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Abstract

The integration of Renewable Energy (RE) into Power Systems brings new chal-

lenges to the Smart Grids (SG) technologies. The generation output from renewable

sources generally depends on the atmospheric conditions. This fact causes intermit-

tences on the power output from renewable source, and hence the power quality of

the grid is directly affected by atmospheric phenomena. The increasing advances

on technologies for energy storage open a track to the Energy Management (EM).

Therefore, the power output from a renewable source can be stored or dispatched in

a particular time-instant in order to meet the demand. Scheduling Demand Respond

(DR) action on the grid, can optimize the dispatch by reducing over generated en-

ergy wastage. The difficulty now is to ensure the availability of energy to supply into

the grid by forecasting the Global Solar Radiation (GSR) on a localization where a

Photovoltaic (PV) system is connected. This thesis tries to address the issue using

Machine Learning (ML) techniques. This eases the generation scheduling task. The

work developed on this thesis is focused on exploring ML techniques to hourly fore-

cast GSR and optimize the dispatch of energy on a SG. The experiments present
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results for different configuration of Deep Learning and Gaussian Processes for GSR

time-series regression, aiming to discuss the advantages of using hybrid methods on

the context of SG.
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Chapter 1

Introduction

The increasing number of relevant publications on Smart Grid (SG) is opening new

paths on the research of Power Systems Networks. Since SG technologies allow us

using real-time features measured from the Power Grid, they also allow us imple-

menting real-time decisions that can affect the to Grid. Adding these characteristics

to common Power System can improve the optimization of the overall performances

of a Grid.

1.1 Smart Grids

One of the main goals of the SG and one of the most important challenges for the

Micro Grids (MG) is fitting as tightly as possible the Electrical Demand with the

Power Generation. In order to achieve this, the system needs to be aware of the

availability of the resources. In this way, a SG can redistribute the power generation

performing an optimization to maintain continuous the power supply on all the loads.

On top of that, a Power System operating on islanded-mode can execute Demand

Response (DR) decisions to assure the continuous operation of the main loads. There
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are several DR measure that can be taken on the optimization but the most important

are essentially Peak Shaving and Load Scheduling 1. On one hand, the Peak Shaving

would disconnect secondary loads in order to maintain active primary loads on the

Power System. On the other hand, Load Scheduling would optimize the dispatch of

energy and the availability of the resource with the programmed loads, in order to

minimize the consumption of energy by just connecting certain loads at the time-

instant that energy generation is available in exceed. In the case that the system

cannot operate independently from a Grid even taking DR measures, the MG would

be connected back to a larger Grid.

Another of the challenges on the SG is the integration of Renewable Energy

(RE) with Power Systems. The instability and intermittence of the resources makes

difficult to relay the Power Generation on these kind of resources. Furthermore,

modeling the weather to preciously forecast the following time-instant is a hard task.

In contrast, the decreasing price of the batteries and the continuous improvement of

performances and size, considerably ease the integration of RE and therefore actual

MG implementations. There are mainly two stage of power generation in which the

batteries can assist when RE are used: the generation curve smoothing and shifting

of high frequency disruptions on the generation. Since batteries can perform these

two function on the generation, RE is a real alternative on the Power Generation.

The combination of different resources will stabilize the Energy Generation ensur-

ing that the MG will meet the energy demanded at any time-instant. For example,

Natural Gas Cogeneration plants perform an excellent usage of the energy with high

efficiencies on the production because of the reutilization of the heat produced in

exceed for heating tasks on thermal loads included on the system. In this way, there

is a notable reduction on the overall energy consumed by the system, due to the

diversification of the resources. In the case of the electrical loads, the optimization

1Source: www.energy.gov

2



would be done between Natural Gas plant, Photovoltaic Systems and Batteries, aim-

ing to minimize the usage of the electricity supplied by the grid for obvious reasons

related with the prizing.

In order to perform an optimization on the energy generation implementations

of algorithms for the Energy Management (EM) need to be done. What these al-

gorithms aim to achieve is the load forecasting and generation forecasting. As was

stated previously, the availability of the resource on RE can vary considerably dur-

ing a day; therefore the EM is a difficult task to carry out on MG. In contrast,

whether the system has the information of a forecasted time-instant ahead relatively

precise, the adaptation of the MG to that case-scenario by selecting the generation

sources and performing EM plan will ensure the optimal energy operation of the

Power System.

Forecasting power output with an algorithm will allow the optimization of the

power generation and its dispatch to the load. The main goal at this stage of the

problem is to reduce the fuel usage and CO2 emission by conventional power plants by

maximizing the energy produced by renewable resources 2. A secondary goal will be

to minimize the number of batteries needed by the Power System in order to smooth

and shift the output of the renewable sources, which will considerably reduce the

initial economic investment in MG . Even though the cost of batteries is reducing

significantly, they are still very expensive resources. If the price finally decreases

down to a feasible cost, the main energy supply source to Power Systems will be

renewable. Another advantage that renewable sources bring to the Power Systems is

that their maintenance costs are very small in comparison with conventional power

plants, besides that there is not expenditure in combustible along their entire life-

cycle. It is also very important to mention that the usage of batteries on the MG is

tied to the fact of their short life-cycle. They commonly require replacement between

2Source: www3.epa.gov
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5 and 8 years after their commissioning 3. This is another important reason why the

number of batteries needs to be properly assessed at the designing stage of a MG

project.

1.2 Energy and Power Forecasting on Micro Grids

In particular, we tackle the problem of generation forecasting the point of view of

Machine Learning (ML). The implementation of a forecasting model is based on

historical data extracted from features of the MG and its surroundings. In this case,

devices such as Smart Meter and a Weather Station acquire the data, which records

the information about the weather and generation patterns on a particular location.

Parameters such as air maximum and minimum temperature or global solar radiation

are highly correlated with the power dispatched by Photovoltaic systems (PV) on

the MG. Other features such as air humidity or wind speed have less influence on

the power output curve. It is also relevant to mention that there are usually seasonal

components on the Power Grid, although it would be necessary to explore each case-

scenario separately the seasonal component of the data depends on the sub-problem

location. For these reasons, the proper Data Processing and Acquisition are very

important. The goal at this stage is to filter out the unnecessary features by pre-

processing data adequately. In this way, better performances on the regression for a

predicted power output by an ML algorithm can be expected. Thus, a pre-training

algorithm to find the most important features from the data could considerably

improve the performances of the GSR or power output from the developed forecasting

model .

Depending on the terminal bus that the PV system is attached to, the problem

will be stated at a different level with regards to the transmission system. There are

3Source: www.nrel.gov
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approaches to the problem that aim to forecast the generation from the point of utility

grid with many available resources and the possibility of diversifying the generation.

There are also cases which aimed to predict a single household PV system output. In

some other cases, the forecasting model is used to predict the generation of a region

or an entire country. Therefore, the resolution of the input data used for setting

the model will be different for each of these cases. The developed model cannot be

generalized and used for many different kinds of PV system. The periodicity and

the frequency of the intermissions will significantly vary according to the weather

pattern. For these reason, each type of algorithm needs to be assessed separately.

According to the nature of the problem, the data that will be used in the devel-

opment of a forecasting model will contain features of the weather parameters that

can influence on the PV system or Wind turbine generation. This depends on the

renewable source that is aimed to be predicted. In this case, only the PV technol-

ogy is studied. The number of features or dimensions of the dataset for each one of

time-instants will define the bandwidth of the forecasting model. In some cases, a

combination of PV power output and weather features has been used. Parameters

such as air temperature and cloud cover are very representative for forecasting solar

radiation. In the case of a MG, the aim is to optimize the supply of energy to the

loads. For doing that, the following time-instant is predicted and the Power System

will configure itself for meeting the loads by diversifying the supply of energy and

scheduling the dispatch and recharge of the Batteries Bank. In other cases, it can be

interesting to forecast the next-day curve in order to schedule the supply of energy.

Moreover, it can be used as a mechanism of the electrical market for regulating the

generation mix plan for the next day. The forecasting model can be developed for

medium term GSR predictions, [2]. The horizon in these cases is between a month

and a year. Those time-frames are useful when the goal is to analyze the evolution

of degradation of the panel along its life cycle. However, this can be also a mecha-

nism for planning upgrades or scheduling maintenance tasks the PV systems. It can

5



study tendencies on the generation and detect faults on devices. In order to develop

a model for hourly solar radiation forecasting, the input data have certain features

which have higher correlation with GSR. From this point of view, the GSR curve

has a certain periodicity daily, monthly and yearly. On winter, the solar radiation

on the surface of the PV panel would have smaller daily average value than the solar

radiation expected on a typical Summer day. The same happen in Spring and Fall,

when there are typically more rainy and cloudy days, [3], [4], [5]. There are also

variations between consecutive months because of weather and seasonal patterns.

They also depend on the location. Therefore, the model has to be developed with

the data collected on the location, which is usually from the SG and weather station.

Another characteristic of the data that we need to look at, is the depth of the histor-

ical. In some of studies that have been carried out, several years of historical data

have been used. In contrast to other algorithms that use partial year information for

implementing the model.

6



Chapter 2

Forecasting Methods for Power

and Energy Systems

The various ML techniques used for forecasting the PV system output can be classify

by analyzing cases that have been study previously. There are also several approaches

to data processing that are used for implementing the models. In addition to the

variation of input data that is actually under study and its final usage. In this

part of the thesis, there are discussed different approaches,plus their advantages and

drawbacks. This documentation work aims to find the resources that have been

already implemented and, using this knowledge, to develop a new approach that

produces better results for the particular case of scheduling a mix generation plan

on a MG.

2.1 The Approaches for PV Energy Forecasting

The most appropriate algorithm, depends on the output variable that is being fore-

casted. Despite that, the final goal is the same. For example, [6], [7], [8], [7] and

7



[9], attempt to estimate the GSR on a surface. The time horizon and their input

dataset varies with respect to each paper. In other articles such as [10], [11], [12]

and [3], the actual output power from a PV system is the target of the prediction.

In those cases, the input data contains the PV system power output and weather

variables in order to characterize the forecasting model accurately. The horizon of

the prediction is another of the particularities of each one of the articles. There is

a classification addressed in [2], that refers to a previous classification of horizons

for Load Forecasting. In this case, the resolution framework is defined as short-term

(between day and days), medium term (week and weeks), and long-term (between a

year and years). According to this resolution, the algorithm is used for different final

proposes such as the scheduling of maintenance tasks [2], energy market assessment

[13] or generation planning duties. There is a particular case in [5] in which satellite

images for classification of the weather conditions are included. This is done using a

trained forecasting model that is likely more appropriate to the weather parameters.

2.2 Selection of Features from Weather Data

In the literature reviewed, the input data includes parameters acquired from weather

stations for all cases. In articles like [14], [15] and [9], air temperature vectors are

used as the main informative weather input for characterizing the predictive model.

In the case of [3], the input variable is the aerosol index, which indicates a particular

atmospheric condition in that time instant. The variable of sunshine or light intensity

is used on the input data on [9], [16], [17] and [10] in combination with other variables.

The most generalized case is one in which the input of a large dataset contains

many different variables that physically characterize the weather in a particular time

instant, such as air temperature, air humidity, wind speed and direction, sunshine

hours, precipitation, cloud coverage, etc.. . . This type of input dataset is used in

8



[11], [18], [13] and [6].

There are some articles in which the input data used for training the algorithm are

also used for classification of the weather patterns of the day and used a particular

model that have been developed using data of similar atmospheric conditions in

order to improve the performance of the regression. This is the case in [3], the this

classification is done by sunny, cloudy, overcast and rainy day. In [5], there are 12

different models that are applied according to the information contained in satellite

sky images. The resolution on the sampling of the input dataset varies also from

very short-term to long-term intervals, depending on the goal of the paper. For

instance, [19], [20], and [21] use a resolution on the sampling of an hour. Others

articles processed resolutions on the time-frame of minutes and seconds such as [5],

[8] and [22]. In articles [14] and [7], the resolution of the data is daily and hourly

respectively. In regards to the depth of the dataset used to develop the predictive

algorithm, there are similarities between [14], [23], [13] and [6]. The input data set is

composed of weather data collected over several years. In other cases, the dataset is

composed of information collected along decades as in [7] and [8]. In contrast, other

articles used smaller sampling datasets, in the magnitude order of days such as [2],

[13], and [12].

There are different criteria on the size of partitions of data used for the training,

test and validation of the algorithm. Beside of the criteria for selecting which portion

is used on each one of the phases. There are cases such as [13], [6], [7] and [8], in

which are used a percentage of data between 60.% and 80.% for training and 30.%

and 10.% for test. A validation dataset is not always required but it usually has a size

which represent around the 10.% of the whole dataset. In other articles, the seasonal

structure of the data is maintained for testing the performance, for instance in [11]

and [14]. In others like [5], the dataset is composed by data from several locations,

and it is split in such a way that data for training, corresponds to 65 stations and

9



the sample for test, to other 18 stations. According to the horizon of the prediction

have been found different models on the literature. In [2], the forecasting resolution

is daily and the horizon is 6 months ahead. This information pretends to be useful to

schedule maintenance tasks. In the case of [17], [3] and [22], the resolution is hourly

and the prediction depth is day ahead. The magnitude order in the resolution of the

prediction is of minutes in articles such as [12] and [10]. The horizon can vary from

an hour to several hours ahead in [13] and [21]. A model for monthly prediction

is proposed in the article [4]. It uses 3 different models for sunny, cloudy or rainy

conditions.

2.3 Review of Implemented Algorithms

In regression algorithm that is implemented on the experiments, there are several

techniques combined showing different results, depending on the training and the

parametrization of the algorithm. Although, all reviewed articles used supervised

learning techniques on their work.

For instance, Artificial Neural Networks (ANN) are used in articles such as [5],

[3], [19], [16] and [4]. The performance of the ANN are improved by optimization

algorithms. For instance, in [2] is implemented Genetic Swarm Optimization. In [17],

is used a genetic algorithm for parameters identification. In some other cases, the

algorithms used on the optimization of the ANN is the well-known Backpropagation,

for example in [3], [10], [24], and [7]. However, [19] and [5] used the Leverberg-

Marquart algorithm for the minimization of the regression error. In some other

articles, there are implementations of hybrid algorithms, such as [9], [13] and [2], in

which were tested a Neuro-Fuzzy Computing, that is a combination of an ANN and

Fuzzy Inference System. In [24], several variation of ANN are tested for comparing

the performance of each one with the same input dataset, including a Deep Learning
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(DL) approach for pre-training the network. In particular, this paper implements a

Conditional Restricted Boltzmann Machine, a Recurrent Neural Network and Con-

volutional Network. The article [21] researches a Generalized Regression Neural Net-

work optimized by Particle Swarm Optimization. A Radial Basic Function Neural

Network algorithm, which is an ANN that uses a radial basic as activation function,

was tested on [18] and [25] for very short-term forecasting.

In this review of literature, were found articles published in which non-linear

models, optimized by Minimum Margin, were experimented. For instance, in [22],

[14], [15], [6] [26] and [20] were implemented different Support Vector Machines

(SVM) in combination of multiple Kernels functions. In [7] and [20] were used linear

and non-linear kernels. Radial Basis function kernel was also tested in [7]. In the

article [26], the performance of a SVM is compared to an ANN and Gaussian Process

(GP). For example in [14], it was tested a SVM and an Extreme Machine Learning

(EML) algorithm.

Some articles such as [27], [6] and [14], implemented EML techniques for fore-

casting GSR and energy generation. EML is a novelty technique inside the ANN

that simplifies the training of the algorithm. For optimizing the EML, on [6] is used

the Coral Reef Optimization, which is a Meta-Heuristic algorithm based on the re-

production and formation of the coral. In combination with EML in [27], a Entropy

Method produces higher accuracy on the output and computes faster. This method

essentially works by calculating the entropy of information to the relative degree of

change indicators. A kernel Square Exponential is used on [14] at the input of a

EML algorithm.

There are articles that show the performance of other ML algorithms such as in

[26] and [11]. In [11] particularly, it is implemented the K-Nearest Neighbor (k-NN)

method optimized by Gradient Boosting for a deterministic forecasting. The per-

formance of different techniques are tested in [26]. These algorithms are concretely:
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Relevance Vector Machine, Ridge Regression, Boosted Trees, Regression Tress, Least

Square Linear Regression and Regularized Least Square Linear Regression. In [8],

Auto-Regressive, Auto-Regressive Moving Average, Markov Chain, k-NN are imple-

mented and their performances are compared to an ANN.

2.4 Performances of Forecasting Methods

The performance for different techniques found on this review vary considerable

depending on the input data. The sampling resolution, historical depth, forecasting

horizon and the selection of variables as the most informative for developing the

model, have particular interpretation in each one of the article published.

The articles, [28] and [29] show a surveys of the different ML algorithms pub-

lished for forecasting PV system energy output and GSR and they compare their

performances. In the review of literature, were found performances with hourly res-

olution of SVM and EML. In articles such as [7] and [27], the R2 are 0.969 and

0.99 respectively. In contrast with the R2 0.6567 obtained by an ANN in [9]. In

[5], ANN performs a Correlation Coefficient of 99.% and in [23] a R2 of 99.78.% for

daily forecasting. Meanwhile in [8] an ANN archives 0.79 of R2 with a 3 seconds

resolution input data by using a weather historical of 17 years. A GP obtains 2.19

a Mean Absolute Error in [26]. The best performance of a DL algorithm is a R2 of

84,8.% in [24].
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Chapter 3

Machine Learning

Machine Learning can be defined as the discipline of knowledge that research algo-

rithms that can learn information from datasets. The enclosed information in data

is used for making predictions and decisions. These algorithms essentially develop

models from training samples of data, which are simply observations of variables.

For instance, another interesting definition for the objective in ML is stated on [30],

such as its primary goal is to make predictions as accurately as possible.

3.1 Introduction

The real fact is that there are an increasing number of ML application in the con-

temporaneous society and its number grows more and more every day. For instances,

there are many applications of ML algorithms on medical diagnosis, which by ana-

lyzing datasets of brain scanners, those are able to predict or recognized patters on

a patient from brain image. On the other hand, there are application more focus

on e-commerce or website platforms, in which items are suggested to users based

on their interests. Those identified by the information acquiesced from their pat-
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tern of usage and visits on a website. There are other uses that are empowering

search engines in order to best classify the results of a search to the interests that

a user can have when it introduces a particular set of words. Other applications

that have successfully found a solution to their problems in ML, was speech recog-

nition. There have been developed machines that are able to transcribe speech into

text. In some other areas such as computer vision, machines have been trained to

identify objects on images. It is also important to mention that their presence is

increasing on consumer products such as cameras and smartphones. This list of

new applications is growing and the number of articles published in regards to new

ML algorithms implemented and successfully working solving prediction, patterns

recognition or classification problems is continuously increasing.

3.1.1 Types of Learning

Depending on the method used on the training of the machine, the algorithms can be

classified in supervised learning, unsupervised learning and Reinforcement Learning.

On the supervised learning, the machine is trained to map from particular input

dataset and a goal, and produces an output from the model. Therefore, there is

a pair of input-output label for each sample and the algorithm is trained to meet

it as accurately as possible. In the case of unsupervised learning, there is only a

set of input data on the training of the machine, so there are not labels or targets.

For this reason, the training phase of the machine is particularly tough because it is

really difficult to know what are the output patterns that the machines are going to

display. Therefore, it is sometimes impossible to find a particular pattern on the data

or established an error metric to use along the training to avoid over-fitting problems.

Another classification on the training criteria used in ML, is reinforcement learning.

On this type of training, the machine interacts directly with a dynamic environment,

in which it must perform a particular goal but without any feedback about whether
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it is coming close to their goal or target, or not.

The problems that ML aims to solve depends on the characteristics of the output

data expected from the model. There are algorithms that are trained for making a

regression such as predictive control in robotics. Other problem in ML is classifica-

tion, in which the machine executes a categorization from the input data. In this

case, an example could be to identify the sex of a website user from their track on

website. Another output that a ML algorithm can implement is clustering for finding

tendencies on the input data. Dimensionally reduction is an output, in which the

machine would reduce the input dimensions of the data to a smaller number of the

dimensions, but maintaining the information enclosed in the data by reflexing the

statistical properties of the input on the output dataset.

3.1.2 Optimization Methods

A different classification on ML can be done from the perspective of the function

criteria that the algorithm uses to approximate the output along the training of the

machine. In this case, the techniques can be categorized in three algorithms which

are Maximum Margin (MM), Maximum Likelihood Estimator (MLE) or Minimum

Mean Square Error (MMSE).

On the case of ML algorithms such as SVM and Boosting the criteria for training

the machine is to maximize the margin. For instance, on SVM [31] the algorithm

aims to find the hyperplane which have maximum distance between the data points

inside an established margin. On the other hand, Boosting algorithm [32] attempts

to ding a good linear combination of the members of basis functions to optimize

a given loss function. This is done iteratively for the basis function which gives

the steepest descent in the loss function, and changing its coefficients accordantly.

In cases of other ML algorithms such as Deep Learning and Gaussian Process, the
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technique used for implementing an output from a model is the MLE. The aim of

this method is to estimate the parameters of a statistical model given an input data,

this is done by selecting the parameters for the model which maximize the likelihood

function. Indeed, they maximize the probability of the observed input data under

the resulting distribution. MLE gives a unified approach to an estimation, which is

well-defined in the cases of normal distribution and many other problems. In a GP

[30], is maximized the likelihood with respect to the hyper-parameters of the model

to estimates a posterior which combines information from the prior and the data.

A variation of MLE is described on [33], where the Contrastive Divergence (CD) is

used as an approximation MLE algorithm for DL. In this case the parameters of the

model are learned by maximizing the probability of the input data or equivalently

by minimizing the negative log-likelihood of the probabilities of the data. Another

criteria in a learning algorithm is the MMSE, which is used in ML algorithms such as

Multi-Layer Perceptron (MLP) or Ridge Regression (RR). The MLP is a feed-forward

ANN composed by multiple neuronal layers which is fully interconnected between

them. The neurons are connected by an activation input function for mapping the

output of each neuron from its inputs. The learning algorithm is the well-known

backpropagation, which aims to minimize the mean square error produced by the

output of the last neuron of the MLP and its training target. The RR is estimator

that approximates an output by adjusting the ridge coefficient minimizing the mean

square error in the estimation.

3.2 Deep Learning

The algorithm of DL can be classified inside the Artificial Neural Networks because

of its multi-layer structure formed by input neurons and output neurones. These

multi-layer neural networks are a class of ML algorithm, built by attaching multiple
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layers together in such a way that they form an unique machine. The methodology

used in DL is to sequence independent machines, in which the output of one layer is

the input of the next layer and successively.

3.2.1 Introduction

In the DL algorithm, each layer is trained independently so its internal parameters

are adjusted in a way that the model is able to retain the statistical properties

of the input nodes. The algorithm essentially generates a representation in the

output, by keeping the information contained in the input data, but changing the

its dimensionality. The independent layers in DL, are called Restricted Boltzmann

Machines (RBM) and they are trained by the well-known algorithm of Contrastive

Divergence [34].

Figure 3.1: DL composed by several RBMs attached together forming a Deep Belief
Network.

The most distinctive feature of the DL algorithm is that it is able to discover

patters and structures in large input data sets [35]. The optimization algorithm

used for training the networks is the Backpropagation. It basically indicates how

the internal parameters, in each RBM that composed the network, should change in
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order to obtain an output more representative of the input. In this time, from the

entire network of attached RBMs.

Each one of the RBMs which compose the network, has a determined number

of input nodes and output nodes. Each input node has as input feature from the

dataset. It can be reworded as the output of the RBM changes the dimensionality,

or the number of features of an input sample of data.

Figure 3.2: Neuron connections between visible (vi) and hidden (hj) units in a single
RBM.

From now on, the features of the input data are going to be called visible units

and they will be denoted by v. The output data from a layer is going to be defined

as the hidden units and indicated by an h.

On the implementation of DL, each RBM is trained independent and the joint

configuration (v,h) of the visible and hidden units has an Energy function such as:

E(v,h) =
∑

i∈visible

civi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij (3.1)

this equation is independent for each one of the RBMs that forms the machine.

Where vi and hj are the states of the visible unit i and the hidden unit j, ci and bj,

are the visible and hidden biases respectively, and wij are the weights between visible

and hidden units. By computing the Energy, the network assigns a probability to a

possible state that a neuron can have [34].
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On a RBM the probabilities to every possible join between pairs of visible and

hidden units are given by computing the previous stated Energy function as follows:

p(v,h) =
1

Z
exp (−E(v,h)) (3.2)

where Z is the summation of all the possible joins between pairs of visible and

hidden units on the RBM so that:

Z =
∑

exp (−E(v,h)) (3.3)

The probabilities of each visible units on a RBM, are assigned to the vector v.

This is given by simply summation all the possible hidden states:

p(v) =
1

Z

∑
hidden

exp (−E(v,h)) (3.4)

The probability given to an input sample of training data can be raised o de-

creased by adjusting the weights and bias of the connections in the network. Hence,

raising the energy of a particular input node will decrease the energy of other input

nodes. This methodology is also used in the backpropagation and it will be explained

later on this section.

Considering the particular case in which each node of a network has a binary

state, and their activation is defined by a logistic function. For a given a training

sample, each binary state hj in the output node, will be set to 1 with a probability:

p(hj = 1|v) = σ

(
bj +

∑
i

viwij

)
(3.5)
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where σ(x) is the logistic function:

σ(x) =
1

1 + e−x
(3.6)

and where x is the previously stated:

x = bj +
∑
i

viwij (3.7)

3.2.2 Training a Restricted Boltzmann Machine

From the earliest days of pattern recognition, the aim of researches has been to

replace hand-engineered features with trainable multi-layer networks, but despite its

simplicity, the solution was not widely understood until on the mid 1980s, when it

turns out, that multi-layer architectures can be trained by simply stochastic gradient

descent.

CD is a procedure used for training DL machines introduced in [34]. It is es-

sentially an approximation of the gradient of the log-likelihood based on a model

of short Markov Chain between probabilities of the hidden units, given the visible

units of the model and vice versa, the visible unites given the hidden units. The

optimization of the log-likelihood is the learning criteria. This method is also used

in many other probabilistic ML algorithms. The implementation of this optimiza-

tion algorithm consists in initializing the Markov Chain from a distribution which is

expected to be closed to the desired. In this case, from the distribution of a training

sample of the input data.

In the case of training a single RBM, the gradient of the log-likelihood of the input

vector, which are the visible units, with respect to the weights of the connections of
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Figure 3.3: Gibbs Sampling steps updating the parameters of the model by iteratively
sampling the p(h(n)|v(n)) and construct from them p(h(n+1)|v(n+1)), contrasting their
divergence.

the network is:

∂ log p(v)

∂wij
= E[vihj]data − E[vihj]reconstruction (3.8)

In the case of the biases of the network, the gradient would be stated as follows:

∂ log p(v)

∂bj
= vj −

∑
visible

p(v)vj (3.9)

∂ log p(v)

∂ci
= p(hj = 1|v)−

∑
visible

p(v)p(hj = 1|v) (3.10)

where E denote the expectations under the distributions. The probabilities of

the hidden units are computed on the forward or positive phase of the CD. For an

input sample of the data, that is v, for the binary state hj of each hidden units j to

be equal to 1 have a probability given by:

p(hj = 1|v) = σ

(∑
i

viwij + bj

)
(3.11)
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from the probability of a hidden unit to be 1 is sampled the E[vihj]data. In the

reconstruction of the visible unites, that is sometimes called backwards or negative

phase, the probabilities are given by:

p(vi = 1|h) = σ

(∑
j

hjwij + ci

)
(3.12)

and from the probabilities of a visible unit to be 1, it is sample the E[vihj]reconstr.

The final step on the formulation of the gradient, it is just to update the pa-

rameters of the probabilistic model of an independent RBM. The new sates of the

hidden unites are modified interactively along a determined number of epochs and

the change of the weights is explicitly given by:

∆Wij = ε (E[vihj]data − E[vi, hj]reconstr) (3.13)

where ε is the learning rate of the parameters, E[vihj]data is the fraction of times

that input neuron i and the output neuron j are on together driven by the initial

sample of data, and E[vihj]reconstr is the corresponding fraction of asymmetry on the

reflexing into the input data set. A simply formulation for the same learning rate is

used to update the bias of the network [34].

3.2.3 Training a Deep Belief Network

The Backpropagation algorithm computes the gradient of a cost function and its

goal is to minimize its output. It can be referred as objective function [35]. The

derivatives are computed with respect to the parameters of the model of each RBM

attached together on a multi-layer network. In contrast to the independent training
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method of an RBM on the DL, Backpropagation updates the parameters of the model

using the chain rule of the derivatives.

This method update interactively the parameters on all ensemble layers on the

network, an increment or change on the objective function is propagated backwards

throughout all the network. In this way, the derivative of the network’s objective

function, which is its the error on the output, can be computed from the gradient

with respect to the parameters.

Minimization of the Regression Error

In the case of a network configured for regression, the parameters of the different

layers are updated in order to match an objective function, which in this case is the

error function. The MMSE error of the regression is of the output of the network

that is aimed to minimize. It is given by this following equation:

E =
1

2

N∑
i=1

(|θi − ti|)2 (3.14)

where N is the number of samples on the input vector, θi are the outputs of the

network and ti are the labels or target of the regression at each time instant i of the

input data set [36].

The parameters of the model, which are the weights and bias, are the only that

can be modified in order to make the error as low as possible. Therefore, E is

minimized by using an iterative process of gradient descent, for which the gradient

is calculated as follows:

5E =

(
∂E

∂W(1)

∂E

∂W(2)
...

∂E

∂W(`)

)
(3.15)
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Figure 3.4: Forward phase equations and backwards equation from chain rule of the
derivatives.

where W represents the weights matrix from each one of the ` layers of the

network.

The Backpropagation algorithm is basically used to find some local minimum in

the error function. However, it is not guarantee to find a global minimum. The way

in which the gradient of the error function is computed and used to correct the initial

weights is such as:

∆W` = −γ ∂E

∂W`

(3.16)

for each one of the layers `, according to the learning rate γ.

Minimization of the Reconstruction Error

A particularization of the Backpropagation algorithm is called as fine tuning of the

weights on [34]. In this case, the algorithm is used for computing the reconstruction
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error, and to propagate this error throughout the network. The method used is the

gradient conjugate.

Figure 3.5: Training sequence on a DBN using Backpropagation. This figure shows
how on first training, propagates input forwards throughout the network, and recon-
structs the output backwards. Propagating the error on the reconstruction on the
output.

The error function, which is aimed to minimized, is the reconstruction error

instead of the error on the regression. On this algorithm, it is necessary to compute

first the reconstruction of the input from the obtained output of the network In

this way,it can be computed the reconstruction error of data. Once this objective

error function is computed, the error is propagated forward throughout the network

updating the parameters of the model at each one of the layers, so there the error is

minimized. In this case, the error function is defined by:

E =
1

2

N∑
i=1

D∑
j=1

(
X̂ij −Xij

)2
(3.17)

where N are the total number of samples i on the input data and D the number

of features or dimensions j on the data set. Xoutij represent the output from the
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model of ensemble layers or RBMs and Xinij is simply the input data.

In this case of Backpropagation algorithm, the visible biases are updated on the

backwards phase of the computation and the hidden biases are when the process goes

forward once again. The weights are updated on the backwards and forward phase

of the computations.

3.2.4 Activation Functions

DL is multi-layer network in which each layer is defined as an independent RBM

where the output of one them is the input of the following one. In these networks,

either input as output are independent neurons connected between the previous units.

However, units on the same level are not connected between them. The activation

function of each neuron defines the probability of the states on the output neurons.

On this chapter, the DL was explained for the case of binary states on either input

and output neurons that compose a layer. This it is just an example of type of input

state activated by a particular function, the sigmoid. On this part of the chapter,

there are introduced several activation functions that have been implemented, and

that they improve significantly the performances of the algorithm for some particular

case-scenario.

Logistic Function

For a given training sample, the binaries states of the hidden units are set on with a

probability defined by the logistic sigmoid function of its input xij such as:

σ(xij) =
1

1 + e−xij
(3.18)

26



where xij are the weighed inputs of the neuron such as viwij + bj, vi are each i

visible unit of the layer and bj each visible bias from an output neuron j. From now

on xij is defined in this way for each one of the units explained later in this chapter.

Gaussian Function

The fact of applying a Gaussian function to the input data, or visible units, of a

layer produces continuity on the input. This characteristic can be useful in some

cases, it depends on the nature of the data. In contrast, it can also produce a poor

representation of the input data, in some other cases. A solution to that can be to

substitute the binary output units by linear units with intended Gaussian noise [37].

f(xij) =
1√
2πσ

exp

(
−(xij − µ)2

2σ2

)
(3.19)

where µ and σ are the mean and the standard deviation of the input data set.

The Energy function of the layer varies when the activation function changes. In the

case of a Gaussian activation function on the visible units and a sigmoid activation

function on the hidden units the Energy function is stated as follows:

E(v,h) =
∑

i∈visible

vi − ci
2σ2

i

−
∑

j∈hidden

bjhj −
∑
i,j

viσihjwij (3.20)

when visible and hidden unites are activated by a Gaussian function the instability

problems increase considerably, as it is referred on [37]. The individual activities are

retained around the means by quadratic terms by coefficients determined by the

standard deviation. In the case of layers in which both visible and hidden units are

activated by a Gaussian function, the formulation of the Energy function is such as:
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E(v,h) =
∑

i∈visible

vi − ci
2σ2

i

−
∑

j∈hidden

hj − bj
2σ2

j

−
∑
i,j

vi
σi

hj
σj
wij (3.21)

Hyperbolic Tangent

The hyperbolic tangent function is a rescaled version of the logistic sigmoid function

to an output on the rage of [−1, 1], instead of the sigmoid’s output range of [0, 1].

This range can be interesting in particular when the input data contends relevant

information under the range of 0. On this case a sigmoid function saturates to 0

its output belong that limit. In contrast, a tanh function maintains the information

inside its range. The hyperbolic tangent is defined by:

f(xij) =
exij − e−xij
exij + e−xij

(3.22)

Rectified Function

The Rectified Linear Units (ReLU) are defined on [37] and [35]. Its main property

is that can be used as mathematical half-wave rectifier given by this expression:

f(xij) = max(xij, 0) (3.23)

ReLU have typically the capacity of learning faster on a machine composed by

many multiple layers or RBMs on a DL algorithm. On [35] is stated that this

characteristic allows to train deep supervised networks without needing unsupervised

pre-training of the network. The units at the output of a layer, can be seen as

distorting the image from the input in a non-linear way. This is particular useful
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on the last layer of the network because it can be used for saturating the output in

a way that eases the categorical differentiation between outputs from inputs on the

network.

Soft-sign Function

The soft-sign function found its application on DL on an experiment carried out on

[38]. This function has similar properties to the tangent hyperbolic, both are inside

the range of [−1, 1] and outside that rage both of the functions saturate. Their

differences are essentially that soft-sign function has quadratic polynomials as tails

instead of exponentials, therefore the approaches to their asymptotes much slower.

Its formulation is:

f(xij) =
xij

1 + |xij|
(3.24)

Binomial units

Binomial units are essentially as the binary units produced by a sigmoid function

previously introduced. The particularity of the units, which were mentioned on [37],

are such as their output is modified by introducing an offset value. This fact can

produce more interesting neuron models closest to a actual neuron. Furthermore, its

implementation can produces more useful results in some cases. This is achieved by

adding a constant and a variable to each input so their binary probabilities are biased.

A generalization of the offset value introduced on a sigmoid function is −(N − 0.5)

where N is the offset value for a variable and 0.5 is a constant offset value for the

dataset. The general form for the equation would be:
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f(xij) =
∑
i=1

σ(xij − k + 0.5) ≈ log(1 + exij) (3.25)

3.3 Gaussian Processes

GP are non-parametric predictive models in which every observation is associated

with a normally distributed stochastic process. It produces a prediction for an unseen

data point in a high-dimension space. The distribution of a Gaussian process is the

join distribution of all the variables that define a data point.

The main advantage of using GP between other methods is that just the hyper-

parameters of the covariance matrix needs to be optimized. In this ML technique, the

optimization criteria used is the Maximum Likelihood. This algorithm adjusts the

hyper-parameters of the model in such a way that they maximize the likelihood under

a training dataset. All the parameters are initialized randomly and the algorithm

is able to find a minimum for a given set of hyper-parameters. This is an iterative

process and these minima search line is done by Conjugate Gradient. However, this

approach is very sensible to find some local minima. Therefore, it requires different

initializations in order to find a better solution.

3.3.1 Linear Model

A theoretical demonstration for a general case of GP is developed below for a given

function or estimator [39] such as:

yi = f(xi) + εi, f(xi) = wTxi (3.26)
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where εi is an estimation for the error and yi is the regression obtained for each

value of xi ∈ RD, which are the observations. The error is assumed to be Gaussian

with the following distribution:

εi ∼ N (0, σ2
n) (3.27)

If yi is defined as a GP, its mean is given by f(x) and its variance is σ2
n. The prob-

ability distribution of a sample of yi for given observation xi and a set of parameters

w, is computed for a normal distribution such as:

p(yi|xi,w) =
1√

2πσn
exp

(
−|yi −wTxi|2

2σ2
n

)
(3.28)

and the join process for this normal distribution can be computed from:

p(y|X,w) =
N∏
i=1

p(yi|xi,w) (3.29)

The parameters of the model w are a linear combination of each pair of elements

xi and yi. Hence, the distribution of the w is a process which depends only on X

and y. In this way, the prior distribution of the model parameters is given by the

following general equation for normal distribution of D dimensions:

w ∼ N (0,Σp) =
1

(2π|Σp|)(D+1)/2
exp

(
−1

2
wTΣ−1p w

)
(3.30)

where Σp is the covariance matrix of the process and w are the parameters of

the process.
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According to the Bayes Theorem is straight forward that the posterior distribu-

tion of the process with respect to X and y is stated as follows:

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
(3.31)

For this process, the probabilities on the denominator does not depends on the

parameters of the model, and as it is simply aimed to maximize the distribution of

the posterior, the Bayes Theorem can be simplified to this form:

p(w|y,X) ∝ p(y|X,w)p(w) (3.32)

The marginal likelihood of the process, which acts simply as a normalization

constant because it independent to the model’s weights, is given by the following

integral:

p(y|X) =

∫
p(w)p(y|X,w)∂w (3.33)

The final form of the posterior distribution is the product of two normal proba-

bility distributions. The prior and the parameters normal distribution. Hence, the

posterior is also a normal probability distribution defined by this product:

p(w|y,X) ∝ exp

(
−|y −XTw|2

2σ2
n

)
exp

(
−1

2
wTΣ−1p w

)
∝ exp

(
−1

2
(w − w̄)T

(
1

σ2
2

XXT + Σ−1p

)
(w − w̄)

) (3.34)
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where A = σ−2n XXT + Σ−1p , and w̄ is the mean of the parameters w. That it is

defined as w̄ = σ−2n A−1Xy. The final form for the Gaussian posterior is like:

p(w|y,X) ∼ N
(

1

σ2
n

A−1Xy,A−1
)

(3.35)

The Maximization of the Likelihood over the posterior distribution finally defines

the optimum parameters for the GP. This is done by Conjugate Gradient line search

and it is stated as follows:

wML = arg max
w

p(w|y,X) (3.36)

In order to make predictions for a test case, we average over all possible param-

eters values. weighted by their posterior portability. For a new sample x∗, which

does not belong to the training dataset. The final regression model will output a

prediction such as:

y∗ = f∗(x
∗) + ε∗ f∗(x

∗) = wTx∗ (3.37)

with a probability defined by p(f∗|x∗,w). The predictive probability distribution

of the posterior is given by averaging the output of all possible linear models with

respect to the Gaussian posterior, computing following integral:

p(f∗|x∗,X,y) =

∫
p(f∗|x∗,w)p(w|X,y)∂w

= N
(

1

σ2
n

xT∗A
−1Xy,xT∗A

−1x∗

) (3.38)
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3.3.2 Model on Feature Space

Another but equivalent method that conducts to similar results is to do inference

in a space defined by functions. This function φ(x), maps the input vector to a N

dimensional feature space. Therefore, the model is stated on a features space as:

f(x) = φ(x)Tw (3.39)

where x is the vector which contains a number of N observations.

The development of the model is done in the same way that for a liner model.

The only different is that now, instead of having a matrix input X, we have the

function Φ(X), which represent the mapping of the matrix X to a new feature space.

The final predictive distribution on a features space, now is given by the equivalent

expression:

p(f∗|φ(x∗),Φ(X),y) ∼ N
(

1

σ2
n

φ(xT∗ )A−1Φ(X)y, φ(xT∗ )A−1φ(x∗)

)
(3.40)

with A = σ−2n Φ(X)Φ(X)T + Σ−1p . The final dimensions of A are N × N . As

N is the number of observations in the input vector x, the computation of A−1 for

obtaining a predicted output will be very difficult for large datasets.

A GP can also describe a distribution over functions. In this case, the GP is

specified fully by the mean m(x) and covariance function k(x,x′) of the process

f(x), such as:

m(x) = E[f(x)]

k(x,x′) = E [(f(x)−m(x)) (f(x′ −m(x′)))]
(3.41)
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the definition for a GP is such as:

f(x) ∼ GP (m(x), k(x,x′)) (3.42)

This is just a generalization of a Gaussian distribution whose mean and covariance

functions are vector and matrix respectively.
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Figure 3.6: Example of GP for regres-
sion. 2 Dimensions data distributed
on the space.

Figure 3.7: Iteration 1 of MLE for
finding the model’s w, confidence in-
terval in shadowed.

Figure 3.8: Iteration 2 of MLE, model
confidence interval fitting.

Figure 3.9: Iteration 3 of MLE, model
confidence interval matching tightly.

Figure 3.10: End of computing, opti-
mal w. These captures belong to the
example code on [1].
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Chapter 4

Experiments

This chapter shows experiments base on the ML algorithms previously introduced

on the chapter 3. The results from the tested of two DL structures, were compared

with the results obtained from a SVM. The DL structure was similar to used on the

SVM. The objective of the experiments is to research whether a pre-training on the

weights that compose the DL produces better results on the prediction.

4.1 Weather Data

The model used is a Weather Research and Forecasting (WRF) meso-scale version

3.6. WRF is a powerful meso-scale numerical weather prediction system designed

for atmospheric research and also for operating forecasting models. The model was

developed in collaboration of several institutions in the USA, the National Center

for Atmospheric Research, the National Center for Environmental Prediction, the

Forecast Systems Laboratory, the Air Force Weather Agency, the Naval Research

Laboratory, the University of Oklahoma, and the Federal Aviation Administration.

This weather model has been used previously for weather forecasting in the article
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[40]. Additionally, it has been implemented successfully with the propose of power

output forecasting in the context of SG and RE on [41].

WRF version 3.6 runs every 12 hours since being commissioned in 2011. The

meteorological data is collected from several nodes sprawled over an are that goes

from the latitude N34◦33′43′′ to N44◦28′12′′ and from the longitude W4◦25′12′′ to

E4◦23′2′′. The atmospheric values are measured from sensors vertically localized at

37 different levels above ground. Also at the ground, and on four levels under the

ground. This weather station is located in Toledo, Spain.

The aim for the features contended within the dataset is to train and test the

algorithms that were previously introduced in this document. This weather station

in Toledo belongs to the ”Agencia Española de Meteoroloǵıa (AEMET)” and it is

exactly located at (N39◦53′5′′, W4◦2′45′′) on the Spanish territory at 515 meters

above the sea level. The dataset contains weather features collected over a complete

year with sampling resolution of an hour. The beginning of the data is May 1st 2013

and ends on April 20th 2014. This is the dataset used to carry out the experiments

measuring the performance of the different predictive models in this document.

The data collected from the 25 nodes of the meso-scale model forms the input

dataset for the experiments. Each one of the nodes sense 423 physical features of the

weather. Among other variables, the set includes wind speed and air temperature,

measured at several altitudes; plus other variables such as atmospheric long-wave

solar radiation, cloud covering, air humidity, etc. These variables together form a

25x423 matrix of sensor measurement, and there are 5,840 samples along a year.

On the data processing task, the 3-dimensional matrix (height, feature and time)

was reshaped into a 2-dimensions matrix, which contains all measurements for each

time-instant. Hence, the final dimension of the input matrix is 5, 840× 10, 575. For

regularization of the parameters contained in the matrix, the mean of the measure-
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ments was calculated for each dimension, and subtracted from all its samples on

the dataset. The matrix contains some parameters that are irrelevant for the pro-

pose of the regression. That is because its magnitude remains constant along all the

sampling length. The standard deviation was calculated for each one of the different

variables. The variables with 0 standard deviation were deleted from the set, in order

to alleviate the computational load. After the pre-processing, the final dimensions

of the input matrix was 5, 840x9, 864, which it is a 7% reduction from initial matrix.

4.2 Structures

The experiments aim to study the performances of two different DL structures for

performing a independent regressions but using the same dataset. The DL tested

is a 3 layer structure. These layers are machines trained independently, the RBMs

previously mentioned. Before training the structure with the goal of regression, the

weights of each RBM are pre-trained. There are used two different cascaded methods.

These methods are Contrastive Divergence and minimization of MSE reconstruction

error by backwards propagation of the error through the network.

The training of the DL structures for estimating a prediction, is done by using two

different methods. The first structure is trained by Backpropagation algorithm in

order to adjust the pre-trained weights to produces a regression. On the experiments,

the RBMs that compose the DL structures, have binary visible and hidden units in

their layers with exception of the last layer. These hidden units, are generated by

a liner function. On the second structure, a GP substitutes the last RBM, so the 2

RBM have also linear units. In this way, the GP is independently trained having as

input the output units generated by the RBM. The covariance function using on the

GP is a square exponential Kernel. This function is introduced on an appendix.
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Figure 4.1: The figure shows both of the structures experiment on this document.
The first one is a DL composed by 3 RBMs. The second one is a DL with GP on its
last layer, instead of a RBM.

4.3 Methodology for the Experiments

The first set of experiments, consists on testing the pre-training methods on both

structures. On the first structure has 3 RBM that are trained independently. In

contrast, the second structure have only 2 RBMS that need to be trained, because

its last layers is GP.

The experiment for the pre-training consists of performing 10 different initial-

ization on DL structure. First, a pre-training using CD, followed by a seconds pre-

training by a minimization of the reconstruction error by propagating forwards and

backwards the error. The samples collected from the experiments, are split into

two subsets. On one hand, the subset of parameters trained by CD. On the other
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hand, the subset of parameters trained by both methods CD and minimizing the

reconstruction error. The objective of these experiments, is to discover which one

of the pre-training methods perform better results, when the aim is to produce an

estimation. From the collected samples, it is selected the one that hassmallest re-

construction error.

The method for the pre-traning by CD, is runs during 10 epochs on each RBMs. In

the case of the pre-traning by minimization of the reconstruction error, the algorithm

runs iteratively until that the reconstruction error is constant along 10 epochs. This

is done for reducing the computing time. Although, number of iterations could

be extended until that the reconstruction error on the validation dataset starts to

increase. As we consider that the change on the weights is insignificant from the

standstill to the increasing, the criteria used for stopping the computation is that

the reconstruction error is constant during 10.

Onces a sample is selected from the pre-traning methods tested, the next step is

to experiment the regression error on the DL structures. The method follows in this

experiment, is to compute 10 different initialization with seasonal disorder applied

to the data. The criteria to select a model, is the best R2 on these 10 initializations.

On the implementation, the data have been split into 3 different samples. This

data have been previously disordered in order to dismount the seasonal component

on the data. The GSR follows a trend that match with the seasons of a year. The

objective of the disorder, is to develop a unique model for forecasting GSR valid for

any day of a year.

The partitions of the data are: train, test and validation dataset. The training

subset have been only used to train the machines that compose the structures. The

test subset have been used for testing the final performances of each machine. The

subset of validation have been used to check the performances of the machine along
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their training. This subset is basically used to control the training, and thus to know

when to stop the training. Depending on the type of learning of the machine, the

subsets of data needed are different.

Pre-training Regression
Data — Method CD Recons. Error BP GP

Training X X X X
Test X X X X

Validation X X

Table 4.1: This table shows, for what have been used each one of the 3 different
subsets, on the algorithms implemented.

4.4 Results

The experiments described, are been tested for 5 different configurations on the

structure. The configuration are basically variation on the number of hidden neurones

at the output of the RBMs. The aim is to explore what is the number of hidden

units have a positive impact on algorithm for regression.

The training of the machine have been done and tested with different subsets of

data. The values to measure the performance, are MSE for the reconstruction error,

and MSE and R2 for the regression. The MSE on the reconstruction, is a quality

value commonly used on pre-training algorithms, its expression is as follows:

MSE =
1

ND

N∑
i=1

D∑
j=1

(x̂ij − xij)2 (4.1)

where N and D are the number of samples and the dimensions of the input data.

xij is the observations on the data, and its reconstruction from the output is x̂ij.

The subindex i and j denote the element on the dataset and its reconstruction.
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On the training of the regression, the criteria on the optimization is to minimize

the R2 to produce on the validation. The value of MSE has been computed as

informative parameter for evaluating the quality of the regression. The MSE is

described such as:

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (4.2)

the number of samples is denoted by N , The predicted output is expressed by

ŷ)i and a training target value used for the prediction is yi.

These parameters evaluate the performances, and also they give a criteria to know

when an algorithm have been trained. In this way, the model generated will forecast

a time instant with small error. The coefficient is the R2, and it is computed such a:

R2 = 1−
∑N

i=1 (ŷi − yi)2∑N
i=1(ŷi − ȳ)2

(4.3)

in this expression, the prediction is denote as ŷi, and the target is yi. N is the

number of samples, and ȳi is the mean of the target.

The results of the experiments are compared with a SVM. The DL structure that

compose the SVM has 2 layers, as on the GP. Therefore, the DL is used again for

reducing the dimensionality of the data. The results are shown on R2 values. The

hidden node on the RBMs are not the same, but the results are just orientation, to

visualize how this other structure performance essentially. This SVM is not trained

using the minimization of the reconstruction error on the per-traning.
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Figure 4.2: DL structure with a SVM on its layer.

4.4.1 Configuration I

The configuration experimented on these structures, is 9864 visible nodes and 2500

hidden nodes. The second layer has 2500 nodes at the input and 50 nodes on the

output. The last layer reduces the dimensions from 50 to 1.

Figure 4.3: Structure experimented: c

The training of the DL is done during 10 epochs. DL has de characteristic of

reducing the dimensionality of the data. This is done by calculating the correlation

between visible and hidden units. Therefore, the weights on the model will have

higher value for the variables that have also high correlation on the dataset.

The output of the first layer will extract the information on most important

variables on the data. From the figures, can be seen that two strips on the weights’

model are starting to show up. The value on the weights that are more informative

increases as the machine is over trained.
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Figure 4.4: Map of the weights of the
first RBM for 10 epochs.

Figure 4.5: Map of t-student compute
from the weights’ map.

Figure 4.6: Reconstruction error on
the training of the first RBM.

Figure 4.7: Evolution of the error
along the training of the second RBM.

Along the CD the training is monitored at each initialization. On the structure

attached to a GP, the weights trained on the third RBM are not used. The best

MSE reconstruction error obtained after pre-traning by CD, is 0.1180.

The after the pre-traning by CD, start the pre-traning to minimize of the recon-

struction error. The weights are updated once again, to minimize the error. The

MSE reconstruction error obtained on this structure is 0.0680.

As the reconstruction error has decrease on this configuration after running the

minimization algorithm. The weights on the structure has likely suffered modifica-
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Figure 4.8: Training and validation error for the third RBM.

Figure 4.9: Final map of weights on
the first layer.

Figure 4.10: T-student map on the
first layer.

tions. It is interesting to have a look over the final weights of the pre-traning.

The structure after the weights pre-traning, is trained by Backpropgation for

producing regressions. The weights of the model will be updated again. Although it

is aimed now to decrease the regression coefficient R2. The training is evaluated by

computing the MSE after each iteration on validation. It can be seen on the graph

that there are instabilities on the training.

On parallel, it is also experimented the GP for regression. The results of both

algorithms are compared with the performances of SVM attached on a DL structure.
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Figure 4.11: Convergence evolution on the Backpropagation algorithm for the con-
figuration I.

The experiments are resume on the following table. The best R2 is obtained by

Backpropagation after two weights pre-tranings.

DL Configuration: 9860 2500 50

Pre-training MSE RE Training MSE R2

CD 0.1180
BP 0.1146 0.5354
GP 0.1213 0.5082

CD + RE 0.0680
BP 0.0862 0.6504
GP 0.1210 0.5080

DL Config.: 9860 1000 50 SVM 0.8711

Table 4.2: Results for v1 = 9864|v2 = 2500|v3 = 50|h3 = 1.

4.4.2 Configuration II

On the second configuration, the number of output nodes on the second RBM is

increased up to 100. The number of hidden units on the first layer, is still constant.
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The pre-traning methodology is the same that on the previous experiment.

Figure 4.12: Structure experimented: v1 = 9864|v2 = 2500|v3 = 100|h3 = 1

After the pre-traning by CD, the weights have values similar to the obtained

on the configuration I. The variations are because of the random initialization on

the weights that DL uses to approximates the hidden probabilities by the Gibbs

Sampling. CD is no deterministic algorithm.

Figure 4.13: Weight’s map for config-
uration II.

Figure 4.14: Map of t-student after
the 10 epochs CD training.

Each RBM was trained along 10 epochs. The training is essentially the same on

all the experiments. .

The weights after the fast convergence on a minima by CD, are updated by prop-

agating the error forward and backwards iteratively. The propagation is a iterative

methods and it stops when MSE on validation reach the minima. This is the seconds

part of the per-training.
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Figure 4.15: Convergence of CD for
the first RBM.

Figure 4.16: Validation and training
error on second RBM.

Figure 4.17: Evolution of the training on the third RBM

The weights of the configuration II are trained by Backpropagation. The per-

formance on the regression is 0.7966. The performance for regression after the pre-

traning by minimizing the reconstruction error, is 0.0491. The minimization is clearly

producing worst results.

The GP performs an increment on R2 coefficient to 0.6902 with respect to previ-

ous experiments. Therefore, increasing the number of output nodes from 50 to 100

improves the result on the regression. In contrast, the R2 after pre-traning by min-

imizing the reconstruction error, is just 0.1184. The second pre-training is affecting

negatively.
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Figure 4.18: Map of the weights after
Backpropagation

Figure 4.19: T-student over the map
of weights on configuration II

Figure 4.20: Convergence of the Backpropagation algorithm.
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DL Configuration: 9860 2500 100

Pre-training MSE RE Training MSE R2

CD 0.118
BP 0.0502 0.7966
GP 0.0764 0.6902

CD + RE 0.068
BP 0.2345 0.0491
GP 0.1184 0.5201

DL Config.: 9860 1000 100 SVM 0.9033

Table 4.3: Results for v1 = 9864|v2 = 2500|v3 = 100|h3 = 1.
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4.4.3 Configuration III

On this configuration, the output nodes at the last layer was increased up to 1000.

The goal is to know whether the GP and Backpropagation regression performs better

for doubling the output nodes.

Figure 4.21: Structure experimented: v1 = 9864|v2 = 2500|v3 = 500|h3 = 1

The best weights on the pre-training are selected by the criteria of smallest re-

construction error. The CD training is not supervise, so there is not target values

to train the machine. The best reconstruction error is 0.2297 after 10 initializations

trained along 10 epochs.

The map of weights is very similar to the previous configuration, that means

that the CD algorithm is also converging to similar weights values. It is difficult to

monitoring the over-fitting on the DL, because it is unsupervised learning. A solution

could be to look at the weights map to see whether it is deleting many variables.

The training of the RBM converged on the same MSE for reconstruction error.

The validation tends to the same minima. In case of over-training, the MSE would

start to increase at some point of the training.

In this case, Backpropagation diverges on the training. The regression output

that it produces has a R2 of 0.1154, this means that the correlation between target

and prediction on the test dataset, is very low. Therefore, the quality the output is

not useful for doing regression. In contrast, the GP increases the R2 for 500 nodes at
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Figure 4.22: Map of weights from the
first RBM.

Figure 4.23: map of t-student from the
weights.

Figure 4.24: Training of the first RBM
on the configuration III

Figure 4.25: Second RBM is training
along 10 epochs.

the last RBM. DL could be deleting features from the input dataset and this could

be useful to train a regression model.

The performances of the GP with a input pre-traning by CD and minimizing the

reconstruction error, it is clearly biasing the regression. Although, The performance

improved with respect to the previous experiment. R2 is 0.6693, and the MSE for

pre-training by CD, improved up to 0.0526. The MSE produced after pre-traning by

both methods, decreased to 0.0816 from 0.1180. Result obtained on the configuration

II.

53



Figure 4.26: Training and validation MSE for the third RBM.

Figure 4.27: Map of weights after min-
imizing the MSE for reconstruction.

Figure 4.28: Map of the t-student
from the backpropagation’s weights.

DL Configuration: 9860 2500 500

Pre-training MSE RE Training MSE R2

CD 0.2297
BP 0.2182 0.1154
GP 0.0526 0.7867

CD + RE 0.0502
BP 0.2338 0.0520
GP 0.0816 0.6693

DL Config.: 9860 1000 500 SVM 0.9410

Table 4.4: Results for v1 = 9864|v2 = 2500|v3 = 500|h3 = 1.
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Figure 4.29: Backpropagation algorithm diverges due to the large number of neurons
at the output RBM.

4.4.4 Configuration IV

On the Configuration IV, the number of hidden node at the seconds RBM, was

increased to 1000. It was aimed to see whether the performance of a GP improved

increasing the hidden nodes. Backpropagation performs worst when the number of

nodes increased. The step down on nodes is probably to big to converge successfully.

Figure 4.30: Structure experimented: v1 = 9864|v2 = 2500|v3 = 1000|h3 = 1

On the pre-training by CD, the map of weights is still the same. Therefore, it

can be conclude that after the initialization, CD rapidly finds a local minima. The
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weights have similar values on a different initialization. The t-student maps are not

showing significant variations on the 3 configuration tested.

Figure 4.31: Wights of the training of
the first RBM for the Configuration
IV.

Figure 4.32: Values for the t-student
from the first RBM after the training
by CD.

The CD algorithm, trained along 10 epochs converges quickly. The MSE on the

reconstruction error is 0.2841 on this experiment. The value increased from 0.2297 on

configuration II, to 0.1350 on configuration I. Therefore, the MSE obtained increased

by increasing the output nodes at the second RBM.

Figure 4.33: Pre-traning by CD for
the first RBM, on the acse of small-
est MSE.

Figure 4.34: Visualization of the evo-
lution of the pre-traning by CD on the
second RBM.

The pre-traning by minimizing the reconstruction error, produced the MSE on
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Figure 4.35: Third RBM’s MSE is increasing as the number of neurons does.

this configuration. This means that both configurations are converging to a global

minima, or that there is probably the same local minima. The value of the MSE is

0.0520.

Figure 4.36: Backpropagation weights
are similar, the algorithm converges to
same minims for MSE.

Figure 4.37: The t-student map does
not show relevant variation on the
weights.

As it is shown on the configuration IV, Backpropagation diverged when the output

node increased tp 500. The correlation coefficient R2 is dropping up to −0.1045, and

up to 0.1177 on the case of pre-traning by CD.

The GP produces better results on the regression as the number of hidden nodes
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Figure 4.38: Backpropagation diverges for 1000 neurons at output of the second
RBM

increases in the middle RBM. The R2 coefficient reaches 0.8136 on the case of training

the machine by CD. For the case that the structure is pre-trained by both algorithms,

the correlation on the regression dropped to a R2 of 0.3682. The minimization of

the reconstruction error affects negatively to thw regression. The SVM performs

the best results on all the configuration reviewed so far. The MSE is 0.0460 on the

regression.

DL Configuration: 9860 2500 1000

Pre-training MSE RE Training MSE R2

CD 0.2841
BP 0.2176 0.1177
GP 0.0460 0.8136

CD + RE 0.0502
BP 0.2724 -0.1045
GP 0.0705 0.714

DL Config.: 9860 1000 500 SVM 0.9410

Table 4.5: Results for v1 = 9864|v2 = 2500|v3 = 1000|h3 = 1.

58



4.4.5 Configuration V

On the structures that were tested on this configuration, nodes at the first RBM

where increase up to 5000. The number at the hidden nodes at seconds layer were

increase also up to 2500. The objective of experimenting this setup, is to check

whether the GP produces a smaller MSE on the regression than the previous config-

urations.

Figure 4.39: Structure experimented: v1 = 9864|v2 = 5000|v3 = 2500|h3 = 1

The weights after 10 epochs of training by CD, have a different map that on

previous configuration. The weights of the variables that are more informative for

characterizing model has an higher value. The algorithm is deleting the variables

that are less correlated on the input dataset.

Figure 4.40: Map of weights from 5000
hidden units at the first RBM.

Figure 4.41: Map of t-student from
the first RBM on the structure.
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The pre-traning on the first RBM by CD is smoothly converging to a local min-

ima in just 10 epochs. The seconds layer had a gently training but the minima is

not reached in just 10 epochs. In contrast, on the third RBM, the MSE was still

decreasing after the 10 epochs steeply. This is likely because of difference between

the quantity of input nodes and output nodes is too large.

Figure 4.42: Training of the first RBM
by CD for configuration V.

Figure 4.43: Motorization of the pre-
traning on the seconds RBM.

Figure 4.44: Training of the last layer for the configuration V.

The map of weights after the pre-traning, shows that the variables that contends

more information are weighted heavily. The forward and backward error propagation

training, went further down on the minima reached by on CD. This is meaningful
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because it is pointing to the minima which reduces the MSE. Therefore, it is reached

by training the algorithm with the most correlated variables on the dataset.

Figure 4.45: Backpropagation weights
map after 330 epochs of training.

Figure 4.46: T-student of the weights
of the first layer.

In this configuration the pre-traning by CD, had MSE of 0.3226. After the min-

imization, MSE decreased to 0.0502. The minimization of the MSE performs better

results than in the previous configurations.

Figure 4.47: Backpropagation for regression diverges for an output of 2500 units on
the second layer.

Backpropagation diverges on this configuration. This algorithm performs a neg-
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ative R2, which means that the values on the regression and on the target are com-

pletely independents. On the case of using just the CD, R2 is 0.2220.

The Gaussian Process had a MSE of 0.0517 on the regression. The R2 decreased

from 0.8136 to 0.7905. The GP converged on a model using a pre-training by CD

and minimizing the MSE on the reconstruction. In this configuration, the SVM is

also performing better results than a GP or Backpropagation.

DL Configuration: 9860 5000 2500

Pre-training MSE RE Training MSE R2

CD 0.3226
BP 0.1919 0.2220
GP 0.0517 0.7905

CD + RE 0.0502
BP 0.3024 -0.2260
GP 0.1558 0.3682

DL Config.: 9860 1000 500 SVM 0.9410

Table 4.6: Results for v1 = 9864|v2 = 5000|v3 = 2505|h3 = 1.
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4.5 Analysis of the Results

The results obtained on the experiments, show that Backpropagation performs better

MSE and R2 on structures with small number of output nodes at the second RBM.

The performance on regression decrease as the hidden units at second RBM increases.

The training of the weights become difficult because of reducing the dimensions

steeply. The difference between visible and hidden units should not be large at the

third RBM.

Figure 4.48: Results of the algorithms tested on each configuration.

The GP performed the best result on the configuration IV. The MSE is 0.046

and the R2 is 0.8136. This result does not differ considerably from the results on the

configuration II and IV, which performs MSE 0.0526 and 0.0517 receptively. The

values are 0.7867 and 0.7905 for R2. Therefore, the regression by GP will generate

worst prediction when the number of hidden nodes at the second RBM increases

from 1000 and decreases from the 500.

On the configurations that have been tested, SVM is the method that performs

better results on R2 and MSE. This is a symptom that the GP can likely perform
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better regression on other structures that have not been tested on this document.

The results on the regression, which have been pre-training by minimizing of the

reconstruction error, performs the worst. The R2 coefficient reached negative values

in some cases. Therefore, the prediction of GSR was completely uncorrelated from

its target. This happened despite the fact that the weights on the RBMs were not

significantly updated after converging. This is probably because the local minima

on MSE of reconstruction error does not match with the local minima on MSE of

regression.

The training by CD over-fits faster than other methods, when the difference

between visible and hidden node is small. This training method needs more epoch to

converge when difference between units is high. Therefore, the objective is to reduce

the dimensionality avoiding over-fitting.I trick that helps do not decrease steeply the

dimensions.

The pre-training by CD, increases the performance on the regression. This pre-

training reduces considerably the computing time of the algorithm from days to

minutes. This technique reduces the size of the matrices computed on parameters

optimization by deleting from the data uncorrelated variables.
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Chapter 5

Future Work

The results showed higher values for the correlation coefficient on the SVM. This

means that is likely to find a GP that can also reach values closer to the obtained

by the SVM. There are several paths that can be followed to explore this. There are

different kernel functions that have not been tested yet. Moreover, the covariance

matrix that defines a GP can be a product of kernel functions, which project different

features from the data on a higher dimensions space.

The ML techniques applied on the SG have mainly been used in experiments for

Load Demand, GSR and power output Forecasting. There are applications that have

been not explored yet such as classification on fault detections. There are Markov

models for cascade failure on transmission system that are currently being research.

Plus, other application on Electrical Engineering as Cognitive Radio or Predictive

Maintenance on materials that can be deteriorated by the exposure to magnetite

fields and high currents.

In particular, the DL is a ML technique that makes tractable computing high

dimensional datasets. The main disadvantage is that it is an unsupervised learning,

so that it very difficult to monitor the over-fitting along the training. There many
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interesting activation functions that can be explored in order to find configuration

that performs better results.

The kernel functions is probably the key to find a GP that fits better the forecast

on this case of GBS. The day light obviously has a daily periodicity. Therefore, if

the hyper-parameters which defined this periodicity can be found, the performance

on the regression from a GP will probably increase. The inconvenient is that the

computational time needed on a GP increases rapidly because of the matrix com-

putation on the optimization. Therefore, the adding kernel functions together could

increase the complexity of the model up to untranslatable covariance matrices.

Another interesting ML technique is the Bootstrapping. This a tool thank cool

make tractable problems that now are difficult to face because of the computation

of high dimensional matrix on the optimization. The bootstrapping would delete

the variable that are less correlated, reducing the dimension of the observations and

ease the computation. The challenge on this methods is to find the right trade-off

between performances and computational speed. This is probably a technique that

can be combined with other methods and producing better or similar results lighting

the process.
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Appendices

A Kernel Functions 4
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Appendix A

Kernel Functions

The covariance functions, or kernels, are parametric functions for the model input.

They define the covariance between pairs of input variables. A covariance matrix

is really important on the GP because it contends the information for model gen-

erated by the process. The selection of a particular kernel function can improve or

deteriorate the performance of a GP. Therefore, its selection and parameters opti-

mization requires particular attention from the point of view of the performance and

computational speed.

In this section, the parameters of kernel functions that are interesting to optimize,

are denoted as θ. They are useful to introduce information about components that

generate uncertainties on the model.

Linear Kernel

This kernel function is useful when the input data is already in a high-dimensions

space, and the original features from the data are individually important for the

model.
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K(x, x′) = xTx′ (A.1)

Square Exponential Kernel

The square exponential is considered as a default kernel function on different ML

techniques. It is used when there is no prior knowledge about the nature of the input

data because of its infinite number of derivatives. This fact produces a smoothness

effect on the covariance matrix of GP. However, this characteristic is often useless

for tackling problems in which physical parameters have to be modeled.

K(x, x′) = θ21exp

(
−(x− x′)2

θ22

)
(A.2)

where θ1 is the parameter which models the magnitude of the kernel and θ2 is

the length-scale of the Euclidean distance between the sampled data points.

Periodic Kernel

The periodic kernel function is useful for modeling highly periodic trends on the

input dataset. This function can be parametrized in order to fit the model with the

different frequencies components in the sampled data. For instance, the oscillation

on the observations can be due to seasonal variations. The periodic kernel has the

following form:

K(x, x′) = θ21

(
−2sin2(π(x− x′)

θ22

)
(A.3)
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Rational Quadratic Kernel

The rational quadratic covariance is a stationary kernel function. It can be seen as

scalable mixture of square exponential kernels with different length-scale parameter

for each one of them. There is a practical implementation on a GP in the article

[42].

K(x, x′) = θ21

(
1 +

(x− x′)2

2θ3θ22

)−θ3
(A.4)

where θ3 is a shape parameter, which describes as the tails decay on the kernel

function.

Independent Gaussian and Dependent Noise Kernel

For modeling error on the prediction and Gaussian noise on the sampling that can

affect the enclosed information on the data and that can also influence the prediction,

an independent Gaussian covariance matrix can be used. In this way, perturbations

on the trend are considered in the model such as:

K(x, x′) = θ21exp

(
−(x− x′)2

2θ22

)
+ θ23δxx′ (A.5)

where θ3 is the magnitude parameter for the noise and δxx′ , is the independent

short-term correlation noise between data points.

The properties of a covariance function can be improved by adding or multiply-

ing different together covariance matrices. The new covariance has a combination

of characteristics from the root functions. This is particularly interesting for ap-
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proaching to problems with many seasonal components or harmonics due to cyclical

variation on the input variable of the process.
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