 

Part Name: senor support 

Material: PLA 

Drawing units: mm 

Part Name: wiring support 

Material: PLA 

Drawing units: mm 
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Part Name: pin support 

Material: PLA 

Drawing units: mm 

Part Name: control board 

support 

Material: PLA 

Drawing units: mm 

Part Name: H bridge board 

support 

Material: PLA 

Drawing units: mm 
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Part Name: wheel left spokes 

Material: PLA 

Drawing units: mm 

Part Name: wheel right spokes 

Material: PLA 

Part Name: wheel rim 

Material: PLA 
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Appendix G; Welded parts 
The pins in the two-link were constructed by TIG welding together 6mm diameter bar stock. The 

blow drawings show the dimension of these parts. 

 

  

Part Name: foot pin 

Material: 6mm diameter bar stock 

Drawing units: mm 

Part Name: head pin 

Material: 6mm diameter bar stock 

Drawing units: mm 

Part Name: knee pin 

Material: 6mm diameter bar stock 

Drawing units: mm 
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Appendix H: Purchased parts 
Table 5. Purchased parts list 

Photo of Part Part description number supplier Comments 

     

 

High torque DC 
geared motor 

2 Robokit India 60 rpm 

 

24T, 6mm bore, 32 
bevel gear 

4 ServoCity Part number 
615406 

 

6mm to 6mm set 
screw shaft coupler 

2 ServoCity Part number 
625230 

 

Ball bearings, 6mm 
bore, 13mm outer 

10 Ebay or VXB 
bearings 

item# 
360189200823 
6mm bore, 13mm 
outer diameter 

 

32 tooth, 32 pitch, 
6mm bore 

2 MotionCo. PC: GR1M060B-6 
60 tooth spear 
gear, 6mm bore 

 

TemCo microlimit 
switch 

10 ebay Item# 
301029432479  
This part can be 
found in many 
electronic stores. 
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6-32X3/4’” bolts and 
nuts 

8  Hobby stores 
which sell RC 
parts will carry 
these bolts. 

 
 

 

6-32 steel bolts and 
hex nuts, cut or 
purchased to length. 

28, a 
variety of 
lengths 

Home Depot Bolts can be 
obtained for a 
variety of lengths. 
Odd lengths can 
be can be cut 
from threaded 
stock. 

 

6mm shaft Multiple 
lengths 

ServoCity Cut to length and 
machined using a 
micro mill. 

 

10𝑘Ω linear 
rotational 
potentiometer, ¼” 
shaft (6mm preferred 
if available) 

2 NTE or Radio 
Shack 

Try to find a 
potentiometer 
with low friction. 
The shaft of the 
potentiometer 
must be trimmed 
down to 6mm 
diameter. 

 

20 amp H-bridge, 
Simple-H 

2 Jamco 
Electronics 

If you use a 
substitute, make 
sure that it can 
produce 20 amps 
for PWM 
excitations up to 
20kHz. 

 

Radio Shack IC solder 
board 

2 Radio Shack Part: 276-1688 
This is very good 
board for IC 
solder boarding. 
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Wire connectors 5 Radio Shack 
or similar 

This is common 
part that is carry 
by most 
electronic shops. 

 

MCP4725 DAC, 
breakout board 

2 Adafruit Part #: W2032 

 

16-Bit ADC with 
Ampplifier, 1115 

2 Adafruit Part #: W1678 

 

PIC16F873A-I/SP-ND 
mid-range micro 
controller 

2 Digi-Key Part: PIC16F873A-
I/SP-ND 

 

Crystal 10.0 MHz 2 Digi-Key Part: 631-1101-
ND 

 

 

PicKit 3 programmer 1 Micro Chip You can also use a 
Pickit 2. The 
software to 
program in 
assembly can be 
download from 
the Micro Chip 
web site. 
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KanaKit evaluation 
board 

1 KanaKit Some type of 
evaluation board 
is useful. 

 

Solid modeling 
software 

1 SolidWork or 
other 

Some type of 
modeling 
capability is 
needed to modify 
your design. 

 Miscellaneous parts   Smaller parts 
such as resisters, 
wires, ect… are 
not included 
within this list. 
These parts can 
be found in most 
electronic stores. 
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Appendix I: Raspi C-code for robotic rhythms and virtual constraints 
 

#include <stdio.h> 

#include <fcntl.h> 

#include <inttypes.h> 

#include <linux/i2c-dev.h> 

#include <math.h> 

#include <time.h> 

 

int main() { 

 

// define A2D addresses (ADS1115's) 

int A2D_address0 = 0x48; 

int A2D_address1 = 0x49; 

int A2D_I2CFile0; 

int A2D_I2CFile1; 

 

// define D2A addresses (MPC4725's) 

int D2A_address0 = 0x62; 

int D2A_address1 = 0x63; 

int D2A_I2CFile0; 

int D2A_I2CFile1; 

 

// declare working variables 

int i; 

int a,b,c,h1,h2,h3; 

double v_in_0,v_out_0; 

double v_in_1,v_out_1; 

double theta0_set,theta1_set; 

double kp_0=0.10; 

double kp_1=0.10; 

int Nt=10000; 

int stage=1; 

int I1=0,I2=0,I3=0,I4=0,I5=0,I6=0,I7=0; 

double A=0.40; 

int D=150; 

 

 

// declare buffers 

uint8_t A2D_writeBuf0[3]; 

uint8_t A2D_readBuf0[2]; 

int16_t A2D_val0; 

uint8_t A2D_writeBuf1[3]; 

uint8_t A2D_readBuf1[2]; 

int16_t A2D_val1; 

uint8_t D2A_writeBuf0[3]; 

uint8_t D2A_readBuf0[2]; 

uint8_t D2A_writeBuf1[3]; 

uint8_t D2A_readBuf1[2]; 

 

// open the A2D for reading address 0 
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A2D_I2CFile0 = open("/dev/i2c-1",O_RDWR); 

ioctl(A2D_I2CFile0, I2C_SLAVE, A2D_address0); 

 

// open the A2D for reading address 1 

A2D_I2CFile1 = open("/dev/i2c-1",O_RDWR); 

ioctl(A2D_I2CFile1, I2C_SLAVE, A2D_address1); 

 

// open the D2A for writing address 0 

D2A_I2CFile0 = open("/dev/i2c-1",O_RDWR); 

ioctl(D2A_I2CFile0, I2C_SLAVE, D2A_address0); 

 

// open the D2A for writing address 1 

D2A_I2CFile1 = open("/dev/i2c-1",O_RDWR); 

ioctl(D2A_I2CFile1, I2C_SLAVE, D2A_address1); 

 

// loop through time 

//for (i=1;i<5000000;i++) { 

for (i=1;i<Nt;i++) { 

 

 

// set parameters on the address 0 A2D 

A2D_writeBuf0[0] = 1; 

A2D_writeBuf0[1] = 0b11000001; 

A2D_writeBuf0[2] = 0b11100011; 

write(A2D_I2CFile0, A2D_writeBuf0, 3); 

 

// address 0 A2D ready to read?   

A2D_readBuf0[0] = 0; 

A2D_readBuf0[1] = 0; 

while ((A2D_readBuf0[0] & 0x80) == 0) 

{ 

read(A2D_I2CFile0, A2D_readBuf0, 2); 

} 

 

// A2D is ready to read, read data, address 0 

A2D_writeBuf0[0] = 0; 

write(A2D_I2CFile0, A2D_writeBuf0, 1); 

read(A2D_I2CFile0, A2D_readBuf0, 2); 

 

// compute input angles, address 0 (foot) 

A2D_val0  = A2D_readBuf0[0]<<8|A2D_readBuf0[1]; 

v_in_0 = (float)A2D_val0*6.144/32767; 

v_in_0 =-(v_in_0-1.63); 

v_in_0 = 90.0/2.053*v_in_0; 

 

// set parameter on the A2D, address 1 

A2D_writeBuf1[0] = 1; 

A2D_writeBuf1[1] = 0b11000001; 

A2D_writeBuf1[2] = 0b11100011; 

write(A2D_I2CFile1, A2D_writeBuf1, 3); 

 

// address 1 A2D ready to read? 
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A2D_readBuf1[0] = 0; 

A2D_readBuf1[1] = 0; 

while ((A2D_readBuf1[0] & 0x80) == 0) 

{ 

read(A2D_I2CFile1, A2D_readBuf1, 2); 

} 

 

// A2D is ready to read, read data, address 1 

A2D_writeBuf1[0] = 0; 

write(A2D_I2CFile1, A2D_writeBuf1, 1); 

read(A2D_I2CFile1, A2D_readBuf1, 2); 

 

// compute input angles, address 1 (knee) 

A2D_val1  = A2D_readBuf1[0]<<8|A2D_readBuf1[1]; 

v_in_1 = (float)A2D_val1*6.144/32767; 

v_in_1 =-(v_in_1-0.289); 

v_in_1 = 90.0/1.89*v_in_1; 

 

// echo the input 

printf("stage= %d, i= %d, foot = %f (degs), knee = %f (degs) 

\n",stage,i,v_in_0,v_in_1); 

 

 

 

//rhythm from prone to transition  

if(stage==1){ 

v_out_1    =  -0.35*(1-(float)i/2000); 

theta0_set =   0.0015*v_in_1*v_in_1 -0.3218*v_in_1 -85.7955; 

v_out_0    =   0.3*kp_0*(theta0_set-v_in_0); 

if (v_in_1<-145) {stage=2;theta1_set=-145;theta0_set=6;}  

} 

 

//capture at the transition 

if(stage==2){ 

I1=I1+1; 

v_out_0 = 0.4* kp_0*(theta0_set-v_in_0); 

v_out_1 = 0.6* kp_1*(theta1_set-v_in_1); 

if(I1>200){stage=3;} 

} 

 

//rhythm from transition to crouching 

if(stage==3){ 

I2=I2+1; 

theta0_set = -0.0041*v_in_1*v_in_1 - 0.9027*v_in_1 - 35.0961; 

v_out_0= 0.080*(theta0_set-v_in_0); 

v_out_1=0.25; 

if (v_in_1>-106){stage=4;theta0_set=13;theta1_set=-106;} 

} 

 

//capture at crouching 

if(stage==4){ 

I3=I3+1; 
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v_out_0 =  0.5*kp_0*(theta0_set-v_in_0); 

v_out_1 =  0.5*kp_1*(theta1_set-v_in_1); 

if(I3>200){stage=6;} 

} 

 

//first part of jump rhythm 

if(stage==6){ 

I5=I5+1; 

theta0_set = -0.0205*v_in_1*v_in_1 - 4.6956*v_in_1 - 253.5337; 

v_out_0= 0.080*(theta0_set-v_in_0); 

v_out_1=-0.10; 

if (v_in_1<-147){stage=7;} 

} 

 

//second part of jump rhythm 

if(stage==7){ 

I6=I6+1; 

v_out_1    =   0.15; 

theta0_set =   -0.5387*v_in_1 -89.8062; 

v_out_0    =   0.3*kp_0*(theta0_set-v_in_0); 

if (v_in_1>-5) {stage=8;theta0_set=-84;theta1_set=-5;} 

} 

 

//capture at the end of a jump 

if(stage==8){ 

I7=I7+1; 

v_out_0 =  0.5*kp_0*(theta0_set-v_in_0); 

v_out_1 =  0.5*kp_1*(theta1_set-v_in_1); 

//if(I3>200){stage=9;} 

} 

 

// echo the outputs 

//printf("i= %d, theta1 = %f (degs), theta2 = %f (degs) \n", i, 

theta1_set, theta2_set); 

 

 

 

// convert v_out_0 to a Hexadecimal number 

a     = (int)2000*v_out_0+2048; 

b     = a/16; 

h1    = a%16; 

a     = b; 

b     = a/16; 

h2    = a%16; 

h3    = b; 

 

//convert the high and low decimal and output  

D2A_writeBuf0[0] = h3; 

D2A_writeBuf0[1] = 16*h2+h1; 

write(D2A_I2CFile0,D2A_writeBuf0,2); 

 

// convert v_out_1 to a Hexadecimal number 
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a     = (int)2000*v_out_1+2048; 

b     = a/16; 

h1    = a%16; 

a     = b; 

b     = a/16; 

h2    = a%16; 

h3    = b; 

 

//convert the high and low decimal and output  

D2A_writeBuf1[0] = h3; 

D2A_writeBuf1[1] = 16*h2+h1; 

write(D2A_I2CFile1,D2A_writeBuf1,2); 

 

}  // end of time loop 

 

// close out the i2c interface 

close(A2D_I2CFile0); 

close(A2D_I2CFile1); 

close(D2A_I2CFile0); 

close(D2A_I2CFile1); 

 

return 0; 

 

} // end of main 
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INTENTIONALLY LEFT BLANK 
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Appendix J: PIC machine code for pulse width modulation 
; 16F873a PWM example code.  
LIST P=16F873, R=DEC    ; Use the PIC16F873 and decimal system 
#include "P16F873A.INC"      ; Include header file 
__config  _CP_OFF & _HS_OSC & _WDT_OFF & _PWRTE_ON & _LVP_OFF & _BODEN_ON 
 
     offset  EQU 0x0           
     ;offset  EQU 0x2F  
     ;offset  EQU 0x00 
  
    cblock 0x20 
  save_status 
  save_low 
  rpm_left 
  rpm_right 
  output_leds 
    endc 
 
    ORG  0x0000 
    GOTO START      
    ORG  0x0004   
  
START:  ;Setup AtoD on RA0 
    movlw    B'01000001'  
    movwf    ADCON0 
 
  ; set up output and 2nd part of ADC 
    BANKSEL   TRISC    
    CLRW        
    MOVWF    TRISC   
    clrf       ADCON1          
    BANKSEL  PORTC  
 
    MOVLW b'00001100' 
    MOVWF    CCP1CON 
    MOVWF CCP2CON 
 
    MOVLW     0xFE  
    BANKSEL  PR2  
    MOVWF    PR2 
    BANKSEL   TMR2 
 
    MOVF    T2CON,W 
    ANDLW   0xF8    
    IORLW   0x00 
    MOVWF   T2CON 
 
    MOVF      T2CON,W  
    ANDLW     0x07 
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    IORLW     0x00 
    MOVWF     T2CON 
 
    CLRF    CCPR1L  
    CLRF    CCPR2L 
 
    BSF       T2CON,  TMR2ON 
 
MainLoop:        CALL read_pot  
    CALL               SpeedSet 
    goto               MainLoop 
 
 
SpeedSet:           MOVF rpm_left,0 
    MOVWF CCPR1L 
    MOVF rpm_right,0   
    MOVWF    CCPR2L   
    RETURN 
 
read_pot:            bsf        ADCON0,GO 
Wait:                btfsc    ADCON0,GO       
    goto                Wait 
    rlf  ADRESH,1 
    movf               STATUS,0 
    movwf           save_status 
    btfsc               save_status,0 
    call               set_upper 
    btfss               save_status,0 
    call               set_lower 
    return 
    
set_upper:         movf ADRESH,W         
    movwf rpm_left 
    movlw offset 
    addwf rpm_left,1 
    btfsc               STATUS,C 
    call               max_left 
    movlw 0x00 
    movwf rpm_right 
    return 
    
max_left:            movlw 0xFF 
    movwf rpm_left 
    return 
    
set_lower:          movf ADRESH,W 
    sublw 0xFF 
    movwf rpm_right 
    movlw offset 
    addwf rpm_right,1 
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    btfsc                STATUS,C 
    call               max_right 
    movlw 0x00 
    movwf rpm_left 
    return 
    
max_right:         movlw 0xFF 
    movwf rpm_right 
    return 
 
    END     
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INTENTIONALLY LEFT BLANK 
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Appendix K: Experimentally derived equations of motion 
In this dissertation, a control algorithm for a robot linkage system was presented. The algorithm 

was demonstrated using a specific linkage system containing four point masses. In this appendix we 

two-link dynamics by using the mass properties of the links.  

 

Figure 73. Generalized two-link dynamics 

The definition of these properties are given in Table 6. 

Table 6. Definition of link mass properties and the experimental method to determine them 

Mass property Description Experimental method of determination 

𝑎1 Location of the COM of first link Using a  balance to find the COM 
𝑚1 Total mass of the first link Using a scale to measure weight 
𝐼1 Moment of inertia at the COM of the first 

link 
Resonance testing about the COM 

𝑎2 Location of the COM of the second link Using a balance to find the COM 
𝑚2 Total mass of the second link Using a scale to measure weight 
𝐼2 Moment of inertia at the COM of the 

second link 
Resonance testing about the COM 

 

 

 

Using the Euler-Lagrange (EL) equations free dynamics are given by 

    

 

𝑚1, 𝐼1 𝐿 

𝐿 

𝑎1 

 

𝑎2 
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𝐹𝑥 
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𝜃2, 𝜏2 

 

knee 
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gravity 

𝑥 

𝑦 
foot 

head 

𝑚2,  𝐼2 
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𝑴�̈⃗� = 𝑮+ 𝑭 

where 

�⃗� = [𝜃1, 𝜃2, 𝑥, 𝑦]
𝑇  

𝑴 =

[
 
 
 
 
𝑚1𝑎1

2 +𝑚2𝐿
2 + 𝐼1 𝑚2𝑎2𝐿𝑐𝑜𝑠 (𝜃1 − 𝜃2)

𝑚2𝑎2𝐿𝑐𝑜𝑠 (𝜃1 − 𝜃2) 𝑚2𝑎2
2 + 𝐼2

         
𝑚1𝑎1 +𝑚2𝐿 −(𝑚1𝑎1 +𝑚2𝐿)𝑠𝑖𝑛(𝜃1)

𝑚2𝑎2𝑐𝑜𝑠(𝜃2) −𝑚2𝑎2𝑠𝑖𝑛(𝜃2)

𝑚1𝑎1 +𝑚2𝐿 𝑚2𝑎2𝑐𝑜𝑠(𝜃2)

−(𝑚1𝑎1 +𝑚2𝐿)𝑠𝑖𝑛(𝜃1) −𝑚2𝑎2𝑠𝑖𝑛(𝜃2)
𝑚1 +𝑚2 0

0 𝑚1 +𝑚2 ]
 
 
 
 

 

𝑮 =

[
 
 
 
 
−𝑚2𝑎2𝐿𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2 + (𝑚1𝑎1 +𝑚2𝐿)𝑔𝑠𝑖𝑛(𝜃1)

𝑚2𝑎2𝐿𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1
2 +𝑚1𝑎1𝑔𝑠𝑖𝑛(𝜃2)

(𝑚1𝑎1 +𝑚2𝐿)𝑠𝑖𝑛(𝜃1)�̇�1
2 +𝑚2𝑎2𝑠𝑖𝑛(𝜃2)�̇�2

2

(𝑚1𝑎1 +𝑚2𝐿)𝑐𝑜𝑠(𝜃1)�̇�1
2 +𝑚2𝑎2𝑐𝑜𝑠(𝜃2)�̇�2

2 ]
 
 
 
 

 

𝑭 = [𝜏1 𝜏2 𝐹𝑥 𝐹𝑦]𝑇 

As described in chapter 2, from these equations, all lower order dynamics can be derived. Setting 

the time derivatives of 𝑥, 𝑦 to zero and solving for the reaction forces gives the generalized pinned 

dynamics response 

[
𝑚1𝑎1

2 +𝑚2𝐿
2 + 𝐼1 𝑚2𝑎2𝐿𝑐𝑜𝑠 (𝜃1 − 𝜃2)

𝑚2𝑎2𝐿𝑐𝑜𝑠 (𝜃1 − 𝜃2) 𝑚2𝑎2
2 + 𝐼2

] {
�̈�1
�̈�2
}

= [
−𝑚2𝑎2𝐿𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�2

2 + (𝑚1𝑎1 +𝑚2𝐿)𝑔𝑠𝑖𝑛(𝜃1)

𝑚2𝑎2𝐿𝑠𝑖𝑛(𝜃1 − 𝜃2)�̇�1
2 +𝑚1𝑎1𝑔𝑠𝑖𝑛(𝜃2)

] + [
𝜏1
𝜏2
] 

𝐹𝑥 = (𝑚1𝑎1 +𝑚2𝐿)�̈�1 +𝑚2𝑎2𝑐𝑜𝑠(𝜃2)�̈�2 − (𝑚1𝑎1 +𝑚2𝐿)𝑠𝑖𝑛(𝜃1)�̇�1
2 −𝑚2𝑎2𝑠𝑖𝑛(𝜃2)�̇�2

2 

𝐹𝑦 = −(𝑚1𝑎1 +𝑚2𝐿)𝑠𝑖𝑛(𝜃1)�̈�1 −𝑚2𝑎2𝑠𝑖𝑛(𝜃2)�̈�2-(𝑚1𝑎1 +𝑚2𝐿)𝑐𝑜𝑠(𝜃1)�̇�1
2 −𝑚2𝑎2𝑐𝑜𝑠(𝜃2)�̇�2

2 . 

Again, following chapter 2, taking the difference of the above equations, generalized bent dynamics 

can be found 

[𝑚1𝑎1
2 +𝑚2(𝑎2

2 + 2𝑎2𝐿𝑐𝑜𝑠(2𝜃1) + 𝐿
2) + 𝐼1 + 𝐼2]�̈�1

= 2𝑚2𝑎2𝐿𝑠𝑖𝑛(2𝜃1)�̇�1
2 + (𝑚1𝑎1 +𝑚2𝐿 − 𝑚2𝑎2)𝑔𝑠𝑖𝑛(𝜃1) + (𝜏1 − 𝜏2) 

These equations are solely a function of the mass properties of the links which were found 

experimentally.  Figure 74 and Figure 75 contain photos of the experimental apparatus. It consist of 

a carriage attached to a spring.  
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Figure 74. Experimental apparatus for determining link mass properties 

 

Figure 75. Link within the experimental apparatus 

The link is placed within the carriage and it translated until it is balanced in a horizontal position. 

The balance point is the center of gravity of the link. The link can then be depressed at one end and 

allowed to vibrate at its natural frequency. By measuring both the natural frequency and the 
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stiffness of the spring, the moment of inertial of the link can be determined. The mass of the link can 

be determined simply by measuring its weight. Table 7 give the mass properties of the links. 

Table 7. Mass properties of two-link legs 

Parameter Value Unit 

𝑚1 1.37 𝑘𝑔 
𝑚2 1.10 𝑘𝑔 
𝐼1 0.0164 𝑘𝑔 ∙ 𝑚2 
𝐼2 0.0062 𝑘𝑔 ∙ 𝑚2 
𝑎1 0.12 𝑚 
𝑎2 0.13 𝑚 
𝑙1 0.272 𝑚 
𝑙2 0.280 𝑚 
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