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ABSTRACT

In the context of hardware systems, authentication refers to the process of confirming

the identity and authenticity of chip, board and system components such as RFID tags,

smart cards and remote sensors. The ability of physical unclonable functions (PUF) to

provide  bitstrings  unique  to  each  component  can  be  leveraged  as  an  authentication

mechanism  to  detect  tamper,  impersonation  and  substitution  of  such  components.

However, authentication requires a strong PUF, i.e.,  one capable of producing a large,

unique  set  of  bits  per  device,  and,  unlike  secret  key  generation  for  encryption,  has

additional  challenges  that  relate  to  machine  learning  attacks,  protocol  attacks  and

constraints  on  device  resources.  We  describe  the  requirements  for  PUF-based
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authentication, and present a PUF primitive and protocol designed for authentication in

resource constrained devices. Our experimental results are derived from a 28 nm Xilinx

FPGA.

A special class of Physical Unclonable Functions (PUFs) referred to as strong PUFs

can be used in novel hardware-based authentication protocols. Strong PUFs are required

for authentication because the bitstrings and helper data are transmitted openly by the

token  to  the  verifier  and  therefore,  are  revealed  to  the  adversary.  This  enables  the

adversary to carry out attacks against the token by systematically applying challenges and

obtaining responses in an attempt to machine-learn and later predict the token’s response

to an arbitrary challenge. Therefore, strong PUFs must both provide an exponentially large

challenge space and be resistant to machine-learning attacks in order to considered secure.

We investigate the security properties of a Hardware-embedded Delay PUF called HELP

which  leverages  within-die  variations  in  path  delays  within  a  hardware-implemented

macro (functional unit) as a random source of information for bitstring generation. Several

features of the HELP processing engine significantly improve its  resistance to  model-

building attacks.  Most  important  is  a  novel  linear  transformation  proposed within the

HELP  processing  engine  for  dealing  with  changes  in  delay  introduced  by  adverse

temperature-voltage (environmental) variations. The technique also increases entropy by

making the measured path delay values dependent on the other values included in the

distribution used to generate the entire bitstring.

Statistical  properties  including  uniqueness,  randomness  and  reproducibility  are

commonly used as metrics for Physical Unclonable Functions (PUFs). When PUFs are
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used in authentication protocols, the first two metrics are critically important to the overall

security of the system. Authentication reveals the bitstrings (and helper data if used) to the

an adversary, and makes the PUF vulnerable to tactics that can lead to successful cloning

and impersonation.  We investigate  security  metrics  including Entropy,  uniqueness  and

randomness using hardware data collected from a set of 45 Xilinx Zynq FPGAs which

implements HELP. A novel technique is proposed that allows the verifier to randomly or

purposefully offset path delays to obfuscate (in the former case) and/or tune (in the latter

case) the bitstring generation process. We show that tuning additionally has a significant

impact on the statistical quality of the bitstrings. 

Stability across environmental variations such as temperature and voltage, is critically

important for Physically Unclonable Functions (PUFs). Nearly all existing PUF systems to

date need a mechanism to deal with “bit flips” when exact regeneration of the bitstring is

required, e.g., for cryptographic applications. Error correction (ECC) and error avoidance

schemes have been proposed but both of these require helper data to be stored for the

regeneration process. Unfortunately, helper data adds time and area overhead to the PUF

system and provides opportunities for adversaries to reverse engineer the secret bitstring.

We propose  a  non-volatile  memory-based (NVM) PUF that  is  able  to  avoid  bit  flips

without requiring any type of helper data. We describe the technique in the context of

emerging nano-devices, in particular,  resistive random access memory (Memristor) cells,

but the methodology is applicable to any type of NVM including Flash.   
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CHAPTER 1

Introduction

Physically  Unclonable  Functions  (PUFs)  are  emerging  as  an  alternative  to

conventional  approaches  to  storing  secret  keys  in  ICs.  PUFs  extract  entropy  from

variations in the physical and electrical properties of ICs, that are unique to each IC, as a

means of generating secrets. Secret keys derived from PUFs mitigate the vulnerabilities

of embedded digital keys mainly in two ways: (1) the generated secret keys are volatile

and only present in a digital form when the chip is powered on and running. thus making

it difficult for adversaries to steal by invasive attacks; (2) even if the secret key is known,

it is intractable for the manufacturer to duplicate a second chip with an identical key.

These secrets can be used in various security applications including device identification,

authentication, metering, remote activation and encryption [1]. This dissertation is mainly

focused  on  analyzing  the  entropy  source  and  the  security  strength  of  the  hardware-

embedded delay PUF (HELP) in the context of authentication.   

1.1 Metrics for PUFs

There  are  typically  three  major  metrics  for  measuring  the  quality  of  a  PUF:

Uniqueness, reliability and randomness.  

1.1.1 Uniqueness

Uniqueness  refers  to  how unique  are  the  responses  generated  by  the  PUF from

different chips when they are applied with the same challenge. The better uniqueness of a
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PUF, the more difficult for an adversary to copy an existing PUF instance that possesses

similar Challenge-Response Pair (CRP) behaviors, the more desirable for the responses to

be used as chip identifiers. A common method to quantify the uniqueness metric of a PUF

is to compute the average inter-chip Hamming Distance (inter-HD) for a group of chips

on which a particular PUF instance is embedded. For a given challenge, the inter-HD

between two PUF instances is defined as the number of different bits that exist between

the two PUF responses. Inter-HD can also be represented as a fraction which is calculated

by dividing the number of different bits by the total number of compared bits. Assume the

PUF response is n bits, the average inter-HD for a groups of m chips (PUF instances) can

be computed using the following formula [7]:

Inter _ HDave=

∑
u=1

m−1

∑
v=u+1

m

HD(Ru , R v)

n
×100%                                        (1.1)

where HD(Ru ,R v) represents the hamming distance between the responses generated

by the u-th and v-th chips for a given challenge. 

An ideal value for the average inter-HD for a group of chips is 50%, which indicates

the best  uniqueness  is  achieved when half  of  the bits  are  different  between any two

compared responses on average. 

1.1.2 Reliability (Reproducibility)

The uniqueness metric is used to measure the quality of a PUF whether the responses

generated by different PUF instances are unique enough to distinguish between chips. For

the same PUF instance, however, it is desirable that the responses should always keep
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constant  when  the  same  challenge  are  applied  multiple  times  under  different

environmental  conditions.  This  is  true  because  in  either  authentication  or  secret  key

generation, we expect that the original secrets can be reliably reproduced by the PUF

whenever  proof-of-evidence  needs  to  be  provided  later.  We  use  the  reliability  (or

reproducibility) metric to measure how reliable it is to regenerate the original responses

for a  PUF. Similar to uniqueness,  reliability  can also be measured by calculating the

average Intra-chip Hamming Distance (Intra-HD). For a particular PUF instance, intra-

HD refers to the Hamming Distance between the two measured responses when the same

challenge is  applied  twice.  Assume x response samples  are  measured under  different

conditions (different temperatures or supply voltages) for a chip i, the average intra-HD

can be calculated as [7]: 

Intra _ HDave=
1
x
∑
y=1

x

HD
(Ri ,Ri , y

'
)

n
×100%                                            (1.2)

where  Ri  represents the response measured under  normal temperature and voltage

conditions (nominal condition),  Ri , y
'  stands for the y-th measured response sample of

Ri .  Note intra-HD is calculated from the responses generated from the same chip for

the same challenge, therefore, the smaller value it is, the better reliability is achieved. 

The ideal value of the intra-HD is 0%, which implies that the original responses can

be exactly reproduced without any error bits across all the sampled conditions. However,

the  ideal reliability can hardly be achieved due to the sensitivity of PUF responses to

varying environmental conditions. Typically, a PUF response bit is generated depending

on the sign of  the  difference value  for  two compared entropy sources,  e.g.,  a  “1” is
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generated  for  a  positive  sign  and a  “0”  otherwise.  Unfortunately,  the  entropy source

leveraged in PUFs are analog in nature and hence can easily be impacted by varying

environmental conditions, e.g., temperatures or supply voltage noise (or TV noise). For

those response bits that were generated from two close entropy values, it is very likely the

two original entropy values will vary under environmental noise and jump across each

other,  resulting  in  error  response  bits  or  “bit  flips”.  Such  bit  flips  directly  cause

degradation to the reliability performance of a PUF. In applications like authentication, a

small portion of bit flips within the regenerated bitstring (secrets) can be tolerated. This is

because as long as the majority of the reproduced bits are consistent with the original one,

the chip can still be authenticated as genuine or fake. In cryptographic scenarios such as

key  generation,  however,  every  single  bit  of  the  secret  bitstring  are  required  to  be

accurately regenerated, since even one single bit flip in the secret key will generate a

totally different result after the key is applied to the cryptographic engine. In order to

improve reliability of a PUF, different methods have been proposed to either correct or

avoid bit flips, which will be discussed in the subsection later.     

1.1.3 Randomness

Randomness is another major metric that measures how random the the generated

responses are by a PUF. A random bit  sequence can be interpreted as the result  of a

sequence of “flips” of an unbiased coin [8]. The randomness of the generated responses

can be evaluated using statistical  test  suite like NIST test  [8]. The NIST test  suite is

regarded  as  the  industrial  standard  to  test  random  bit  sequence  for  cryptographic

applications. NIST consists of 15 subtests which covers the uniformity, correlation and
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approximate entropy tests for the bit sequence.  

1.2 Helper data for PUFs

As mentioned in section 2.1.2, entropy sources extracted from PUFs are subject to

ambient environmental variations, which are likely to cause inevitable bit flips within the

regenerated responses. To deal with this reliability issue, two classes of methods have

proposed to either correct the error bits or to avoid bit flips: Error correction code (ECC)

and thresholding technique. 

1.2.1 Error Correction Schemes

The most popular method is to use error correction information (ECC) for bit flips

correction. Two phases are involved in the ECC scheme: the first time of generating the

secret bitstring is called the enrollment process, and regenerating the same secret bitstring

later  is  the  regeneration  process.  ECC  works  in  a  fashion  that  the  error  correcting

information,  commonly  a  syndrome,  is  extracted  from the  secret  bitstring  during  the

enrollment process, which is later used to correct error bits during regeneration. The error

correction information or syndrome is public information and also referred to as helper

data and is stored in a reliable storage device, e.g., an on-chip non-volatile memory or

off-chip storage. However, there are several drawbacks that come along with the helper

data. A main security concern is that such helper data reveals information of the secret

bitstrings and thus makes the secrets vulnerable to be stolen by attackers  [5]. Besides,

extra overheads are incurred to the design due to implementing the syndrome and storing

the helper data. Many error correction schemes have been summarized in [5], but most of
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them  require  fairly  heavyweight  error  correction  logic,  and  they  inevitably  leak

information of the secret bits.

Error correction techniques can generally be categorized into three classes [9]: Code-

Offset [10][11][3], Index-Based Syndrome [12][13][14] and Pattern Vector [17]. In Code-

Offset  schemes,  the entropy loss  of  the Syndrome bits  is  attributed  to  the  maximum

number of exposed Syndrome bits. In this sense, the syndrome bits should be as small as

possible so that the leaked information by the exposed bits does not exceed the entropy

contained  within  the  secret  bitstring.  The  entropy  within  the  PUF  response  can  be

measured by the min-entropy of PUF outputs used, hence the remaining entropy after

exploiting a Code-Offset scheme depends on the min-entropy of the PUF outputs and the

number of Syndrome bits. The basic idea of the Index-Based Syndrome scheme is to use

the divided syndrome outputs  (in  unit  of words) as  the index of a  sequence of  PUF

outputs.  The  scheme is  proven  to  be  theoretically  secure  since  bias  within  the  PUF

outputs is not expected to be amplified, hence leaking no information of the min-entropy

of the secret bits. However, it is only true under the assumption that the PUF outputs have

to  be  independent  and  identically  distributed  (i.i.d),  which  is  difficult  to  measure  in

practical  scenarios.  It  is  further  analyzed  in  [14] that  there  are  two-out-of-three  bits

information leakage without this assumption. 

The  third  class  is  referred  to  as  the  Pattern  Vector  scheme  which  reverses  the

paradigm routine of conventional  ways of generating secrets  using a PUF. Instead of

fixing a  set  of challenges  and using their  corresponding responses  as  secrets,  Pattern

Vector  records  a  set  of  response  sequences  as  public  helper  information  during  the
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provisioning process, which is used later as a set of patterns to be compared with the

regenerated response bits. If an approximate match happens, then the index value of the

challenge that generates this matched response will be used as a sub-key. Multiple rounds

of such matching process during regeneration comprises the final key. The security of the

scheme relies on the fact that the challenges of the exposed response pattern set (helper

data)  are  not  knowledgeable  to  adversaries.  Since  only  a  small  set  of  responses  are

exposed, the authors claimed that it is infeasible for attackers to successfully build a PUF

model  with  a  limited  number  of  CRPs.  Moreover,  the  scheme  is  lightweight  for

implementation since it eliminates the need for complex error correction logic like BCH

decoders.  

However, authors in [6] proposed an attacking frame that is able to recover full keys

from the Pattern Vector scheme by manipulating the helper data. An attacker is able to

gradually retrieve the full bitstreams by statistically observing the failure rates of Pattern

Vector generators, thus eventually recover the secret indexes.  

1.2.2 Thresholding Technique

Error  correction  schemes  (ECC)  are  designed  to  correct  error  bits  within  the

regenerated  secret  bitstrings  due  to  ambient  environmental  variations.  An  alternative

scheme  to  ECC can  be  referred  to  as  the  thresholding  technique,  which  have  been

proposed to avoid bit  flips during regeneration.  As introduced in previous sections,  a

response bit is typically generated depending on the polarity of the difference between

two compared entropy values. It is easy to speculate that a polarity is more likely to flip
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in  cases  where  the  difference  of  the  two  compared  values  is  too  tiny  to  resist  to

fluctuations caused by varying environmental conditions. In this  regard,  response bits

derived from such cases  are  called  “weak” bits,  while  those  bits  whose  entropy pair

possesses large difference gaps are “strong” bits. Thresholding techniques are proposed to

discard those “weak” bits during enrollment so that only strong response bits are selected

for  regeneration.  This  bit  flips  avoiding process  is  achieved by setting  a  “threshold”

which partitions all the possible entropy pairings into two classes: “weak” pairings whose

differences  are  smaller  than  the  “threshold”  and  “strong”  pairings  whose  difference

exceeds the “threshold”. Then the positioning information for these “weak” pairings are

recorded  in  a  public  storage  as  “helper  data”,  which  will  be  referenced  later  during

regeneration to indicate which pairings should be discarded. 

Although  thresholding  techniques  have  been  proposed  in  various  types  of  PUF

designs, they share the same idea as is illustrated above. An early version of applying this

idea is named as the “masking scheme”, which is proposed in  [15] for Ring Oscillator

(RO) PUFs. The scheme uses a masking vector that selects which RO pairs should be

picked up for bitstring regeneration. A typical example is the “1-out-of-k” scheme where

the pair that has the maximum frequency distance among all the k pairing is selected.

Another version of thresholding technique is proposed in  [16] for the Power-grid (PG)

PUF. The entropy source of the PG-PUF is  the resistance variations that  exist  in  the

power grid metal wires and transistors. Resistance can be measured by equivalent voltage

drops across entropy cells by creating a voltage divider. After measuring the noise level

caused by varying measurement and environmental conditions, a threshold voltage value
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is  selected  which  is  defined  as  the  upper  bound  on  the  voltage  differences  of  two

compared entropy cells. A similar voltage thresholding scheme is proposed in [18] for a

transmission  gate  PUF (or  TG PUF)  to  ensure  reliably  regenerating  PUF responses.

Recently, the thresholding idea is used for a Sense Amplifier based PUF (SA-PUF) to

select SA pairs that are able to generate reliable bits.  

Compared to error correction schemes, the thresholding technique does not require

complex implementation logic for error correction codes and are generally accepted that

they are not vulnerable to information leakage. However, “helper data” information that

records the positioning information of reliable bits need to be stored, which also incurs

inevitable  overheads.  Moreover,  a  recent  survey  [19] on helper  data  algorithms have

disproved the assumption that bit selection schemes (thresholding) have no leakage. 

1.3 Organization

The dissertation is organized as follows: chapter 2 is based on the paper “A Non-

Volatile Memory Based Physically Unclonable Function without Helper Data”, which is

focused on addressing the reliability issue of PUFs. Chapter  3 is  based on the paper

“PUF-Based  Authentication”,  which  analyzes  the  entropy  introduced  from  multiple

sources and proposed an authentication protocol that is based on the HELP PUF. Chapter

4 is  based on a paper  that  is  titled “Leveraging Distributions  in Physical Unclonable

Functions”,  which  investigates  the  enhanced  robustness  introduced  by  the  linear

transformation within the HELP processing engine against model-building. Chapter 5 is

based on a paper under review “A Novel Offset Method for Improving Bitstring Quality
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of a Hardware-Embedded Delay PUF”, which proposes an offset method to deals with

the bias issue for HELP and significantly improves the quality of bistring.  Chapter 6

proposes a delay model for the HELP, which indicates the complexity of the HELP PUF

for model-building attacks. Chapter 7 discusses the future work and Chapter 8 concludes

the dissertation.  
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CHAPTER 2

A Non-Volatile Memory Based Physically Unclonable

Function without Helper Data

2.1 Introduction

Many hardware security and trust mechanisms depends on a secret key which serves

as a unique, un-reproducible ID for each integrated circuits (IC). Conventional methods

of storing secret keys involves programming the embedded secrets in ROMs, e-fuses or

non-volatile memories. Such non-volatile keys unfortunately are vulnerable to invasive

physical attacks by which the secret keys may be extracted from the storage device. Once

a secret key is compromised, adversaries may make clones of the IC that own the same

key, thus defeating the security mechanism.   

Physically  Unclonable  Functions  (PUFs)  are  emerging  as  an  alternative  to

conventional  approaches  to  storing  secret  keys  in  ICs.  PUFs  extract  entropy  from

variations in the physical and electrical properties of ICs, that are unique to each IC, as a

means of generating secrets. Secret keys derived from PUFs mitigate the vulnerabilities

of embedded digital keys mainly in two ways: (1) the generated secret keys are volatile

and only present in a digital form when the chip is powered on and running. thus making

it difficult for adversaries to steal by invasive attacks; (2) even if the secret key is known,

it is intractable for the manufacturer to duplicate a second chip with an identical key.

These secrets can be used in various security applications including device identification,
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authentication, metering, remote activation and encryption [1].

Applications such as encryption require precise regeneration of the secret bitstring,

possible under different environmental conditions. This requirement presents challenges

for  PUFs  (in  contrast  to  secrets  that  are  programmed into  non-volatile  memories  or

NVMs) because the entropy source leveraged by PUFs is analog in nature and hence can

be significantly impacted by changes in temperature and voltage (TV) noise. Moreover,

distinguishing  subtle  differences  in  the  entropy  source  is  further  challenged  by

measurement noise in many cases. Typically, a secret bit is generated according to the

entropy  difference  extracted  from  two  identical  structures,  in  which  way  an

approximately equal number of “1”s and “0”s can be generated depending on process

variations. For instance, if the entropy source of the former structure is larger than the

latter, a “1” is generated; otherwise a “0”. Consider a case where the difference of the two

compared  entropy  is  so  tiny  that  they  will  fluctuate  across  each  other  under

environmental  noise  (or  measurement  noise),  a  bit  flip  will  occur.  Therefore,  secret

bitstrings generated by PUFs can not be directly applied into cryptographic applications

as secret keys, until the error bits get corrected or eliminated.   

The  most  popular  approach  to  dealing  with  these  challenges is  to  extract  error

correcting  information from the  secret  bitstring  once  it  is  generated  for  the  first  time

during  the enrollment  process,  that  is  later  used to  correct  errors  which  occur  during

regeneration [2]-[6]. The error correction information is stored in reliable, digital storage,

e.g., in an on-chip NVM or an off-chip storage device. Generally, two drawbacks come

along with storing such correction information: (1) implementation as well as storage for
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correction information inevitably incur hardware overheads to the overall design; (2) the

correction  information  reveals  part  of  the  secret  information  of  the  generated  keys,

rendering adversaries easier to emulate PUF behavior through model-building attacks [4].

A second thresholding-based technique  'avoids'  bit  flips  by  being selective  regarding

which components of the entropy source can be compared reliably to generate a bit [18].

However,  thresholding  techniques  also  require  helper  data  that  indicate  which

comparisons are reliable.

In this chapter, we propose a NVM-based PUF implementation that does not require

helper data for regeneration. The entropy leveraged in our scheme is the manufacturing

variations that occur in the transconductanc1e (or resistive) characteristics of the NVM

cells. The enrollment process measures and digitizes these variations and then 'programs'

the NVM cells with the random bitstring that is produced. Therefore, the full reliability of

the NVM is used to preserve the bitstring across power cycles and under varying TV

conditions, which allows regeneration processes to extract it  without suffering bit-flip

errors. 

The enrollment  process  is  carried out  in  a  special  manner.  First,  elements of the

PUF's  entropy  source  are  stimulated  and  digitized  using  an  on-chip  measurement

structure that is capable of providing 'soft information'. Soft information implies that the

magnitude of the analog variations are digitized into multi-bit, e.g., 8-bit, digital values. A

distribution is then constructed using these digital values and a median-finding algorithm

is used to partition the population into two segements (with an equal number of elements

in each segment). NVM cells with digital values in the lower half of the distribution are
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programmed with a '0' while those in the upper portion are programmed with a '1'. 

Our proposed NVM PUF, by its very nature, defeats one of the stated advantages of

PUFs, i.e., PUFs eliminate the cost of including NVM on the chip and the need to store

the secret  bitstring in digital  form. However,  the NVM PUF does  preserve the basic

premise of a PUF, namely, that the secret is derived from manufacturing variations and is

not programmed (or even known) by the manufacturer as is true in the traditional use of

NVM. The real benefit of our proposed scheme is in the use of NVM cells as both a

source of entropy and a means of eliminating public  'helper  data'.  We recognize that

storing the secret in  NVM memory represents a vulnerability  and may disqualify the

NVM PUF for high security applications that need to protect against invasive probing

attacks. However, the small footprint and the guarantee of high reliability of the NVM

scheme make it attractive for other, lower security, small form factor, applications.   

In this chapter, we describe the NVM PUF enrollment and regeneration processes in

the context of Memristor devices. Published data on within-die variations in Memristor

arrays  is  leveraged  to  show  proof-of-concept  and  to  guide  the  design  of  on-chip

measurement infrastructures which are capable of measuring and digitizing NVM cell

resistance variations.

We introduce the background information in Chapter 2. The scheme overview of the

proposed  PUF  design  as  well  as  the  basics  of  Memristor  devices  are  introduced  in

Chapter  3.  The  proposed  voltage-to-digital  converter  and  the  PUF  architecture  are

presented in Chapter 5, and Chapter 6 evaluates the proposed strategy using measured

data from published literature. Chapter 7 concludes the chapter.
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2.2 Background and Related Work

This section introduces some background information that are related to the proposed

non-volatile memory based PUFs. The first section introduces several important metrics

that are generally used to measure the quality of a PUF, in which the reliability metric is

what this proposed research focuses on. This is followed by section 2.2 that summarizes

two classes of existing schemes that have been proposed to address the reliability issue

for  PUFs.  Since  this  research  will  describe  the  proposed  scheme  in  the  context  of

Memristors, section 2.3 gives a brief survey of several recently proposed PUF designs

that are based on Memristor devices.

Various  types  of  PUFs  have  been  proposed  depending  on  different  electrical  or

physical  characteristics  they  exploited  as  entropy  sources,  e.g.,  delay-based  PUFs,

resistance-based PUFs, threshold-voltage based PUFs and so forth. One of the important

classes is memory-based PUFs, where SRAMs are investigated as conventional PUF cells

and its variations on the bi-stable characteristic are exploited as entropy source. Recently,

emerging memory techniques have been proposed as alternatives to conventional non-

volatile memories (like flash) and they have attracted enormous amount of attention from

researchers in the computing world due to their advantages. Compared to conventional

memory technologies, emerging memory technologies have faster speed, better density

and  lower  power  consumption.  Proposed  emerging  memory  technologies  includes

Resistive  random  access  memories  (ReRAMs),  Phase  Change  Memory  (PCM),

Spintronics-based technology like Spin-transfer torque RAMs (STT-RAMs) and Spin-

Orbit torque RAMs (SOT-RAMs). Correspondingly, a few implementations that use these
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emerging technologies as PUF designs have recently been investigated.     

The feasibility of building a Memristor-based PUF is recently discussed in [20]. The

authors  utilized  a  weak write  mechanism which  leverages  the resulting unpredictable

logic states to implement a PUF. Evaluations in the paper only focused on the uniqueness

metric without consideration for the stability of the PUF. The work in  [21] proposed a

possible memristive PUF configuration that is based on the randomness of the resulting

programming state of two cells in series that occurs after a reset operation. Then a Public

PUF (PPUF) protocol that is implemented by memristors is also discussed.  Garrett S.

Rose et  al.  proposed a write-time based memristor PUF that leverages the write time

variability of the Memristor device  [22]-[23]. It is implemented by choosing the actual

SET time close to the minimum SET time so that the percentage of the output logic '0' or

logic '1'  will  be each nearly 50%. The “minimum set time” is determined by using a

Monte  Carlo  simulations  on  a  variable  mobility  memristor  model.  Another  PUF that

integrates a Memristor device into the conventional RO-PUF structure is  proposed in

[24]. Variations in high state and low state resistance after a programming operation is

used as the entropy source. The authors demonstrate that the randomness in the resistance

values increases the number of CRPs of conventional RO-PUFs. 

Authors in  [25] proposed a PUF based on Spin-Transfer  Torque (STT) Magnetic

RAM, responses are generated by comparing the inherent random mismatches between

the resistance of STT_MRAM cells of the same state. An Automatic Write-Back (AWB)

technique is proposed is enhance the reliability of the proposed PUF designs. Le Zhang et

al.  proposed a Phase Change Memory based PUF that exploits process variations and

16



programming  sensitivity  of  the  device  [26].  The  paper  proposed  two  prototypes  for

implementing a PUF design where the first is to exploit randomly varying pulses, and the

second is to count the number of fixed programming pulses required for a target value.

Another STT MRAM-based PUF is proposed in  [27], in which the standard 1T1MTJ

STT memory  cell   is  used  and  a  differential  read  scheme  is  used  to  generate  PUF

responses.  Major  metrics  of  the  PUF  are  evaluated  using  SPICE  simulations  where

device models are  extracted from open literatures.  Compared to  [27],  authors  in  [28]

proposed a geometry based Magnetoresistive RAM (MRAM) PUF and verified major

metrics using both simulation and fabrication results. A authentication protocol that is

based on the proposed MRAM-PUF as well as a systemic MRAM PUF architecture are

also proposed. The paper also evaluated the hardware overheads for the authentication

algorithm implemented by the proposed PUF system in terms of area, power and delay

overheads. 

In contrast to previous work, the primary goal of our proposed PUF is to eliminate

bit flips and the need for any type of helper data. To realize this goal, we exploit the

characteristic  that  the  bi-model  resistance  profiles  of  Memristor  devices  are  widely

separated and therefore,  the membership of a specific  device in either  profile can be

determined reliably. Other contributions of this paper include 1) a stimulus circuit and an

on-chip voltage-to-digital converter (VDC) scheme for obtaining soft information on the

resistance characteristics  of  the  NVM cells  and 2)  a  median-finding algorithm that  is

robust to non-Gaussian resistance distribution profiles.
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2.3 Scheme Overview and Memristor Devices Basics

This section first presents an overview of the proposed PUF scheme and then 

discusses some basics of a Memristor device. 

2.3.1 Overview of the Proposed Scheme 

As indicated in section 2.1, the elimination of helper data is a major benefit of the

proposed NVM PUF.  Fig. 2.1   illustrates the mechanism by which this accomplished.

The resistance distribution shown along the bottom left illustrates the randomness that

exists in the resistance of the Memristor cells programmed in the low resistance state

(LRS). This distribution represents the entropy source for the NVM PUF. As described in

the  next  section,  the  analog  resistance  values  are  digitized  and  the  median  of  this

distribution is determined. The histogram shown in the upper left depict the profiles after

a selected 

Fig. 2.1   Overall concept of the NVM PUF design
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set of NVM cells are reprogrammed into the high resistance state (HRS). The large gap

between these profiles ensures that subsequent regenerations always make the correct

decision  regarding  the  profile  to  which  a  given  NVM  cell  belongs.  This  is  a  key

distinguishing feature of the NVM PUF. All other PUFs (to our knowledge) must operate

on  the  LRS  distribution  for  regeneration.  Unfortunately,  varying  TV conditions  and

measurement noise change the LRS distribution profile, making it impossible to generate

the same bitstring without helper data.

Fig. 2.2  further illustrates the enrollment process in more detail. The flow starts with

programming all  the memristor  cells  to the low resistance state,  by using the “write-

operation”  of  memristors  which  is  described in  the  next  section.  A voltage-to-digital

converter (VDC) is then responsible for digitizing the sensed voltage drop across each

memristor cell to a digital value between 0 to 128. All these digitized values are stored in

an SRAM array that is cell-to-cell mapped to the memristor arrays. In order to create a

histogram, a state machine is used to count the number of instances for each digitized

value (from 0 to 128). This is achieved by storing the counts of each digital value into a

second  129-cell  on-chip  SRAM,  whose  addresses  represent  the  counters  storing  the

corresponding digital values. Then a state machine is utilized to find the median digital

value of the profile by adding up the counter values from low to high addresses. The

median value is then recorded and used as a divider that determines which memristor

cells are going to be reprogrammed to the high resistance state (those with larger values

than the median). All cells will be randomly split into two equal-numbered groups, LRS

and HRS profiles, after  the reprogramming procedure.  The random variations of LRS

19



determine how the resistance profiles for an specific NVM array 

Fig. 2.2   Overview of the enrollment strategy for the proposed NVM-based PUF 

distributes, with each generating a unique pattern as shown on the far right in Fig. 2.2 .

Therefore the generated bitstring between two different chips will be unique.

2.3.2 Memristor Basics and Key Features

Memristors have become a mainstream research topic because of their advantages as

novel memory primitives over conventional memory technologies including static RAMs

(SRAMs)  and  Flash  memories.  For  example,  Memristors  have  intrinsically  higher

density,  faster  access  speed  and  better  energy  efficiency  [29].  Memristors  are  also

classified  as  a   NVM technology,  in  which  special  write  operations  can  be  used  to

configure cells into one of two (or more) resistance states. 

A Memristor is an electrical switch that is able to retain internal resistance states

according to its history of applied voltage and current [30]. The different resistance states

can be sensed to generate logic '0's and '1's. Memristor write and read operations are
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implemented by applying write or read voltage pulse patterns. Different patterns are used

for the reading and writing operations.  

Fig. 2.3  shows the structure of a Memristor cell and the mechanisms used for read

and write operations. As shown in  Fig. 2.3  (a), a Memristor cell is composed of two

electrodes and a metal oxide doping layer sandwiched between them. The length of the

doping region w will be extended to the maximum length of D when the dopants are fully

constructed (doped), and reduced to 0 when dopants are completely destroyed (undoped).

The resistances of the completely doped region and undoped region can be represented

by Ron and Roff respectively. Equation (1) gives an expression for the overall resistance as

a function of the doping extent w. 

(1)

The doping behavior can be controlled by applying voltage pulses of the appropriate

magnitude and duration as shown in Fig. 2.3 (b). The change in the doping characteristic

of the Memristor cell changes its resistance characteristics. This is depicted in the figure

and labeled as LRS for low resistance state and HRS for a high resistance state, which

corresponds to a logic '1' and '0', respectively. To write a logic '1', V in should generate a

positive square voltage pattern with magnitude VA and time duration TW1. To ensure a

successful write, the magnitude of VA must be larger than the threshold write voltage of

Vth,w1 and the duration TW1  must be longer than Tth, w1. Similarly, the operation for writing

a logic '0' requires a negative write voltage -VA with duration of at least Tth, w0. Note that

some  memristors  cannot  be  configured  properly  after  manufacture  until  being

conditioned with a larger formation voltage Vf [32]. We assume memristors used in our
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enrollment algorithm have been “formed” for normal configurations.    To perform a read

operation,  a  voltage  pulse  pattern  is  required  that  is  composed  of  a  negative  pulse

followed by a positive pulse with equal magnitude and duration [31]. The negative pulse

is used to detect the current internal state but it also perturbs the doping state of the cell.

The subsequent   positive  pulse  is  designed to  re-generate  the  doping conditions  and

corresponding resistivity of the original state. This pattern of read pulses is illustrated in

Fig.  2.3  (c),  which  also  shows when the  corresponding output  value  is  available  for

reading, in particular, the intervals t1-t2 for read '1' and t4-t5 for read '0'.

Fig. 2.3   The structure of a memristor cell and its write and read scheme. (a)

memristor device structure and equivalent model [30]. (b) Write scheme. (c) Read

scheme [31].

Fig. 2.4  shows the histogram of the HRS and LRS variations extracted from a 1600

Memristor  devices  (40*40  nanocrossbar  array)  [33].  The  spread  in  the  distributions

illustrate  that  the  resistance  of  a  Memristor  cell  after  a  write  operation  varies
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considerably, and is due to process variations and voltage variations over the  t of the

write operation. This characteristic makes it challenging to use Memristor cells for a PUF

in cases where the resistance variations within either of the two states  are used as the

source  of  entropy.  This  is  true  since  the  read  operations  that  take  place  during

regeneration also change the resistance characteristics of the cells, which in turn increases

the probability of a bit flip. 

Fig. 2.4    Histogram of the HRS and LRS resistances variations extracted from a

40*40 nano-crossbar array (1600 devices)  [33]. 

2.4 VDC and Proposed PUF Architectures

In this section, a voltage-to-digital converter is introduced that is used to digitize the

sensed analog voltage from the Memristor cells. This is followed by presenting a circuit

level  modification  that  is  able  to  use  the  Memrisor  cells  as  PUF  primitives.  The

enrollment scheme that is based on these two critical modules is illustrated in detail to

demonstrate how we can use a median-finding algorithm to eliminate helper data.  

23

Cell resistance (Ohms)

Vs

N
u

m
b

er
 o

f o
cc

ur
re

nc
e

200

150

100

50

0

50K 100K 500K 1M 5M 10M 50M 100M 500M

LRS HRS



2.4.1 Voltage-to-Digital Converter (VDC)

The PUF structures that we propose require the measurement and digitization of a

value  proportional  to  the   resistance  of  Memristor  cells  in  the  LRS.  The  proposed

architectures, which are described in the following sections, provide a voltage from a

voltage divider network(s) that is proportional to the LRS resistance. 

The voltage-to-digital converter (VDC) shown in  Fig. 2.5   is capable of digitizing

these  voltages  [34].  The  VDC  has  two  voltage  inputs,  labeled  VoltInUpper  and

VoltInLower, two digital inputs labeled e1 and e2, and two delay chains (upper and lower)

connected to a sets of latches. The voltage inputs connect to NFET transistors inserted in

series  with  the  odd-numbered  inverters  of  the  delay  chains.  Voltages  less  than  VDD

introduce  additional  delay  through  these  inverters  that  is  proportional  to  the  applied

voltage as an edge propagates down the inverter chains.

The function of the VDC is to create an 8-bit digital value between 0 and 128 that is

related to the voltage present on the VoltInLower input. This voltage is derived from the

voltage  divider  network  and  is  always  smaller  than  the  supply  voltage  (VDD).  The

digitization process is started by the Edge Generator, which launches a rising edge onto

e1 and then after some delay, a second rising edge onto e2 as shown in the figure. Under

the condition that the voltage on VoltInUpper is sufficiently larger than the voltage on

VoltInLower, the e2 edge catches up and passes the e1 edge. The latches on the outputs of

the  even  inverters  in  the  delay  chains  record  the  point  at  which  this  happens  as  a

thermometer code (TC). A TC is a sequence of '0's (or '1's) followed by a sequence of '1's

(or '0's). The number of '1's (or '0's) in the TC reflects the magnitude of the difference
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between the  two applied  voltages.  We refer  to  the number of  '1's  in  the  128 latches

connected to the lower chain as a TCV. In our proposed implementation,  the voltage

applied to VoltInUpper is VDD as a means of ensuring that it is always larger than the

voltage to be digitized on VoltInLower. The wide range of resistance variations that occur

in the LRS states of Memristors cells produces a wide range of voltages that need to be

digitized by the VDC. Moreover,  TV environmental variations also impact the timing

behavior of the VDC. The Edge Generator component of the VDC is used in a calibration

process to ensure that the VDC is able to produce useful digital values under these

Fig. 2.5  Voltage-to-Digital Converter (VDC)

 conditions, where 'useful' is defined as values above 0 and less than the overflow value

of 128. Calibration tunes the t between e1 and e2 edges, maximizing the sensitivity of

the  VDC  to  specific  ranges  of  voltages,  and  allowing  it  to  accommodate  for  TV
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variations. The transfer curve characteristics and calibration process are described below

in the context of an example.

2.4.2 Proposed Memristor PUF

      Fig. 2.6  (a) shows the architecture proposed in  [31] for a Memristor-based NVM,

with the exception of the switch on the left side of the diagram (which is needed only for

the PUF).  The resistance of  this  switch,  implemented as  a  pass  gate  with  very  wide

transistors, is very low, e.g., on order of 50 Ohms or less. 

This  switch  is  closed  when  the  memory  is  accessed  for  normal  read  and  write

operations. In this case, the Pulse Generator labeled Vin delivers pulses to a selected set

(or word) of Memristor cells according to the diagrams shown earlier in  Fig. 2.3  . For

normal read operations, the R/W Enable switch is set to the 'Read' position, which creates

a  voltage  divider  network  between  Vin,  across  the  Memristor  cell  and  resistor  Rx  to

ground. The resistance of Rx is set to a value of approx.  (Roff + Ron)/2 so that VX will be

larger than Vref (half of Vin) when the cell is programmed to its LRS and smaller than V ref

when programmed to HRS. In this way, VO will be VH (logic '1') when the Memristor cell

is in LRS and VL (logic '0') when the cell is in HRS. From the distributions shown in Fig.

2.4 , the value of Rx would be approx. 10 M. The modifications shown in red in Fig.

2.6 (b) are required in order to allow the Memristor memory to be used as a PUF. The

large, low resistance switch is disabled and instead a high resistance, approx. 400 K,

switch is enabled. This switch is also connected in series between the Pulse Generator

and the Memristor array. The value of 400 K is the resistance near the midpoint of the

26



R/W Enable

Write

Floating

Read

RX

+

-
VO

VH

VL

Vref

Sense Amplifier 
~

Vin

WR

RR

VX

~50 Ohms

distribution  of  LRS programmed Memristor  cells  from  Fig.  2.4  .  Therefore,  when  a

Memristor cell that is programmed in its low resistance state is enabled, the voltage on

the voltage divider network is a value between 200 mV and 882 mV (with VDD at 1.0V).

These values are obtained by using the extreme values of the LRS distribution in Fig. 2.4

. For example, 200 mV is obtained from the voltage divider network expression (100

K/500 K). This voltage is delivered to the VoltInLower input of the VDC, as shown

(a)

(b)

Fig. 2.6  (a)  Circuit structure proposed Memristor memory [31]; (b) Modifications

needed for proposed Memristor PUF.

 along the bottom of Fig. 2.6 (b).
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Most memory architectures are byte or word addressable, which means that multiple

Memristor cells are accessed simultaneously. The arrangement shown in Fig. 2.6 (b), on

the other hand, assumes that each Memristor cell  is  individually addressable,  i.e.,  the

word-size of the PUF implementation is 1 bit. Therefore, an architecture level change is

needed in addition to the components of Fig. 2.6 (a) and Fig. 2.6 (b) in order to convert

the Memristor array into a PUF.

2.4.3 Enrollment Algorithm

As  indicated  earlier,  the  enrollment  process  leverages  the  random  resistance

variations  in  the  Memristor  cells  as  the  source  of  entropy,  and  then  uses  the

programmability  of  the  Memristor  cells  to  eliminate  helper  data.  The  enrollment

algorithm that accomplishes these goals is given as follows:

1. The controller for the memory is instructed to program all Memristor cells to the

low resistance state. This is accomplished as a 'normal' write 1 operation as described

earlier with the large, low resistance pass gate switch enabled. 

2. The controller is again instructed to sequence through a set of write operations but

this time with the high resistance switch enabled and exactly one Memristor cell selected,

i.e., the R/W enable signal is set to 'Write' while all other cells in the array are set to

'Floating'.

3. Immediately after the write pulse is asserted, a start signal is issued to the VDC to

begin the digitization process.

4. The 8-bit digitized value from the VDC is stored in an on-chip SRAM memory at
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the address corresponding to the tested Memristor cell.

5. Once all  cells  in  the  Memristor  array  are  digitized,  a  state  machine creates  a

histogram of the digitized voltages stored in the SRAM. The histogram is created by

using the digitized values as an address into a second on-chip SRAM, whose storage

locations represent counters recording the number of instances of a particular digitized

voltage.

6. A state machine parses the histogram data from low  to high address, adding up

the counter values. The memory address of the median value, which partitions the array

of elements into two equal-sized groups, is recorded.

7. The state machine then parses the first SRAM, comparing the stored digitized

voltage with the median. The Memristor array is again placed in normal write mode and

those cells whose value exceeds the median are re-programmed to the HRS.

8. A bistring is constructed using a sequence of normal read operations, which are

designed to preserve the LRS or HRS of the programmed Memristor cells. The sequence

of read addresses can be generated as a linear sequence or by using a linear-feedback-

shift-register to generate the sequence pseudo-randomly. 

The ordering of the Memristor  cells  from left  to  right  within the histogram is

random for each chip, and therefore, the bitstrings will be unique across chips. Also, the

large threshold between the  two distributions  makes it  possible  for  the bit  generation

algorithm to succeed in reliably making the same decision about whether the Memristor

cell is in a LRS or HRS, thereby eliminating the need for helper data. 
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Note that resistor divider network reduces the 'write' voltage during the digitize

operation, in most cases to a value below the threshold shown in Fig. 2.3 (b). Therefore,

changes  in  the  actual  resistance  value  are  likely  to  be  very  small.  However,  the

enrollment process as described is robust to these types of resistance changes so they are

of no consequence.

2.5 Evaluation Using Measured data

This  chapter  demonstrates  the  practicability  of  the  enrollment  process  using  the

measured  data  from  [33].  Fig.  2.7   shows  that  resistance  variations  of  the  LRS

programmed Memristor devices ranging from approx. 100 K to 3 M and the profile

does not have to be Gaussian. A robust feature of our proposed median finding algorithm

is that we do not need to build the voltage divider network and VDC to digitize this entire

range. In fact, only the values in the middle of the distribution, i.e., in the range of 200 K

to 1 M, need to produce non-underflow (0) and non-overflow (128) TCVs within the

VDC.  

The transfer curves in Fig. 2.8  indicate that the VDC operates best for VoltInLower

values in the range of 300 mV to 800 mV (for VDD of 1V), where it produces TCVs in the

range  from  5  to  120.  Note  that  this  range  can  be  adjusted  using  calibration  to

accommodate process and TV variations, as shown by the dotted curves. Calibration tunes

the  t  between e1 and e2, effectively shifting the curves horizontally. Setting the high

resistance switch in Fig. 2.6 (b) to approx. 400 Kproduces voltages of 333 mV when the
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Memristor cell is 200 K and 714 mV for Memristor cells at 1 M Such calibrated

voltage range (from 333 mV to 714 mV) fits the best region for voltage digitization of

VDC.  

Fig. 2.7   VDC measured range for the measured LRS data profile from 1220 memristor

cells in [33]. 

Fig. 2.8   Typical transfer Curves for VDC.
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CHAPTER 3

PUF-Based Authentication 

       In the context of hardware systems, authentication refers to the process of confirming

the identity and authenticity of chip, board and system components such as RFID tags,

smart cards and remote sensors. The ability of physical unclonable functions (PUF) to

provide  bitstrings  unique  to  each  component  can  be  leveraged  as  an  authentication

mechanism  to  detect  tamper,  impersonation  and  substitution  of  such  components.

However, authentication requires a strong PUF, i.e.,  one capable of producing a large,

unique  set  of  bits  per  device,  and,  unlike  secret  key  generation  for  encryption,  has

additional  challenges  that  relate  to  machine  learning  attacks,  protocol  attacks  and

constraints on device resources. In this chapter, we describe the requirements for PUF-

based  authentication,  and  present  a  PUF  primitive  and  protocol  designed  for

authentication in resource constrained devices. Our experimental results are derived from

a 28 nm Xilinx FPGA.

3.1 Introduction

Authentication is traditionally characterized as a process that verifies “something you

know”, e.g., a password, “something you have”, e.g., hardware one-time-password tokens,

and “something you are”, e.g., your fingerprints. Multi-factor authentication requires two

or more of these components from different categories. PUF-based authentication provides

individual devices with a set of passwords (bitstring responses to challenges) that uniquely

identify  it  (a  fingerprint),  so  in  this  sense,  it  can  be  characterized  as  a  multi-factor
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authentication  mechanism.  PUFs  derive  their  fingerprint  from  random  variations  that

occur in the manufacturing process of a chip or board. For example, a delay-based PUF

measures and digitizes variations that occur in paths and/or gates within the chip or along

wires in a printed circuit board (PCB) [35]. Although we use variations in path delays as

the entropy source in this paper, there are many other sources of variations that can be

leveraged, as is evident from the published literature on PUFs. 

PUFs have been proposed for other types of applications including encryption, for

detecting malicious alterations of design components and for activating vendor specific

features on chips. Each of these applications has a unique set of requirements regarding

the  security  properties  of  the  PUF.  For  example,  PUFs  that  produce  secret  keys  for

encryption  are  not  subject  to  model  building  attacks  (as  is  true  for  PUF-based

authentication) which attempt to ‘machine learn’ individual path delays for a chip as a

means of predicting the complete response space of the PUF. This is true for encryption

because the responses to challenges are typically not ‘readable’ from an interface on the

chip. In general, the more access a given application provides to the PUF externally, the

more resilience it needs to have to adversarial attack mechanisms. 

Authentication as an application for PUFs clearly falls in the category of extended

access. The term ‘hardware token’ or prover is typically used to identify a fielded device

that  embeds  the  PUF,  such  as  a  smart  card,  and  the  term ‘secure  server’ is  used  in

reference to the verifier.

Applications  such  as  authentication  require  a  strong  PUF,  i.e.,  a  PUF  that  can

produce  a  very  large  number  of  challenge-response-pairs  or  CRPs.  Challenges  and
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responses  are  the  digital  inputs  and  corresponding  outputs  of  the  PUF.  In  order  for

authentication to work, it must be necessary and impractical for an adversary to apply all

possible challenges to the PUF on a chip as a means of obtaining all of its responses.

Making this infeasible makes it impossible for an adversary to build a ‘clone’ of the chip

that replicates the CRP behavior. However, the requirement of a very large CRP space is,

in general, challenging to meet for PUFs. It requires a large source of entropy, which can

become  expensive  area-wise  when  the  PUF  is  implemented  using  dedicated  and

specialized components. 

Authentication  is  typically  characterized  as  having  two  phases:  enrollment  and

regeneration. Enrollment occurs immediately after manufacture and involves the verifier

generating  a  random set  of  challenges  which  are  applied  to  the  token  to  generate  a

corresponding set of responses. The set of CRPs are stored on the verifier for each chip

individually in a secure environment.  The stored CRPs can then be used to carry out

authentication in the field with the token. The verifier only needs to store a limited set of

CRPs  in  the  secure  database  because  the  very  large  CRP space  of  the  strong  PUF

combined with the secrecy of the chosen CRPs makes it difficult or impossible for an

adversary to know how to respond using a clone of the token.

Bear in mind, authentication can also be implemented by having the PUF generate a

secret key for encrypting communication between the prover and verifier. The enrollment

process involves the PUF generating a shared key that is stored on the server through a

one-time interface,  i.e.,  an interface that can be disabled,  along with helper data.  The

helper data is later transmitted to the token as needed for authentication in the field to
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enable precise regeneration of the key. The token in this scenario needs to incorporate an

encryption algorithm, which adds to the required resources. Although this method requires

only a weak PUF that is capable of producing only a small number of bits (a plus), the

encryption  operation  carried  out  by  the  token  is  subject  to  side-channel  attacks  that

attempt to learn the key (a minus). Once learned, the security mechanism is defeated.

Therefore, strong PUFs that have a very large CRP space provide an advantage by making

it infeasible for an adversary to extract all the secrets embedded in each token.

Most authentication proposals also limit  the amount (or eliminate  completely)  the

need for helper data and instead allow for fuzzy matching to occur between server stored

responses and those generated in the field by the token. In other words, a small number of

differences are tolerated in the response bitstrings. Although fuzzy matching reduces the

storage requirements for the verifier by eliminating the helper data, it also increases the

possibility of aliasing and impersonation, i.e., the likelihood that two devices produce the

same responses (within the noise margin).

In this chapter, we propose a hardware-embedded delay PUF called HELP as a strong

PUF  for  authentication.  HELP leverages  entropy  present  in  functional  units  already

present  in  the  chip,  and  therefore,  it  does  not  require  the  insertion  of  dedicated

components.  Moreover,  the overhead associated with integrating HELP into functional

unit is very small relative to the size of the functional unit. HELP is unique in that it

leverages  delay  variations  in  structures  that  are  not  identical  and  implicitly  provides

tamper  protection  of  the  functional  unit(s).  This  paper  contributes  beyond  previously

published work in [36]Error: Reference source not found in the following ways:
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• We implement HELP on a Xilinx 28 nm 7020 Zynq chip embedded on AVNET’s

Zedboard [38] using both glitchy and glitch-free functional units as the source of

entropy and analyze the statistical quality of the bitstrings.

• We isolate and analyze entropy introduced from multiple sources and discuss the

trade-offs and impact on security.

• We propose an authentication protocol using HELP.

3.2 Related Work

An excellent survey and critical review has been recently published that covers the

state-of-the-art with regard to PUF authentication for resource constrained devices  [39].

The criteria used to review the existing methods assume a low-cost resource constrained

token and resource-rich server, and the use of a strong PUF. The authors indicate that

protocols  which  require  NVM  are  less  attractive  because  of  the  increased  cost  of

manufacturing  of  NVM  components  in  CMOS  technologies  and  because  of  recently

disclosed vulnerabilities of NVMs to probing attacks.  The PUF protocols proposed in

[40]-[56] are evaluated against the following characteristics [39]: 

• Resilience to measurement and temperature/voltage (TV) noise sources.

• Resilience to machine learning via use of cryptographic hash functions and XOR

functions as needed. 

• Are techniques needed to expand the response space (PRNG) of the strong PUF?

• Ease of instantiation of the PUF authentication mechanism.
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• Resistance to protocol attacks, i.e., token and/or server impersonation and denial

of service attacks.

The authors conclude that the main problems with the protocols are rooted in the PUF

itself  and  that  research  should  focus  on  developing  a  truly  strong  PUF  with  solid

cryptographic properties.

3.3 Overview

3.3.1Goals and Objectives

One of the goals of this work is to isolate and characterize the main sources of delay

variations (the entropy source) on the chip, namely, 1) within-die delay variations that

occur within individual FPGA LUT primitives, 2) global delay variations that occur across

all  LUTs on the chip  and 3)  delay variations  introduced by static  and dynamic  logic

hazards.  All  of  these  sources  of  variations  change  the  delay  characteristics  of  paths

uniquely on each chip. 

A key objective is to determine the magnitude of these variations with respect to

measurement and temperature/voltage (TV) noise sources. We refer to this noise as “TV

noise”  since  TV  dominates  even  when  repeated  sampling  and  TV  compensation

techniques are applied. TV noise works to impede access to the entropy provided by delay

variations,  and reduces  the  amount  of  usable  entropy.  Delay  variations  introduced by

within-die process variations are relatively small even when measured through a single

LUT. On the other hand, global variations and variations introduced by hazards are well

above the TV noise margin, making them attractive as a source of entropy. However, there
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is a downside to leveraging these larger sources of entropy as discussed below.

We integrate HELP into a GF(4) subcomponent and a full-blown GF(256) version of

the Advanced Encryption Standard (AES) SBOX functional unit [57]. The GF(4) version

can be implemented using a logic depth of 1, which allows individual LUT delays to be

analyzed. We implement the GF(256) in two ways referred to as:  Standard: without any

type  of  special  logic  style  or  constraints  and  WDDL:  without  glitches  using  wave-

differential dynamic logic [58]. The Standard implementation includes all three sources of

entropy.  Inter-chip  hamming  distance  (HD),  Inter-chip  HD  and  the  results  of  NIST

statistical tests are reported to understand the trade-off of the two logic styles on bitstring

generation and reproduction [59][60].

A modulus technique is used in combination with a helper data string as a mechanism

to maximize  the  strength of  the cryptographic properties  of  the PUF in the proposed

authentication protocol. Glitch-free logic implementations of the functional unit, such as

WDDL, provide a distinct advantage in resource-constrained authentication applications

by reducing bit flips while improving access to the limited, but most important source of

entropy, namely that provided by within-die variations.

3.3.2 Attack Scenarios and Assumptions

Traditional “resource-constrained” applications such as RFID and smart cards utilize

memory,  small  microcontrollers  and/or  ASICs for  implementing  functions.  The attack

models and assumptions that we describe in the context of FPGAs can be extended to

these  implementations  as  noted  below.  Although  HELP  is  proposed  as  an  FPGA

authentication mechanism in this  paper,  the concept and techniques presented are also
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applicable to ASIC implementations [36]. 

Secure computing using FPGAs requires encryption of the programming bitstream.

Modern FPGAs integrate encryption/decryption modules,  and NVM-based key storage

mechanisms,  to  support  this  requirement.  Beyond  protecting  Intellectual  Property,

encryption also prevents tampering with the design. Although our technique can detect

tamper within functional unit(s), we assume an attacker is not able to defeat the bitstream

encryption  mechanism.  No  security  mechanism,  PUF  or  otherwise,  is  secure  if  this

requirement is not met.

We  consider  two  attack  scenarios.  First,  the  adversary  can  gain  (temporary)

possession  of  the  token  and  attempt  to  read  out  all  responses  or  enough  of  them to

“machine  learn”  the  entropy  source.  Once  known,  a  clone  can  be  ‘programmed’.  In

general, strong PUFs can significantly impede, or make impossible, the success of this

type of attack. For PUF architectures in which machine learning is effective, the proposed

protocols typically incorporate obfuscation mechanisms to prevent direct control of the

PUF and observation of its responses. The second attack mechanism is similar except that

the adversary carries out a ‘man-in-the-middle’ attack, i.e., he or she listens to exchanges

between the token and the server.

.  Other types of attack scenarios can be avoided. For example, some protocols require

one-time interfaces to be present during enrollment but such interfaces can be ‘undone’

using focused ion beam techniques. Still other protocols require the use of small NVMs,

which  add  cost  and  weaken  security  because  ‘read-out’  mechanisms  are  becoming

increasingly effective. Therefore, avoiding one-time interfaces and NVM is a plus.
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3.4 Experimental Setup

3.4.1 HELP Overview

HELP measures path delays using a simplified version of an embedded test structure

called REBEL  [36].  The simplified version eliminates the delay chain component and

instead samples the path delays at the capture FF directly.  Fig. 3.1  shows the test setup

with the ‘functional unit’ or FU representing the entropy source. The inputs and outputs of

the FU are connected to a set of Launch Row and Capture Row flip-flops (FFs), resp.

 Fig. 3.1  Configuration of the AES SBOX FG(4) [57].

The delay of a path is determined using the fine phase adjust feature of a Xilinx

embedded MMCM (mixed mode clock manager).  A series  of launch-capture clocking

events are applied to the functional unit using two clocks, Clk1 and Clk2, as shown on the

left side of  . The phase shift between Clk1 and Clk2 is adjusted dynamically across the

sequence  of  launch-capture  tests.  The  digitally  selected  value  of  the  fine  phase  shift

between the two clocks is referred to as the launch-capture interval (LCI). The smallest
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LCI interval that allows the propagating edge along a path to be captured in the capture FF

is used as the digitized timing value for the path. The MMCM on the Zynq FPGA clocked

at 25 MHz provides a resolution of 18 ps. Digital values between 150 (smallest LCI with

value of approx. 18 ps * 150 = 2.7 ns) and 2,200 (largest LCI with value approx. 39.6 ns)

are used as  the path delay value.  The repeated testing of the FU at  different  LCIs is

referred to as clock strobing. The LCI used to represent the delay of a path is referred to a

PUFNum or PN. The signed difference of two randomly selected PNs is referred to as a

PNDiff.

3.4.2 TV Compensation

The majority of the delay variations introduced by changes in temperature and voltage

is removed by applying a TV compensation process. TV compensation is carried out by

computing the mean (offset) and range (multiplier) from a set of PNDiffs for each chip

and for each TV corner separately. The offset and multiplier computed during enrollment

are used with the offset and multiplier computed at each TV corner to compensate the

PNDiffs generated at the TV corners using Eq. (3.1) And Eq.  (3.2): 

zvali=
(PNDiff TV x

−μTV x
)

rngTV x

                                                                              (3.1)

PNDiffs
TVComp

=zval
i
⋅rng

TVEroll
+μ

TVEnroll                                                     (3.2)

Here, zvali represents a standardized PNDiff after subtracting the mean and dividing

by the range computed using a set  of PNDiffs produced at  the TV corner,  TVx,  for a
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specific  chip.  The  individual  zvali are  then  transformed  using  the  mean  and  range

computed earlier for the same chip during enrollment, i.e., at  TVEnroll. We refer to the

PNDiffs generated during enrollment as the reference. This linear transformation is very

effective at eliminating the shifting and scaling that occurs to path delays at different TV

corners  (note:  using the PNDiffs  directly  without  this  type of  compensation  does  not

compensate for scaling). 

 Fig. 3.2  Example rising and falling path PNs (top), random pairings of rising and

fall PN differences (middle), PN differences modulo 64 (bottom).

3.4.3 Bit Generation Algorithm

The bit generation uses the signed difference in two path delays (PNDiff) as a means
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of both hardening the algorithm against model building and increasing the diversity in the

PUF responses. A ModPNDiff is defined by computing a signed difference between two

arbitrary selected PNs, and then applying a modulus. The modulus is necessary because

the paths in the FU vary in length, for example, in our experiments, short paths consist of

1 LUT while the longest paths consist of 13 LUTs, which is captured in the PNDiffs. The

modulus  removes the ‘path length’ bias  while  fully  preserving the smaller  within-die

delay variations.

For example, the top of  Fig. 3.2  (a) shows two sets of waveforms labeled ‘Rising

edge PNs’ (black) and ‘Falling edge PNs’ (blue). The points in the waveforms represents

the delay values (PNs) measured from a set of paths in chip C1 in the AES SBOX GF(4)

experiment. Each group of waveforms with similar shape and color represent the PNs

measured at each of the 10 TV corners after a TV compensation method is applied (a

process identical to the TV compensation applied to the PNDiffs described above). The

vertical  spread  in  the  10  points  represent  uncompensated  TV noise.  The  waveforms

shown in (b) represent the PNDiffs computed from randomized pairings of rising and

falling edge PNs in (a). Although only chip C1 data is shown, the shape of the difference

waveforms is similar for other chips because of the path length bias. The ModPNDiffs

shown in (c)  are  the  result  of  applying a  modulus  of  64 to  the PNDiffs  in  (b).  The

modulus effectively ‘wraps’ all differences into the range of 0 to 63 and reduces and/or

eliminates the bias. The bit generation algorithm assigns ModPNDiffs in the range from 0

to 31 as ‘0’ while those in the range of 32 to 63 are assigned ‘1’.

The red circles on points 10 and 14 show bit flips. Bit flips occur when some, but not
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all, of the 10 points in each group cross over one of the boundaries given by 0 or 63. An

additional bit flip is shown by the blue circle for point 4, where the points cross over the

boundary between ‘0’ and ‘1’. The close grouping of the 10 points makes it is possible to

apply a predictive screening process that avoids most/all of these bit flips as we show

below. Moreover, the modulus parameter can be used to remove bias as described but it is

also  useful  for  increasing  the  input-output  space  of  the  HELP PUF,  which  is  also

discussed in the following sections.

3.4.4 Functional Unit Synthesis Flow

 Fig. 3.3  Process Flow

The  AES  SBOX  is  used  as  the  functional  unit  in  our  experiments  because  its

interconnection  implementation  structure  is  random and  complex.  Although  only  the

SBOX is used in this work, the technique can be extended to the full implementation of
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AES and other types of functional units  (see [36] and [37]). As indicated earlier,  we

implement the SBOX using a special glitch-free logic style called WDDL [58] as a means

of distinguishing between the underlying sources of entropy, and as a means of improving

the  reliability  of  HELP.  WDDL eliminates  functional  and logic  hazards  by imposing

stimulus constraints and restricting the implementation to use only AND and OR gates.

WDDL is proposed as a mechanism to harden a design unit such as AES against side-

channel  attacks,  and  therefore,  also  attempts  to  eliminate  information  in  the  power

curves. This latter feature is not required to improve the reliability of HELP and 

therefore, we are also looking into simpler glitch-free-only strategies that have less area

overhead [61]. The benefit of WDDL is that it is simple to implement and provides a nice

test bed for evaluation of glitch-free logic implementation.

Fig. 3.3  illustrates the design flow followed to implement the WDDL version of the

AES SBOX. A behavioral VHDL description of the SBOX along with a standard cell

library are used as input to the CADENCE RC synthesis tool. The standard cell library

only includes 2-input to 6-input AND and OR gates to match the LUT capabilities on the

FPGA, and a NOT gate. No timing constraints were used in the synthesis and therefore,

RC optimized for area.

A structural netlist consisting of only AND, OR and NOT gates represents the output

of the synthesis. This file along with a set of synthesis and implementation constraints are

processed  by  a  perl  script  to  produce  a  WDDL version  of  the  netlist.  One  example

transformation is shown in the figure where a AND gate followed by an NOT gate is

converted  to  a  complementary  pair  of  AND/OR gates,  with  the  outputs  swapped for
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connections downstream as a means of emulating (and eliminating) the NOT gate.

The WDDL version therefore is constructed by creating a complementary OR gate

(with complementary inputs) for all existing AND gates, and vise versa. The 8 primary

inputs of the SBOX are also replicated and are driven with complementary values during

evaluation. The operation of WDDL consists of two phases: a pre-charge phase in which

all primary inputs (including the complementary inputs) are driven with ‘0’. This forces

‘0’s  on the inputs  and output  of  all  gates  throughout  the circuit.  The evaluate  phase

applies  the true and complementary values to the 8 true and complementary primary

inputs, resp., and causes a set of rising transitions to propagate through the circuit. For the

SBOX implementation, half of the true outputs and half of the complementary outputs

transition  on  average  during  evaluate.  Therefore,  for  each  of  the  256  possible  input

transitions, i.e., from 0000000->xxxxxxxx, 8 PNs are obtained to produce a total of 2048

PNs. Another 2048 are obtained for the precharge phase, i.e., from xxxxxxxx->00000000,

so a total of 4096 PNs are produced, from which a set of 2048 PNDiffs can be uniquely

constructed.

From  Fig. 3.3  , the WDDL version of SBOX is combined with the HELP engine

(described using behavioral-level VHDL) in a project  that  is  processed by the Xilinx

Vivado  synthesis  and  implementation  tool.  The  constraints  added  by  the  perl  script

prevent  the  FPGA synthesis  and  implementation  tools  from  optimizing  the  WDDL

structural  netlist.  The  programming  bitstream  generated  by  Vivado  is  then  used  to

program the Xilinx 7020 Zynq chip on a Zedboard [38], which is placed in a temperature

chamber. 
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We also  synthesized  AES SBOX GF(4)  and  GF(256)  versions  using  a  standard

synthesis flow to serve as a comparison to the WDDL implementation. The flow for the

standard versions simply uses VHDL descriptions of the GF(4) and GF(256) as input to

the Xilinx Vivado synthesis tool without any constraints. We instantiate two copies of the

GF(256) in the standard version, with the inputs to the 2nd copy complemented, to model

the complementary network within the WDDL version as a means of making the two

implementations as similar as possible. A similar strategy is used for the GF(4) except

four copies are instantiated (each copy has only 4 inputs/outputs). The input transition

sequence used for the WDDL version are also used here. Note that there are significant

differences in the resource usage by the two GF(256) versions, however. For example, the

standard version uses 80 LUTs in a 2-level logic structure while the WDDL version uses

756 LUTs in a multi-level logic style of up to 13 levels. The GF(4) has only 16 LUTs in 1

level of logic and therefore allows a single LUT delay to be measured.

3.5 Experimental Results

We ran our experiments on 30 copies of the Zedboard [38]. Commercial grade 7020

Zynq  chips  are  incorporated  on  the  Zedboard,  which  restricts  the  temperature  range

between 0C and 85ooC and the operating voltage between 0.95 V and 1.05 V (5% around

the  nominal  1.00  V).  The  Agilent  precision  power  supply  and  ESPEC  temperature

chamber are controlled using a LABVIEW program running on a host computer. The

Zedboards  were  tested  at  25oC,  1.00  V,  which  we  use  as  enrollment  data,  and  9

regeneration corners, which includes all combinations of three temperatures, 0oC, 25oC
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and  85oC  and  three  voltages,  +/-  5%  and  nominal.  The  MMCM  on  the  FPGA is

configured with a 25 MHz clock frequency.

 Fig. 3.4  Configuration of the AES SBOX GF(4) [57]

3.5.1 AES SBOX GF(4) Analysis

The goal of the GF(4) analysis is to determine the magnitude of within-die variations

in the shortest constructible path on an FPGA, i.e., paths with 1 launch FF, 1 LUT and 1

capture  FF.  Fig.  XXXXXXXX  shows  the  configuration  synthesized  by  Vivado.  Two

copies of the logic expressions for GF(4) given in [57], and two copies implementing their

inverse, synthesized to a set of 16 4-input LUTs labeled L15 down to L0. The inputs, e.g.,

in[7]/in[7] fan-out to the LUTs of the true and inverse copies, resp. and the outputs, e.g.,

out[7]/out[7], wire to a row of capture FFs. Given all inputs are applied simultaneously,

there is no glitching that occurs on the outputs even though the potential exists given the

diverse truth tables implemented with the LUTs. A 25 point sample of the 2048 PNDiffs

measured from the 30 chips at the 10 TV corners is shown in Fig. 3.5 . The PNDiffs are
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computed by selecting a unique random pair (chosen by an LFSR) of PNs, one from the

rising paths and one from the falling paths (see Fig. 3.2 (a)). The groups of waveforms of

the same color shown along

 Fig. 3.5  TV compensated PNDiffs with (top) and without (bottom) global

variations for 30 chips.

the top have been TV compensated as described in Section 4.4.2, i.e., using the enrollment

values for each chip as the ‘reference’. The vertical offsets between the waveform groups

are caused by global (chip-wide) variations,  i.e.,  variations in the overall  performance

characteristics of the chips. Although global variations can be leveraged as a source of

entropy, similar to within-die variations, there are drawbacks to depending on it. 

To illustrate this problem, the black waveforms shown along the bottom of Fig. 3.5 

are again from the 30 chips but are TV compensated using a special process in which the
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enrollment  data  from chip  C1 is  used  as  the  reference  for  all  chips.  This  effectively

eliminates the global variations and leaves only measurement noise, uncompensated TV

noise and within-die variations (WDV) (see label in figure). In a large population of chips,

it is highly likely that sets of chips will have the same level of global variations, so this

graph illustrates this case, where only within-die variations can be leveraged as a source of

entropy.

The magnitude of the noise sources is reflected in the width of the band of same

colored waveforms shown along the top of Fig. 3.5 . Measurement noise (with 16 sample 

 Fig. 3.6  Histogram of enrollment delay variations using TV compensation of

PNDiffs with no global variations

averaging) is approx. 1 PN on average (approx. 18 ps), so the majority of the variation is

introduced by uncompensated TV noise. The mean value of variation, computed as the

mean of the 3 values of the 10 TV compensated PNDiffs, that remains in the waveforms

is on average approx. +/- 2.5 LCIs or 45 ps above or below the enrollment value, and the
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worst case value is less than +/- 8 LCIs or 145 ps. This number is important since it

represents the amount of entropy that is lost, i.e., within-die variations less than this LCI

value are more difficult to leverage. Within-die variations are reflected in the change in

shape of the waveform groups for each chip. The magnitude of the variations introduced

by within-die  variations  is,  on average,  approx.  4x larger  (20 LCIs)  than  the average

variation introduced by TV noise (5 LCIs), i.e., 360 ps vs 90 ps, resp.

 Fig. 3.7  Inter-chip HD and worst case and average case Intra-chip HD as a function

of PN modulus.

A quantitative analysis of the entropy provided by within-die variations is shown in

Fig. 3.6  using the 2048 PNDiffs from the 30 chips. The range across the 30 chips for each

of the 2048 PNDiffs is computed using the TV compensated waveforms shown along the

bottom of Fig. 3.5 , i.e., those without global variations. Only the enrollment PNDiffs are

considered here, so the histogram plots the distribution of the 2048 ranges without TV
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noise.  Given  that  measurement  noise  is  very  low,  the  shape  of  the  histogram  is

predominated determined by within-die variations. As indicated above, the average value

is close to 20 but the ranges vary from 10 to more than 40.

Fig. 3.7  provides a second quantitative analysis using the hamming distances (HD) of

bitstrings  computed  using  the  proposed  bitstring  generation  algorithm  and  the

ModPNDiffs with and without global variations. The analysis is carried out over a set of

PN modulus (PNMod) values plotted along the x-axis.  Inter-chip HD is computed by

counting the number of bits that are different in the 2048-bit bitstrings produced by two

chips during enrollment and then dividing by the number of bits. The values plotted are

the average Inter-chip HDs across all  possible pairings of the bitstrings (30*29/2=435

pairings). Intra-chip HD is computed in a similar fashion except the pairings are defined

using the bitstrings produced at the 10 TV corners for each chip (10*9/2=45 pairings). The

value plotted is again the average computed across the 30 individual chip values. Worst-

case Intra-chip HD is simply the maximum value produced by one of the individual chips. 

The curves for worst case and average case Intra-chip HD in Fig. 3.7  reflect the noise

levels, while the difference between the Inter-chip and Intra-chip HD curves reflect the

range of usable entropy. The results  with global variation included are shown in black

while the results without global variations are shown in blue. 

The  bit  flips  created  by  uncompensated  TV  noise  remains  relatively  constant

independent of whether global variations are present or not, as shown by the superposition

of the black and blue Intra-chip HD curves. The difference between the Inter-chip HD

without global variations and the worst-case Intra-chip curves varies between 0% on the
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left to approx. 15% at the widest point around PNMod = 28. The worst-case Intra-chip HD

at PNMod of 48 is approx. 10% while the Inter-chip HD is approx. 20%. This suggests

that the average Inter-chip HD of a large chip population will be smaller than its ideal

value of 50% without some type of entropy amplification process. The Inter-chip HD with

global variations shows that the ideal value of 50% is nearly achieved for PNMods up to

approx. 64. Unfortunately, as just mentioned, this is not likely to hold true as the number

of  chips  used  in  the  HD  calculation  increases  well  beyond  the  30  available  in  our

experiments. Therefore, in these experiments and on this 28 nm FPGA, either entropy

amplification methods or other sources of entropy need to be leveraged to produce good

quality bitstrings.

3.5.2 AES SBOX GF(26), Standard vs. WDDL

The test setup for the Standard GF(256) and WDDL versions of the AES SBOX is

similar to that shown in Fig. 3.4. As indicated above, the structure of the Standard version

is  un-constrained  and  therefore,  is  subject  to  static  and  dynamic  hazards  occurring

internally and on some outputs, which act to increase the occurrence of bit flips. 

Fig. 3.8  (a) presents the statistical HD results in the same fashion as discussed in

relation to  Fig.  3.7  .  The results  are very similar to the GF(4) version except for the

approx. doubling of the worst- and average-case Intra-chip HD over the GF(4) version.

The increase in bit flips is directly attributable to presence of glitching. Note that glitching

can increase both Intra-chip and Inter-chip HD. For paths whose delays are affected by

glitches consistently across all TV corners, the effect is beneficial because the path delay

typically  changes  by 10 to 100 LCIs,  and therefore represents  a  significant  source of
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within-die variations. For those paths where the glitch is present at some TV corners and

disappears at others, the effect is detrimental, resulting in bit flips. The worst-case Intra-

chip HD and Inter-chip HD curves illustrate that both types occur because the distance

between the curves (and their shape) is similar to the corresponding curves shown in  Fig.

3.7  . Although Inter-chip HD increases, this benefit is partially offset by the increase in

worst-case  bit-flips.  Average-case  Intra-chip  HD,  on  the  other  hand,  only  increases

slightly. Although we cannot present the results in detail here, it turns out that a small

subset of our chips have many more occurrences of the detrimental form of glitching than

the remaining chips. It was also possible to identify these glitchy chips by the difference in

their rising and falling delays as shown in Fig. 3.2 (a), using data from the WDDL version

of the AES SBOX. The falling PNs (blue waveforms) are offset  downwards from the

rising  PNs  (black  waveforms)  in  the  extra  glitchy  chips,  i.e.,  the  falling  delays  are

noticeable smaller than the rising delays. The extra glitchy chip Intra-chip HDs are 3 times

larger than the less glitchy chips.

3.5.3 Margin Technique

Fig.  3.8  (b)  shows  the  results  after  applying  a  Margin  technique.  The  method

identifies PNDiffs during enrollment that have the highest probability of introducing bit

flips. The PN modulus technique illustrated in Fig. 3.2  shows several examples of bit flips

that occur at data points 4, 10 and 14. All of these data points are close to the lines that

represent the boundaries between ‘0’ and ‘1’, i.e, 0, 31 and 63. The Margin technique

classifies an enrollment PNDiff as ‘invalid’ if it  falls within a small region (a margin)

around these boundaries. The margin is set ideally to the worst case TV noise level for
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best results, but can be tuned according to the level of tolerance the server has to bit flips.

A helper data bitstring is constructed during enrollment that records the valid status of

each PNDiff data point. The helper data is stored on the server along with the margin,

PNMod,  challenge  and  response  bitstrings.  During  regeneration,  the  server  sends  the

margin, PNMod, challenge and helper data to the token, which uses the helper data to

discard the ‘weak’ bits in the response.

 Fig. 3.8  Hamming distance (HD) results without (a) and with (b) the Margin

technique for the Standard design.

The Margin technique significantly improves both the Intra-chip and Inter-chip HD

results, as shown on the Fig. 3.8 (b). We used a Margin of 7 as the threshold to identify

‘weak’ bits in the response. Inter-chip HD improves because the PNDiffs corresponding to

the generation of the ‘strong’ bits in different chips can now vary. This is true because

within-die variations cause PNDiffs for some chips to fall within the margins, while on
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others, those same PNDiffs are outside the margins. Another important characteristic is the

lower sensitivity of the results to whether global variations are present or not, which we

indicated earlier is a highly desirable feature.

 Fig. 3.9  Hamming distance (HD) results without (a) and with (b) the Margin

technique for the WDDL design.

The size of the smallest bitstring generated by one of the 30 chips is also plotted in

Fig.  3.8  (b)  to  illustrate  the  overhead associated with  the  helper  data.  By selecting  a

PNMod that is >= 64, the helper data bitstring is no larger than twice the size of the

response bitstring in the worst case. It is also possible to use the complement of the helper

data to generate a second response bitstring when the sum of the regions delineated by the

margins is equal to the sum of the ‘valid’ regions defined for ‘0’ and ‘1’. For example, a
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PNMod of 64 as shown in  Fig. 3.2   requires the margins to be set to 8, yielding valid

regions of size 16. The second response bitstring uses the same set of PNDiffs but first

adds an offset equal to 1/4 of the PNMod (16 in the example) before applying the modulus

operation, which effectively shifts the distribution and converts all of the previous ‘weak’

bits into ‘strong’ bits (and vise versa), thereby making the helper data to response data

ratio 1.

The results using the WDDL version are shown in Fig. 3.9 . The longer paths present

in the WDDL version are responsible for the improvement in the Inter-chip HD to nearly

ideal as shown on the left side in  Fig. 3.9  (a). We confirmed this in a separate set of

experiments (not shown) in which the path lengths in the Standard version are doubled.

Therefore,  longer  paths  improve  Inter-chip  HD  but  only  in  the  case  where  global

variations are preserved, i.e., the Inter-chip HD curve without global variations shows a

very different result. The results using the Margin technique shown in Fig. 3.9 (b), on the

other hand, are nearly ideal with or without global variations. The Intra-chip HD curves

also illustrate that the majority of the bit flips that remain in the corresponding results

from  Fig. 3.8  (b) are attributable to the glitches produced in the Standard version, i.e.,

margining is not effective for glitches because the change in delay is larger than the worst

case TV noise used as the margin. This is evident by the near 0 values for the worse case

and average Intra-chip HD for the WDDL version.

3.5.4 NIST Statistical Test Results

The enrollment bitstrings generated in each of these 8 experiments were used as input

to the NIST statistical test suite [60]. The small size of the bitstrings (largest is 2,048 bits),
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allowed up to 10 of the 15 NIST tests to be applied. The test is classified as passed if at

least 28 of the 30 chip bitstrings pass the test. The NIST results are similar for the four sets

of results in Fig. 3.8 (a), where all tests are passed for PNMod values less than 64. The

PNMod of 64 represents a cut-off where some tests are failed but by only 2-3 chip in the

worst case. The fail rates increase for PNMods larger than 64, with only a few passing

some of the tests at the largest PNMod values. In contrast, the NIST results for the WDDL

experiments shown in  Fig. 3.9   are good throughout the entire PN modulus range, with

only a few instances of fails, and by only 3 chips in the worst case. These results suggest

that glitchy implementations of the FU produce bitstrings of good statistical quality but

impose restrictions on the PNMod values, while glitch-free FUs are able to produce high

quality bitstrings under a wider range of modulus values.

3.5.5 ATPG Analysis of Entropy

We used CADENCE Encounter  Test  (ET) to  analyze  the  number of  paths  in  the

WDDL version  of  the  AES  SBOX.  The  underlying  entropy  source  consists  of  both

individual LUT gate delays and the interconnect routing delays, which are combined in

unique  ways  and measured as  path  delays  by HELP.  Therefore,  the  number  of  paths

reflects  the  amount  of  entropy  present  in  the  functional  unit.  This  analysis  will  help

support our claim that HELP is a strong PUF, with both a large input and output space,

when used with functional units in which the number of paths is exponentially related to

the number of its inputs.

A WDDL implementation contains two networks of interconnected logic gates (true

and  complemented)  that  ‘cross-over’ at  points  where  inverters  occur  in  the  original
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network. The RC synthesized AND-OR-NOT version of the AES SBOX (see  Fig. 3.3  )

produced 26 NOT gates in a network of 570 total gates, so the number of cross-overs is

 Fig. 3.10  Proposed authentication protocol.

fairly limited. With 16 inputs, the expected number of paths would be 2^16 or 65,536. ET

reports 15,511 structural paths, which reflects the small interconnection structure between

the two networks.  As expected,  automatic  test  pattern generation (ATPG) reports  that

98.6% of  all  paths  are  hazard-free  robust  testable,  which  indicates  that  the  paths  are

independent. Using the set of 512 WDDL vectors (Section 4.4.3), 37.8% of these paths are

tested,  which  indicates  that  the  remaining  paths  can  only  be  tested  by  violating  the

complementary  input  patterns  required  with  WDDL.  However,  testing  the  WDDL

implementation using illegal patterns is possible and recommended when operating the

functional unit in PUF mode.
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3.6 Authentication Protocol

The proposed authentication protocol is shown in Fig. 3.10 . During enrollment, the

server generates random challenges, ci, PNModi and margini which are used by the token

as a seed to an LFSR (or a pair of LFSRs to enable arbitrary two vector sequences to be

applied). The PUF produces response ri and helper data hi, which are stored on the server

with the challenge information. In cases where global variations are utilized, a  and rng

are also computed for the chip and stored on the server (note these values can also be used

as a pseudo-id for the chip). The challenge is optionally passed through a cryptographic

hash  function  to  increase  the  difficulty  of  model  building  attacks  which  attempt  to

systematically apply a set of seeds designed to carry out path delay tests in a deterministic

manner. The hash makes it difficult to determine how to choose ci such that the output of

the  hash  is  controlled  to  specific  seed  values.  The  XOR obfuscation  function  of  the

response is optionally added for a similar purpose (note that only one of the input and

output obfuscation methods is needed). As indicated in [39], XOR networks amplify bit

flip behavior in  r and therefore, are applicable only when Intra-chip HDs are very low.

Authentication is carried out in a similar fashion except for the direction of transmission of

the helper data, hi, and rng. Note that and rng are not needed if the PNDiffs are TV

compensated  to  a  universal  standard  (which  also  eliminates  entropy  from  global

variations).

As indicated,  the margin and PNMod parameters are also beneficial  because they

expand the CRP space. However, allowing these parameter to be set without constraints

can be used by an adversary to assist with model building. Our experiments suggest that a

61



hard  coded margin  or  allowing only  a  small  range  of  values,  e.g.,  between 5  and 8,

accomplishes the goal of improving the statistics while maintaining a limited information

leakage channel. The same is true of the PNMod parameter, where only a limited set of

values should be allowed, e.g., restricting to powers of 2 also significantly simplifies the

implementation of the modulus operation while providing a ‘limited’ expansion of the

CRP space.

3.7 Summary and Conclusion

In this chapter, we investigated the strengths and weaknesses of using a delay-based

strong PUF for authentication. Glitch-free functional units were used as the entropy source

and shown to enhance the quality of the generated bitstrings. Within-die variations by

itself is not large enough to produce unique bitstrings across a large population of chips. A

margining  technique  is  shown  to  significantly  improve  the  statistical  quality  of  the

bitstrings while adding moderately to the storage overhead in the secure database.

The following areas will be investigated in future work. We will investigate the use of

ATPG  generated  input  vectors  as  challenges,  which  can  target  additional  sources  of

entropy represented by ‘random pattern resistant’ paths, that are not likely tested using an

LFSR scheme. We will also investigate enrollment schemes which store PNDiffs directly

through a one-time interface. These 8-bit values can then be used to generate a set (>> 8)

of  bitstrings  by changing the  modulus  and margin  parameters,  thereby improving the

storage  efficiency  on  the  server.  Alternative,  lower  overhead,  glitch-free  logic

implementation  styles  will  be  investigated  as  an  alternative  to  WDDL.  Low  power
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techniques that only reduce the occurrence of glitches will also be investigated.

Although  not  reported  on  in  this  paper,  we  have  also  evaluated  a  voltage-based

enrollment (VBE) scheme, which uses the bitstrings generated at a fixed set of supply

voltages, in particular, those at the extremes of the specification range, and then records, as

weak bits in the helper data, those bits that flip in the regenerated bitstrings. VBE works

well to reduce the Intra-chip HD for normally synthesized functional units, i.e., those with

glitches. We also found significant diversity is created by the synthesis tool in path delays

and the corresponding bitstrings when inconsequential  changes are  made to  the HDL,

which  again  can  be  used  to  expand  the  input/output  space  of  HELP.  Last,  we  are

investigating the applicability of techniques described here to board-level authentication as

described in [35].
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CHAPTER 4

Leveraging Distributions in Physical Unclonable Functions

A special class of Physical Unclonable Functions (PUFs) referred to as strong PUFs

can be used in novel hardware-based authentication protocols. Strong PUFs are required

for authentication because the bitstrings and helper data are transmitted openly by the

token  to  the  verifier  and  therefore,  are  revealed  to  the  adversary.  This  enables  the

adversary to carry out attacks against the token by systematically applying challenges and

obtaining responses in an attempt to machine-learn and later predict the token’s response

to an arbitrary challenge. Therefore, strong PUFs must both provide an exponentially large

challenge space and be resistant to machine-learning attacks in order to considered secure.

We investigate the security properties of a Hardware-embedded Delay PUF called HELP

in this  paper.  HELP leverages within-die  variations in path delays within a  hardware-

implemented  macro  (functional  unit)  as  a  random source  of  information  for  bitstring

generation.  Several  features  of  the  HELP processing  engine  significantly  improve  its

resistance  to  model-building  attacks.  Most  important  is  a  novel  linear  transformation

proposed within the HELP processing engine for dealing with changes in delay introduced

by adverse temperature-voltage (environmental) variations. The technique also increases

entropy by making the measured path delay values dependent on the other values included

in the distribution used to generate the entire bitstring.
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4.1 Introduction

A  physical  unclonable  function  (PUF)  is  a  next-generation  hardware  security

primitive.  Security  protocols  such  as  authentication  and  encryption  can  leverage  the

random  bitstring  and  key  generation  capabilities  of  PUFs  as  a  means  of  hardening

vulnerable mobile and embedded devices against adversarial attacks. Authentication is a

process that is carried out between a hardware token (smart card) and a verifier (a secure

server at a bank) that is designed to confirm the identities of one or both parties [62]. With

IoT, there are a growing number of authentication applications in which the hardware

token is resource-constrained. Conventional methods of authentication which use area-

heavy cryptographic primitives and non-volatile memory (NVM) are less attractive for

these types of evolving embedded applications [63]. PUFs, on the other hand, can address

issues  related  to  low cost  because  they  can  potentially  eliminate  the  need for  NVM.

Moreover, the special class of strong PUFs can further reduce area and energy overheads

by reducing the number and type of cryptographic primitives and operations.

A PUF extracts  random information (entropy) from variations in the physical and

electrical properties of ICs, that are unique to each IC, as a means of generating digital

secrets  (bitstrings).  The  bitstrings  are  generated  on-the-fly  when  needed,  and  are

reproducible under a range of environmental variations. The ability to control the precise

generation time of the secret bitstring and the sensitivity of the PUF entropy source to

invasive probing attacks (which act to invalidate it) are additional attributes that make

them attractive for authentication in hardware tokens.

Most  proposed  PUF  architectures  require  the  insertion  of  a  dedicated  array  of
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identically-designed  test  structures  and  are  classified  as  weak  PUFs because  of  their

limited  number  of  challenge-response-pairs  (CRPs).  Authentication  applications  reveal

both the challenges and responses during authentication operations and therefore weak

PUFs are not suitable. Strong PUFs, on the other hand, are able to produce an exponential

number of challenge-response-pairs  (CRPs) but in order to be considered secure,  they

must be resistant to model-building attacks.

The  hardware-embedded  Delay  PUF  (HELP)  analyzed  in  this  paper  generates

bitstrings from delay variations that occur along paths in an on-chip macro, such as a

cryptographic primitive. Although it is possible to construct a hardware instantiation of the

functional unit which possesses an exponential number of paths, in an attempt to meet

strong PUF requirements, this is not necessary for HELP for several reasons. First, unlike

other strong PUFs, the task of generating challenges, i.e., test vectors that test all the paths

in a moderately complex functional unit, is non-trivial. Although this is a one-time cost for

a  specific  implementation,  it  still  represents  a  significant  additional  burden  for  the

adversary.

Second, the HELP processing engine defines a set of user-defined parameters which

are used to transform the measured path delays into bitstring responses.  One of these

parameters, called the Path-Select-Mask provides a mechanism to choose k paths from n

that are produced, which enables an exponential number of possibilities. Therefore, the

Path-Select-Mask allows the set of path delays used in the bitstring generation process (the

distribution)  to  vary  from  one  authenticaton  request  to  the  next.  This  feature  when

combined with a second processing step within the HELP engine called  Temperature-
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Voltage-Compensation (TVCOMP), can introduce changes in the bit value produced by a

specific path delay. In other words, the mapping between path delays and bits in the

response  is  a  function  related  to  the  values  of  other  components  of  the  delay

distribution.

This is a novel and important source of entropy that is only possible by introducing a

transformation that  factors in  the behavior  of the entire  distribution used for bitstring

generation.  It  should  be  noted  that  this  type  of  distribution-based  entropy-enhancing

method  is  not  applicable  to  PUFs  which  generate  ‘soft  data’ that  is  designed  to  be

identical, e.g., RO PUFs [64], because the characteristics of the distribution are invariant.

The  path  delays  used  by  HELP  vary  widely  in  length,  and  therefore  constructing

distributions with different means and standard deviations is easy to do.

This paper is dedicated to showing this ‘distribution-effect’ on bitstring diversity. The

implications are two fold. First, HELP can make use of smaller functional units, i.e., those

without  an  exponential  number  of  paths,  and  still  achieve  an  exponential  number  of

challenge-response-pairs (CRPs) as required of a strong PUF. Second, the difficulty of

model-building HELP using machine learning algorithms will be more difficult because

the path delays of the physical model are no longer constant.

4.2 Related Work

Although references  [65] and  Error: Reference source not found describe previous

research on HELP, no prior work exists that describes the security properties of HELP and

the analysis presented in this paper. A method to estimate the “extractable” entropy in
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PUF-generated  bitstrings  is  proposed  in  [67] by  calculating  the  mutual  information

between the bias measurements done at enrollment and regeneration. The authors in [68]

evaluate the robustness and unpredictability of five different PUFs (including arbiter, RO,

SRAM, flip-flop and latch PUFs) by estimating the entropy from the available responses.

Fig.4.1 Instantiation of the HELP entropy source (left) and HELP processing engine (right).

4.3 HELP Overview

HELP attaches  to  an  on-chip  module,  such as  a  hardware  implementation  of  the

cryptographic primitive, as shown in  Fig.4.1. The logic gate structure of the functional

unit defines a complex interconnection network of wires and transistors. The functional

unit  shown in  Fig.4.1 is  a  32-bit  column from Advanced Encryption Standard (AES)

which  includes  4  copies  of  the  SBOX and 1  copy of  the  MIXEDCOL (called  sbox-

mixedcol)  [69]. This combinational data path component is implemented in a WDDL

logic style  [70], which doubles the number of primary inputs (PIs) and primary outputs
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(POs) to  64.  The implementation of  sbox-mixedcol  requires  approx.  3000 LUTs on a

Xilinx Zynq FPGA and provides approx. 8 million paths. Although the analysis carried out

in this paper uses sbox-mixedcol, the results suggest that smaller functional units, i.e., less

than 1000 LUTs, can be used as an alternative.

HELP accepts  challenges  in  the  form  of  2-vector  binary  sequences.  The  vector

sequences are applied to the PIs of the functional unit and the delays of the sensitized

paths are measured at the POs. Path delay is defined as the amount of time (t) it takes for

a set of 0-to-1 and 1-to-0 transitions introduced on the PIs to propagate through the logic

gate network and emerge on a PO. HELP uses a clock-strobing technique to obtain high

resolution measurements of path delays as shown on the left side of  Fig.4.1. A series of

launch-capture operations are applied in which the vector sequence that defines the input

challenge is  applied  repeatedly  using  the  Launch row flip-flops  (FFs)  and the  output

responses are measured using the Capture row FFs. On each application, the phase of the

capture clock, Clk2, is incremented forward with respect to Clk1, by small ts (approx. 18

ps), until the emerging signal transition is successfully captured in the Capture row FFs. A

set of XOR gates connected between the inputs and outputs of the Capture row FF inputs

(not shown) provide a simple means of determining when this occurs. When an XOR gate

value becomes 0, then the input and output of the FF are the same (indicating a successful

capture). The first occurrence in which this occurs during the clock strobing operation

causes the current phase shift value to be recorded as the digitized delay value for this

path. This operation is applied to all POs simultaneously.

The phase shifting module for Clk2 is shown on the right side of the functional unit in
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Fig.4.1.  On-chip  digital  clock  managers  (DCMs)  are  commonly  included  in  FPGA

architectures. For example, Xilinx FPGAs typically incorporate at least one DCM with a

digitally controlled fine phase shift control mechanism even on their lowest cost FPGAs.

Fig.4.2(a) Example rising and falling path delays (PN), (b) Rise-fall path delays

(PND)and (c) TV Compensated PNDc for 45 chips (individual curves) and 16

TV corners (points in curves).

The digitized path delays are collected by a storage module and stored in an on-chip

block RAM (BRAM) as shown in the center of Fig.4.1. A Path-Select-Mask is also sent by

the verifier, along with the challenges, to allow path delays to be selected from those that

are produced. Each digitized timing value is stored as a 15-bit value, with 11 binary digits

serving to  cover  a  signed range between +/-  1024 and 4 binary  digits  of  fixed  point

precision to enable up to 16 samples of each path delay to be averaged. The 7.5 KByte

BRAM allows 4096 path delays to be stored. We configure the applied challenges and

masks to test 2048 paths with rising transitions and 2048 paths with falling transitions.

The 15-bit digitized path delays are referred to as PN.
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4.3.1 PN Processing

Once the PNs are collected, a sequence of mathematical operations are applied as shown

on the right  side of  the  Fig.4.1 to  produce the bitstring  and helper  data.  The  PNDiff

module creates unique, pseudo-random pairings between the rising and falling PN using

two seeded linear feedback shift registers (LFSR). The two 11-bit  LFSR seeds are user-

defined parameters. PN differences, referred to as PND, are defined as (rising PN - falling

PN), and are stored in the lower 2048 memory locations of the BRAM, overwriting the

original set of rising PN.

Fig.4.2(a) shows an example of this process using two groups of 45 curves, one curve

for each Xilinx Zynq 7020 chip that was tested. The curves shown along the bottom depict

the PN from rising transition tests and those along the top from falling transition tests. The

16 line-connected points associated with each curve represent the chip’s PN measured

under a range of environmental conditions, called temperature-voltage (TV) corners. The

PN at the x-axis position given by 0 are those measured under nominal (enrollment)

conditions, i.e., at 25oC, 1.00V. The PN at positions 1, 2 and 3 are also measured at 25oC

but  at  supply  voltages  of  0.95,  1.00  and  1.05  V.  Similarly,  the  other  groups  of  3

consecutive  points  along  the  x-axis  are  measured  at  these  supply  voltages  but  at

temperatures  -40oC,  0oC,  85oC  and  100oC.  TV  corners  1  to  15  are  referred  to  as

regeneration corners. Fig.4.2(b) plots the corresponding PND

As  indicated  earlier,  TV-related  effects  on  delay  negatively  impacts  bitstring

reproducibility. We propose a TV compensation (TVCOMP) process to reduce variations

in the PND introduced by changes in TV conditions (called TV noise). The goal is to
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define a transformation that eliminates the saw-tooth behavior in the curves shown in

Fig.4.2(b), making them as flat and straight as possible.

TVCOMP is applied to the entire set of 2048 PND measured for each chip during

regeneration (note, Fig.4.2(b) shows only one of the PND from the larger set of 2048 that

exist for each chip and TV corner). The TVCOMP procedure first converts the PND to

‘standardized’ values. Equation (4.1) represents the first transformation which makes use

of two constants, test and Rngtest,  obtained from a histogram distribution of the measured

PND. 

zval
i
=

(PNDiff test−μtest )

Rng
test

                                                     (4.1)

PNDc
i
=zval

i
⋅Rng

ref
+μ

ref                                                    (4.2)

The  second  transformation  is  represented  by  Equation(4.2),  which  translates  the

standardized zvals to a new distribution with mean ref and range Rngref. The ref and Rngref

constants are also user-defined parameters of the HELP algorithm.

The transformation carried out by TVCOMP is depicted in Fig.4.2(b) and Fig.4.2(c).

The data in  Fig.4.2(c) is obtained by applying TVCOMP procedure to the 2048 PND

measured under each of the 16 TV corners for each chip, i.e., 16 TV corners * 45 chips =

720 separate applications. Since the same ref  and Rngref are used for all transformations,

TVCOMP eliminates both TV noise and chip-wide performance differences between the

chips.

The variations that remain in the PNDc shown in Fig. Fig.4.2(c) are those introduced

by within-die variations (WDV) and uncompensated TV noise (UC-TVNoise). The UC-
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TVNoise component of the data shown in Fig.4.2(c) is represented by the y-dimensional

variations that occur in each curve (the worst case is approx. 3 which translates to approx.

50 ps). In general, bit-flip errors become more likely for PNDc with larger UC-TVNoise

components.  WDV  also  manifests  as  y-dimensional  variations,  but  in  this  case,  is

represented by the spread of the curves. The spread is approx. 12 for the curves shown in

Fig.4.2(c).  Larger  values  of  WID  improve  the  statistical  properties  of  the  generated

bitstrings,  including  randomness  and  uniqueness,  and  is  therefore  a  desirable

characteristic.

The  HELP algorithm shown  in  Fig.4.1 implements  TVCOMP by  constructing  a

histogram distribution in the upper 2048 memory locations of the BRAM using the 2048

PND stored in the lower portion and then parses the distribution to obtain TVx and RngTVx.

Once the distribution constants are available, the PND in the low portion of the BRAM

are converted to PNDc.

The last operation applied to the PN is represented by the Modulus operation shown

on the right side of Fig.4.1. Modulus is a standard mathematical operation that computes

the positive remainder after dividing by the modulus. The Modulus operation is required

by HELP to eliminate the path length bias that exists  in the PNDc.  The value of the

Modulus  is  also  a  user-selectable  parameter,  similar  to  the  LFSR seeds,   and  Rng

parameters. The HELP engine shown in  Fig.4.1 overwrites the PNDc after applying the

Modulus. The final values, called modPNDc, are used in the bitstring generation process.
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4.3.2 Bitstring Generation

The bitstring  generation  process  uses  a  fifth  user-specifiied  parameter,  called  the

Margin,  as  a  means  of  further  improving  the  reliability  of  the  bitstring  regeneration

process (beyond that provided by the TVCOMP process). Fig.4.3 illustrates the bitstring

generation process  using two sets  of  18 modPNDc from Chip1  labeled  MaskSetA and

MaskSetB
1 .  A modulus of 20 is used in combination with a set of margins of size 3

surrounding two strong bit regions of size 6. Designators along the top given as ‘s’, ‘w’

classify each of the enrollment data points as either a strong or weak bit. Data points that

fall on or within the hatched areas are classified as weak as a mechanism to avoid bit flip

errors introduced by UC-TVNoise that occurs during regeneration.

Fig.4.3Illustration of the Modulus-Margin process carried out by HELP for bitstring

generation.

1 The reason we include two sets will be explained later.
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The Margin  method improves  bitstring  reproducibility  by eliminating data  points

classified as ‘weak’ in the bitstring generation process. For example, 9 of the data points

from MaskSetA are strong and 4 are strong from MaskSetB. The remaining data points are

classifed as weak because they are too close to the bit-flip lines of 0, 9, 10 and 19. A

helper data bitstring is generated to record the status of the bits. When HELP is used in

authentication protocols,  the helper data bitstring and strong bitstrings are sent to the

verifier as proof-of-identity.

4.4 Security Analysis

In this  section,  we investigate several important security properties of HELP that

relate to its resistance to model building and to the number of bitstrings that each token

can  generate  using  the  six  user-defined  parameters  described  earlier,  i.e.,  Modulus,

Margin,  ref and Rngref, two 11-bit LFSR seeds and the Path-Select-Mask. We make the

following assumptions in our security analysis:

• The  adversary  is  not  able  to  configure  the  token  to  run  in  enrollment  mode.

Enrollment mode is only possible using a special FPGA programming bitstream,

which is generated and securely stored by a trusted authority.

• The system containing the PUF provides countermeasures against physical attacks

such as differential power analysis and fault injection.

• The  adversary  has  physical  access  to  the  token  and  can  activate  the  PUF an

unlimited  number  of  times to  produce  both a  strong bitstring and helper  data

bitstring using arbitrary challenges and masks of his choice. 
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• The  adversary  can  control  the  six  user-defined  parameters  within  the  limits

imposed by the PUF implementation. For example, although any arbitrary set of

11-bit LFSR Seeds and Path-Select-Mask can be chosen and applied, the Margin

and  Modulus  as well as the  ref  and  Rngref  are constrained to discrete ranges of

values (discussed below).

• The  adversary  has  full  knowledge  of  the  functional  unit  and  implementation

details, and can run timing simulations, typically using the worst case process-

voltage-temperature model provided by the FPGA vendor.

4.4.1 Parameter-Based Bitstring Diversity

Due to  the  interaction  of  the  user-defined parameters,  we present  a  conservative

lower-bound estimate on the number of possible parameter combinations, i.e., those that

ensure the generated bitstrings are random, reliable and unique for each token. Note that

the source of entropy is fixed in this sub-section to a set of 4096 PN (in contrast to the

analysis presented in the next sub-section). 

As  discussed  above,  five  of  the  user-defined  parameters,  namely,  ref,  Rngref  ,

Modulus, Margin and the two LFSR seeds, can be used to apply different transformations

to the same set of PN as a means of achieving bitstring diversity. The two 11-bit  LFSR

seed parameters allow any of the 2048 rising edge PN to be paired with any of the 2048

falling edge PN, yielding 4,194,304 possible combinations. Analysis of the data collected

in our Zynq FPGA experiments indicates that the number of combinations of  Margins

and Moduli that yield high reliability (bit flip probability < e) is 20 (using Moduli 16 to
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30  and  Margins  3  to  5).  The  number  of  different  ref  and  Rngref  parameters  is

conservatively estimated to be 10 each. Therefore, a total of 4,194,304 * 20 * 10 * 10 ~=

8.3 billion combinations of these five user-defined parameters are possible. This lower

bounds the amount of effort required by an adversary in possession of the token to read

out all the possible response bitstrings for a fixed set of 4096 PN, i.e., with the  Path-

Select-Mask set to select the same set of PN.

4.4.2 Path-Select-Mask-Based Bitstring Diversity

Unlike  the  parameter-based  scheme,  bitstring  diversity  introduced  by  the  Path-

Select-Mask is based on changing the underlying source of entropy. In other words, the

4096 PN are not fixed, but vary from one authentication to the next. The  Path-Select-

Mask  is used by the server to select a subset  k  of  n path delays produced by the set of

applied challenges. 

For example, assume that a sequence of challenges produces a set of 5,000 rising PN

and a set of 5,000 falling PN, from which the server selects a subset of 2048 from each

set. The number of ways of choosing 2048 from 5000 is given by Eq. (4.3). Therefore,

the Path-Select-Mask enables an exponential n-choose-k PN selection process.

Path−select−combs=C2048
5000

=3.3 e1467                        (4.3)

Previous work has shown that an exponential number of response bits is necessary

condition for a truly strong PUF but not a sufficient condition. The responses must also

be largely  uncorrelated as a means making it difficult or impossible to apply machine

learning algorithms to model-build the PUF. The analysis provided in this section shows
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that the Path-Select-Mask in combination with the TVCOMP process provides additional

entropy beyond that available in a fixed number of path delays. This is key to enabling

HELP’s  entropy  source  to  be  relatively  small  while  providing  truly  strong  PUF

characteristics in its output responses.

4.4.3 “Distribution-Effect” Bitstring Diversity

The set of PN selected by the  Path-Select-Masks changes the characteristics of the

PND distribution,  which  in  turn  impacts  how each  PND is  transformed  through  the

TVCOMP process. The TVCOMP process was described earlier in reference to Eqs. (3.1)

and   (3.2).  In  particular,  Eq.  (3.1) uses  the  test and  Rngtest of  the  measured  PND

distribution to standardize the set  of PND before applying the reverse transformation

given by Eq.  (3.2). 

Fig.4.4Impact of the TVCOMP process on PND0 when members of the PND distribution
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change for different mask sets A and B.

Fig.4.4 provides an illustration of the TVCOMP process. The two distributions are

constructed using data from the same chip using two different sets of Path-Select-Masks,

MaskSetA and MaskSetB. The test and Rngtest of the MaskSetA distribution are given as 0.0

and 100 while the values for the MaskSetB distribution are given as 1.0 and 90. The point

labeled PND0 is present in both distributions but the remaining components (or a portion

as discussed below) are different, which introduces differences in  test and  Rngtest.  Eq.

(3.1) is  used  to  standardize the  PND’s  of  both  distributions,  which  translates  PND0

differently  in  each  distribution,  to  values  given  by  -0.09  and  -0.11,  resp.  Eq.   (3.2)

translates the standardized values back into an integer range using a common  ref and

Rngref given by 0.0 and 100, resp. The TVCOMP’ed PNDs (PNDc0) are given as -9.0 and

-11.0.  This shows that the TVCOMP process introduces variations in PNDc even

when they are generated from the same pairings of rising and falling path delays.

The change in a PNDc occurs because the relative position of its corresponding PND in

each of the multiple distributions is dependent on the other members of the distribution.

The  Modulus-Margin graph of  Fig.4.3 described earlier provides an example using

actual  FPGA data  from Chip  C1.  The  subset  of  modPNDc values  shown are  in  fact

computed from the same set of PN, but are included in PN distributions that are derived

using different mask sets, MaskSetA and MaskSetB. Note that the changes introduced by

the TVCOMP transformation are further obscured by the Modulus, making some points

change by a little and others by a lot (and some not at all).

This ‘distribution-effect’ can be used by the verifier as a means of increasing the
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unpredictability in the generated response bitstrings. One strategy would be to purposely

skew the test and Rngtest through clever selection of PN to change the bit values generated

by a set of PN that have been used in previous authentications. 

4.5 Experimental Results

In order to determine the effectiveness of this type of approach, we construct a set of

PN distributions for evaluations. In all distributions, we include a fixed set of 300 rising

and 300 falling PN and draw the remaining 2048 - 300 = 1748 PN from a rising and

falling ‘Master’ distribution. The remaining 1748 PN are confined to specific regions of

the Master distribution as a means of systematically forcing changes to  test and  Rngtest.

The regions are called windows in the Master distribution.

Fig.4.5 Master distribution with 4500 rising PN with sequence of ‘windows’ used to draw

remaining components of rising PND components for a total of 2048.

Fig.4.5 illustrates the process used to create the distributions for the rising PN (the
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same process is used for the falling PN). The PN in the Master distributions are first

sorted  according  to  their  worst-case  simulation  delays.  The  300  common  PN  are

randomly chosen across the entire Master distribution and are represented as ‘x’ in the 

Fig.4.6 Hamming distance of strong bitstrings derived from distributions in which at least

300 of the modPNDc  values are common in each pair of distributions of size 2,048. The

HD  is  computed  using  portions  of  the  bitstrings  derived  from  various  pairings  of
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distributions, but using only the set of bits corresponding to modPNDc’s that are common

in both distributions and are identified as strong in both helper data bitstrings of the pair.

(a) Results using first Master distribution over 20 combinations of Margins and Moduli,

(b) same using second Master distribution, (c) change in  test Rngtest between the PND

distribution pairs (d) the number of common PND in each PND distribution pair.

figure. A series of windows, labeled Wi, are then created that contain 2000 consecutive

elements  from  the  4500  elements  in  the  Master  distribution.  The  remaining  1748

components are drawn from within each of these windows of 2000, excluding PN that are

members of the original 300. Each consecutive window is skewed to the right by 10

elements. A total of 267 distributions of 2048 PN are constructed in this fashion. A PND

distribution  for  Wi is  constructed  from  the  corresponding  rising  and  falling  Wi PN

distributions. The common set of 300 rising and falling PN are matched in the same

fashion in all PND distributions to create identical PND values. The analysis presented

below creates a set of 266 pairing of PND distributions where each of the W1 through

W266 PND distributions are paired with the W0 distribution. The different between the test

and Rngtest values of the two PND distributions increases for successive pairings, allowing

the  distribution-effect  to  be  evaluated  systematically.  The  TVCOMP,  Modulus  and

bitstring generation processes are applied to the PND distributions. The differences in the

bitstrings from each PND pairing is computed using  Hamming distance (HD).  We use

only those bits corresponding to the common set of 300 in the HD calculation.  draw

remaining components of rising PND components for a total of 2048.
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Note that the number of PND that are common in each pairing of distributions is

larger than the forced 300 in cases where  Wi  overlaps with W0. This happens because

random  sampling  within  the  overlapping  windows  chooses  additional  PN  that  are

common to both distributions. Additional common rising PN are deliberately paired with

additional common falling PN as a means of creating worst case conditions (the more

commonality  that  exists,  the  smaller  the  change  in  the  test and  Rngtest of  the  two

distributions, which in turn reduces the bitstring HD). 

The results shown in Fig.4.6 are computed using data collected from 45 copies of a

Xilinx Zynq 7020 chip. Fig.4.6(a) and (b) show the HD results for two different Master

distributions, one that contains 4.5K rising and falling PN and one that contains 7.5K

rising and falling PN. The larger Master increases the number of window pairs depicted

in Fig.4.5 to 531.

The HDs are computed using bits under the condition that both bits of the pair

are strong. This condition is illustrated in  Fig.4.3 for the modPNDc corresponding to bit

7 (which is circled). Eq. (4.4) gives the expression for HD. 

HDW i
=

∑
j=0

NumChips

∑
k=0

NumStrongPairs

bW 0, j , k xor bW 0, j ,k

NumChips×NumStrongPairs
                               (4.4)

The HDs are reported as percentages by dividing the number of strong bit pairing

differences by the total number of strong bit  pairings. The  W0-Wi pairings are plotted

along the x-axis in Fig.4.6(a) and (b). The HD curves for 20 different combinations of the

Margins and Moduli are superimposed to illustrate that the trend is similar.

The HDs are zero for cases in which W0-Wi have significant overlap (left-most points)
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because  the  test and  Rngtest of  the  two  distributions  are  nearly  identical  under  these

conditions. As the windows separate, the HDs rise quickly to 50%, especially for smaller

Moduli. The smallest and largest shift required to reach 50% is highlighted with vertical

lines  for  the  4.5K  and  7.5K  Master  distributions,  resp.  Fig.4.6(c)  plots  the  average

difference  in  the  test and  Rngtest of  the  distribution  pairs.  Note  that  the  7.5K Master

distribution achieves the ideal result of 50% for smaller shifts in test and Rngtest, which in

turn  allows  more  flexibility  in  choosing  the  PN  to  achieve  the  ‘distribution-effect’.

Fig.4.6(d)  plots  the  average  number  of  common  PN used  in  the  HD calculation.  As

indicated earlier, the number is larger than the ‘forced’ 300 for overlapping windows. The

‘overshoot’ of the HDs above the ideal of 50% is difficult to pin down. Interestingly, this

correlation is less significant beyond distribution pairing number 200. 

4.5.1 Security implications

The “distribution-effect” increases bitstring diversity, but is limited to the number of

possible  test and  Rngtest values (we proposed 10 each earlier). However, the distribution

parameters are determined by the  Path-Select-Mask,  which provides an exponential  n-

choose-k component to bitstring diversity. Therefore, an adversary who is attempting to

clone  the  behavior  of  a  token,  might  be  able  to  simulate  and  catalog  all  possible

combinations of the other user-defined parameters, but he/she will not be able to do this

for all possible sets of PN. For authentication applications, the adversary will need to wait

for the verifier to send the challenges and  Path-Select-Masks in order to construct the

distribution using simulation data, before he/she can respond with a predicted response
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bitstring. This adds considerable time and complexity to an impersonation attack, beyond

that required to build an accurate model.

4.6 Conclusions

A novel PUF-based entropy-enhancing technique is proposed that is based on biasing

distribution  data  used  in  bitstring  construction  using  path  selection  and  a  linear

transformation. The technique changes the response bit values associated with a fixed set

of path delays, making the task of model-building more difficult.
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Chapter 5 

A Novel Offset Method for Improving Bitstring Quality of a

Hardware-Embedded Delay PUF

Statistical  properties  including  uniqueness,  randomness  and  reproducibility  are

commonly used as metrics for Physical Unclonable Functions (PUFs). When PUFs are

used  in  authentication  protocols,  the  first  two  metrics  are  critically  important  to  the

overall security of the system. Authentication reveals the bitstrings (and helper data if

used)  to  the  an adversary,  and makes  the  PUF vulnerable  to  tactics  that  can  lead  to

successful cloning and impersonation.  In this  chapter,  we investigate  security  metrics

including Entropy, uniqueness and randomness using hardware data collected from a set

of 45 Xilinx Zynq FPGAs which implements HELP. A novel technique is proposed that

allows the verifier to randomly or purposefully offset path delays to obfuscate (in the

former case) and/or tune (in the latter case) the bitstring generation process. We show that

tuning additionally has a significant impact on the statistical quality of the bitstrings.     

5.1 Introduction

Security and trust have become critically important for a wide range of existing and

emerging microelectronic systems including those embedded in aerospace and defense,

industrial  ICS and SCADA environments,  automotive  and autonomous  vehicles,  data

centers,  communications  and  medical  healthcare  devices.  The  vulnerability  of  these

systems  is  increasing  with  the  proliferation  of  internet-enabled  connectivity  and
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unsupervised in-field deployment.  Authentication and encryption are heavily used for

ensuring data integrity and privacy of communications between communicating devices.

These  protocols  require  keys  and  bitstrings  (secrets)  to  be  stored  in  persistent,  non-

volatile  memory  (NVM).  Current  methods  utilizing  a  “burned-in”  key  represents  a

vulnerability, particularly in fielded systems where adversaries can access the hardware

and  carry  out  probing  and  other  invasive  attacks  uninhibited.  Physical  Unclonable

Functions or PUFs on the other hand provide the alternative to NVM key storage, and for

the generation of unique and untrackable authentication information.

PUFs  extracts  random information  (entropy)  from variations  in  the  physical  and

electrical properties of ICs, that are unique to each IC, as a means of generating digital

secrets (bitstrings). The type and amount of information available to a PUF through these

physical-layer variations in the chip are critically important security properties, and are

the most often cited benefits of PUFs over conventional NVM-based alternatives. 

A PUF  is  defined  by  a  source  of  on-chip  electrical  variations.  The  hardware-

embedded Delay PUF (HELP) analyzed in  this  paper  generates  bitstrings  from delay

variations  that  occur  along  paths  in  an  on-chip  macro  (functional  unit),  such  as  a

cryptographic primitive. Therefore, the circuit structure that HELP utilizes as a source of

random information differs from traditional PUF architectures which use precisely placed

and routed arrays of identically designed components.  In contract,  HELP imposes no

restrictions on the physical layout characteristics of the entropy source. 

This  departure  from a  traditional  definition  of  a  PUF architecture  provides  both

advantages and disadvantages. An important advantage is related to the effort involved in
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constructing the functional unit and the diversity in the number of possible instantiations.

For example,  commercial  logic synthesis  tools such as Xilinx Vivado can be used to

quickly build multiple different instantiations of the functional unit. Each instantiation is

identical in function but has a unique circuit architecture and therefore, a unique set of

path delays. 

The widely varying nature of path delays in an arbitrarily synthesized functional unit

represents the disadvantage. A PUF requires the components, which are being compared

to generate a bit, to behave as a random variable, where approx. half of the chips in the

population  generate  a  ‘0’ for  any  arbitrary  pair  of  components  while  the  other  half

generate a ‘1’. Although it is possible to identify paths that are nearly equal in delay and

restrict comparisons within these groups of paths, this greatly constrains the number of

candidate path combinations and adds complexity by requiring accurate timing analysis

and other operational constraints. Moreover, the analysis needs to repeated for each new

instantiation.

HELP addresses the path length bias issue by applying a modulus operation to the

measured path delays. The modulus operator computes the remainder after dividing the

path delay by specified constant,  i.e,  the modulus.  The modulus  is  chosen to  ideally

eliminate the large bias which can be present when paths vary widely in length (and

delay),  while  simultaneously  preserving  the  smaller  variations  that  occur  because  of

random processes, e.g.,  within-die process variations.  The best choice of the modulus

makes any arbitrary pairings of path delays a random variable.

In  order  to  ensure  that  bias  is  removed  for  every  path  pairing  combination,  the
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modulus needs to  be as small  as possible.  This is  true because the magnitude of the

randomly varying component of path delays differs based on the length of the paths used

in  each  pairing.  Unfortunately,  the  modulus  is  lower  bounded  by  measurement,

temperature, supply voltage noise sources. Therefore, the range of  suitable  moduli that

achieve the PUF’s primary goals of producing unique, random and reproducible bitstrings

is limited.

In this chapter, we propose an offset technique that can be used to increase the range

of suitable moduli,  that builds on the concept first presented in [66], Section 5.3. We

describe the technique in reference to a PUF-based authentication scenario, which occurs

between a hardware token and a verifier. In our proposed authentication protocol, a set of

path delays are collected and stored in a secure database during the enrollment process,

i.e., before the token is released for field use. The verifier also computes and stores the

median values  of  each  path  delay  using  the  enrollment  data  of  the  tokens.  During

authentication, the verifier selects a modulus and then computes the difference between

the median path delay and the modulus, and encodes the differences (called offsets) in the

challenge data sent to the token. The token and verifier add the offsets to the measured

(stored  for  verifier)  path  delays  before  computing  the  corresponding  bit.  An  offset

effectively shifts the distribution of a given path delay such that approx. half of the chips

generate a ‘0’ and half generate a ‘1’.

We  evaluate  the  effectiveness  of  the  offset  technique  using  inter-chip  hamming

distance and Entropy metrics from data collected from a set of Xilinx Zynq FPGAs. The

results  are  compared  with  those  obtained  using  the  original  ‘unshifted’  data.  The

89



remainder of this chapter is organized as follows. Section 5.2 presents related work and

Section 5.3 provides an overview of the HELP PUF. Section 5.4 presents experimental

results and Conclusions are presented in Section 5.5.

5.2 Related Work

References  [37] and [66] describe previous research on HELP. However, the offset

method and analysis presented in this paper are new contributions. To our knowledge, the

offset method has not been proposed elsewhere and is a technique that is only applicable

to PUFs that utilize a modulus method to remove undesirable bias effects as is done in

HELP.

Fig. 5.1 (a) Conversion from PNDc to modPNDc and (b) Strong/Weak PNDc classification using

margining.

5.3 HELP Overview

The instantiation of the HELP processing engine and the PN processing procedures
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are described in Chapter 4,  Section 4.3.  Note that after  the TVCOMP procedure,  the

variations that remain in the PNDc are those introduced by within-die variations (WDV)

and  uncompensated TV noise (UC-TVNoise). UC-TVNoise sets the low bound on the

range of suitable moduli as discussed earlier, while WDV defines the upper bound. The

offset  method  described  below  is  designed  to  extend  the  range  of  suitable  moduli

upwards  while  maintaining  or  improving  the  randomness  and  uniqueness  statistical

quality metrics in the generated bitstrings.   

5.3.1 Bitstring Generation

The bitstring generation  process  uses  a  fifth  user-specifiied  parameter,  called  the

Margin, as a means of improving the reliability of the bitstring regeneration process. The

bottom portion of Fig. 5.1(a) plots 18 of the 2048 PNDc from Chip1 along the x-axis. The

red  curve  line-connects  the  data  points  obtained  under  enrollment conditions  (25oC,

1.00V) while the black curves line-connects data points under a set of regeneration TV

corners, which in our experiments, is all combinations of temperatures -40oC, 25oC, 85oC,

100oC with supply voltages 0.95V, 1.00V and 1.05V.

The curves plotted along the top of  Fig. 5.1(a) show the modPNDc values after a

modulus  of  20  is  applied.  Fig.  5.1(b)  enlarges  the  upper  portion  of  Fig.  5.1(a)  and

includes  a  set  of  margins  of  size  2  surrounding  two  strong  bit  regions  of  size  6.

Designators  along  the  top  given  as  ‘s0’,  ‘s1’,  ‘w0’ and  ‘w1’ classify  each  of  the

enrollment data points as either a strong 0 or 1, or a weak 0 or 1, resp. Data points that

fall on or within the hatched areas are classified as weak as a mechanism to avoid bit flip

errors introduced by UC-TVNoise that occurs during regeneration.
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The Margin method improves  bitstring reproducibility  by eliminating data  points

classified as ‘weak’ in the bitstring generation process. For example, the data points at

indexes 4, 6, 7, 8, 10 and 14 would introduce bit flip errors at one or more of the TV

corners during regeneration because at least one of the regeneration data points is in the

opposite  bit  value  region  from the  corresponding  enrollment  value.  We refer  to  this

bitstring  generation  technique  as  the  Single  Helper  Data (SHD)  scheme  since  the

classification of the modPNDc as strong or weak is determined solely by the enrollment

data.

A second technique, referred to as the  Dual Helper Data (DHD) scheme, requires

that  both  the  enrollment  and  regeneration  modPNDc be  in  strong  bit  regions  before

allowing the  bit  to  be  used  in  the  bitstring  during  regeneration.  The  helper data for

enrollment  and  regeneration,  which  represents  the  classification  of  the  modPNDc as

strong or  weak,  is  bitwise  ‘AND’ed,  and  then  both  the  enrollment  and  regeneration

bitstrings are generated (the enrollment data is assumed to be collected earlier in time and

stored on a secure server).  The DHD scheme doubles the protection provided by the

margin against bit flip errors because the modPNDc  produced during regeneration must

now change and move across both a ‘0’ and ‘1’ margin before it can introduce a bit flip

error.  This  is  true  because  both  the  enrollment  and  regeneration  modPNDc must  be

classified as strong to be included in the bitstring and the strong bit regions are separated

by 2*Margin.

Fig.  5.1 highlights four cases where an enrollment-classified strong bit  would be

reclassified as weak in the DHD scheme because 1 or more of the regeneration modPNDc
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falls within a weak region. This shows that in addition to doubling the protection against

bit flip errors, the DHD scheme can potentially produce different bitstrings each time the

chip regenerates it.

5.4 Offset Method

The  offset  method  is  low  cost  because  it  leverages  the  enrollment  data  already

available on the verifier,  and encodes offsets into a set of unused bit  positions in the

existing Path-Select-Masks sent to the token. 

As we described in Section 5.3,  a ‘challenge’ for HELP is  defined as a  2-vector

sequence that is applied to the PIs of the functional unit and a Path-Select-Mask which is

used to select a subset of the measured path delays from those that are available on the

POs. The Path-Select-Mask increases the response space of HELP exponentially because

it allows the verifier to implement an  n-choose-k strategy. For example, assume that a

sequence of challenges produces a set of 5,000 rising PN and a set of 5,000 falling PN,

from which the server selects a subset of 2048 from each set. The number of ways of

choosing 2048 from 5000 is given by Eq. (4.3).

The Path-Select-Mask actually encodes three possibilities, 1) a ‘1’ is stored for POs

when the paths driving the POs are sensitized (therefore a delay value will be measured

and used by HELP in bitstring generation), 2) a ‘0’ is stored when a path is sensitized but

is not going to be used by HELP and 3) a ‘0’ is also stored when no transition occurs on

the PO. The offset method uses the bit positions for POs that do not have transitions

(scenario 3) to store offset information. The token can easily distinguish cases 2) and 3)
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based on  whether  or  not  a  path  delay  was  produced  (recall  that  all  paths  that  have

transitions are timed simultaneously). A typical sequence of challenges for HELP consists

of approx. 400 vectors, assuming 10 of approx. 32 sensitized paths are selected for the

bitstring generation process (a total of 4096 PNs are needed). Therefore, the 400 Path-

Select-Masks have approx. 400 * 32 = 12,800 unused bit positions available for use by

the offset method. The offset method requires either 2048 or 4096 of these bit positions

for encoding either a 1-bit or 2-bit offset for each of the 2048 PNDcs.

Fig. 5.2 Illustration of the Offset Effect on PNDc

The  offset  method  is  designed  to  shift  individual  PNDc upwards  as  a  means  of

centering the population around the one of the 0-1 lines defined by the modulus. This is

accomplished  after  the  token  and  verifier  decide  on  a  set  of  parameters  for  the
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authentication round, which includes the  Modulus. The verifier then selects a set of 2-

vector  input  sequences  and  randomly  chooses  4096  PNs.  The  Path-Select-Mask is

updated with the PN selection choices. Before transmitting these challenges to the token,

the  verifier  accesses  a  set  of  pre-computed  median  values  for  the  selected  PNs  and

applies the PNDiff and TVCOMP processes described in Section 5.3 (see Fig. 4.1) to the

set of median PNs to obtain a set of modPNDc-median values.

The modPNDc-median values can then be used to compute a set of offsets that will be

used to shift the measured and stored PNDc on the token and verifier respectively. The

optimal offset values for each PNDc are the absolute value of (Modulus/2 - modPNc-median).

However,  encoding  the  optimal  value  requires  up  to  log2(Modulus/2)  bits,  e.g,  for  a

Modulus of 30, we need 4 bits to encode the offsets. Our analysis presented below shows

that most of the benefit of the offset method is obtained with 1-bit and 2-bit encoding

schemes. For example, a 1-bit encoding either indicates that the PNDc is to be left as is or

shifted by 1/4*Modulus. A 2-bit scheme allows shifts of 1/8, 2/8 and 3/8*Modulus. 

Once the offsets are determined, the verifier inserts the encoding for the 2048 PND c

into the first 2048 or 4096 un-used bit positions of the Path-Select-Mask. The challenges

(2 vector sequences and Path-Select-Masks) are then transmitted to the token. The token

applies the challenges to generate the 4096 PNs. The verifier reads-out the PNs for the

token from its stored enrollment data and both the token and verifier carry out PNDiff

and  TVCOMP processes.  The  appropriate  offsets  are  then  added  into  the  individual

PNDc, and the modPNDc computed to enable the completion of the bitstring generation

and subsequent authentication processes.
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Fig. 5.2 provides an illustration of the 2-bit offset scheme using a set of 13 PNDc

both before the offset is added (labeled ‘Original’) and after (labeled ‘2-bit Offset’) in

two separate columns for better clarity. The line-connected curves represent the PNDc

data for each of the 45 chips, with the x-axis representing the 16 TV corners referenced

earlier. The offset shifts the entire distribution upwards towards one of the 0-1 lines given

as 0 and 10 for the Modulus of 20 used in this analysis. Although not optimally placed,

the shifted ‘2-bit Offset’ data shown on the immediate right of the ‘Original’ data show

the  trend  of  the  data  sets  to  center  of  the  0-1  lines  drawn  in  red.  This  simple

transformation significantly improves bitstring statistical metrics as discussed in the next

section.

5.5 Experimental Results

We applied the offset method to the data collected from a set of 45 Xilinx Zynq

FPGAs. The results are shown as a series of bar graphs in Fig. 5.3 to make it easy to see

the effect of the offset method. The first 3 rows show results using a Mean scaling factor

for  ref and  Rngref,  computed as  the  mean value  of  the  test and  Rngtest  from all  PND

distributions across all chips and TV corners. Rows 4, 5 and 6 show the results using the

maximum (Max.)  scaling  factor  associated  with  one  of  the  chip-TV corner  data  sets

which produces the largest values for test and Rngtest. Rows 1 and 4 depict the statistical

results for the base case in which no offset is used, while rows 
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(a)

(b)

Fig. 5.3 Inter-chip HD, Entropy using strong bits only, Probability of Failure and smallest

97



bitstring size bar graphs for Margins 2 and 3 and Moduli 10 through 30 within each figure.

Rows 1 and 4 show using the Original data using Mean and Maximum ref and Rngref values

obtained from the native (before TVCOMP) distributions of the 45 chips. Rows 2 and 5 show

the same set of results using a 1-bit offset while rows 3 and 6 give the results using a 2-bit

offset. The increasing trend in each of the two groups of 3 rows for Inter-chip HD and

Entropy columns show the benefit of the offset method. Column 3 shows the offset method has

no impact on reliability. Column 4 illustrates that the smallest bitstring size gets smaller for

the offset method because more of the modPNDc are located in the weak bit regions.

2 and 5 show the results using a 1-bit offset and rows 3 and 6 show the results using a 2-

bit offset.

Each  bar  graph  portrays  the  results  for  one  of  the  statistical  metrics,  labeled  as

HDinter, Entropy, Probability of Failure and Smallest Bitstring Size in the column headers.

The analysis was carried out using Margins 2 and 3 and for Moduli between 10 and 30, as

given by the x- and y-axis labels in the graphs. Inter-chip hamming distance (HD inter) is

computed as the average value across all possible pairing of the enrollment-generated

bitstrings  from the 45 chips  (45*44/2 = 990 pairings)  and across  a  sequence of  256

different pairs of 11-bit LFSR seeds. For each pairing, the hamming distance is computed

by counting the differences between corresponding bits in the bitstrings of length 2048,

but using only bits classified as strong in both bitstrings. The differences are converted to

percentages and the mean of the percentages are plotted. Entropy is computed using Eq.

(5.1) on the strong bits from each bitstring. The frequency pi of ‘1’s is computed as the
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fraction of ‘1’s at each bit position for only those chips of the 45 which identify the bit as

strong in the enrollment data.

H (X )=−∑
i=1

n

pi⋅log2( p i)                                                                    (5.1)

The Probability of Failure is reported as an exponent x from 10-x  with a value of -6

indicating 1 chance in 1 million. The HDintra is first computed by pairing the enrollment

bitstrings for each chip against each of the 15 regeneration bitstrings. The bits considered

are those that  remain strong under  the DHD scheme described in  Section 5.3.1.  The

average HDintra is computed from the average across the 256 LFSR seeds, which is then

converted into a probability of failure.  The smallest bitstring size is the length of the

smallest bitstring produced for a chip under the DHD scheme.

The offset method increases the HDintra and Entropy significantly as illustrated by

comparing the bar heights across consecutive columns, while having a near zero effect on

the Probability of Failure. However, the offset method reduces the size of the smallest

bitstring, particularly for Mean scaling data because more of the modPNDc are located in

the weak bit regions. The size of the bitstring can be easily increased by increasing the

number  of  PNs  processed  beyond  4096  with  only  a  small  impact  on  time  and  area

overhead.

5.6 Security implications

The offset method deals effectively with the loss of entropy-per-bit as the Modulus is

increased.  It  is  nearly  free  of  cost  because  it  utilizes  enrollment  information  that  is

already available on the verifier and unused  Path-Select-Mask bits. The median PNDc
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need to be computed for each authentication request but the process is very fast because

the  PNmedian can  be  pre-computed  in  advance  of  any  authentication  requests  and  the

remainder of the process involves only creating the PNDmedian and PNDc-median after the set

of  PNs  are  selected.  The  insertion  of  the  offsets  into  the  Path-Select-Mask and  the

retrieval by the token has negligible time and area cost. The verifier and token add in the

offsets before the modPNDc are created, which involves a extra addition operation for

each of the 2048 PNDc.

It should be noted that the number of combinations possible using the Path-Select-

Mask, according to Eq. (4.3), makes the chances that an identical set of challenges will be

used more than once for  any authentication to any token near 0. Therefore, the non-

ideal trending of the HDinter and Entropy of the Original scheme for larger moduli is moot.

However, the offset scheme provides improved security properties for this rare case and

will benefit high security applications. Also note that randomly assigning offset values is

also a valid strategy. In this case, the statistical properties of the bitstrings will remain

unchanged over the Original scheme but the response space will be obfuscated even for

cases in which all other user-defined parameters are help constant.

5.7 Conclusions

An offset method is described in this paper that ‘tunes’ the individual distributions

associated with the path delay values. The tuning is designed to center the populations

over the 0-1 lines used during the bitstring generation process, as a means of increasing

the entropy per bit toward the ideal value of 50%. The offset is very low in overhead,
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leveraging enrollment information stored by the verifier and integrating offset values into

unused challenge bits in the Path-Select-Mask component. The technique is demonstrated

using data collected from a set of FPGAs to significantly improve the uniqueness and

randomness properties of the generated bitstrings.
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Chapter 6 

Delay Model for the HELP PUF

This chapter proposes a delay model for the HELP PUF and analyzes the feasibility

of applying model-building attack on the HELP PUF. In the proposed delay model, the

delay values of all sensitized paths under a given challenge vector pair can be represented

by the segment delays and the values of the given vector pair. We find that the size of the

delay model will increase exponentially with the path length. Also, there exist uncertainty

that which input transition dominates the timing of the gate under the circumstance where

more than one inputs of the gate possess transitions (no hazard). Although the uncertainty

can be reduced by attaching a nominal delay field to each delay segment in the model, the

within-die  variations  that  exist  across  chips  make  it  very  difficult  to  eliminate  such

uncertainty. 

6.1 Delay models for Arbiter PUFs

The basic idea of the classic Arbiter PUF (APUF) is to use the delay difference of

two symmetrically designed paths to generate a binary response bit. The APUF consists

of k-stage switches each of which possesses four delay segments, i.e., Ψi,1, Ψi,2, Ψi,3 and

Ψi,4, for the i-th stage, as shown in Fig. 6.1. A transition is launched from the “en” signal

and propagates via two separate paths through the k-stage switches. In the i-th stage, only

one pair of delay segments will be sensitized depending on the i-th challenge bit value:

the straight segment pair (Ψi,1, Ψi,2) when c[i] = 0 or the crossed segment pair (Ψi,3, Ψi,4)

when c[i] = 1. A response bit is generated according to the total delay difference of the
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two sensitized paths using an arbiter. 

An additive linear model is used to describe the mechanism of APUFs. In the model,

the  total  delay  difference  of  the  two  sensitized  paths  can  be  represented  by  the

accumulated delay differences of each stage [1]. The delay difference at the i-th stage is

represented by βic[i], where the superscript c[i] is the i-th

Fig. 6.1 Structure of classic Arbiter PUFs 

challenge bit denoting that either the straight segment pair is sensitized (when c[i] = 0) or

the crossed pair (when c[i] = 1). Therefore, we have βi0 = Ψi,1 - Ψi,2 and βi1 = Ψi,4 – Ψi,3 ,

respectively. We define two (k+1)-dimension vectors w⃗  and ϕ⃗(C⃗)  so that the total

delay difference can be represented as: Δt = w⃗T
⋅ϕ⃗ . w⃗  is the parameter vector that

encodes segment delays in the APUF stages and the feature vector ϕ⃗(C⃗)  is a function

of the applied k-bit challenge C⃗ . In more detail,

                   w⃗=(w1 ,w2 , ...,w k ,wk +1
)                                           (6.1)

where w1
=

β1
0
−β1

1

2
, w i

=
βi−1

0
+βi−1

1
+βi

0
−βi

1

2
 and

      ϕ⃗(C⃗)=(ϕ⃗
1
( C⃗) ,ϕ⃗2

(C⃗ ), ... , ϕ⃗k
(C⃗) ,1)                                      (6.2)
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where ϕ⃗l(C⃗)=∏
i=l

k

(1−2c [ i]) .

The output value of the arbiter is determined by the sign of the total delay difference, i.e.,

a '0' is generated if  Δt < 0 and otherwise a '1' is generated. If we map the output space

from {0, 1} to {-1, 1}, then the output r can be represented as:

                              r=f PUF=sign(w⃗T
⋅⃗ϕ)                                             (6.3)  

Equation  (5)  denotes  a  linear  threshold  function  (LTF)  where  w⃗T⋅ϕ⃗=0  defines  a

hyperplane that separates the space of the feature vector ϕ⃗(C⃗)  into two half-spaces:

S1 = { ϕ⃗(C⃗)∈{0,1 }
k+1 | w⃗T

⋅ϕ⃗( C⃗)<0 }  and

 S2 = { ϕ⃗(C⃗)∈{0,1 }
k+1 | w⃗T

⋅ϕ⃗( C⃗)>0 }.

If the feature vector of a give challenge is located in S1, then a '-1' is generated at the

output  otherwise  a  “1”.  Determining  the  located  space  region  of  the  feature  vector

enables the prediction of the response of the APUF under a given challenge. 

6.2 HELP PUF Structure and Working Mechanism

6.2.1 Measuring path delays using clock strobing

The delays of a set of paths are measured by applying a series of launch-capture

clocking events (called clock strobing) using Clk1 and Clk2 as shown on the left side of

Fig. 2(a). A 2-vector sequence (V1, V2) is applied at the k-bit primary inputs, labeled PI,

using the Launch Row FFs as a means of generating logic transitions in the functional

unit. The first vector V1 represents the initialization vector. The application of the second

vector  V2 generates  a  set  of  transitions  which  could be  timed by the  clock strobing
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technique. For each repeated application of this 2-vector test sequence, the phase shift

between Clk1 and Clk2 is increased by a small fixed Δt. The phase shift value between 

Fig. 6.2 Configuration of the functional unit (FU) and clock strobing method for

measuring path delays for HELP PUF.

the two clocks is digitally controlled, and is referred to as the launch-capture interval

(LCI). The smallest LCI that allows the propagating edge along a path starting from a

Launch FF to be captured in a capture FF is used as the digitized delay value for the path.

The digital delay values for a large number of paths can be obtained by repeating the

clock  strobing  operation  (with  a  gradually  increasing  LCI)  for  multiple  2-vector  test

sequences.
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6.2.2 Delay processing

The sensitized path delays will be stored into an on-chip BRAM for processing to

generate the final response bitstring.  A flow of the response bit  generation process is

depicted in Fig 2(b) and described as the procedures as below:

Fig. 6.3 Response bit generation flow and input parameters for HELP PUF

1. Delay measurement as shown in Fig. 6.2.

2. Delay collection and storage: A on-chip BRAM is used to store the collected 4096

path delay values, half of which are sensitized under rising vector pairs and other half

using falling vectors. They are denoted as drise
j  and d fall

i respectively.

3. Delay pairing and difference generation: One rising delay and one falling delay

are selected to construct a delay pair using two 11–bit LFSRs. The two 11-bit LFSR seed

values are the 1st user-defined parameter. A delay difference value is generated by the

paired delay values as ddiff
i

=drise
j

−d fall
i .
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4. TV compensation: The delay difference is normalized by using the mean 'utest' and

range 'rngtest' derived from the distribution of the 2048 ddiff
i values and then rescaled to

be the compensated delay value of ddiffC
i . The 2nd and 3rd user-defined parameters uref

and rngref are used for the rescaling as shown in the procedure (4) of Fig. 6.3.

5. Modulus operation: A modulus operation is applied to the 2048  ddiffC
i  values

using  a  modulus  value  Mod  used  as  the  4th user-defined  parameter  to  get  the

Mod _ ddiffC
i  values.

6. Margin Technique: a 5th user-defined parameter value called margin is provided as

a way of eliminating those Mod _ ddiffC
i   which are close to the '0-1' boundary lines to

cause bit flips.

7. Helper data and strong bitstring generation: only those Mod _ ddiffC
i  that locate

within the strong regions generate a response bit with the helper data bit assigned as 1. A

zero value is assigned to the helper data bit for those  Mod _ ddiffC
i  that locate within

weak regions.  

6.3 Sensitizing delay segments for HELP PUF

6.3.1 Differences between APUF and HELP PUF

In this  section,  we will  discuss the structural similarities and differences between

APUF  and  HELP  PUF.  As  mentioned  above,  HELP  measures  path  delays  of  the

functional unit  and generates a response bit  '0'  or '1'  according to the location of the
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Mod _ ddiffC
i  value that is derived from a pair of path delays. 

Arbiter PUFs can be generalized as an additive linear model since the total delay

difference  of  the  two  sensitized  paths  is  the  sum  of  the  delay  differences  of  each

individual stage. Although HELP PUF also utilizes the delay difference of two sensitized

paths  for  response  generation,  there  exist  several  critical  differences  that  make  it

impossible to use a linear delay model for HELP:

1. APUF  leverages  delay  difference  of  two  k-stage  paths  that  are  identically

designed. For each stage, there are only two fixed pairs of delay segments to select: either

the straight pair or the crossed pair. Which pair is selected as the i-th stage participated

segments of the two sensitized paths only depends on the i-th bit challenge value. Such

systematically stage-wised structure across all k stages makes APUF fits into a simple

linear additive model. In the model, the delay difference of each individual stage can be

represented by a function of one-bit challenge value. HELP PUF, on the other hand, can

never  be  generalized  by  such  linear  additive  model  since  much  more  complicated

'challenge-to-sensitized-segment' relationship exist for the two sensitized paths. First, the

two  paths  are  with  different  stage  lengths  and  are  separately  sensitized  by  two

independent challenge pairs (one rising and one falling), no one-stage-to-one-challenge-

bit  relationship exists.  Second, the number of possibly paired delay segments at  each

stage (with the same depth) is in the order of n2, where n is the number of structural paths

of the functional unit. Third, whether a delay segment of the  i-th stage gets sensitized

depends on multiple challenge bits that are present in the boolean expression of this delay

segment. 
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2. A single challenge pattern is always guaranteed to sensitize only two paths for

APUFs. However, a given challenge pair for HELP could possibly sensitize any number

of structural paths ranges from 0 to the number of primary outputs. In fact, it equals to the

number  of  primary  outputs  that  have  transitions.  For  instance,  3  structural  paths  get

sensitized under the given challenge pair in Fig. 6.2. 

3. Applying  a  single  challenge  pattern  to  APUF  is  guaranteed  to  generate  one

corresponding response bit on the fly. However, this is not true for HELP in three aspects:

First, there exists no corresponding response value for those applied challenge pairs that

sensitize zero structural path. Second, the response generation process will not even get

started  until  2048 rising  and  2048  falling  delays  have  been  collected  in  the  on-chip

BRAM. Third, which pair of rising delay and falling delay will be selected from the two

2048 sets further depends on the values of the two LFSRs (procedure (3) in Fig. 6.3). 

Fig. 6.4 Sample circuit for illustration of the delay model of HELP
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6.3.2 Preliminaries of delay segments and path sensitization for HELP   

For illustration purpose, we describe the process of building a delay model for HELP

using  a  simple  sample  function  unit  shown  in  Fig.  6.4.  The  sample  functional  unit

consists of five two-input logic gates g1~g5 (AND and OR) and has four primary inputs

a[3]~a[0] and two primary output d[1] and d[0].  

The HELP PUF leverages the delay of sensitized structural paths as the source of

entropy. A structural path starts from a primary input and ends at a primary output of the

functional  unit.  To  achieve  glitch-free  operation,  the  functional  unit  of  HELP  is

implemented using positive logic gates  [66] and the applied two-vector sequence either

possesses  '0'  to  '1'  transitions  or  '1'  to  '0'  transitions  but  not  both.  Such  'glitch-free'

operation maintains the transition direction initialized at  the primary input unchanged

along the sensitized structural path. For each structural path, there are two corresponding

transition paths: the rising path and falling path. The rising (falling) path is traversed by a

rising (falling) transition initialized in the primary input and propagating through logic

gates  along the path.  We regard the two transition paths as  two distinct  paths  in the

following discussions. The nodes along a sensitized path is called the on-path nodes, and

the gates along the sensitized path have only one on-path input and all the others being

off-path inputs.  For a sensitized gate at  the  i-th stage of a sensitized path,  two delay

elements contribute to the path delay: 1) the interconnect delay that a signal transition

travels from the output of a previous gate (through a fanout branch) to the on-path input

of the destination gate; 2) the switching gate delay associated with a transition propagates

from the on-path input to the gate output. For convenience, the combination of these two
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delay elements at each stage is defined as a delay segment so that a path delay can be

represented by the sum of these segment delays at each stage. Similar to the transition

paths,  there  are  two  'transition'  delay  segments  associated  with  one  physical  delay

segment: the rising and the falling delay segments.

The concept of delay segments is introduced for the convenience of representing a

path delay using individual delay units. A delay segment can be regarded as an input

segment of a gate, which are considered separate for each input of the gate. Therefore, we

denote a delay segment using the corresponding gate input node and the gate output node

in  the  form  of  (gateInput,  gateOutput).  For  example,  there  are  two  delay  segments

associated with gate g2 in Fig. 6.4 denoted as (a[3], g2.O) and (g1.O, g2.O), respectively,

where 'gX.O' represents the output node of gate 'gX'.   

The condition of sensitizing a transition path is that the applied two-vector sequence

will initialize a transition at the primary input and the transition will propagate through

every  delay  segment  along  the  path.  This  is  equivalent  to  the  requirement  that  the

conditions of sensitizing each delay segment along the path are met simultaneously, as is

discussed in the following section.

6.3.3 Condition of sensitizing a delay segment

Similar to the 'on-path'  input of a gate,  we call  the input that involves the delay

segment as the 'on-segment' input and all the rest as 'off-segment' inputs of a gate. The

condition of sensitizing an input segment of a gate depends on the logic function of the

gate  and  the  off-segment  inputs  values.  For  simplicity,  we  analyze  the  condition  of

sensitizing a delay segment of the 2-input AND and the 2-input OR gates for the rising
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and falling transitions as below. Note that the controlling and non-controlling input value

for an AND gate are '0' and '1', respectively, and vice versa for an OR gate.   

There are two cases where a delay segment of a gate gets sensitized and dominates

the timing of the gate.  The first  case is  called 'static  sensitization'  where all  the off-

segment inputs of the gate hold a constant non-controlling value and only the on-segment

Fig. 6.5 Condition of sensitizing a delay segment of the 2-input AND and 2-input OR
gate. (a) static sensitization (b) dynamic sensitization

input has a transition, as is illustrated on the left side of Fig. 6.5 (a). Static sensitization is

deterministic because the only transition at the on-segment input is guaranteed to cause a

transition at the gate output and thus dominates the timing of the gate. In the second case,

however, the on-segment input is not the only input that possesses a transition but at least
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one of the off-segment inputs of the gate, as shown in the graph in Fig. 6.5 (c). We call

this  case  'dynamic  sensitization'  because  more  than  more  inputs  of  the  gate  possess

transitions and the input transition that dominates the timing is the one that causes the

gate output to change. If the input transitions change from a non-controlling value to a

controlling value (1-to-0 for AND gate and 0-to-1 for OR gate), the input transition that

occurs first is the one that causes the transition at the gate output and thus dominates the

timing. In the opposite case, the input transition that happens last dominates the timing.

Fig. 6.5  (c) enumerates all these scenarios where the transition at the on-segment input

dominates the timing. Note that in order to guarantee the desired order of input transitions

described above, we need the delay information of each on-path segments on previous

stages. Therefore, the dynamic sensitization is non-deterministic in the sense that which

input transitions happens first depends on the gate delays of previous stages.   

In order to represent the conditions discussed above in a delay model, we need to

translate these sensitization conditions into corresponding boolean expressions. The final

boolean expression is the ANDed result of two sub-expressions: one for the on-segment

input and the other for the off-segment inputs of the target gate. The table in Fig. 6.5 (b)

lists the boolean expressions that represent the conditions, for the rising transition, where

the sensitized target delay segment dominates the timing under static sensitization. The

corresponding boolean expressions for the falling transition case can be easily inferred

from the falling scenario depicted in Fig. 6.5 (a). 

The table in Fig. 6.5 (d) gives the boolean expressions that represent the condition of

a general case where either static or dynamic rising sensitization occurs. Note that such
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general form of boolean expressions is only able to precisely represent the conditions for

the static sensitization case because the uncertainty feature of the dynamic sensitization

requires gate delay information of previous stages. In order to eliminate the uncertainty of

dynamic sensitization,  we can attach a delay field to each delay segment that can be

derived by running post-timing simulations on the functional unit netlist. This delay field

can be referred to  latter  in  the model  to  decide which input  transition dominates the

timing under dynamic sensitization scenarios. However, this strategy will be ineffective if

the nominal delay difference of two input transitions  are  so small  as in the range of

within-die variations (discussed in Section 6.5). 

6.3.4 Condition of sensitizing a structural path

With the boolean expressions available that represent  the condition of sensitizing

each  individual  delay  segment  in  the  functional  unit,  the  conditions  of  sensitizing  a

specific path can be represented by the ANDed result of these expressions of every on-

path delay segment as below: 

   Expr path_ i=∏
j=0

k path _i

Expr seg _ j
path _ i                                    (6.4)                      

where  kpath_i represents  the  lengths  (number  of  delay  segments)  of  path_i and

Expr seg _ j
path _ i  represents the boolean expression of sensitizing the j-th delay segment along

path_i. 

Note that the size of the boolean expression Exprseg _ j
path_ i  increases exponentially with

the depth of the segment (stage index) along the path. This is true since the number of

primary input literals in the boolean expressions of a gate input at stage j is approx. 2j if
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all the gate are 2-input gates.    

6.4 Proposed Delay Model for HELP

We define an m-dimentional parameter vector w⃗  for HELP where the i-th element

wi represents the delay of the i-th delay segment within the functional unit (m denotes the

total number of delay segments). In order to construct the total delay of a structural path,

we need to sum up the delays of every on-path delay segments. An on-path vector p⃗  is

defined for each structural path as an  m-dimensional vector where the  i-th element  pi

represents whether the i-th delay segment is an on-path segment (being a '1') or an off-

path segment (being a '0'). With w⃗  and p⃗ path _ i , we are able to denote the total delay

of a path dpath_i  as:

                                 d path _ i= w⃗⋅p⃗ path_ i
T                                                        (6.5)            

An on-path matrix  P⃗  can be constructed by putting all  the on-path vectors as

individual columns as: P⃗=[ p⃗ path_ 1
T , p⃗ path _ 2

T , ... , p⃗ path_ i
T , ... p⃗ path_n

T ]

where n represents the total number of transition paths in the functional unit. With

w⃗  and P⃗ , we can derive an n-dimensional path delay vector d⃗  as:  

                      d⃗=w⃗⋅P⃗=w⃗⋅[ p⃗ path_ 1
T , p⃗ path _2

T , ... , p⃗ path_ i
T , ... , p⃗path _ n

T ]
=[d path _1 , d path_ 2, ... ,d path_ i , ... , d path_ n ]

                       (6.6)      

The purpose of the delay model is to represent the sensitized path delays under the

applied vector pair.  If we use the boolean expressions that represent the conditions of

sensitizing each transition paths to construct a n×n  conditional diagonal matrix E⃗

as:
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           E⃗=[
Expr path _ 1 0 0 ⋯ A1 n

0 Exprpath _ 2 0 0
0 0 Expr path _ 3 0
⋮ ⋮
0 0 0 ⋯ Expr path _n

]                      (6.7)        

     With the conditional diagonal matrix E⃗ and the path delay vector d⃗ , we are

able to get an n-dimensional sensitized_path vector S⃗P that represent all the sensitized

transition paths under any applied vector pair C⃗V 1,V 2 by the equation:

                             S⃗P=d⃗⋅E⃗=[dSP 1, dSP 2,⋯, dSPn ]                                          (6.8)   

where dSPi represents the sensitized path delay value,  being either  0 (if  path_i is  not

sensitized) or dpath_i  (if path_i is sensitized under vector pair C⃗V 1,V 2 ).

6.5 Exponential scaling of the Exprpath size with path length

Using the delay model proposed in the above sub-section, all the sensitized paths can

be represented by individual segment delays along the path under any applied vector pair.

However, as discussed in Section 6.3.4, the size of the boolean Expression for the on-path

segment increases exponentially with its depth. This feature will result in the fact that the

size of the path expression Exprpath of a path with length k will be approx. rk  , where r is

the average number of inputs per gate along the path. This indicates that constructing the

delay model will be infeasible if the max path length increases to a certain value like 30

(230 ~ 1 billion).

6.5 Unsolvable uncertainty introduced by within-die variations

As is mentioned in Section 6.3.3, we can attach a nominal delay field (gained by
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post-timing  simulation)  to  each  segment  to  reduce  the  uncertainty  that  which  input

transition dominate the timing under the dynamic sensitization. However, if the nominal

delay differences of the multiple input transitions are so small that they are in the range of

within-die variations, then which input transition dominates the timing of the gate will

vary  across  chip-to-chip.  Such  with-die  variations  are  random,  uncontrollable  and

unpredictable across chips, therefore the uncertainty is very difficult to be eliminated in

the delay model. 
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   Chapter 7 

Future Work

In  chapter  2,  the  results  of  applying  the  proposed  scheme  to  the  resistance

distribution data in the public domain show that the bitstring regeneration achieved zero

bit-flip without any type of helper data. This needs to be further verified on real physical

NVM devices in terms of whether the resistance distribution will skew with increasing

number of regenerations. If so, we need to set up a mechanism that periodically re-writes

the  old  resistance  state  to  each  NVM  cell  to  guarantee  long-term,  reliable  bitstring

regenerations.     

The experiments presented in chapter 3 analyzes various types of underlying entropy

source within the HELP PUF for both glitchy and glitch-free functional units. What we

expect is that the magnitude of the delay variations could be multiple times larger than

the  measurement  and  temperature/voltage  noise  (TV  noise).  Although  we  used  a

temperature/voltage compensation technique (TVCOMP) to reduce the TV noise, there

are still a small portion of path delays that can not be compensated properly. Future work

includes  proposing  some  screening  methods  to  exclude  those  paths  that  possess

“uncompensated  TV noise”.  Since  the  'uncompensated  TV noise'  exhibits  systematic

behavior,  further  research  could  extend  to  investigate  solutions  to  eliminate  such

systematic behavior, e.g., schemes like dividing the population into separate groups for

TV-compensention.

Chapter 4 demonstrates the difficulty against model-building attack introduced by the

'distribution  effect'  of  HELP PUF.  Future  work  includes  applying  various  machine
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learning algorithms to demonstrate how difficult it is to build an accurate model of HELP

to predict responses of arbitrary challenges.      

The results in Chapter 5 show the effectiveness of a novel 'offset method' that deals

with  the  bias  issue  of  HELP.  We  have  demonstrated  the  improved  inter  Hamming

Distance for the modulus ranges from 10 to 30. Future work may include investigating

the effectiveness of applying the offset method to larger modulus values.

Chapter 6 proposes a delay model for the HELP PUF. The complexity of the delay

model indicates how difficult it is to launch model-building attack to break the HELP

PUF. Future work includes applying different machine-learning algorithms to learn the

challenge-response relationship.
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Chapter 8 

Conclusions

In Chapter 1, I introduced the basic metrics for leveraging qualities of Physically

Unclonable Functions and reviewed different schemes of helper data that are targeted at

addressing the reliability issue of PUFs. 

In Chapter 2,  I proposed a new type of PUF structure that is able to eliminate the

helper  data  during  the  bitstring  regeneration  process.  The PUF is  built  based  on the

unique re-programmability feature of non-volatile memory cells and is described in the

context of an emerging nano-device, i.e., memristors. The methodology is applicable to

any type of non-volatile memories including flash memory.

In  chapter  3,  a  PUF-based  authentication  protocol  based  on  the  HELP PUF  is

proposed and various  types  of  entropy source of  HELP are investigated.  Particularly,

three  types  of  delay  variations  are  investigated,  namely,  1)  within-die  variations  that

occur with individual LUT cells, 2) global variations that occurs across all LUTs on the

chip and 3) delay variations introduce by static and dynamic logic hazards. Both glitchy

and glitch-free  functional  units  are  analyzed  in  terms  of  the  magnitude  of  the  delay

variations with respect to measurement and temperature/voltage noise.     

In Chapter 4, we demonstrated that the 'distribution effect' within the HELP PUF

processing  engine  significantly  improves  the  resilience  against  model-building.  The

processed delay difference value used for bitstring generation is dependent on the other

values  that  participate  in  the  distribution  used  for  the  TVCOMP  process,  which
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introduces  bitstring  diversity.  Changing  the  distribution  characteristics  like  mean  and

range can be achieved by specifying a user-defined parameter call Path-Select-Mask. Our

experiments  show  that  the  Path-Select-Mask  combined  with  the  TVCOMP  process

introduces additional entropy beyond that available in a fixed number of path delays,

which makes model-building more difficult.

In Chapter 5, we proposed a technique that deals with the bias issue for HELP PUF.

Purposely setting the values of the offset bits is very effective in improving the base inter-

chip Hamming Distance and the entropy without affecting the bit flip error rate. On the

other hand, randomly setting the offset bits by the verifier in the authentication scenario

enlarge  the  response  space  dramatically  using  a  fixed  set  of  path  delay  values.  The

overhead of the method is fairly small the offset bits can be assigned to the unused path-

select-mask bits for authentication. 

In Chapter 6, a delay model for the HELP PUF is proposed so that the sensitized path

delays can be represented by the delay segments and the given applied vector pair.  We

notice that the size of the delay model increases exponentially with the path length. Also

within-die variations makes it very difficult to eliminate the uncertainty that which input

transition dominates the timing of a gate if more than one inputs possess transitions.
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