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Abstract

The dissertation addresses different aspects of student success in higher education.

Numerous factors may impact a student’s ability to succeed and ultimately graduate,

including pre-university preparation, as well as the student support services provided

by a university. However, even the best efforts to improve in these areas may fail if

other institutional factors overwhelm their ability to facilitate student progress. This

dissertation addresses this issue from the perspective of curriculum structure. The

structural properties of individual curricula are studied, and the extent to which this

structure impacts student progress is explored. The structure of curricula are studied

using actual university data and analyzed by applying different data mining tech-

niques, machine learning methods and graph theory. These techniques and methods

provide a mathematical tool to quantify the complexity of a curriculum structure.

The results presented in this work show that there is an inverse correlation between

the complexity of a curriculum and the graduation rate of students attempting that

curriculum. To make it more practical, this study was extended further to implement

a number of predictive models that give colleges and universities the ability to track
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the progress of their students in order to improve retention and graduation rates.

These models accurately predict the performance of students in subsequent terms

and accordingly could be used to provide early intervention alerts. The dissertation

addresses another important aspect related to curricula. Specifically, how course

enrollment sequences in a curriculum impact student progress. Thus, graduation

rates could be improved by directing students to follow better course sequences. The

novelty of the models presented in this dissertation is characterized in introducing

graduation rate, for the first time in literature, from the perspective of curricular

complexity. This provides the faculty and staff the ability to better advise students

earlier in their academic careers.
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Chapter 1

Introduction

1.1 Overview

Many definitions of student success exist in the literature. While these vary from

grades and persistence to self-improvement, most studies consider graduation the

ultimate measure of student success [59]. From the university’s perspective, and

especially for public universities, the definition of student success broadens from

graduation into student retention rates and time-to-degree. These factors are impor-

tant because many States have tied a percentage of the university’s funding directly

to such student success metrics [3]. This so-called “performance-based funding”

has become a popular way to incentivize universities to help students graduate in

a timely fashion. Whether a causal relationship exists between performance-based

funding and graduation rates remains to be seen, but studies have clearly shown a

rise in graduation rates as state appropriations per student increase [62].

From the state and federal levels, graduation rates are under increasing scrutiny

[3]. This is driven by numerous factors, including the desire to improve institutional

characteristics for rating purposes, the increasing trend of states tying institutional
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Chapter 1. Introduction

funding to student outcomes through performance-based funding, as well as the fact

that a bachelor’s degree has become an increasingly necessary prerequisite for success

in the work place creating a moral imperative for colleges and universities to graduate

the students they admit. “If we want America to lead in the 21st century, nothing is

more important than giving everyone the best education possible from the day they

start preschool to the day they start their career,” said President Barack Obama [4].

This is driven by the fact that higher educational attainment leads to healthier

economic outcomes [1]. Thus earning a post-secondary degree is not considered a

marginal achievement anymore or just an opportunity to fulfill personal ambitious;

rather, it is a critical factor directly effecting the progress of the new economy [1].

The market that requires bachelor’s degrees or higher is growing faster than those

that do not; among the 30 fastest growing jobs, more than half require a bachelor’s

degree or higher. With the fact that the average salary of a university graduate is

double that of a high school graduate, the middle class are seeking post-secondary

degrees in ever increasing numbers.

Despite the value of a bachelor’s degree, only 32.5% of the adult population in the

United States has completed college [48]. Moreover, the degree completion of those

students is widely disparate by race/ethnicity and gender. Only 22.5% of African

American and 15.5% of Hispanics have a bachelor’s degree compared to 36.2% of

Whites. Given these pressures, universities are collecting unprecedented amounts of

information related to student performance and progress, and applying ever more so-

phisticated analytical techniques in efforts to determine the most important factors

that contribute to attrition and persistence [59,62]. Perhaps the most common guid-

ing framework used by these universities to analyze factors contributing to student

success is presented in Fig. 1.1.

These factors can be partitioned into three main paths: pre-institutional expe-

riences, institutional conditions and student behaviors [35, 57]. The former include

2
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Pre-Institutional 
Experiences           

Post Institutional 
Outcomes           

• Study Habits
• Interaction with Faculty
• Time on Task
• Motivation 
• Other

• Race/Gender
• Family Support
• College Readiness
• Demographics
• Other • First Year Experience

• Academic Support
• Campus Environment 
• Teaching & Learning Approaches
• Other

• Graduation
• Grades
• Employment
• Learning Gains
• Other

Figure 1.1: Student success framework.

such factors as pre-university preparation and socio-economic status, while the latter

two include the interactions that take place while a student is enrolled at the uni-

versity, these include institutional conditions and student behaviors. In this work we

exclude any attempt to enhance pre-institutional experiences factors because they

are typically beyond the direct control of the university. Our main contribution in

this work is to present and discuss a novel institutional factor framework that can

be easily employed by universities at a minimum cost and used to improve student

outcomes.

A number of researchers have worked to identify the institutional conditions,

e.g., the policies, programs, practices and cultural characteristics, that lead to stu-

3



Chapter 1. Introduction

dent success [35, 57]. They found that one of the most important factors is student

engagement, which sits at the intersection of student behaviors and the aforemen-

tioned institutional conditions (Fig. 1.1). Furthermore, unlike most of the other

factors that determine student success (e.g., previous preparation, socioeconomic

status, etc.), student engagement is a factor that can be influenced by the institu-

tion. In efforts to improve student success, many institutions took these lessons to

heart and worked to increase the amount and quality of the student support services

they provide [33, 58]. For instance, many schools began to more rigorously and in-

tentionally track the academic progress of their students, the extent to which they

participate in educationally purposeful activities, the level of satisfaction with their

campus experiences, and the added value (in terms of knowledge and skills acquired)

of the entire undergraduate experience [40]. Some institutions reported significant

increases in student success as a result of their efforts, but with others the benefits

were much more limited.

The most fundamental measure of student success is degree attainment, and it is

not uncommon to find accounts of students that earn a degree in spite of the fact

that multiple indicators gave them little chance of success. They succeed in spite of

the odds. For these students, indeed for any student, the simple facts are these: if

they are able to successfully navigate all of the various requirements associated with

a degree program, they earn the degree. Thus, at a very basic level it makes sense

to think of all of the success-driven interventions mentioned above in terms of their

ability to facilitate the movement of students through the individual requirements

associated with degree programs. Indeed, the efficiency with which a student may

progress through these requirements is what matters most in the end. Certainly,

creating institutional conditions “that matter” will facilitate student progression,

but there may also exist structural conditions within the curricula itself that limit

progress independent of any success initiatives. Thus in this work we address student

progress from the perspective of curriculum structure. This is an institutional con-

4



Chapter 1. Introduction

dition that is often overlooked. This dissertation presents a framework for analyzing

student progress from this perspective.

First, this chapter will cover some of the most commonly discussed topics in the

literature related to pre-institutional and institutional conditions contributing to stu-

dent success. Then, Chapter 2 will present our proposed framework that addresses

student progress at the most basic level, by investigating the structural properties of

individual curricula. Chapter 3 extends this work by showing how to design curricula

that reduce complexity by moving the courses with relatively higher “crucial values”

to the earliest possible terms while meeting the prerequisite conditions and balancing

the workloads of terms. We argue that this has a direct impact on student success

and graduation rates. Chapters 4 and 5 introduce new applications for Bayesian

Belief Networks (BBNs) and Markov Networks (MNs) to predict the performance

of students early in their academic careers. These applications may prove useful in

tracking the progress of students in order to provide early interventions aimed at im-

proving student outcomes. In Chapter 6 we propose a model for analyzing university

course enrollment networks at the program level. The analyses we provide are based

on quantifying the importance of course enrollment sequences on a student’s final

grade point average (GPA), a metric that is highly correlated with graduation rates.

In particular, we investigate the orderings of courses enrollment sequences that best

contribute to student performance and achievement. In the last chapter we provide

some concluding remarks and give some perspectives for further research.

The remainder of this chapter provides a snapshot of nationally effective pre-

institutional and institutional conditions that are commonly cited and have shown a

potential for increasing student success, retention, and graduation rates. Note that

these factors and conditions will not be studied or analyzed further in this work as

they have been extensively studied elsewhere. The main purpose of presenting them
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here is to provide the “big picture” that will help formulate the problem that this

dissertation addresses.

1.2 Pre-institutional Factors

This section provides a brief overview about the most common pre-instituational

factors that were proven to have direct effect on graduation rates. In particular

this section presents statistical results showing how characteristics, such as gender,

ethnicity, academic background, and first-generation status, can influence graduation

rates. The results presented here show the variation in correlation between these

factors and graduation rates starting from 1967 until 2016. Thus this section is

intended to give a literature review of the most studied factors that have clearly

shown to be correlated with graduation rates. Although these factors will not be

addressed further in the following chapters, they constitute a gateway that help

better understand the model we are proposing in this dissertation.

1.2.1 Degree Attainment by Gender

Gender is a major factor that may be correlated to retention and graduation rates.

Statistics show that, on average, women tend to graduate earlier than men. In

the United States, for example, degree attainment for both genders has witnessed

remarkable fluctuations throughout the years. Fig. 1.2 shows that men used to have

higher college attainment compared to women up until 2014 [48]. From 2013 back to

1967 , the gap in degree attainment between men and women who are 25 years and

older ranged between 1% and 8% with a peak in 1983. In 2013 the gap went down to

1% with degree attainment at approximately 30% for the two genders. In 2015, the

picture changed. At that time 33% of women 25 years and older held a bachelor’s

6
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degree or higher compared to 32% of men. This increase in degree attainment is

driven by the increased involvement of women in higher education. The year 1991

was a turning point in the history of US women aged 25 to 29. Starting from that

year and up untill the present (2016), women have higher college attainment than

men within the same age range (Fig. 1.3). Between 1967 and 1990, men aged 25

to 29 held more bachelor’s degree compared to women with a peak of 27% in 1976.

After that time period the percentage went slightly down and did not rise above 27%

for 35 years. In 2012 degree attainment for men crossed 27% to reach 31% in 2015.

However this is not the case with women aged 25 to 29. Fig. 1.3 shows that the

growth in degree attainment for women is almost monotonically increasing. Between

1976 and 2011, the percentage of young men (25–29) with bachelor’s degrees was

27% or below. However, the percentage of women (25–29) with bachelor’s degrees

went up from 20% to 36%. This indicates that women currently tend to graduate

at a higher rate compared to men. This fact is reflected by a number of models in

the literature that predict graduation rates where universities with higher women

populations have higher graduation rates [15].

1.2.2 Degree Attainment by Race/Ethnicity

Race and ethnicity are also major predictive factors of retention and graduation

rates. For example, in the United State, statistics show that diversity in race and

ethnicity tends to significantly impact university outcomes. Fig. 1.4 shows the degree

attainment variations among groups of different races. Asians recorded the highest

degree completion percentage among all other groups in all years. For example in

1988, the percentage of Asians aged 25 years and older holding a bachelor’s degree

or higher is 38% compared to 21% of Whites, 11% of Blacks and 10% of Hispanics.

Excluding the gap between Blacks and Hispanics, the degree completion gap among

the rest of the groups remained almost the same over time. In 1988 the percentage
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Figure 1.2: Percentage of the population 25 years and older with a bachelor’s degree
or higher by gender: 1967 to 2015

of degree attainment for both Blacks and Hispanics is around 11%. In 2015, how-

ever, the gap in degree completion between these two groups increased with Blacks

reaching 22% compared to 15% for Hispanics. Fig. 1.4 shows an important fact.

There is an increasing trend in degree attainment for all the races: Asians, Whites,

Blacks and Hispanics starting with 38%, 21%, 11% and 10% completion rates in

1988, respectively, and reaching 54%, 36%, 22% and 15% in 2015.

1.2.3 Degree Attainment by Academic Background

Studies also show that pre-institutional academic backgrounds have direct influences

on degree attainment [15]. Two of the most common measures used to examine
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Figure 1.3: Percentage of the population aged 25 to 29 with a bachelor’s or higher
degree, by gender: 1967 to 2015

academic backgrounds are high school Grade Point Average (GPA) and Scholastic

Aptitude Test (SAT) scores. Tables 1.1 and 1.2 show the results reported by the Co-

operative Institutional Research Program (CIRP) Freshman Survey for the entering

cohorts of 1994 and 2004, show this monotonically increasing relationship between

degree attainment and high school GPA and SAT scores, respectively. In particular,

Table 1.1 shows that students with higher high school GPAs graduate sooner than

those with lower high school GPAs. For example, students with A/A+ high school

GPA are twice as likely to graduate in four years compared to their B grade col-

leagues. Note that this gap decreases as students proceed in time. By the end of

the sixth year the difference is approximately one third. The same applies for SAT

scores. Table 1.2 shows that students with SAT scores of 1300 or higher have better
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Figure 1.4: Percentage of the population 25 years and older with a bachelor’s degree
or higher by race: 1988 to 2015

four, five and six year graduation rate compared to those with lower scores. This

result lines up with the rest of the SAT scores in Table 1.2.

% of Students holding
Bachelor’s degrees Within

HSGPA 4 Years 5 Years 6 Years
A/A+ 58.2 75.6 79.3
A- 47.8 66.3 70.6
B+ 35.9 54.7 59.8
B 25.2 43.3 48.7
B- 15.5 30.5 36.6
C+ 9.8 22.4 27.7
C or less 6.3 16.0 21.2

Table 1.1: Four, five and six year graduation rates by high school GPA.
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% of Students holding
Bachelor’s degrees Within

SAT score 4 Years 5 Years 6 Years
1300+ 62.2 78.2 81.6
1200—1299 51.9 69.5 73.3
1100—1199 42.9 61.2 65.6
1000—1099 34.8 53.7 58.6
900—999 24.6 44.0 49.9
800-899 17.2 34.1 40.5
Less than 800 10.5 23.9 30.4

Table 1.2: Four, five and six year graduation rate by SAT score.

1.2.4 Degree attainment by First-Generation Status

Another factor that prove to affect degree attainment is the academic background of

students’ parents [15]. Fig. 1.5 shows that students whose parents attended college

earn college degrees at a higher rate than those whose parents did not have higher

education experience. The gap in degree attainment for these two groups of students

remained almost the same for four, five, and six-year graduation rate with a difference

of 14%.

1.3 Current Institutional Conditions

In this section we summarize the literature related to the most common institutional

factors employed by universities to boost student outcomes. These include structural

factors and academic factors. The former tries to insure a suitable campus environ-

ment for students by offering a combination of institutional physical features and

students’ demographic characteristics (this is explained in details in the following

section). The latter tries to improve student outcomes by offering different academic

support programs and teaching approaches. Fig. 1.1 shows a sample of these factors.
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Figure 1.5: Four, five and six year graduation rate by parents’ college experience [15].

1.3.1 Structural Factors

Structural factors include all non-academic institutional features related to the cam-

pus environment. These features range from the university’s physical structure to

student demographics. Features such as university size, architecture, design, build-

ings, residential character and student-faculty ratio have a direct impact on student

outcomes by encouraging or discouraging the learning process [55]. The diversity of

students in a university creates a supportive learning environment [2]. For exam-

ple, students in liberal arts majors tend to have better diversity experiences because

they simply are more likely to interact with students from different racial and ethnic

backgrounds in their classes [36].
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1.3.2 Academic Factors

As opposed to structural factors, academic factors include all the student services

offered by the university that directly influence the academic performance of the stu-

dents. This include the support programs services that facilitate a smooth traversal

of the students through the requirements associated with their respective degree pro-

grams [31,34]. These services include advising, tutoring, seminars, remedial courses,

intensive courses, study groups, etc. Another important academic aspect that has a

crucial role in improving student outcomes is the learning approach or the pedagogi-

cal practice pursued by the faculty. This has been under extensive consideration and

research for its direct influence on student performance [45]. The trend to increase

academic standards, and hence student competence, is to switch from the traditional

formal learning, which is a teacher-centered learning, to new informal learning meth-

ods that basically give the students the ability to acquire knowledge by observing

and participating in social activities [44].

1.4 Curricula Structure and Graduation Rates

A number of data-driven tools have been developed for institutions to help predict

graduation rates [5,15]. These tools mainly use methods such as traditional statistics,

data mining and machine learning. A major factor that influences the accuracy of

these predictive models is the choice of the independent variables. Some of these

variables, such as ACT/SAT score and high school GPA, are very informative and

hence they can be useful in predicting graduation rates; however, others might not

be that informative. In the literature, most of these models use the pre-institutional

and institutional conditions, discussed in previous section, as independent variables

to predict graduation rates. Although the results of these models show a remarkable

accuracy in predicting graduation rates, more work could be done in this area. That
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is more informative variables should be integrated to these models. We claim that

curriculum structure is one of these variables that may be used in order to better

improve the accuracy of these models. The results shown in the following Chapters

support this claim.
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Chapter 2

Complexity Analysis of University

Curricula

In Chapter 1 we provided a detailed background about the practices associated with

improving graduation and retention rates in higher education. We discussed broadly

the most efficient models and features documented in the literature to study and

analyze the factors influencing student success metrics. In particular, we went over

the pre-institutional and institutional conditions that have a direct impact on student

success, retention, and graduation rates. However, none of these studies explore

student progress from the perspective of curriculum structure. In this chapter we

formulate a mathematical model that analyzes curricula structure and relate it to

graduation rates. First, we determine the components of the curriculum that form

the basis of our analysis. These are the courses and their respective dependency

relationships. Then, using these components, we introduce two factors that measure

the structural characteristics of the curriculum, we refer to these as blocking and

delay factors. Using these two factors we define the complexity of the curriculum

and accordingly, we study the correlation between the complexity of the curriculum

and the graduation rate of students attempting that curriculum.
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This chapter represents the core of this dissertation, along with one of the most

important concepts we have derived, the structural complexity of a curriculum.

Briefly defined, the structural complexity of a curriculum is determined by the man-

ner in which the courses in the curriculum are arranged, e.g., prerequisites, number

of courses, etc. On the other hand, the Instructional complexity of a curriculum is

determined by the inherent difficulty of the courses in the curriculum, the quality

of instruction, academic support, etc. These two components together define the

complexity of a curriculum. In this dissertation, however, we focus our study only

on the structural complexity of a curriculum and we analyze its impact on student

progress.

Due to the nature of course interactions in curricula, we use graph theory and

complex network analysis to provide a mathematical foundation for detecting crucial

courses, which may help the university make decisions on when to offer certain classes,

who should teach them, and what is truly necessary for a degree in a certain field.

This work is important as it presents a robust framework to ensure the ease of flow

of students through curricula with the goal of improving a university’s graduation

rates. Crucial courses have a high impact on student progress at universities and

ultimately on graduation rates. Detecting such courses should therefore be a major

focus of decision-makers at universities. The proposed cruciality measure is then

further extended to study the complexity of curricula. In particular the cruciality

measure is used to quantify the complexity of curricula and hence study the relation

between curricular complexity and graduation rates.

2.1 Curriculum Graph

Using graph theory as the basic method to study curricular complexity, we build

a model for the curriculum graph structure by abstracting the courses into nodes
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and connecting two nodes with a directed edge if there is a pre-requisite relationship

between the courses associated with the nodes. Fig. 2.1 is an example of the electrical

engineering curriculum at the University of New Mexico (UNM)1.

Figure 2.1: The electrical engineering curriculum at UNM.

By observing the graph structure of university curricula, we propose course cru-

ciality as a major factor that impact students’ ability to complete the curricula.

Specifically, the cruciality of a course within a network is related to two main fea-

tures, its delay factor and its blocking factor, and these two factors are characterized

by two additional parameters, the longest path and the connectivity. The longest

path Li of node i is defined as the length of the longest path passing through node

i. The connectivity, Vi of a node i is defined as the total number of nodes connected

to i. That is, let nij be 1 if there is a path from i to j and 0 if no such a path exists.

Then the connectivity Vi is given by

Vi =
∑
j

nij (2.1)

1https://curricula.academicdashboards.org
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The following sections illustrate in details the significance of these parameters in

quantifying the cruciality of courses and accordingly curricular complexity.

2.1.1 Delay Factor

Some courses have a critical impact on the academic progress of a student in the sense

that any failure in these courses (or delays in taking them at the appropriate time)

subjects the student to the risk of not finishing on time. It is therefore essential to

detect these courses. The following example illustrates a process for detecting them

using the longest path length parameter.

Given four nodes A, B, C and D representing four different courses, possible

relationships between courses are shown in two different scenarios in Fig. 2.2. In

Fig. 2.2(a) course A is the pre-requisite of B, C and D, while Fig. 2.2(b) shows

the same courses, but with different prerequisite relationships between them. In the

latter, A is the prerequisite ofB andD whereasB is the prerequisite of C. Comparing

these two figures, it is clear that A in Fig. 2.2(b) is more “crucial” than it is in

Fig. 2.2(a). This may be explained as follows: assuming a three-term curriculum, a

student who fails course A in Fig. 2.2(a) still have the chance of finishing on time,

whereas one who fails course A in Fig. 2.2(b) ends up requiring more than three

terms and is thus delayed. This phenomenon is reflected by the length of the longest

path, LA, shown by the red dashed lines. In Fig. 2.2(a), the longest path value of A

is one whereas in Fig. 2.2(b) it is two. However, the value of the connectivity of A,

VA, is three in both scenarios.

18



Chapter 2. Complexity Analysis of University Curricula

C 

B 

D 

Term 2 Term 1 Term 3 

A 

(a) Node A has a longest path value,
LA, of 1

C 

D 

Term 2 Term 1 Term 3 

A 

B 

(b) Node A has a longest path value,
LA, of 2

Figure 2.2: The two graphs illustrate the cruciality of node A using using the longest
path length factor.

2.1.2 Blocking Factor

In addition to the delay factor, it is natural to conclude that a course that is a

prerequisite to a large number of other courses is more crucial. If a student fails such

a course or does not attempt and pass it at the right time, the student may be blocked

from attempting follow-on courses, leading to a negative impact on progress. This

is illustrated by the following example. Nodes in Fig. 2.3 represent three different

courses. In Fig. 2.3(a) the nodes are linked differently from those in Fig. 2.3(b). Node

A in Fig. 2.3(a) is a prerequisite to node B whereas in Fig. 2.3(b) it is a prerequisite

to nodes B and C. Comparing these two figures, it would be reasonable to consider

node A in Fig. 2.3(b) more crucial than it is in Fig. 2.3(a). In the case of failure or

delay, node A in Fig. 2.3(b) will block more courses. This result is reflected by the

value of the connectivity, VA, shown by the yellow dashed circles. In Fig. 2.3(a), the

connectivity of A is one whereas in Fig. 2.3(b) it is two. However, the value of the

longest path length for A, LA, is one in both scenarios.

Based on the foregoing discussion, the cruciality of course i, denoted Ci, is defined

as follows:
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Figure 2.3: The two graphs illustrate the cruciality of node A using connectivity
factor.

Ci = Vi + Li (2.2)

Note that course cruciality, Ci, may be defined using different forms of Eq. (2.2).

For example, different weights may be assigned to Vi and Li, that is Ci = αVi + βLi

where α and β are constants. However, in the absence of training data that would

better correlate these two factors to graduation rates, we assume α = β = 1, that is

blocking and delay factors are equally likely to influence graduation rate.

Note that other parameters such as in-degree and out-degree measures are not as

suitable as the longest path and connectivity parameters. For example, if we consider

the in-degree and out-degree parameters instead of the longest path length parameter

to compute the crucaility of node C in Fig. 2.2(a) and Fig. 2.2(b), both scenarios

would lead to the same crucaility value which does not differentiate between the two

scenarios despite the fact that node C in Fig. 2.2(b) is more crucial than it is in

Fig. 2.2(a) taking into consideration the delay factor discussed previously.
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2.1.3 Curricular Complexity

Accordingly, we define the complexity, S, of a curriculum as the sum of the crucialities

of all courses in the curriculum:

S =
n∑
i

Ci (2.3)

where n is the number of courses in a curriculum

To better illustrate the definition of curricular complexity, consider the curriculum

shown in Fig. 2.4(a). In this example, the curriculum complexity is 8+7+3+5+4 =

27 which is simply the sum of the crucialities of all courses in the curriculum. On the

other hand, the cruciality value of each course in this curriculum is the summation

of its respective delay factor (Fig. 2.4(b)) and blocking factor (Fig. 2.4(c)).

In the following section we analyze the influence of curricular complexity on

graduation rates. In particular we show how these two variables are correlated. This

can be exploited to improve the accuracy of models predicting graduation rates.

In other words, curricular complexity together with other pre-institutional factors,

such as gender, ethnicity, ACT/SAT scores, and first-generation status, would consti-

tute independent variables for the models (i.e., regression, support vector machines,

Bayesian networks, etc.) that predict graduation rates. We claim that variables,

such as curricular complexity, improve the accuracy of such predictive models. This

summarizes, to an extent, one of our main contributions in this dissertation. Our

claim is supported by a number of simulations shown in the following section.
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2.2 Simulation

In this section we present the results for a number of Monte Carlo simulations [32].

These simulations show empirically the type of correlation between the complexity

of a curriculum and the graduation rate of students attempting that curriculum. In

particular we design a number of curricula made up of four courses each (Fig. 2.5).

Each curriculum has a complexity value representing its structural layout. Then we

run a Monte Carlo simulation of students flowing through each of these curricula

and accordingly compute the graduation rate. The results for each curriculum are

shown in Tables 2.1, 2.2, 2.3, and 2.4.

Course Term
1 2 3 4

1 51.2% 75.5% 87.5% 93.8%
2 49.8% 74.7% 87.5% 93.7%
3 50.2% 75.4% 87.7% 94.1%
4 0 44.3% 71.6% 85.7%

Grad. rate 0 20.6% 49.3% 71.3%

Table 2.1: Simulated graduation rate for curriculum 2.5(a).

Course Term
1 2 3 4

1 49.5% 75.0% 87.8% 94.1%
2 49.9% 74.8% 87.2% 9347%
3 0 24.0% 49.4% 69.0%
4 49.9% 74.6% 87.4% 93.6%

Grad. rate 0 13.4% 37.9% 60.4%

Table 2.2: Simulated graduation rate for curriculum 2.5(b).

Table 2.1 shows the simulated graduation rates for the curriculum shown in Fig.

2.5(a). The layout of this curriculum has no prerequisite relationships. Thus the to-

tal complexity value -using Eq. (2.3)-sums up to a relatively low number of four. The
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Course Term
1 2 3 4

1 50.0% 75.2% 87.2% 93.5%
2 49.5% 74.7% 87.6% 93.7%
3 0 12.3% 34.0% 54.7%
4 50.2% 75.5% 87.6% 93.7%

Grad. rate 0 9.3% 29.7% 51.2%

Table 2.3: Simulated graduation rate for curriculum 2.5(c).

Course Term
1 2 3 4

1 50.1% 74.9% 87.3% 93.6%
2 49.7% 75.2% 87.8% 93.7%
3 0 25.1% 49.8% 68.2%
4 0 25.2% 50.2% 69.1%

Grad. rate 0 6.4% 25.2% 47.3%

Table 2.4: Simulated graduation rate for curriculum 2.5(d).

graduation rate for the students attempting this curriculum after 4 terms is 71.3%.

This result is relatively higher than that shown in Table 2.2 for the curriculum shown

in Fig. 2.5(b). This curriculum (Fig. 2.5(b)) has only one prerequisite relationship

going from course A to course C. This one prerequisite relationship increases the

complexity value to seven. In return, the graduation rate after four terms decreases

to 60.4%. Thus there is a drop of 11% in the graduation rate after adding only

one prerequisite relationship. This simple simulation reveals the type of correlation

between curricular complexity and graduation rates. As we increase curricular com-

plexity the graduation rates decrease. The following additional simulations confirm

this claim: the curriculum shown in Fig. 2.5(c) has two prerequisite relationships

going from course A to course C and from course B to course C. These two prereq-

uisites increase the complexity of the curriculum to nine. This increase in complexity

imposes an additional drop of 9% (Table 2.3) in the graduation rate compared to the
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curriculum shown in Fig. 2.5(b). This inverse correlation continues to show up in the

simulation done for the curriculum shown in Fig. 2.5(d). This curriculum, similar to

the curriculum shown in Fig. 2.5(c), has two prerequisite relationships. However the

layout structure is different. The difference in the structure is reflected a difference

in the complexity value. The curriculum of Fig. 2.5(d) is more complex than that

of Fig. 2.5(c) with a complexity value of ten. This increase in complexity adds an

additional 4% drop in the graduation rate (Table 2.4).

The following section presents a real life scenario showing the improvement in the

graduation rate after modifying the structural layout of a common curricular pattern

in the school of engineering.

Fig. 2.6(a) shows a common curricular pattern in electrical, computer and me-

chanical engineering. Recently a number of universities (i.e., Wright State University

(WSU), UNM, etc.) have investigated changes in the structure of this curricular

pattern. They realized that the current pattern imposes unnecessary complexity to

students attempting it. Students must complete a total of six courses before they

can take circuits I with the longest chain being four courses. If a student fails to

pass one of these courses, they are delayed a whole term. Thus any effort to reduce

the complexity of this pattern would facilitate the traversal of students through its

degree requirements. In return, this would indeed improve the graduation rate. Thus

these universities managed to design a less complex layout for this pattern and at

the same time achieve the same learning outcomes. The new proposed curricular

pattern is shown in Fig. 2.6(b). Precalc is replaced with an Engineering 101 course

that prepares students for Calc I and Circuits I. The number of courses remains

the same, but the curriculum is less complex.

In this section we used our proposed model in order to quantify the changes in

the complexity value after modifying the original curricular pattern (Fig. 2.6(a)).

We also showed the difference in the graduation rates imposed by this modification
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using the Monte Carlo simulation.

We computed the complexity of both patterns using Eq. (2.3). It is clear that

the complexity value dropped significantly after modifying the original curricular

pattern. The complexity went down from 56 to 42. The drop in complexity is

reflected as an increase in graduation rate. The Monte Carlo simulation shows that

the graduation rate after 7 terms went up from 72% to 89%. The results shown here

support the claim of the universities modifying their curricula. It is obvious that

these kinds of efforts would positively influence the educational sector at least at the

level of graduation rates.
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(a) Curriculum Complexity.

(b) Delay factor.

(c) Blocking factor.

Figure 2.4: (a) In this example, the curricular complexity is 8 + 7 + 3 + 5 + 4 = 27.
(b) EE 102 has a delay factor of 4. This can be seen by the dashed line connecting
PHYS 101, EE 102, EE 105, and PHYS 103. (c) EE 102 has a blocking factor of 3.
This can be seen by the dashed line connecting EE 102 to the three other courses
EE 104, EE 105, and PHYS 103.
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(a) This curriculum has a complexity
value of four. There exists no prereq-
uisite relationships in this layout.

A 

B 

C 

D 
students graduations 

(b) This curriculum has a complexity
value of seven. There exists one pre-
requisite relationships in this layout
going from course A to course C.
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(c) This curriculum has a complexity
value of nine. There exists two pre-
requisite relationships in this layout
going from course A to course C and
from course B to course C.
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D 
students graduations 

(d) This curriculum has a complexity
value of ten. There exists two prereq-
uisite relationships in this layout go-
ing from course A to course C and
from course B to course D.

Figure 2.5: Four course curricula.
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(a) Original curricular pattern.

(b) Modified curricular pattern.

Figure 2.6: A common curricular pattern in electrical, computer and mechanical
engineering.
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Chapter 3

Cruciality-Based Curriculum

Balancing

In the previous chapter we defined the cruciality of a course in a curriculum based

on its respective blocking and delay factors. A course is crucial in the sense that

any failure or delay in taking it at the appropriate time subjects the student to

the risk of not finishing on time. So it would be essential to move these courses to

the earliest possible terms while meeting all the constraints related to prerequisite

relationships, maximum and minimum amount of academic load per term, maximum

and minimum number of credit hours per term, etc. In this chapter we introduce a

new optimization model called Cruciality-Based Curriculum Balancing (CBCB) that

achieves this goal using Integer Linear Programing (ILP) and Constraint-Based (CB)

techniques. The novelty of this model is characterized by its ability to outperform

other models by utilizing a number of objective functions in a single framework.
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3.1 Introduction

The Balanced Academic Curriculum Problem (BACP) aims to schedule all courses

within a curriculum to specific terms while satisfying the prerequisite dependency

relationships and maintaining a balanced workload across all terms [11, 39]. The

motivation for this work was mainly to reduce the total weekly lecture hours for a

student [13, 49]. Accordingly, a large number of variants of the BACP have been

proposed in the literature in an attempt to improve the performance and solution

quality.

In 2001 and 2002, constraint and integer programming techniques were used to

solve different BACP models [11, 24]. In 2006, a hybrid technique utilizing genetic

algorithms and constraint programming was developed to solve the BACP [37]. In

2008, a new parameter related to the lecturer preferences was added to the BACP

extending it to the Generalized BACP (GBACP) model [19]. In 2012 an integer

programming model was introduced for the GBACP based on hybrid local search

techniques [13].

In the previous studies, BACP was formulated to assign the courses to terms

while meeting prerequisite conditions [39]. But there was no special precaution for

assigning a specific course and its prerequisite as close as possible. For instance, the

prerequisite of a course in the seventh term may be assigned to the first, second or

third terms. But of course, it would be much better to locate the prerequisite course

just before its latter course (i.e. the 6th term in this case). To achieve this goal,

curriculum balancing was modeled as a Generalized Quadratic Assignment Problem

(GQAP), which is a totally new approach for curriculum design [42]. This work

developed a model called the Relevance Based Curriculum Balancing (RBCB) that

assigns relevant courses to closest possible terms while meeting all the constraints of

BACP. However, designating the pair to the“term 5–6” instead of “term 6–7” would
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still be another major improvement, considering the impact this approach imposes

on student success and hence graduation rates [51, 52, 60]. The RBCB model and

the rest of the above mentioned studies did not take into account implementing this

improvement in their works.

In this chapter, we design a curriculum that will better fit real life situations by

not only minimizing the distance between relevant courses but also moving them

to the earliest possible terms while meeting all the constraints of BACP (Fig. 3.1).

To achieve this goal, we propose CBCB as a multi-objective optimization problem

using linear objective functions which is another advantage over the proposed RBCB

model implemented using a non-linear function—nonlinear optimization problems

are considered to be harder than linear problems [25].

3.2 Problem definition

According to Castro and Manzano, the BACP should encapsulate a number of reg-

ulations and constraints [11]. These constraints define the limits of the optimization

problem we are solving. For example, an academic curriculum is defined as a set of

courses and a set of precedence relationships among them. An academic curriculum

should have a specified number of terms. Each term requires a minimum and a

maximum number of courses. This is required in order to consider students as full

time and in order to avoid overload. Each course, in returns, is associated with a

number of credit hours that represent the academic effort required to successfully

follow it. Table 3.1 presents detailed definitions for the regulations and constraints

of the BACP.

However, in real life, balancing the academic workload per term and satisfying
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Academic Curriculum A set of courses and a set of precedence relationships among them.
Number of terms Courses must be assigned within a maximum number of academic terms.
Academic load Each course has a number of credit hours.
Prerequisites Some courses can have other courses as prerequisites.
Minimum academic load A minimum amount of credits per term is required to consider a student as full time.
Maximum academic load A maximum amount of credits per term is allowed in order to avoid overload.
Minimum number of courses A minimum number of courses per term is required to consider a student as full time.
Maximum number of courses A maximum number of courses per term is allowed in order to avoid overload.

Table 3.1: The regulations and constraints of BACP.

prerequisite conditions are not the only criteria for curriculum design. The proposed

model in this chapter considers criteria distinct from other models in literature by

moving courses with relatively higher crucial values to the earliest possible terms

(Fig. 3.1). This summarizes the main objective of this chapter.

3.3 Lexicographic Optimization

Different researchers have defined the term “solving a multi-objective optimization

problem” in various ways. Therefore, in the literature multiple methods were pro-

posed to address this problem. Many of these methods try to convert the original

problem with multiple objectives into a single-objective optimization problem. This

is called a scalarized problem. The lexicographic technique is one of these methods

which will be used in this chapter to solve our proposed CBCB model.

With the lexicographic method, the objective functions are arranged in order of

importance [38]. Then, the following optimization problems are solved one at a time:

min
x∈X

Fi(x) (3.1)

subject to Fj(x) ≤ Fj(x
∗
j),

j = 1, 2, . . . , i− 1, i > 1; i = 1, 2, . . . , k.
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Here, i represents a function’s position in the preferred sequence, and Fj(x
∗
j)

represents the optimum of the jth objective function, found in the jth iteration.

After the first iteration (j = 1), Fj(x
∗
j) is not necessarily the same as the independent

minimum of Fj(x), because new constraints have been introduced. The constraints

in (3.1) are sometimes replaced with equalities [53].

3.4 Integer Linear Programming (ILP) Model

An integer programming problem is a mathematical optimization program in which

some or all of the variables are restricted to be integers. In many settings the term

refers to ILP, in which the objective function and the constraints are linear. In this

section, we present an ILP model for the CBCB.

3.4.1 Parameters

In the previous section we defined an academic curriculum as a set of m courses

related with a set of prerequisite relationships. We also defined the work load of

course i by the total number of credit hours αi. We then assigned the curriculum a

specified number of terms n. Each term, in returns, is assigned a minimum number

of courses δ and a minimum number of credit hours β. This is essential in order to

consider students full time. On the other side, each term is assigned a maximum

number of courses ε and a maximum number of credit hours γ. This is essential

to avoid overload. The main objective is to move course i with cruciality ci to the

earliest possible term. This could minimize the risk for students of not finishing on

time. Table 3.2 shows the parameters of the ILP model in more details.

This section defines the variables we are optimizing. Basically we are moving

the highly crucial courses to the earliest possible terms while maintaining a balanced
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m Number of courses
n Number of academic terms
αi Number of credits of course i; ∀ i = 1 . . .m
ci Cruciality of course i; ∀i = 1 . . .m
β Minimum academic load allowed per term
γ Maximum academic load allowed per term
δ Minimum amount of courses per term
ε Maximum amount of courses per term

Table 3.2: The parameters of the ILP model.

curriculum. This may be achieved in two steps. In the first step we lay out a balanced

curriculum by applying the constraints of the BACP (i.e., maximum/minimum load,

prerequisite dependency, etc.). This is done by minimizing the academic load l

defined as following:

l = max{l1 . . . ln}

where lj is the academic load of term j defined as:

lj =
m∑
i=1

αi ∗ xij;∀j = 1 . . . n

where

xij =

 1 if course i is assigned to term j

0 otherwise

This step will give us more than one layout since the constraints of the BACP may

be achieved in many different ways.

In the second step we simply move high crucial courses to the earliest terms while

maintaining the same value of the academic load l obtained in the first step. This

could be done by minimizing the total weighted summation of courses’ cruciality C

defined as:

C =
n∑
j=1

m∑
i=1

j ∗ ci ∗ xij;∀j = 1 . . . n
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Again, this step will give us more than layout because many courses might have

the same cruciality values. Thus switching these courses will not change the value of

C. Note that minimizing the value of C is achieved with smaller values of j. Thus

minimizing C will guarantee that the courses with relatively higher crucial values

are assigned to earliest possible terms.

It was previously mentioned that the BACP is formulated using a number of

constraints. These constraints restrict the maximum and the minimum number of

courses in a term, the maximum and the minimum number of credit hours in a

term, and they assign a set of prerequisite dependency among these courses as well.

Mathematically, these constraints are defined as following:

• All courses i must be assigned to some term j:
n∑
j=1

xij = 1;∀i = 1 . . .m

• Course b has course a as prerequisite:
n∑
j=1

j ∗ xaj <
n∑
k=1

k ∗ xbj

• The academic load of term j must be greater than or equal to the minimum

required:

lj ≥ β; ∀j = 1 . . . n

• The academic load of term j must be less than or equal to the maximum

allowed:

lj ≤ γ; ∀j = 1 . . . n

• The number of courses of term j must be greater than or equal to the minimum

allowed:
m∑
i=1

xij ≥ δ;∀j = 1 . . . n
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• The number of courses of term j must be less than or equal to the maximum

allowed:

m∑
i=1

xij ≤ ε; ∀j = 1 . . . n

3.5 Constraint-Based (CB) Model

Constraint Programming deals with optimization problems using the same basic idea

of verifying the satisfiability of a set of constraints. Asuming one is dealing with a

minimization problem, the idea is to use an upper bound that represents the best

possible solution obtained so far. Then we solve a sequence of constraint satisfaction

problems (CSPs) each one giving a better solution with respect to the optimization

function [11]. In this section, we present our CB model for the CBCB.

The decision variables are the same ones defined in the ILP model; however the

total weighted summation of courses’ cruciality C that we are minimizing is defined

differently:

C =
m∑
i=1

Pi ∗ ci

where Pi is the term number of course i; ∀ i = 1. . . m The constraints in this case

are similarly the maximum and the minimum number of courses in a term, the

maximum and the minimum number of credit hours in a term, and they assign a

set of prerequisite dependency among these courses as well. Mathematically, these

constraints are defined as following:

• The academic load of term j is defined by:

lj =
m∑

i=1:Pi=j

αi ∗ xij; ∀j = 1 . . . n
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ILP model

Advantage Disadvantage
All constraints are linear Difficulty to state the prerequisite constraint

Ease of statement of the academic load constraint

CB model

Advantage Disadvantage
Ease of statement of the prerequisite constraint Inefficient statement of the academic load constraint
Use of global constraint (better propagation)

Table 3.3: Advantages and disadvantages of using the ILP model over that using the
CB model.

• Course b has course a as prerequisite:

Pa < Pb

• The academic load of term j must be greater than or equal to the minimum

required:

lj ≥ β;∀j = 1 . . . n

• The academic load of term j must be less than or equal to the maximum

allowed:

lj ≤ γ;∀j = 1 . . . n

• Global constraints to restrict the number of courses for each term

atleast(j, P, δ) and atmost(j, P, γ);∀j = 1 . . . n

The main advantages and disadvantages of using the ILP and the CB models are

presented in Table 3.3.
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3.6 Experimental Results

Our intention in this work is not to evaluate the performance of the proposed in-

teger and constraint programming. The literature already contains a large number

of methods each having a different performance measure which is not the scope of

this work. The main goal of this chapter is to present a framework that extends

the previous models by adding the course cruciality criterion. This is the novelty of

the model that makes it different from the other models in literature. On the other

hand, the new contribution achieved in this work is the ability to model the CBCB

problem using linear objective functions which is another improvement compared to

that of the RBCB model implemented using non-linear functions.

In order to empirically validate our proposed CBCB model, we created a simple

five-term curriculum (Fig.3.4) with actual university1 requirements along with their

respective prerequisite relationships. In the curriculum, there can be several tech-

nical elective (TE) and general elective (GE) courses. However, BACP models in

literature do not consider TEs and GEs. TEs are generally selected from a specific

list of courses, while GEs can be selected among all courses that are neither in the

“Compulsory Courses” nor “Technical Elective Courses” lists. Since students are free

to select the elective courses among a number of alternatives, different combination

of elective courses will generate different curriculum plans. However, for most of

the cases, suggesting different type of curricula is not practically feasible; therefore

departments offer standard curricula to their students.

For the elective courses, the proposed model has the following assumptions:

• Assumption 1: since the contents of GEs are quite different than the compul-

1http://degrees.unm.edu/undergrad programs/by college/22
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sory courses and TEs, it is assumed that the prerequisite conditions between

the GEs and all other courses are zero.

• Assumption 2: TEs are generally interrelated with one another and the com-

pulsory courses. To be able to offer a standard curriculum, mostly selected

TEs are used.

The prerequisite relationships and the cruciality values for all the courses within

the curriculum presented in Fig.3.4 are given in Table 3.4 and Table 3.5 respectively.

Fig. 3.4(b) shows how courses with relatively higher crucial values are assigned to

the earliest possible terms compared to Fig. 3.4(a). Using the CBCB model, courses

with relatively higher cruciality values, such as ENGL 110, MATH 162, MATH 163,

MATH 314, MATH 316 and others, are moved one term closer compared to the

BACP model. As mentioned previously, our proposed model is a twofold goal:

it moves relevant courses to the earliest possible terms and it minimizes the dis-

tance between them. For example, the distance between ENGL 110 → ENGL 120,

MATH 162 → MATH 163 and PHYC 160 → PHYC 161 is one term. However, using

the BACP models, the distance may be greater.

3.7 Student Progress

As mentioned in previous sections, time-to-degree is a critical factor in the academic

life of both students and universities. Students normally want to obtain their degrees

as soon as possible (subject to financial and work-life constraints) while universities

want their graduation rate to be as high as possible. Usually grades (e.g., GPA) are

the main criteria to measure the student progress throughout a curriculum. Grades
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do not however take the time factor into consideration. Theoretically, a student

may have a high GPA while progressing slowly through the curriculum. Engineering

student A who takes crucial courses in the first semester earning a GPA of 4.0 is

therefore in better shape than student B who takes non-crucial courses while earning

the same GPA of 4.0. Obviously, the probability that student B may be delayed in a

program is higher than that of student A based on the definition of crucial courses.

Hence and based on the time factor mentioned, crucial courses must be included in

studying the progress of students through out their respective academic life.

3.7.1 Framework

To achieve this, we propose a framework that makes use of the CBCB model and

the earned letter grade. We thus create an “efficient” curriculum (using the CBCB

framework) for every department within the university and accordingly monitor a

student’s progress every semester based upon the type of the courses (i.e., crucial

or noncrucial) taken, along with respective letter grades. Students having more

courses matching the cruciality values of the “efficient” curriculum courses per term

are in a better shape assuming all students have the same GPA. Fig. 3.2 shows a

three-term “efficient” curriculum. Next to each course there are two numbers. The

number on top represents the cruciality value whereas the one below represents the

earned letter grade. Note that in this work the highest grade value of a course is 4.0.

Assuming students X and Y have the same letter grades for all the courses as shown

in Fig. 3.2, student X is less likely to get delayed throughout her academic program.

Numerically, this may be quantified by summing the product of both cruciality value

and letter grade of all the courses taken up to that term, that is:

Pj =

∑
ij c
′
ijGi∑

in c
′
in

(3.2)
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where Pj is the student progress score (SPS) at term j, c′ij is the cruciality value of

course i taken in term j, Gi is the letter grade of course i and n is the total number

of terms in a curriculum. Note that a course must match one of the “efficient”

curriculum courses, otherwise the cruciality value is zero, that is

c′ij = max {ci, 0} (3.3)

The denominator in Eq. (3.2) normalizes the SPS so that Pj is always less than

or equal to 4.0. In fact the value of the SPS in the last semester is equivalent to the

GPA value. However, the advantage of the SPS over GPA is its ability to quantify

student progress, taking into consideration the time factor mentioned previously. Its

cruciality is even more evident in the first couple of semesters where students at this

time need more advisement than at other points in their academic careers. Examples

shown in the next section illustrate how to analyze the SPS.

As a first step, the student progress framework discussed above is to an extent

idealistic. Normally, curricula are not as simple as it appears in Fig. 3.2. For example,

degree requirements for many curricula are technical elective courses, social science

courses, humanity courses, etc. It may therefore be hard to create one “efficient”

curriculum for a particular program. Some technical elective or social science courses

might have different cruciality values. Thus the SPS would not reflect the true

progress value unless some further assumptions are made. First it should be clear

that there must be one curriculum for each program. Accordingly, this means there

must be one reference to which students can refer to and hence student progress

framework would be feasible then to apply. To achieve this, it is assumed that all

degree requirements that are unspecified within a curriculum (e.g. technical elective

courses and social science courses) do not have pre-requisites. This will provide a

curriculum with a minimum bound above which the SPS wouldn’t exceed. So all the
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unnamed courses taken by a student in which they match her respective department

curriculum are assumed to have no pre-requisites and thus the cruciality values for

such courses are 1. Note that the cruciality values of the courses in each term in the

“efficient” curriculum are computed excluding the pre-requisite edges emerging from

courses of previous terms. Hence, for example, the cruciality values of the courses

D, E and F in Fig. 3.2 are one instead of two. Thus, once students pass courses

A, B and C, it makes no difference if they take D, E and F before G, H and I or

vice-versa the next term. The example shown in Fig. 3.3 illustrates the main idea of

the student progress framework. The optimal SPS P o
1 , P o

2 and P o
3 are 48

17
, 60

17
and 68

17

respectively.

3.7.2 Student Progress Ratio

Analyzing student progress is achieved by considering the ratio of P s
j from the student

curriculum over that of P o
j from the “efficient” one each term, that is:

Ij =
P s
j

P o
j

(3.4)

where Ij is the student progress ratio (SPR) at term j. If the value of the SPR is

greater than or equal to 1, then the student is on track. Otherwise, special attention

must be taken depending on how far below 1 the SPR is. For example, in Fig. 3.3,

I1 = 24
48

which is 0.5. This might be a sign that student X is at risk of being delayed,

because she did not take crucial courses in her second term or because she earned

bad grades. Note that SPR must be less than or equal to 1 in the last term meaning

that the student has finished all the curriculum requirements.
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Course name prerequisite Course name
ENGL 110 → ENGL 120
ENGL 110 → ENGL 219
MATH 162 → MATH 163
MATH 162 → CHEM 121
ECE 131 → ECE 203

PHYC 160 → PHYC 161
ENGL 120 → ECE 206L
MATH 163 → ECE 203
MATH 163 → MATH 264
MATH 163 → MATH 314
MATH 163 → MATH 316
PHYC 161 → PHYC 262
ECE 203 → ECE 206L
ECE 203 → ECE 213

MATH 316 → ECE 213
Technical Elective 1 → Technical Elective 2

Table 3.4: The prerequisite relationships for all the courses within the curriculum.
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(c) CBCB model

Figure 3.1: This figure shows a three-term curriculum. The courses in the curriculum
are scheduled using three different models: BACP, RBCB and CBCB. Using the
BACP model, the distance between relevant courses (A—F; B—E) is not optimal
or close enough. The RBCB model overcomes this limitation by implementing a
non-linear framework that minimizes the distance between these relevant courses.
However these courses are not assigned to the closest terms (i.e., Term 1). The
CBCB model overcomes the limitations in BACP and RBCB models by using a
linear framework which minimizes the distance between relevant courses and assigns
them to the closest possible terms.
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Figure 3.2: Progress of students X and Y with respect to the “efficient” curriculum.
SPS of X is 48
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Course no Course name Cruciality value
01 ENGL 110: Accelerated Composition 5
02 MATH 162: Calculus I 11
03 ECE 131: Introduction to Programming 5
04 PHYC 160: General Physics I 4
05 ENGL 120: Composition III 3
06 MATH 163: Calculus II 10
07 PHYC 161: General Physics II 3
08 CHEM 121: General Chemistry I 1
09 ECE 203: Circuit Analysis I 5
10 MATH 264: Calculus III 3
11 MATH 316: Differential Equations 4
12 PHYC 262: General Physics III 2
13 ECE 213: Circuit Analysis II 3
14 MATH 314: Linear Algebra 2
15 ECE 206L: EE Lab I 3
16 ENGL 219: Technical Writing 1
17 Humanities 0
18 Technical Elective 1 2
19 Technical Elective 2 1
20 Social Science 0

Table 3.5: The cruciality values for all the courses within the curriculum.
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(a) BACP model

(b) CBCB model

Figure 3.4: The two figures represent a five-term curriculum with actual university
courses. (a) The curriculum designed using the BACP model whereas (b) The same
curriculum using the CBCB model. This shows the improvement achieved using
the CBCB by assigning courses with relatively higher crucial values to closest terms
while maintaining a balanced workloads of the terms. This layout outperform that
of the RBCB model by not only assigning relevant courses to closest terms but also
moving them to closest terms.
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Chapter 4

Predicting Student Success Based

on Prior Performance

In Chapter 3 we introduced an optimization model that schedules the crucial courses

within a curriculum to the earliest possible terms while satisfying the prerequisite

dependency relationships and maintaining a balanced workload across all terms. The

main objective of this model is to offer students “efficient” curricula that could allow

them to graduate on time even if they fail some of these courses. Now that we have

an “efficient” curriculum, it would be essential to follow the progress of the students

attempting this particular curriculum. Perhaps the best way to track the student

progress would be to predict their academic performance in advance and accordingly

give them suitable advice. This chapter presents a machine learning model that

achieves this goal. The results show that, by presenting curricula as BBNs, we can

predict student performance with high accuracy.
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4.1 Introduction

Obviously, students progress within a degree program has a direct influence on grad-

uation rates. Hence any effort aimed at enhancing or predicting the progress of a

student in order to provide earlier advisement and/or interventions has the potential

to positively impact graduation rates. Thus, in this chapter we propose a proba-

bilistic graphical model that allows us to reason about a student performance and

progress. In particular, we use a BBN model to represent the curriculum graphs

of specific degree programs. Based upon the performance of a student in a given

semester, we hypothesize that the BBN model can predict the future performance of

the student in subsequent semesters. The model developed in this chapter was ap-

plied to a number of different degree programs at the UNM, and was able to predict

the final GPA of the students with small error.

4.2 Background and Related Work

In Chapter 2, we developed various metrics related to curricular complexity that

correspond to the ease with which a student may satisfy the degree requirements

associated with a given degree. These metrics were intended to measure the role

that the structure of a curriculum plays in student academic success and accordingly

suggest enhancement to the curriculum structure in an attempt to help students

perform better in their respective academic programs. However this work did not take

into account the performance of a student in progress. In Chapter 3, we proposed the

SPR in order to study the progress of a student in a curriculum in each semester by

investigating the structural properties of individual curricula, taking into account the

degree to which individual courses in a curriculum may impact student progress. This

previous work takes into account the cruciality of particular courses in a curriculum,
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as well as the grades that students earn, in order to measure student progress. In

this chapter, we take into account this student progress in order to predict future

performance.

4.3 Bayesian Belief Networks

A BBN is a graphical structure that allows one to represent and reason about an

uncertain domain. For a set of variables X = (X1, . . . , Xn), a Bayesian network

consists of a network structure S that encodes a set of conditional independence

assertions about variables in X, and a set P of local probability distributions asso-

ciated with each variable [22]. An example of a BBN which represents a subset of

network behavior through variables namely, Ahmad Oversleeps, Traffic and Ahmad

Late (as nodes) and two directed edges is shown in Fig. 4.1. An edge from one

node to another implies a direct dependency between them, with a child and parent

kind of relationship. To quantify the strength of relationships among the random

variables, conditional probability functions are associated with each node, such that

P = {p(X1|Π1), . . . , p(Xn|Πn)} where Πi is the parent set of Xi in X. If there is

a link from Xi to Xj , then Xi is a parent of Xj and thus it belongs to Πj. For

discrete random variables the conditional probability functions are represented as

tables, called Conditional Probability Tables (CPTs). For a typical node A , with

parents B1, B2, . . . , Bn , there is associated a CPT as given by P (A|B1, B2, . . . , Bn).

The main principle behind BBNs is Bayes rule:

P (H|e) =
P (e|H)P (H)

P (e)
(4.1)

where P (H) is the prior belief about a hypothesis H , P (e|H) is the likelihood that

evidence e results given H, and P (H|e) is the posterior belief in light of evidence
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e. This implies that belief concerning a given hypothesis is updated upon observing

new evidence.

Ahmad 
Oversleeps Traffic 

Ahmad Late 
 

Figure 4.1: An illustrative Bayesian Belief Network.

4.3.1 Inference Features

BBNs support three types of learning: structural, parameter and sequential. The

structure of the BBN can be constructed manually by a subject matter expert or

through structure learning algorithms—PC and NPC algorithms [46,54]. Parameter

learning uses past data as the basis for learning the parameters through algorithms.

One such algorithm, Expectation Maximization (EM), is particularly useful for para-

metric learning [27]. In order for the model to reflect behavior in the problem domain,

the parameters of the model need to be updated based on observations. This pro-

cess is termed sequential learning [41]. Evidence about a particular node is used

to update the beliefs (posterior probabilities) of other nodes of the BBN. The BBN

framework supports predictive and diagnostic reasoning and uses efficient algorithms
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for this purpose [30]. In this chapter, predictive reasoning will be the main approach

implemented in the BBN framework.

4.3.2 Application to our framework

The performance of a student in a given class may be used as a measure to predict

competence or skills in later classes [12]. In other words, the history of a student’s

academic skills tells us something about future performance. For instance, an ‘A’

high school student is generally expected to do better in college than a ‘C’ student,

other factors being the same. Correspondingly, it makes sense that a college student

who earns an ‘A’ in Calculus II, for instance, should be expected to earn a higher

grade in Calculus III than those who earn a ‘D’. In Fig. 4.2 , the application of BBN

in the context of course network aims at predicting the grades of the courses for

a given student based on the evidence of previous grades, age, gender, educational

level of parents, emotional factors, etc.

B 

D C 

A 

students 

BBN 

GPA 

Figure 4.2: BBN in the context of a course network.
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4.4 BBN Edges

Ultimately, degree attainment requires the satisfaction of all requirements associ-

ated with a degree program. The set of requirements associated with a particular

degree program, along with the relationships between the individual requirements

(e.g., course prerequisites) can be represented as directed acyclic graph, with a di-

rected edge from node A to node B in the graph denoting that degree requirement

A must be satisfied prior to the satisfaction of degree requirement B. Typically, a

degree requirement is satisfied by passing a particular course, and the precedence

relationships in the graph correspond to course prerequisites. A student satisfies all

degree requirements, and therefore receives the associated degree, once they have

traversed this graph, visiting every node according to the precedence relationships

in the graph.

In our proposed framework, however, the edges of the BBN for the curriculum

graph are not only restricted to prerequisite relationships. Basically a directed edge

from node A to node B in the BBN of the curriculum graph denotes that the student

performance in degree requirement A has a direct influence (DI) on predicting that

of degree requirement B. Thus the presence of a direct influence edge between two

requirements in the BBN does not imply the presence of a prerequisite relationship

PR, however we hypothesize that the opposite is true. Accordingly PR edges are a

subset of DI edges that is PR ⊆ DI. In other words, we consider in this work that

the presence of prerequisite relationships among the courses in the BBN indicate a

direct influence on predicting the level of performance in the direction of the edge.
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4.5 BBN Nodes

Basically the variables influencing the predication of the performance of a student in

a given course are not only restricted to the performance of previous courses. Many

factors, other than performance of previous courses, have direct impact on predicting

future performance. As mentioned in Chapter 1, studies have shown that age and

gender [16,17], academic background [10], educational level of parents [56], emotional

and social factors [8], and even the complexity measure of teacher’s lecture notes [28]

have direct influence on student progress. Typically, the BBN of a curriculum graph

would be something similar to that illustrated in Fig. 4.3.

Course A 
 

Course B 
 

First generation status 
Age 
Gender 
 
 

Academic Background 
Emotional Factor 
Notes Complexity 
 
 

DI 

PR 

Figure 4.3: BBN model of the curriculum graph.

4.6 Implementation Aspects

For the purpose of a proof of concept, in this chapter we present a basic network

topology. In particular, the only variable (i.e., node) that will be illustrated in the

BBN is the performance of a student in a course (i.e., no variables related to age,
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gender, educational level of parents, emotional factors, etc.), which will be a discrete

variable. The states of the course variable are the letter grades associated with

the course, that is A+, A,A−, B+, B,B−, C+, C, C−, D+, D,D− and F . Also it is

assumed that the only edge type present in the BBN is the prerequisite relationship

PR. Hence, in this work, we model the BBN of a curriculum X consisting of n degree

requirements as a directed graph GFX = (V,E), where each vertex v1,. . . ,vn ∈ V

represents a course in X, and there is a directed edge (vi, vj) ∈ E from course vi to

vj if vi must be satisfied prior to the satisfaction of vj . The final structure of the

BBN for a curriculum graph will be something similar to that shown in Fig. 4.4.

Course A 
 

Course C 
 

Course B 
 

Course D 
 

Figure 4.4: BBN model of the curriculum graph implemented in our framework.
Note that the course variable is the only node presented in this BBN model and PR
edges are the only links relating these type of nodes.

4.6.1 Decision-Making Policy

To meet the objective of predicting the grades of the courses to be taken by a student

attending a given degree program, we need to design a policy to assign a grade for

the courses to be taken in the future once we determine their respective marginal
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probabilities based on the evidence of the grades of previously taken courses. Denote

by L = {A+, A,A−, B+, B,B−, C+, C, C−, D+, D,D−, F} the set of grade letters

assigned to a course and G = {4.3, 4, 3.7, 3.4, 3, 2.7, 2.3, 2, 1.7, 1.4, 1, 0.7, 0} the set of

grades mapping L. For a course i, upon retrieving an evidence e, a decision is made

using two methods:

1. Maximum a Posteriori Probability (MAP) estimate:

g = argmax
g∈G

p(g|e), (4.2)

where p(g|e) is the marginal probability of course i states based on evidence e

which is the set of grades of previous courses.

2. Expected Grade (EG) estimate:

ĝ = E(G) =
∑
g

gp(g|e). (4.3)

Note that one of the predicted letter grades for a given course might be F . In this

case no data is available to fill in the CPTs due to the fact that students cannot move

to another class if they fail its respective pre-requisite(s). For instance, we cannot fill

a CPT row querying about the probability of a student earning a C on CalculusIII

conditioned on getting F on CalculusII. Simply, the student must get D or higher

on CalculusII to go for CalculusIII. In other words, the student has to repeat

the course and pass it. To overcome this problem, we use a Markov chain model.

The transition probabilities are graphically represented by the transition diagram

shown in Fig. 4.5 with a 13 state Markov chain model representing the letter grades.

Thus in case the BBN model predicts a F grade for a given course, it will use the

Markov chain model to choose the letter grade (other than F ) with the maximum

transitional probability, that is
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g = argmax
l∈L

p(l) (4.4)

where p(l) is the transition probability.

A+ A A- B+ B B- 

C+ C C- D+ D D- 

F 

Figure 4.5: A 13-state Markov chain model.

4.7 Simulation Results

In an attempt to empirically validate our proposed BBN framework, we analyzed

actual university data from the UNM1. For this we used the data of 115,746 students

to generate the CPTs for all the courses in the BBN. Then we chose 400 students,

who had already earned their degrees, randomly from different departments (eg.,

mechanical engineering department, chemical engineering department, electrical en-

gineering department and nuclear engineering department) to test the framework.

The performance of the framework is measured using mean squared error (MSE):

errt =
1

n

n∑
i=1

(Ŷi − Yi)2, (4.5)

1All the UNM data used in this work are found at s3.amazonaws.com/employing-
bayesian-belief-networks-for-course-networks/bbn-data.zip
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where errt is the MSE measured based on the evidence of the grades of the courses

taken between semester 1 and semester t; n is the number of students;Ŷ is a vector

of n GPA predictions; Y is the vector of the true GPA (the actual GPA values of the

students).

4.7.1 Data Pre-processing

It is well known that building relationships between courses based on pre-requisite

links is not trivial. For example a course i, may be a co- or pre-requisite to another

course j and/or vise-versa. In order to deal with such relationships, some assumptions

are made:

1. If course i is a co- or pre-requisite to course j, we assume that i is a pre-requisite

to j. In other words, we assume the worst case scenario where course i and j

cannot be taken in the same academic term.

2. If course i is a co- or pre-requisite to j and vice-versa or in other words if

courses i and j are co-requisites, we consider the worst case scenario in which

one of the courses is considered to be the pre-requisite of the other. In this

case we eliminate cycles from our graph.

4.7.2 Numerical Results

As mentioned previously, 400 students were chosen randomly from four different de-

partments as the test set. The courses taken by these students are spread over 18

semesters (i.e., six years). The MSE is measured at each semester where the grades

of the courses taken by the students up until that semester are entered as evidence to

the BBN framework. The MSE is measured using two different methods illustrated

in Eq. (5.3) and Eq. (5.4) to calculate the predicted GPA vector Ŷ . To demonstrate
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the practicality of our approach, we compared our framework to another one where

no edges are present. In other words, we generated another graph where we assumed

that the performance of a student in one class does not have any influence on the per-

formance of other classes (i.e. no edges are present). As in the BBN framework, we

also measured the MSE using Eq. (5.3) and Eq. (5.4) to calculate the predicted GPA

vector Ŷ . Note that no evidence is present anymore in Eq. (5.3) and Eq. (5.4) regard-

ing the second framework. Fig. 4.6 illustrates the performance of both frameworks.

This figure shows that the MSE values are decreasing gradually throughout the 18

semesters upon receiving new evidence e. The red curves show the MSE values for

the BBN framework whereas the blue ones show those of the second framework. The

dashed curves present the MSE values using the MAP estimate method illustrated

by Eq. (5.3), whereas the solid ones presents those using the EG estimate method

illustrated by Eq. (5.4). From the figure it is seen that the MAP estimate method

outperforms that of the EG estimate in both frameworks. Besides, the curves show

that the BBN framework outperforms the other framework in both methods (i.e.,

MAP and EG). These results clearly illustrate the influence of a student’s present

performance on predicting her future performance. Using the BBN framework, upon

receiving the grades of the first semester (i.e., evidence e), for instance, the MSE

value (using MAP estimate) is measured to be 0.16. However, using the second

framework, the MSE value is measured to be 0.55. On the other hand, comparing

the MSE values for both frameworks, using the EG estimate method, upon receiving

the grades of the first semester, shows a gap as well. For semester one, the MSE

value, using the BBN framework, is 0.37 whereas that, using the second framework,

it is 0.616. On a scale of 4.3 (i.e., the maximum GPA value that can be achieved),

it is obvious that the MSE value, using the second framework, is significantly high.

This result illustrates the significance of the BBN framework in providing a better

probability distribution, compared to the second framework, of the letter grades for

a given course upon receiving an evidence e (i.e., marginal probability). Basically,
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the results show that the BBN framework gives students a more accurate prediction

about the probability distribution of the letter grades for their future courses.
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Figure 4.6: MSE values of the two frameworks for 18 semesters with 3 semesters per
year. The red curves show the MSE values for the BBN framework whereas the blue
ones show those of the second framework (i.e. no edges). Besides, the dashed curves
presents the MSE values using the MAP estimate method illustrated by Eq. (5.3)
whereas the solid ones presents those using the EG estimate method illustrated by
Eq. (5.4).
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Chapter 5

Employing Markov Networks on

Curriculum Graphs

5.1 Introduction

In Chapter 4, we implemented a model to predict student performance by abstracting

the courses of a curriculum along with their respective prerequisites into a BBN. A

major limitation of this model, however, is considering that the performance in a

given course can be only structurally influenced by its prerequisite courses. This is

only partially true. The performance in courses in a given semester may be a good

predictive indicator for the performance in courses in subsequent semesters even in

the absence of prerequisite relationships. This component was missing in the BBN

model. Thus, in this chapter, we take into account the student progress in order to

predict future performance by using a MN to represent the curriculum graphs of the

degree programs. Based upon the performance of a student in a given semester, the

MN model predicts the future performance of the student in subsequent semesters.

The model developed in this chapter was applied to the same degree programs and
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the same students used in Chapter 4. This model outperforms the BBN model by

predicting the GPA distribution of the students with minimal error.

5.2 Markov Networks

Markov networks are probabilistic models that are represented by undirected graphs

and can, in contrast to directed graphical models, contain arbitrary cycles. The

probability distribution factors over the maximal cliques ξ of the graph—these are

the subsets of fully connected nodes. Each maximal clique c ∈ ξ is associated with a

potential function ϕc that assigns a positive value to the subset of random variables

x(c) represented by the clique [50]. The potential functions ϕc do not necessarily have

a probabilistic interpretation, and are not directly related to marginal distributions

of subsets of nodes. The joint distribution of a MN can be written as

p(x) =
1

Z

∏
c∈ξ

ϕc(x(c)) (5.1)

where

Z =
∑
x

∏
c∈ξ

ϕc(x(c)) (5.2)

is a normalization constant (or partition function) that guarantees p(x) integrates

to 1. MN can be defined in terms of the conditional independence properties of each

random variable. Each node v is conditionally independent of all other nodes, given

its direct neighbors.

The values of some variables (nodes) in the graphical model are usually observed

in a concrete application; inference means computing information about variables
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x, given observed or evident variables y. Quantities of interest may be marginal

distributions of one or some of the unobserved variables; for our purposes it will be

an “optimal” configuration of all unobserved variables x, given observed variable y,

which is governed by the posterior distribution p(x|y). Exact inference in graphical

models is generally very hard, which is the reason why approximative inference is

usually employed in practice. There are many different classes of approximative

inference algorithms: variational, sampling-based, (local) optimization, graph-cuts,

etc see [47] for an overview. Note that in this work we implemented a pairwise MN

where the maximal cliques only connect pairs of nodes.

5.3 MN Edges

The MN associated with the set of requirements of a particular degree program,

along with the relationships between the individual requirements can be represented

as undirected cyclic graph, with an edge between node A and node B in the graph

denoting the presence of a strong correlation in the performance of the student in

both requirements.

5.4 MN Nodes

As previously mentioned, the variables influencing the prediction of the performance

of a student in a given course are not only restricted to the performance of previous

courses. Many factors, other than performance of previous courses, have direct im-

pact on predicting future performance [8, 10, 16, 17, 28, 56]. Hence, edges, presenting

strong correlation between nodes, are not only restricted to course nodes. A correla-

tion can be found between different types of nodes. For example, there might exist

a correlation between the performance of a student in one course and her respective
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gender.

5.5 Implementation Aspects

For the purpose of a proof of concept, in this chapter we present a basic network topol-

ogy. In particular, the only variable (i.e., node) that will be illustrated in the MN is

the performance of a student in a course (i.e., no variables related to age, gender, ed-

ucational level of parents, emotional factors, etc.), which will be a discrete variable.

Similar to the BBN model, the states of the course variable are the letter grades asso-

ciated with the course, that is A+, A,A−, B+, B,B−, C+, C, C−, D+, D,D− and

F . Hence we model the MN of a curriculum X consisting of n degree requirements

as an undirected graph GFX = (V,E), where each vertex v1,. . . ,vn ∈ V represents

a course in X, and there is an undirected edge (vi, vj) ∈ E between course vi and

course vj if there exists a strong correlation coefficient r with high significance level

(i.e., low p–value) [26]. In particular we consider that an edge exists between two

courses if:

1. R–squared ≥ 0.11. Studies using linear regression models have reported R–

squared values between 0.11 and 0.4 — values are not uncommon for human

behavior studies (this is especially true in the field of grade prediction [10, 17,

29]).

2. p–value < 0.05

The final structure of the MN for a curriculum graph is illustrated in Fig. 5.1.
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Course A 
 

Course D 
 

Course B 
 

Course E 
 

Course C 
 

Figure 5.1: MN model of the curriculum graph implemented in our framework. Note
that the course variable is the only node presented in this MN model.

5.5.1 Decision-Making Policy

Similar to the BBN model, we denote by: L={A+, A, A-, B+, B, B-, C+, C, C-,

D+, D, D-, F} the set of grade letters assigned to a course and G={4.3, 4, 3.7, 3.4,

3, 2.7, 2.3, 2, 1.7, 1.4, 1, 0.7, 0} the set of grades mapping L. For a course i, upon

retrieving an evidence e, a decision is made using two methods:

1. Maximum a Posteriori Probability (MAP) estimate:

g = argmax
g∈G

p(g|e), (5.3)

where p(g|e) is the marginal probability of course i states based on evidence e

which is the set of grades of previous courses.

2. Expected Grade (EG) estimate:

ĝ = E(G) =
∑
g∈G

gp(g|e). (5.4)
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5.6 Simulation Results

To empirically validate our proposed MN framework and compare its performance

to that of the BBN, we used the same data of 115,746 students and generated the

potential functions ϕc for the MN. In particular a potential function is chosen to be

the joint distribution of any two connected nodes (i.e., courses). Then we chose the

same 400 students we used in the BBN as our test collection. Again, the performance

of the framework was measured using the mean squared error (MSE):

errt =
1

n

n∑
i=1

(Ŷi − Yi)2, (5.5)

where errt is the MSE measured based on the evidence of the grades of the courses

taken between semester 1 and semester t; n is the number of students;Ŷ is a vector

of n GPA predictions; Y is the vector of the true GPA (the actual GPA values of the

students).

5.6.1 Numerical Results

As mentioned previously, 400 students were chosen randomly from four different de-

partments as our test collection. The courses taken by these students are spread

over 18 semesters (i.e., 6 years with 3 semesters per year). The MSE is measured

at each semester where the grades of the courses taken by the students up until

that semester are entered as evidence to the MN framework. The MSE is measured

using two different methods illustrated in Eq. (5.3) and Eq. (5.4) to calculate the

predicted GPA vector Ŷ . Similar to the BBN model, to demonstrate the practicality

of our approach, we compared our framework to another one where no edges are

present. In other words, we generated another graph where we assumed that there

is no correlation between courses. As in the MN framework, we also measured the
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MSE using Eq. (5.3) and Eq. (5.4) to calculate the predicted GPA vector Ŷ . Note

that no evidence exists anymore in Eq. (5.3) and Eq. (5.4), regarding the second

framework, after removing the edges. Fig. 5.2 illustrates the performance of both

frameworks. The blue curve shows the MSE values for the MN framework using the

MAP estimate method illustrated by Eq. (5.3) whereas the red curve shows those

using the EG estimate method illustrated by Eq. (5.4) (These two curves are clearly

presented in Fig. 5.3). On the other hand, the purple curve shows the MSE values

for the second framework (i.e., No Edges) using the MAP estimate method whereas

the green one shows those for the second framework using the EG estimate method.

This figure shows that the MSE values are decreasing gradually throughout the 18

semesters upon receiving new evidence e. Apparently, from the figure, it is the case

that the MAP estimate method outperforms that of the EG estimate in both frame-

works. Furthermore, the curves show that the MN framework outperforms the other

framework in both methods (i.e., MAP and EG). These results clearly illustrate the

influence of a student’s present performance on predicting future performance. Us-

ing the MN framework, upon receiving the grades of the first semester (i.e., evidence

e), for instance, the MSE value (using MAP estimate) is measured to be 0.0449.

However, using the second framework, the MSE value is 0.555. On the other hand,

for semester one, the MSE value (EG estimate), using the MN framework, is 0.0657,

whereas using the second framework it is 0.6162. On a scale of 4.3 (i.e., the maxi-

mum GPA value that can be achieved), it is obvious that the MSE value, using the

second framework, is significantly higher. This result illustrates the significance of

the MN framework in providing a better probability distribution, compared to the

second framework, of the letter grades for a given course upon receiving an evidence e

(i.e., marginal probability). Basically, the results show that the MN framework gives

students a more accurate prediction about the probability distribution of the letter

grades for their future courses. More importantly, the MN model outperforms the

BBN. It is clearly shown that a marginal error of 0.0449 may be achieved using the
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MN model whereas a marginal error of 0.16 can be achieved using the BBN model

upon receiving the grades of the first semester. This result is predictable. The MN

model takes into consideration implicit relationships among courses to predict the

future performance that are not considered using the BBN model. It was shown in

Chapter 4 that the BBN representation of a curriculum predicts the student perfor-

mance based only on prerequisite relationships. Thus, more information is present

in the MN model which is reflected by more prediction accuracy.
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Figure 5.2: MSE values of the two frameworks for 18 semesters with three semesters
per year. The purple curve shows the MSE values for the second framework (i.e.,
No Edges) using the EG estimate method whereas the green one shows those using
the MAP estimate method . The blue curve shows the MSE values for the MN
framework using the EG estimate method whereas the red one shows those using the
MAP estimate method.
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Figure 5.3: MSE values of the MN framework. The blue curve shows the MSE values
using the EG estimate method whereas the red one presents those using the MAP
estimate method.
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Chapter 6

The Impact of Course Enrollment

Sequences on Student Success

6.1 Introduction

In the previous chapters we defined crucial courses in a curriculum based on their

respective blocking and delay factors. We discussed that it would be more efficient

to move these types of courses to the earliest possible terms. We called this layout

the “efficient” curriculum. It is efficient in a sense that it might give students better

chances to graduate on time even if they fail some of these courses. Now that

we have an “efficient” curriculum, it would be essential to follow the progress of

students. Thus, in Chapters 4 and 5, we provided two predictive models that achieve

this goal. Representing curricula as BBNs and MNs, we were able to predict the

performance of students with high accuracy. This step is important as it offers

students earlier intervention when needed. However one important thing is still

missing in this pipeline process. What if students do not follow the order of the

courses’ sequences of the “efficient” curriculum? Would this impact the progress
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of students? These questions are important to answer because most of the times

students do not follow the order of the courses’ sequences of curricula and thus it

would be essential to study and analyze its impact on their progress. Thus, in this

chapter we address student progress at the most basic level, by investigating the

structural properties of individual curricula, taking into account the degree to which

course enrollment sequences in a curriculum may impact student success.

6.2 Proposed Framework

In the previous chapters it was shown that improving the overall graduation rate

of a university is facilitated by a smooth traverse of students through the degree

requirements of its academic programs. Continuous progress motivates students to

persist and continue firmly in their programs of study in spite of the difficulties they

may encounter. A critical motivating factor involves sustaining relatively high grades

while making steady progress. In this chapter we exclude pre-institutional factors,

and work to uncover the best sequence of course enrollments that lead to high grades

and graduation. Our approach involves analyzing the course enrollment sequences of

students who graduated with high GPAs, versus the course sequences of those who

did not. The notion being, we would like current students to imitate the behavior

of the successful students who preceded them. The framework we developed is as

follows:

Step 1. Split the data representing student information and course enrollment

history into n datasets {D1, . . . , Dn} corresponding to their respective labels

{L1, . . . , Ln}. One label can be students who graduated with “high GPAs”

while another can be students who graduated with “low GPAs”.
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Figure 6.1: The course enrollment sequence analysis framework.

Step 2. Generate course enrollment sequential patterns {R1, . . . , Rn} cor-

responding to the respective datasets {D1, . . . , Dn} using Sequential Pattern

Mining (SPM).

Step 3. Generate Directed Acyclic Graphs (DAGs) {G′1, . . . , G′n} representing

the patterns {R1, . . . , Rn} generated in step 2.

Step 4. Generate DAGs {G1, . . . , Gn} by applying a transitive reduction al-

gorithm to filter out the transitive edges within graphs generated in step 3.

Step 5. Apply different graph theory techniques and complex network metrics

to analyze, study and compare the graphs generated in step 4.

Figure 6.1 shows the steps of the proposed framework used to extract knowledge

from student course enrollment histories.
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6.3 Implemented Techniques

This section presents a detailed explanation of the different methods used to design

our proposed framework. It also illustrates the different assumptions made while

designing the framework.

6.3.1 Course Enrollment Sequential Patterns

SPM is a new method in the data mining field used to extract knowledge [6]. The

input data of this method is made up of a set of transactions. Each transaction

contains a set of items which could be associated with a time flag. The output

data is a sequential pattern that is also made up of a set of items. The sequential

pattern shown in the output data is typically generated based on a user-defined

minimum support value. This value reflects the percentage of the input transactions

that contain this particular sequence. A pattern might look something like A⇒ B,

where A and B are two item-sets explained as, if A occurred, then B is most likely

to occur, given the minimum support value. This method has been used in different

fields such as stock market analysis [14,61], weather observation [21], e-learning [20]

and drought management [18].

In this chapter we apply SPM in order to extract sequential patterns from student

course enrollment histories so that we can study and analyze these patterns with the

goal of improving student performance and hence success. An example course en-

rollment sequential pattern is as follows:

{PHY C161L} → {ECE371};

{PHY C161} → {ECE371};

{PHY C161} → {ECE314};
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{MATH316} → {ECE314};

{MATH316} → {ECE213} → {ECE314};

{PHY C161L, PHY C161} → {PHY C262, ECE213} → {ECE371};

The last pattern in this example is interpreted as: students who take PHY C 161L

and PHY C 161 together are likely to take PHY C 262 and ECE 213 in a following

semester, followed by ECE 371 in a latter semester. The fifth pattern indicates that

students who take MATH 316 in one semester are more likely to take ECE 213 in

the next semester, followed byECE 314.

6.3.2 Course Enrollment SPs as a DAG

A course enrollment DAG is a directed graph with no directed cycles. That is, it is

formed by a collection of courses and directed edges, each edge connecting one course

to another, such that there is no way to start at some course c and follow a sequence

of edges that eventually loops back to c. The directed edges show the sequence,

or the flow, of course enrollments that students are likely to follow in a particular

academic program or institution. The DAG of the sequential patterns presented in

the previous section is shown in Fig. 6.2.

6.3.3 Transitive Reduction of the DAG

A transitive reduction of a directed graph is the deletion of a number of edges in a way

that preserves the reachability measure of the given graph. It is important to consider

the transitivity relationship links between the vertices of the course enrollment DAG.

These types of links must be deleted. For example if course A is preceding both

courses B and C, while C itself is preceding B, then there is no need to show that
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PHYC 161L PHYC 161 MATH 316 

PHYC 262 ECE 213 

ECE 371 ECE 314 

Figure 6.2: DAG of course enrollment sequential patterns.

PHYC 161L PHYC 161 MATH 316 

PHYC 262 ECE 213 

ECE 371 ECE 314 

Figure 6.3: Filtered DAG using a transitive reduction algorithm.

A is preceding B. Otherwise, A assumes extra information that is not deserved.

We use a transitive reduction algorithm to filter out the transitive edges within the

course enrollment DAG generated in step three [7]. The transitive reduction step on

the DAG shown in Fig. 6.2 is illustrated in Fig. 6.3.

6.3.4 Graph Metrics

In this chapter we use graph theoretic tools and measures in order to study and an-

alyze the structure of course enrollment DAGs. We use these to create comparison
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measures among course enrollment DAGs in order to extract some knowledge that

might help students improve their academic performance. The graph measures that

will be used in this work are the following:

Cosine Similarity. Measures the similarity of two vertices in a graph by

counting the number of neighbor vertices they share [43]. We modified the

cosine similarity algorithm a bit in order to better fit our model. In particular,

the similarity metric we used measures the similarity of a vertex v in two differ-

ent DAGs G1 and G2 by counting the number of vertices with similar sequence

positions that v shares. The modified algorithm is defined as following:

– Let X be the set of courses preceding course v in G1.

– Let Y be the set of courses preceding course v in G2.

– Let Z be the set of courses of both X and Y :

Z = X ∪ Y

– For course v ∈ {G1,G2}, create a 3-by-|Z| adjacency matrix M v where

M v
1j =

 1 if j ∈ X

0 Otherwise

and

M v
2j =

 1 if j ∈ Y

0 Otherwise

and

M v
3j =


1

|Sv
1j−Sv

2j |+1
if j ∈ {X ∩ Y }

0 Otherwise
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where Sv1j and Sv2j are the positions of course j with respect to v in the

preceding sequences of G1 and G2 respectively.

Accordingly, the cosine similarity of course v in G1 and G2 is

similarityv(G1, G2) =


∑

j M
v
1j∗Mv

2j∗Mv
3j

|Mv
1 ||Mv

2 |
if |Z| > 0

1 Otherwise

As an example, consider the two DAGs shown in Fig. 6.5(a) and Fig. 6.5(b).

The matrix M used to compute the cosine similarity of vertix v is shown in

Table 6.1. The courses preceding v in this example are A,B,C and D. The

sequence position of these courses with respect to v are shown in Fig. 6.5(a)

and Fig. 6.5(b).

similarityv(G1, G2) =
1 + 1/2 + 1/2 + 0√

4.
√

3
=

2

2
√

3
' 0.6

Breadth First Search. Traverses a graph starting from a source vertex and

then explores the neighboring vertices before going to the next level neigh-

bors [43]. This method was to determine the enrollment term of course v in a

DAG G, denoted as tv(G). This measure is important in order to compare the

enrollment term of v in different DAGs. The algorithm used to compute tv(G)

is detailed in Algorithm 1. Fig. 6.4 provides a visualization of Algorithm 1.
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0 0 1 

0 1 

0 

2 2 1 

3 1 

4 

2 2 1 

3 1 

4 

2 2 2 

3 3 

4 

1 1 

1 1 

1 

2 

3 

C 

A 

G 

E 

D 

F 

B C 

A 

G 

E 

D 

F 

B 

C 

A 

G 

E 

D 

F 

B C 

A 

G 

E 

D 

F 

B 

Figure 6.4: This figure shows the process used in the TAA in order to compute the
term enrollment values for courses A,B,C,D,E, F and G.

6.4 Case Study: Electrical Engineering Students

at UNM

In order to empirically validate our course enrollment framework, we analyzed actual

university data provided by UNM. In particular, we studied and analyzed the course

enrollment history for students enrolled in the Electrical Engineering (EE) program

at UNM. The primary goal was to determine if the sequence of course enrollments of

students who graduated with high GPAs is different from those who graduated with

relatively low GPAs. The idea will be to use this information in advising sessions in

order to guide new students in a manner that might improve their academic perfor-

mance, i.e., by following the general enrollment patterns of the successful students

who preceded them.
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Sequence 
Position: 
1 

Sequence 
Position: 
2 

C D 

V 

A B 

(a) Sequence position of
courses A,B,C and D with
respect to V in the DAG G1.

Sequence 
Position: 
1 

Sequence 
Position: 
2 

B 

V 

A C 

(b) Sequence position of
courses A,B and C with
respect to V in the DAG G2.

Figure 6.5: This figure shows two DAGs G1 and G2 with their respective course
enrollment sequences. In particular it shows the sequence position of courses A,B,C
and D with respect to V .

M A B C D
M v

1 1 1 1 1
M v

2 1 1 1 0
M v

3 1 1/2 1/2 0

Table 6.1: A matrix M used to compute the cosine similarity of vertix v in the DAGs
shown in Fig. 6.5(a) and Fig. 6.5(b).

6.4.1 Basic Statistics

As mentioned in the introduction, there are many factors, in addition to course

enrollment sequences, that influence the final GPA of a university student. For

instance, high school GPA is highly correlated with student success, and females

tend to slightly outperform males in college [9, 59]. Thus, we performed some basic

statistics in order to compute the mean high school GPA and the gender distribution

for the datasets D1 (EE students who graduated with “high GPA”) and D2 (EE

students who graduated with “low GPA”). The results are presented in Table 6.2
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and Table 6.3.

Based on these results, we noted that D1 and D2 are almost statistically equivalent.

This indicates that there are factors other than high school GPA and gender that

influence the student performance in universities. In this work we explore the extent

to which course enrollment sequences influence student success.

mean standard deviation
D1 3.6 0.42
D2 3.4 0.48

Table 6.2: The mean and standard deviation values of the high school GPA for the
datasets D1 and D2.

Male(%) Female(%)
D1 83 17
D2 86 14

Table 6.3: The gender distribution for the datasets D1 and D2.

6.4.2 Data Processing

We extracted from UNM’s student information system the course enrollment histo-

ries of all EE students who were awarded a degree and were admitted as First-Time

Full-Time (FTFT) students. This data was then divided into two datasets:

Dataset D1. A sequence database that contains the course enrollment histo-

ries of the students who graduated with “high GPA” values (i.e. ≥ 3.5).

80



Chapter 6. The Impact of Course Enrollment Sequences on Student Success

Dataset D2. A sequence database that contains the course enrollment his-

tories of the students who graduated with relatively “low GPA” values (i.e.

< 3.0).

Using the generalized sequential pattern mining with item intervals algorithm [23],

we then generated the sequential patterns R1 and R2 representing D1 and D2 re-

spectively. We derived all the sequential patterns respecting a minimal support value

of:

For D1→ support = 60%;

For D2→ support = 60%;

Next, we generated graphs G1′ and G2′ by converting R1 and R2 to DAGs, respec-

tively. A transitive reduction algorithm is then applied on G1′ and G2′ to delete the

transitive links and hence generate G1 and G2, respectively. The DAGs G1 and G2

representing the SPs R1 and R2 are shown in Fig. 6.6(a) and Fig. 6.6(b) respectively.

6.4.3 Basic Analysis

Based on the graphs shown in Fig. 6.6(a) and Fig. 6.6(b), it is evident that the

sequence of course enrollments for “high GPA” students is quite different from that

of “low GPA” students. For example, in Fig. 6.6(a), enrollment in the courses PHYC

160, PHYC 161 and PHYC 161L is not common at UNM. It can be shown that only

39% of “low GPA” students enroll in these courses at UNM. The rest of the students

in this group either take these courses at a different institution (and transfer them
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Courses Similarity(G1, G2) t(G1) t(G2)
MATH 162 1 1 1
MATH 163 1 2 2
PHYC 160 0 2 0
PHYC 161 0 3 0

PHYC 161L 0 3 0
MATH 264 0.82 3 3
ECE 203 0.58 4 3

MATH 316 0.61 4 4
PHYC 262 0.37 4 8
MATH 314 0.67 5 5
ECE 213 0.67 5 5
ECE 360 0.63 7 7
ECE 314 0.23 6 8
ECE 420 0.32 9 13

Table 6.4: The cosine similarity and term enrollment values for courses shown in
Fig. 6.6(a) and Fig. 6.6(b).

to UNM) or satisfy these requirements by replacement exams. However, this is not

the case with “high GPA” students. Statistics showed that nearly 65% of these

students enrolled in these courses at UNM. This result might suggest that it would

be better for EE students to enroll in these courses at UNM exclusively, rather than

other options, especially since these courses precede many other core courses in the

program. Another example that shows the functionality of the proposed framework

is the enrollment sequence of ECE 360. In Fig. 6.6(a), ECE 360 is taken after ECE

371, ECE 314 and PHYC 262; however, it is the other way around in Fig. 6.6(b).

The difference in the enrollment sequence of ECE 360 in these two figures is shown

by its cosine similarity value shown in Table 6.4. Another interesting observation

found in this case study is the fact that the longest path in Fig. 6.6(b) is greater

than that of Fig. 6.6(a). This indicates that students with “low GPA” value, on

average, tend to earn their degrees later than those of “high GPA” students, that

is, their time-to-degree is longer. This fact has a direct influence on the university’s
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graduation rate.
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Algorithm 1 Term Assignment Algorithm (TAA).

TAA(Graph G = (V,E), array S), S is the set of vertices without incoming edges,

V is the set of vertices in G, E is the set of edges in G

1 for each v ∈ V do

2 d[v] ← 0, unmark all vertices

3 for each s ∈ S do

4 d[s] ← 1, mark the source

5 for each s ∈ S do

6 Enqueue(Q, s)

7 while Empty(Q) = false do

8 v ← Dequeue(Q)

9 for each u ∈ adjacent[v] do

10 if d[u] < d[v] + 1 then, is vertex u unmarked?

11 d[u] ← d[v] + 1, mark vertex u

12 Enqueue(Q, u)

13 Reverse the direction of the edges of G

14 for each s ∈ S do, S is the set of vertices without

incoming edges

15 Enqueue(Q, s)

16 while Empty(Q) = false do

17 v ← Dequeue(Q)

18 for each u ∈ adjacent[v] do

19 if d[u] < d[v]− 1 then, is vertex u unmarked?

20 d[u] ← d[v]− 1, mark vertex u

21 Enqueue(Q, u)

22 Reverse the direction of the edges of G
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MATH 162 

MATH 163 PHYC 160 

MATH 264 PHYC 161 PHYC 161L 

ECE 203 MATH 316 PHYC 262 

MATH 314 ECE 238L ECE 213 ECE 206L 

ECE 371 ECE 321L ECE 314 

ECE 340 ECE 322L ECE 360 ECE 344L 

ECE 345 ECE 419 

ECE 420 

(a) DAG G1

MATH 162 

MATH 163 

ECE 203 MATH 264 

MATH 316 

ECE 213 

ECE 206L ECE 321L 

MATH 314 

CE 304 

ECE 360 

ECE 314 ECE 371 

ECE 340 

PHYC 262 

ECE 344L 

ECE 322L 

ECE 419 

ECE 420 ECE 341 

(b) DAG G2

Figure 6.6: The DAGs G1 and G2 representing the SPs R1 and R2 generated using
the course enrollment histories of all undergraduate EE students who earned a degree
at UNM.
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Conclusion

Higher education attainment proves to be one of the most important factors that

characterize the rise of any society or country. Not only does it influence the social

status of individuals but also the economic factors of a country in general. Unfortu-

nately, many countries encounter major difficulties in this domain. This is driven by

numerous factors and perhaps the nature of the educational process offered by many

academic institutions constitutes the major bottleneck. The services offered by in-

stitutions, the competence of the instructors, the advisement arrangements provided

to students, and other conditions play important roles in determining the efficacy

of higher education. Thus attempts to provide assistant or support in this direction

would be highly valuable.

Studies show that some services offered by some universities are effective in pro-

viding tools that would help students proceed smoothly in their academic lives. Most

of these tools provide help based on the assumption that students are the source of ob-

struction in higher education. For example, many studies relate low graduation rates

in universities to students with low ACT scores and low high school GPAs. Other

studies relate low graduation rates to race, ethnicity, and gender factors. However
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none of these studies, for example, investigate the issue of low graduation rates from

the perspective of curricula structure. In this dissertation we explore the impact of

curricula structure on student progress and graduation rates. We argued that there

is an inverse correlation between the complexity of a curriculum and the graduation

rate of students attempting that curriculum. We validated this claim by analyzing

actual university common curricular pattern. In particular, using complex network

analysis, graph theory, and machine learning techniques, we proposed a framework

that quantify the complexity of a curriculum. First we introduce a new measure to

compute the cruciality of the courses within a curriculum and accordingly compute

the complexity of a curriculum as the sum of the crucialities of all courses in the cur-

riculum. The framework is extended further to create an “efficient” curriculum for

a particular department where efficiency is characterized by lessening the risk of de-

layed graduation. To achieve this goal, we implemented a new optimization model,

CBCB, that uses the regulations of the well-know problem of the BACP. CBCB

assigns courses with relatively higher crucial values to the earliest terms while main-

taining a balanced workloads of the terms. This layout outperforms other models

(i.e., BACP and RBCB) by not only assigning relevant courses to the earliest terms

but also minimizing the distance between them. Note that CBCB is modeled as a

multi-objective optimization problem with linear objective functions which is another

advantage over the RBCB model implemented using quadratic non-linear functions.

As a future work, we will extend CBCB by adding a new criterion characterized by

course difficulty. With this extension, we will give the student the ability to deter-

mine the level of difficulty he or she wants in every term and accordingly design a

layout for the curriculum that best fits the required constraints. Now that we have

an “efficient” curriculum, it would be essential next to follow the progress of the

students attempting a particular curriculum. Perhaps the best way to track student

progress would be to predict their academic performance in advance and accordingly

give them suitable advice. To achieve this goal, we implement two predictive models
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using BBNs and MNs. The results show that these networks may easily model a

curriculum graph and can be used to predict the future progress of a student. It is

shown that we can predict the final GPA of a student with a marginal error of 0.0449

upon receiving the grades of the first semester. This initial work will be extended

in the future to model multiple variables (e.g., student initial condition, age, gen-

der, educational level of parents, emotional factors, instructor difficulty, etc.) in the

BBN and the MN models in addition to the “course” variable. We anticipate that

this additional information will improve the performance of our framework. Finally

we address student progress at the most basic level, by investigating the structural

properties of individual curricula, taking into account the degree to which course en-

rollment sequences in a curriculum may impact student success. Using data mining

methods we presented a framework that models student course enrollment sequences

as directed acyclic graphs for further study and analysis. We introduced some mea-

sures to quantify and compare courses among different directed acyclic graphs. Based

on real data, our results show the influence of course enrollment sequences on the

final GPA value. These results also show how a student’s time-to-degree is affected

by course sequences. Students who graduate faster tend, on average, to follow a

different course enrollment sequences than those who get delayed. This application

is therefore very useful in tracking the progress of students and to intervene (via

advisement, academic support, etc.) in order to improve graduation rates.
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