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Hybrid System Identification of Manual
Tracking Submovements in Parkinson’s

Disease

by

Carlos Gonzalez

B.S., Mechanical Engineering, University of New Mexico, 2014

M.S., Electrical Engineering, University of New Mexico, 2016

Abstract

Seemingly smooth motions in manual tracking, (e.g., following a moving target with

a joystick input) are actually sequences of submovements: short, open-loop mo-

tions that have been previously learned. In Parkinson’s disease, a neurodegenerative

movement disorder, characterizations of motor performance can yield insight into un-

derlying neurological mechanisms and therefore into potential treatment strategies.

We focus on characterizing submovements through Hybrid System Identification,

in which the dynamics of each submovement, the mode sequence and timing, and

switching mechanisms are all unknown. We describe an initialization that provides

a mode sequence and estimate of the dynamics of submovements, then apply hybrid

optimization techniques based on embedding to solve a constrained nonlinear pro-

gram. We also use the existing geometric approach for hybrid system identification

to analyze our model and explain the deficits and advantages of each. These methods

are applied to data gathered from subjects with Parkinson’s disease (on and off L-

dopa medication) and from age-matched control subjects, and the results compared
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across groups demonstrating robust differences. Lastly, we develop a scheme to esti-

mate the switching mechanism of the modeled hybrid system by using the principle

of maximum margin separating hyperplane, which is a convex optimization problem,

over the affine parameters describing the switching surface and provide a means o

characterizing when too many or too few parameters are hypothesized to lie in the

switching surface.
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Chapter 1

Introduction

1.1 Overview

In this thesis, we develop a method to identify multiple parameters of hybrid systems.

We do this by looking at two different problems: (1)identifying the hybrid system

dynamics and the active modes at all times, and (2) estimating a guard condition

that meets the hybrid system switching criteria.

Our approach to identify the former problem is based on perspectives of hybrid

optimal control. This approach is applied on actual data from a tracking task per-

formed by ‘normal’ subjects and subject with Parkinson’s disease before and after

medication. We then compare our results to the solutions obtained from a current

geometric approach to hybrid system identification, which is currently one of the

most robust-to-noise methods. We then verify the validity of our results with cur-

rent perspectives from the neuroscience community, specially those which are specific

to Parkinson’s disease. The latter problem is addressed by finding the separating hy-

perplane with maximum margin at mode transition times. In this regard, we also

show some properties that indicate the we have estimated the true guard.
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Chapter 1. Introduction

1.2 Parkinson Disease

Parkinson’s disease is a neurodegenerative movement disorder – a progressive con-

dition with no cure, and no definitive means to alter the progression of the disease.

It is characterized by tremor, rigidity, bradykinesia (slowness of movement) and

postural instability, and is the second most common neurodegenerative disease af-

ter Alzheimer’s, affecting approximately 1 million people in the US. Pharmacological

treatment of Parkinson’s disease, predominately based on dopaminergic replacement,

works well in the early disease stages, but motor complications such as dyskinesias

(involuntary writhing movements) may occur.

While external non-invasive brain stimulation has the potential to provide patient-

specific, time-sensitive, targeted therapy, the particular disease features or biomark-

ers that such a treatment should target are unclear. Clinical scales and questionnaires

are often crude and subjective; imaging and brain mapping techniques (fMRI, PET,

MEG) are expensive, non-portable, and preclude frequent testing. Furthermore, the

relation between altered brain activation and motor performance may not be straight-

forward, so therapies that solely optimize brain activity patterns may not translate

into clinically significant benefits. However, measures of motor performance, corre-

lated with brain function, may provide a necessary linkage between overall motor

behavior (ultimately important for any successful therapy) and neurological mecha-

nisms.

1.3 Hybrid Systems Models

Hybrid systems are dynamical systems that couple the interaction of continuous

and discrete dynamics [3]. These systems appear naturally in many areas, e.g.,

in air traffic control [4], biped locomotion modeling [5], control of DC-DC boost

2



Chapter 1. Introduction

converters [6], etc. In many of these areas, physics-based principles can often be

applied to arrive to descriptive models which can be later altered through control

mechanisms. In other cases, the models, though known to be hybrid, can be difficult

and complicated to model. For such situations we have to resort to hybrid system

identification techniques.

In this work, we will solely discuss discrete-time hybrid systems, which are often

modeled in one of two forms: in state-space or in input-output form [1]. The former

are described by

x[k + 1] = Aq[k]x[k] +Bq[k]u[k] + fq[k] + w[k]

y[k] = Cq[k]x[k] +Dq[k]u[k] + gq[k] + v[k]
(1.1)

where x[k] ∈ Rn is the continuous state vector, u[k] ∈ Rp is the continuous input

vector, y[k] ∈ Rm is the continuous output vector, w[k] ∈ Rn is the process noise,

and v[k] ∈ Rm is the measurement noise term, all at time k ∈ Z. In this framework,

the discrete state q[k] ∈ {1, 2, · · · , s} selects the affine mode that is active at time

k. The matrices Ai, Bi, fi, Ci, Di, and gi, of corresponding dimensions, describe the

dynamics evolution. In general, q[k] can be an exogenous input, or a function of x[k]

and u[k]. Systems of the form (1.1) are known as Switched Affine (SWA) models.

When q[k)] is described by a polyhedral partition of the state space, i.e., if

q[k] = i⇔

x[k]

u[k]

 ∈ Ωi (1.2)

then the system is said to be Piece-Wise Affine (PWA), where {Ωi}si=1 define a

complete partition of the domain.

For systems described by (1.1), the problem is described as follows [7].

Problem 1 Given the set of input-output pairs {(u[k], y[k])}Nk=1, estimate the model

order n, the number of modes s, the matrices Ai, Bi, fi, Ci, Di, and gi, and, if the

model is PWA, find the polyhedral regions Ωi, i = 1, 2, · · · , s.

3



Chapter 1. Introduction

On the other hand, systems modeled in input-output form are described by the

collection of ARX systems, given by

y[k] = θ>q[k]ϕ[k] + e[k] (1.3)

with parameter vectors θi describing the dynamics, noise term e[k], and extended

regressor vector ϕ[k] = [r[k]> 1]> containing the regressor vector

r[k] =
[
y[k − 1]> · · · y[k − na]> u[k]> u[k − 1]> · · · u[k − nb]>

]>
Systems described by (1.3) are called Switched ARX (SARX) models and repre-

sent a subclass of the SWA model (1.1). If the switching rule of (1.3) is defined by

q[k] = i ⇔ r[k] ∈ Ri, i = 1, 2, · · · , s (1.4)

with R ⊆ Rd, where d = m ·na+p · (nb+1), it is a PieceWise Affine ARX (PWARX)

model. In this case, {Ri}si=1 are polyhedrons forming a complete partition of the

regressor domain R, i.e., each region Ri are defined as

Ri =
{
r ∈ Rd : Hi

r
1

 �[i] 0
}

(1.5)

For systems of the form (1.3), the identification problem is stated as follows [7].

Problem 2 Given the set of input-output pairs {(u[k], y[k])}Nk=1, estimate the model

order na and nb, the number of modes s, the parameter vectors θi, i = 1, 2, · · · , s, and

the discrete state q[k] for k > max{na, nb}. In addition, if the model is PWARX,

estimate the regions Ri, i = 1, 2, · · · , s.

Other relevant hybrid system models exist, such as Mixed Logical Dynamical

(MLD) models, Jump-Markov Linear (JML) models, Max-Min-Plus-Scaling (MMPS),

will not be discussed here but the interested reader is referred to the survey papers

[1, 7], which give some mention and further references for these types of systems.

4



Chapter 1. Introduction

1.4 Thesis Outline

The remainder of the thesis is organized as follows: chapter 2 gives a brief exposi-

tion of the different existing methods for the identification of PWARX and SARX

systems. Chapter 3 describes our modeling framework used to characterize submove-

ments, which borrows techniques from optimal hybrid control and applies them in

the area of hybrid system identification. This methodology is applied to real data

obtained from ‘healthy’ subject, and subjects with Parkinson Disease performing a

tracking experiment. The results are compared to another different hybrid system

identification technique using a geometric approach to hybrid system identification.

In chapter 4, we describe our current approach to obtain the switching rule for the

modeled SARX system. We conclude this work with chapter 5, where we present a

summary and discuss some future work.

1.5 Contributions

Hybrid systems identification has gained an increase interest and ample development

over the last decades. One of the most common approaches used to test the effec-

tiveness of these methods is through synthetic data with varying noise statistics.

Few works have shown results obtained in real applications, moreover, fewer works

focused on SARX systems. We developed an identification approach based on results

derived from the area of optimization of hybrid systems, which uses a relaxation of

the MIQP, and applied our algorithm to real human data, which is a major chal-

lenge as data is not only noisy but also nonlinear and heterogeneous. Our modeling

framework is simple enough that it can provide neurological meaning through the

description of a single parameter taking multiple values over different modes of the

hybrid system. This decision allows us to compare results across subjects and popu-

5



Chapter 1. Introduction

lations (comparing a switching matrix would be not only more complex but harder

to interpret from a neurological point of view).

Secondly, we work towards the problem of guard estimation of SARX systems

(with unknown switching rule) and assess some properties that allow us to determine

when the right parameter space has been found. This is a major challenge which,

once fully developed, could aid in providing insight into the different ways in which

the brain operates once certain regions have been compromised. For instance, it is

known that the basal ganglia and the cerebellum are involved in motor tracking tasks

and are often impaired in Parkinson’s disease, hence, being able to characterize these

in a model which can be enhanced through either the right dosage of medication or

with external inputs, can bring advances to the biomedical and neuroscience field.

6



Chapter 2

Identifying Dynamics of Hybrid

Systems

Current methods used to identify the multiple components of a hybrid system exist

for models in state-space (e.g., [8, 9, 10, 11]) and input-output form (e.g., [12, 13,

14, 15, 16]). As previously stated, we focus on problems posed in the latter form for

single-input single-output (SISO) systems. These methods fall into the two categories

mentioned in § 1.3: SARX or PWARX.

In general, if the number of modes s of the hybrid system is known, the iden-

tification problem can be posed as the following Mixed Integer Program (MIQP)

minimize
N∑
k=1

s∑
i=1

`(y[k]− ϕ[k]>θi)qk,i

subject to
s∑
i=1

qk,i = 1 ∀ k

qk,i ∈ {0, 1} ∀ k, i

(2.1)

where `(·) is a nonnegative loss function. Two common loss functions are `(·) = ε2

7



Chapter 2. Identifying Dynamics of Hybrid Systems

Figure 2.1: Plot of number of modes s as the tunning parameter δ is varied. The
“knee” of the plot provides a heuristic to finding the number of modes in a hybrid
system. Figure from [1].

and `(·) = |ε| in which case (2.1) becomes a Mixed Integer Quadratic Program

(MIQP) or Mixed Integer Linear Program (MILP), respectively. However, solving

(2.1) is an NP-hard problem, thus multiple researcher have looked at alternate meth-

ods to solve the hybrid system identification problem. Some of these methods are

mentioned and briefly explained in § 2.1.

When the number of modes s is not readily available, one often poses the following

problem [1].

Problem 3 Given δ > 0, find the smallest number s of vectors θi, i = 1, 2, · · · , s

and a mapping k 7→ q[k] such that

|y[k]− ϕ>[k]θq[k]| ≤ δ, ∀ k = n̄, · · · , N (2.2)

where n̄ = max{na, nb}.

The value δ in Problem 3 is a tunning parameter accounting for the trade off

between fit and accuracy. A typical approach in finding the number of modes in a

system is by finding the knee of the s-curve, shown in Figure 2.1.

8



Chapter 2. Identifying Dynamics of Hybrid Systems

2.1 Methods to Identify SARX Models

SARX models are represented by the general description (1.3) without requirement

(1.4), i.e., with arbitrary switching times allowed between modes.

One of the pioneering works in the identification of SARX models is the alge-

braic procedure [17]. This approach introduces the notion of the hybrid decoupling

constraint, given by
s∏
i=1

(b>i z[k]) = 0 (2.3)

with bi = [1 θ>i ]> and z[k] = [−y[k] ϕ>[k]]>, which decouples the identification of the

parameter vectors θi from the switching sequence and switching rule, hence aiding

in the process of identifying both SARX and PWARX models. Although initially

formulated to provide a close form solution to noiseless systems, it addresses the

case of noisy data by manipulating the learning rate of the proposed algorithm [18].

Moreover, an extension to the algebraic procedure is shown in [19], where the problem

is reformulated into a constrained rank minimization problem, which is known to be

NP-hard, this is relaxed into a convex optimization problem.

An additional method is the sparse optimization method, inspired in recent results

in compressed sensing[20]. Sparse optimization is in general a non-convex problem, so

it is relaxed into an `1 minimization problem. A continuous optimization framework

is presented in [15], where the MIQP (2.1) is approached by instead posing the

problem as the non-convex unconstrained problem

minimize
fj

N∑
i=1

(
min

j=1,··· ,s
`(yi − fj(xi))

)
(2.4)

which manages to reduce the complexity of the MIQP problem. This work also

shows how this formulation can be posed for additional loss functions, such as the

Maximum-Likelihood framework and the product-of-errors estimators. A more re-

cent approach which has been shown to be more robust to noise is the geometric

9



Chapter 2. Identifying Dynamics of Hybrid Systems

approach [21]. In here, the problem is approached by looking at the parameter space

instead of the data space. They utilize the well-studied Principal Component Anal-

ysis (PCA) to separate the hyperspheres describing the parameters of the parameter

vectors θi, which are then found using linear regression. This method is compared

against other well-known methods, namely the algebraic approach [17], the contin-

uous optimization approach [15], and two sparse optimization methods [20, 2], and

the geometric approach [21] is numerically shown to be more robust to noise than

these other ones. Therefore, we choose this model as a basis for comparison when

we implement system identification to our data set in Chapter 3.

2.2 Methods to Identify PWARX Models

PWARX models are described by (1.3) with switching rule defined by a partition of

the regressor space, as given by (1.4). Thus, it is not uncommon to see that methods

used to identify SARX models can be used to identify PWARX models, given that the

constraint (1.4) is treated afterwards. Note, however, that expressing the constraint

that the regions {Ri}si=1 form a complete partition of the regressor domain R is one

of the main difficulties that arises in the identification of PWARX models. This

can be more clearly visualized in Figure 2.2 where for systems with more than two

modes, the classification techniques used can lead to having holes. One common

technique used to overcome this difficulty consists in using multi-category support

vector machines (SVM) [22].

Initially, the procedure to PWARX system identification consisted on first clas-

sifying the data points and estimating the model parameters, then reconstructing

the partitions of the regressor domain. This was typically achieved by using linear

support vector machines (LSVM).

Alternate methods to the one mentioned above include a bounded error approach

10



Chapter 2. Identifying Dynamics of Hybrid Systems

Figure 2.2: Example of system with three modes with a classification scheme that
leads to an incomplete partition of the regressor domain R, with the gray shaded
area being the not covered region.

[23] which uses set membership techniques, a statistical clustering technique [24]

which uses the expectation-maximization algorithm and support vector classifiers,

and a convex approach that starts with an over-parameterization of the parameter

vector then uses a sum of norms regularization to cluster subsystems [25, 26].
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Chapter 3

Detection of Submovements in

Parkinson’s Disease

3.1 Relevance of Submvements in Parkinson’s Dis-

ease

Submovements are open-loop motions (“motor programs”) that have been previ-

ously learned. Seemingly smooth motions (such as in manual tracking) are actually

sequences of submovements [27, 28], in which motor planning is accomplished via

selection between motor programs [29, 30]. Corrective submovements are thought to

complementarily involve the cerebellum and basal ganglia [31, 32], with roughly de-

cision and timing of the corrections determined by the basal ganglia and cerebellum,

respectively. Deficiencies in these regions are well established in Parkinson’s disease,

however little has been done to characterize how these deficiencies affect submove-

ments in Parkinson’s disease. We aim to detect submovements using hybrid system

identification, with the ultimate goal of characterization for personalized brain stim-

ulation therapy.

12



Chapter 3. Detection of Submovements in Parkinson’s Disease

We seek methodological characterization of submovements that are amenable to

future design of subject-specific feedback control laws. Hence, we focus on optimiza-

tion and system identification. Other researchers have considered related problems

in characterization of tasks on human movements ([33]), albeit it at a different scale

and with a focus on characterization through classification. Motions are decomposed

into fundamental tasks, denoted movemes, via pattern recognition techniques that

are used to train Gaussian classifiers for each moveme.

Previous work has demonstrated that simple second-order linear time-invariant

(LTI) models can describe manual tracking tasks [34, 35, 36] at a high level in which

submovements are not explicitly considered. We presume that each submovement

can be characterized via a second-order LTI system, and that transitions between

submovements are instantaneous, yielding a switched linear dynamical system. How-

ever, since our hybrid model of manual tracking is not based on first principles, we

seek to determine a) the model parameters of the LTI dynamics that describe each

submovement, and b) the timing of submovements (e.g., the mode). Hence, we are

interested in methods that are agnostic to all of these elements.

3.2 Experiment Setup

The experiments are completed by subjects with clinically defined mild to moderate

Parkinson’s disease (measured clinically as Hoehn & Yahr stage 1-3), both off and

on dopaminergic medication, as well as by “normal” age-matched subjects without

Parkinson’s disease or other confounding ailments. Data is gathered at the Pacific

Parkinson’s Research Centre at the University of British Columbia under the super-

vision of Dr. McKeown, in accordance with institutional review board protocols.

Subjects practice the task during a training session until their tracking errors con-

verged to a constant value. Data we consider here are gathered after completion of

13



Chapter 3. Detection of Submovements in Parkinson’s Disease

Figure 3.1: Experimental setup. The subject controls the cursor, with the goal of
tracking the height of the target. The cursor position is manipulated by scaling the
error between the target height and the raw cursor height, to appear to be “better”,
“worse”, or “normal”.

the training period.

This experiment is designed to assess responsiveness to error, adaptation to sud-

den change, and reward mechanisms, and is EEG compliant. The experimental setup

is illustrated in Figure 3.1, where subjects use a joystick to control the vertical posi-

tion of a cursor (blue box) which is connected to a target (red box) via a ‘glass rod’.

Subjects are instructed to track the vertical position of the target, which follows a

smooth but seemingly unpredictable path u(t) = A1 sin(ω1t) +A2 sin(ω2t). Frequen-

cies ω1, ω2 are customized for each subject to assure that the task is not too slow

and easy or too fast and hard.

Three separate tracking tasks are performed in 30 second blocks. In each block,

the visual feedback of the tracking error is either unaltered, attenuated, or amplified,

such that the cursor is displayed at y(t) = u(t) +αi (s(t) + u(t)) with raw cursor po-

sition s(t) and scaling factor αi dependent on the mode i ∈ {Normal,Better,Worse}.

In the Normal task (αNormal = 1), the vertical distance between the target and the

displayed cursor displayed reflects the actual error generated by the subject. In the

Better task (αBetter = 0.3), the tracking error appears better than expected. In the

Worse task (αWorse = 2.0), the tracking error is magnified, and appears worse than

14
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Figure 3.2: Typical data from the joystick tracking task reveals three types of sub-
movements: one in which corrective motion occurs to redirect the cursor back towards
the desired trajectory, one in which the user remains in a rest state, and one in which
motion appears to follow the desired trajectory without any convergence in error.

expected. Subjects perform a total of 8× 3 tasks. A set of training data was obtained

for all subjects under the Normal task. Following training, 8 trials per subject were

completed, each of which contained 3 tasks, alternating between Better-Worse-Better

and Worse-Better-Worse.

Motor data is available at http://www.unm.edu/∼oishi/data, courtesy of Dr.

Martin J. McKeown. The available data consist of training data and experimental

data for 3 prototypical normals subjects, and 3 subjects with Parkinson’s disease,

both on medication and off medication.

3.3 Problem Formulation

We start with the assumption that tracking a target using muscle movement involves

nonconcurrent and distinct sensorimotor feedback systems. As seen in Figure 3.2, the
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Chapter 3. Detection of Submovements in Parkinson’s Disease

Figure 3.3: Hybrid dynamical model of submovements in manual tracking. Tracking
represents a cursor-following submovement, Correction represents a corrective sub-
movement, and Rest represents an idle state.

output generated by the system can reasonably mimic the movement of the target

with the inclusion of an error deadzone, which is a known reaction ([37, 27, 38]). A

difference equation that can simulate this behavior is given by

y[k + 1] = y[k] + βq (u[k]− u[k − 1]) (3.1)

where βq is a real-valued constant that changes with mode q ∈ {1, · · · , s}.

For modeling purposes, we define the state x[k] = [y[k − 1], · · · , y[k − na], u[k −

1], · · · , u[k − nb]]
T with na = 1 and nb = 2 as in (3.1) to obtain the discrete LTI

system

x[k + 1] =


1 βq −βq
0 0 0

0 1 0

x[k] +


0

1

0

u[k]

y[k] =
[

1 βq −βq
]
x[k]

(3.2)

The data collected on the tracking tasks (e.g. in Figure 3.2) shows evidence of at

least three distinct modes characterizing the system dynamics. We therefore propose

a three-mode hybrid model as shown in Figure 3.3 with discretized LTI dynamics
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(3.2). This model arises in which transitions are described by unknown functions

and the dynamics are parameterized in the state matrix by the real-valued constant

βq that changes with mode. The continuous state is x ∈ R3, the continuous input is

u ∈ R, and the continuous output is y ∈ R. The discrete mode is q[k] ∈ {1, 2, 3}, in

which mode 1 represents a cursor following submovement, mode 2 reflects a corrective

submovement, and mode 3 indicates a rest state.

The selection of model (3.1) allows for computational advantages and agrees with

our automaton selection. In particular, we benefit by the reduced complexity in the

identification problem, i.e., instead of solving for (na+nb)×s parameters in the system

dynamics described in input-output form (1.3), we solve solely for s parameters. In

addition, we can assign limits on βq that concur with our mode assignments. This can

be verified by (3.1) and a comparison with the target and cursor motions, namely:

u̇ > 0 → u[k − 1]− u[k − 2] > 0, and thus, β1 > 0 → tracking, β2 < 0 → correction,

and β3 = 0 → idle. Similarly, we find that when u̇ < 0 → u[k − 1] − u[k − 2] < 0,

and thus, β1 > 0→ tracking, β2 < 0→ correction, and β3 = 0→ idle.

Problem 4 Determine a) the dynamics that characterize submovements associated

with cursor following and with corrections, and b) when submovements occur. That

is, identify the model parameters β1, β2 ∈ R, and the hybrid trajectory (q[k], x[k])

given a history y[k] and the underlying model (Figure 3.3).

17
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3.4 System Identification

3.4.1 Embedding Approach

Mode sequence initialization

We initialize the mode sequence by first applying standard ARX identification for

linear systems ([39])

θ̃k = arg min
θ

(
y[k]− r[k]T θ

)2
, r[k] =


y[k − 1]

u[k − 1]

u[k − 2]

 (3.3)

with regressor vector r[k] and parameter vector θ =
[
1, β̃k,−β̃k

]T
over small, moving

time horizons [k −∆, k + ∆], ∆ = 2. Hence for each window indexed by time k, we

obtain a single estimate for the gain coefficient β̃k.

We use the resulting θ̃k, k ∈ [0, T ] to develop an initial mode trajectory q̂k

q̂k =


1 for β̃k > δ

2 for β̃k < −δ

3 for β̃k < |δ|

(3.4)

with δ chosen close to zero to compensate for computational limitations. We initialize

values for β1 =
∑

k:q̂k=1 β̃k∑
k:q̂k=1 k

and β2 =
∑

k:q̂k=2 β̃k∑
k:q̂k=2 k

.

This, generates an initial switching sequence defined (with abuse of notation,

indexing time by ti, instead) as

Σ0 = {(t0, q̂0(t0)), (t1, q̂0(t1)), · · · , (tN , q̂0(tN))} (3.5)

with switching instants ti, i ∈ {0, · · · , N} between submovements.
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Hybrid optimization

We form an optimization problem for switched systems with initialized (but not

fixed) mode sequence and unknown switching times

minβ1,β2,q1,k,q2,k
∑N

k=1

∑3
i=1(y[k]− ŷi,k)2σi,k

subject to
∑3

i=1 σi,k = 1, σi,k ∈ {0, 1}
(3.6)

with a cost that represents the identification priority: to minimize the estimation

error via a least-squares sense with respect to observed data u[k], y[k], with predicted

output

ŷq,k = y[k − 1] + βqu[k − 1]− βqu[k − 2] (3.7)

Notice (3.6) is the same as the optimization derived by [15] for the Minimum-of-

Errors (ME) estimator framework with l(·) = ε2.

With N = 1650, this results in a mixed-integer quadratic program [40, 41] with

3N integer variables σ1,k, σ2,k, σ3,k and 3 real-valued variables β1, β2, β3. However,

since our cost function and dynamics are so simple, we elect to use an embedded

method [42] which relaxes the problem by transforming it into a constrained nonlinear

program. This approach relaxes the discrete mode based on the fact that trajectories

of the switched system are dense in the formulation of the embedded system. Thus,

the relaxed nonlinear program becomes

min
βq ,ν1,k,ν2,k

N∑
k=1

(y[k]− ŷ[k])2ν1,k+(y[k]− ŷ[k])2ν2,k+(y[k]− ŷ[k])2(1−ν1,k−ν2,k) (3.8)

s.t.



0 ≤ νq,k ≤ 1 ∀q ∈ {1, 2}

ν1,k + ν2,k ≤ 1

0.5 < β1 < 6

−6 < β2 < −0.5

β3 = 0
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Figure 3.4: (a) Initialization of switching sequence via moving-horizon ARX identi-
fication. (b) Locally optimal switching sequence determined by embedded optimal
solution.

with ŷ[k] defined by (3.7), mode ν3,k , 1−ν1,k−ν2,k and νq,k ∈ [0, 1] ∀q ∈ {1, 2, 3},

constraints on βq obtained according to the formulation shown on Section 3.3. More-

over, the additional constraints of β1 ≮ 0.5 and β2 ≯ −0.5 are imposed to avoid

over-penalizing β2 ≈ β3 ≈ 0 and instead look for alternate values of β3 away from

zero. The initial conditions are obtained from (3.4) and from β1, β2 determined by

the mean values of β̃k in each mode.

By solving (3.8) we can obtain the solution to (3.6) with the projection σq,k = 1

for q = max
q
νq,k. A typical initialization and optimization result is shown in Figure

3.4 and an academic example showing its effectiveness is shown in Appendix A.

3.4.2 Geometric Approach

In lieu of the simple dynamics (3.7) for the third mode, i.e., when ŷ[k] = y[k − 1],

we are able to adapt our problem to the two mode system identification proposed
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Figure 3.5: Comparison of the experimental data and the solution to the hybrid
model obtained (a) via the embedding and (b) the geometric approach.

in [21]. The identification procedure goes as follows: First, we construct the set

S = {(ϕ[k], y[k])}Nk=1 with the regressor ϕ[k] and output y[k] at all instances k ∈ K =

{1, 2, · · · , N}. Then, we extract the set corresponding to the rest submovements,

Sr = {(ϕ[i], y[i])}i∈I where I = {k ∈ K : y[k] = y[k − 1]}. Lastly, we identify the

parameters βq and the switching sequence q[k] for the remaining two submovements

by using a geometric approach [21] for two-mode switched system identification, a

method that is particularly robust to noise as compared to other methods [17, 20, 2,

15]. To identify the parameter vector in this case, we incorporate the identification

of our model by using Θ , [1 β∗ − β∗] instead of the generic parameter vector θ.

In addition, we impose the initialization point boundaries, 0 < β∗ < 10, and after

the Principal Component Analysis (PCA), we impose the more strict conditions

β1 ∈ [0.5, 6], β2 ∈ [−6,−0.5] as before.
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Figure 3.6: Comparison of the experimental data and the solution to the hybrid
model obtained (a) via the embedding and (b) the geometric approach.

3.4.3 Results

The embedding approach discussed in subsection 3.4.1 and the geometric approach

as described in subsection 3.4.2 were solved using MATLAB’s constrained nonlinear

minimization solver fmincon. In the case of the embedded nonlinear constrained

problem (3.8), it took approximately 10 hours to run for all populations on a desktop

with a 64-bit architecture with Intel Core i7-2600 3.40 GHz processor and 8.00 GB of

RAM. Because the optimization inevitably falls in a local minima, we rely heavily on

the initialization (also shown in Figure 3.4), which varies with parameter δ in (3.4).

On the other hand, solving via the geometric approach (on the same computer) took

roughly 3 minutes. This computational difference is expected since the minimization

problem in the geometric approach is only done over the parameter vectors (i.e.,

β1 and β2) whereas the embedding approach minimizes over the switching sequence

as well. By contrast, the geometric approach avoids the combinatorial problem by

applying PCA on the mapping of the data points to parameter space to find the
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switching sequence.

One issue that arises across all segments is the inconsistency of the ‘supremacy’

of one method over the other. We show two sample solutions showing the experi-

mental data and its predicted output based on the proposed hybrid model using the

embedding and the geometric approaches for segments 1 and 3 performed by the

same subject on the same trial (Figure 3.5 and Figure 3.6, respectively). While in

segment 1 the embedding solution seems to diverge less from the experimental data,

segment 3 is better approximated by the geometric solution. Thus, we keep both

approaches and study their results separately for different purposes.

In the geometric approach, we had separated the exact instances when resting

occurs by creating the set Sr containing all instances with β3 = 0. Then, by the

classification scheme used by the geometric approach (i.e., PCA and optimization),

we know we have classified (in the noiseless case) the remaining data accordingly

(i.e., β1 > 0→ tracking and β2 < 0→ correction ).

Using this scheme, then, we perform a paired-sample t-test on all Parkinson’s

subjects off and on medication based on the following parameters: (1) dwell time

in each mode, (2) root-mean-square (RMS) tracking error at the instant prior to

switching between modes, (3) RMS error accumulated during each mode, and (4)

cursor speed relative to target speed at the instant prior to switching between modes.

We find statistically significant trends in three parameters: in the dwell time in

correction mode, t(9) = 2.271, p < 0.0493, in the dwell time in rest mode, t(9) =

2.847, p < 0.0192, and in the RMS tracking error when switching from tracking to

rest, t(9) = 2.342, p < 0.0439. Note that these parameters should be interpreted

under the assumptions of no dwell time constraints.

The reported p-values fall below the commonly accepted threshold for signifi-

cance, i.e., p < 0.05, which assures that the likelihood of the null hypothesis (i.e.,

23



Chapter 3. Detection of Submovements in Parkinson’s Disease

Table 3.1: Mean values and p-values of the parameters tested that resulted in signifi-
cant using either the embedding or the geometric approaches. The mean and p-values
are shown for both methods to show that the increasing and decreasing effects are
similar although it might have not resulted significant in one of the methods.

Variable tested Embedding Geometric
PD off PD on p-value PD off PD on p-value

Time in correction(s) 2.44 3.04 0.0510 2.72 3.79 0.0493
Time in rest(s) 7.28 6.65 0.1048 4.37 3.72 0.0192
RMSE at g1,3(px) 40.39 45.24 0.1123 40.34 45.32 0.0439
Error speed at g2,3(px/s) -20.42 11.63 0.0018 -22.53 -8.68 0.0428
Error speed at g3,2(px/s) -13.99 1.55 0.0179 -17.53 -8.80 0.1467

the respective parameter off and on medication being from the same distribution)

being true is less than significant. The mean values of dwell time in correction mode

increased with medication (from 2.72 s to 3.79 s), as shown in Figure 3.8(a), those in

rest mode decreased with medication (from 4.37 s to 3.72 s), as shown in Figure 3.8(b),

while the mean values of RMS tracking error when switching from tracking to rest in-

creased with medication (from 40.34 pixels to 45.32 pixels), as shown in Figure 3.8(c).

While these may seem non-intuitive for a medicated state, it is well established that

even appropriately prescribed levels of L-dopa can generate excessive motions (e.g.,

“overreaching” that is seen clinically).

Doing a paired t-test on the results obtained using the embedded solution, we

see significance in only two parameters: error speed (in px/s) at the correction to

rest transition and error peed at the rest to correction transition. The corresponding

means and p-values obtained using the embedding and geometric methods for all of

the paramteres showing significance are shown in Table 3.1

Following, we obtain the mean values for β1 and β2 per subject across all popu-

lations as shown in Figure 3.9(a) using the embedding and Figure 3.9(b) using the

geometric approach. A resemblance among the β1 values between both approaches

can be seen: the geometric approach always obtained average solutions of β1 that
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Figure 3.7: Statistical significance in a paired t-test between Parkinson’s subjects off
and on medication considering (a) dwell time in correction mode and (b) dwell time
in rest mode. N = Normal, PA = Parkinson’s off medication, and PB = Parkinson’s
on medication

were smaller than those from the embedding. This can be seen from the method-

ology that each approach was based on. Namely, by removing the set Sr, we are

leaving sampled trajectories (3.1) corresponding to β1,k ∈ (0, 0.5) add weight in the

overall value of β1, without allowing the solutions to enter the set of solutions in Sr
thus decreasing its mean value. On the other hand, in the embedding approach we

allow the optimization to classify a solution β1,k ∈ (0, 0.5) as reducing the cost by

being in either β1 > 0.5 or β3 = 0, and hence the slight variability in the average

β1 values. In the case of β2 (which doesn’t follow this same trend), we presume

that segments with insufficient number of instances in tracking mode could have not

excited ‘enough’ the subsystem to allow its observation and lead to inaccurate values

of β2. This is supported by noticing that values of β1 ≈ 1 imply a tracking dynamic

that is almost perfectly following the target, which will incur less correcting action.
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Figure 3.8: Statistical significance in a paired t-test between Parkinson’s subjects off
and on medication considering (a) RMS error when switching from tracking mode to
rest mode, (b) error speed at the crossing of edge E(2, 3), and (c) error speed at the
crossing of edge E(3, 2). N = Normal, PA = Parkinson’s off medication, and PB =
Parkinson’s on medication

Figure 3.9: Mean values per subject obtained for β1 and β2 using (a) the embedding
approach and (b) the geometric approaches.
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3.5 Implications

Form the results shown in table 3.1, our results based on hybrid system modeling

indicate that L-Dopa increases dwell time in ‘correction’ mode (from 2.72s to 3.79s,

p < 0.0493) and decreases dwell time in ‘rest’ mode (from 4.37s to 3.72s, p < 0.0192).

These results can be interpreted in the context of cognitive inflexibility, a character-

istic cognitive deficit seen in PD[43]. The brain has a tradeoff between stability of

representation (“continue what you are doing” whose extreme example is Obses-

sive Compulsive Disorder) vs flexibility (“try something new” which in excessive

amounts results in Attention Deficit Disorder). Previous studies have suggested an

“L-dopa overdose hypothesis” whereby L-dopa given to improve motor performance,

may paradoxically worsen performance on switching tasks by promoting impulsive-

ness [44]. There may also be a classic “inverted-U-shaped” relationship between

dopaminergic levels and performance. Our results indicating a higher RMS error at-

tained when moving from ’tracking’ mode to ‘idle’ mode suggest that in addition to

enhanced impulsiveness, L-dopa results in a higher error tolerance in the triggering

based on a prospective error-based switching logic (we get mean values for RMSE at

switching instants from switching at 40.34px to 45.34px, p < 0.0439).
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Chapter 4

Estimation of the Guard

Conditions in Parkinson’s Disease

We seek to assess whether transitions both within and between modes are depen-

dent on time, error, a certain degree of stochasticity, or other factors. Optimization

methods simply detect times that transition occur – they do not hypothesize possible

mechanisms for the transitions. Since there is no clear neurological theory to iden-

tify mechanism underlying motor program or submovement selection, we evaluate

a variety of possible scenarios. We first consider switching surfaces that are affine

hyperplanes, based on visual inspection of the data.

4.1 Problem Formulation

Presume the hybrid dynamics of submovements are linear in each mode,

y[k] = y[k − 1] + βq[k−1](u[k − 1]− u[k − 2]) + e[k] (4.1)
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with parameter βq ∈ R a constant value in each of the modes q ∈ Q = {Tracking,

Rest,Correction}. Further presume that the optimal switching sequence and op-

timal values of βq have already been identified and hence are known.

We can rewrite the dynamics (4.1)

y[k] =
[

1 0 βq −βq
]
r[k] + e[k] (4.2)

in terms of the standard regression vector

r[k] =
[
y[k − 1] u[k] u[k − 1] u[k − 2]

]>
(4.3)

We presume that the switching surface for any mode pair q, q′ is an affine function

of the output and regressor, that is,

gq,q′(y[k], r[k]) = y[k]−α>q,q′r[k]− γq,q′ (4.4)

with αq,q′ ∈ R4, γq,q′ ∈ R, such that the transition from mode q to mode q′ occurs

when gq,q′(·, ·) ≥ 0. Or equivalently, using standard notation for hybrid system [3],

for the edge E(q, q′), mode q′ becomes active when gq,q′(·, ·) ≥ 0.

Using this knowledge, we pose the following problem.

Problem 5 Given the input-output pair {(y[k], u[k])}Nk=1, the corresponding active

modes qk, and the affine component r[k] from (4.4) on which the guard lies, find the

guard parameters αq,q′ and γq,q′ for all of the edges of the hybrid system.

Moreover, we would like to determine what is the sufficient amount of information

needed to compute a guard for the switched system. Hence, we analyze the true

coefficients αq,q′ and γq,q′ of the switching surface (4.4) in lieu of alternate solutions

α̃q,q′ , γ̃q,q′ , formally phrased as follows.
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Figure 4.1: Graphical representation of the active mode and role of switching surface
in a generic hybrid system. In this case, mode q is described by gq,q′(·, ·) < 0. The
blue dots correspond to the time instant k at which transition i occurs, and the red
dots correspond to the time instances k just before the jump i occurs.

Problem 6 If we know the true solution to the problem of finding the (well-posed)

guard parameter w∗ ∈ Rn in (4.20), how does the true solution w∗ compare to solving

the optimization problem (4.20) in a higher dimensional parameter space and in a

lower dimensional space than the true parameter space?

4.2 Estimation of the guard parameter

By evaluating the switching equation at the first instant after each transition, we

obtain
y[τ1]

y[τ2]
...

y[τN ]

 =


r[τ1]

> 1

r[τ2]
> 1

...
...

r[τN ]> 1


 α

γ

+


ε[τ1]

ε[τ2]
...

ε[τN ]

 (4.5)

where we define τi, i ∈ {1, · · · , N} as the first instant in mode q′, as shown in

Figure 4.1. That is, at time k = τi − 1, the mode is q, and at time k = τi, the mode

is q′.
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We denote (4.5) in short form as

yτ = Aτx+ ετ (4.6)

One common approach to finding αq,q′ , γq,q′ that describes the switching surface

would be via the least squares problem

minimize ‖yτ − Aτx‖

subject to yτ − Aτx ≥ 0
(4.7)

with x =

 α

γ

 ∈ R5, y =
[
y[τ1] y[τ2] · · · y[τN ]

]T
∈ RN , and Aτ ∈ RN×5

as described in (4.5) with matrix Aτ being full rank, presuming the elements of

the regressor are linearly independent. Note that despite the assumption of linear

independence of columns in Aτ , we have to address the fact that since matrix Aτ

contains the regressor vectors, whose elements can be very close to each other, we are

prone to having an ill-conditioned matrix Aτ . Hence, any formulation or algorithm

requiring the inversion of matrix Aτ will result in solutions which will be sensitive

to small variations in the elements of matrix Aτ and elements in vector yτ .

On the other hand, note that solving this problem via (4.7) will result in a solution

resembling the dynamics. This can be seen by noticing that for small noise terms

e[k], the dynamics description (4.1) can be described by (4.5) with γ being a small

value compensating for the small noise term e[k]. In the next section, we show how

solving the least squares problem can easily lead to erroneous solutions.

4.2.1 Relationship to Least Squares Estimation

In here, we show the numerical issue that arises in trying to solving problem (4.7)

and which prevents us from recovering the guard coefficients by this approach. We
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show this by expanding the arguments in (4.7). Each ith row in (4.5) can be rewritten

using (4.1), in the noise-free case, as

yτi − Aτix =
(
y[τi − 1] + βq(u[τi − 1]− u[τi − 2])

)
−
(
αy1y[τi − 1]

+ αu0u[τi] + αu1u[τi − 1] + γ
)

(4.8)

= (1− αy1)y[τi − 1]− αu0u[τi] + (βq − αu1)u[τi − 1]

− (βqu[τi − 2] + γ) (4.9)

which substituting in (4.7) results in

min.

√√√√ N∑
i=1

(
(1− αy1)y[τi − 1]− αu0u[τi] + (βq − αu1)u[τi − 1]− (βqu[τi − 2] + γ)

)2

s.t(1− αy1)y[τi − 1]− αu0u[τi] + (βq − αu1)u[τi − 1]− (βqu[τi − 2] + γ) ≥ 0,

∀ i = 1, 2, · · · , N
(4.10)

Let the argument in parenthesis in (4.10) be Ji(x) ,
(
·
)

and let a feasible point

resembling the dynamics be of the form xdyn = [1 βq − βq γ]. Then we get

Ji(xdyn) = (1− αy1)y[τi − 1]− αu0u[τi] + (βq − αu1)u[τi − 1]

− (βqu[τi − 2] + γ)

∣∣∣∣∣ αy1 = 1

αu0 = βq

αu1 = −βq

= −βqu[τi] + 2βqu[τi − 1]− βqu[τi − 2]− γ (4.11)

Next, let us consider the cost associated with the solution of the actual guard

condition xguard = [αy1 αu0 αu1 γ]. We do this by procedures (4.12) thru (4.15),
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explained next. Let us add and subtract the same amounts from Ji(xguard) (as shown

in equation (4.12)), then expand Ji(xguard) in (4.12) (as shown in equation (4.13)),

and collect terms as in equation (4.14).

Ji(xguard) = Ji(xguard) + βqu[τi]− βqu[τi] + βqu[τi − 1]− βqu[τi − 1] (4.12)

= (1− αy1)y[τi − 1]− αu0u[τi]+(βq − αu1)u[τi − 1]−βqu[τi − 2]− γ

+ βqu[τi]−βqu[τi]+βqu[τi − 1]− βqu[τi − 1] (4.13)

= (1− αy1)y[τi − 1]− αu0u[τi]− αu1u[τi − 1] + βqu[τi]− βqu[τi − 1]

+
(
−βqu[τi] + 2βqu[τi − 1]−βqu[τi − 2]− γ

)
(4.14)

Lastly, we note that the last term in parenthesis in (4.14) is nothing but Ji(xdyn)

as written in (4.11), which means that

Ji(xguard) = (1− αy1)y[τi − 1] + (βq − αu0)u[τi]− (βq + αu1)u[τi − 1] + Ji(xdyn)

= ψi(α,βq) + Ji(xdyn)

(4.15)

Hence, since it suffices to have Ji(xguard) > Ji(xdyn) ∀ i = 1, 2, · · · , N to get the

solution xdyn and not xguard under the problem formulation (4.7), we can say that it

suffices to show that

1. for Ji(xguard) > 0 and Ji(xdyn) > 0, then ψi(α,βq) > 0 =⇒ Ji(xdyn) < Ji(xguard),

and

2. for Ji(xguard) < 0 and Ji(xdyn) < 0, then ψi(α,βq) < 0 =⇒ Ji(xdyn) < Ji(xguard)

The above conditions are very limiting as to which guard coefficient we are prop-

erly able to recover in our minimization formulation, and without a priori knowledge
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of what form the guard takes (i.e., which parameters it depends on), it becomes less

reliable. This poses a big issue in our capacity to recover the guard of the system

since solving the convex minimization problem (4.7) can easily result in a solution

that we are not interested in.

Therefore, we consider the data before transition, i.e., at times τi − 1, in con-

junction with times after transitioning, i.e., times τi and solve the problem from a

classification perspective.

4.2.2 Solution via Classification

The transition relation in (4.4) can be extended to account for two sets of data which

lie in the half-spaces described as a function of each transition mode pair q, q′ as

w>q,q′xi − γq,q′ ≥ 0, i = 1, · · · , N (4.16a)

w>q,q′zi − γq,q′ ≤ 0, i = 1, · · · , N (4.16b)

with wq,q′ = [1 -αq,q′ ]
>, and data features xi and zi corresponding to the ith rows in

X =


y[τ1] r>[τ1]

...
...

y[τN ] r>[τN ]

 and Z =


y[τ1 − 1] r>[τ1 − 1]

...
...

y[τN − 1] r>[τN − 1]

 (4.17)

containing the output y and regressor vector r similar to (4.3) on which the linear

guard exists.

We presume our data to be noisy, so it will be convenient to look for the hyper-

plane that separates the data points with the largest margin. That is, we look for the

hyperplane that separates the data according to (4.16) and maximizes the distance

to the closest points to the hyperplane. This is the same problem as that solved by

Support Vector Machines [45], which is summarized next.
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For a given edge E(q, q′), we have a hyperplane described by w>x− γ = 0, with

the closest point given by

dmin = min
i

{
w>xi − γ
‖w‖

,
−w>zi + γ

‖w‖

}
(4.18)

where each of the arguments denotes the distance to each data point xi and zi, as

shown in Figure 4.2. Then, the hypeprlane with the largest margin is found by

solving the problem

maximize dmin

subject to w>xi − γ ≥ dmin

w>zi − γ ≤ −dmin

‖w‖2 = 1

(4.19)

where we have used the fact [46] that at the the optimal solution, ‖w∗‖2 = 1. In

addition, since w and γ are homogeneous, scaling the cost and constraints in (4.19)

will not affect the optimal solution, we choose then dmin‖w‖2 = 1 and use the fact

that maximizing 1
‖w‖ is the same as minimizing ‖w‖, to solve problem (4.19) via the

following equivalent quadratic programming problem

minimize
w,γ

1

2
‖w‖22

subject to w>xi − γ ≥ 1, i = 1, 2, · · · , N

w>zi − γ ≤ −1, i = 1, 2, · · · , N

(4.20)

Often times, specially when the data does not seem to be separable by a hyper-

plane, one may seek to perform a nonlinear transform to the data (a.k.a. feature

mapping) in order to find the correct classification boundaries. In these cases, the

dual problem of (4.20) is studied for the reasons discussed next. After computing the

Lagrangian, and computing the appropriate derivatives, we arrive at the following
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Figure 4.2: Plot of output values, y, vs the regressor which the guard depends on,
r, at transition times τ (in blue) and τ − 1 (in red).

dual problem.

maximize
λ

2N∑
i=1

λi −
1

2

2N∑
i=1

2N∑
j=1

ξiξjλiλjx̃
>
i x̃j

subject to λi ≥ 0, i = 1, · · · , 2N
2N∑
i=1

λiξi = 0

(4.21)

with Lagrange multipliers λi, labels ξi ∈ {−1,+1}, and where x̃i corresponds to the

ith row of the entire data points now collected in

X̃ =

X
Z

 (4.22)

Also, from the Karush-Kuhn-Tucker (KKT) conditions [46], we get the following

relationship between w and the Lagrange multipliers λi,

w =
2N∑
i=1

λiξix̃i (4.23)
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The dual problem (4.21) is convenient in that the dot product < xi, xj >, seen in

classification as the linear Kernel, can be often replaced with different Kernels pro-

viding a nonlinear transformation of the data, known as feature mapping. Some of

the most common Kernels include the polynomial Kernel, radial basis, and neural

networks [47]. Problem (4.21) is also convenient in that it is a quadratic program-

ming problem which can be solved via Matlab’s quadprog solver. Note, however,

that solving the classification problem via (4.21) involves the computation of X̃>X̃,

which, for an ill-conditioned matrix X results in a matrix X̃>X̃ with an even higher

condition number, hence we solve the primal problem (4.20) as opposed to the dual

(4.21) with the linear Kernel and consider a variation later in this work.

For data that is not linearly separable or is expected to have outliers, it is common

to consider heuristic approaches, such as the `1 regularization, i.e., to consider the

following problem

minimize
w,γ,ξ

1

2
‖w‖22 + C

N∑
i=1

ξi

subject to w>xi − γ ≥ 1− ξi, i = 1, · · · , N

w>zi − γ ≤ −(1− ξi), i = 1, · · · , N

ξi ≥ 0, i = 1, · · · , N

(4.24)

which includes in the cost the trade-off between the width of the gap dmin (first term

in cost function) and the number of misclassified data points (second term in cost

function). In this framework, a large coefficient C results in a more strict separating

hyperplane allowing less missclassified data points, while a small C value has a lower

penalty and thus results in a wider gap dmin. We now look at the dual of the SVM
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problem (4.24), which is

maximize
λ

2N∑
i=1

λi −
1

2

2N∑
i=1

2N∑
j=1

ξiξjλiλjx̃
>
i x̃j

subject to 0 ≤ λi ≤ C, i = 1, · · · , 2N
2N∑
i=1

λiξi = 0

(4.25)

which is of the same form as (4.21) except that the constraint on λi has the new

upper bound C. The cost in (4.25) can be rewritten in matrix form as

LD = 1>λ− 1

2
λ>ξRξλ (4.26)

with λ ∈ R2N , ξ = diag(ξ1, · · · , ξ2N), and Rij =< x>i xj >. The ill-conditioning of

our data, will appear then in R. This can be overcome by adding a small coefficient

to the diagonal elements in R [48], i.e., by using the following Lagrangian, instead

of (4.26),

LD = 1>λ− 1

2
λ>ξ(R + δI)ξλ (4.27)

which will increase the smallest singular values of R, and hence reduce the condition

number. It was shown in [48] that adding δ to the diagonal elements in R has an

equivalent effect as modifying C in (4.24) in the following manner: it is equivalent

to applying a quadratic cost function to the slacks ξi whose values are ξi < δC and a

linear cost to the others. In this regard, solving the regularized problem (4.24) aids

dealing with our ill-conditioned matrices X and Z.

In the following subsection, we show some illustrative examples of this approach

in spite of recovering the guard parameters αq,q′ and γq,q′ . In both cases, we use

data that is linearly separable and show results based on two different cases: (1)

when solving problem (4.20) and (2) when using the heuristic approach with `1

regularization, hence solving problem (4.24).
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4.2.3 Examples

Example 1: 3-D toy data

Consider a system whose input is u[k] = (fsk)1.8 with fs = 0.1, k = 1, 2, · · · , N , with

N = 500. The output is given by

y[k] = θ>q ϕ[k] + e[k] (4.28)

with q ∈ {1, 2}, parameter vectors θ1 = [1 1.5 -1.5]>, θ2 = [1 -0.5 0.5]>, regressor

vector ϕ[k] = [y[k − 1] u[k − 1] u[k − 2]]>, and error term e ∼ N (0, 1). The guard

condition is given by

gq,q′(y[k], r[k]) = yk −α>q,q′

y[k − 1]

u[k − 1]

− γq,q′ (4.29)

where we presume we readily know that the guard condition depends on the param-

eters r[k] = [y[k − 1] u[k − 1]]>. In this example, we have set α1,2 = [0.4 0.5]>,

γ1,2 = 5 and for the other edge, the coefficients vector is set to α2,1 = [0.2 0.35]>,

γ2,1 = −3.

Dynamics (4.28) with switching rule (4.29) specify one set of input-output data,

as shown in Figure (4.3). Given the modes at each instant, we find the transition

times τi and solve the quadratic program corresponding solving the largest separating

hyperplane problem (4.20) with Matlab’s quadprog solver to obtain a candidate

coefficient vector αq,q′ for edges E(1, 2) and E(2, 1) describing a hyperplane that

separates the data by the largest margin.

Since the input-output data generated from a single initial condition spans a very

reduced space in R3, as seen from the right plot in Figure 4.3, we are prone to not

being able to capture a representative guard/hyperplane solution. To show this, let

us consider the alternate hyperplanes in Figure 4.4, which are also a hyperplane

satisfying the feasible solution (4.16) separating the two data sets X and Z.
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Figure 4.3: Single set of input-output data generated by system (4.28) with switching
rule (4.29). Although the output seems to switch in a nonlinear fashion with respect
to time (left), it can be seen that the switching rule is actually an affine function of
the regressor vectors y[k − 1] and u[k − 1] (right).

In order to obtain a more representative hyperplane, we propose using multiple

(and different) sets of input-output data with dynamics (4.28) and same switching

rule (4.29) to see how the toy system dynamics (4.28) evolve in other areas of the

space R3. Then, by using different sets of initial conditions to the toy system dynam-

ics (4.28) with switching rule (4.29), we solve the non-regularized quadratic program

(4.20) using the information from all transition times from all input-output sets of

data. We get the resulting coefficient vectors shown in Figure 4.5 for multiple num-

bers of data sets. As seen in the figure, the solution converges to the true solution

as the amount of data increases.

The solutions obtained using the regularized problem formulation are as follows.

When a small value of C is used in the regularized solution, e.g., C = 1, we obtain

the (estimated) guard parameters shown in Table 4.2.3. The (estimated) guard pa-
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Figure 4.4: Multiple candidate hyperplanes that separate the transition times accord-
ing to (4.16) but that are different from the known true hyperplane with coefficients
α.

rameters obtained via the regularized solution result in the violation of some of the

constraints of (4.20), but are, of course, still feasible in the regularized formulation

(4.24). As shown in Table 4.2.3, the solutions of the non-regularized and the rgu-

larized solution, do not diverge from the true solution from each other (nor from

the true solution), hence we know that the solution to the quadratic program (4.20)

which strictly separates all data points is a valid guard parameter solution despite

Table 4.1: True guard parameters used in example 1, along with the estimated
guard coefficients obtained when solving the non-regularized problem (4.20) and the
regularized problem (4.24).

Solution
Parameters True Coefficients Non-regularized Regularized
α1,2 [0.4 0.5]> [0.393 0.506]> [0.407 0.495]>

γ1,2 5 5.014 4.437
α2,1 [0.2 0.35]> [0.213 0.345]> [0.213 0.345]>

γ2,1 −3 −2.960 −2.960
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Figure 4.5: Estimated solution from solving QP (4.20) using multiple sets of initial
conditions showing that the estimated solutions converge to the true solution as the
amount of data increases. We see that the solutions converge after 10 iterations for
both the coefficient vectors α1,2, α2,1, and the guard affine constant terms γ1,2 and
γ2,1.

the ill-condition matrices X and Z.

Example 2: 4-D toy data

In this case, we consider the system with same dynamics (4.28) and guard condition

gq,q′(y[k], r[k]) = yk −α>q,q′


y[k − 1]

u[k]

u[k − 1]

− γq,q′ (4.30)

with coefficient vector α1,2 = [0.8 0.75 − 0.6]>, α2,1 = [0.8 0.2 − 0.05]>, γ1,2 = 8,

and γ2,1 = −1. Again, we presume we know that the guard is a function of r[k] =
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Figure 4.6: Single set of input-output data generated by system (4.28) with switching
rule (4.30) plotted vs time resulting in 17 transition on edge E(1, 2) and 16 transitions
on edge E(2, 1).

[y[k− 1] u[k] u[k− 1]]>. Figure 4.6 shows a sample set of input-output data for this

system.

Figure 4.7: Plots showing the convergence results on the guard coefficients vectors
α1,2, α2,1, and affine constants γ1,2 and γ2,1.
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Table 4.2: True guard parameters used in example 2, along with the estimated
guard coefficients obtained when solving the non-regularized problem (4.20) and the
regularized problem (4.24).

Solution
Parameters True Coefficients Non-regularized Regularized
α1,2 [0.8 0.75 − 0.6]> [0.805 0.821 − 0.675]> [0.807 0.428 − 0.281]>

γ1,2 8 7.769 7.994
α2,1 [0.8 0.2 − 0.05]> [0.805 0.098 0.049]> [0.805 0.204 − 0.057]>

γ2,1 −1 −0.906 −1.043

Applying the same methodology as in the previous example, we get convergence

in all the guard coefficient vectors after 15 data sets, as shown in Figure 4.7 with

non-regularized and regularized solutions shown in Table 4.2.3.

The above examples are meant to provide a base line on the efficiency of our

approach, even when the values of the guard parameters are different for each edge.

Next, we will study some of the additional advantages that our approach provides in

terms of assessment of the computed solution.

4.3 Assessment of Switching Surfaces

In this section, we address the question posed in Problem (6) by studying the relation

between the true solution w∗ ∈ Rp with p being the order of the true parameter space

and alternate solutions w̃ ∈ Rq with q 6= p being simply a different parameter space.
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4.3.1 Exploring Higher Parameter Space

Let the true solution w∗ be the solution to the following problem

minimize
1

2
‖w‖22

subject to w1x
(i)
1 + w2x

(i)
2 + w3x

(i)
3 − γ ≥ 1, i = 1, · · · , N

w1z
(i)
1 + w2z

(i)
2 + w3z

(i)
3 − γ ≤ −1, i = 1, · · · , N

(4.31)

with the associated cost J(w∗) = J∗.

Then, we look at a similar problem in a higher parameter space Rp, p > n = 3,

i.e., we solve the following problem

minimize
1

2
‖w‖22

subject to w1x
(i)
1 + w2x

(i)
2 + w3x

(i)
3 + · · ·+ wpx

(i)
p − γ ≥ 1, i = 1, · · · , N

w1z
(i)
1 + w2z

(i)
2 + w3z

(i)
3 + · · ·+ wpz

(i)
p − γ ≤ −1, i = 1, · · · , N

(4.32)

Note that since the cost is quadratic on each wj, any wj 6= 0 ∀ j = 4, · · · , p will incur

a higher cost than J∗ = w∗21 + w∗22 + w∗23 . Moreover, since no additional constraints

are added to problem (4.32), the solution w∗ still remains feasible, and since it is

also optimal, it follows that the optimal cost remains J∗ with solution given by

w̃∗ = [w∗1 w
∗
2 w

∗
3 0 · · · 0]>.

Evidently, the information added in xj, j = 4, · · · , p was either redundant or

not important. By redundant, we mean that the information provided by xj was

a linearly combination of x1, x2, and x3. In the case of redundant information,

the optimal solution w∗ must already include the information provided by w̃∗j =

a1x1 + a2x2 + a3x3 for some a ∈ R.

In conclusion, if the true solution to finding the guard parameter w ∈ Rn is sought

in an optimization problem where w̃ ∈ Rp, p > n, then the optimal solution w̃∗ is

the zero-padded vector w̃∗ = [w∗1 w
∗
2 w

∗
3 0 · · · 0]>.
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As an example, let us consider the true system given in Example 1, where we

solved the problem

minimize
1

2
‖w‖22

subject to w1y
(i)[k] + w2y

(i)[k − 1] + w3u
(i)[k − 1]− γ ≥ 1, i = 1, · · · , N

w1y
(i)[k − 1] + w2y

(i)[k − 2] + w3u
(i)[k − 2]− γ ≤ −1, i = 1, · · · , N

(4.33)

with true solution given by w1,2 = [0.4 0.5]> and w2,1 = [0.2 0.35]>. Let is now pose

the problem

minimize
1

2
‖w‖22

subject to w1y
(i)[k] + w2y

(i)[k − 1] + w3u
(i)[k − 1] + w4u

(i)[k − 2]− γ ≥ 1

w1y
(i)[k − 1] + w2y

(i)[k − 2] + w3u
(i)[k − 2] + w4u

(i)[k − 3]− γ ≤ −1

(4.34)

for all i = 1, · · · , N , and where we have added the variable u[k−2], which is actually

known a priori from the dynamics equation (4.1) as

u[k − 2] = u[k − 1]− y[k]− y[k − 1]

βq
(4.35)

which is a linear combination of the true variables y[k], y[k−1], u[k−1]. Thus, adding

the variable u[k−2] will not alter the true solution w∗1,2 = [0.4 0.5]>, w∗2,1 = [0.2 0.35]>.
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4.3.2 Exploring Lower Parameter Space

Let us consider now the case where the true solution is w∗ = [w∗1 w
∗
2 w

∗
3]
> but we are

solving the lower dimension problem

minimize
1

2
‖w‖22

subject to w1x
(i)
1 + w2x

(i)
2 − γ ≥ 1, i = 1, · · · , N

w1z
(i)
1 + w2z

(i)
2 − γ ≤ −1, i = 1, · · · , N

(4.36)

Note that the set of strict (feasibility) inequalities

w1x
(i)
1 + w2x

(i)
2 − γ > 0 i = 1, · · · , N (4.37)

w1z
(i)
1 + w2z

(i)
2 − γ < 0 i = 1, · · · , N (4.38)

are feasible if and only if the nonstrict inequalities in (4.36) is feasible. Hence, at the

optimal solution, when the inequality becomes active, we get that either

X>w = (1 + γ) or X>w = −1 + γ (4.39)

where X ∈ R2×N contains the data vectors x1 and x2, as in (4.17). However, since

w ∈ Rn−1, where n corresponds to the true order of the coefficient vector w∗, then

(1−γ) /∈ R(X>) at any point i unless the value of the extra dimension x3 is zero, but

since we know that the true solution for w3 is w∗3 6= 0, then the problem is infeasible.

In conclusion, we have shown a method to estimate the guard parameters αq,q′ and

γq,q′ for all edges E(q, q′) in a hybrid system where the switching rule is not ruled

by a complete partition of the regressor space, but rather a mapping of the form

(4.4). Indeed, the variables involved in the guard condition are not always available,

but if knowledge of the systems is able to provide an estimated set of variables

on which the switching surface can lie, then using the proposed convex optimization

47



Chapter 4. Estimation of the Guard Conditions in Parkinson’s Disease

framework warrants a means to assess when we have hypothesized too many variables

(resulting in a non-changing cost if we remove one of the excess parameters) and when

we have hypothesized too few variables (resulting in the problem being infeasible).

Moreover, some open issues remain, such as defining under which cases the high

condition number of matricesX and Z will affect the solution of the guard parameters

αq,q′ , γq,q′ .
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Chapter 5

Summary and Future Work

5.1 Summary

We have described a hybrid model for submovements in manual tracking tasks, with

application to Parkinson’s disease. We use hybrid optimization techniques based

in embedded solutions to solve for switching sequences and dynamics that describe

when submovements occur, and how they are characterized. We also consider solu-

tions obtained via an alternate method, in particular we use the geometric approach

from [21]. This model raises interesting questions in the identification of generic hy-

brid automata parameters, such as guard conditions that are possibly combinatorial,

multivariate, or nonlinear and that cannot be simply described by a partition of the

state (or regressor) space, and the identification of systems under stochastic reset

maps.

This latter one is the question that we initiate to address in this work, i.e., how to

estimate the guard condition given the least amount of information about the switch-

ing rule. We derive a methodology that allows us to estimate the guard coefficients

of the hybrid system in which we know the form of the guard, i.e., in which we know
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the parameters on which the (linear) switching surface lies. In addition, we present

some of the properties that this guard coefficient should posses, such as resulting in

an optimization problem whose cost plateaus when the estimated parameter space

was higher than the true parameters space, as well as an optimization problem which

results unfeasible if too few parameters are used to characterize the true switching

surface.

5.2 Future Work

We noted 2 issues in the identification of the parameters and active modes of the

hybrid system model that may warrant additional investigation. First, we evaluate

the assumption that β1, β2 are constant values. A histogram of initialization values β̃k

(Figure 5.1) reveals that while our assumption of β1, β2 constant is reasonable, more

accurate modeling might be had by showing β1, β2 to take on a new value every time

the tracking or correction mode, respectively, is re-entered. In this case, the hybrid

model in Figure 3.3 would need to be extended to accommodate a stochastic reset

map with a distribution as shown in Figure 5.1. This would significantly complicate

the optimization (3.6) by creating 3N variables β1,k, β2,k and would fix the number

of mode transitions based on the initialization, distinctly disadvantageous for the

problem of detecting mode transitions.

Second, we ultimately seek a method to both construct the dynamics of the

switched system as well as the switching conditions that dictate transitions between

modes, eventually without prior knowledge of which are the linear variables on which

the switching surface lies on. We have essentially decoupled these two problems, since

ready solutions exist for the former, but none that we are aware of exist regarding the

latter for generic hybrid systems where the switching law is not necessarily ruled by a

space partition with non-overlapping planes. In chapter 4 we proposed an approach
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Figure 5.1: Histogram of the values of β̃k in the training data showing the distribu-
tions taken throughout the tracking task.

that can lead to identifying the switching surface when the parameters involved in the

switching surface are known. Although a reasonable starting point, in order to apply

this methodology to the real data, we must characterize the feasible parameters that

could be potentially involved in the switching surface before running the algorithm

on the data since numerical issues can arise, specially when running it over large

data sets. Since the question of what neurological mechanisms trigger the switching

between submovements is an unanswered topic at the moment, it is not uncommon to

test large sets of data as candidate parameters involved in orchestrating the switching

rule, hence, exploring techniques such as feature selection [49] and Kernel mappings

could potentially bring some rich insight as to what these mechanisms might be as

well as in determining which might be the most prominent components.
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Appendix A

Hybrid System Identification

Example Using Embedding

Method

In here we compare our proposed hybrid system identification method described in

subsection 3.4.1 to existing methods. Although our methodology is highly dependent

on initial conditions, we exemplify the case of a two modes hybrid system where we

initialize the optimization with values νk = 0.5,∀ k = 1, · · · , N , meaning we are

unbiased (at all time instances) towards any of the modes being active. Notice that

although this is not guaranteed to be always the case, it exemplifies that it can still

identify more accurately the hybrid system with no “smart” initialization using a

very simple computational method.

The following example is borrowed from Example 1 in [21], which is modified

from [2]. We used the modified version because our algorithm shows no errors in

the example as given in [2], but does show some small errors in the modified version

shown in [21]. Consider the two-mode system with random input generated from
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Figure A.1: Academic example originally from [2] used to exemplify the effectiveness
of our approach on a two-mode hybrid system. We show the actual and estimated
output(top) and the estimated active mode sequence (bottom) showing only three
misclassified data points, which do not result in major changes in the estimated
output.

a uniform distribution U ∈ [−4, 4]and output data generated by the SARX hybrid

system

y[k] =

{
0.2y[k − 1] + 0.24y[k − 2] + 2u[k − 1] + e[k], qk = 1

−1.4y[k]− 0.53y[k − 2] + u[k − 1] + e[k], qk = 2
(A.1)

with mode q = 1 being active during times k ∈ [1, 100] ∪ [201, 300] and mode q = 2

being active during times k ∈ [101, 200]∪[301, 400]. In this case, the signal is perfectly

reconstructed when there is no noise, so we further consider AWGN with standard

deviation σe = 0.2. The actual and estimated output, along with the resulting active

modes (without mode projection used) are shown in Figure A.1. With the inclusion

of noise, only three data points were misclassified, and the estimated parameter

vectors are θ1 = [0.20 0.24 1.99] and θ2 = [−1.41 − 0.53 1].

54



References

[1] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification of
Hybrid Systems A Tutorial,” European Journal of Control, vol. 13, no. 2-3, pp.
242–260, 2007.

[2] N. Ozay, M. Sznaier, C. M. Lagoa, and O. I. Camps, “A sparsification approach
to set membership identification of switched affine systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 3, pp. 634–648, 2012.

[3] J. Lygeros, K. Johansson, S. Simic, Jun Zhang, and S. Sastry, “Dynamical prop-
erties of hybrid automata,” IEEE Transactions on Automatic Control, vol. 48,
no. 1, pp. 2–17, 2003.

[4] I. Hwang, H. Balakrishnan, and C. Tomlin, “State estimation for hybrid sys-
tems: applications to aircraft tracking,” IEE Proceedings of Control Theory
Applications, vol. 153, no. 5, pp. 556–566, 2006.

[5] A. D. Ames, R. Vasudevan, and R. Bajcsy, “Human-data based cost of bipedal
robotic walking,” Proceedings of the 14th international conference on Hybrid
systems: computation and control - HSCC ’11, pp. 153–162, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1967701.1967725

[6] S. Mariethoz, S. Almer, M. Baja, a.G. Beccuti, D. Patino, a. Wernrud, J. Buis-
son, H. Cormerais, T. Geyer, H. Fujioka, U. Jonsson, C.-Y. K. C.-Y. Kao,
M. Morari, G. Papafotiou, a. Rantzer, and P. Riedinger, “Comparison of Hybrid
Control Techniques for Buck and Boost DC-DC Converters,” IEEE Transactions
on Control Systems Technology, vol. 18, no. 5, pp. 1126–1145, 2010.

[7] A. Garulli, S. Paoletti, and A. Vicino, “A survey on switched and piecewise
affine system identification,” IFAC Proceedings Volumes, vol. 16, pp. 344–355,
2012.

55

http://dl.acm.org/citation.cfm?id=1967701.1967725


References

[8] L. Bako, G. Mercère, and S. Lecoeuche, “On-line structured subspace identi-
fication with application to switched linear systems,” International Journal of
Control, vol. 82, no. 8, pp. 1496–1515, 2009.

[9] L. Bako, G. Mercère, R. Vidal, and S. Lecoeuche, “Identification of Switched
Linear State Space Models without Dwell Time,” 15th IFAC Symposium on
System Identification, pp. 569–574, 2009.

[10] S. Gil and B. Williams, “Beyond local optimality: An improved approach to hy-
brid model learning,” Decision and Control, 2009 held jointly with the 2009 28th
Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pp. 3938–3945, 2009.

[11] V. Verdult and M. Verhaegen, “Subspace identification of piecewise linear sys-
tems,” 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat.
No.04CH37601), vol. 4, pp. 3838–3843, 2004.

[12] D. Liberati, “Biomedical applications of piece-wise affine identification for hy-
brid systems,” Annals of Biomedical Engineering, vol. 37, no. 9, pp. 1871–1876,
2009.

[13] K. Boukharouba, L. Bako, and S. Lecoeuche, “Temporal video segmentation
using a switched affine models identification technique,” 2010 2nd International
Conference on Image Processing Theory, Tools and Applications, IPTA 2010,
no. 2, pp. 157–160, 2010.

[14] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering tech-
nique for the identification of piecewise affine systems,” Automatica, vol. 39, pp.
205–217, 2003.

[15] F. Lauer, G. Bloch, and R. Vidal, “A continuous optimization framework for
hybrid system identification,” Automatica, vol. 47, no. 3, pp. 608–613, 2011.

[16] F. Lauer, “Estimating the probability of success of a simple algorithm for
switched linear regression,” Nonlinear Analysis: Hybrid Systems, vol. 8, no. 1,
pp. 31–47, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.nahs.2012.10.
001

[17] R. Vidal, S. Soatto, and S. Sastry, “An algebraic geometric approach to the
identification of a class of linear hybrid systems,” Conference on Decision and
Control, vol. 1, no. December, pp. 167–172, 2003.

[18] R. Vidal, “Recursive identification of switched ARX systmems,” Automatica,
vol. 44, pp. 2274–2287, 2008.

56

http://dx.doi.org/10.1016/j.nahs.2012.10.001
http://dx.doi.org/10.1016/j.nahs.2012.10.001


References

[19] N. Ozay, C. Lagoa, and M. Sznaier, “Robust Identification of Switched Affine
Systems via Moments Based Convex Optimization,” Joint 48th IEEE Confer-
ence on Decision and Control, pp. 4686–4691, 2009.

[20] L. Bako, “Identification of switched linear systems via sparse optimization,”
Automatica, vol. 47, no. 4, pp. 668–677, 2011.

[21] V. L. Le, F. Lauer, and G. Block, “Identification of linear hybrid systems : a
geometric approach,” American Control Conference, pp. 830–835, 2013.

[22] E. Bredensteiner and K. Bennett, “Multicategory classification by support vec-
tor machines,” Computational Optimization and Applications, vol. 12, pp. 53–79,
1999.

[23] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error ap-
proach to piecewise affine system identification,” IEEE Transactions on Auto-
matic Control, vol. 50, no. 10, pp. 1567–1580, 2005.

[24] H. Nakada, K. Takaba, and T. Katayama, “Identification of piecewise affine
systems based on statistical clustering technique,” Automatica, vol. 41, no. 5,
pp. 905–913, 2005.

[25] H. Ohlsson and L. Ljung, “Identification of Piecewise Affine Systems Using Sum-
of-Norms Regularization,” IFAC World Congress, 18th, pp. 6640–6645, 2011.

[26] ——, “Identification of switched linear regression models using sum-of-norms
regularization,” Automatica, vol. 49, no. 4, pp. 1045–1050, 2013.

[27] R. C. Miall, D. J. Weir, and J. F. Stein, “Intermittency in human manual
tracking tasks,” Journal of Motor Behavior, vol. 25, no. 1, pp. 53–63, 1993.

[28] H. I. Krebs, M. L. Aisen, B. T. Volpe, and N. Hogan, “Quantization of contin-
uous arm movements in humans with brain injury,” Proceedings of the National
Academies of Science, vol. 96, pp. 4645–4649, April 1999.

[29] A. Karniel and F. Mussa-Ivaldi, “Does the motor control system use multiple
models and context switching to cope with a variable environment?” Experi-
mental Brain Research, vol. 143, pp. 520–524, 2002.

[30] P. Gawthrop, I. Loram, M. Lakie, and H. Gollee, “Intermittent control: a com-
putational theory of human control,” Biological Cybernetics, vol. 104, pp. 31–51,
2011.

57



References

[31] S. T. Grafton and E. Tunik, “Human basal ganglia and the dynamic control of
force during on-line corrections,” The Journal of Neuroscience, vol. 31, no. 5,
pp. 1600–1605, 2011.

[32] E. Tunik, J. C. Houk, and S. T. Grafton, “Basal ganglia contribution to the
initiation of corrective submovements,” NeuroImage, vol. 47, no. 4, pp. 1757 –
1766, 2009.

[33] D. D. Vecchio, R. Murray, and P. Perona, “Decomposition of human motion
into dynamics based primitives with application to drawing tasks,” Proceedings
of the 2003 American Control Conference, 2003., vol. 2, no. July, 2003.

[34] W. Au, N. Lei, M. Oishi, and M. McKeown, “L-Dopa produces under-damped
visually guided motor responses in Parkinson’s disease,” Experimental Brain
Research, vol. 202, no. 3, pp. 553–559, May 2010.

[35] M. Oishi, P. TalebiFard, and M. J. McKeown, “Assessing manual pursuit track-
ing in parkinson’s disease via linear dynamical systems,” Annals of Biomedical
Engineering, vol. 39, no. 8, pp. 2263–2273, August 2011.

[36] A. Abdel-Malek and V. Z. Marmarelis, “Modeling of task-dependent charac-
teristics of human operator dynamics pursuit manual tracking,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 163–172, Jan-
uary/February 1988.

[37] K. J. W. Craik, “Theory of the human operator in control systems,” British
Journal of Psychology, vol. 38, pp. 56–61, 1947.

[38] D. M. Wolpert, R. C. Miall, J. L. Winter, and J. F. Stein, “Evidence for an
error deadzone in compensatory tracking,” Journal of motor behavior, vol. 24,
no. 4, pp. 299–308, 1992.

[39] L. Ljung, System Identification: Theory for the User. Prentice Hall PTR, 1999.

[40] X. Xu and P. Antsaklis, “Optimal control of switched systems based on parame-
terization of the switching instants,” IEEE Transactions on Automatic Control,
vol. 49, no. 1, pp. 2–16, Jan 2004.

[41] Y. Wardi, M. Egerstedt, and M. Hale, “Switched-mode systems: gradient-
descent algorithms with armijo step sizes,” Discrete Event Dynamic Systems,
pp. 1–29, 2014.

[42] S. C. Bengea and R. A. DeCarlo, “Optimal control of switching systems,” Au-
tomatica, vol. 41, pp. 11–27, 2005.

58



References

[43] R. Cools, “Dopaminergic modulation of cognitive function-implications for
l-DOPA treatment in Parkinson’s disease,” Neuroscience & Biobehavioral
Reviews, vol. 30, no. 1, pp. 1–23, 2006. [Online]. Available: http:
//linkinghub.elsevier.com/retrieve/pii/S0149763405000540

[44] R. Cools, R. Barker, B. Sahakian, and T. Robbins, “L-Dopa medication remedi-
ates cognitive inflexibility, but increases impulsivity in patients with parkinson’s
disease,” Neuropsychologia, vol. 41, pp. 1431–1441, 2003.

[45] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for Op-
timal Margin Classifiers,” Proceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory, pp. 144–152, 1992.

[46] S. Boyd and L. Vandenberghe, Convex Optimization. New York: Cambridge
University Press, 2004.

[47] T. Hastie, R. Tibshiranu, and J. Friedman, The Elements of Statistical Learning.
New York: Springer, 2008.

[48] M. Martinez-Ramon and C. Christodolou, Support Vector Machines for Antenna
Array Processing and Electromagnetics. Morgan and Claypool, 2006.

[49] I. Guyon and a. Elisseeff, “An introduction to variable and feature selection,”
Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

59

http://linkinghub.elsevier.com/retrieve/pii/S0149763405000540
http://linkinghub.elsevier.com/retrieve/pii/S0149763405000540

	University of New Mexico
	UNM Digital Repository
	8-25-2016

	Hybrid System Identification of Manual Tracking Submovements in Parkinson's Disease
	Carlos Gonzalez
	Recommended Citation


	List of Figures
	List of Tables
	Glossary
	Introduction
	Overview
	Parkinson Disease
	Hybrid Systems Models
	Thesis Outline
	Contributions

	Identifying Dynamics of Hybrid Systems
	Methods to Identify SARX Models
	Methods to Identify PWARX Models

	Detection of Submovements in Parkinson's Disease
	Relevance of Submvements in Parkinson's Disease
	Experiment Setup
	Problem Formulation
	System Identification
	Embedding Approach
	Geometric Approach
	Results

	Implications

	Estimation of the Guard Conditions in Parkinson's Disease
	Problem Formulation
	Estimation of the guard parameter
	Relationship to Least Squares Estimation
	Solution via Classification
	Examples

	Assessment of Switching Surfaces
	Exploring Higher Parameter Space
	Exploring Lower Parameter Space


	Summary and Future Work
	Summary
	Future Work

	Appendices
	Hybrid System Identification Example Using Embedding Method
	References

