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Abstract

Human activity detection from digital videos presents many challenges to the com-

puter vision and image processing communities. Recently, many methods have been

developed to detect human activities with varying degree of success. Yet, the gen-

eral human activity detection problem remains very challenging, especially when the

methods need to work “in the wild” (e.g., without having precise control over the

imaging geometry). The thesis explores phase-based solutions for (i) detecting faces,

(ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv)

whether the head is looking to the left or the right, using standard video cameras

without any control on the imaging geometry. The proposed phase-based approach

is based on the development of simple and robust methods that relie on the use of

Amplitude Modulation - Frequency Modulation (AM-FM) models.

The approach is validated using video frames extracted from the Advancing Out-

of-school Learning in Mathematics and Engineering (AOLME) project. The dataset

consisted of 13,265 images from ten students looking at the camera, and 6,122 images
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from five students looking away from the camera. For the students facing the camera,

the method was able to correctly classify 97.1% of them looking to the left and 95.9%

of them looking to the right. For the students facing the back of the camera, the

method was able to correctly classify 87.6% of them looking to the left and 93.3%

of them looking to the right. The results indicate that AM-FM based methods hold

great promise for analyzing human activity videos.
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Chapter 1

Introduction

Human activity analysis has advanced significantly over the last couple of years.

Methods have been developed to detect, recognize humans’ faces, bodies, and activ-

ities from images and videos. Basic underlying techniques include optical flow and

shape template construction and matching. Within this larger context, the current

thesis is focused on human attention detection. The goal is to determine whether

humans are paying attention to an object or a human located to their right or left.

Human attention detection is a complicated by the need to robustly detect the

positions of the different humans in an image. Then, pose estimation requires that

we develop methods that understand basic facial expressions or body language.

Generally, images collected in controlled environments are much easier to analyze

than ones collected “in the wild”. In uncontrolled environments, lots of elements (such

as light, viewing angles, resolution, etc.) will have an impact on detection results.

Yet, for most practical applications, there is strong interest in developing methods

for images detected in uncontrolled environments.
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Chapter 1. Introduction

1.1 Motivation

The primary motivation of this thesis is to develop methods to detect human at-

tention. The images were collected in an uncontrolled environments, as part of

the Advancing Out-of-school Learning in Mathematics and Engineering (AOLME)

project. The videos that were taken “in the wild” without full control of the camera

angles.

Fig. 1.1 provides several image samples from different scenes. Students in these

samples sit around the table randomly, and they either face the camera or have

their back to the camera. This kind of situation also causes issues associated with

non-uniform illumination.

This study will focus on the determination of students’ attention. For example,

if two of them have the same head direction, the assumption is that they are looking

at the same thing. Otherwise, they may be talking to each other or be interested in

different things which can be determined by detecting their positions in the image.

1.2 Thesis Statement

It is difficult to determine where people look based on AOLME videos because they

were taken in uncontrolled environments. As a result, the thesis claims that (i) a

phase-based method can be developed that is insensitive to illumination variations,

and (ii) that the proposed method will work for human images taken from different

camera angles.

The basic idea is to use multiscale Amplitude Modulation - Frequency Modulation

(AM-FM) models which can provide very effective representations of the image.

Then, attention detection is limited to determining whether people are looking to

2



Chapter 1. Introduction

Figure 1.1: Four image samples from AOLME videos

their right or left. On the other hand, a major innovation of the current thesis is

the development of an AM-FM method for detecting human attention for students

facing away from the camera (applied to girls). In all cases, AM-FM representations

can clearly capture the underlying face and head textures and patterns.

3



Chapter 1. Introduction

1.3 Contributions

The contributions of this thesis includes:

• A phase-based method that clearly detect eyes, mouth, nose, eyebrows, laugh

lines, or hair based on AM-FM representations. The extracted features are

then used for subsequent processing.

• A new method for detecting the back of the head. In combination with face

detection, the new method enables a new approach for detecting whether the

students were looking to the left or right.

1.4 Thesis Overview

Chapter 2 presents the background for AM-FM representation models, Gabor filter,

face recognition, and pose estimation. Chapter 3 describes the design and imple-

mentation of a daisy petal Gabor filterbank. Chapter 4 provides the implemented

methodology for face and back of head direction detection. The results are presented

and discussed in Chapter 5. Conclusion and future work are summarized in Chapter

6.

4



Chapter 2

Background

2.1 AM-FM Demodulation

Over the years, a variety of AM-FM demodulation methods have been developed.

AM-FM demodulation examples include Hilbert-based approaches, variable spac-

ing local linear spacing, Quasi-Eigenfunction Approximation (QEA) methods, and

Quasi-local method (QLM) methods as described in [2] and Table 2.1. The authors

in [2] also developed multiscale methods. Multiscale AM-FM methods have found

many applications in biomedical image analysis as summarized in Table 2.1. An

advantage of multiscale methods is that they can capture image patterns that can

serve as important biomarkers or features but cannot be observed by the unaided

eye. More generally, frequency modulation can provide effective methods for non-

stationary image analysis. Ideal examples include fingerprint image analysis and tree

ring image analysis. A summary of different applications is given in Table 2.1. Other

AM-FM applications include ultrasound images [3] [4] and brain magnetic resonance

images[5] texture analyses; diabetic retinopathy lesion [6] [7] and exudates in the

macula detection [8]; surface electromyographic signals classification [9]; a tool for

5



Chapter 2. Background

transform-domain energy compaction of broadband signals [10] and a novel class of

multidimensional orthogonal FM transforms [11]construction; foveated video com-

pression [12] and quality assessment [13], etc. In this thesis, we will use a new Gabor

filterbank and relie on the basic QEA method for AM-FM demodulation. Fig. 2.1

shows the basic approach.

2.1.1 AM-FM Representations for Images

Assume an image I (x, y) is a function of a vector of spatial coordinates (x, y). Here,

we are interested in describing the image as a sum of AM-FM components. For image

analysis purposes, we are interested in the instantaneous amplitude (IA) An (x, y)

and instantaneous phase (IP) φn (x, y) components. We write:

I (x, y) =
N∑
n=1

In (x, y) =
N∑
n=1

An (x, y) cos [φn (x, y)] . (2.1)

To estimate the IA and IP components, we compute the extended analytic signal

with a 2D discrete Hilbert transform as given by:

IAS (x, y) = I (x, y) + jH[I (x, y)] (2.2)

where

H[I (x, y)] = 1
πx
∗ I (x, y) . (2.3)

After filtering the resulting image using a Gabor filterbank, we have the following

approximation for the ouput of the n-th channel:

In AS (x, y) ≈ An (x, y) exp [jφn (x, y)] . (2.4)

Then, the amplitude and the phase components can be estimated using:

An (x, y) = |In AS (x, y)| (2.5)

6



Chapter 2. Background

and

φn (x, y) = arctan
[

imag (In AS (x, y))
real (In AS (x, y))

]
. (2.6)

Using the estimates of IA and IP, an image can be reconstructed based on the

AM-FM decomposition by (2.1). The cos [φn (x, y)] define the frequency-modulated

(FM) components, which also describe strong variations in image intensity.

The AM-FM representation of (2.1) can also be used to describe multi-scale

decompositions. In this case, the index n = 1, 2, ...,M represents different scales

[2]. Different scales are then defined by specifying the filters for each scale. At each

pixel, for the filters belonging to the corresponding scale, the AM-FM component is

reconstructed by selecting the AM-FM channel estimates with the largest IA. The

approach recovers the underlying image texture which cannot be observed with the

unaided eye.

Figure 2.1: AM-FM demodulation.

7



Chapter 2. Background

2.1.2 Gabor Filters

As shown in Fig. 2.1, there are several different filter types that can be used in

implemented for estimating multiscale AM-FM models. In this thesis, we focus on

the use of Gabor filters which have shown great promise in human image analysis.

The current thesis attempts to reproduce the daisy petal Gabor filterbank described

in [21] and uses this approach for image analysis. The motivation for the daisy-

petal method comes from its directional properties and its nice coverage of the 2D

frequency plane with few gaps.

A Gabor filter is given by:

G(x, y) = 1
2πγσ2 exp

−
(

1
γ
x′
)2

+ y′2

2σ2

 exp (j (2πFx′)) (2.7)

where the real part is:

Gr(x, y) = 1
2πγσ2 exp

−
(

1
γ
x′
)2

+ y′2

2σ2

 cos (2πFx′) , (2.8)

and the imaginary part is:

Gi(x, y) = 1
2πγσ2 exp

−
(

1
γ
x′
)2

+ y′2

2σ2

 sin (2πFx′) , (2.9)

and the rotated coordinates are given by:

x′ = x cos θ + y sin θ, and (2.10)

y′ = −x sin θ + y cos θ. (2.11)

Here, σ is the standard deviation of the Gaussian envelope and it determines the size

of a filter kernel. Fig. 2.2 shows several sample images with different σ values. γ is

the spatial aspect ratio and it sets the aspect ratio of the kernel. Fig. 2.3 presents

four kernels with various γ. In this study, γ = 0.5. F is radial center frequency

8



Chapter 2. Background

which is measured in cycles/image, and θ is the orientation, which is measured by

degrees or radians from the u-axis. Fig. 2.4 shows four Gabor filter kernel samples

with different orientations. Furthermore, F and θ are defined using

F =
√
u2 + v2, (2.12)

and

θ = arctan
(
v

u

)
, (2.13)

where (u, v) is the center frequency,

u = L cos
(

2πAng
360

)
v = L sin

(
2πAng

360

)

and Ang is the angle of the filter measured in degrees.

Figure 2.2: Gabor filter kernels with different sizes: σ=11, 9, 6 and 3. Here, Ang =
20.25◦ and F = 27/128 · π.

The frequency and orientation of a Gabor filter can be changed. Gabor filters

have been considered in different applications. For example, a face representation

based on Local Gabor Binary Pattern Histogram Sequence (LGBPHS) was proposed

in [22]. This method was motivated as an approach to reduce lighting artifacts, face

expression variability, and aging artifacts.

9
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Figure 2.3: Gabor filter kernels with different aspect ratios: γ=1, 0.75, 0.5 and 0.25.
Here, σ = 9.

Figure 2.4: Gabor filter kernels with different orientations: θ = 0◦, 45◦, 90◦ and 135◦,
F = 27/128 · π, Ang = 90◦, 45◦, 0◦, 135◦, σ = 5.

2.2 Face Detection

Face detection is often used to locate a person’s position. Face recognition methods

were recently classified in [23] as: 1) intensity image based; 2) video based; and 3)

using other sensory data such as 3D information or infra-red imagery. Most methods

are image intensity based. This thesis will use both intensity and texture based

methods derived from single images.

Faces have distinct color and texture information. For face color region detec-

tion, accuracy can be greatly reduced due to artifacts resulting from non-uniform

illumination. To avoid this problem, methods based on the unique locations of facial

features have been proposed. Table 2.2 lists common datasets used for face detection

and Table 2.3 shows some of the latest approaches for face detection.

10



Chapter 2. Background

From Table 2.3, we can see that a phase based method to detect faces was also

used in [24]. In this study, for this research, due to the uniqueness of AOLME

datasets, not only face detection, but also back of the head detection will need to be

considered to find the position of the head. For this method, especially for the back

of the head detection, no previous approach considered a phase based method.

2.3 Pose Estimation

Human pose estimation can be very challenging. Some researchers used specialized

hardware to obtain more pose features, like RGB-D camera and different sensors [35].

Such methods are more suitable for whole body pose estimation than head poses

estimation. 3D models are also currently being researched. For pose estimation in

videos, methods based on the connection of multiple frames have been proposed.

In typical cases, analytic or geometric methods, genetic algorithm methods, and

learning based methods are applied to estimate pose.

Tables 2.4 and 2.5 list the common datasets and some recent methods for human

pose estimation, respectively. The summary focuses on head pose estimation and

the application of analytic geometry methods.

In this thesis, AM-FM decompositions were used to represent images with 54

daisy petal Gabor filters for filtering. Based on this filterbank, more features were

captured than the standard methods described in this chapter. The additional fea-

tures benefited subsequent analysis. For face detection, the thesis includes both color

region detection and KNN classification, resulting in improved detections. For pose

estimation, the thesis focuses on head poses, and applies the head pose method based

on the distribution of the different face features.

11



Chapter 2. Background

Table 2.1: Recent AM-FM Methods

Author Filterbank
AM-FM
Demodulation
Method

Application

Agurto, et al.
[14]

Dyadic filterbank VS-LLP Neovascularization
in the optic disc
(NVD) detection

Pattichis, et al.
[15]

Gabor filterbank Teager-Kaiser
operator based

Frequency
modulation theory
demonstrated on
woodgrain and
fingerprint images.

Ramachandran,
et al. [16]

A variable
frequency spacing
filter bank
integer-based
Savitzky-Golay
filter

Hilbert-based
AM-FM

Tree growth analysis

Pattichis, et al.
[17]

Gabor channel
filters

QEA Fingerprint
classification

Pattichis, et al.
[18]

A collection of
Gabor channel
filters

QEA Electron
micrographs of
skeletal muscle
segmentation

Loizou, et al.[19] Dyadic 2D
filterbank

VS-LLP Segmentation and
classification in the
carotid artery

Belaid, et al.[20] Quadrature filters Monogenic
Signal

Segmentation of
ultrasound images

12



Chapter 2. Background

Table 2.2: Common datasets used for face recognition.

Title Description URL

LFW [25] More than 13,000 face images
collected from the web with large
variations in pose, age, expression,
illumination, etc.

http://vis-www.cs.
umass.edu/lfw/

YTF [26] 3,425 videos of 1,595 different people.
All the videos were downloaded from
You tube. An average of 2.15 videos
are available for each subject. The
shortest clip duration is 48 frames,
the longest clip is 6,070 frames, and
the average length of a video clip is
181.3 frames.

http://www.cs.tau.ac.
il/˜wolf/ytfaces/

Multi-
PIE
[27]

More than 750,000 images of 337
people recorded in up to four sessions
over five months.

http:
//www.flintbox.com/
public/project/4742/

CASIA-
WebFace
[28]

10,575 subjects and 494,414 images. http://www.cbsr.ia.ac.
cn/english/
CASIA-WebFace-Database.
html

CACD
[29]

163,446 images from 2,000 celebrities
collected from the Internet.

http://bcsiriuschen.
github.io/CARC/

AFLW
[30]

The database contains about 25k
annotated faces in real-world images.
Of these faces 59% are tagged as
female, 41% are tagged as male
(updated); some images contain
multiple faces.

https://lrs.icg.tugraz.
at/research/aflw/
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Table 2.3: Recent face detection methods.

Author Method Feature Comment

Kim. et al.
[31]

Multiple color
spaces

Investigated the
effectiveness of facial
color in face
recognition with
deep learning,
feature fusion.

Face recognition
accuracy with color
face image was
significantly higher
than that of using
grayscale images.

Dahmane. et
al.[24]

Fourier
transform,
phase-context,
local phase
quantization,
texture
representation.

Texture
representation using
phase-context which
is based on
four-quadrant mask
of the Fourier
transform phase in
local neighborhoods.

Representing face
from low-resolution
images under
varying light,
illumination and
blur.

Zhu. et al.
[32]

Using a
mixture of
trees with a
shared pool of
parts.

Model every facial
landmark as a part
and use global
mixtures.

Effective at
capturing global
elastic deformation
and it is easy to
optimize.

Cui. et al.[33] Uses robust
face region
descriptors

Developed a new
pairwise constrained
multiple metric
learning (PMML)
method.

Face can easily be
aligned accurately
with complex
appearance
variations or from
low-quality images.

Schroff. et
al.[34]

Presenting a
system,
FaceNet

Learning a mapping
from face images to
a compact Euclidean
space where
distances directly
correspond to a
measure of face
similarity directly.

Face recognition,
verification and
clustering can be
easily implemented
using standard
techniques with
FaceNet embedding
as feature vectors.

14
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Table 2.4: Common datasets used for pose estimation.

Title Description URL

Frames
Labeled In
Cinema
(FLIC) [36]

5003 image dataset from
popular Hollywood movies.

http://bensapp.github.io/
flic-dataset.html

Leeds Sports
Pose Dataset
[37]

2000 pose annotated images
of mostly sports people
gathered from Flickr.

http://www.comp.leeds.ac.
uk/mat4saj/lsp.html

MPII [38] 25K images containing over
40K people with annotated
body joints.

http://human-pose.
mpi-inf.mpg.de/

VGG [39][40]
[41][42][43][44]
[45]

The VGG Human Pose
Estimation datasets
includes large video
datasets annotated with
human upper-body pose.

https://www.robots.ox.ac.
uk/˜vgg/data/pose/

MPIIGaze [46] 213,659 images from 15
participants. The number
of images collected by each
participant varied from
34,745 to 1,498.

https://www.mpi-inf.mpg.
de/departments/
computer-vision-and-\
multimodal-computing/
research/
gaze-based-human-\
computer-interaction/
appearance-based-gaze-\
estimation-in-the-wild-\
mpiigaze/
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Table 2.5: Recent pose estimation methods.

Author Method Feature Comment

Xu. et al.
[35]

RGB-D camera,
using two depth
sensors
simultaneously.

Captured the front
and back of the
body’s movement.
Wide baseline
RGB-D camera
calibration
algorithm, Gaussian
mixture model.

The reconstruction of
detailed human model
was greatly improved.

Liu. et
al. [47]

Convolutional
neural network,
which is trained
on synthetic
head images.

Evaluated the
method on both
synthetic and real
data.

Generated a realistic
head pose dataset by
rendering techniques,
including different
gender, age, race and
expression.

Pfister.
et al. [48]

ConvNet
architecture.

Combined
information across
the multiple frames
using optical flow.

Simple, direct method
for regressing heat
maps. Results were
improved by combining
the regression with
optical flow and spatial
fusion layers.

Sapp. et
al. [49]

A multi-modal,
decomposable
model
(MODEC) for
articulated
human pose
estimation in
monocular
images.

Used a linear
structured model,
which struggled to
capture the wide
range of appearance
present in realistic,
unconstrained
images.

The model provided a
way to maintain the
efficiency of simple,
tractable models while
gaining the rich
modeling power of
many global modes.
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Chapter 3

Gabor Filter Bank Design

Compared to other filters, Gabor filters have the advantage that they closely approx-

imate filtering processes associated with the human visual system. In this thesis, we

consider a filterbank based on 54 daisy petal Gabor filters based on the discussion

of Chapter 2.1.2.

In Fig. 3.1, L is the distance between a filter’s center and the origin, and Ang

represents the orientation of the filter. In Fig. 3.2, we show the frequency responses

with two different Gabor filters.

For filter bank design, we compute the overlaps between three consecutive filters

along the same direction as shown in Figs. 3.3 and 3.4. In the example, assuming a

peak of M , the filters overlap at 0.8 ·M . Based on this overlap rule, the filter shown

in Fig. 3.5 was generated. Fig. 3.6 illustrates the multi-scale design. The orientation

directions are uniformly sampled. A full description is given in Table 3.1. We have

54 pairs of values for parameters L, σ correspond to various values of Ang to generate

a daisy petal Gabor filter bank. Figs. 3.7 and 3.8 show the frequency response.

Fig. 3.9 shows the estimated FM component using dominant component analysis

17



Chapter 3. Gabor Filter Bank Design

Figure 3.1: Geometry for a filter in the spatial frequency response

with the daisy petal Gabor filterbank. From Fig. 3.9, eyes, eyebrows, nose, mouth,

hairs, even wrinkles on the clothes, can be observed. This example shows that the

filterbank worked very well for these images taken “in the wild”.
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Chapter 3. Gabor Filter Bank Design

(a)

(b)

Figure 3.2: Frequency response of different Gabor filters: (a) L = 0.2π, Ang =
20.25◦, σ=7, γ=0.5. (b) L = 0.3π, Ang = 20.25◦, σ=5, γ=0.5.
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Figure 3.3: Geometry for several filters in the spatial frequency responses

Figure 3.4: The overlaps between two filters in the spatial frequency responses
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Figure 3.5: Aperiodic hexagon tiling [1]
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Chapter 3. Gabor Filter Bank Design

Table 3.1: Parameters for Gabor filterbank generation

(L, σ) Ang Comment

(0.047π, 11),
(0.125π, 6),
(0.242π, 4),
(0.406π, 3),
(0.648π, 2),
(0.938π, 2)

20.25◦
65.25◦
110.25◦
155.25◦

Uniform angels, the interval
between two angles is 45◦;
have intersection between
two filters in the same angle

(0.102π, 7),
(0.195π, 6),
(0.313π, 4),
(0.461π, 3),
(0.695π, 2)

42.75◦
87.75◦
133.75◦
177.75◦

Uniform angels, the interval
between two angles is 45◦;
have intersection between
two filters in the same angle

(0.094π, 3) 10◦
32.5◦
55◦
77.5◦
100◦
122.5◦
145◦
167.5◦

Uniform angels, the interval
between two angles is 22.5◦

(1.094π, 2) 43.5◦
133.5◦

Uniform angels, the interval
between two angles is 90◦
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Chapter 3. Gabor Filter Bank Design

(a) (b)

(c) (d)

Figure 3.6: Multi-scale filterbanks design: (a) six scale filterbank. (b) five scale
filterbank. (c) single scale. (d) single scale.
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Figure 3.7: Spatial frequency response of daisy petal Gabor filter bank with 54 filters

(a)

Figure 3.8: Frequency response of the Gabor filter bank
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(a)

Figure 3.9: FM component with daisy petal Gabor filter bank in this work.
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Chapter 4

Attention Detection

Human attention is determined based on head orientation. In this chapter we discuss

techniques and methods to detect if a person is looking the right or left of the camera.

Before determining the direction, we need to be able to detect head position. Due to

uncontrolled nature of the videos to be processed in this thesis, we need to determine

attention direction using both the face and the back of the head (see Fig. 4.2). A

block diagram giving an overview of framework is given in Fig. 4.1.

4.1 Face Detection

Face detection is achieved by combining skin region detection with FM component

based classification. Fig. 4.3 gives an overview block diagram of this detection

method.
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Chapter 4. Attention Detection

Figure 4.1: Detection method overview.

4.1.1 Skin Region Detection

Segmenting skin from non-skin regions requires reliable color models. For the thesis,

skin detection is performed in the RGB, HSV and YCbCr color spaces. These models

have been widely used in color based detection. When the input is an RGB-uint8

image, each element is an integer with goes from 0 to 255. For the YCbCr model,

Y ranges from 16 to 235, while Cb and Cr take values from 16 to 240. For the HSV

model, the elements are in the range of 0 to 1.

To setup the values, the thesis considered color model rules [50]: (i) the uni-

form daylight illumination rule, and the (ii) flashlight or daylight, lateral illumina-

tion rule. Based on these bounding rules, the parameters were manually set based

on some observations. Using these models, human skin is detected effectively in

AOLME videos. The four bounding rules detecting skin are given in Algorithm

DetectSkinRegions(.) in Fig. 4.4.

The results of skin segmentation from each color model are ANDed together to
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(a)

(b) (c)

Figure 4.2: A sample image example: (a) Original image. (b) AM component. (c)
FM component.

generate the final skin regions. An example is given in Fig. 4.5.
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Figure 4.3: Face detection.

4.1.2 KNN Classification using FM images

Face detection is done for every 60 × 60 block with 50% overlap. For each block, a

KNN classifier (K=3) is applied based on extracted FM images. Here, the training

set consisted of 2442 face blocks and 2275 non-face blocks. For the final detection,

the skin detection results need to be combined with the KNN classification results.

4.1.3 Combination

The final result is obtained by anding the results from the skin and FM classifiers

(see Figs. 4.6a, 4.6a, 4.6b, 4.6c, 4.6d). The extracted face block shown in Fig. 4.7 is

used for attention detection.

4.2 Attention Classification For Students Facing

the Camera

Attention detection is based on the FM component image. The basic idea is to

decompose each face into four regions and then determine attention based on the
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number of pixels in each segment. Thus, if more pixels are found in the right regions,

the image is classified as looking to the right. A similar idea is applied for students

looking the left. The method is summarized in Fig. 4.8 and an example is given in

Fig. 4.10a.

As described earlier, Otsu’s method [51] is used for determining the face regions.

For the thesis, the method used a 256-bin image histogram. This binarized FM image

is thus brought back from the face detector.

To detect the face regions we extract the largest connected component from the

binarized FM image. Then, we fill-in the holes of this component to avoid any gaps

[52]. The outline of the filled component is further refined by using a convex full

as shown in Fig. 4.10b. From the resulting image, we compute the centroid and

decompose the image into four patches (see Figs. 4.10b, 4.10c). From Fig. 4.10c, we

can see several facial features (e.g., eyebrows, eyes, nose and mouth).

The four patches are illustrated in Fig. 4.9. To reduce the noise in the extracted

face image, we select the 7 rows with the largest number of pixels as shown in Fig.

4.10d. From the resulting image, we compute the number of pixels in each one of the

four patches. Then to detect where students are looking, we consider three classifiers:

(i) lower-face classifier, (ii) upper-face classifier, and (iii) whole-face classifier. The

algorithm is given as function ClassifyFaceDirection(.) and presented in Fig.

4.12.
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4.3 Back of the Head Detection

To detect the back of the head, we combine the AM and FM components as shown

in Fig. 4.13. In what follows, we provide a summary of each component.

We begin with the AM component (see Fig. 4.2b). In the AM component, the

back of the head appears dark. Thus, the AM detector used Otsu’s method to

automatically determine the threshold over the whole image.

For the FM detector, refer to Fig. 4.2c. To construct a hair detector using the

FM image, the basic idea is to find dark regions that are also characterized by strong

vertical stripes. The basic method is illustrated in Fig. 4.15. Initially, Otsu’s method

is used for detecting the dark regions [51]. Then, to detect the vertical stripes, we

follow a three-step approach. First, a Canny edge detector is used for determining

the vertical hair lines [53]. Second, a global fill is used for enhancing the direction

of each image component. Third, the resulting image is complemented so that the

hair regions re-appear as dark. Here, in our example of Fig. 4.2c, we note that the

global fill filters out clothes and the table, while preserving the hair.

The AM and FM detector results are ANDed together as shown in Fig. 4.16b.

To detect the vertical stripes, we compute the number of pixels along each col-

umn. We then select the columns with the largest number of pixels M = 60 and

all other columns are zeroed-out as noise. To locate the back of the head, we

need a detector that finds the largest density of vertical pixels. This is done by

scanning the image using 200 × 200 blocks, advancing each block by 1 pixel, and

counts the number of pixels inside each block. The block center with the maxi-

mum number of counted pixels is then taken as the location of the back of the head

(see Figs. 4.16c, 4.16d). The pseudo-code for the algorithm is given as algorithm

FindTheHighestDotDensityArea(.) in Fig. 4.14. Lastly, the detected region is

further refined by restricting it to the largest connected component in the AM image
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(see Fig. 4.17).

4.4 Attention Classification For Students Facing

Away from the Camera

To determine whether a student is looking to the left or the right, we need to combine

the results from face detection and back of the head detection. The basic idea is to

classify students as looking to the right if the face is detected to be on the right of the

head and similarly for the left (see Fig. 4.18). Skin detection was based on the color

information only (see Figs. 4.5, 4.19a). Then, we associate a face with a back of the

head if they overlap. We declare an overlap when the bounding box associated with

the skin detector is found to overlap with the back of the head detector. Then, to

determine whether the students are looking to the left or right, we use the centroids

of the bounding boxes.

Let (xf , yf ) denote the centroid for the detected face region. Then, let (xb, yb)
denote the centroid for the back of the head detector. Attention classification is
performed using:

if xf > xb then
Classify Right

else
Classify Left

end if
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DetectSkinRegions (R, G, B, H, S, V, Y, Cb, Cr)
% Input:
% R: Red, G: Green, B: Blue
% H: Hue, S: Saturation, V: Value
% Y: Luminance, Cb/Cr: Chrominance color value
% Output:
% M: Final model
% Brief description:
% This function is used to construct bounding
% rules for skin regions detection based on
% four color space models:
% RGB_1, RGB_2, HSV and YCbCr.%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% RGB_1 model %%

RGB_1 = ((R>60) AND (G>40) AND (B>20) AND (R>G) AND...
(R>B) AND (10<|R-G|<45) AND (|R-B|<|R-G|)) OR...
((|R-G|<45) AND (|R-B|>10) AND (|R-G|<|R-B|));

%% RGB_2 model %%
RGB_2 = (0.36<=(R/(R+G+B))<=0.44) AND...

(0.2<=(G/(R+G+B))<=0.36);
%% HSV model %%

HSV = (0<=H<=1) AND (0.1<=S<=0.3 )AND (0.2<=V<=0.8);
%% YCbCr model %%

YCbCr = (110.5<=Cb<=135.50) AND (135<=Cr<=145);
%% Final model %%

M = (RGB_1) AND (RGB_2) AND (HSV) AND (YCbCr);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 4.4: Algorithm to detect skin regions
.

33



Chapter 4. Attention Detection

Figure 4.5: Skin region detected using color models. White region represents skin.
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(a) (b)

(c) (d)

Figure 4.6: Face detection: (a) Skin areas in phase component. (b) Face detection
with KNN classifier. (c) Same area of Fig.4.6a and Fig. 4.6b. (d) Final face detection
result.

35



Chapter 4. Attention Detection

Figure 4.7: A block of face
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Figure 4.8: Method for face direction detection.

37



Chapter 4. Attention Detection

(a) (b) (c)

Figure 4.9: Attention classification: (a) Face image looking towards the camera. (b)
Face image looking to the left. (c) Face image looking to the right.

(a)

(b) (c) (d) (e)

Figure 4.10: Face direction detection: (a) FM image. (b) Convex hull of the largest
connected component. The red dot denotes the estimated centroid. (c) Extracted
face region around the centroid. (d) Top 7 rows with the largest numbers of pixels
extracted from (c). The four patches are also shown (UL, UR, LL, LR).
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(a) (b)

(c) (d)

Figure 4.11: Face decomposition into four patches: (a) Upper-Left patch. (b) Upper-
Right patch. (c) Lower-Left patch. (d) Lower-Right patch.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ClassifyFaceDirection (UL, LL, UR, LR)
% Input:
% UL: the number of black pixels in upper-left face
% LL: the number of black pixels in lower-left face
% UR: the number of black pixels in upper-right face
% LR: the number of black pixels in lower-right face
% Brief description:
% This function is used to classify face direction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if UL >= UR then
if LL >= LR then

Classify Left
else if (UL + LL) >= (UR + LR) then

Classify Right
else

Classify Left
end if

else if LL >= LR then
if (UL + LL) >= (UR + LR) then

Classify Left
else

Classify Right
end if

end if
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 4.12: Algorithm to classify face direction
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Figure 4.13: Method of back of the head detection
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function FindTheHighestDotDensityArea (I, m, n)
% Input:
% I: an input binary image
% m: the height of I
% n: the width of I
% Output:
% H: the block that has the highest dot density
% Brief description:
% This function is used to find the highest
% dot density area. The size of this area is 200px*200px.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Set s = 200;
Set Rate = a empty matrix;
for 0 < i < m-s+1

for 0 <j <n-s+1
Num = the number of black pixels in...
the area from I(i,j) to I(i+199, j+199);
Rate(i, j) = Num / (200 * 200);

end
end
Max_Rate = the max number in matrix ’Rate’;
Max_i = the ’i’ value when Rate = Max_Rate;
Max_j = the ’j’ value when Rate = Max_Rate;
H = the area from I(Max_i, Max_j) to I(Max_i+199, Max_j+199);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 4.14: Algorithm to find the highest density area of black pixels
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(a) (b)

(c) (d)

Figure 4.15: Back of the head detection: (a) Binary image of FM component. (b)
Edge detection with Canny approximate. (c) Filling holes in Fig. 4.15b. (d) The
complement of filled holes.
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(a) (b)

(c) (d)

Figure 4.16: Back of the head detection: (a) Doing ‘AND’ operation between Fig.
4.15d and binary image of AM component. (b) 60 longest vertical lines. (c) The
highest density area of black pixels. (d) Same area in AM component.
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Figure 4.17: Back of head detection result
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Figure 4.18: Method for back of the head direction detection.
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(a) (b)

Figure 4.19: Back of the head detection: (a) Bounding box for all skin regions. (b)
Final face and back of head position.
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Results

The datasets for this thesis were taken from the Advancing Out-of-school Learning

in Mathematics and Engineering (AOLME) project videos. More than 8,000 frames

were extracted from over 25 short different video segments. The videos contain

students’ activities in unrestrained environments. Among other activities, the videos

captured students talking, listening, writing, and typing. In these videos, students

sit around the table at random. Some of the students are recorded facing towards

the camera while others are looking away from the camera. For the students facing

away from the camera, we need to use the back of the head detector.

5.1 Face Direction Results for Students Looking

towards the Camera

For face direction detection, the dataset consisted of 7,111 images of students looking

to the left (from ten students), and 6,154 images of students looking to the right (from

five students). Some of the extracted FM components are shown in Figs. 5.1 5.2
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provide several FM component samples of these faces.

We present the classification results in Figs. 5.3, 5.4 and 5.5. For each patch

classifier (low, upper, and whole face), images that generate points above y = x are

classified as looking to the right. Similarly, images that generate points below y = x

are classified as looking to the left. The final classification is based on the majority of

the patch classification results. Thus, as an example, an image is classified as looking

left if two or all three of the patch classifiers returned a left classification. The final

results are presented in Table 5.1. The looking-left classifier had an 97.1% correct

classification rate and the looking-right classifier gave 95.9% correct classification

rate.

Figure 5.1: Face images for students and facilitator looking to the left

We also present representative classification results. Fig. 5.6 shows the FM

components of cases that were correctly classified. In these example, facial features

are hard to see due to variability in the image acquisition. Nevertheless, the proposed

approach was sufficiently robust to avoid these issues.
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Figure 5.2: Face images for students and facilitator looking to the right

Table 5.1: Classification Results for Face Direction Detection.

Classifier Number of images Accuracy

Left 7111 97.1 %
Right 6154 95.9 %

5.2 Results for images of students looking away

from the camera

For classifying images where students are looking away from the camera, the dataset

consisted of 1,718 left-looking images and 4,404 right-looking images from 5 people.

Figs. 5.7 and 5.8 provide several image samples. The results are summarized in

Table 5.2. The looking-left classifier had an 87.6% correct classification rate and the

looking-right classifier gave 93.3% correct classification rate. A difficult example
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(a)

(b)

Figure 5.3: Plots for: (a) Upper face classifier for looking right images. (b) Upper
face classifier for looking left images.
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(a)

(b)

Figure 5.4: Plots for: (a) Lower face classifier for looking right images. (b) Upper
face classifier for looking left images.
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(a)

(b)

Figure 5.5: Plots for: (a) Whole face classifier for looking right images. (b) Whole
face classifier for looking right images.
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Figure 5.6: Successful face direction detection for difficult cases.

Figure 5.7: Two left samples for back of the heads

is shown in Fig. 5.9. In this case, the head and the sweater shared the same color

and similar texture characteristic. Thankfully, the dot density detector was able to

Table 5.2: Classification Results for Back of the Head Direction Detection

Classifier Number of images Accuracy

Left 1718 87.6 %
Right 4404 93.3 %
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Figure 5.8: Two back of the head examples that were correctly classified.

differentiate between the two and thus allowed the system to correctly the classify

the input image.

5.3 Failed Classification Examples

We present three examples that were not classified correctly. One example for stu-

dents looking towards the camera and another two for students looking away from

the camera.

We present an example that was incorrectly classified in Fig. 5.10 . In this case,

the girl’s bangs interfered with the classification results. The bangs produced extra

pixels in the upper left part of the face resulted in a looking-left as opposed to the

correct, looking right classification.

We present two examples for students looking away from the camera in Fig. 5.11.

In one example, the back of the head is combined with the student’s hand. In another
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(a)

(b) (c)

Figure 5.9: Back of the head direction detection for a difficult case: (a) Original
image. (b) AM component. (c) FM component.

example, a hand was combined with another face.
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(a) (b)

Figure 5.10: A failed example: (a) Phase component of a face. (b) Separating face
features into four patches.

Figure 5.11: Failed examples for back of the head direction detection.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, new methods were proposed for detecting human attention in AOLME

videos. The primary contributions of the new methods included: (i) a phase-based

method, (ii) a new method for detecting back of the head, (iii) a new approach for

detecting whether the students were looking to the left or right. Furthermore, a new

classifier was used to determine attention in students looking away from the camera.

In the proposed methodology, both the extracted AM and FM components were used

to detect the face and the back of the head.

The datasets were challenging because the videos were recorded in uncontrolled

environments where the students in the videos were recorded from different angles,

including the front and the back. The datasets consisted of 13, 265 face images from

10 people and 6122 back of the head images from 5 people. Overall, the proposed

methods achieved an accuracy of 97.1% for left-looking front face images, 95.9%

for right-looking front face images, 87.6% for left-looking back of the head images,

and 93.3% for right-looking back of the head images. Thus, the results showed that
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AM-FM based methods hold great promise for analyzing human activity videos

6.2 Future Work

Future work should include:

• Exploring methods to detect the back of the heads for boys. Due to

their short hair, phase based methods will have fewer pixels to work with in this

case. This makes it difficult to detect their heads from images in which they

are looking away from the camera. New methods will have to be developed to

cover this case.

• Color independent back of the head detection. When detecting the back

of the head, hair color plays an important role in the AM component. This

makes back of the head detection algorithm perform poorly for non-dark hair.

We need to explore new methods that will work for different hair colors.

• Extending attention detection to include other head poses. This thesis

classifies student’s attention into looking right or looking left. More directions

need to be considered in the future (e.g., looking up, looking down, looking

sideways, etc).

• Studies on large video databases. Clearly, it will be interesting to extend

the study to larger video databases that cover different environments and more

complex human interactions.
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