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ABSTRACT 

Mental disorders such as schizophrenia (SZ), bipolar (BD), and major depression 

disorders (MDD) can cause severe symptoms and life disruption. They share some 

symptoms, which can pose a major clinical challenge to their differentiation. Objective 

biomarkers based on neuroimaging may help to improve diagnostic accuracy and 

facilitate optimal treatment for patients. Over the last decades, non-invasive in-vivo 

neuroimaging techniques such as magnetic resonance imaging (MRI) have been 

increasingly applied to measure structure and function in human brains. With functional 

MRI (fMRI) or structural MRI (sMRI), studies have identified neurophysiological 

deficits in patients’ brain from different perspective. Functional connectivity (FC) 

analysis is an approach that measures functional integration in brains. By assessing the 

temporal coherence of the hemodynamic activity among brain regions, FC is considered 

capable of characterizing the large-scale integrity of neural activity.  



 
vi 
 

In this work, we present two data analysis frameworks for biomarker detection on 

brain imaging with FC, 1) graph analysis of FC and 2) multimodal fusion analysis, to 

better understand the human brain. Graph analysis reveals the interaction among brain 

regions based on graph theory, while the multimodal fusion framework enables us to 

utilize the strength of different imaging modalities through joint analysis. Four 

applications related to FC using these frameworks were developed. First, FC was 

estimated using a model-based approach, and revealed altered the small-world network 

structure in SZ. Secondly, we applied graph analysis on functional network connectivity 

(FNC) to differentiate BD and MDD during resting-state. Thirdly, two functional 

measures, FNC and fractional amplitude of low frequency fluctuations (fALFF), were 

spatially overlaid to compare the FC and spatial alterations in SZ. And finally, we 

utilized a multimodal fusion analysis framework, multi-set canonical correlation analysis 

+ joint independent component analysis (mCCA+jICA) to link functional and structural 

abnormalities in BD and MDD. We also evaluated the accuracy of predictive diagnosis 

through classifiers generated on the selected features. In summary, via the two 

frameworks, our work has made several contributions to advance FC analysis, which 

improves our understanding of underlying brain function and structure, and our findings 

may be ultimately useful for the development of biomarkers of mental disease. 
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Chapter 1 Introduction 

1.1  Motivation 

Mental disorders including schizophrenia(SZ), bipolar disorder (BD) and major 

depressive disorder (MDD, or unipolar depression) rank among the most debilitating 

illnesses worldwide (Murray, Lopez et al. 1996; Hirschfeld and Vornik 2005). They share 

similar clinical symptoms, which often lead to misdiagnosis. Objective neuroimaging 

markers that distinguish disorders may significantly improve diagnostic accuracy, 

especially in the early phases of the illness (Strakowski, Adler et al. 2012), and may 

facilitate optimal clinical and functional outcome for individuals suffering from these 

disorder (Cardoso de Almeida and Phillips 2013).  

In the two decades, both functional (Delvecchio, Fossati et al. 2012; Cerullo, 

Eliassen et al. 2014) and structural (Konarski, Mcintyre et al. 2008; Kempton, Salvador et 

al. 2011) brain abnormalities in patients with mental disorders have been extensively 

studied in the literature of magnetic resonance imaging (MRI). In general, functional 

MRI shows the brain activation in different regions. Functional connectivity (FC) 

analysis is an approach that assesses temporal coherence of the hemodynamic activity 

among brain regions (Friston 2002). FC calculated from fMRI images is capable of 

characterizing large-scale integrity of neural activity and provides insight into the 

functional integration and segregation of the brain (Van Dijk, Hedden et al. 2010). Graph 

analysis treats FC map across multiple brain regions as a whole network. Analyses of FC 

by computing graph theory metrics, such as clustering coefficient, characteristic path 
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length, local efficiency and global efficiency, further assess the topological properties of 

brain graphs, and provides a useful measure of how effectively information is passed and 

processed between different brain regions either locally (within one or several regions or 

connectivity) or globally (overall network structure of whole brain) (Rubinov and Sporns 

2010). Graph organizational properties may reveal disease-related abnormalities in 

functional brain networks among psychiatric patients from resting-state as well as task-

related neuroimaging data (Achard, Salvador et al. 2006; Stam, Jones et al. 2007; Liu, 

Liang et al. 2008; He, Chen et al. 2009; Lynall, Bassett et al. 2010; Wang, Metzak et al. 

2010; Yu, Sui et al. 2011; Yu, Sui et al. 2011; He, Sui et al. 2012). 

Generally, each neuroimaging modality provides a certain perspective on brain 

function or structure. For example, although fMRI contains both spatial and temporal 

information, its spatial resolution is relative low. On the other hand, structural MRI 

provides static images on tissue distributions in high spatial resolution. By intuition, the 

brain anatomical structures shape its function. This hypothesis has been supported by 

previous neuroimaging studies (Greicius, Supekar et al. 2009; van den Heuvel, Mandl et 

al. 2009; Mars, Jbabdi et al. 2011). However, the relationship between altered brain 

function and structure in mental disorders is still unclear. A conventional multimodal 

practice is firstly to analyze each modality separately, and then to compare the results 

side by side (Rigucci, Serafini et al. 2010). However, such an approach is not able to 

capture the joint information directly (Sui, Adali et al. 2012; Calhoun and Sui 2016). 

Data fusion through a joint analysis not only capitalizes on the strengths of each imaging 

modality, but also reveals underlying inter-relationships, providing comprehensive 

understanding of brain deficits in psychotic disorders (Calhoun, Adali et al. 2006; Sui, 
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Adali et al. 2012; Calhoun and Sui 2016). Associated FC maps and structural patterns 

derived from multimodal fusion analysis may be useful to differentiate patients with 

mental disorders.  

1.2  Thesis Statement 

In this dissertation, we introduce two data analysis frameworks on functional 

connectivity in human brains: graph analysis and multimodal fusion. By applying these 

analyses to functional connectivity, the underlying interaction patterns across brain 

regions, as well as the relationship between functional and anatomical attributes, can be 

revealed. Both functional and structural deficits may be characterized in different patients 

with mental illnesses like schizophrenia, bipolar and major depression disorders, thus 

could be served as objective biological markers to distinguish these disorders. 

1.3  Outline 

The dissertation is organized as follows:  

Chapter 2 provides the background of the conducted research. The definition of 

biomarkers for mental disorders is introduced first. The basics of MRI for functional and 

structural brain imaging are explained, followed by a brief description to a common 

signal processing technique in medical imaging, independent component analysis. 

Introduction to functional connectivity, graph analysis, and multimodal fusion analysis 

are given too. In the end, the information of three clinical datasets used for dissertation 

work is provided. 

Chapter 3 includes a study of functional connectivity from model-based approach, 

with application to find the altered brain functionality in schizophrenia during working 
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memory performance. A special type of graph structure called small-world network were 

built and analyzed using graph metrics. The findings characterize the effects of 

dysfunctional neural circuitry and variations in impaired connectivity across levels of 

working memory demands in SZ. 

Chapter 4 demonstrates another graph analysis study that constructing functional 

network connectivity with data-driven method on resting-state fMRI from bipolar and 

major depression disorders. Both global and local graph measures show different 

functional network connectivity related to distinct mood control schemes between these 

mood disordered subgroups.  

Chapter 5 introduces an attempt to combine information from two measures of 

fMRI, functional network connectivity and fractional amplitude of low frequency 

fluctuations to examine the functional correlates of cognitive dysfunction in 

schizophrenia during resting-state. Each measure were measured and correlated with the 

cognitive scores separately. The results from each measure were then overlaid to compare 

the results side by side, showing the findings of abnormalities related to cognitive 

impairment in schizophrenia from two methods are consistent. 

Chapter 6 describes a multimodal fusion framework called mCCA+jICA, which 

combine information of multiple imaging modalities through a joint analysis. We 

describe the assumption and the mathematical model in detail. Simulation is then 

presented to show the performance of the framework under different scenarios.  

Chapter 7 presents an application of the mCCA+jICA framework on functional 

network connectivity and structural MRI from subjects with bipolar or major depression 
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disorders. Graph analysis was also applied to the fusion results. Related functional and 

structural changes specific to disorders were found. In addition, high accuracy achieved 

by trained classification models imply that features extracted from our fusion analysis 

may be ultimately served as potential biomarkers.   

Chapter 8 summarizes and concludes the projects and provides some perspective 

of potential future works. 
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Chapter 2 Background 

2.1  Biomarkers for Mental Disorders 

According to World Health Organization, mental disorders including 

schizophrenia, bipolar disorder (or manic depressive) and major depressive disorder (or 

unipolar depressive) rank among the most debilitating illnesses worldwide (Murray, 

Lopez et al. 1996; Hirschfeld and Vornik 2005), causing disabilities and early death. In 

specific, schizophrenia is a severe mental disease usually characterized by disintegration 

in perception of reality, cognitive problems, and chronic impairment in emotion and 

behavior (Heinrichs and Zakzanis 1998). Both bipolar and major depressive disorders are 

mental disorders that cause unusual shifts in mood, energy, activity levels, and the ability 

to carry out day-to-day tasks. However, major depressive disorder patients suffer from 

sad or “empty” moods, while bipolar patients often experience extreme euphoric or 

irritable moods called “mania” in addition to depression(Mitchell, Wilhelm et al. 2001). 

Prevalence estimates suggest that lifetime risk of schizophrenia is about 1% in general 

population, while the number is 1.5–3.0% for bipolar disorder, and more than 6% for 

suffering from major depressive disorder for more than 12 months (Narrow, Rae et al. 

2002). However, these mental disorders share similar clinical symptoms, and 

misdiagnosis often lead to inappropriate and longer medication trials, a poorer prognosis, 

and greater health care expenses (Ho and Andreasen 2001; Strakowski, Adler et al. 2012; 

Dudek, Siwek et al. 2013). Unfortunately, the causes for these mental disorders are little 

known, and there is no clinical test available. Based on Diagnostic and Statistical Manual 

of Mental Disorders (DSM) published by the American Psychiatric Association, the 
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criteria for diagnosis are usually based on self-reported symptoms and abnormalities in 

behavior. 

In contrast to medical symptoms or subjective descriptions, biomarkers or 

biological markers, refer to a broad subcategory of medical signs that are objective 

indications of medical state observed from outside the patient, and can be measured 

accurately and reproducibly (Strimbu and Tavel 2010). Over the last decades, non-

invasive in-vivo neuroimaging techniques such as magnetic resonance imaging (MRI) 

open a new window to understand mental disorders. Neuroimaging have been 

increasingly applied to measure structure and function in human brains. With functional 

MRI (fMRI) or structural MRI (sMRI), studies have identified neurophysiological 

deficits in patients’ brain from different perspective. Objective markers derived from 

neuroimaging might help improve accuracy in differentiating the mental disorders, and 

ultimately optimize clinical and functional outcome for all individuals suffering from the 

disorders (de Almeida and Phillips 2013). 

2.2   Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a medical imaging technique to measure 

the anatomy and physiology processes of body. MRI takes advantage of nuclear magnetic 

resonance properties of atomic nuclei. This non-invasive imaging method generates 

relatively high resolution compared to other imaging techniques, providing a powerful 

tool for medical diagnosis and biomedical research. Hydrogen atoms can generate a 

detectable radio-frequency signal during the imagin process. The abundance of hydrogen 

atoms in human bodies, particularly in water and fat, make MRI for anatomy and 

functional imaging possible.  
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For a single proton of hydrogen, thermal energy makes the proton to spin about 

itself and orient randomly under normal conditions. The spin motion of the proton 

generates an electric current that causes have a small dipolar magnetic field with an 

angular momentum – a property known as a spin or magnetic moment. When an external 

magnetic field is applied, the spinning proton will initiate a gyroscopic motion, known as 

precession, where the spin axis rotates around a central axis aligned to the external 

magnetic field. If an additional radio-frequency (RF) energy pulse is applied at a certain 

frequency called resonant frequency, the protons will absorb energy and disturb the 

alignment away from the external magnetic field. After turning off the RF pulse, the 

behavior of protons is once again determined by the external magnetic field only and they 

try to come back to their original alignment. There are two processes of realignment that 

occur simultaneously, T1 relaxation and T2 relaxation (Figure 2.1). The T1 relaxation of 

protons realigns themselves parallel to the external magnetic field and the longitudinal 

magnetization increases. For T2 relaxation, the protons lose their previous coherent 

precession and begin to diphase, as the spins realign parallel to the external magnet axis. 

During these two processes, the protons emit a radio frequency signal (MRI signal), 

which is detected via a receiver coil of MRI scanner. 
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Figure 2.1 Schematic illustration of spin relaxation. (a) longitudinal/T1 relaxation; (b) transverse/T2 
relaxation (Hashemi, Bradley et al. 2003)  

MRI can be versatilely configured to emphasize contrasts reflecting different 

tissue characteristics for neroimaging. The recovery of longitudinal magnetization varies 

between tissues with different T1 constants allow different levels of T1-contrast to be 

obtained by adjusting the repetition time (TR, the time interval between successive 

excitation pulses). Given a T1 constant of ~900ms for gray matter (GM), ~600ms for 

white matter (WM) and 4200ms for cerebrospinal fluid (CSF), T1-weighted images are 

the most commonly used to study anatomical brain structures. Meanwhile, T2-contrast 

reflects the difference in T2 constants among the tissues and can be adjusted through the 
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echo time (TE, the time interval between the excitation and data acquisition). T2*-

contrast is commonly used in functional MRI (fMRI), where brain functions are 

approximated by the associated changes in blood flow.  

The superior resolution at less than 1 mm3 of structural MRI (sMRI) allows gray 

and white matter to be clearly distinguished. It not only provides excellent assessment of 

main structures such as the corpus callosum, hippocampus and amygdala, but also 

permits visualization of subcortical structures, such as the caudate and thalamus which 

are considered to be associated with many psychiatric disorders. 

On the other hand, fMRI is an MRI procedure that detects changes in blood flow 

or oxygenation in response to neural activation. The most popular fMRI technique 

measures blood oxygenation level dependence (BOLD) contrast. This approach takes 

advantage of the phenomenon that neural activity are accompanied by local changes in 

perfusion. In specific, when neurons in a certain region become more active, the local 

blood flow increases to support the increased oxygen consumption, results in a local 

decrease in the concentration of deoxyhemoglobin. As deoxyhemoglobin is paramagnetic, 

a reduction in its concentration results in an increase in the homogeneity of the static 

magnetic field, which yields stronger in the MRI signal. Therefore, fMRI images 

measures brain activities indirectly via hemodynamic response, which is temporally 

delayed relative to neural activation by about 1 to 2 seconds. FMRI acquires a volume (or 

scans) a spatial resolution of 1 to 3 mm3 every few seconds (Smith 2004). Capable of 

revealing both temporal and spatial perspectives of brain, fMRI has been used 

extensively to study functionality of the brain system in the past two decades. 
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2.3  Independent Component Analysis 

Independent component analysis (ICA) is a technique that separates multivariate 

signals into statistically independent components or “sources”. A typical ICA model 

assumes that the observed signals are formed by the independent source signals through 

an unknown linear mixing process. Mathematically ICA formulation can be written as: 

𝑿 = 𝑨𝑺     (2.1) 

where 𝑿 denotes the observed random vectors, 𝑺 is the spatial component map whose 

elements are assumed  independent sources, and 𝑨 is the unknown mixing matrix. There 

are several algorithms have been implemented for solving ICA problems, such as 

Infomax, fastICA, JADE, EVD, and AMUSE (Bell and Sejnowski, 1995a; Cardoso and 

Soloumiac, 1993; Georgiev and Cichocki, 2001; Hyvarinen and Oja, 1997; Tong et al., 

1990). 

Since the measured biomedical signals are often mixtures of signals from 

different underlying “sources” including both noise and signals of interest, ICA has been 

applied to fMRI data widely (McKeown, Makeig et al. 1998; Calhoun, Adali et al. 2001; 

Calhoun, Adali et al. 2001; Beckmann, DeLuca et al. 2005). In fMRI data, ICA is capable 

to separate sources that are the artifacts-related and the sources from neural physiological 

activity (Du, Allen et al. 2016). Each non-artifact independent component (IC) reflects 

brain regions which exhibit temporal coherence components are maximally independent 

and linearly mixed. Also, ICA can used to discover differences in temporal dynamics and 

changes with respect to spatially distributed brain networks where the source signals that 

are not observable.  
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2.4   Functional Connectivity 

The description of brain function can be divided into two categories: functional 

segregation and integration (Friston 2011). Functional segregation in the brain 

demonstrate the ability for specialized processing to occur within densely interconnected 

groups of brain regions, while functional integration refers the ability to rapidly combine 

specialized information from distributed brain regions.  

Functional connectivity (FC) analysis is an approach that assesses temporal 

coherence among brain regions (Friston 2002). This method is capable of characterizing 

large-scale integrity in human brain, and provides insight into functional integration and 

segregation of the brain (Van Dijk, Hedden et al. 2010). Functional MRI is a powerful 

tool to study FC since fMRI captures spatial resolution and corresponding temporal 

information, assessing FC, make assessing FC possible by calculating correlation 

between the activities of specialized regions. Analyses of FC by treating collection of FC 

between brain regions as a whole, and measure it using graph theory metrics, such as 

clustering coefficient, characteristic path length, local efficiency and global efficiency, 

summarizes the topological properties of brain networks, and provides a useful measure 

of how effectively information is passed and processed between different brain regions 

(Rubinov and Sporns 2010). 

There are two widely used types of approaches to estimate FC in the brain: 

regions of interest (ROI) based and independent component analysis (ICA) methods. The 

ROI-based methods calculate FC between ROIs that are selected based on an initial 

hypothesis. For example, selecting task-dependent regions based on stimuli onset time by 

using general linear regression model, or using parcellation templates like Automated 
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Anatomical Labeling (AAL) (Tzourio-Mazoyer, Landeau et al. 2002). This type of 

method has been widely adopted for the study of mental disorders (Raffo, Hampson et al. 

2004; Foland, Altshuler et al. 2008; Chepenik, Raffo et al. 2010; Tang, Kong et al. 2013), 

however, it may be limited by the shapes, locations and inter-subject variability (Du, Li et 

al. 2012). On the other hand, ICA is a multivariate data-driven approach that identifies a 

set of maximally spatially-independent components (i.e. temporally coherent networks), 

each with associated time course (McKeown, Makeig et al. 1998; McKeown and 

Sejnowski 1998; Calhoun, Adali et al. 2001; Calhoun, Adali et al. 2001; Du and Fan 

2013). Without the need of a specific model, ICA is ideal for analyzing resting-state data 

(Kiviniemi, Kantola et al. 2003). Based on the results from ICA, the interrelationship 

among multiple brain components is defined as functional network connectivity (FNC) 

(Jafri, Pearlson et al. 2008; Arbabshirani, Kiehl et al. 2013).  

To measure the functional connection strength between brain regions, pair-wise 

statistics (i.e. correlations, coherence, etc) between ICA time courses can be calculated. 

In most common cases, Pearson’s correlation or partial correlation are adopted to 

construct the connectivity matrices of the networks.  

The element 𝑟𝑖𝑗  of Pearson’s correlation matrix is the correlation coefficients 

between two random variables �𝑥𝑖 , 𝑥𝑗�, or the time courses of brain regions 𝑖 and 𝑗 here.  

Correlation coefficient is defined as  

𝑟𝑖𝑗 = cov�𝑥𝑖,𝑥𝑗�
cov�𝑥𝑖,𝑥𝑗�cov�𝑥𝑗,𝑥𝑗�

    (2.2) 

where  cov�𝑥𝑖 , 𝑥𝑗� is the covariance between two random variables. 
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In addition, partial correlation is the correlation between two random variables, 

with the effect of a set of controlling random variables removed (Whittaker 1990; 

Lauritzen 1996; Hampson, Peterson et al. 2002). A partial correlation coefficient within a 

functional network measures the interaction between the time courses of two blocks, once 

these signals have been projected on the subspace orthogonal to the time courses of all 

other regions. Hence, it only considers the “direct correlation” between the two blocks of 

interest, without influence of other areas in the network (Marrelec, Krainik et al. 2006). 

By taking partial correlation instead of taking direct correlation, the inter-correlated 

effects within each nearby regions were removed, such that the indirect dependencies 

between ROI’s can be filtered out.  

To calculate partial correlation, the first step is to estimate the sample covariance 

matrix 𝑺 from the data matrix  𝑌 = (𝑥𝑖); 𝑖 = 1,2, … ,𝑛. Here ix  is the time course of brain 

component, and there are 𝑛 brain components in total. If we use 𝑋 = �𝑥𝑗 , 𝑥𝑘� to denote 

the time courses in the jth and kth components, 𝑍 = 𝑌\𝑋 denotes the other 𝑛 − 2 time 

courses matrices. Each element of S  contains the sample covariance value between two 

components (say j and k). If the covariance matrix of [𝑋,𝑍] is 

𝑺 = �
𝑺11 𝑺12
𝑺12𝑇 𝑺22

�     (2.3) 

in which 𝑺11 is the covariance matrix of 𝑋, 𝑺12 is the covariance matrix of 𝑋 and 𝑍, and 

𝑺22 is the covariance matrix of 𝑍, then the partial correlation matrix of 𝑋, controlling for 

𝑍, could be defined formally as a normalized version of the covariance matrix,  𝑺𝑥𝑦 =

𝑺11 − 𝑺12𝑺22−1𝑺12𝑇 . 
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As the correlation matrices were not normally distributed, so a Fisher 𝑟  to 𝑧 

transformation was used on each element of the matrices (Fisher 1914; Liu, Liang et al. 

2008).  

2.5  Graph Analysis 

Graph is a mathematical representation of a real-world complex system, 

comprised of a collection of nodes and links (or edges) between pairs of nodes. In brain 

network analysis, nodes usually represent brain regions, and the edges correspond to 

anatomical, functional or effective connections between brain regions (Friston 2011).  

Analyses of FC by treating FC matrices as graph, and measure them using graph 

theory metrics, such as clustering coefficient, characteristic path length, local efficiency 

and global efficiency, summarizes the topological properties of brain networks, and 

provides a useful measure of how effectively information is passed and processed 

between different brain regions (Rubinov and Sporns 2010). Graph organizational 

properties may reveal disease-related abnormalities in functional brain networks among 

psychiatric patients from resting-state as well as task-related neuroimaging data (Lynall, 

Bassett et al. 2010; Wang, Metzak et al. 2010; Yu, Sui et al. 2011; Yu, Sui et al. 2011; 

He, Sui et al. 2012).  

2.5.1 Measures of Brain Functional Networks 

Topological properties reveal the characteristics of connectivity in the network. 

Suppose we have an undirected network G with N nodes. In weighted network, the 

weight between the nodes 𝑖 and 𝑗 is 𝑤𝑖,𝑗, and the distance between the nodes 𝑖 and 𝑗 is the 
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inversed weight 1
𝑤𝑖,𝑗

. Binarized network are gained with the weights binaried with a 

threshold 𝑇,  

𝑎𝑖,𝑗 = �1, 𝑖𝑓�𝑤𝑖𝑗� ≥ 𝑇
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�     (2.4) 

The degree of a node 𝐾𝑖 represents the total number (binary networks) or weights 

(weighted networks) of edges or connecting to a node. The degree of overall network 

𝐾𝑛𝑒𝑡 is the average degree of all nodes. 

𝐾𝑛𝑒𝑡 = 1
𝑁
∑ 𝐾𝑖𝑖∈𝐺     (2.5) 

For binarized networks, some others prefer to use the cost (connection density) of 

the network instead, which is the total number of edges in a graph, divided by the 

maximum possible number of edges 𝑁(𝑁−1)
2

: 

𝐾𝑐𝑜𝑠𝑡 = 1
𝑁(𝑁−1)

∑ 𝐾𝑖𝑖∈𝐺     (2.6) 

Then we introduce the concept of subgraph. The subgraph 𝐺𝑖 is the set of nodes 

that are the direct neighbors of the node 𝑖. That is, every node in 𝐺𝑖 could reach the node 

𝑖 through one edge. In binarized networks, if there are k  nodes, the total possible number 

of edges is 𝑘(𝑘−1)
2

. For weighted networks, k is substituted with the degree of the node 𝑖, 

𝐾𝑖. 

The absolute clustering coefficient provides a measure of functional segregation, 

showing the prevalence of clustered connectivity around individual nodes (Watts and 



17 
 

Strogatz 1998). Locally, the clustering coefficient Ci is known as the fraction of number 

of existing connections (binary networks) Ei  to the number of all possible edges in 

subgraph 𝐺𝑖 around one node.  

𝐶𝑖 = 𝐸𝑖
𝐾𝑖�𝐾𝑖−1�

2

      (2.7)  

For weighted networks, Ei is substituted with geometric mean of weights with 

each triangles (three connected nodes including node i), 

𝐸𝑖 = 1
2
∑ �𝑤𝑖𝑗𝑤𝑖ℎ𝑤𝑗ℎ3
𝑗,ℎ∈𝑁     (2.8) 

Clustering coefficient of a network 𝐶𝑛𝑒𝑡  is then derived by averaging the 

clustering coefficients of all nodes within the network.  

𝐶𝑛𝑒𝑡 = 1
N
∑ 𝐶𝑖i∈G     (2.9) 

Another more sophisticated measures of segregation is to look into the network's 

modular structure (or community structure). Modular structure is revealed by 

subdividing the network into groups of nodes, with a maximally possible number of 

within-group links, and a minimally possible number of between-group links (Girvan and 

Newman 2002). The degree to which the network may be subdivided into such clearly 

delineated and nonoverlapping groups is quantified by a single statistic, the modularity 𝑄 

(Newman 2004). 

𝑄 = 1
𝑙
∑ �𝑤𝑖𝑗 −

𝐾𝑖𝐾𝑗
𝑙
� 𝛿𝑚𝑖,𝑚𝑗𝑖,𝑗∈𝐺    (2.10) 
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where  𝑚𝑖 is the module including node 𝑖; 𝛿𝑚𝑖,𝑚𝑗 is an indicator function, 𝛿𝑚𝑖,𝑚𝑗 = 1 if 

node 𝑖 and 𝑗 belongs to the same node, and 0 otherwise. 

The path length measures functional integration based on the concept of path 

which brain regions communicate. The shortest path length of a node pair min�Li,j� is the 

smallest number (binary networks) or sum of distances (weighted networks) of edges 

connecting the nodes 𝑖 and 𝑗. The mean shortest path length of a node 𝐿𝑖  is the mean 

value of shortest path length from node 𝑖 to all other nodes in the network.  

𝐿𝑖 = 1
𝑁−1

∑ min�𝐿𝑖,𝑗�𝑗∈𝐺
𝑗≠𝑖

    (2.11) 

Similarly, mean shortest path length of the network 𝐿𝑛𝑒𝑡, or characteristic path 

length (Watts and Strogatz 1998), Lnet is the mean of shortest path length between all 

node pairs in the network. 

𝐿𝑛𝑒𝑡 = 1
𝑁
∑ 𝐿𝑖𝑖∈𝐺        (2.12) 

Characteristic path length reflects the average connectivity or overall routing 

efficiency of the network. When the network is disconnected (i.e., there are nodes in the 

network with no existing path to certain other nodes), the shortest path length is set to be 

infinity. 

Global efficiency 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡  measures how efficient a network is to transfer 

information parallelly at a relatively low cost. It is defined as the inverse of harmonic 

mean of the shortest path length between each pair of nodes (Latora and Marchiori 2001; 

Latora and Marchiori 2003; Achard and Bullmore 2007).  
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𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡 = 1
𝑁(𝑁−1)

∑ 1
min�𝐿𝑖,𝑗�

𝑖,𝑗∈𝐺
𝑗≠𝑖

    (2.13) 

 

Similarly, local efficiency Elocal,netcan be defined the same way for the subgraph 

𝐺𝑖: 

 𝐸𝑙𝑜𝑐𝑎𝑙,𝑖 = 1
𝑁𝐺𝑖(𝑁𝐺𝑖−1)

∑ 1
min�𝐿𝑗,𝑘�

𝑗,𝑘∈𝑁𝐺𝑖
𝑗≠𝑘

    (2.14) 

 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 = 1
𝑁
∑ 𝐸𝑙𝑜𝑐𝑎𝑙,𝑖𝑖∈𝐺     (2.15) 

From the definition of subgraph, 𝐺𝑖 itself does contain the node 𝑖. Thus, the local 

efficiency could be interpreted as how well the nodes in subgraph 𝐺𝑖  exchange 

information when the node 𝑖 is removed, revealing the tolerance of the network. 

2.6   Multimodal Fusion Analysis 

Functional magnetic resonance imaging (fMRI) identifies functions in human 

brains. As brain functions are altered in patients with mental disorders, fMRI may help 

finding the underlying neurophysiological abnormalities that are unique to certain 

diseases in patients’ brains. Using fMRI, different patterns of functional activities have 

been found in patients during resting-state or various behavioral tests (Taylor Tavares, 

Clark et al. 2008; de Almeida, Versace et al. 2009; Almeida, Versace et al. 2010; 

Bertocci, Bebko et al. 2012; Diler, de Almeida et al. 2013). 

However, compared to structural MRI, which provides information about the 

tissue type of the brain, the spatial resolution of fMRI images is low. Recently, collecting 
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more than one type (or modality) of brain data from the same individual using various 

non-invasive imaging techniques (i.e., MRI, DTI, electro-encephalography (EEG), MEG, 

etc.) has become common practice. Each brain imaging technique provides a different 

view of brain function or structure.  

There are many attempts that combining information from functional connectivity 

and structural imaging data (Rykhlevskaia, Gratton et al. 2008). As in a review by 

(Damoiseaux and Greicius 2009), most of them utilized diffusion tensor imaging (DTI), a 

relatively new MRI technique that measures the diffusion of water molecules in the brain; 

(Le Bihan 2003), which provides anatomical connectivity in the human brain. Those 

studies mainly focused on a small number of connectivity, and compared functional and 

structural information at connectivity level instead of underlying data level. 

Multimodal fusion is an effective approach for analyzing biomedical imaging data 

that combines multiple data types in a joint analysis (Sui, Adali et al. 2012). A key 

motivation for multimodal fusion is to take advantage of the cross-information provided 

by multiple imaging techniques, which in turn can be useful for identifying dysfunctional 

regions or potential biomarkers for many diseases.  

A couple of multivariate fusion methods have been proposed with different 

optimization priorities and limitations: Some enable common as well as distinct levels of 

connection among modalities, such as multi-set canonical correlation analysis (mCCA) 

(Correa, Li et al. 2008) and partial least squares (PLS) (Chen, Reiman et al. 2009) (Lin, 

McIntosh et al. 2003), but their separated sources may not be sufficiently spatially sparse. 

For example, mCCA maximizes the inter-subject covariation across two sets of features, 
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and generates linked variables, one per dataset. The variables are called canonical 

variants (CVs), which correlate with each other only on the same indices (rows) with the 

corresponding correlation values that are called canonical correlation coefficients (CCC). 

This scheme allows for both common and distinct aspects of features, but the brain maps 

of CVs may look similar when the CCC are not sufficiently distinct. At the same time, 

some approaches perform well in spatial decomposition, such as joint ICA (jICA) 

(Calhoun, Adali et al. 2006) and linked ICA (Groves, Beckmann et al. 2011), which aim 

to maximize the independence among estimated sources combining more than two 

modalities, but only allow a common mixing matrix. These two methods enable detection 

of features common to all modalities at the cost of features which may be distinct to one 

or more of them, which is a situation more likely to occur when combining more than 

two modalities. 

The mCCA+jICA framework combines mCCA and joint ICA throughout it 

pipeline, strikes a balance between maximize the independence among estimated sources 

and keeping both the common and unique features across modality. (Sui, Adali et al. 

2010) first proposed this method in the 2-modal fusing framework, and (Sui, Pearlson et 

al. 2011) found the different features in SZ and BD from AOD-task fMRI and diffusion 

tensor Imaging (DTI) datasets, where the features 𝑿1 of fMRI are extracted from beta-

weight map during the stimuli, and the features 𝑿2 of DTI are fractional anisotropy (FA) 

maps. (Sui, He et al. 2013) extended the framework into a more general case of n-way 

fusion, and applied it to resting state fMRI (beta-map of AOD task), gray matter density 

(GMD), and DTI (fractional anisotropy, FA). Another 3-modal study combined resting 
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state fMRI (amplitude of low-frequency fluctuation, ALFF), GMD, and DTI (FA) data to 

discriminiate SZ (Sui, He et al. 2013). 

2.7   Datasets 

2.7.1 MCIC SIRP Dataset 

A total of 35 patients with chronic SZ and 35 demographically matched HC were 

recruited and scanned from two sites, the University of Minnesota, and the University of 

New Mexico, as part of the Mind Clinical Imaging Consortium (MCIC) study. Those two 

sites were picked out of all four sites of MCIC study as subjects’ BOLD activation from 

these two had minimal site differences, and all subjects’ behavioral data were recorded. 

HC were free from any Axis I disorders as assessed with the Structured Clinical 

Interview for DSM-IV-TR (SCID) (First, Spitzer et al. 1996). Patients met the criteria for 

SZ defined by the DSM-IV based on the SCID and review of the associated case files by 

experienced raters located with each site. All patients were stabilized on medication prior 

to the fMRI scan run. Handedness of subjects were determined by Edinburgh Handedness 

Inventory (Oldfield 1971) and the education of subjects were evaluated by Wide Range 

Achievement Test (3rd ed.), Reading subtest (WRAT-3RT). Demographics and clinical 

characteristics of subjects are presented in Table 2.1. 

 

Table 2.1 Demographics of Subjects for MCIC dataset 

 HC (n = 35)  SZ (n = 35)  p-value 

Age 34.6 ± 11.6 
 range 18 – 60 

 34.3 ± 11.8 
 range 20 – 60 

 0.91 
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Sex (Male / Female) 27 / 8  26 / 9  0.82 

Handedness 
 (non-right hand) 3 left handed  1 left handed 

 3 ambidextrous 
 <0.0001 

Parental socioeconomic 
status 2.4 ± 0.6  2.6 ± 1.0  0.19 

Education 50.8 ± 5.0  47.7 ± 5.2  0.01 

Years since diagnosis n/a  13.1 ± 11.1   

Symtoms n/a  
Positive = 5.0 ± 2.2 
negative = 7.5 ± 3.1 

disorganization = 1.9 ± 
2.2 

  

 

Sternberg Item Recognition Paradigm (SIRP) (Sternberg 1966) was adapted for 

fMRI as a block design divided into three runs. Each run contained two blocks of each of 

three WM load levels (Low Load: 1 digit (L1), Medium Load: 3 digits (L3), and High 

Load: 5 digits (L5)) presented in a pseudorandom order. As shown in Figure 2.1, each 

block began with a prompt that lasted for 2 seconds and displayed the word “Learn”. The 

learning prompt was followed by the encode condition of 6 seconds, which displayed the 

memory set of either one, three or five digits in red font (constituting the three levels of 

WM load) which the subjects needed to hold on-line in WM. This was followed by a 

series of 14 probes each consisting of a single digit in green font, each digit lasting 1.1 

seconds. Half of the probes were targets (members of the memory set) and the other half 

were foils. The time between each probe digit pseudo-randomly varied from 0.6 to 2.5 

seconds. The probe condition lasted for 38 seconds in total. For each probe digit subjects 

were required to indicate whether or not the probe was a target or foil by pressing a 
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button with their right or left thumb (randomly assigned). There were fixation epochs 

between WM blocks that served as a baseline. Each run lasted 6 minutes. 

 

Figure 2.2 The SIRP timing and design. Top: Timing and contents of each Prompt-Encode-Probe block 
for each WM load level. Bottom: A sample run combining six blocks at different WM load levels in 
pseudo-random order. 

 

Each subject was instructed to respond as quickly and accurately as possible. To 

mitigate motivational deficits subjects were given a bonus of 5 cents for each correct 

response, which was mailed to the participant after completion of the task.  

The SIRP dataset this study utilized was also used as part of other MCIC studies 

(Roffman, Gollub et al. 2008; Kim, Manoach et al. 2009; Kim, Sui et al. 2010; Sui, Adali 
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et al. 2010; Ehrlich, Brauns et al. 2011; Ehrlich, Yendiki et al. 2011; Michael, King et al. 

2011) which used different analyses from what we presented here. 

Among the two sites where data were collected, the University of New Mexico 

was using a Siemens Sonata 1.5T scanner, and the University of Minnesota was using a 

Siemens Trio 3.0T scanner. The echo planar imaging sequences were utilized and the 

pulse sequence parameters were almost the same: orientation = AC-PC line, number of 

slices = 27, slice thickness = 4mm, slice gap = 1mm, TR = 2000ms, TE = 40ms (1.5T 

scanner) or 30ms (3T scanner), FOV = 22cm, flip angle = 90°, matrix = 64 × 64, voxel 

dimension = 3.4 × 3.4 × 4 mm3.  

Data were preprocessed using the software package SPM5 

(http://www.fil.ion.ucl.ac.uk/spm). Images were first realigned using a motion correction 

algorithm unbiased by local signal changes called INRIalign (Freire and Mangin 2001). 

The output of the realignment parameters from the SPM were kept as previous studies 

found functional connectivity of fMRI was sensitive to the head motion (Power, Barnes 

et al. 2012; Van Dijk, Sabuncu et al. 2012). 

A slice-timing correction was performed on the fMRI data after realignment to 

account for possible errors related to the temporal variability in the acquisition of the 

fMRI datasets. Data were spatially normalized (Ashburner and Friston 1999) into the 

standard Montreal Neurological Institute space using an SPM5 echo-planar imaging 

(EPI) template and then spatially smoothed with a 9 × 9 × 9 mm3 full width at half-

maximum Gaussian kernel. The data (originally collected at 3.4 × 3.4 × 4 mm3) was 

slightly subsampled to 3 × 3 × 3 mm3 (during normalization) resulting in 53 × 63 × 46 

http://www.fil.ion.ucl.ac.uk/spm
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voxels. The time courses were then filtered with a Butterworth band-pass filter (0.003-

0.23Hz), to reduce drift effects and noise (Fox, Snyder et al. 2005; Liu, Liang et al. 2008; 

Moussa, Vechlekar et al. 2011). The frequency range of the filter was based on a factor of 

0.01 to 0.9 multiplied by the Nyquist frequency of TR during the scanning (2000ms, 

corresponding to 0.5Hz). This cutoff range kept most of useful information during the 

scan, and did not filter out the task frequency, where encoding and probe processes last 6 

seconds (0.167Hz) and 38 seconds (0.026Hz) respectively.  

2.7.2 Tulsa Resting-state Dataset 

Resting-state MRI data were collected from 13 BD (Type I: n=7; Type II: n=6), 

40 MDD, and 33 age and gender matched HCs at Laureate Institute for Brain Research, 

Tulsa, Oklahoma, USA. All patients were treatment naïve or unmedicated for at least 3 

weeks (8 weeks for fluoxetine) prior to scanning. No treatment was discontinued for the 

purposes of the study. The study received institutional review board approval and all 

participants provided written informed consent. No significant age or gender effect 

between groups was found from ANOVA. Symptom measures, including the 

Montgomery-Åsberg Depression Rating Scale (MADRS) (Montgomery and Asberg 

1979) and the Young Mania Rating Scale (YMRS) (Young, Biggs et al. 1978), were 

collected from each subject.  

Table 2.2 Demographic of Subjects for Tulsa Resting-state Dataset 

 BD MDD HC 
N (Females) 13 (11) 40 (33) 33 (22) 

Ages 35.15 ± 10.29 35.20 ± 9.31 33.70 ± 10.15 
YMRS 6.15 ± 6.11 3.59 ± 2.33 0.16 ± 0.51 

MADRS 24.92 ± 10.31 30.90 ± 6.31 0.73 ± 1.72 
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At the time of scanning, among the 13 BD subjects, 10 were depressed, one was 

in a euthymic state, and 2 were in a mixed state. All 40 MDD subjects met criteria for a 

current major depressive episode and either a recurrent or chronic course. 

Functional MRI 

During the fMRI scan, participants were instructed to keep their eyes open to not 

fall asleep. All images were collected on a GE Discover MR750 3-Tesla scanner with a 

32-channel radio frequency coil. T2*-weighted functional images were acquired using a 

gradient-echo EPI sequence with TE = 27 ms, TR = 2 s, flip angle = 78°, slice thickness 

= 2.9 mm, field of view = 240 mm, matrix size = 96×96. The resting-state scan lasted 7.5 

minutes (225 volumes) for most subjects while some subjects were scanned for 6.4 min 

(191 volumes). 

For the fMRI data, the first seven volumes were excluded from analysis to allow 

for T1 equilibration. The remaining 218 or 184 volumes (depending on scan length) were 

included in the analysis, and FNC was computed for each subject as the temporal 

correlations between time course pairs. Post hoc tests showed that the relatively small 

difference in scanning time lengths between subjects did not significantly affect the group 

analysis. The SPM8 software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) 

was employed to perform fMRI preprocessing. The images were first realigned using 

INRIalign (Freire, Roche et al. 2002), and were then spatially normalized to the standard 

Montreal Neurological Institute (MNI) space, resampled to 3 mm × 3 mm × 3 mm voxels 

using the nonlinear (affine + low frequency direct cosine transform basis functions) 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272508&_issn=10538119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.fil.ion.ucl.ac.uk%252Fspm%252Fsoftware%252Fspm8
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registration implemented in SPM8 toolbox. Data was smoothed using a Gaussian kernel 

with a small full-width at half-maximum of 8 mm. 

Structural MRI 

For structural scans, T1 images were acquired using a gradient-echo MP-RAGE 

sequence with TE = 2.008 ms, TR = 5 s, flip angle = 8°, slice thickness = 0.9 mm, field of 

view 240 mm, matrix size = 256×256.  

Structural data were preprocessed using the SPM8 software package, which was 

used to segment the brain into white matter (WM), gray matter (GM), and cerebral spinal 

fluid with unmodulated normalized parameters via the unified segmentation method 

(Ashburner and Friston 2005). After segmentation, the GMD images were smoothed to a 

full-width half maximum (FWHM) Gaussian kernel of 8 mm (White, O'Leary et al. 2001) 

and resliced to a matrix of 53 × 63 × 46 voxels. 

2.7.3 MATRICS Resting-state data 

47 schizophrenia patients and 50 age-matched healthy controls were recruited as 

part of a multimodal schizophrenia center for biomedical research excellence (COBRE) 

study at the Mind Research Network (MRN) (http://cobre.mrn.org). The demographics 

and clinical scores of subjects are listed in Table 2.3. MCCB scores of a subject were 

evaluated in the same day of his/her imaging scans took place.  

Table 2.3 Demographics and the correlations between MCCB composite value and specific domains, 
PANSS symptoms and other measures 

Measure HC SZ P* R* 
Number  50 47   
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*MCCB=MATRICS Consensus Cognitive Battery; PANSS= Positive and Negative Syndrome Scale. P* 
denotes the significance value of two sample t-test performed between controls and schizophrenia patients 
for all measures, except gender (used chi-squared test). R* is the correlation value between MCCB 
composite and other measures. 

Resting-state scans were a minimum of 5 minutes, 4s in duration (152 volumes). 

Subjects were asked to keep their eyes open during the scan and stare passively at a 

presented fixation cross, as this is suggested to facilitate network delineation compared to 

eyes-closed conditions and helps ensure that subjects are awake. The data were collected 

on a 3-Tesla Siemens Trio scanner with a 12-channel radio frequency coil, with single-

shot full k-space echo-planar imaging (EPI) with ramp sampling correction using the 

inter commissural line (AC/PC) (anterior commissure/posterior commissure) as a 

reference. TR=2 s, TE=29 ms, flip angle = 75°, slice thickness = 3.5mm, slice gap = 1.05 

mm, field of view (FOV) 240 mm, matrix size = 64×64, voxel size = 3.75×3.75×4.55 

mm3. 

The SPM8 software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) 

was employed to perform fMRI preprocessing. The images were first realigned using 

INRIalign (Freire, Roche et al. 2002), and were then spatially normalized to the standard 

Montreal Neurological Institute (MNI) space, resampled to 3 mm × 3 mm × 3 mm voxels 

Age  36.7±12.6 35.3±12.6 0.60 0.04 
Gender  20F / 30M 6F / 41M 0.01 0.17 

Education  13.8±1.6 12.7±2.2 0.014 0.10 

MCCB* 
 
 
 
 
 
 
 

Composite 49.8±10.5 31.3±15.7 4.2E-09 1 
Speed of processing 51.9±9.0 35.3±13.7 1.5E-09 0.91 
Attention/Vigilance 48.3±9.9 36.0±15.1 1.4E-05 0.86 
Working memory 46.8±11.4 37.1±14.5 5.3E-04 0.83 
Verbal learning 47.4±8.9 38.0±8.6 8.4E-07 0.80 
Visual learning 49.3±9.3 36.6±12.6 1.5E-07 0.79 

Reasoning/Problem 
solving 54.2±9.9 46.1±11.7 5.1E-04 0.64 

Social cognition 50.8+11.1 40.5±13.0 8.3E-05 0.65 
PANSS 

 
Negative N/A 15.1±5.4  -0.48 
Positive N/A 15.4±5.9  -0.10 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272508&_issn=10538119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.fil.ion.ucl.ac.uk%252Fspm%252Fsoftware%252Fspm8
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using the nonlinear (affine + low frequency direct cosine transform basis functions) 

registration implemented in SPM8 toolbox. 
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Chapter 3 Altered Functional Connectivity Structures in 

Schizophrenia 

3.1  Introduction 

3.1.1 Small-world networks structures 

Small-world networks strike a balance between high levels of local clustering and 

short path lengths linking all nodes even though most nodes are not neighbors of one 

another (Watts and Strogatz 1998). This optimized property offers a structural substrate 

for graph analysis on functional segregation and integration of the brain (Sporns and Zwi 

2004; Bassett and Bullmore 2006; Moussa, Vechlekar et al. 2011). Network metrics such 

as efficiency provide a vital measure of how effectively information is passed and 

processed between different brain regions. Analysis of network organizational properties 

may also reveal disease-related abnormalities in functional brain networks among 

patients (Stam, Jones et al. 2007; He, Chen et al. 2009), including schizophrenia (SZ) 

during resting state (Achard, Salvador et al. 2006; Liu, Liang et al. 2008; Yu, Sui et al. 

2011) as well as task-related data such as auditory oddball (Yu, Sui et al. 2011) and 

verbal memory (Wang, Metzak et al. 2010). In this study, we applied the small-world 

network analysis towards functional magnetic resonance imaging (fMRI) data collected 

during a working memory (WM) task. 

3.1.2 Working memory 

WM is a construct that refers to maintaining and manipulating information on-

line, in the mind’s eye in the service of guiding behavior. It is considered to be a 

temporary store whose contents are continually updated, scanned and manipulated in 
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response to immediate processing demands (Baddeley 1992). WM deficits in SZ are 

consistently observed, relatively treatment-resistant and have been hypothesized to 

underlie many cognitive deficits and symptoms in SZ, manifested in longer reaction time 

and less accurate performance, especially as memory load increases (Park and Holzman 

1992; Goldman-Rakic 1994; Manoach, Press et al. 1999). They are accompanied by 

aberrant brain activation, particularly in the dorsolateral prefrontal cortex (DLPFC) 

(Manoach, Press et al. 1999; Manoach 2003; Brown, McCarthy et al. 2009). The relation 

of working memory load or demand to DLPFC activation can be described as an 

inverted-U shaped function with activation increasing with increasing demand to the 

point that capacity is reached, at which point activation declines. In schizophrenia, this 

point is reached at a lower level of demand, and this hypothetical curve is shifted to the 

left, reflecting lower WM capacity (Callicott, Mattay et al. 2003; Manoach 2003; 

Karlsgodt, Glahn et al. 2007). In addition to DLPFC, WM performance is associated with 

activation in a network of brain regions (Saykin, Gur et al. 1991; Petrides, Alivisatos et 

al. 1993; McCarthy, Blamire et al. 1994; Cohen, Braver et al. 1996), as well as 

deactivation in the default mode network (DMN) (Hampson, Driesen et al. 2006). 

Deficient WM in SZ is associated with aberrant activation in these networks (Sawaguchi 

and Goldman-Rakic 1991; Salvador, Martinez et al. 2008; Camchong, Macdonald et al. 

2009; Potkin, Turner et al. 2009; Kang, Sponheim et al. 2011). 

Several studies utilizing graph analysis have investigated changes in functional 

network properties during WM tasks. For example, small-world structure has been 

reported in simultaneous MEG and EEG (MEEG) at different bands (Palva, Monto et al. 

2010). Analyses of EEG data demonstrate that optimal patterns are decreased or absent in 
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SZ (Micheloyannis, Pachou et al. 2006; Pachou, Vourkas et al. 2008). Bassett and 

colleagues (Bassett, Bullmore et al. 2009) reported that task performance correlated with 

global cost efficiency of the MEG beta-band network. An fMRI study in healthy subjects 

also showed that small-world network connectivity decreases as a function of increasing 

WM load (Ginestet and Simmons 2010). These studies have utilized the n-back paradigm 

(Owen, McMillan et al. 2005), which requires the temporal tagging and updating of 

information on each trial, and therefore has a very steep difficulty slope with increasing 

demand (i.e., 1 to 3 back) making it  difficult to vary the load and stay within the capacity 

of SZ. As the Sternberg Item Recognition Paradigm (SIRP) (Sternberg 1966) emphasizes 

the maintenance over the manipulation of information, the difficulty slope is less steep, 

allowing the parametric manipulation of load while staying within the WM capacity of 

SZ (Potkin, Turner et al. 2009). In a previous report on fMRI data collected during the 

SIRP (Kim, Manoach et al. 2009), group independent component analysis (ICA) showed 

significant abnormalities in SZ relative to HC in both negatively task-correlated brain 

regions (DMN), and positively task-correlated areas (DLPFC). To our knowledge, no 

studies have evaluated network alterations in task-related brain regions in SZ during 

performance of a WM task with varying load.  

The goal of this study is to investigate the topological properties in small-world 

networks derived from a data-driven (ICA defined) examination of task-elicited brain 

activity for both SZ and HC during the SIRP at three levels of WM load. We 

hypothesized that the functional network of task-related brain regions would change 

according to WM load in all subjects, and that SZ will show less efficient small-world 

network structures when compared to HC. 



34 
 

3.2   Methods 

In this study, the MCIC SIRP Dataset was used. 

3.2.1 Selection of Regions of Interest 

The GIFT toolbox (http://icatb.sourceforge.net) was used to perform group spatial 

independent component analysis with infomax algorithm (Bell and Sejnowski 1995). 

Time courses of three runs for each subject were temporally concatenated during the 

group ICA. The component number was set to be 26 as estimated by a modified 

minimum description length (MDL) criterion (Li, Adali et al. 2007). 

Regressions were performed against the stimuli for each component, to get the 

weights (beta values) on each of the regressors. There were 12 regressors for each run, 

corresponding to two encodes and two probes for each of the three WM loads. To find 

the more task-related components, one sample t-tests were performed on the 12 beta 

values assessed from the regression. The components were sorted based on the p-value of 

t-test: the lower the p-value of the beta weights, the more task-related the component. For 

each of the 12 regressors, we listed the 5 components with the lowest p-values (10-5 – 10-

27) in order to identify the most frequently occurring components among all regressors. 

Three common components were found as most task-related, i.e., Component 19, 14 and 

24, as shown in Figure 3.1.  

http://icatb.sourceforge.net/
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Figure 3.1 The Three selected components and their averaged time courses from Group ICA. 

Specifically, component 24 overlapped the left DLPFC, consistent with 

demonstrated neural substrates of verbal WM tasks; component 14 was located in the 

bilateral occipital lobe, which is involved in visual perception; and component 19 

overlapped regions found in the default mode network (Buckner, Andrews-Hanna et al. 

2008) including the posterior cingulate, precuneus, and cuneus. The three components 

were selected as regions of interest on which the small world network was implemented. 

Components 24 and 14 were positively correlated with presentation of the task stimuli, 

while component 19 was negatively correlated.  
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The mask of regions of interest (ROIs) was generated by thresholding the spatial 

maps of the 3 selected components with |𝑧| > 2.0 . ROI was then divided into 105 

spatially adjacent 3 × 3 × 3-voxel sized blocks. Every block was then subsampled by 

averaging together, that is, the preprocessed BOLD signal of all voxels within a given 

spatial block were averaged into one time course, resulting 105 spatial blocks which were 

used to compute partial correlation below. The finial mask is shown in Figure 3.2. 

 

Figure 3.2 The spatial mask applied to build network. 

 

3.2.2 Dividing the Time Courses According To WM Load 

Time courses were grouped according to WM load levels (1, 3, 5-digit). The time 

courses of source data were truncated into blocks based on the onset time of design 

matrix. Each block consisted of one encode and one probe epoch, while the learn prompt 

was discarded. The time courses of each six blocks with the same WM load level were 

then concatenated, so that the BOLD signals in each subject were separated according to 

different WM load levels instead of task runs. This results in three time series for each 

subject, corresponding to each of the 1, 3 or 5-digit condition in SIRP. 
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3.2.3 Partial correlation matrices 

To measure the functional connection strength between brain regions, partial 

correlation was adopted to construct the connectivity matrices of the networks. This 

approach has been used in previous small-world brain networks studies like (Liu, Liang 

et al. 2008; Yu, Sui et al. 2011; Yu, Sui et al. 2011). To denote the interaction between 

each ROI at a specific WM load level, three networks corresponding to each load level 

were built for each subject. Due to the 105 spatial blocks in the ROI, each partial 

correlation matrix in this study was a 105 by 105 symmetric matrix, in which each off-

diagonal element ijz  was the correlation coefficient between time courses in 

corresponding ith and jth block after filtering out the contribution of activations from all 

other 103 brain regions in ROI.  

As the partial correlation matrices were not normally distributed, so a Fisher 𝑟 to 

𝑧 transformation was used on each element of the matrices (Fisher 1914; Liu, Liang et al. 

2008).  

3.2.4 Constructing Brain Network 

In many recent studies on brain networks, edge weights are often binarized.  

Binary networks are generally simpler to characterize since the null model used in 

statistical comparisons is more easily defined. This is achieved by specifying a weight 

threshold and discarding weak and non-significant edges (Rubinov and Sporns 2010). In 

order to find unweighted undirected networks, we binarized the elements with a threshold 

𝑇,  
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𝑒𝑖𝑗 = �1, 𝑖𝑓�𝑧𝑖𝑗� ≥ 𝑇
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�     (3.1) 

where  eij  is the new weight value and zij  is the old weight value in the 

unthresholded network.  

The selection of threshold 𝑇 will be discussed in following sections. The diagonal 

elements of the adjacency matrices are set to be 0 as there is no edge from a node to 

itself.  

3.2.5 Small-world properties 

Mathematically, small-world networks have similar characteristic path length but 

higher absolute clustering coefficients comparing to  random networks (Watts and 

Strogatz 1998), that is, 

 𝛾 = 𝐶𝑛𝑒𝑡,𝑠𝑚𝑎𝑙𝑙−𝑤𝑜𝑟𝑙𝑑
𝐶𝑛𝑒𝑡,𝑟𝑎𝑛𝑑𝑜𝑚

> 1    (3.2) 

λ = Lnet,small−world
Lnet,random

≈ 1    (3.3)  

The small-worldness is defined as  

𝜎 = 𝛾
𝜆
      (3.4) 

which is larger than 1 for small-world network (Achard, Salvador et al. 2006; He, Chen et 

al. 2007; Humphries and Gurney 2008). 

The measures on clustering coefficients and characteristic path length of random 

networks with similar degree distribution should be obtained for comparison when 
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computing the small-worldness. Previous studies have shown that the theoretical values 

of these two measures are: 

Cnet,random = Knet
N

     (3.5) 

Lnet,random ≈ ln(N)
ln(Knet)

      (3.6) 

 where 𝐾𝑛𝑒𝑡  and 𝑁  are the degree and total number of nodes in the existing network 

(Achard, Salvador et al. 2006). However, some studies have suggested that building 

random networks with equal (or at least equal) degree sequences as the real small-world 

networks may not provide valid statistical comparisons (Stam, Jones et al. 2007). This is 

because theoretical random networks have Gaussian degree distributions which differ 

from the distributions of real networks being compared against. Therefore, to obtain a 

more valid comparison for each network to be measured, we built 25 random networks 

using Markov-chain algorithm starting from its degree distribution (Maslov and Sneppen 

2002; Milo, Shen-Orr et al. 2002; Sporns and Zwi 2004). The small-worldness value for 

each network is then derived by averaging the 25 𝜎 values.  This method has been used in 

previous studies (Liu, Liang et al. 2008; Liao, Zhang et al. 2010; Yu, Sui et al. 2011). 

3.2.6 Thresholding the Networks in Small-World Regime 

To make the networks comparable, the thresholding condition for all networks 

must be uniform. The threshold values should be within a certain range to keep the 

network under the optimized small-world structure, same as previous small-world 

network studies (Liu, Liang et al. 2008; Liao, Zhang et al. 2010; Yu, Sui et al. 2011). 

First, the maximum threshold should ensure that every network is fully connected, that is, 
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all nodes in a network could be accessible via one or multiple steps from any other nodes 

in the same network, or no infinite shortest path length for all nodes. At the same time, 

the minimum threshold must make sure that all networks hold small-world properties. 

Specifically, every thresholded network must have a small-worldness value of larger than 

one (Achard and Bullmore 2007). 

It is obvious that different threshold values will have a major impact on the 

topological properties of the thresholded networks. Because between-subject variations, 

and the variations in weights for each edge within the networks are both large, binarizing 

all networks with a uniform threshold may not be a good choice. However, leaving a 

same degree value for each network may keep similar structures along all subjects, and 

will be easier to perform comparisons between SZ and HC. A degree range was found 

between 19.9 and 35.0 (equivalent to cost from 0.191 to 0.337), which satisfies fully 

connected small-world network condition for all subjects in each of the three memory 

loads. Within this range, sixteen degrees values, from 19.9 to 34.9 (equivalent to cost 

from 0.191 to 0.336), with an increment of 1.0, were taken for multiple observations. 

3.2.7 Graphical and Statistical Analysis 

At each of 16 degree values, an observation of network measures including 

clustering coefficient (𝐶𝑛𝑒𝑡), characteristic path length (𝐿𝑛𝑒𝑡), local efficiency (𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡) 

and global efficiency (𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡 ), was calculated for every binarized network. Site 

effects on individual network measures were corrected for proceeding analysis by 

conducting one-way analysis of variance (ANOVA). The averages of network measures 

were estimated over 16 observations per subject to show the overall changes across WM 

loads. To assess for differential effects of WM load on functional connectivity in SZ 
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versus HC, we conducted two-way ANOVA to test the main effects of WM load x group 

interaction. In addition, we used two-sample t-tests to further determine group differences 

in functional network properties at each WM load level. Similar two sample t-test were 

also utilized to compare the measures in HC at WM load level 5 and those in SZ at level 

3, since previous studies (Callicott, Bertolino et al. 2000; Manoach, Gollub et al. 2000; 

Perlstein, Carter et al. 2001) have found that WM performance and prefrontal activation 

in HC at high WM load match those in SZ at medium WM load. Right-tailed (or left-

tailed) one sample t-tests were performed on the contrasts of measures between WM 

loads for each group, to test the increases (or decreases) of measures as WM load level 

increases. During statistical tests, the averaged network measures across 16 observations 

were checked first. If significance exists, network measures at each observation were 

further looked into. False discovery rate (FDR) correction (Benjamini and Hochberg 

1995) was used on p-values gained from t-tests made on 16 individual observations, to 

control for multiple comparisons.  

To evaluate how the network properties affect the actual WM performance, we 

used Pearson’s correlation coefficients to investigate the relationships between small-

world network measures (i.e., clustering coefficients, characteristic path length, local 

efficiency and global efficiency) and WM behavior data (i.e. averaged reaction time of 

each load, which denotes the duration between subject seeing the number and pushing the 

button at the probe epoch). The Pearson’s correlation coefficients were also adopted to 

check if there are any effects on network measures from subjects’ demographic 

information (age, education, and handedness), the SZ’s clinical characteristics (the Scale 

for the Assessment of Negative Symptoms (SANS) (Andreasen 1984) and the Scale for 
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the Assessment of Positive Symptoms (SAPS) (Andreasen 1984), and head motion 

during the scanning. 

3.3   Results 

3.3.1 Behavioral Results 

Reaction times for each subject were averaged on correct trials only. Subjects 

showed a reasonably high percentage of correct responses (mean accuracy ≥ 95% for all 

WM loads). Both groups showed decreased accuracy and increased reaction time as WM 

load increased. Two-way ANOVA test indicated group and load effect (F = 20.11, p = 

1.2×10-5 for group effect, and for F = 41.91, p < 0.0001 load effect) on RT, and group 

effect (F = 17.72, p < 0.0001) on accuracy. No interaction between group and load was 

found in both RT and accuracy. 

3.3.2 Network Measures at Each WM Load 

Two-way ANOVAs on averaged network measures showed significant group by 

load interaction in averaged 𝐶𝑛𝑒𝑡  and 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡  (p < 0.05). Among individual 

observations, marginally significant group by load interactions (p < 0.1, FDR corrected) 

were found for 𝐶𝑛𝑒𝑡 and 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 at most of the observations.  

For averaged network measures across 16 degree points at single WM load, the t-

test indicated group differences (p < 0.05) at WM load level 3 on all four measures, 

clustering coefficient 𝐶𝑛𝑒𝑡, characteristic path length 𝐿𝑛𝑒𝑡, local efficiency 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 and 

global efficiency  𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡. No significant group differences were found at WM load 

levels 1 or 5. 
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Figure 3.3 Group comparison on network measures at medium load. Network measures on individual 
observations as a function of degree between groups on WM load level 3. Green dots above indicate 
significant group difference (p < 0.05, FDR corrected) and pink dots above indicate marginally group 
difference (p < 0.1, FDR corrected) between HC and SZ at that observation. 

Next, we examined individual observations at each degree value netK  in the small-

world regime within WM load level 3 (Figure 3.3). Throughout 16 observations, two 

sample t-tests showed all 𝐶𝑛𝑒𝑡  and most of 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 had significant group differences (p 

< 0.05, FDR corrected). Some  𝐿𝑛𝑒𝑡  and 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡  had group differences that 

approached but did not achieve statistical significance (p < 0.1, FDR corrected). When 

degree 𝐾𝑛𝑒𝑡  increases (i.e., more edges being added into the network), 𝐶𝑛𝑒𝑡 , 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 , 
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and 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡 also increase whereas 𝐿𝑛𝑒𝑡 decreases. In all observations at WM load level 

3, networks in SZ had lower 𝐶𝑛𝑒𝑡, 𝐿𝑛𝑒𝑡, 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 and higher 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡 than HC. 

 

Figure 3.4. Network measures between SZ at high load and HC at medium load. Green dots above 
indicate significant group difference (p < 0.05, FDR corrected) and pink dots above indicate marginally 
group difference (p < 0.1, FDR corrected) between HC and SZ at that observation. 

In contrasting WM loads between SZ at level 3 and HC at level 5, we still found 

significant group differences (p < 0.05) in averaged 𝐶𝑛𝑒𝑡, 𝐿𝑛𝑒𝑡, and 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡. Among 

individual observations, significant group differences (p < 0.05, FDR corrected) existed 

in 𝐶𝑛𝑒𝑡  at all observations, and marginal significant group differences (p < 0.1, FDR 

corrected) in 𝐿𝑛𝑒𝑡 and 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡 at most of the observations (Figure 3.4). 
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3.3.3 Network Measures Change at Different WM Loads 

When WM load increases, changes in network measures showed different 

patterns in each group. Figure 3.5 showed a general trend of averaged network measures 

change across different WM loads.  

In HC, there were no significant changes in network measures between different 

WM loads in HC. Network measures in SZ, however, revealed significant changes across 

three WM loads. All four averaged measures in patients had no significant different 

between WM load level 1 and 5, but altered significantly (p < 0.05) in level 3. In 

individual observations, 𝐶𝑛𝑒𝑡, and 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡 in all observations in SZ showed significant 

decreases (p < 0.05, FDR corrected) from WM load level 1 to level 3, and significant 

increases (p < 0.05, FDR corrected) from WM load level 3 to level 5. At the same 

time,  𝐿𝑛𝑒𝑡  and 𝐸𝑔𝑙𝑜𝑏𝑎𝑙,𝑛𝑒𝑡  in SZ showed marginal significant changes (p < 0.1, FDR 

corrected) from WM load level 1 to level 3 in some (5 out of 16) observations, and 

marginal significant changes (p < 0.1, FDR corrected) from WM load level 3 to level 5 in 

most (14 out of 16) observations. 
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Figure 3.5 Averaged network measures changes across three load levels in HC and SZ. Solid lines 
between WM load levels indicate significant increases/decreases (p < 0.05), and dotted lines indicate no 
significant changes when WM load levels increases. 

3.3.4 Correlation between Network Measures and Behavioral Data 

Significant negative correlations (p < 0.05) were found between reaction time and 

averaged network measures 𝐶𝑛𝑒𝑡  and 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡  for all subjects at WM load level 3. 

Patterns are shown in Figure 3.6. No correlations were found in other WM loads.  
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Figure 3.6 Scatter Plots of averaged clustering coefficients and local efficiency against RT at at 
medium load. Scatter plots with trend lines showing averaged 𝐂𝐧𝐞𝐭 and 𝐄𝐥𝐨𝐜𝐚𝐥,𝐧𝐞𝐭 as function of reaction 
time in all subjects and each group. Significant negative correlation (p < 0.05) was found between reaction 
time and averaged 𝐂𝐧𝐞𝐭 and 𝐄𝐥𝐨𝐜𝐚𝐥,𝐧𝐞𝐭 for all subjects (green line). 

In individual observations, lower 𝐶𝑛𝑒𝑡  and 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡  were also predicative of 

longer reaction times at medium WM load level. All 16 observations of 𝐶𝑛𝑒𝑡 and most 

(11 out of 16) observations 𝐸𝑙𝑜𝑐𝑎𝑙,𝑛𝑒𝑡  showed significant correlations (p < 0.05, FDR 

corrected).  

Within each group, there were no associations of the measures with reaction time 

in HC. In SZ, the correlations at more than half (9 out of 16) of observations approached 

but did not achieve statistical significance (p < 0.1, FDR corrected).  
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3.3.5 Effects from Demographics, Clinical Characteristics and Head Motion 

No statistically significant effects (p < 0.05) were found on network measures 

from either demographics in both groups or clinical characteristics data in SZ. 

On each of the six parameters of head motion (translation and rotation on each 

axis) outputs of the SPM realignment parameters, no statistically significant group 

differences (p < 0.05) showed between HC and SZ. Four measurements of head motion 

(mean motion, maximum motion, mean rotation, and number of movements) during the 

entire scanning process were further calculated using the translation and rotation 

parameters from the rigid body correction (Jenkinson, Bannister et al. 2002; Van Dijk, 

Sabuncu et al. 2012). Significant group differences (p < 0.05) were found in mean 

motion, mean rotation, and number of movements. However, there is no statistically 

significant correlation between any head motion measurements and network measures. 

3.4   Discussion 

In this fMRI study, topological and efficiency properties of WM-related networks 

were examined for both HC and SZ groups. First, group ICA was performed to detect 

task-related networks. Then partial correlation was used to generate adjacency matrices 

on 105 WM-related regions for each subject per WM load level. The networks were 

thresholded within the small-world regime. Statistical tests on network measures taken at 

16 different degrees showed significant altered topology and efficiency in SZ at medium 

WM load. The pattern of altered network measures in SZ at medium WM load is similar 

to findings in (Potkin, Turner et al. 2009; Kim, Tura et al. 2010), which showed altered 

DLPFC activation in SZ at medium WM load during a similar SIRP performance. The 
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subjects’ demographics, clinical characteristics and head motion during scanning had no 

significant effects on network measures. 

The findings indicate that network measures differed significantly in SZ at the 

medium WM load level during the SIRP performance. For both topological and 

efficiency measures, we found that most group differences were between SZ at WM load 

level 3 and healthy control at either level 3 or level 5. Clustering coefficients, 

characteristic path lengths and local efficiency were lower for people with SZ while 

global efficiency was higher for that group.  

Topologically, clustering coefficients equivalent to the fraction of the node’s 

neighbors that are also connected with each other (Watts and Strogatz 1998), which 

reveals the abilities for specialized processing to occur within densely interconnected 

groups of regions in brain (Rubinov and Sporns 2010). Lower clustering coefficients in 

SZ for intermediate working memory loads indicate that the networks had fewer local 

functional interconnections, and thus were less efficient for local information transfer. 

Functional dysconnectivity found in SZ here is also consistent with the facts found in 

(Manoach, Gollub et al. 2000), which confirmed that SZ activated fewer DLPFC voxels 

in common than HC, even when task performance was matched with HC.  

Local efficiency reflects the fault tolerance of the network system, or the 

efficiency of communication between the first neighbors of a node when it is removed 

(Latora and Marchiori 2001).  Brain networks with high clustering and high local 

efficiency are robust in local information processing even if some neurons are inefficient 

or damaged (Tang, Zhao et al. 2008). The low local efficiency and low clustering in SZ at 
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WM load level 3 we found in the current study suggests that the network of task-related 

brain regions in SZ had lower fault tolerance (i.e., more vulnerable) locally than HC. The 

findings on reduced local efficiency and clustering are also consistent with prior fMRI 

and EEG studies on functional brain networks in SZ (Micheloyannis, Pachou et al. 2006; 

Bluhm, Miller et al. 2007; Liu, Liang et al. 2008; Rubinov, Knock et al. 2009; Lynall, 

Bassett et al. 2010; Wang, Metzak et al. 2010). 

In general, subjects with longer reaction time also had lower clustering coefficient 

and local efficiency at WM load level 3, as seen in the negative correlation between 

reaction time and those two measures. The less clustered structure and lower efficiency of 

task-related networks in SZ may affect the performance to accomplish the task. 

In brain networks, the identified paths show potential routes of information flow 

between pairs of brain regions (Rubinov and Sporns 2010). Characteristic path length is a 

measurement on the extent of average connectivity or overall routing efficiency of the 

network. Global efficiency in graph system is the efficiency of a parallel system, where 

all the nodes in the network exchange information concurrently (Latora and Marchiori 

2001). Networks with shorter characteristic path length and high global efficiency are of 

significance in minimizing noise, shortening signaling delay and increasing synchrony 

(Kaiser and Hilgetag 2004). Shorter path lengths between nodes have also been shown to 

promote effective interactions across different cortical regions (Bassett and Bullmore 

2006; Achard and Bullmore 2007). Among SZ, the networks related to intermediate WM 

loads had shorter path lengths and higher global efficiency than those in HC. Because of 

abnormalities within brain regions like DLPFC, SZ may need to compensate for this 

impairment by involving more brain regions concurrently so as to achieve comparable 
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WM performance, resulting shorter path lengths and higher global efficiency. The 

phenomena that SZ shows reduced clustering but globally efficient and robust were also 

found in previous network studies (Alexander-Bloch, Gogtay et al. 2010). (Lynall, 

Bassett et al. 2010) suggested that reduced local dominance will generally be offset by 

greater network robustness in SZ. In contrast, activations in HC subjects at WM medium 

load levels concentrated more on certain brain areas, even at the cost of low global 

efficiency within the network. 

In a previous WM study on SZ which utilized the same version of the SIRP 

(Potkin, Turner et al. 2009), Potkin et al. also found that the medium WM load was most 

responsible for significant group differences in the DLPFC activation. They attributed 

these differences to the “inefficiency” of this brain region that might not be directly 

caused by increases in WM load. A multivariate analysis using Partial Least Squares on 

the same data (Kim, Tura et al. 2010), Kim et al. showed that other areas in frontal lobe, 

pre and post central gyrus, and the angular gyrus showed a similar pattern for the probe 

condition, while the visual cortex showed a pattern of greater activation in the SZ 

subjects in the encoding of the medium load WM condition rather than during the probe 

epoch. (Kim, Manoach et al. 2009) used ICA on a SIRP dataset of which this was a 

subset, and identified a frontal/parietal network which showed more activation in SZ 

subjects in the moderate load conditions as well. This small-world network analysis did 

not distinguish encode from probe responses in determining the network edges, but 

considered the correlations among the 105 brain regions at each WM load. Although 

encoding and maintaining information involve different psychological processes, they are 

both affected by load and are needed to perform a WM task. Many previous studies on 
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WM combine them, for example, N-back paradigm (Owen, McMillan et al. 2005), looks 

into the two psychological processes in subjects simultaneously. Brain connectivity 

associated with both encode and probe (a.k.a. retrieval) conditions have also been 

combined in previous SIRP studies (Karlsgodt, Glahn et al. 2007; White, Schmidt et al. 

2011). The combination of encode and probe still identified the moderate WM load level 

as the condition in which the network measures in SZ were different from those in HC. 

Depending on the level of demands on working memory, different physiological 

responses showed up in each group to accomplish the task. In HC, we found no 

significant changes across different WM load. Although previous studies in WM like 

(Manoach, Press et al. 1999; Callicott, Bertolino et al. 2000; Manoach, Gollub et al. 

2000) have shown increased BOLD activities as WM load increases within subjects’ 

capacities, the topology and efficiency of functional networks in HC remain stable. 

In contrast, the small-world network measures in SZ showed a different pattern of 

responses with increasing WM loads, consistent with the inverted-U function relating 

fMRI signal to WM load (Callicott, Mattay et al. 1999; Manoach 2003). There were 

significant differences in small-world network measures across different WM load levels 

among patients. The fact that local clustering coefficient and local efficiency in SZ during 

WM load level 1 were close to those in HC at WM load level 3, indicated that more effort 

may have been used by patients to perform the low difficulty task (Callicott, Mattay et al. 

2003). As WM load level increased from low to medium, the clustering coefficients and 

local efficiency dropped significantly, but path length reduced and global efficiency rose. 

This implies that connectivity tends to be more spread across the brain regions included 

in analysis, or that more voxels in brain regions for SZ were utilized concurrently to 
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perform the task, as discussed above. When tasked with the medium WM load, functional 

brain networks adapt to the increased WM demands by increasing global integration and 

efficiency (Bassett, Meyer-Lindenberg et al. 2006; Bassett, Bullmore et al. 2009; van den 

Heuvel, Stam et al. 2009; Fornito, Yoon et al. 2011). However, when the difficulty level 

increased further from medium to high, the clustering coefficients and local efficiency 

returned to values comparable to those in the low difficulty condition. These changes 

suggest that the highest memory load may have approached SZ’s WM capacity, and the 

patients will be no longer able to adequately perform more difficult tasks (Manoach 

2003; Kim, Manoach et al. 2009; Potkin, Turner et al. 2009). 

In this study, we focused on the small world network of task-related regions. In 

order to avoid certain bias, we also tried another approach by using components of the 

whole brain that includes non-task-related regions, in which group ICA is performed on 

the same data, generating 80 components. After eliminating artifactual components (by 

visual inspection) which contain obvious skull edge effects or ventricles, 39 components 

were chosen, each as one node, to build the connectivity network using the same method 

mentioned above. The trends we observed were consistent with the main results 

discussed above, but with weaker between-group differences. Since the selected 

components included both task-related and non-task-related ICs, results suggested that 

the non-task-related brain regions contributed less to the WM task, but may add more 

individual variation to the network. 

There are several methodological issues that should be considered in this study. 

First, we used group ICA to find the task-related region, and divided the region into 105 

contiguous voxel clusters, corresponding to nodes in the brain networks. Although cluster 
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size and the randomness generated from group ICA may impact network structures, we 

have averaged the results of group ICA from multiple runs so as to mitigate against this 

possibility. Secondly, we used partial correlation on BOLD signals between brain regions 

to construct brain networks, which may be affected by the operation of truncating and 

reordering the time courses to separate WM loads. There are other methods that may be 

worth trying in future studies. Pearson’s correlation and partial correlation of time series 

between different brain regions are commonly used in fMRI networks (Liu, Liang et al. 

2008; Wang, Metzak et al. 2010; Kang, Sponheim et al. 2011; Moussa, Vechlekar et al. 

2011; Yu, Sui et al. 2011; Yu, Sui et al. 2011). However, a recent study (Fornito, Yoon et 

al. 2011) built task-related functional networks from the correlations of beta values 

derived from regression against stimuli. Also, the networks we analyzed are undirected 

and binarized. Future studies may perform a weighted network analysis which could 

supply more information as has been done in two recent studies (van den Heuvel and 

Hulshoff Pol 2010; Wang, Douw et al. 2010). Another concern is that patients had 

received antipsychotic treatment, but the detailed medication history was not available for 

all subjects recruited in this study. This raises the potential confound that antipsychotics 

may contribute to the differences in graph parameters among patients.  

In conclusion, we examined the differences between healthy controls (HC) and 

people with schizophrenia (SZ) on topological properties of small-world networks that 

were derived from fMRI data acquired during working memory performance. Brain 

networks were constructed for each subject based on the functional connectivity between 

brain regions constrained to components of task-related brain areas for each WM load 

level. The constructed brain networks were thresholded to derive small-world networks 
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with a series of constant number of edges for all subjects. Next, topological and 

efficiency measures for brain networks in both groups were generated. Results showed 

that topologies and efficiencies of functional networks in HC were stable as WM load 

increases, while network measures in SZ altered significantly at medium WM load. The 

network measures implied brain connectivity in SZ was more diffuse and less strongly 

linked locally in functional network at intermediate level of WM when compared to HC. 

The differential local and global patterns of connectivity and efficiency for people with 

SZ across levels of WM load indicate that patients are inefficient and variable in response 

to WM load increase, comparing to stable highly clustered network topologies in HC. 

Sophisticated graph network measures provide a means of characterizing the effects of 

dysfunctional neural circuitry and variations in impaired connectivity across levels of 

dysconnectivity working memory demands in SZ (Manoach, Press et al. 1999; Manoach, 

Gollub et al. 2000; Callicott, Mattay et al. 2003; Potkin, Turner et al. 2009). The present 

findings also suggest that graph theoretic descriptions of neural connectivity may help 

isolate the conditions under which neural contributions to working memory deficits are 

most evident in the disorder. 
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Chapter 4 Functional Network Connectivity to Differentiate Bipolar 

and Major Depression 

4.1   Introduction 

4.1.1 Bipolar and Major Depressive Disorder 

Bipolar disorder (BD) and major depressive disorder (MDD, or unipolar 

depression) rank among the most debilitating illnesses worldwide (Murray, Lopez et al. 

1996). Both BD and MDD are similarly characterized by depressive episodes, making it 

difficult to differentiate between the two disorders during the depressed phase (Judd, 

Akiskal et al. 2002; Judd, Akiskal et al. 2003). BD patients are often misdiagnosed as 

MDD (Hirschfeld, Lewis et al. 2003; Hirschfeld and Vornik 2005), leading to 

inappropriate and longer medication trials, a poorer prognosis, and greater health care 

expenses (Kupfer 2005; Dudek, Siwek et al. 2013). Objective neuroimaging markers that 

distinguish BD from MDD may significantly improve diagnostic accuracy, especially in 

the early phases of the illness (Strakowski, Adler et al. 2012), and may thereby facilitate 

optimal clinical and functional outcome for individuals suffering from either disorder 

(Cardoso de Almeida and Phillips 2013). For example, functional magnetic resonance 

imaging (fMRI) may prove helpful for identifying neurophysiological abnormalities that 

distinguish BD from MDD. Different patterns of functional activities have been found in 

BD versus MDD during resting-state or task-based fMRI studies (Taylor Tavares, Clark 

et al. 2008; de Almeida, Versace et al. 2009; Almeida, Versace et al. 2010; Bertocci, 

Bebko et al. 2012; Diler, de Almeida et al. 2013; Cerullo, Eliassen et al. 2014).  
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4.1.2 Motivation 

Analyses of FC by computing graph theory metrics, such as clustering coefficient, 

characteristic path length, local efficiency and global efficiency, further assess the 

topological properties of brain graphs, and provides a useful measure of how effectively 

information is passed and processed between different brain regions (Rubinov and Sporns, 

2010). Graph organizational properties may reveal disease-related abnormalities in 

functional brain networks among psychiatric patients from resting-state as well as task-

related neuroimaging data (He et al., 2012; Lynall et al., 2010; Wang et al., 2010; Yu et 

al., 2011a; Yu et al., 2011b). However, no previous study has compared the FNC 

properties between BD and MDD. 

The goal of the present study was to investigate the different FNC patterns in BD 

and MDD patients during the resting-state. We compared connectivity strengths (single-

edge weights) and other graph measures of FNC between the two groups. Characterizing 

how FNC structure differs in the fMRI data obtained from BD versus MDD samples may 

increase our understanding of the organization of functional brain networks in these 

disorders, and may provide potential diagnostic biomarkers to allow for the 

differentiation of BD from MDD. 

4.2  Methods 
In this study, preprocessed fMRI data on BD, MDD and HC from the Tulsa 

Resting-state Dataset was used. 

4.2.1 Group ICA and post-processing on functional data 

Group ICA was performed on the fMRI data using GIFT software 

(http://mialab.mrn.org/software/gift) (Calhoun and Adali 2012). Individual fMRI images 

http://mialab.mrn.org/software/gift
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were decomposed via principal component analysis (PCA), with the first 100 components 

selected for dimension reduction (Allen, Erhardt et al. 2011; Erhardt, Rachakonda et al. 

2011; Yu, Sui et al. 2011). The infomax algorithm (Bell and Sejnowski 1995) was 

repeated 10 times using ICASSO (http://www.cis.hut.fi/projects/ica/icasso) to improve 

the reliability of the decomposition, result in 75 group independent components. Time 

courses (TCs) and spatial independent components (ICs) of individuals were then back-

reconstructed (Calhoun, Adali et al. 2001; Erhardt, Rachakonda et al. 2011).  

Similar to the IC selection procedures described in (Allen, Erhardt et al. 2011; 

Damaraju, Allen et al. 2014), we generated a one-sample t-test map for each spatial map 

across all subjects, and thresholded the map to obtain regions of peak activation clusters 

for each IC. The mean power spectra of the corresponding TCs from each IC were also 

calculated. The intrinsic connectivity networks (ICNs) were identified if they exhibited 

peak activations in gray matter, and also showed low spatial overlap with known 

vascular, ventricular, motion, edges, and susceptibility artifacts according to the 

thresholded t-test maps. We additionally ensured that the mean spectral powers of ICNs 

were dominated by low-frequency fluctuations (Cordes, Haughton et al. 2000). Forty-

eight ICs were characterized as ICNs, while 27 ICs were attributed to physiological, 

movement related, or imaging artifacts. As remaining noise effects like heart beat and 

respiration, especially head motion artifact has been reported on connectivity analysis 

(Power, Barnes et al. 2012; Van Dijk, Sabuncu et al. 2012; Yan, Craddock et al. 2013), 

related TCs underwent additional post-processing to remove them (Allen, Damaraju et al. 

2014), including 1) detrending linear, quadratic, and cubic trends, 2) multiple regression 

http://www.cis.hut.fi/projects/ica/icasso
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of the 6 realignment parameters and their temporal derivatives, 3) removal of detected 

outliers (despiking along each TC), and 4) low-pass filtering with a cutoff of 0.15 Hz. 

4.2.2 FNC Analysis 

For each subject, an FNC matrix was calculated using the absolute values of 

Pearson’s correlation between TCs of each pair of 48 ICNs. P-values of corresponding 

correlation coefficients also were obtained for further analysis. The FNC matrices were 

then normalized into z-scores using Fisher r-to-z transformation, in order to induce 

normality on the correlation coefficients. One 48×48 symmetric FNC matrix was 

obtained for each subject, with entry of element (i, j) corresponding to the strength (or 

weight) of connectivity between ICNs i and j. The network connectivity strength (Lynall, 

Bassett et al. 2010) was specified as absolute z-scores. FC-of-interest were then selected 

based on p-values obtained from Pearson’s correlation with corresponding p < 0.05 (2-

tailed, uncorrected) in more than 80% of subjects in any one of three groups. An identical 

overall FC-of-interest pattern was maintained across all subjects for comparison. With 

non-FC-of-interest entries set to zero, 398 significant connectivity strengths (sparsity at 

398÷1128 = 35.3%) in each FNC matrix were retained for further testing. This sparsity 

value falls within a range that is not only biologically plausible (Sporns 2011), but also 

proved to keep graph structure reliable (Dennis, Jahanshad et al. 2012). Two types of 

analysis were performed on the FNC matrices: a connectivity analysis and a graph 

analysis.  

4.2.3 Connectivity analysis 

Connectivity analysis was performed on the elements of FNC metrics (i.e. 

strengths of the FC between ICN pairs). ANOVA across groups was performed 



60 
 

simultaneously on each FC strength to assess the significance of group effects. Two-

sample t-tests were then applied to assess the significance of pair-wise group differences 

in connectivity for contrasts in which p < 0.05 from ANOVA. Please refer to 

supplemental material S3 for detailed background on the statistical tests. The false 

discovery rate (FDR) correction (Benjamini and Hochberg 1995) for multiple testing was 

applied to the p-values obtained from the statistical tests made on 398 individual FC 

strengths. Pearson’s correlations were used to evaluate relationships between the 

symptom rating scale scores (MADRS in both BD and MDD subjects) and FC strengths 

that differed between groups. 

4.2.4 Graph analysis 

In graph-theory based analyses, FNC were normalized (FC strengths were linearly 

rescaled into [0, 1] with a uniform factor in all FC strengths across all subjects) and 

treated as weighted graphs. In the graphs, ICNs correspond to nodes, and the weights of 

edges linking nodes-pairs are the FC strengths. Within each graph, three nodal metrics 

including strength, clustering coefficients, and local efficiency were estimated at the 

functional-network-level (micro-level) for each of 48 nodes. At the same time, four graph 

metrics including averaged clustering coefficients, characteristic path lengths, global 

efficiency and averaged local efficiency were evaluated for each brain graph as a whole 

at the macro-level. The brain connectivity toolbox (http://sites.google.com/site/bctnet/) 

was utilized for the graph metrics computation. Detailed definitions of and formula for 

these graph metrics can be found in (Rubinov and Sporns 2010). On nodal graph metrics, 

significance of group effects were first computed using ANOVA. Nodes with p < 0.05 

underwent post-hoc t-tests to examine the significance of contrasts between group pairs. 

http://sites.google.com/site/bctnet/
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The p-values from statistical tests made on 48 individual nodal metrics were corrected 

using FDR. On global brain graph measures, statistical significance of both group effects 

and pair-wise group contrasts were tested using ANOVA and t-tests respectively. 

Correlation between symptom rating scale scores (MADRS in both BD and MDD groups) 

and graph metrics that showed group differences were evaluated. The BrainNet Viewer 

toolbox (http://www.nitrc.org/projects/bnv/) was used for visualization (Xia, Wang et al. 

2013). 

4.3  Results 
 

4.3.1 Group ICA and FNC 

Figure 4.1a displays the spatial maps of 48 ICNs identified from group level ICA. Based 

on their anatomical and presumed functional properties, 48 ICNs are arranged into groups 

of auditory (AUD), somatomotor (SM), visual (VIS), cognitive control (CC; putatively 

referring to the planning, monitoring, and adapting one’s behavior), default-mode (DM), 

and cerebellar (CB) components. ICNs were similar to those observed in previous high 

model order ICA decompositions (Kiviniemi, Starck et al. 2009; Abou-Elseoud, Starck et 

al. 2010; Allen, Erhardt et al. 2011; Allen, Damaraju et al. 2014; Sui, Huster et al. 2014). 

Figure 4.1b shows the averaged FNC in each group, FNC was averaged over all subjects 

and inverse Fisher transformed (r = tanh(z)) back to correlation coefficient for display, 

facilitating comparisons with previous studies. Overall, BDs showed stronger FC 

strengths, while strengths in MDDs were slightly weaker. 

http://www.nitrc.org/projects/bnv/
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Figure 4.1 (a) Spatial maps of 48 ICNs and (b) the FNC (correlation matrix) in each group. ICNs are 
divided into groups and arranged based on their anatomical and functional properties. FC strengths are 
averaged over all subjects in each group. (AUD: auditory; SM: somatomotor; VIS: visual; CC: cognitive 
control; DM: default mode; CB: cerebellar) 

From ANOVA, strong group effects were found in two FC strengths after FDR 

correction, as displayed in Figure 4.2: FC strengths between inferior frontal and anterior 

cingulate cortex (ICN59 – ICN61, p = 4.50×10-4), and between left inferior parietal 

lobule and precentral gyrus (ICN3 – ICN41, p = 4.46×10-4). However, both FC only 

passed FDR at q = 0.1, but did not achieve statistical significance after correction at q = 
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0.05. Based on group-pair comparison of FC strengths, two sample t-tests revealed that 

six FC strengths were either strongly or significantly differentiating between BD and 

MDD, and another FC strength differed between MDD and HC.  

Compared to MDD, BD showed significantly stronger FC strengths within 

dorsolateral prefrontal (DLPFC) and ventrolateral prefrontal (VLPFC) areas (2 FC 

strengths, ICN14 – ICN32 p = 1.82×10-4, and ICN6 – ICN32, p = 4.77×10-4, both FDR 

corrected), between left postcentral and cuneus (ICN17 – ICN46, p = 2.84×10-4, FDR 

corrected), as well as inferior frontal/ DLPFC to anterior cingulate cortex (ACC) (ICN59 

– ICN61, p=3.24×10-4, FDR corrected). Two more FC displayed higher strengths in BD 

than MDD, including lingual/cuneus to superior temporal (ICN22 – ICN25, p = 9.16×10-

4) and medial frontal and superior frontal regions (ICN32 – ICN75, p = 9.82×10-4), which 

approached but did not achieve significance after correction (passed FDR at q = 0.1 only, 

but did not at q = 0.05). 

Compared to HCs, weaker FC strengths were found in MDD from left inferior 

parietal lobule to precentral gyrus (ICN3 – ICN41, p = 1.30×10-4). However, this 

difference in FC strengths was reduced to a non-significant trend after correction for 

multiple testing. 

4.3.2 Graph analysis on FNC 

A summary of ICNs (nodes) with significant group difference and group effects 

on nodal graph measures are listed in Table 4.1 and highlighted in Figure 4.3. 
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Figure 4.2 The FC strengths that differentiated (a) BD to MDD, (b) BD to HC, and (c) MDD to HC 
with two-sample t-tests (p < 0.001). Width of FC strengths in the brain map indicates the averaged 
strength difference between groups. The FC strengths in red frames showed significant group differences 
between BD and MDD (p < 0.05, FDR corrected), while others approached significance but did not survive 
multiple comparisons. 
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As shown in Figure 4.3a, significant group effects from ANOVA existed in nodal 

strength of ICN67 after FDR correction. The t-tests show five networks, including ICNs 

lie in DLPFC, VLPFC, ACC and inferior parietal area, were significantly higher (p < 

0.05, FDR corrected) in nodal strengths in BD than MDD. No significant differences are 

found between patients and controls. 

Figure 4.3b displays the networks with significant group effects and group 

difference in clustering coefficients. Five ICNs showing significant group effect (p < 

0.05, FDR corrected) from ANOVA, which were mostly concentrated in prefrontal 

regions. In t-tests, three ICNs indicated stronger clustering in BD than HC after FDR 

correction. A total of fourteen ICNs distinguished BD from MDD, which lie in frontal, 

ACC, posterior cingulate cortex (PCC), superior temporal, and parahippocampal areas.  

For local efficiency, significant group effect (p < 0.05, FDR corrected) on local 

efficiency was found in ICN67 again from ANOVA test. Seventeen ICNs demonstrated 

significantly (p < 0.05, FDR corrected) higher values in BD comparing to MDD after 

correction, including ICNs in pre- and mid-frontal, ACC, PCC, superior temporal, cuneus 

and parahippocampal areas (Figure 4.3c). 
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Figure 4.3 The measures of (a) nodal strength, (b) nodal clustering coefficient, (c) nodal local 
efficiency, and (d) averaged graph measures at whole brain level. For the nodal measures, only ICNs 
that showing significant group difference or group effect (p < 0.05, FDR corrected) are shown in the error 
bar plots, and highlighted in the brain maps. 

For ANOVA on global brain graph metrics, local efficiency showed significant 

group effect (p = 0.0376), while p-values of clustering coefficient (p = 0.0513), 

characteristic path lengths (p = 0.0568) and global efficiency (p = 0.0901) were also 

small but only marginally significant. Between group pairs, despite the fact that no 

significant group differences were revealed for the graph metrics between patients and 

HC, all four global brain graph metrics showed differences between BD and MDD 

(Figure 4.3d). Compared to MDD, BD showed significantly higher values in clustering 
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coefficient (p = 0.0099), global efficiency (p = 0.0206) and local efficiency (p = 0.0066), 

as well as significantly shorter characteristic path lengths (p = 0.0062) across the whole 

brain, indicating the higher efficiency in topology structure of BD. 

Table 4.1 ICNs with Group Differences / Group Effect in Nodal Metrics 

ICN Peak Coord 
(mm) 

Nodal Strength Nodal Clustering Coefficient Nodal Local 
Efficiency 

PBD-MDD PANOVA PBD-MDD PBD-HC PANOVA PBD-MDD PANOVA 
Auditory         

Parahippocampal 
(ICN25) -42,6,-21      0.0116  

Cognitive Control        
DLPFC/ACC 

(ICN6) -27,54,15 0.0011  0.0005  0.0030 0.0010  

DLPFC (ICN14) -24,30,51   0.0011  0.0028 0.0011  
DLPFC (ICN16) 0,15,66 0.0038  0.0016   0.0009  

IPL (ICN21) 63,-33,27 0.0008  0.0001  0.0047 0.0005  
MFG (ICN59) 51,30,-3   0.0096   0.0183  

DLPFC (ICN71) 30,51,36   <0.0001   0.0060  
DLPFC (ICN75) 51,18,33   0.0034   0.0060  

Default Mode        
DLPFC/VLPFC 

(ICN32) 0,42,54 0.0009  0.0001 0.0030 0.0013 0.0004  

SFG (ICN63) 15,66,21   0.0084 0.0023  0.0162  
SFG/ACC (ICN67) 0,63,12 0.0001 0.0005 0.0128 0.0009 0.0002 0.0001 0.0004 

Cerebellum        
Cerebellum (ICN20) -39,-69,-21      0.0193  
Somatomotor        

R PoCG (ICN31) 45,-24,63      0.0121  
MFG (ICN38) 0,-33,78   0.0064   0.0055  

PreCG (ICN41) -54,9,30   0.0139   0.0087  
ACC (ICN61) 0,6,42   0.0185   0.0039  

Visual        
PCC/ 

Parahippocampal 
(ICN45) 

-6,-54,3   0.0047   0.0078  

Cuneus (ICN46) 3,-93,3      0.0069  
STG (ICN56) -57,-57,9   0.0026   0.0058  

 

4.3.3 Correlation with Symptom Scores 

No significant correlation with symptom scores was found in individual FC 

strengths and global network measures. 
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Table 4.2 Significant Correlations between Nodal Metrics and Symptom Scores 

ICN Peak Coord 
(mm) 

Nodal Strength Nodal Clustering 
Coefficient 

Nodal Local 
Efficiency 

YMRS 
(BD) 

MADRS 
(BD+MDD) 

YMRS 
(BD) 

MADRS 
(BD+MDD) 

YMRS 
(BD) 

MADRS 
(BD+MDD) 

Auditory        
Parahippocampal 

(ICN25) -42,6,-21      r = -0.3605 
p = 0.0080 

Cognitive Control       

DLPFC (ICN16) 0,15,66 r = 0.6518 
p = 0.0158 

r = -0.3009 
p = 0.0286 

r = 0.6397 
p = 0.0185 

r = -0.2971 
p = 0.0307 

r = 0.6280 
p = 0.0215 

r = -0.3184 
p = 0.0202 

IPL (ICN21) 63,-33,27    r = -0.2949 
p = 0.0321  r = -0.2750 

p = 0.0462 

DLPFC (ICN71) 30,51,36    r = -0.2833 
p = 0.0398  r = -0.2920 

p = 0.0339 
Somatomotor       

R PoCG (ICN31) 45,-24,63      r = -0.2753 
p = 0.0460 

ACC (ICN61) 0,6,42    r = -0.2919 
p = 0.0339  r = -0.3605 

p = 0.0080 

 

In contrast, the nodal graph measures of the ICNs that located in the DLPFC, 

ACC, inferior parietal, and parahippocampal cortex regions were negatively correlated (p 

< 0.05, uncorrected) with MADRS scores in both the BD and MDD groups (Table 4.2). 

Figure 4.4 shows a typical network (ICN16) with the overall trends between nodal 

strength and symptom scores. In the patients with higher MADRS scores the overall 

nodal connectivity strength, nodal clustering coefficient and nodal local efficient of the 

ICNs were lower in these brain networks.  
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Figure 4.4 Significant correlation between nodal graph measures (nodal strength, clustering 
coefficient, and local efficiency) and symptom scores (MADRS in both BD/MDD patients and YMRS 
in BD) at a typical ICN in DLPFC (ICN16). 

4.4  Discussion  

In this study, we used ICA, a data-driven method to separate resting-state fMRI 

data into ICNs, and built the whole brain functional graph, in which the FNC strengths 

and its graph measures were computed. We observed that, compared to the MDD group, 

the FNC of the BD group exhibited higher FC strengths and also was characterized by 
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more efficient topological structures based on measures obtained using graph theory at 

the functional-network-level in prefrontal cortex as well as at the whole-brain-level. In 

particular, our findings revealed that the FC strengths and corresponding graph structures 

which differentiate BD and MDD were mainly located in prefrontal networks including 

the DLPFC and VLPFC as well as ACC, which is consistent with findings in (Jie, Zhu et 

al. 2015). Greater depressive symptom severity correlated with less interconnected 

structure in prefrontal cortical areas in the patients from both the BD and MDD groups. 

Although the correlations did not remain significant after correction for multiple 

comparisons, the trend indicates the potential linkage between altered FC patterns in 

those ICNs and clinical symptom scores. 

Several ICNs implicated in the pathophysiology of mood disorders (e.g., 

involving functional interactions between prefrontal, anterior cingulate, 

parahippocampus, cuneus, temporal, parietal, and occipital cortices) were significantly 

different in FC between the BD and MDD groups. Pair-wise comparisons show that 

relative to the MDD group, the BD group had significantly stronger FNC strengths within 

the prefrontal cortex, between the prefrontal cortex and anterior cingulate cortices, 

cuneus and temporal regions. The prefrontal regions, including the orbitofrontal cortex 

(OFC), ACC, dorsomedial prefrontal cortex (DMPFC), DLPFC and VLPFC, have been 

most consistently implicated in cognitive control processes (Sui, Pearlson et al. 2015), 

including decision-making and emotion regulation (Phillips, Ladouceur et al. 2008; 

Kupfer, Frank et al. 2012). Specifically, the ACC and other medial prefrontal areas play 

major roles in processing emotion and in automatic or implicit regulation of emotion, 

whereas lateral prefrontal cortical systems like the DLPFC and VLPFC are implicated in 
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cognitive control and voluntary or effortful regulation of emotion (Drevets 2001; Phillips, 

Ladouceur et al. 2008). The DLPFC and VLPFC constitute of the limbic-cortical-striatal-

pallidal-thalamic circuit system that has been hypothesized to be dysfunctional in mood 

disorders based on neuroimaging studies (Drevets 2000; Price and Drevets 2012). 

Another study employing effective connectivity analyses (Stein, Wiedholz et al. 2007) to 

examine neural activity in response to fearful and angry faces in healthy subjects found 

an information-processing path from OFC to DLPFC. Recently, ACC and medial PFC 

regions have been recognized as part of a neural subcircuit involved in a process with 

recursive self-focused thinking that leads to negative mood, i.e. rumination (Cooney, 

Joormann et al. 2010), which may associate with both BD and MDD (Johnson, McKenzie 

et al. 2008). Furthermore, it has been reported consistently that the DLPFC and VLPFC 

are not functioning efficiently towards negative emotions in BD (Brotman, Kassem et al. 

2007; Pavuluri, O'Connor et al. 2007; Pavuluri, O'Connor et al. 2008). These findings are 

consistent with our results on FNC and symptoms, where significant negative correlations 

were found between depressive symptom scores and the level of interconnected structure 

in prefrontal areas in both BD and MDD patients. 

The networks of strongest connectivity in the BD group were present in the 

DLPFC and VLPFC (i.e. ICN6, ICN14, ICN16, and ICN32). The increased FNC 

indicates possible stronger phase coherence in these ICNs in BD than MDD patients. As 

reported in electroencephalogram (EEG) studies (Varela, Lachaux et al. 2001; Spencer, 

Nestor et al. 2004), phase synchrony has been related to the integrity of the circuits 

between two brain regions, that is, if two brain regions are locked in phase with each 

other, their functioning is closely connected. The significantly different FC strengths and 
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local graph measures in the prefrontal ICNs, as well as those in the ACC, PCC, superior 

temporal, and parahippocampal areas that consist of the fronto-limbic circuitry between 

BD and MDD, which implicate the underlying cognitive and mood control schemes are 

distinct from each other. 

Similar findings have been reported by other studies. A low frequency resting-

state fMRI study revealed higher correlations between left and right VPFC in BD 

(Chepenik, Raffo et al. 2010). Another ICA-defined FNC analysis reported the BD group 

shows increased connectivity in emotion evaluation regions such as bilateral medial PFC, 

and in “affective working memory network” including the DLPFC and VLPFC, during 

an affective working memory task (Passarotti, Ellis et al. 2012). Abnormal medial PFC 

connectivity between ICA components were also found during resting-state in the BD 

group (Ongur, Lundy et al. 2010; Calhoun, Sui et al. 2011; Sui, Pearlson et al. 2011). 

Decreased blood flow and metabolism in the DMPFC and DLPFC in MDD group have 

been reported in multiple studies (Baxter, Schwartz et al. 1989; Bench, Friston et al. 

1992; Drevets 2000). Compared to BD, (Taylor Tavares, Clark et al. 2008) found the 

MDD group failed to recruit the VLPFC and DMPFC during behavioral reversal learning 

task that required subjects to ignore misleading negative feedback. 

Topologically, clustering coefficients are equivalent to the fraction of the node’s 

neighbors that are also connected with each other (Watts and Strogatz 1998). This metric 

reveals the capacity for specialized processing to occur within densely interconnected 

brain region groups (Rubinov and Sporns 2010). Local efficiency reflects the fault 

tolerance of the graph system, or the efficiency of communication between the first 

neighbors of a node when it is removed (Latora and Marchiori 2001). The significantly 
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higher clustering coefficients in the BD group relative to the MDD and HC groups 

indicate that the ICNs in default-mode nodes including the DLPFC, superior frontal gyrus 

(SFG) and ACC exhibit stronger local functional interconnections, and thus potentially 

showed greater efficiency for local information transfer in those regions in the BD group 

relative to the other groups. Abnormal function in default-mode networks have been 

documented in a previous study (Ongur, Lundy et al. 2010), suggesting abnormal 

functional organization of neural circuits within BD. At the same time, lower local 

efficiency in these brain areas suggest that the MDD participants had lower fault 

tolerance (i.e., more vulnerable) locally compared to BD. However, lower efficiency in 

frontal cortex may relate to more depressive symptoms, as several networks showed a 

negative correlation between MADRS and nodal graph measures like strength, clustering 

coefficient and local efficiency. 

The graph metrics at the whole brain level are the averaged metrics across all 

nodes. Although only a few local ICNs that have significant differences between BD and 

MDD, which are mostly in prefrontal regions, the averaged metrics shows the same trend. 

This indicates those graphs are the most influential to the overall brain graph in our study. 

With respect to global measures, compared to MDD, FNC in BD had higher 

global efficiency and shorter characteristic path length. The identified paths show 

potential routes of information flow between pairs of brain regions (Rubinov and Sporns 

2010). Characteristic path length is a measurement of the extent of average connectivity 

or the overall routing efficiency of the graph. Shorter path lengths between nodes have 

also been shown to promote effective interactions across different cortical regions 

(Achard and Bullmore 2007). Global efficiency of a graph system is the efficiency of the 
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parallel system, where all the nodes in the graph exchange information concurrently 

(Abou-Elseoud, Starck et al. 2010). According to explanations from (Kaiser and Hilgetag 

2004), ICNs in BD, which have shorter characteristic path length and high global 

efficiency, are of significance in minimizing noise, shortening signaling delay and 

increasing synchrony.  

Although our study emphasized the identification of differences between BD and 

MDD, it worth noting that among those comparisons from both FC strengths and graph 

measures, the most significant group differences occurred between the BD and MDD 

groups, with weaker contrasts between each mood disorder groups relative to the HC 

group. Regarding the contrasts between the MDD and HC groups, although the trend of 

reduced FNC in many brain regions in MDD is consistent with previous literature (Anand, 

Li et al. 2005; Anand, Li et al. 2005; Veer, Beckmann et al. 2010; Wang, Hermens et al. 

2012; Zhu, Wang et al. 2012), the group differences reported here were not significant 

after correction for multiple comparisons. Possibly the high order (number of ICs) ICA 

model we applied to the whole brain analysis reduced statistical sensitivity by requiring 

corrections for a relatively large number of comparisons. Notably, a similar result was 

reported in another study on resting-state FC differences between MDD and HC 

(Craddock, Holtzheimer et al. 2009), where no statistical group difference was evident 

after applying corrections for multiple testing. As shown from the bar plots of graph 

measures in both whole-brain-level and functional-network-level in various ICNs, BD 

and MDD were far from each other, with HC in the middle. This overall trend showing 

HC in between BD and MDD were also found in studies on BOLD responses to positive 

and negative stimuli (Diler, de Almeida et al. 2013; Grotegerd, Stuhrmann et al. 2014). 
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Note that there was a modest variation in the scanning duration across subjects 

(191 or 225 volumes) although each scan length was similarly represented within each 

diagnostic group and the mean scan length did not differ significantly across groups. We 

included all time points available during computation of the temporal correlations. An 

alternative method is to involve truncation of the longer time courses to match the 

duration of the shorter ones (keeping only 184 time points for all subjects). However, this 

step may result in the loss of information. Nevertheless, we retested FNC built from first 

184 time points in all subjects, the group differences still exist in most measures with p-

value changed, with several FC strengths and nodal measures failed to pass FDR 

correction at q = 0.05. In addition, we also checked the correlations between the scan 

durations and reported FNC measures (FC strengths and graph measures) that 

demonstrated group differences. No significant correlation was found, indicating the 

relatively small difference in scanning duration did not have a major effect on our results.  

Several experimental and methodological issues in our study design merit 

comment. The major limitation was the small sample size, especially in the BD group. To 

reduce the potential confound of medication, our study was limited to subjects who were 

treatment-naïve or unmedicated for at least three weeks, which constrained the patient 

pool. Nevertheless, most recent neuroimaging studies reviewed in (Cardoso de Almeida 

and Phillips 2013) also included sample sizes ranging from 10 to 30 subjects per patient 

group. It would be helpful to increase statistical power by including more subjects in 

future studies. In order to maximize the sample size, we included two BD subjects in 

mixed states and one in a euthymic state, which may have increased the variability of the 

fMRI data. Consequently, we performed a post hoc analysis to compare the depressed 
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MDD patients versus only the 10 depressed BD subjects, and results were essentially the 

same as those reported in the original analysis: the group differences still existed 

although the p-values increased nominally. Further studies may address this limitation by 

recruiting more specific and clinically matched subjects. Another methodological 

limitation is that we characterized FNC as the correlation between ICN TCs, rather than 

use non-linear metrics, such as mutual information, or coherence. While the use of 

correlation restricts the detection of nonlinear dependencies and the resolution phase of 

and spectral relationships, this approach is preferred for its straightforward interpretation 

and tractability. Nevertheless different connectivity computation methods may be applied 

in future studies of FNC to gain additional information. 

In conclusion, our results show distinct functional network connectivity 

underlying BD and MDD during resting-states. Overall brain graphs were more 

topologically efficient in BD than in MDD. The FC strengths and FNC graph metrics that 

differentiate BD and MDD existed predominantly in prefrontal networks including 

DLPFC, VLPFC and ACC, which play roles in cognitive control of emotional processing 

and in other aspects of emotional and visceromotor modulation. These findings raise the 

possibility that distinct mood control schemes exist between these mood disordered 

subgroups, which ultimately may be used to guide future studies aimed at differentiating 

MDD and BD on the basis of biomarkers.  
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Chapter 5 Interrelated Features in both FNC and Low Frequency 

Fluctuations Associated With Cognitive Deficits in Schizophrenia 

 

5.1   Introduction  

The cognitive deficits of schizophrenia are largely resistant to current treatment 

and tend to be a life-long burden of the illness. The MATRICS consensus cognitive 

battery (MCCB) “provides a reliable and valid assessment of cognition across a 

comprehensive set of cognitive domains for schizophrenia” (Green, Nuechterlein et al. 

2004). The MCCB includes 10 neurophysiologic tests clustered in 7 cognitive domains 

(Green, Kern et al. 2004): speed of processing, attention/vigilance, working memory, 

verbal learning, visual learning, reasoning/problem solving, and social cognition.  

Despite its widespread use, the neural networks underlying MCCB performance 

in schizophrenia have been examined in only a few single-modality brain imaging studies 

(Rissling, Makeig et al. 2010; August, Kiwanuka et al. 2011; Tregellas, Smucny et al. 

2014). Only one study has examined MCCB correlates of fused neuroimaging data (MEG 

and DTI) using joint independent component analysis (Stephen, Coffman et al. 2013). A 

posterior visual processing network was related to reduced MEG amplitude, reduced FA 

and poorer MCCB composite scores in schizophrenia, suggesting the advantage of this 

fusion technique. Currently, National Institute of Mental Health (NIMH) emphasizes the 

importance of “target engagement” in clinical trials (Sui, He et al. 2013). Understanding 

the brain network organization related to MCCB performance may allow imaging 
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assessments to be engaged early in clinical trials; hence accelerates the development of 

new therapeutic approaches to enhance cognition. However, in resting-state fMRI, both 

the functional connectivity and spatial alterations specifically associated with MCCB 

have not been examined. Therefore we aim to use two functional measures including 

functional network connectivity (FNC) and fractional amplitude of low frequency 

fluctuations (fALFF) to examine the functional correlates of MCCB with resting-state 

fMRI and to find the potential functional biomarkers of cognitive dysfunction in 

schizophrenia. 

5.2  Methods  

 In this study, preprocessed fMRI dataset on SZ and HC from the MATRICS 

Resting-state Dataset was used. 

 

Figure 5.1 Flowchart to obtain the functional correlates of MCCB with fALFF and FNC. Amplitude 
of low frequency fluctuations (fALFF, left) and functional network connectivity (FNC, right) were 
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calculated and correlated with MCCB respectively. Finally, the spatial maps of fALFF and FNC with high 
MCCB correlations were overlay for comparison and visualization. 

 The flowchart of this analysis is shown in Figure 5.1. Two analyses to explore the 

functional measures correlated with MCCB were performed in parallel, and finally they 

were spatially matched to see if there are consistent and replicable interrelationships 

between MCCB and the abnormalities seen in both fractional amplitude of low frequency 

fluctuations (fALFF) (Zou, Zhu et al. 2008; Sui, He et al. 2013) and functional network 

connectivity (FNC) maps (Calhoun and Adali 2012).  

First, the fALFF maps were computed based on the time courses of each voxel. 

Prior to computing ALFF, the original 4D fMRI data sets were divided by their global 

mean (over time and space) to normalize differences in scan intensity units. To eliminate 

remaining noise sources, the fMRI data underwent additional post-processing. We further 

regressed out 6 motion realignment parameters, white matter and CSF in de-noising, the 

mean framewise displacements showed no significant group difference (meanFD, mean 

of root of mean square frame-to-frame head motions assuming 50 mm head radius (Allen, 

Erhardt et al. 2011); HC: 0.224±0.12mm, SZ: 0.227±0.12mm, p = 0.91). Finally, data 

were spatially smoothed with a Gaussian kernel with full width at half max (FWHM) of 

8×8×8 mm3. We extracted the voxel-wise fractional ALFF (fALFF) to generate a map for 

each subject as in (Zou, Zhu et al. 2008; Erhardt, Allen et al. 2011; Calhoun and Allen 

2013; Sui, He et al. 2013). The fALFF calculation consisted of computing the fast Fourier 

transform on post-processed time series of each voxel, taking the square root of the 

power spectrum to obtain amplitude, and averaging amplitude in [0.01, 0.1] Hz (Calhoun 

and Allen 2013). The fALFF maps were then decomposed in to 8 independent sources by 
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independent component analysis (ICA) using infomax algorithm (Bell and Sejnowski 

1995). The Pearson correlation between MCCB composite scores and loading profile of 

each independent component (IC) were estimated for all subjects as well as subjects in 

each group, and IC showing the highest correlation was selected.  

Second, the whole brain fMRI images were decomposed into 100 functional 

networks. Group ICA was performed on preprocessed resting-state fMRI data using the 

GIFT software (http://mialab.mrn.org/software/gift) (Calhoun and Adali 2012). 

Individual fMRI images were decomposed via principal component analysis (PCA), with 

the first 120 components selected for dimension reduction. The infomax algorithm (Bell 

and Sejnowski 1995) was then repeated 10 times, estimating 100 group independent 

components via ICASSO (http://www.cis.hut.fi/projects/ica/icasso) to improve the 

reliability of the decomposition. Time courses and spatial ICs of individuals were then 

back-reconstructed (Erhardt, Rachakonda et al. 2011). Since ICs may include artifacts 

and noises, all ICs were manually selected for further study. The ICs selected for further 

FNC analysis are called intrinsic connectivity networks (ICNs), theoretically exhibited 

peak activations in gray matter, low spatial overlap with known vascular, ventricular, 

motion, and susceptibility artifacts (Cordes, Haughton et al. 2000). Fifty-two non-

artificial networks were characterized as ICNs, as opposed to physiological, movement 

related, or imaging artifacts. ICN related time courses underwent additional post-

processing to remove remaining noise sources, including 1) linear, quadratic, and cubic 

terms for detrending, 2) multiple regression of the 6 realignment parameters and their 

temporal derivatives, 3) removal of detected outliers, and 4) band-pass filtering with a 

cutoff of [0.01, 0.1] Hz. The FNC maps were then calculated as correlation matrices 

http://mialab.mrn.org/software/gift
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across post-processed time courses of 52 ICNs. There is one 52×52 symmetric FNC 

matrix for each subject, with entry of element (i, j) corresponding to the strength of 

connectivity between ICN i and j. The connectivity-wise strengths correlations with 

MCCB were calculated for all subjects and subjects in each group respectively. The FNC 

with most significant connectivity strength-MCCB correlations were found out and 

shown in Figure 5.2.  

 

Figure 5.2 Correlating functional network connectivity (FNC) strengths with MCCB. The FNCs that 
shown in red correspond to positive correlation and those shown in blue refer to negative correlation. 
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Finally, to compare the relationship between MCCB-correlated fALFF and FNC, 

the ICNs connected with significant strength-MCCB correlation were spatially overlay 

with the z-map of fALFF IC of interest selected in the first step. The BrainNet Viewer 

toolbox (http://www.nitrc.org/projects/bnv/) was used for visualization (Xia, Wang et al. 

2013). 

5.3  Results 

In fALFF analysis, among 8 ICs derived from ICA, one IC had significant 

correlation with MCCB composite scores for all subjects (r = 0.25, p=0.016) and for SZ 

group (r = 0.36, p = 0.014). Specifically, subjects with higher MCCB scores indicated 

higher ALFF values in their brain areas including dorsolateral prefrontal cortex (DLPFC), 

superior frontal gyrus (SFG), inferior parietal lobe (IPL), and inferior frontal gyrus (IFG). 

At the same time, higher MCCB scores also associated lower ALFF values in left 

superior temporal gyrus (STG), middle temporal gyrus (MTG), thalamus, and striatum. 

No IC correlated with MCCB was found in HC group.  

As shown in Figure 5.2, six FNC strengths showed significant correlation (|r| > 

0.3) with MCCB composite scores in all subjects. Higher MCCB scores were correlated 

with stronger FNC between IFG and lingual, while related with weaker strengths in other 

five FNC, including FNCs that were connected with IPL, supplemental motor area 

(SMA), SFG and MTG. IPL was a hub with the most FNC strengths associated with 

MCCB. Detailed ICN maps are displayed in Figure 5.3. 

http://www.nitrc.org/projects/bnv/
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Figure 5.3 Six FNC strengths that showed significant correlation (|r| > 0.3, p < 0.004) with MCCB 
composite scores in all subjects. The FNCs that shown in red correspond to positive correlation and those 
shown in blue refer to negative correlation.  

We also looked into the FNC strength-MCCB correlation in each group. The 

same threshold (|r| > 0.3) was used for comparison (Figure 5.2). There were 66 FNCs in 

HC and 121 FNCs in SZ with |r| > 0.3. The MCCB-correlations in two groups were 

showing in different connectivity, and with opposite trends: most FNC strengths were 

positively correlated with MCCB in HC, while more FNC strengths were negatively 

correlated with MCCB in SZ. 
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The overlapped MCCB-correlated FNC on fALFF 3D maps are displayed in 

Figure 5.4. Interestingly, the FNC strengths with significant correlations with MCCB 

were in well agreement with the activated regions with highest |z| values in fALFF IC: 

the high MCCB-correlated fALFF map and FNC overlaps in brain regions like prefrontal 

area, MTG and IPL. 

 

 

Figure 5.4 Overlapping MCCB-correlated FNC on 3D map of MCCB-correlated fALFF IC. The 
spatial map of fALFF was thresholded at |z|>2, with both positive (red regions) and the negative (blue 
regions) z-values. The FNCs that shown in red correspond to positive correlation and those shown in blue 
refer to negative correlation. Nodes represent the peak value location of ICN in each hemisphere (if an ICN 
is bilaterally distributed, two nodes will be shown symmetrically). 
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5.4  Discussion 

ALFF values correspond to intensity of regional spontaneous brain activity; while 

FNC describe the temporal coherence among brain regions even they are not 

anatomically connected. Prefrontal cortex appears in both MCCB-correlated ALFF and 

FNC. This region has long been demonstrated important for execution, decision making, 

and working memory (Stuss and Benson 1984; Sui, Adali et al. 2009; He, Sui et al. 

2012), which are key components of evaluating the cognitive deficit (Elliott 2003).The 

brain regions including prefrontal cortex, striatum and thalamus form a cortical-striato-

thalamic loop described in (Parent and Hazrati 1995; Kegeles 2006). In specific, the 

striatum, which is made up of the caudate and the putamen, receives its inputs from the 

cortex, thalamus, hippocampus, and amygdala; then projects its output structures to 

thalamus; the thalamus finally projects back to the cortex, thereby completing a closed 

circuit (Alexander, DeLong et al. 1986; Simpson, Kellendonk et al. 2010). MCCB-

correlated ALFF IC affirmed the activity in this cortical-striato-thalamic circuits affect 

the cognitive performance. 

IPL was another hub for both MCCB-correlated ALFF and FNC. Higher fALFF 

values in subjects with better cognitive performance supports previous findings on IPL 

including angular gyrus (AG), which have been shown strong involvement in semantic 

processing (Binder, Desai et al. 2009), social cognition (Green, Bearden et al. 2012) or 

theory-of-mind (Spreng, Mar et al. 2009). The stronger FNC strengths from IPL in 

cognitive deficits subjects indicate the activation in IPL in those subjects is less intense, 

and more efforts from other brain regions may be needed to collaborate with IPL in 

cognitive processes. 
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It is worth noting that FNC strengths showed different trends with MCCB in two 

groups. In HC, where most high FNC-MCCB correlations were positive, indicating better 

cognitive performance under stronger FNC strengths. While in SZ, other FNCs showed 

negatively correlation with MCCB. This phenomenon may lead to FNC strengths less 

sensitive to MCCB when pooling all subjects together. As altered FNC structures has 

been reported in prior resting-state fMRI studies (Yu, Sui et al. 2011; Yu, Sui et al. 

2013), more analysis could be done to look into the impact of altered FNC topology 

properties on cognition impairment in future works.  

5.5  Conclusions 

This study is the first attempt to combine two approaches to investigate functional 

neuroimaging correlates of MCCB in schizophrenia, and both methods resulted in 

consistent findings. Our results support the view that functional deficits in distributed 

cortico-striato-thalamic circuits and inferior parietal lobe may account for several aspects 

of cognitive impairment in schizophrenia, placing the nature of the cognitive symptom in 

a new light. 
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Chapter 6 Multimodal fusion with N-way mCCA+jICA Framework 

6.1  Theoretical Development 
In mCCA+jICA framework, we assume an n-modal set 𝑿𝒌  as a linear mixture of 

𝑀𝑘 sources given by 𝑺𝑘, with a non-singular mixing matrix 𝑨𝑘 for each modality 𝑘, that 

is: 

𝑿𝒌 = 𝑨𝒌𝑺𝒌,𝑘 = 1,2, … ,𝑛    (6.1) 

Typically, the number of data points per subject 𝐿𝑘  in 𝑿𝒌  is much larger than 

subject number 𝑁 . For each modality 𝑘 , 𝑿𝒌  is a 𝑁 × 𝐿𝑘  feature matrix, and 𝑺𝒌  is a 

𝑀𝑘 × 𝐿𝑘 matrix. The underlying sources 𝑺𝑘 are distinct within each dataset. The columns 

of 𝑨𝑖 and 𝑨𝑗 have higher correlation only on their corresponding indices, with modality 

𝑖, 𝑗 ∈ {1,2, … ,𝑛}, 𝑖 ≠ 𝑗. Due to the high dimensionality and high noise levels in the brain 

imaging data, order selection is critical to avoid over-fitting the data.  

6.1.1 Number of Components 

A modified minimum description length (MDL) criterion described in (Li, Adali 

et al. 2007) is adopted to estimate the number of independent components for each 

modality. MDL uses a sub-sampling scheme to obtain a set of effectively independently 

identical distributed (i.i.d.) samples from the dependent data samples, and then applies 

information-theoretic criteria (ITC) formulas to the effectively i.i.d. sample set. To 

maximally retains the joint information while to keep that the decomposed sources are 

independent from each other, the final component number for joint ICA is set as 𝑀 =

max(𝑀1� ,𝑀2� , … ,𝑀𝑘� ). 
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Dimension reduction is first performed on each 𝑿𝒌  using singular value 

decomposition (SVD) to determine the signal subspace given by 

𝒀𝒌 = 𝑿𝒌𝑬𝒌      (6.2) 

where 𝒀𝒌  is in size of 𝑁 × 𝑀  and 𝑬𝒌  contains eigenvectors corresponding to top 𝑀 

eigenvalues. 

6.1.2 Multi-set Canonical Correlation Analysis 

Multi-set CCA is then performed on 𝒀𝒌, generating the canonical variates 𝑫𝒌 by 

maximizing the sum of squares of all correlation values in its corresponding columns as 

adopted in (Li, Adali et al. 2009). The canonical correlations can be obtained by 

optimizing a number of cost functions proposed in (Kettenri.Jr 1971), e.g., maximizing 

the sum of squared correlations (SSQCOR) among the canonical variates. Consider the 

canonical variates 𝑫𝒌, where each is a linear combination of the dataset 𝒀𝒌 given as 

𝑫𝒌 = 𝒀𝒌𝒘𝒌       (6.3) 

where 𝒘𝒌 are the canonical coefficient vectors. The multi-set CCA procedure based on 

sum of squares cost can be summarized as: 

Stage 1: 

   �w1
(1), w2

(1), … , w𝑛
(1)� = arg maxw �∑ �rk,𝑙

(1)�
2

n
k,𝑙 �    (6.4) 

 

Stage 2:  Loop 𝑖 from 2 to 𝑀         
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�𝒘1
(𝒊),𝒘2

(𝒊), … ,𝒘𝑛
(𝒊)� = arg max𝑤 �∑ �𝑟𝑘,𝑙

(𝑖)�
2

𝑛
𝑘,𝑙 � , s.t.  𝒘𝑘

(𝒊) ⊥ �𝒘𝑘
(1),𝒘𝑘

(2), … ,𝒘𝑘
(𝒊−𝟏)�

 (6.5) 

End loop  

where 𝒘𝑘
(𝒊), 𝑖 = 1,2, …𝑀  is the ith column of the 𝒘  matrices, 𝑀 ≤ min(rank(𝒀𝑘)) . 

𝑟𝑘,𝑙
(𝒊) = corr�𝑫𝑘

(𝒊),𝑫𝑙
(𝒊)�, (𝑘, 𝑙 = 1,2, … ,𝑛;  𝑘 ≠ 𝑙)  is the column-wise correlation across 

modality.  

Stage 1 is solved by calculating the partial derivative function of the SSQCOR 

cost with respect to each 𝒘𝑘
(1)and equating it to zero to find the stationary point. Because 

the SSQCOR cost is a quadratic function of 𝒘𝑘
(1) , the partial derivative is a linear 

function of 𝒘𝑘
(1), the closed form solution can be derived. Starting from an initial point, 

each 𝒘𝑘
(1) vector is updated and consequently guarantee an increase in the cost function 

and a sweep through all the 𝒘𝑘
(1)  constitute one step of the iterative maximization 

procedure. The iterations are stopped when the cost convergence criterion is met, and the 

resulting 𝒘𝑘
(1) vectors are taken as the optimal solution. Loops in Stage 2 are solved in a 

similar manner with the cost function replaced by a Lagrangian incorporating the 

orthogonality constraints on the canonical coefficient vectors. 

Based on the above optimization, we simultaneously obtain 𝑫𝑘,𝑘 = 1,2, … ,𝑛 in 

all modalities, which satisfy  

𝐸{𝑫𝑘
𝑇𝑫𝑘} = 𝑰     (6.6) 
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𝐸{𝑫𝑘
𝑇𝑫𝑙} ≈ 𝑑𝑖𝑎𝑔�𝑟𝑘,𝑙

(1), 𝑟𝑘,𝑙
(2), … , 𝑟𝑘,𝑙

(𝑀)�; 𝑘, 𝑙 = 1,2, … ,𝑛; 𝑘 ≠ 𝑙  (6.7) 

where 𝑟𝑘,𝑙
(1), 𝑟𝑘,𝑙

(2), … , 𝑟𝑘,𝑙
(𝑀) are the so-called canonical correlation coefficients. Thus mCCA 

as a preprocessing step aligns the components by a data projection that jointly maximizes 

the N-way correlations. 

Based on the linear mixture model, we consequently get the associated maps 𝑪𝑘 

via 𝑿𝑘 = 𝑫𝑘𝑪𝑘,𝑪𝑘 = 𝑝𝑖𝑛𝑣(𝑫𝑘)𝑿𝑘 . However, multi-set CCA may achieve complete 

source separation in 𝑪𝑘 only when 𝑟𝑖𝑗1 , 𝑟𝑖𝑗2 , … , 𝑟𝑖𝑗𝑀 are sufficiently distinct (Li, Adali et al. 

2009). However, this constraint is not always easily satisfied, especially when the number 

of components 𝑀 is large (e.g. > 10) or the canonical correlation coefficients are very 

close in values. In most real brain data, the multimodal connection among components 

are not very high and could be similar in value (Sui, Pearlson et al. 2011), mCCA output 

𝑪𝑘 will typically be a set of sources that are not fully separated. 

6.1.3 Joint Independent Component Analysis 

ICA is a blind source separation method which has been widely used in many 

fields such as signal and image processing (Comon 1994; Hyverinen, Karhunen et al. 

2001). In an ICA model, the observed data are treated as a linear combination of 

unknown independent sources, and the aim is to decompose the observed data and extract 

the sources through maximizing the independence among them. As the potential common 

correlation values among 𝑟1, 𝑟2, … , 𝑟𝑀 , applying individual ICA within each dataset 

respectively may introduce ambiguity in feature matching via cross-correlation (Sui, 

Zhang et al. 2010). Therefore, further applying joint-ICA (jICA) on the concatenated 
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maps across modalities 𝑪 = [𝑪1,𝑪2, … ,𝑪𝑛] decomposes the mixtures transformed to an 

orthogonal space. Joint-ICA is a joint analysis obtained by forming an overall data input 

via stacking the data from different modalities together.  

[𝑺1,𝑺2, … ,𝑺𝑛] = 𝑾[𝑪1,𝑪2, … ,𝑪𝑛]     (6.8) 

After applying ICA algorithm, the data from each modality 𝑪𝑘 will be represented 

by joint independent source 𝑺 = [𝑺1,𝑺2, … ,𝑺𝑛] with a same estimated demixing matrix 

𝑾. Each the row of 𝑺𝑘 is placed adjacent to form a total combined row with length of the 

total number of voxels in all features (Calhoun, Adali et al. 2006). The independence 

among transformed components is maximized by reducing the statistical dependencies 

among them. ICA as a central tool for BSS has been studied extensively and we utilized 

Infomax (Bell and Sejnowski 1995). This algorithm is well known for its stability and 

reliability when the underlying sources are mostly super-Gaussian, and the underlying 

brain imaging sources are expected to be sparse, leading to heavy-tailed distributions 

(James and Hesse 2005).  

The overall mixing profiles 𝑨𝑘 linked via correlation can be expressed from the 

combination of mixing matrices from mCCA and jICA: 

𝑨𝑘 = 𝑫𝑘𝑾−1      (6.9) 

Putting together, the overall linear procedure in Eq. 6.1 can be written as 

𝑿𝑘 = (𝑫𝑘𝑾−1)𝑺𝑘     (6.10) 
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6.2  Simulation 

According to the priority of the optimization and the analysis schemes, the 

existing multivariate fusion models can be reclassified into 3 main categories which are 

good at: 

 1) Separating sources precisely and discovering the common mixing profiles. 

 2) Finding flexible connections among modalities 

 3) Enabling both flexible modal connection and high-quality source separation. 

We select one representative method from each optimization strategy to contrast 

them in a simulation, namely, joint ICA, multi-set CCA and mCCA + jICA. For fair 

comparison, all 3 methods are blind, using same features as input, thus it would be 

helpful to show why the findings generated by one method may not be obtained by 

another. 

6.2.1 Simulated Dataset 

We choose 𝑘 = 3 for simulation. For each modality, eight sources were generated 

to simulate images or one-dimensional signals, with different data points per source 

𝐿1 = 128 × 128 = 16384 , 𝐿2 = 1 × 5000 = 5000 , and 𝐿3 = 120 × 120 = 14400 

respectively, ground true sources are  𝑺1 (in dimension of 8 × 16384), 𝑺2 (in dimension 

of 8 × 5000) and 𝑺3 (in dimension of 8 × 14400). The vector lengths, or the number of 

data points  𝐿𝑘 were deliberately designed to be different across modality 𝑘 as is case for 

real data.  
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Figure 6.1 Ground truth of eight sources in three modalities 

The mixing matrices for each feature on 𝑁 = 80 subject, 𝑨1, 𝑨2 and 𝑨3 (each in 

dimension of 80 × 8) were constructed with diverse correlation between their 

corresponding columns. The column-wise correlation values are as follows: 

𝑨1 − 𝑨2 =  [0.77, 0.51, 0.25, 0.44, 0.42, 0.10, 0.18, 0.16],  

𝑨2 − 𝑨3 =  [0.69, 0.36, 0.20, 0.30, 0.12, 0.05, 0.03, 0.16],  

𝑨1 − 𝑨3 = [0.77, 0.41, 0.14, 0.39, 0.14, 0.12 0.09, 0.03].  
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Eighty noisy mixtures were generated for each feature under each of the 11 noisy 

conditions via 𝑿𝑘 = 𝑰𝑘 + 𝑵𝑘 = 𝑨𝑘𝑺𝑘 + 𝑵𝑘; 𝑘 = 1,2,3 where 𝑰𝑘 is the true mixed signal 

and 𝑵𝑘 is random Gaussian noise. The corresponding mean peak signal-to-noise ratios 

(PSNR) are selected in range of [− 1 20] dB. The PSNR is a most commonly used 

measure of image quality after corruption or recovery. The jth mixture (simulated signal 

of subject j) in modality k at every noisy condition is defined as 

𝑃𝑆𝑁𝑅(𝑘, 𝑗) = 10 log10[
max𝑖∈�1,𝐿𝑘�

�𝑰𝑘(𝑖)�2

1
𝐿𝑘
∑ (𝑿𝑘(𝑖)−𝑰𝑘(𝑖))2𝐿𝑘
1

 ] ; 𝑗 = 1,2, … 80; 𝑘 = 1,2,3 (6.11) 

According to (Thomos et al., 2006), a typical PSNR value for acceptable image 

quality is about 30 dB. Our PSNR range for simulation is lower than this for worse noise 

situation, as the lower the value, the more degraded the image.  

6.2.2 Evaluation of mCCA + jICA Estimation 

Three joint BSS models: jICA, mCCA, and mCCA + jICA were implemented on 

simulated datasets respectively under every PSNR for 5 runs. The decomposed 

components are paired with the true sources via cross-correlation automatically within 

each feature. We adopted three metrics to estimate the joint BSS performance: 

1) the average correlation of the estimated components with the true source 𝑺; 

2) the average correlation of the estimated mixing profiles with the true mixing 

profile 𝑨; 

3) the mean square error of the estimated column-wise correlations between 𝑨1 and 

𝑨2, 𝑨2 and 𝑨3, and 𝑨1 and 𝑨3 compared to the true value. 
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In reality, the component number is unknown. To test the robustness of our 

model, we also varied the source numbers to be estimated on the same mixed signals 𝑿𝑘 

under 11 increasing noise conditions. For each model, the estimated numbers were set to 

be either less (𝑀 = 6), or more (𝑀 = 10 and 12) than the number of true sources 

(𝑀 = 8). To evaluate the performance, we picked the best matched 6 components from 

true sources when estimated numbers were set to be 6, or the best matched 8 components 

from BSS results when estimated numbers were larger than 8. Correlations were 

calculated between the selected components and their corresponding true values. 

 

Figure 6.2 Source (S) estimation accuracy and mixing matrix (A) estimation accuracy in different 
noisy levels measured by peak signal-to-noise ratio (PSNR) 

Figure 6.2 to 6.3 compares the first two performance metrics for different noise 

levels (Fig. 6.2, averaged across all components) and varying source distributions (Fig. 

6.3, averaged across 11 noise levels). It is evident that mCCA + jICA is quite robust to 

noise and its BSS performance was consistently the best in all noise conditions. 

Consequently, joint ICA was the second best in source estimation and mCCA was the 
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second best in mixing matrix estimation; Note that when PSNR = − 1 dB, i.e., noise 

exceeds signal, all three methods have an estimation accuracy higher than 0.5. 

 

Figure 6.3 Source estimation (S) accuracy and mixing matrix (A) estimation accuracy were 
compared in different source distributions 

Figure 6.4 compared the modal-connection estimation, where the true 𝐴1 − 𝐴2, 

𝐴2 − 𝐴3and 𝐴1 − 𝐴3 correlation were given by yellow bars for every source, while the 

mean square error and its standard derivation of the link estimation were plotted in red 

for mCCA and in green for mCCA + jICA. Note that both high (0.79) and low (0.07) 

correlation values exist in modal connections, representing shared or distinct factors 

among modalities. mCCA + jICA out performed mCCA again especially for sources 

whose have low 𝐴𝑖 − 𝐴𝑗 correlation values that are close to many others, e.g. the 𝐴1 − 𝐴2 

and 𝐴1 − 𝐴3 correlation of source 6. 
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Figure 6.4 Comparison of the modal-connection estimation. The true 𝑨𝟏 − 𝑨𝟐, 𝑨𝟐 − 𝑨𝟑and 𝑨𝟏 − 𝑨𝟑 
correlation were given by blue bars for every source, while the mean square error and its standard 
derivation of the link estimation were plotted in red for mCCA and in green for mCCA + jICA. 

The performance comparison using different estimation of component numbers is 

listed in Table 6.1, where each correlation value was averaged across selected 

components for corresponding modality and method. The blue bold values indicate the 

best performance among three methods. It is clear that mCCA + jICA showed highest or 

close to highest correlations among three methods in most cases. 
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Table 6.1 Decomposition performance comparison using different component numbers 

No. of 
comps Models 

Sources Mixing Matrices 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑨𝟏 𝑨𝟐 𝑨𝟑 

8 
(true 

value) 

mCCA + jICA 0.788 0.671 0.802 0.839 0.683 0.823 
jICA 0.674 0.589 0.717 0.567 0.403 0.574 

mCCA 0.570 0.626 0.664 0.620 0.654 0.671 

6 
mCCA + jICA 0.846 0.643 0.795 0.874 0.654 0.796 

jICA 0.736 0.567 0.691 0.550 0.351 0.546 
mCCA 0.707 0.612 0.681 0.777 0.659 0.653 

10 
mCCA + jICA 0.804 0.697 0.840 0.799 0.635 0.781 

jICA 0.802 0.699 0.843 0.764 0.48 0.705 
mCCA 0.625 0.679 0.712 0.607 0.622 0.64 

12 
mCCA + jICA 0.801 0.700 0.865 0.773 0.545 0.795 

jICA 0.826 0.645 0.908 0.760 0.404 0.803 
mCCA 0.624 0.697 0.711 0.582 0.579 0.616 

 

6.2.3 Evaluation of Compact from Component Number 

To test the impact of different component numbers 𝑀𝑘  from each modality, 

another simulation assumes the data from different modalities have 𝑀1 , 𝑀2 , and 𝑀3 

respectively, and tests using various number of 𝑀 if the “mCCA + jICA” can achieve 

better performance. For evaluation, we calculate the estimation accuracy of min (𝑀,𝑀𝑖) 

number of components that are most similar to ground truth. The estimation accuracy 

includes mean source correlation with ground truth and mean mixing matrix correlation 

with ground truth. The sources and mixing matrices used here are the same with above. 

Two runs of simulations, which randomly select 4, 6, and 8 sources (Run 1), or 6, 

8, and 4 sources (Run 2) from 𝑺1 (in dimension of 8 × 16384), 𝑺2 (in dimension of 8 × 

5000) and 𝑺3 (in dimension of 8 × 14400) respectively and their corresponding loadings 

from 𝑨1, 𝑨2and 𝑨3. The numbers of 𝑀 ranges from 4 to 14. The results are listed in 

Table 6.2 and 6.3. 
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Table 6.2 Run 1: randomly select 4, 6, and 8 sources from 𝑺𝟏, 𝑺𝟐, and 𝑺𝟑 respectively 

No. of 
comps Models 

Source Loading 
𝑺1 

(𝑀1 = 4) 
𝑺2 

(𝑀2 = 6) 
𝑺3 

(𝑀3 = 8) 
𝑨1 

(𝑀1 = 4) 
𝑨2 

(𝑀2 = 6) 
𝑨3 

(𝑀3 = 8) 

4 
mCCA+jICA 0.756 0.655 0.826 0.801 0.673 0.846 

jICA 0.848 0.685 0.788 0.618 0.314 0.616 
mCCA 0.644 0.702 0.586 0.694 0.783 0.622 

6 
mCCA+jICA 0.913 0.638 0.828 0.852 0.541 0.853 

jICA 0.913 0.557 0.801 0.673 0.270 0.639 
mCCA 0.707 0.678 0.607 0.623 0.663 0.657 

8 
mCCA+jICA 0.908 0.707 0.847 0.783 0.612 0.827 

jICA 0.951 0.593 0.807 0.656 0.318 0.710 
mCCA 0.743 0.692 0.568 0.506 0.597 0.598 

10 
mCCA+jICA 0.935 0.749 0.864 0.806 0.569 0.826 

jICA 0.943 0.681 0.893 0.707 0.304 0.770 
mCCA 0.753 0.724 0.569 0.449 0.632 0.530 

12 
mCCA+jICA 0.928 0.771 0.871 0.852 0.578 0.806 

jICA 0.956 0.758 0.937 0.772 0.625 0.800 
mCCA 0.787 0.733 0.575 0.425 0.565 0.481 

14 
mCCA+jICA 0.954 0.801 0.881 0.878 0.632 0.847 

jICA 0.949 0.790 0.951 0.847 0.613 0.882 
mCCA 0.773 0.742 0.606 0.456 0.537 0.466 

 

Table 6.3 Run 2: randomly select 6, 8, and 4 sources from 𝐒𝟏, 𝐒𝟐, and 𝐒𝟑 respectively 

No. of 
comps Models 

Source Loading 
𝑺1 

(𝑀1 = 6) 
𝑺2 

(𝑀2 = 8) 
𝑺3 

(𝑀3 = 4) 
𝑨1 

(𝑀1 = 6) 
𝑨2 

(𝑀2 = 8) 
𝑨3 

(𝑀3 = 4) 

4 
mCCA+jICA 0.896 0.708 0.806 0.902 0.760 0.768 

jICA 0.885 0.635 0.664 0.770 0.381 0.358 
mCCA 0.690 0.733 0.727 0.753 0.824 0.640 

6 
mCCA+jICA 0.860 0.660 0.868 0.848 0.648 0.784 

jICA 0.916 0.565 0.905 0.779 0.350 0.598 
mCCA 0.538 0.678 0.797 0.572 0.723 0.754 

8 
mCCA+jICA 0.929 0.670 0.939 0.907 0.668 0.837 

jICA 0.917 0.564 0.896 0.844 0.383 0.638 
mCCA 0.608 0.618 0.811 0.585 0.619 0.687 

10 
mCCA+jICA 0.928 0.703 0.949 0.905 0.628 0.826 

jICA 0.920 0.675 0.919 0.850 0.470 0.737 
mCCA 0.668 0.644 0.910 0.568 0.596 0.679 

12 
mCCA+jICA 0.924 0.778 0.951 0.898 0.677 0.802 

jICA 0.945 0.806 0.917 0.933 0.633 0.749 
mCCA 0.675 0.653 0.889 0.544 0.531 0.661 

14 
mCCA+jICA 0.925 0.818 0.953 0.932 0.736 0.831 

jICA 0.944 0.812 0.903 0.975 0.709 0.728 
mCCA 0.896 0.708 0.806 0.902 0.760 0.768 
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In both cases, mCCA + jICA works either best or close to the best among 3 

methods when 𝑀 ≥ max (𝑀1,𝑀2,𝑀3), and using a high order of component number in 

joint separation does not hurt the separation, instead, the estimation accuracy tends to 

increase with 𝑀. Therefore we choose 𝑀 ≥ max (𝑀1,𝑀2,𝑀3) in our application. 
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Chapter 7 Search for Multimodal Neuroimaging Biomarkers with 

FNC and SMRI in Bipolar and Major Depressive Disorders 

7.1  Introduction 
During neurodevelopment the formation of gyral folding patterns within the 

cerebral cortex is thought to reflect the anatomical connections between distinct cortical 

areas, which in turn relate to cerebral function (Van Essen and Dierker 2007; Poldrack 

2010). This relationship between brain structure and function has been supported by 

previous neuroimaging studies (Greicius, Supekar et al. 2009; van den Heuvel, Mandl et 

al. 2009; Mars, Jbabdi et al. 2011). However, the relationship between altered brain 

function and structure in mood disorders remains unclear. Generally, each neuroimaging 

modality provides a certain perspective on brain function or structure. However, data 

fusion through a joint analysis not only capitalizes on the strengths of each imaging 

modality, but also reveals underlying inter-relationships, potentially providing a more 

comprehensive understanding of brain deficits in psychiatric disorders (Calhoun, Adali et 

al. 2006; Sui, Adali et al. 2012; Calhoun and Sui 2016). To date, few studies of BD and 

MDD have assessed multimodal brain imaging data collected from the same subject 

sample. A conventional multimodal practice is firstly to analyze each modality 

separately, and then to compare at the results level (Rigucci, Serafini et al. 2010). 

However, such an approach cannot capture directly the joint information available in 

multimodal imaging data (Sui, Adali et al. 2012; Calhoun and Sui 2016). In a 

classification analysis on BD and MDD, Jie et al (Jie, Zhu et al. 2015) utilized a machine 

learning model to select multimodal diagnostic discriminating features from combined 
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fMRI and structural MRI (sMRI) data. Nevertheless, the joint function-structure changes 

that span across fMRI and sMRI in BD and MDD have not been characterized 

previously. 

In this study, we utilized the resting-state FNC generated from our prior study as 

characteristics of fMRI. At the same time, gray matter densities (GMD) from the same 

subject samples were acquired using sMRI. In order to identify the co-altered networks 

across modalities, we assume that 1) whole brain FNC is a linear mixture of sources in 

the form of multiple sub-networks (Park, Kim et al. 2014), 2) whole brain GMD can also 

be linearly separated into a number of  sources as spatial independent components (Xu, 

Groth et al. 2009), and 3) disorder incurred functional and structural brain changes are 

correlated across the source factors of modalities. A joint analysis was applied to FNC 

and GMD using a data fusion approach called multi-set canonical correlation analysis + 

joint independent component analysis (mCCA+jICA) (Sui, Adali et al. 2010; Sui, He et 

al. 2013). We expected that the analysis which incorporates FNC and brain structure 

would reveal changes specific to BD or MDD, and that the abnormalities defined using 

this approach ultimately may served as potential diagnostic biomarkers with the potential 

to discriminate these two mood disorders. 

7.2  Methods 

In this study, preprocessed fMRI and sMRI data on BD, MDD and HC from the 

Tulsa Resting-state Dataset will be used. More subjects with the same scanning protocol 

are expected to available from our collaborators. FNC maps will be generated in the same 

way as the study in Chapter 4.  
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7.2.1 mCCA+jICA 

 The overall procedure of mCCA+jICA framework is illustrated in Figure 7.1. To 

ensure the range of input data compatible across modalities, both FNC and GMD will be 

normalized into z-score before the mCCA+jICA pipeline. In this study, the component 

number 𝑀 was set to be 8 estimated using a modified MDL method (Li, Adali et al. 

2007). 

 

Figure 7.1 Two-way “mCCA + jICA” fusion strategy for FC map and GMD. 

7.2.2 Statistical testing on group abnormalities 

To reduce the age and gender effects, we regressed out the subjects’ age and 

gender as covariates from mixing profiles 𝑨𝒌, and performed statistical tests on residuals 

𝑨𝒌′. Analysis of variance (ANOVA) and two-sample t–tests were performed on mixing 

coefficients 𝑨𝒌′ of each IC for each modality 𝑘 , to reveal the components that have 

significant group difference among subjects. Any component of the same index that 

showed significant group difference in both modalities was considered a modality-

common (or joint) group-discriminative IC. In contrast, any group difference of one 

component that occurred in a single modality was considered a modality-specific group-

discriminative IC. These ICs were termed joint or distinct abnormalities respectively. The 
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false discovery rate (FDR) correction (Benjamini and Hochberg 1995) for multiple 

testing was applied to the p-values obtained from the statistical tests.  

7.2.3 Identifying Community Structures and Hubs 

ICs of FNC correspond to the connectivity weights of multiple edge-sharing sub-

networks within the brain (Park, Kim et al. 2014). To better capture the characteristics of 

the sub-networks that showed a group difference, those FNC components were further 

analyzed using graph theory. Modular community structure has been repeatedly 

demonstrated in resting state functional brain connectivity networks. The brain regions 

that are functionally associated and subserve similar roles may be divided into a same 

module during the modular analysis. In particular, the brain nodes that are highly 

connected with other regions in the same module are called hubs (Rubinov and Sporns 

2010). 

To assess the modular community structures and hubs, the connectivity weights of 

FNC subnetworks were first rescaled into [-1, 1]. A fine-tuned Louvain algorithm 

(Reichardt and Bornholdt 2006; Ronhovde and Nussinov 2009) from the brain 

connectivity toolbox was adopted to discover the optimal community structure of the 

FNC subnetworks, which divide the graph into non-overlapping groups of nodes 

(modules) in a way that maximizes the number of within-group edges, and minimizes the 

number of between-group edges.  

Highly connected node within a module 𝑞 could be identified by measuring of 

intra-module connectivity. Intra-module connectivity of node 𝑖, 𝑘𝑖
𝑞 is given by the sum of 

connectivity strengths 𝑆𝑖𝑘 with all other nodes in module 𝑞: 
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𝑘𝑖
𝑞 = ∑ 𝑆𝑖𝑘𝑘∈𝑞       (7.1) 

The z-score (Guimera and Amaral 2005)of node 𝑖 is defined as 

𝑧𝑖 = 𝑘𝑖
𝑞−𝑘�𝑞
𝜎𝑞

      (7.2) 

where 𝑘�𝑞 and 𝜎𝑞 are the mean and standard deviation of 𝑘𝑘
𝑞 for all nodes in module 𝑞. 

Nodes with higher z-scores are more strongly connected to the other nodes in the same 

module. In this study, we define a node with 𝑧𝑖 > 1.0 as a hub (Yu, Plis et al. 2011). The 

BrainNet Viewer toolbox (http://www.nitrc.org/projects/bnv/) was used for visualizing 

FNC subnetworks (Xia, Wang et al. 2013). 

7.2.4 Classifications Based on the Features Selected 

For the identified group-discriminative components, we further tested their 

potential use for disease classification (Figure 7.2). For each modality, we normalized 

(subtracted by mean then divided by standard deviation) each IC with significant group 

difference into z-values, which then were thresholded (FNC at |𝑧| >  2.0, and GMD at 

|𝑧| >  3.0) to generate a mask from each modality. The masks of the same modality then 

were combined and applied to the raw input data of each modality, which served as the 

input used to further classify 3 BD, MDD, and HC based on uni-modal and multi-modal 

features.  
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Figure 7.2 Flowchart of disease classification with components derived from multimodal fusion. 

For comparison, we evaluated classifiers based on the features from the individual 

modality (FNC or GMD only), as well as combined features from both modalities 

(FNC+GMD). Classifiers were built and tested on the Weka 3.6 platform 

(http://www.cs.waikato.ac.nz/ml/weka/)(Witten, Frank et al. 2011). In order to balance 

the sample numbers in each group, the instances of BD group were resampled using a 

Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla, Bowyer et al. 2002) to 

generate 39 BD samples. Each sample was assigned a class label based on its 

corresponding diagnostic group (BD, MDD or HC). We then trained four different 

classifiers: 1) Sequential Minimal Optimization for Support Vector Machine (SMO) 

(Keerthi, Shevade et al. 2001),  2) Naïve Bayes (John 1995), 3) Random Forest (Breiman 

2001), and 4) K-nearest neighbors (kNN) (Aha, Kibler et al. 1991) where 𝑘 = 5. To 

ensure stable performance of each classifier, stratified ten-fold cross validation was 

repeated 1000 times, yielding 10000 testing accuracy rates. For every ten-fold cross 

validation run, the samples were assigned into 10 groups randomly. In Iteration (Fold) 



107 
 

(𝑘 = 1,2, … , 10) , group 𝑘 was left out as testing cases towards the classifier model that 

was trained on other nine groups. Since distinguishing BD and MDD is a major clinical 

challenge, the classification process was applied to distinguish all 3 groups as well as the 

BD and MDD groups only.   

7.3   Results 

7.3.1 Group Difference on Mixing Profiles 

One joint group-discriminative IC (IC5) and one modality-specific group-

discriminative IC (GMD-IC2) were detected, as shown in Figure 7.3, based on the 

statistical tests of the mixing coefficients derived from mCCA+jICA. 

 

Figure 7.3 Components that showing significant group effects. IC5 demonstrated significant group 
differences in both FNC (top left) and GMD (top right). IC2 showed a significant group difference in GMD 
only (bottom). In FNC-IC5, the nodes correspond to intrinsic connectivity networks (ICNs), and the links 
are edges of the subnetwork between node-pairs. Thickness of links represent to connectivity weights of the 
subnetwork. Only the top 10% weighted links are displayed for clearer visualization. Orange links indicate 
the weights are positively correlated with the mixing profile of FNC-IC5, while green links indicate the 
weights are negatively correlated with mixing profile of FNC-IC5. 
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ANOVA on IC5 revealed significant group difference in both FNC (p = 0.011, 

FDR corrected) and GMD (p = 0.006, FDR corrected). In FNC-IC5, the subnetwork 

comprised of reduced functional connectivity magnitude (less correlated BOLD activity) 

in the superior parietal lobe (SPL), precentral gyrus (PreCG), postcentral gyrus(PoCG), 

middle temporal gyrus(MTG) and middle occipital gyrus(MOG) and cerebellum, but 

increased connectivity magnitude within regions associated with the superior frontal 

gyrus (SFG), precuneus, middle frontal gyrus (MFG), inferior parietal lobe (IPL), and 

limbic subcortical networks. GMD-IC5 corresponds to gray matter density in the SPL 

and MOG. A significant group difference was also found in GMD-IC5 between BD and 

HC in t-test (p < 0.001, FDR corrected, BD < HC). At the same time, pair-wise t-test 

indicated difference in FNC-IC5 between BD and HC (p = 0.027, uncorrected, BD < HC) 

and in GMD-IC5 between BD and MDD (p = 0.014, uncorrected, BD < MDD). 

However, these two p-values did not remain significant after correction for multiple 

testing (FDR). The correlation of mixing profiles between FNC and GMD was r = 0.23, 

indicating the changes within this component found in FNC and GMD are related across 

patients with BD. 

IC2 showed a significant group difference in GMD only (p = 0.004, FDR 

corrected), which included cerebellum, amygdala and hippocampus. Both MDD and BD 

showed lower GMD than HC in this component, as shown in Figure 7.3 (MDD-HC: p = 

0.023, FDR corrected; BD-HC: p = 0.037, uncorrected).  

7.3.2 Community Structures and Hubs of FNC Component 

In the FNC component that showed significant group difference (IC5), three non-

overlapping modules were identified by fine-tuned Louvain algorithm, including two 
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major community modules with nodes that are strongly interconnected together and a 

module that include nodes relatively isolated to others, as shown in Figure 7.4. 

Specifically, Module 1 contains 20 nodes intensively connected within default-mode 

(SFG and precuneus), cognitive control (MFG and IPL), and limbic subcortical networks. 

Module 2 comprised of 18 nodes, mostly in somatomotor networks (SPL, PreCG and 

PoCG), cerebellum, and visual networks (MTG and MOG). The remaining 10 nodes that 

are less closely connected were separated into Module 3. 

 

Figure 7.4 Modules and hub nodes in FNC-IC5. Forty-eight ICNs in the subnetwork FNC-IC5 can be 
divided into three modules. Hubs nodes in each module are enlarged and labeled. There were two hubs in 
Module 1, four hubs in Module 2, and one hub in Module 3. Only top 10% weighted links are displayed for 
better visualizing purposes. Orange links indicate the weights are positively correlated with the mixing 
profile of FNC-IC5, while green links indicate the weight are negatively correlated with mixing profile of 
FNC-IC5. 

It noteworthy that the connectivity weight of the subnetwork in Modules 1 and 2 

were opposite in valence (orange for positive and cyan for negative weights in Figure 

7.4), indicating subjects with higher connectivity strength magnitudes in one module 

have lower FC magnitudes in the other. Moreover, the mixing profile of FNC-IC5 in the 

BD group was lower than in the HC group, which suggested that the BD group manifest a 

more densely interconnected Module 1 but less interconnected Module 2 comparing to 
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HC in this subnetwork. Interestingly, this dual modular parcellation corresponded to two 

major areas organized from a recent resting-state FC study (Stoddard, Gotts et al. 2016), 

which was based on a different approach of clustering voxel-wise connectivity. 

Seven hubs were identified in the modular structure of FNC-IC5, including two 

hubs (MFG and SFG) in Module 1, four hubs (MTG, SPL, right PoCG, and left MOG) in 

Module 2, and one hub (SFG) in Module 3. These seven hubs are highlighted as larger 

nodes in Figure 7.4, indicating these brain regions play important roles in the altered FNC 

structure, and link to the abnormal GMD in BD. 

7.3.3 Classifications 

 

Figure 7.5  Performance of classification algorithms that discriminating 3 groups (left) and BD vs. 
MDD (right), depicted as mean and standard deviation of accuracy from each of four classifiers 
trained with features extracted from fusion analysis.  

The average and standard deviation of 1000 accuracy rates of both 3-group and 

BD-MDD classification are shown in Figure 7.5. SMO performed best among 4 

algorithms tested: averaged accuracy reached 91.3±8.1% for 3-group classification and 

99.5±2.9% for distinguishing between BD and MDD using features from both modalities. 
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For each of 4 algorithms, we also compared results of classifier trained using either 

unimodal or multimodal features. Overall, training with multimodal features achieved 

best or close to best accuracy with all algorithms.  

7.4   Discussion 

In this study, we conducted fusion analysis on functional and structural MRI data 

by applying mCCA+jICA framework to whole brain FNC and GMD. We aimed to 

identify abnormalities spanning across multiple imaging modalities and to evaluate the 

feasibility accuracy of these biomarkers to distinguish BD and MDD. Both modal-

specific and modal-common components were identified. Further analysis on the group-

discriminating FNC component revealed community structure and hubs, which 

conceivably may be associated with the mechanisms that are distinct to each disorder. 

7.4.1 Functional and Structural Co-alterations in BD 

IC5 showed significant group differences in both FNC and GMD, and t-tests 

found abnormalities are mostly in BD. From the spatial maps, IC5 in both modalities 

highlighted parietal and occipital lobes. Generally, the parietal lobe is commonly 

considered to be involved in processing tactile and proprioceptive information, language 

comprehension, speech, writing, and aspects of spatial orientation and perception. At the 

same time, the occipital lobe includes regions that are involved in visual perception and 

processing (Nolte 2009). Several sMRI studies showed significant reductions gray matter 

density and volume in BD subjects versus controls in the parietal lobe (Doris, Belton et 

al. 2004; Lyoo, Kim et al. 2004; Frazier, Breeze et al. 2005; Lyoo, Sung et al. 2006) and 

the occipital lobe (Doris, Belton et al. 2004; Lochhead, Parsey et al. 2004; Lyoo, Sung et 

al. 2006). Our results of GMD-IC5 thus appear consistent with these findings.  
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Earlier studies proposed the cortical thinning in sensory association cortices may 

be related to impairments in visual spatial neuropsychological function within BD 

subjects (Sweeney, Kmiec et al. 2000; Ferrier, Chowdhury et al. 2004). As a joint-

discriminative IC in our study, IC5 confirmed that the reduced GMD in the parietal and 

occipital cortices were related with the alterations in cerebral function in the BD group. 

According to graph theory, the hub nodes of a module interact actively with other brain 

components, facilitate functional integration, and participate in module organization 

(Rubinov and Sporns 2010). The four hubs of Module 2, including two hubs in the 

parietal lobe, one in the temporal lobe, and one in the occipital lobe, were spatially 

distribute across different somatomotor and visual areas, indicating the abnormalities 

may have  widespread effects in  the function of sensory association cortices. Based on 

analysis of FNC-IC5, the parietal, occipital, temporal, and cerebellar fusiform areas were 

categorized into Module 2 with reduced connectivity in BD, demonstrating the direct 

correspondence of structural and functional deficits in this disorder. 

In Module 1, the two hubs along with majority of implicated nodes were located 

within the prefrontal cortex. The prefrontal regions, including the orbitofrontal cortex 

(OFC), the anterior cingulate cortex (ACC), and the dorsomedial (DMPFC), dorsolateral 

(DLPFC) and ventrolateral (VLPFC) areas of the prefrontal cortex have been consistently 

implicated in cognitive control processes (Sui, Pearlson et al. 2015), including decision-

making and emotion regulation (Phillips, Ladouceur et al. 2008; Kupfer, Frank et al. 

2012). In mood disorders, these prefrontal cortical areas form part of the limbic–cortical–

striatal–pallidal–thalamic circuits that are hypothesized to be dysfunctional in MDD and 

BD based on neuroimaging studies (Drevets 2000; Price and Drevets 2012). A number of 
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previous studies of resting-state FC in BD samples found increased resting-state FC in 

the prefrontal cortices, particularly within ventral prefrontal cortex in BD (Chepenik, 

Raffo et al. 2010). Another ICA-defined FNC analysis reported that BD subjects showed 

increased FC in emotion evaluation regions such as the bilateral medial prefrontal cortex, 

and in “affective working memory network” including the DLPFC and VLPFC, during 

an affective working memory task (Passarotti, Ellis et al. 2012). Abnormal medial 

prefrontal cortex connectivity between ICA components were also found during the 

resting-state in the BD group in multiple previous studies (Ongur, Lundy et al. 2010; 

Calhoun, Sui et al. 2011). Our findings with stronger FC in BD subjects within the 

prefrontal cortical areas  highlighted in Module 1 not only replicated our recent results on 

the same dataset with different analysis approaches (He, Yu et al. 2016), but also are in 

line with prior resting-state FC studies. 

Another interesting finding was that two subcortical regions, the putamen and 

thalamus, were grouped together into Module 1, potentially consistent with the 

anatomical circuits formed between the prefrontal cortex, the striatum and the thalamus, 

as well as with previous evidence that dysfunction within these circuits plays a major role 

in the pathophysiology of BD (Strakowski, DelBello et al. 2005). Fronto-limbic 

abnormalities in BD also have been supported from the view of FC by a number of task-

based fMRI  studies (de Almeida, Versace et al. 2009; Versace, Thompson et al. 2010), 

but may be complex and difficult to be detected during resting-date (Vargas, Lopez-

Jaramillo et al. 2013; Stoddard, Gotts et al. 2016). A few FC studies that probe limbic 

regions directly found abnormal prefrontal-limbic connectivity in resting BD subjects 

(Chepenik, Raffo et al. 2010; Anticevic, Brumbaugh et al. 2013; Torrisi, Moody et al. 
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2013). No significant group difference in fronto-limbic FC was observed in our previous 

FNC study on the same data set. Our results from the modular analysis performed herein 

on the FNC component thus may provide a more sensitive method for detecting 

prefrontal-limbic dysfunction in BD patients during rest. 

7.4.2 GMD Abnormality in MDD 

Beside the joint group-discriminative IC5, GMD-IC2 was identified as modality-

specific group-discriminative IC, where group difference was only found in GMD. In our 

study, both BD and MDD exhibited higher mixing weights associated with GMD-IC2 

compared to HC, but no statistical difference was detected between the patients in two 

disorders. The amygdale and anterior hippocampus form central structures of the limbic 

system and play major roles in emotion regulation, episodic memory, and responses to 

stressors, threats and appetitive stimuli (Aggleton 1992; Burgess, Maguire et al. 2002). 

Consistent with their functional roles, deficits of amygdala related to mood disorders 

such as BD and MDD are widely supported from a variety of neuroimaging approaches 

(Videbech 2000; Price and Drevets 2012). 

Although many structural studies on the BD group demonstrated reduced 

amygdala volume compared to healthy subjects (Blumberg, Kaufman et al. 2003; Foland-

Ross, Brooks et al. 2012; Phillips and Swartz 2014), other studies reported amygdala in 

BD were either enlarged (Haldane, Cunningham et al. 2008) or unchanged (Almeida, 

Akkal et al. 2009). (Drevets 2003; Savitz, Nugent et al. 2010) provided evidence that 

speculate the disagreement at least partly be explained by the putative neurotrophic / 

neuroprotective effects of some mood stabilizer treatments in BD. With medication 

effects controlled, Savitz et al. found amygdala volumes declined in unmedicated BD in 
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contrast to HC (Savitz, Nugent et al. 2010). Instead of selecting ROI a priori, our analysis 

approach was data-driven. The IC of gray matter density demonstrated similar trend of 

amygdala reduction in unmedicated BD compared to HC. However, the group difference 

did not reach statistical significance after FDR correction, potentially reflecting the 

biological heterogeneity within these phenotypes (Savitz, Dantzer et al. 2015; Savitz, 

Drevets et al. 2015). 

On the other hand, the reduction in amygdala volume in MDD appears generally 

consistent with a variety of recent analyses (Tang, Wang et al. 2007; Zou, Deng et al. 

2010; Bora, Fornito et al. 2012; Sacher, Neumann et al. 2012), and our results that GMD-

IC2 of MDD exhibits significant change compared to HC is in accordance with them. In 

addition to the amygdala abnormality, GMD-IC2 includes part of culmen and declive 

regions of the cerebellum as well. Simultaneous cerebellar and amygdala reduction in 

MDD was also reported in prior gray matter density studies (Lee, Tae et al. 2011; Peng, 

Liu et al. 2011). Recent studies have shown that the cerebellum plays a role in emotion 

regulation and cognition (Bugalho, Correa et al. 2006; Baldacara, Borgio et al. 2008; 

Phillips, Hewedi et al. 2015), and also have implicated the cerebellum in MDD based on 

findings of altered structure (Yucel, Nazarov et al. 2013; Zhao, Wang et al. 2016) and 

function (Liu, Zeng et al. 2012; Ma, Zeng et al. 2013). 

7.4.3 Classifications based on selected ICs 

As an exploration, the group discriminative features extracted from multimodal 

analysis were evaluated using classification. Classifiers yielded highly accurate and 

reliable performance with cross-validation. Even though no significant difference was 

found between BD and MDD during statistical test on mixing profiles of individual ICs, 
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classifiers still distinguished the two disorders with relatively high accuracy by 

combining the high-dimensional features from two modalities, indicating classification 

methods provide a mechanism for evaluating predictive power of the results which null 

hypothesis testing does not (Craddock, Holtzheimer et al. 2009). The classifiers trained 

with the combination of both modalities performed better and more stable than those 

trained on a  single modality, suggesting that information gained through multimodal 

fusion can improve the potential diagnostic prediction, in accordance with (Sui, Adali et 

al. 2009; Yang, Liu et al. 2010). These data merit replication in future studies to 

determine their potential utility as diagnostic biomarkers in mood disorders (Sui, He et al. 

2013). 

7.4.4 Limitations 

Several methodological issues limit the conclusions that can be drawn from the 

current study. The major issue is the small number of subjects, especially in the BD 

group. In order to avoid the potential confound of medication, our study was limited to 

subjects who were treatment-naive or unmedicated for at least three weeks. However, this 

strict requirement constrained the sample size of this study. Nevertheless, most recent 

neuroimaging studies comparing BD and MDD reviewed in (de Almeida and Phillips 

2013) also included sample sizes ranging from 10 to 30 subjects per patient group. 

During the evaluation of biomarkers with classification, we adopted an upsampling 

approach on the BD samples, in order to reduce the impact of the unbalanced group sizes 

on the classifiers. It would be helpful to increase statistical power by including more 

subjects in future studies. In addition, to utilize as much information as possible, the 

features were derived from all subjects. Although the classification models were tested 
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with 10-fold cross validation, more solid conclusions can be drawn by examining the 

performance of biomarkers on new subjects which were excluded from the feature 

extraction process (Du, Pearlson et al. 2015; Meng, Jiang et al. 2016). 

7.5   Conclusion 

In conclusion, we conducted fusion analysis on the functional network 

connectivity and gray matter density in mood disordered and healthy control samples, 

providing a novel perspective to neuroimaging abnormalities in mood disorders by 

combining both structural and functional MRI. Both multimodal and modality-specific 

discriminative components were detected. Comparing to HC, BD exhibited reduced 

GMD in the parietal and occipital cortices, which correlated with attenuated functional 

connectivity within sensory and motor networks as well as hyper-connectivity in regions 

that are putatively engaged in cognitive control. In addition, altered GMD features were 

found in MDD in the amygdala and cerebellum. High accuracy in discriminating across 

groups was achieved by trained classification models, implying that features extracted 

from our fusion analysis hold the potential to ultimately serve as diagnostic biomarkers in 

BD and MDD research.   
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Chapter 8 Conclusions and Future Works 

8.1   Summary  

In summary, our work makes several important contributions to advance the 

functional connectivity analysis to neuroimaging studies, with application to help 

searching for biomarkers for mental disorders. 

First, in Chapter 3, we examined the differences between healthy controls and 

patients with schizophrenia on topological properties of small-world structures of 

functional connectivity among working memory related brain regions. The sophisticated 

graph network measures provide a means of characterizing the effects of dysfunctional 

neural circuitry and variations in impaired connectivity across levels of dysconnectivity 

working memory demands in schizophrenia. 

In Chapter 4, whole brain functional graphs were generated based on a subtype of 

functional connectivity, functional network connectivity, whose brain nodes were defined 

by ICA. After performing the graph analysis to resting-state fMRI collected from bipolar 

and major depressive disorders, we observed that, the FNC of the BD group exhibited 

higher connectivity strengths and also was characterized by more efficient topological 

structures based on measures obtained using graph theory at the functional-network-level 

in prefrontal cortex as well as at the whole-brain-level.  

We then attempted to compare functional network connectivity with another 

functional measure, fractional amplitude of low frequency fluctuations, in Chapter 5.The 

two measures that correlated with cognitive deficits in schizophrenia were computed 
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separately, and spatially overlaid side by side to show the consistency across two 

approaches. 

In addition to simply compare functional connectivity with other neuroimaging 

measures at result level, we further introduced a multimodal fusion framework, 

mCCA+jICA, which link the information from multiple imaging modalities through joint 

analysis. This framework was applied to explore the relationship between altered 

functional connectivity and gray matter density in brains of bipolar and major depressive 

disorder in Chapter 7. Both multimodal and modal-specific discriminative components 

have been detected. Our findings suggest that both overlapped and unique functional and 

structural deficits exist in bipolar and major depressive disorder, and the abnormalities 

may be utilized as potential diagnostic biomarkers.  

8.2   Future Works 

There are still many aspects that can be explored further regarding the existing 

frameworks on functional connectivity. 

Currently, we characterized functional connectivity as the correlation or partial 

correlation between the time courses of brain regions. While correlation is preferred for 

its straightforward interpretation and tractability, there are other statistics that measures 

the temporal dependency methods that may be worth trying in future studies, such as 

mutual information, or coherence, which may detect the nonlinear dependencies and the 

resolution phase of spectral relationships,.  

In additional to fuse functional connectivity and gray matter density, the N-way 

mCCA+jICA can be applied with other multimodal data sets, i.e., on FC and DTI to show 
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the relationship between functional and anatomical connectivity from the aspect of data 

distribution. FC map may also be substituted by extracted features from dynamic FC, i.e. 

power spectrum in certain bands of dynamic FC, to show connection of the fluctuation of 

FC through time to other imaging modalities.  

For evaluating the potential use of features derived from the multimodal 

frameworks, we adopted classification models with 10-fold cross validation. However, 

this process is somehow biased as the subjects used for testing also participated in the 

feature extraction process. In future works, more solid conclusions can be drawn by 

examining the performance of biomarkers on new subjects which were fully separated 

from analyzing process (Du, Pearlson et al. 2015; Meng, Jiang et al. 2016). 
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