
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Fall 12-1-2016

Model Building and Security Analysis of PUF-
Based Authentication
Wenjie Che
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Che, Wenjie. "Model Building and Security Analysis of PUF-Based Authentication." (2016). https://digitalrepository.unm.edu/
ece_etds/307

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/307?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/307?utm_source=digitalrepository.unm.edu%2Fece_etds%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Wenjie Che
 Candidate

 Electrical and Computer Engineering

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Professor Jim Plusquellic , Chairperson

 Professor Manel Martinez-Ramo

 Dr. Fareena Saqib

 Dr. Jim Aarestad

i

Model Building and Security Analysis of PUF-Based
Authentication

by

Wenjie Che

B.E., Telecommunications Engineering, Hunan Normal University, 2010

M.E. Computer Technology, Hunan University, 2013

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

 Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2016

ii

©2016, Wenjie Che

iii

Dedication

This dissertation is dedicated to my wife Junlan Shi and my family, for
all the love, support, and the many sacrifices they made.

iv

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Jim Plusquellic

for his untiring assistance, guidance, encouragement at every stage of this study. He is the

main source of inspiration and encouragement throughout my whole graduate study. I

have benefited and gained a lot working with him in both science and engineering fields.

Without his great support and guidance I wouldn't have been able to come this far.

My deepest appreciation and thanks go to Porf. Manel Martinez-Ramon for his

guidance and valuable discussions in the machine-learning area. I would like to thank

Prof. Payman Zarkesh-Ha for his support and guidance. My special thanks go to my

colleague Dr. Dylan Ismari, from whom I learned a lot during my Ph.D study. I am

grateful to all my group members for all their support and encouragement, they are Dr.

Fareena Saqib, Goutham Pocklassery, Venkata Kishore Kajulur, Akshay Sudhir Vaidya,

Ian Wilcox, Mitchell Martin. My sincere thanks also go to all the fellows in the ECE

department of UNM, for their assistance, motivation and valuable comments to improve

the dissertation.

v

Model Building and Security Analysis of PUF-Based
Authentication

by

Wenjie Che

B.E., Telecommunications Engineering, Hunan Normal University, 2010

M.E. Computer Technology, Hunan University, 2013

Ph.D, Engineering, University of New Mexico, 2016

ABSTRACT

In the context of hardware systems, authentication refers to the process of confirming

the identity and authenticity of chip, board and system components such as RFID tags,

smart cards and remote sensors. The ability of physical unclonable functions (PUF) to

provide bitstrings unique to each component can be leveraged as an authentication

mechanism to detect tamper, impersonation and substitution of such components.

However, authentication requires a strong PUF, i.e., one capable of producing a large,

unique set of bits per device, and, unlike secret key generation for encryption, has

additional challenges that relate to machine learning attacks, protocol attacks and

constraints on device resources. We describe the requirements for PUF-based

vi

authentication, and present a PUF primitive and protocol designed for authentication in

resource constrained devices. Our experimental results are derived from a 28 nm Xilinx

FPGA.

A special class of Physical Unclonable Functions (PUFs) referred to as strong PUFs

can be used in novel hardware-based authentication protocols. Strong PUFs are required

for authentication because the bitstrings and helper data are transmitted openly by the

token to the verifier and therefore, are revealed to the adversary. This enables the

adversary to carry out attacks against the token by systematically applying challenges and

obtaining responses in an attempt to machine-learn and later predict the token’s response

to an arbitrary challenge. Therefore, strong PUFs must both provide an exponentially large

challenge space and be resistant to machine-learning attacks in order to considered secure.

We investigate the security properties of a Hardware-embedded Delay PUF called HELP

which leverages within-die variations in path delays within a hardware-implemented

macro (functional unit) as a random source of information for bitstring generation. Several

features of the HELP processing engine significantly improve its resistance to model-

building attacks. Most important is a novel linear transformation proposed within the

HELP processing engine for dealing with changes in delay introduced by adverse

temperature-voltage (environmental) variations. The technique also increases entropy by

making the measured path delay values dependent on the other values included in the

distribution used to generate the entire bitstring.

Statistical properties including uniqueness, randomness and reproducibility are

commonly used as metrics for Physical Unclonable Functions (PUFs). When PUFs are

vii

used in authentication protocols, the first two metrics are critically important to the overall

security of the system. Authentication reveals the bitstrings (and helper data if used) to the

an adversary, and makes the PUF vulnerable to tactics that can lead to successful cloning

and impersonation. We investigate security metrics including Entropy, uniqueness and

randomness using hardware data collected from a set of 45 Xilinx Zynq FPGAs which

implements HELP. A novel technique is proposed that allows the verifier to randomly or

purposefully offset path delays to obfuscate (in the former case) and/or tune (in the latter

case) the bitstring generation process. We show that tuning additionally has a significant

impact on the statistical quality of the bitstrings.

Stability across environmental variations such as temperature and voltage, is critically

important for Physically Unclonable Functions (PUFs). Nearly all existing PUF systems to

date need a mechanism to deal with “bit flips” when exact regeneration of the bitstring is

required, e.g., for cryptographic applications. Error correction (ECC) and error avoidance

schemes have been proposed but both of these require helper data to be stored for the

regeneration process. Unfortunately, helper data adds time and area overhead to the PUF

system and provides opportunities for adversaries to reverse engineer the secret bitstring.

We propose a non-volatile memory-based (NVM) PUF that is able to avoid bit flips

without requiring any type of helper data. We describe the technique in the context of

emerging nano-devices, in particular, resistive random access memory (Memristor) cells,

but the methodology is applicable to any type of NVM including Flash.

viii

Table of Contents
1. Introduction...1

1.1 Metrics for PUFs...1

1.1.1 Uniqueness..1

1.1.2 Reliability (Reproducibility)..2

1.1.3 Randomness...4

1.2 Helper data for PUFs...5

1.2.1 Error Correction Schemes..5

1.2.2 Thresholding Technique..7

1.3 Organization..9

2. A Non-Volatile Memory Based Physically Unclonable Function without

Helper Data..11

2.1 Introduction...11

2.2 Background and Related Work..15

2.3 Scheme Overview and Memristor Devices Basics....................................18

2.3.1 Overview of the Proposed Scheme..18

2.3.2 Memristor Basics and Key Features..20

2.4 VDC and Proposed PUF Architectures..23

2.4.1 Voltage-to-Digital Converter (VDC)..24

ix

2.4.2 Proposed Memristor PUF..26

2.4.3 Enrollment Algorithm..28

2.5 Evaluation Using Measured data...30

3. PUF-Based Authentication...33

3.1 Introduction...33

3.2 Related Work...37

3.3 Overview...38

3.3.1Goals and Objectives..38

3.3.2 Attack Scenarios and Assumptions..39

3.4 Experimental Setup..41

3.4.1 HELP Overview..41

3.4.2 TV Compensation..42

3.4.3 Bit Generation Algorithm..43

3.4.4 Functional Unit Synthesis Flow...45

3.5 Experimental Results...48

3.5.1 AES SBOX GF(4) Analysis...49

3.5.2 AES SBOX GF(26), Standard vs. WDDL.....................................54

3.5.3 Margin Technique..55

3.5.4 NIST Statistical Test Results...58

3.5.5 ATPG Analysis of Entropy...59

3.6 Authentication Protocol...61

x

3.7 Summary and Conclusion..62

4. Leveraging Distributions in Physical Unclonable Functions.......................64

4.1 Introduction...65

4.2 Related Work...67

4.3 HELP Overview..68

4.3.1 PN Processing..71

4.3.2 Bitstring Generation..74

4.4 Security Analysis...75

4.4.1 Parameter-Based Bitstring Diversity...76

4.4.2 Path-Select-Mask-Based Bitstring Diversity.................................77

4.4.3 “Distribution-Effect” Bitstring Diversity.......................................78

4.5 Experimental Results...80

4.5.1 Security implications...84

4.6 Conclusions...85

5. A Novel Offset Method for Improving Bitstring Quality of a Hardware-

Embedded Delay PUF...86

5.1 Introduction...86

5.2 Related Work...90

5.3 HELP Overview..90

5.3.1 Bitstring Generation..91

5.4 Offset Method..93

xi

5.5 Experimental Results...96

5.6 Security implications...99

5.7 Conclusions...100

6. Delay Model for the HELP PUF...102

6.1 Delay models for Arbiter PUFs...102

6.2 HELP PUF Structure and Working Mechanism.......................................104

6.2.1 Measuring path delays using clock strobing................................104

6.2.2 Delay processing...106

6.3 Sensitizing delay segments for HELP PUF..107

6.3.1 Differences between APUF and HELP PUF................................107

6.3.2 Preliminaries of delay segments and path sensitization for HELP

..110

6.3.3 Condition of sensitizing a delay segment.....................................111

6.3.4 Condition of sensitizing a structural path.....................................114

6.4 Proposed Delay Model for HELP..115

6.5 Exponential scaling of the Exprpath size with path length.......................116

6.5 Unsolvable uncertainty introduced by within-die variations....................116

7. Future Work..118

8. Conclusions..120

9. References..122

xii

List of Figures

Fig. 2.1 Overall concept of the NVM PUF design..18

Fig. 2.2 Overview of the enrollment strategy for the proposed NVM-based PUF....20

Fig. 2.3 The structure of a memristor cell and its write and read scheme. (a)

memristor device structure and equivalent model [30]. (b) Write scheme. (c) Read

scheme [31]...22

Fig. 2.4 Histogram of the HRS and LRS resistances variations extracted from a

40*40 nano-crossbar array (1600 devices) [33]...23

Fig. 2.5 Voltage-to-Digital Converter (VDC)...25

Fig. 2.6 (a) Circuit structure proposed Memristor memory [31]; (b) Modifications

needed for proposed Memristor PUF...27

Fig. 2.7 VDC measured range for the measured LRS data profile from 1220

memristor cells in [33]...31

Fig. 2.8 Typical transfer Curves for VDC...31

 Fig. 3.1 Configuration of the AES SBOX FG(4) [57]..41

 Fig. 3.2 Example rising and falling path PNs (top), random pairings of rising and

fall PN differences (middle), PN differences modulo 64 (bottom)........................43

 Fig. 3.3 Process Flow...45

 Fig. 3.4 Configuration of the AES SBOX GF(4) [57]..49

 Fig. 3.5 TV compensated PNDiffs with (top) and without (bottom) global variations

xiii

for 30 chips..50

 Fig. 3.6 Histogram of enrollment delay variations using TV compensation of

PNDiffs with no global variations...51

 Fig. 3.7 Inter-chip HD and worst case and average case Intra-chip HD as a function

of PN modulus...52

 Fig. 3.8 Hamming distance (HD) results without (a) and with (b) the Margin

technique for the Standard design..56

 Fig. 3.9 Hamming distance (HD) results without (a) and with (b) the Margin

technique for the WDDL design..57

 Fig. 3.10 Proposed authentication protocol..60

Fig.4.1 Instantiation of the HELP entropy source (left) and HELP processing engine

(right)..68

Fig.4.2(a) Example rising and falling path delays (PN), (b) Rise-fall path delays

(PND)and (c) TV Compensated PNDc for 45 chips (individual curves) and 16 TV

corners (points in curves)..70

Fig.4.3Illustration of the Modulus-Margin process carried out by HELP for bitstring

generation..74

Fig.4.4Impact of the TVCOMP process on PND0 when members of the PND

distribution change for different mask sets A and B..78

Fig.4.5 Master distribution with 4500 rising PN with sequence of ‘windows’ used to

draw remaining components of rising PND components for a total of 2048.........80

xiv

Fig.4.6 Hamming distance of strong bitstrings derived from distributions in which at

least 300 of the modPNDc values are common in each pair of distributions of size

2,048. The HD is computed using portions of the bitstrings derived from various

pairings of distributions, but using only the set of bits corresponding to

modPNDc’s that are common in both distributions and are identified as strong in

both helper data bitstrings of the pair. (a) Results using first Master distribution

over 20 combinations of Margins and Moduli, (b) same using second Master

distribution, (c) change in mtest Rngtest between the PND distribution pairs (d)

the number of common PND in each PND distribution pair..................................81

Fig. 5.1 (a) Conversion from PNDc to modPNDc and (b) Strong/Weak PNDc

classification using margining...90

Fig. 5.2 Illustration of the Offset Effect on PNDc..94

Fig. 5.3 Inter-chip HD, Entropy using strong bits only, Probability of Failure and

smallest bitstring size bar graphs for Margins 2 and 3 and Moduli 10 through 30

within each figure. Rows 1 and 4 show using the Original data using Mean and

Maximum mref and Rngref values obtained from the native (before TVCOMP)

distributions of the 45 chips. Rows 2 and 5 show the same set of results using a 1-

bit offset while rows 3 and 6 give the results using a 2-bit offset. The increasing

trend in each of the two groups of 3 rows for Inter-chip HD and Entropy columns

show the benefit of the offset method. Column 3 shows the offset method has no

impact on reliability. Column 4 illustrates that the smallest bitstring size gets

xv

smaller for the offset method because more of the modPNDc are located in the

weak bit regions..97

Fig. 6.1 Structure of classic Arbiter PUFs..103

Fig. 6.2 Configuration of the functional unit (FU) and clock strobing method for

measuring path delays for HELP PUF...105

Fig. 6.3 Response bit generation flow and input parameters for HELP PUF...........106

Fig. 6.4 Sample circuit for illustration of the delay model of HELP........................109

Fig. 6.5 Condition of sensitizing a delay segment of the 2-input AND and 2-input OR

gate. (a) static sensitization (b) dynamic sensitization...112

xvi

CHAPTER 1

Introduction

Physically Unclonable Functions (PUFs) are emerging as an alternative to

conventional approaches to storing secret keys in ICs. PUFs extract entropy from

variations in the physical and electrical properties of ICs, that are unique to each IC, as a

means of generating secrets. Secret keys derived from PUFs mitigate the vulnerabilities

of embedded digital keys mainly in two ways: (1) the generated secret keys are volatile

and only present in a digital form when the chip is powered on and running. thus making

it difficult for adversaries to steal by invasive attacks; (2) even if the secret key is known,

it is intractable for the manufacturer to duplicate a second chip with an identical key.

These secrets can be used in various security applications including device identification,

authentication, metering, remote activation and encryption [1]. This dissertation is mainly

focused on analyzing the entropy source and the security strength of the hardware-

embedded delay PUF (HELP) in the context of authentication.

1.1 Metrics for PUFs

There are typically three major metrics for measuring the quality of a PUF:

Uniqueness, reliability and randomness.

1.1.1 Uniqueness

Uniqueness refers to how unique are the responses generated by the PUF from

different chips when they are applied with the same challenge. The better uniqueness of a

1

PUF, the more difficult for an adversary to copy an existing PUF instance that possesses

similar Challenge-Response Pair (CRP) behaviors, the more desirable for the responses to

be used as chip identifiers. A common method to quantify the uniqueness metric of a PUF

is to compute the average inter-chip Hamming Distance (inter-HD) for a group of chips

on which a particular PUF instance is embedded. For a given challenge, the inter-HD

between two PUF instances is defined as the number of different bits that exist between

the two PUF responses. Inter-HD can also be represented as a fraction which is calculated

by dividing the number of different bits by the total number of compared bits. Assume the

PUF response is n bits, the average inter-HD for a groups of m chips (PUF instances) can

be computed using the following formula [7]:

Inter _ HDave=

∑
u=1

m−1

∑
v=u+1

m

HD(Ru , R v)

n
×100% (1.1)

where HD(Ru ,R v) represents the hamming distance between the responses generated

by the u-th and v-th chips for a given challenge.

An ideal value for the average inter-HD for a group of chips is 50%, which indicates

the best uniqueness is achieved when half of the bits are different between any two

compared responses on average.

1.1.2 Reliability (Reproducibility)

The uniqueness metric is used to measure the quality of a PUF whether the responses

generated by different PUF instances are unique enough to distinguish between chips. For

the same PUF instance, however, it is desirable that the responses should always keep

2

constant when the same challenge are applied multiple times under different

environmental conditions. This is true because in either authentication or secret key

generation, we expect that the original secrets can be reliably reproduced by the PUF

whenever proof-of-evidence needs to be provided later. We use the reliability (or

reproducibility) metric to measure how reliable it is to regenerate the original responses

for a PUF. Similar to uniqueness, reliability can also be measured by calculating the

average Intra-chip Hamming Distance (Intra-HD). For a particular PUF instance, intra-

HD refers to the Hamming Distance between the two measured responses when the same

challenge is applied twice. Assume x response samples are measured under different

conditions (different temperatures or supply voltages) for a chip i, the average intra-HD

can be calculated as [7]:

Intra _ HDave=
1
x
∑
y=1

x

HD
(Ri ,Ri , y

'
)

n
×100% (1.2)

where Ri represents the response measured under normal temperature and voltage

conditions (nominal condition), Ri , y
' stands for the y-th measured response sample of

Ri . Note intra-HD is calculated from the responses generated from the same chip for

the same challenge, therefore, the smaller value it is, the better reliability is achieved.

The ideal value of the intra-HD is 0%, which implies that the original responses can

be exactly reproduced without any error bits across all the sampled conditions. However,

the ideal reliability can hardly be achieved due to the sensitivity of PUF responses to

varying environmental conditions. Typically, a PUF response bit is generated depending

on the sign of the difference value for two compared entropy sources, e.g., a “1” is

3

generated for a positive sign and a “0” otherwise. Unfortunately, the entropy source

leveraged in PUFs are analog in nature and hence can easily be impacted by varying

environmental conditions, e.g., temperatures or supply voltage noise (or TV noise). For

those response bits that were generated from two close entropy values, it is very likely the

two original entropy values will vary under environmental noise and jump across each

other, resulting in error response bits or “bit flips”. Such bit flips directly cause

degradation to the reliability performance of a PUF. In applications like authentication, a

small portion of bit flips within the regenerated bitstring (secrets) can be tolerated. This is

because as long as the majority of the reproduced bits are consistent with the original one,

the chip can still be authenticated as genuine or fake. In cryptographic scenarios such as

key generation, however, every single bit of the secret bitstring are required to be

accurately regenerated, since even one single bit flip in the secret key will generate a

totally different result after the key is applied to the cryptographic engine. In order to

improve reliability of a PUF, different methods have been proposed to either correct or

avoid bit flips, which will be discussed in the subsection later.

1.1.3 Randomness

Randomness is another major metric that measures how random the the generated

responses are by a PUF. A random bit sequence can be interpreted as the result of a

sequence of “flips” of an unbiased coin [8]. The randomness of the generated responses

can be evaluated using statistical test suite like NIST test [8]. The NIST test suite is

regarded as the industrial standard to test random bit sequence for cryptographic

applications. NIST consists of 15 subtests which covers the uniformity, correlation and

4

approximate entropy tests for the bit sequence.

1.2 Helper data for PUFs

As mentioned in section 2.1.2, entropy sources extracted from PUFs are subject to

ambient environmental variations, which are likely to cause inevitable bit flips within the

regenerated responses. To deal with this reliability issue, two classes of methods have

proposed to either correct the error bits or to avoid bit flips: Error correction code (ECC)

and thresholding technique.

1.2.1 Error Correction Schemes

The most popular method is to use error correction information (ECC) for bit flips

correction. Two phases are involved in the ECC scheme: the first time of generating the

secret bitstring is called the enrollment process, and regenerating the same secret bitstring

later is the regeneration process. ECC works in a fashion that the error correcting

information, commonly a syndrome, is extracted from the secret bitstring during the

enrollment process, which is later used to correct error bits during regeneration. The error

correction information or syndrome is public information and also referred to as helper

data and is stored in a reliable storage device, e.g., an on-chip non-volatile memory or

off-chip storage. However, there are several drawbacks that come along with the helper

data. A main security concern is that such helper data reveals information of the secret

bitstrings and thus makes the secrets vulnerable to be stolen by attackers [5]. Besides,

extra overheads are incurred to the design due to implementing the syndrome and storing

the helper data. Many error correction schemes have been summarized in [5], but most of

5

them require fairly heavyweight error correction logic, and they inevitably leak

information of the secret bits.

Error correction techniques can generally be categorized into three classes [9]: Code-

Offset [10][11][3], Index-Based Syndrome [12][13][14] and Pattern Vector [17]. In Code-

Offset schemes, the entropy loss of the Syndrome bits is attributed to the maximum

number of exposed Syndrome bits. In this sense, the syndrome bits should be as small as

possible so that the leaked information by the exposed bits does not exceed the entropy

contained within the secret bitstring. The entropy within the PUF response can be

measured by the min-entropy of PUF outputs used, hence the remaining entropy after

exploiting a Code-Offset scheme depends on the min-entropy of the PUF outputs and the

number of Syndrome bits. The basic idea of the Index-Based Syndrome scheme is to use

the divided syndrome outputs (in unit of words) as the index of a sequence of PUF

outputs. The scheme is proven to be theoretically secure since bias within the PUF

outputs is not expected to be amplified, hence leaking no information of the min-entropy

of the secret bits. However, it is only true under the assumption that the PUF outputs have

to be independent and identically distributed (i.i.d), which is difficult to measure in

practical scenarios. It is further analyzed in [14] that there are two-out-of-three bits

information leakage without this assumption.

The third class is referred to as the Pattern Vector scheme which reverses the

paradigm routine of conventional ways of generating secrets using a PUF. Instead of

fixing a set of challenges and using their corresponding responses as secrets, Pattern

Vector records a set of response sequences as public helper information during the

6

provisioning process, which is used later as a set of patterns to be compared with the

regenerated response bits. If an approximate match happens, then the index value of the

challenge that generates this matched response will be used as a sub-key. Multiple rounds

of such matching process during regeneration comprises the final key. The security of the

scheme relies on the fact that the challenges of the exposed response pattern set (helper

data) are not knowledgeable to adversaries. Since only a small set of responses are

exposed, the authors claimed that it is infeasible for attackers to successfully build a PUF

model with a limited number of CRPs. Moreover, the scheme is lightweight for

implementation since it eliminates the need for complex error correction logic like BCH

decoders.

However, authors in [6] proposed an attacking frame that is able to recover full keys

from the Pattern Vector scheme by manipulating the helper data. An attacker is able to

gradually retrieve the full bitstreams by statistically observing the failure rates of Pattern

Vector generators, thus eventually recover the secret indexes.

1.2.2 Thresholding Technique

Error correction schemes (ECC) are designed to correct error bits within the

regenerated secret bitstrings due to ambient environmental variations. An alternative

scheme to ECC can be referred to as the thresholding technique, which have been

proposed to avoid bit flips during regeneration. As introduced in previous sections, a

response bit is typically generated depending on the polarity of the difference between

two compared entropy values. It is easy to speculate that a polarity is more likely to flip

7

in cases where the difference of the two compared values is too tiny to resist to

fluctuations caused by varying environmental conditions. In this regard, response bits

derived from such cases are called “weak” bits, while those bits whose entropy pair

possesses large difference gaps are “strong” bits. Thresholding techniques are proposed to

discard those “weak” bits during enrollment so that only strong response bits are selected

for regeneration. This bit flips avoiding process is achieved by setting a “threshold”

which partitions all the possible entropy pairings into two classes: “weak” pairings whose

differences are smaller than the “threshold” and “strong” pairings whose difference

exceeds the “threshold”. Then the positioning information for these “weak” pairings are

recorded in a public storage as “helper data”, which will be referenced later during

regeneration to indicate which pairings should be discarded.

Although thresholding techniques have been proposed in various types of PUF

designs, they share the same idea as is illustrated above. An early version of applying this

idea is named as the “masking scheme”, which is proposed in [15] for Ring Oscillator

(RO) PUFs. The scheme uses a masking vector that selects which RO pairs should be

picked up for bitstring regeneration. A typical example is the “1-out-of-k” scheme where

the pair that has the maximum frequency distance among all the k pairing is selected.

Another version of thresholding technique is proposed in [16] for the Power-grid (PG)

PUF. The entropy source of the PG-PUF is the resistance variations that exist in the

power grid metal wires and transistors. Resistance can be measured by equivalent voltage

drops across entropy cells by creating a voltage divider. After measuring the noise level

caused by varying measurement and environmental conditions, a threshold voltage value

8

is selected which is defined as the upper bound on the voltage differences of two

compared entropy cells. A similar voltage thresholding scheme is proposed in [18] for a

transmission gate PUF (or TG PUF) to ensure reliably regenerating PUF responses.

Recently, the thresholding idea is used for a Sense Amplifier based PUF (SA-PUF) to

select SA pairs that are able to generate reliable bits.

Compared to error correction schemes, the thresholding technique does not require

complex implementation logic for error correction codes and are generally accepted that

they are not vulnerable to information leakage. However, “helper data” information that

records the positioning information of reliable bits need to be stored, which also incurs

inevitable overheads. Moreover, a recent survey [19] on helper data algorithms have

disproved the assumption that bit selection schemes (thresholding) have no leakage.

1.3 Organization

The dissertation is organized as follows: chapter 2 is based on the paper “A Non-

Volatile Memory Based Physically Unclonable Function without Helper Data”, which is

focused on addressing the reliability issue of PUFs. Chapter 3 is based on the paper

“PUF-Based Authentication”, which analyzes the entropy introduced from multiple

sources and proposed an authentication protocol that is based on the HELP PUF. Chapter

4 is based on a paper that is titled “Leveraging Distributions in Physical Unclonable

Functions”, which investigates the enhanced robustness introduced by the linear

transformation within the HELP processing engine against model-building. Chapter 5 is

based on a paper under review “A Novel Offset Method for Improving Bitstring Quality

9

of a Hardware-Embedded Delay PUF”, which proposes an offset method to deals with

the bias issue for HELP and significantly improves the quality of bistring. Chapter 6

proposes a delay model for the HELP, which indicates the complexity of the HELP PUF

for model-building attacks. Chapter 7 discusses the future work and Chapter 8 concludes

the dissertation.

10

CHAPTER 2

A Non-Volatile Memory Based Physically Unclonable

Function without Helper Data

2.1 Introduction

Many hardware security and trust mechanisms depends on a secret key which serves

as a unique, un-reproducible ID for each integrated circuits (IC). Conventional methods

of storing secret keys involves programming the embedded secrets in ROMs, e-fuses or

non-volatile memories. Such non-volatile keys unfortunately are vulnerable to invasive

physical attacks by which the secret keys may be extracted from the storage device. Once

a secret key is compromised, adversaries may make clones of the IC that own the same

key, thus defeating the security mechanism.

Physically Unclonable Functions (PUFs) are emerging as an alternative to

conventional approaches to storing secret keys in ICs. PUFs extract entropy from

variations in the physical and electrical properties of ICs, that are unique to each IC, as a

means of generating secrets. Secret keys derived from PUFs mitigate the vulnerabilities

of embedded digital keys mainly in two ways: (1) the generated secret keys are volatile

and only present in a digital form when the chip is powered on and running. thus making

it difficult for adversaries to steal by invasive attacks; (2) even if the secret key is known,

it is intractable for the manufacturer to duplicate a second chip with an identical key.

These secrets can be used in various security applications including device identification,

11

authentication, metering, remote activation and encryption [1].

Applications such as encryption require precise regeneration of the secret bitstring,

possible under different environmental conditions. This requirement presents challenges

for PUFs (in contrast to secrets that are programmed into non-volatile memories or

NVMs) because the entropy source leveraged by PUFs is analog in nature and hence can

be significantly impacted by changes in temperature and voltage (TV) noise. Moreover,

distinguishing subtle differences in the entropy source is further challenged by

measurement noise in many cases. Typically, a secret bit is generated according to the

entropy difference extracted from two identical structures, in which way an

approximately equal number of “1”s and “0”s can be generated depending on process

variations. For instance, if the entropy source of the former structure is larger than the

latter, a “1” is generated; otherwise a “0”. Consider a case where the difference of the two

compared entropy is so tiny that they will fluctuate across each other under

environmental noise (or measurement noise), a bit flip will occur. Therefore, secret

bitstrings generated by PUFs can not be directly applied into cryptographic applications

as secret keys, until the error bits get corrected or eliminated.

The most popular approach to dealing with these challenges is to extract error

correcting information from the secret bitstring once it is generated for the first time

during the enrollment process, that is later used to correct errors which occur during

regeneration [2]-[6]. The error correction information is stored in reliable, digital storage,

e.g., in an on-chip NVM or an off-chip storage device. Generally, two drawbacks come

along with storing such correction information: (1) implementation as well as storage for

12

correction information inevitably incur hardware overheads to the overall design; (2) the

correction information reveals part of the secret information of the generated keys,

rendering adversaries easier to emulate PUF behavior through model-building attacks [4].

A second thresholding-based technique 'avoids' bit flips by being selective regarding

which components of the entropy source can be compared reliably to generate a bit [18].

However, thresholding techniques also require helper data that indicate which

comparisons are reliable.

In this chapter, we propose a NVM-based PUF implementation that does not require

helper data for regeneration. The entropy leveraged in our scheme is the manufacturing

variations that occur in the transconductanc1e (or resistive) characteristics of the NVM

cells. The enrollment process measures and digitizes these variations and then 'programs'

the NVM cells with the random bitstring that is produced. Therefore, the full reliability of

the NVM is used to preserve the bitstring across power cycles and under varying TV

conditions, which allows regeneration processes to extract it without suffering bit-flip

errors.

The enrollment process is carried out in a special manner. First, elements of the

PUF's entropy source are stimulated and digitized using an on-chip measurement

structure that is capable of providing 'soft information'. Soft information implies that the

magnitude of the analog variations are digitized into multi-bit, e.g., 8-bit, digital values. A

distribution is then constructed using these digital values and a median-finding algorithm

is used to partition the population into two segements (with an equal number of elements

in each segment). NVM cells with digital values in the lower half of the distribution are

13

programmed with a '0' while those in the upper portion are programmed with a '1'.

Our proposed NVM PUF, by its very nature, defeats one of the stated advantages of

PUFs, i.e., PUFs eliminate the cost of including NVM on the chip and the need to store

the secret bitstring in digital form. However, the NVM PUF does preserve the basic

premise of a PUF, namely, that the secret is derived from manufacturing variations and is

not programmed (or even known) by the manufacturer as is true in the traditional use of

NVM. The real benefit of our proposed scheme is in the use of NVM cells as both a

source of entropy and a means of eliminating public 'helper data'. We recognize that

storing the secret in NVM memory represents a vulnerability and may disqualify the

NVM PUF for high security applications that need to protect against invasive probing

attacks. However, the small footprint and the guarantee of high reliability of the NVM

scheme make it attractive for other, lower security, small form factor, applications.

In this chapter, we describe the NVM PUF enrollment and regeneration processes in

the context of Memristor devices. Published data on within-die variations in Memristor

arrays is leveraged to show proof-of-concept and to guide the design of on-chip

measurement infrastructures which are capable of measuring and digitizing NVM cell

resistance variations.

We introduce the background information in Chapter 2. The scheme overview of the

proposed PUF design as well as the basics of Memristor devices are introduced in

Chapter 3. The proposed voltage-to-digital converter and the PUF architecture are

presented in Chapter 5, and Chapter 6 evaluates the proposed strategy using measured

data from published literature. Chapter 7 concludes the chapter.

14

2.2 Background and Related Work

This section introduces some background information that are related to the proposed

non-volatile memory based PUFs. The first section introduces several important metrics

that are generally used to measure the quality of a PUF, in which the reliability metric is

what this proposed research focuses on. This is followed by section 2.2 that summarizes

two classes of existing schemes that have been proposed to address the reliability issue

for PUFs. Since this research will describe the proposed scheme in the context of

Memristors, section 2.3 gives a brief survey of several recently proposed PUF designs

that are based on Memristor devices.

Various types of PUFs have been proposed depending on different electrical or

physical characteristics they exploited as entropy sources, e.g., delay-based PUFs,

resistance-based PUFs, threshold-voltage based PUFs and so forth. One of the important

classes is memory-based PUFs, where SRAMs are investigated as conventional PUF cells

and its variations on the bi-stable characteristic are exploited as entropy source. Recently,

emerging memory techniques have been proposed as alternatives to conventional non-

volatile memories (like flash) and they have attracted enormous amount of attention from

researchers in the computing world due to their advantages. Compared to conventional

memory technologies, emerging memory technologies have faster speed, better density

and lower power consumption. Proposed emerging memory technologies includes

Resistive random access memories (ReRAMs), Phase Change Memory (PCM),

Spintronics-based technology like Spin-transfer torque RAMs (STT-RAMs) and Spin-

Orbit torque RAMs (SOT-RAMs). Correspondingly, a few implementations that use these

15

emerging technologies as PUF designs have recently been investigated.

The feasibility of building a Memristor-based PUF is recently discussed in [20]. The

authors utilized a weak write mechanism which leverages the resulting unpredictable

logic states to implement a PUF. Evaluations in the paper only focused on the uniqueness

metric without consideration for the stability of the PUF. The work in [21] proposed a

possible memristive PUF configuration that is based on the randomness of the resulting

programming state of two cells in series that occurs after a reset operation. Then a Public

PUF (PPUF) protocol that is implemented by memristors is also discussed. Garrett S.

Rose et al. proposed a write-time based memristor PUF that leverages the write time

variability of the Memristor device [22]-[23]. It is implemented by choosing the actual

SET time close to the minimum SET time so that the percentage of the output logic '0' or

logic '1' will be each nearly 50%. The “minimum set time” is determined by using a

Monte Carlo simulations on a variable mobility memristor model. Another PUF that

integrates a Memristor device into the conventional RO-PUF structure is proposed in

[24]. Variations in high state and low state resistance after a programming operation is

used as the entropy source. The authors demonstrate that the randomness in the resistance

values increases the number of CRPs of conventional RO-PUFs.

Authors in [25] proposed a PUF based on Spin-Transfer Torque (STT) Magnetic

RAM, responses are generated by comparing the inherent random mismatches between

the resistance of STT_MRAM cells of the same state. An Automatic Write-Back (AWB)

technique is proposed is enhance the reliability of the proposed PUF designs. Le Zhang et

al. proposed a Phase Change Memory based PUF that exploits process variations and

16

programming sensitivity of the device [26]. The paper proposed two prototypes for

implementing a PUF design where the first is to exploit randomly varying pulses, and the

second is to count the number of fixed programming pulses required for a target value.

Another STT MRAM-based PUF is proposed in [27], in which the standard 1T1MTJ

STT memory cell is used and a differential read scheme is used to generate PUF

responses. Major metrics of the PUF are evaluated using SPICE simulations where

device models are extracted from open literatures. Compared to [27], authors in [28]

proposed a geometry based Magnetoresistive RAM (MRAM) PUF and verified major

metrics using both simulation and fabrication results. A authentication protocol that is

based on the proposed MRAM-PUF as well as a systemic MRAM PUF architecture are

also proposed. The paper also evaluated the hardware overheads for the authentication

algorithm implemented by the proposed PUF system in terms of area, power and delay

overheads.

In contrast to previous work, the primary goal of our proposed PUF is to eliminate

bit flips and the need for any type of helper data. To realize this goal, we exploit the

characteristic that the bi-model resistance profiles of Memristor devices are widely

separated and therefore, the membership of a specific device in either profile can be

determined reliably. Other contributions of this paper include 1) a stimulus circuit and an

on-chip voltage-to-digital converter (VDC) scheme for obtaining soft information on the

resistance characteristics of the NVM cells and 2) a median-finding algorithm that is

robust to non-Gaussian resistance distribution profiles.

17

2.3 Scheme Overview and Memristor Devices Basics

This section first presents an overview of the proposed PUF scheme and then

discusses some basics of a Memristor device.

2.3.1 Overview of the Proposed Scheme

As indicated in section 2.1, the elimination of helper data is a major benefit of the

proposed NVM PUF. Fig. 2.1 illustrates the mechanism by which this accomplished.

The resistance distribution shown along the bottom left illustrates the randomness that

exists in the resistance of the Memristor cells programmed in the low resistance state

(LRS). This distribution represents the entropy source for the NVM PUF. As described in

the next section, the analog resistance values are digitized and the median of this

distribution is determined. The histogram shown in the upper left depict the profiles after

a selected

Fig. 2.1 Overall concept of the NVM PUF design

18

LRS

Resistance

HRS

co
un

ts

Large Gap

co
un

ts

Resistance

Entropy source

LRS

Reliability

Uniqueness

Voltage-to-digital Converter

Median-finding

Reprogrammability

Helper-data-free
PUF design

set of NVM cells are reprogrammed into the high resistance state (HRS). The large gap

between these profiles ensures that subsequent regenerations always make the correct

decision regarding the profile to which a given NVM cell belongs. This is a key

distinguishing feature of the NVM PUF. All other PUFs (to our knowledge) must operate

on the LRS distribution for regeneration. Unfortunately, varying TV conditions and

measurement noise change the LRS distribution profile, making it impossible to generate

the same bitstring without helper data.

Fig. 2.2 further illustrates the enrollment process in more detail. The flow starts with

programming all the memristor cells to the low resistance state, by using the “write-

operation” of memristors which is described in the next section. A voltage-to-digital

converter (VDC) is then responsible for digitizing the sensed voltage drop across each

memristor cell to a digital value between 0 to 128. All these digitized values are stored in

an SRAM array that is cell-to-cell mapped to the memristor arrays. In order to create a

histogram, a state machine is used to count the number of instances for each digitized

value (from 0 to 128). This is achieved by storing the counts of each digital value into a

second 129-cell on-chip SRAM, whose addresses represent the counters storing the

corresponding digital values. Then a state machine is utilized to find the median digital

value of the profile by adding up the counter values from low to high addresses. The

median value is then recorded and used as a divider that determines which memristor

cells are going to be reprogrammed to the high resistance state (those with larger values

than the median). All cells will be randomly split into two equal-numbered groups, LRS

and HRS profiles, after the reprogramming procedure. The random variations of LRS

19

determine how the resistance profiles for an specific NVM array

Fig. 2.2 Overview of the enrollment strategy for the proposed NVM-based PUF

distributes, with each generating a unique pattern as shown on the far right in Fig. 2.2 .

Therefore the generated bitstring between two different chips will be unique.

2.3.2 Memristor Basics and Key Features

Memristors have become a mainstream research topic because of their advantages as

novel memory primitives over conventional memory technologies including static RAMs

(SRAMs) and Flash memories. For example, Memristors have intrinsically higher

density, faster access speed and better energy efficiency [29]. Memristors are also

classified as a NVM technology, in which special write operations can be used to

configure cells into one of two (or more) resistance states.

A Memristor is an electrical switch that is able to retain internal resistance states

according to its history of applied voltage and current [30]. The different resistance states

can be sensed to generate logic '0's and '1's. Memristor write and read operations are

20

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1st SRAM: Digitized Values
(cell-to-cell mapped)

2nd SRAM: counts for Dig. Val.

Counts

Addr 1 2 3 …... 127 128

...

Dig. Vals

C
o
u
n
ts

median HRS

Resistance

C
o
u
n
ts

reprogram

LRS

...

...

...

...

...

...

...

...

...

LRS HRS

VDC

Upper halfLower half

Program all
cells to LRS

Digitize

Upper half

counting
Find median

reprogram

... ...

Random distribution
chip-to-chip

Store dig.
values

implemented by applying write or read voltage pulse patterns. Different patterns are used

for the reading and writing operations.

Fig. 2.3 shows the structure of a Memristor cell and the mechanisms used for read

and write operations. As shown in Fig. 2.3 (a), a Memristor cell is composed of two

electrodes and a metal oxide doping layer sandwiched between them. The length of the

doping region w will be extended to the maximum length of D when the dopants are fully

constructed (doped), and reduced to 0 when dopants are completely destroyed (undoped).

The resistances of the completely doped region and undoped region can be represented

by Ron and Roff respectively. Equation (1) gives an expression for the overall resistance as

a function of the doping extent w.

(1)

The doping behavior can be controlled by applying voltage pulses of the appropriate

magnitude and duration as shown in Fig. 2.3 (b). The change in the doping characteristic

of the Memristor cell changes its resistance characteristics. This is depicted in the figure

and labeled as LRS for low resistance state and HRS for a high resistance state, which

corresponds to a logic '1' and '0', respectively. To write a logic '1', V in should generate a

positive square voltage pattern with magnitude VA and time duration TW1. To ensure a

successful write, the magnitude of VA must be larger than the threshold write voltage of

Vth,w1 and the duration TW1 must be longer than Tth, w1. Similarly, the operation for writing

a logic '0' requires a negative write voltage -VA with duration of at least Tth, w0. Note that

some memristors cannot be configured properly after manufacture until being

conditioned with a larger formation voltage Vf [32]. We assume memristors used in our

21

R(w)=Ron⋅(
w
D

)+Roff⋅(1−
w
D

)

enrollment algorithm have been “formed” for normal configurations. To perform a read

operation, a voltage pulse pattern is required that is composed of a negative pulse

followed by a positive pulse with equal magnitude and duration [31]. The negative pulse

is used to detect the current internal state but it also perturbs the doping state of the cell.

The subsequent positive pulse is designed to re-generate the doping conditions and

corresponding resistivity of the original state. This pattern of read pulses is illustrated in

Fig. 2.3 (c), which also shows when the corresponding output value is available for

reading, in particular, the intervals t1-t2 for read '1' and t4-t5 for read '0'.

Fig. 2.3 The structure of a memristor cell and its write and read scheme. (a)

memristor device structure and equivalent model [30]. (b) Write scheme. (c) Read

scheme [31].

Fig. 2.4 shows the histogram of the HRS and LRS variations extracted from a 1600

Memristor devices (40*40 nanocrossbar array) [33]. The spread in the distributions

illustrate that the resistance of a Memristor cell after a write operation varies

22

B
E

T
E

Write '0'

t

 V
th, w1

Write '1'
0

T
w0

T
w1

LRS HRS

-V
th,w0

Doped

w

Undoped

Vin

A

B
E

T
E

B
E

T
E

RoffRon

Doped Undoped

Roff(1-w/D)

D

Dopants

TE

BE

Top eletrode

Bottom eletrode

t

Read '1'

0

t
1

T
R

T
R

t
2

w(t)/D
1

T
R

T
R

toutput

0.5

1

t0

0

t
4

t
5

t
0

t
3

OH

OL

Vin

VA

-VA

Vin
VA

-VARon(w/D)

0.5

w = 1 w = 0

Read '0'

(a) (b) (c)

considerably, and is due to process variations and voltage variations over the t of the

write operation. This characteristic makes it challenging to use Memristor cells for a PUF

in cases where the resistance variations within either of the two states are used as the

source of entropy. This is true since the read operations that take place during

regeneration also change the resistance characteristics of the cells, which in turn increases

the probability of a bit flip.

Fig. 2.4 Histogram of the HRS and LRS resistances variations extracted from a

40*40 nano-crossbar array (1600 devices) [33].

2.4 VDC and Proposed PUF Architectures

In this section, a voltage-to-digital converter is introduced that is used to digitize the

sensed analog voltage from the Memristor cells. This is followed by presenting a circuit

level modification that is able to use the Memrisor cells as PUF primitives. The

enrollment scheme that is based on these two critical modules is illustrated in detail to

demonstrate how we can use a median-finding algorithm to eliminate helper data.

23

Cell resistance (Ohms)

Vs

N
u

m
b

er
 o

f o
cc

ur
re

nc
e

200

150

100

50

0

50K 100K 500K 1M 5M 10M 50M 100M 500M

LRS HRS

2.4.1 Voltage-to-Digital Converter (VDC)

The PUF structures that we propose require the measurement and digitization of a

value proportional to the resistance of Memristor cells in the LRS. The proposed

architectures, which are described in the following sections, provide a voltage from a

voltage divider network(s) that is proportional to the LRS resistance.

The voltage-to-digital converter (VDC) shown in Fig. 2.5 is capable of digitizing

these voltages [34]. The VDC has two voltage inputs, labeled VoltInUpper and

VoltInLower, two digital inputs labeled e1 and e2, and two delay chains (upper and lower)

connected to a sets of latches. The voltage inputs connect to NFET transistors inserted in

series with the odd-numbered inverters of the delay chains. Voltages less than VDD

introduce additional delay through these inverters that is proportional to the applied

voltage as an edge propagates down the inverter chains.

The function of the VDC is to create an 8-bit digital value between 0 and 128 that is

related to the voltage present on the VoltInLower input. This voltage is derived from the

voltage divider network and is always smaller than the supply voltage (VDD). The

digitization process is started by the Edge Generator, which launches a rising edge onto

e1 and then after some delay, a second rising edge onto e2 as shown in the figure. Under

the condition that the voltage on VoltInUpper is sufficiently larger than the voltage on

VoltInLower, the e2 edge catches up and passes the e1 edge. The latches on the outputs of

the even inverters in the delay chains record the point at which this happens as a

thermometer code (TC). A TC is a sequence of '0's (or '1's) followed by a sequence of '1's

(or '0's). The number of '1's (or '0's) in the TC reflects the magnitude of the difference

24

between the two applied voltages. We refer to the number of '1's in the 128 latches

connected to the lower chain as a TCV. In our proposed implementation, the voltage

applied to VoltInUpper is VDD as a means of ensuring that it is always larger than the

voltage to be digitized on VoltInLower. The wide range of resistance variations that occur

in the LRS states of Memristors cells produces a wide range of voltages that need to be

digitized by the VDC. Moreover, TV environmental variations also impact the timing

behavior of the VDC. The Edge Generator component of the VDC is used in a calibration

process to ensure that the VDC is able to produce useful digital values under these

Fig. 2.5 Voltage-to-Digital Converter (VDC)

 conditions, where 'useful' is defined as values above 0 and less than the overflow value

of 128. Calibration tunes the t between e1 and e2 edges, maximizing the sensitivity of

the VDC to specific ranges of voltages, and allowing it to accommodate for TV

25

variations. The transfer curve characteristics and calibration process are described below

in the context of an example.

2.4.2 Proposed Memristor PUF

 Fig. 2.6 (a) shows the architecture proposed in [31] for a Memristor-based NVM,

with the exception of the switch on the left side of the diagram (which is needed only for

the PUF). The resistance of this switch, implemented as a pass gate with very wide

transistors, is very low, e.g., on order of 50 Ohms or less.

This switch is closed when the memory is accessed for normal read and write

operations. In this case, the Pulse Generator labeled Vin delivers pulses to a selected set

(or word) of Memristor cells according to the diagrams shown earlier in Fig. 2.3 . For

normal read operations, the R/W Enable switch is set to the 'Read' position, which creates

a voltage divider network between Vin, across the Memristor cell and resistor Rx to

ground. The resistance of Rx is set to a value of approx. (Roff + Ron)/2 so that VX will be

larger than Vref (half of Vin) when the cell is programmed to its LRS and smaller than V ref

when programmed to HRS. In this way, VO will be VH (logic '1') when the Memristor cell

is in LRS and VL (logic '0') when the cell is in HRS. From the distributions shown in Fig.

2.4 , the value of Rx would be approx. 10 M. The modifications shown in red in Fig.

2.6 (b) are required in order to allow the Memristor memory to be used as a PUF. The

large, low resistance switch is disabled and instead a high resistance, approx. 400 K,

switch is enabled. This switch is also connected in series between the Pulse Generator

and the Memristor array. The value of 400 K is the resistance near the midpoint of the

26

R/W Enable

Write

Floating

Read

RX

+

-
VO

VH

VL

Vref

Sense Amplifier
~

Vin

WR

RR

VX

~50 Ohms

distribution of LRS programmed Memristor cells from Fig. 2.4 . Therefore, when a

Memristor cell that is programmed in its low resistance state is enabled, the voltage on

the voltage divider network is a value between 200 mV and 882 mV (with VDD at 1.0V).

These values are obtained by using the extreme values of the LRS distribution in Fig. 2.4

. For example, 200 mV is obtained from the voltage divider network expression (100

K/500 K). This voltage is delivered to the VoltInLower input of the VDC, as shown

(a)

(b)

Fig. 2.6 (a) Circuit structure proposed Memristor memory [31]; (b) Modifications

needed for proposed Memristor PUF.

 along the bottom of Fig. 2.6 (b).

27

WR

Digitize

400K Ohms

~

R/W Enable

Write

Floating

Read

RX

+

-

VH

VL

Vref

Sense Amplifier

RR

VX

VDC

VO

VoltInLower

VoltInUpper

VDD

Most memory architectures are byte or word addressable, which means that multiple

Memristor cells are accessed simultaneously. The arrangement shown in Fig. 2.6 (b), on

the other hand, assumes that each Memristor cell is individually addressable, i.e., the

word-size of the PUF implementation is 1 bit. Therefore, an architecture level change is

needed in addition to the components of Fig. 2.6 (a) and Fig. 2.6 (b) in order to convert

the Memristor array into a PUF.

2.4.3 Enrollment Algorithm

As indicated earlier, the enrollment process leverages the random resistance

variations in the Memristor cells as the source of entropy, and then uses the

programmability of the Memristor cells to eliminate helper data. The enrollment

algorithm that accomplishes these goals is given as follows:

1. The controller for the memory is instructed to program all Memristor cells to the

low resistance state. This is accomplished as a 'normal' write 1 operation as described

earlier with the large, low resistance pass gate switch enabled.

2. The controller is again instructed to sequence through a set of write operations but

this time with the high resistance switch enabled and exactly one Memristor cell selected,

i.e., the R/W enable signal is set to 'Write' while all other cells in the array are set to

'Floating'.

3. Immediately after the write pulse is asserted, a start signal is issued to the VDC to

begin the digitization process.

4. The 8-bit digitized value from the VDC is stored in an on-chip SRAM memory at

28

the address corresponding to the tested Memristor cell.

5. Once all cells in the Memristor array are digitized, a state machine creates a

histogram of the digitized voltages stored in the SRAM. The histogram is created by

using the digitized values as an address into a second on-chip SRAM, whose storage

locations represent counters recording the number of instances of a particular digitized

voltage.

6. A state machine parses the histogram data from low to high address, adding up

the counter values. The memory address of the median value, which partitions the array

of elements into two equal-sized groups, is recorded.

7. The state machine then parses the first SRAM, comparing the stored digitized

voltage with the median. The Memristor array is again placed in normal write mode and

those cells whose value exceeds the median are re-programmed to the HRS.

8. A bistring is constructed using a sequence of normal read operations, which are

designed to preserve the LRS or HRS of the programmed Memristor cells. The sequence

of read addresses can be generated as a linear sequence or by using a linear-feedback-

shift-register to generate the sequence pseudo-randomly.

The ordering of the Memristor cells from left to right within the histogram is

random for each chip, and therefore, the bitstrings will be unique across chips. Also, the

large threshold between the two distributions makes it possible for the bit generation

algorithm to succeed in reliably making the same decision about whether the Memristor

cell is in a LRS or HRS, thereby eliminating the need for helper data.

29

Note that resistor divider network reduces the 'write' voltage during the digitize

operation, in most cases to a value below the threshold shown in Fig. 2.3 (b). Therefore,

changes in the actual resistance value are likely to be very small. However, the

enrollment process as described is robust to these types of resistance changes so they are

of no consequence.

2.5 Evaluation Using Measured data

This chapter demonstrates the practicability of the enrollment process using the

measured data from [33]. Fig. 2.7 shows that resistance variations of the LRS

programmed Memristor devices ranging from approx. 100 K to 3 M and the profile

does not have to be Gaussian. A robust feature of our proposed median finding algorithm

is that we do not need to build the voltage divider network and VDC to digitize this entire

range. In fact, only the values in the middle of the distribution, i.e., in the range of 200 K

to 1 M, need to produce non-underflow (0) and non-overflow (128) TCVs within the

VDC.

The transfer curves in Fig. 2.8 indicate that the VDC operates best for VoltInLower

values in the range of 300 mV to 800 mV (for VDD of 1V), where it produces TCVs in the

range from 5 to 120. Note that this range can be adjusted using calibration to

accommodate process and TV variations, as shown by the dotted curves. Calibration tunes

the t between e1 and e2, effectively shifting the curves horizontally. Setting the high

resistance switch in Fig. 2.6 (b) to approx. 400 Kproduces voltages of 333 mV when the

30

Memristor cell is 200 K and 714 mV for Memristor cells at 1 M Such calibrated

voltage range (from 333 mV to 714 mV) fits the best region for voltage digitization of

VDC.

Fig. 2.7 VDC measured range for the measured LRS data profile from 1220 memristor

cells in [33].

Fig. 2.8 Typical transfer Curves for VDC.

31

0 300 800 1000

128

Voltage divider output (mV)

Larger e1/e2 t

120

5

T
C

V

Cell resistance (Ohms)

50K 100K 500K 1M

N
um

be
r

of
 o

cc
ur

re
nc

e
200

150

100

0

50

HRS LRS

pr
og

ra
m

rem
ain

median

VDC Measured range

200K~1M

32

CHAPTER 3

PUF-Based Authentication

 In the context of hardware systems, authentication refers to the process of confirming

the identity and authenticity of chip, board and system components such as RFID tags,

smart cards and remote sensors. The ability of physical unclonable functions (PUF) to

provide bitstrings unique to each component can be leveraged as an authentication

mechanism to detect tamper, impersonation and substitution of such components.

However, authentication requires a strong PUF, i.e., one capable of producing a large,

unique set of bits per device, and, unlike secret key generation for encryption, has

additional challenges that relate to machine learning attacks, protocol attacks and

constraints on device resources. In this chapter, we describe the requirements for PUF-

based authentication, and present a PUF primitive and protocol designed for

authentication in resource constrained devices. Our experimental results are derived from

a 28 nm Xilinx FPGA.

3.1 Introduction

Authentication is traditionally characterized as a process that verifies “something you

know”, e.g., a password, “something you have”, e.g., hardware one-time-password tokens,

and “something you are”, e.g., your fingerprints. Multi-factor authentication requires two

or more of these components from different categories. PUF-based authentication provides

individual devices with a set of passwords (bitstring responses to challenges) that uniquely

identify it (a fingerprint), so in this sense, it can be characterized as a multi-factor

33

authentication mechanism. PUFs derive their fingerprint from random variations that

occur in the manufacturing process of a chip or board. For example, a delay-based PUF

measures and digitizes variations that occur in paths and/or gates within the chip or along

wires in a printed circuit board (PCB) [35]. Although we use variations in path delays as

the entropy source in this paper, there are many other sources of variations that can be

leveraged, as is evident from the published literature on PUFs.

PUFs have been proposed for other types of applications including encryption, for

detecting malicious alterations of design components and for activating vendor specific

features on chips. Each of these applications has a unique set of requirements regarding

the security properties of the PUF. For example, PUFs that produce secret keys for

encryption are not subject to model building attacks (as is true for PUF-based

authentication) which attempt to ‘machine learn’ individual path delays for a chip as a

means of predicting the complete response space of the PUF. This is true for encryption

because the responses to challenges are typically not ‘readable’ from an interface on the

chip. In general, the more access a given application provides to the PUF externally, the

more resilience it needs to have to adversarial attack mechanisms.

Authentication as an application for PUFs clearly falls in the category of extended

access. The term ‘hardware token’ or prover is typically used to identify a fielded device

that embeds the PUF, such as a smart card, and the term ‘secure server’ is used in

reference to the verifier.

Applications such as authentication require a strong PUF, i.e., a PUF that can

produce a very large number of challenge-response-pairs or CRPs. Challenges and

34

responses are the digital inputs and corresponding outputs of the PUF. In order for

authentication to work, it must be necessary and impractical for an adversary to apply all

possible challenges to the PUF on a chip as a means of obtaining all of its responses.

Making this infeasible makes it impossible for an adversary to build a ‘clone’ of the chip

that replicates the CRP behavior. However, the requirement of a very large CRP space is,

in general, challenging to meet for PUFs. It requires a large source of entropy, which can

become expensive area-wise when the PUF is implemented using dedicated and

specialized components.

Authentication is typically characterized as having two phases: enrollment and

regeneration. Enrollment occurs immediately after manufacture and involves the verifier

generating a random set of challenges which are applied to the token to generate a

corresponding set of responses. The set of CRPs are stored on the verifier for each chip

individually in a secure environment. The stored CRPs can then be used to carry out

authentication in the field with the token. The verifier only needs to store a limited set of

CRPs in the secure database because the very large CRP space of the strong PUF

combined with the secrecy of the chosen CRPs makes it difficult or impossible for an

adversary to know how to respond using a clone of the token.

Bear in mind, authentication can also be implemented by having the PUF generate a

secret key for encrypting communication between the prover and verifier. The enrollment

process involves the PUF generating a shared key that is stored on the server through a

one-time interface, i.e., an interface that can be disabled, along with helper data. The

helper data is later transmitted to the token as needed for authentication in the field to

35

enable precise regeneration of the key. The token in this scenario needs to incorporate an

encryption algorithm, which adds to the required resources. Although this method requires

only a weak PUF that is capable of producing only a small number of bits (a plus), the

encryption operation carried out by the token is subject to side-channel attacks that

attempt to learn the key (a minus). Once learned, the security mechanism is defeated.

Therefore, strong PUFs that have a very large CRP space provide an advantage by making

it infeasible for an adversary to extract all the secrets embedded in each token.

Most authentication proposals also limit the amount (or eliminate completely) the

need for helper data and instead allow for fuzzy matching to occur between server stored

responses and those generated in the field by the token. In other words, a small number of

differences are tolerated in the response bitstrings. Although fuzzy matching reduces the

storage requirements for the verifier by eliminating the helper data, it also increases the

possibility of aliasing and impersonation, i.e., the likelihood that two devices produce the

same responses (within the noise margin).

In this chapter, we propose a hardware-embedded delay PUF called HELP as a strong

PUF for authentication. HELP leverages entropy present in functional units already

present in the chip, and therefore, it does not require the insertion of dedicated

components. Moreover, the overhead associated with integrating HELP into functional

unit is very small relative to the size of the functional unit. HELP is unique in that it

leverages delay variations in structures that are not identical and implicitly provides

tamper protection of the functional unit(s). This paper contributes beyond previously

published work in [36]Error: Reference source not found in the following ways:

36

• We implement HELP on a Xilinx 28 nm 7020 Zynq chip embedded on AVNET’s

Zedboard [38] using both glitchy and glitch-free functional units as the source of

entropy and analyze the statistical quality of the bitstrings.

• We isolate and analyze entropy introduced from multiple sources and discuss the

trade-offs and impact on security.

• We propose an authentication protocol using HELP.

3.2 Related Work

An excellent survey and critical review has been recently published that covers the

state-of-the-art with regard to PUF authentication for resource constrained devices [39].

The criteria used to review the existing methods assume a low-cost resource constrained

token and resource-rich server, and the use of a strong PUF. The authors indicate that

protocols which require NVM are less attractive because of the increased cost of

manufacturing of NVM components in CMOS technologies and because of recently

disclosed vulnerabilities of NVMs to probing attacks. The PUF protocols proposed in

[40]-[56] are evaluated against the following characteristics [39]:

• Resilience to measurement and temperature/voltage (TV) noise sources.

• Resilience to machine learning via use of cryptographic hash functions and XOR

functions as needed.

• Are techniques needed to expand the response space (PRNG) of the strong PUF?

• Ease of instantiation of the PUF authentication mechanism.

37

• Resistance to protocol attacks, i.e., token and/or server impersonation and denial

of service attacks.

The authors conclude that the main problems with the protocols are rooted in the PUF

itself and that research should focus on developing a truly strong PUF with solid

cryptographic properties.

3.3 Overview

3.3.1Goals and Objectives

One of the goals of this work is to isolate and characterize the main sources of delay

variations (the entropy source) on the chip, namely, 1) within-die delay variations that

occur within individual FPGA LUT primitives, 2) global delay variations that occur across

all LUTs on the chip and 3) delay variations introduced by static and dynamic logic

hazards. All of these sources of variations change the delay characteristics of paths

uniquely on each chip.

A key objective is to determine the magnitude of these variations with respect to

measurement and temperature/voltage (TV) noise sources. We refer to this noise as “TV

noise” since TV dominates even when repeated sampling and TV compensation

techniques are applied. TV noise works to impede access to the entropy provided by delay

variations, and reduces the amount of usable entropy. Delay variations introduced by

within-die process variations are relatively small even when measured through a single

LUT. On the other hand, global variations and variations introduced by hazards are well

above the TV noise margin, making them attractive as a source of entropy. However, there

38

is a downside to leveraging these larger sources of entropy as discussed below.

We integrate HELP into a GF(4) subcomponent and a full-blown GF(256) version of

the Advanced Encryption Standard (AES) SBOX functional unit [57]. The GF(4) version

can be implemented using a logic depth of 1, which allows individual LUT delays to be

analyzed. We implement the GF(256) in two ways referred to as: Standard: without any

type of special logic style or constraints and WDDL: without glitches using wave-

differential dynamic logic [58]. The Standard implementation includes all three sources of

entropy. Inter-chip hamming distance (HD), Inter-chip HD and the results of NIST

statistical tests are reported to understand the trade-off of the two logic styles on bitstring

generation and reproduction [59][60].

A modulus technique is used in combination with a helper data string as a mechanism

to maximize the strength of the cryptographic properties of the PUF in the proposed

authentication protocol. Glitch-free logic implementations of the functional unit, such as

WDDL, provide a distinct advantage in resource-constrained authentication applications

by reducing bit flips while improving access to the limited, but most important source of

entropy, namely that provided by within-die variations.

3.3.2 Attack Scenarios and Assumptions

Traditional “resource-constrained” applications such as RFID and smart cards utilize

memory, small microcontrollers and/or ASICs for implementing functions. The attack

models and assumptions that we describe in the context of FPGAs can be extended to

these implementations as noted below. Although HELP is proposed as an FPGA

authentication mechanism in this paper, the concept and techniques presented are also

39

applicable to ASIC implementations [36].

Secure computing using FPGAs requires encryption of the programming bitstream.

Modern FPGAs integrate encryption/decryption modules, and NVM-based key storage

mechanisms, to support this requirement. Beyond protecting Intellectual Property,

encryption also prevents tampering with the design. Although our technique can detect

tamper within functional unit(s), we assume an attacker is not able to defeat the bitstream

encryption mechanism. No security mechanism, PUF or otherwise, is secure if this

requirement is not met.

We consider two attack scenarios. First, the adversary can gain (temporary)

possession of the token and attempt to read out all responses or enough of them to

“machine learn” the entropy source. Once known, a clone can be ‘programmed’. In

general, strong PUFs can significantly impede, or make impossible, the success of this

type of attack. For PUF architectures in which machine learning is effective, the proposed

protocols typically incorporate obfuscation mechanisms to prevent direct control of the

PUF and observation of its responses. The second attack mechanism is similar except that

the adversary carries out a ‘man-in-the-middle’ attack, i.e., he or she listens to exchanges

between the token and the server.

. Other types of attack scenarios can be avoided. For example, some protocols require

one-time interfaces to be present during enrollment but such interfaces can be ‘undone’

using focused ion beam techniques. Still other protocols require the use of small NVMs,

which add cost and weaken security because ‘read-out’ mechanisms are becoming

increasingly effective. Therefore, avoiding one-time interfaces and NVM is a plus.

40

3.4 Experimental Setup

3.4.1 HELP Overview

HELP measures path delays using a simplified version of an embedded test structure

called REBEL [36]. The simplified version eliminates the delay chain component and

instead samples the path delays at the capture FF directly. Fig. 3.1 shows the test setup

with the ‘functional unit’ or FU representing the entropy source. The inputs and outputs of

the FU are connected to a set of Launch Row and Capture Row flip-flops (FFs), resp.

 Fig. 3.1 Configuration of the AES SBOX FG(4) [57].

The delay of a path is determined using the fine phase adjust feature of a Xilinx

embedded MMCM (mixed mode clock manager). A series of launch-capture clocking

events are applied to the functional unit using two clocks, Clk1 and Clk2, as shown on the

left side of . The phase shift between Clk1 and Clk2 is adjusted dynamically across the

sequence of launch-capture tests. The digitally selected value of the fine phase shift

between the two clocks is referred to as the launch-capture interval (LCI). The smallest

41

LCI interval that allows the propagating edge along a path to be captured in the capture FF

is used as the digitized timing value for the path. The MMCM on the Zynq FPGA clocked

at 25 MHz provides a resolution of 18 ps. Digital values between 150 (smallest LCI with

value of approx. 18 ps * 150 = 2.7 ns) and 2,200 (largest LCI with value approx. 39.6 ns)

are used as the path delay value. The repeated testing of the FU at different LCIs is

referred to as clock strobing. The LCI used to represent the delay of a path is referred to a

PUFNum or PN. The signed difference of two randomly selected PNs is referred to as a

PNDiff.

3.4.2 TV Compensation

The majority of the delay variations introduced by changes in temperature and voltage

is removed by applying a TV compensation process. TV compensation is carried out by

computing the mean (offset) and range (multiplier) from a set of PNDiffs for each chip

and for each TV corner separately. The offset and multiplier computed during enrollment

are used with the offset and multiplier computed at each TV corner to compensate the

PNDiffs generated at the TV corners using Eq. (3.1) And Eq. (3.2):

zvali=
(PNDiff TV x

−μTV x
)

rngTV x

 (3.1)

PNDiffs
TVComp

=zval
i
⋅rng

TVEroll
+μ

TVEnroll (3.2)

Here, zvali represents a standardized PNDiff after subtracting the mean and dividing

by the range computed using a set of PNDiffs produced at the TV corner, TVx, for a

42

specific chip. The individual zvali are then transformed using the mean and range

computed earlier for the same chip during enrollment, i.e., at TVEnroll. We refer to the

PNDiffs generated during enrollment as the reference. This linear transformation is very

effective at eliminating the shifting and scaling that occurs to path delays at different TV

corners (note: using the PNDiffs directly without this type of compensation does not

compensate for scaling).

 Fig. 3.2 Example rising and falling path PNs (top), random pairings of rising and

fall PN differences (middle), PN differences modulo 64 (bottom).

3.4.3 Bit Generation Algorithm

The bit generation uses the signed difference in two path delays (PNDiff) as a means

43

of both hardening the algorithm against model building and increasing the diversity in the

PUF responses. A ModPNDiff is defined by computing a signed difference between two

arbitrary selected PNs, and then applying a modulus. The modulus is necessary because

the paths in the FU vary in length, for example, in our experiments, short paths consist of

1 LUT while the longest paths consist of 13 LUTs, which is captured in the PNDiffs. The

modulus removes the ‘path length’ bias while fully preserving the smaller within-die

delay variations.

For example, the top of Fig. 3.2 (a) shows two sets of waveforms labeled ‘Rising

edge PNs’ (black) and ‘Falling edge PNs’ (blue). The points in the waveforms represents

the delay values (PNs) measured from a set of paths in chip C1 in the AES SBOX GF(4)

experiment. Each group of waveforms with similar shape and color represent the PNs

measured at each of the 10 TV corners after a TV compensation method is applied (a

process identical to the TV compensation applied to the PNDiffs described above). The

vertical spread in the 10 points represent uncompensated TV noise. The waveforms

shown in (b) represent the PNDiffs computed from randomized pairings of rising and

falling edge PNs in (a). Although only chip C1 data is shown, the shape of the difference

waveforms is similar for other chips because of the path length bias. The ModPNDiffs

shown in (c) are the result of applying a modulus of 64 to the PNDiffs in (b). The

modulus effectively ‘wraps’ all differences into the range of 0 to 63 and reduces and/or

eliminates the bias. The bit generation algorithm assigns ModPNDiffs in the range from 0

to 31 as ‘0’ while those in the range of 32 to 63 are assigned ‘1’.

The red circles on points 10 and 14 show bit flips. Bit flips occur when some, but not

44

all, of the 10 points in each group cross over one of the boundaries given by 0 or 63. An

additional bit flip is shown by the blue circle for point 4, where the points cross over the

boundary between ‘0’ and ‘1’. The close grouping of the 10 points makes it is possible to

apply a predictive screening process that avoids most/all of these bit flips as we show

below. Moreover, the modulus parameter can be used to remove bias as described but it is

also useful for increasing the input-output space of the HELP PUF, which is also

discussed in the following sections.

3.4.4 Functional Unit Synthesis Flow

 Fig. 3.3 Process Flow

The AES SBOX is used as the functional unit in our experiments because its

interconnection implementation structure is random and complex. Although only the

SBOX is used in this work, the technique can be extended to the full implementation of

45

AES and other types of functional units (see [36] and [37]). As indicated earlier, we

implement the SBOX using a special glitch-free logic style called WDDL [58] as a means

of distinguishing between the underlying sources of entropy, and as a means of improving

the reliability of HELP. WDDL eliminates functional and logic hazards by imposing

stimulus constraints and restricting the implementation to use only AND and OR gates.

WDDL is proposed as a mechanism to harden a design unit such as AES against side-

channel attacks, and therefore, also attempts to eliminate information in the power

curves. This latter feature is not required to improve the reliability of HELP and

therefore, we are also looking into simpler glitch-free-only strategies that have less area

overhead [61]. The benefit of WDDL is that it is simple to implement and provides a nice

test bed for evaluation of glitch-free logic implementation.

Fig. 3.3 illustrates the design flow followed to implement the WDDL version of the

AES SBOX. A behavioral VHDL description of the SBOX along with a standard cell

library are used as input to the CADENCE RC synthesis tool. The standard cell library

only includes 2-input to 6-input AND and OR gates to match the LUT capabilities on the

FPGA, and a NOT gate. No timing constraints were used in the synthesis and therefore,

RC optimized for area.

A structural netlist consisting of only AND, OR and NOT gates represents the output

of the synthesis. This file along with a set of synthesis and implementation constraints are

processed by a perl script to produce a WDDL version of the netlist. One example

transformation is shown in the figure where a AND gate followed by an NOT gate is

converted to a complementary pair of AND/OR gates, with the outputs swapped for

46

connections downstream as a means of emulating (and eliminating) the NOT gate.

The WDDL version therefore is constructed by creating a complementary OR gate

(with complementary inputs) for all existing AND gates, and vise versa. The 8 primary

inputs of the SBOX are also replicated and are driven with complementary values during

evaluation. The operation of WDDL consists of two phases: a pre-charge phase in which

all primary inputs (including the complementary inputs) are driven with ‘0’. This forces

‘0’s on the inputs and output of all gates throughout the circuit. The evaluate phase

applies the true and complementary values to the 8 true and complementary primary

inputs, resp., and causes a set of rising transitions to propagate through the circuit. For the

SBOX implementation, half of the true outputs and half of the complementary outputs

transition on average during evaluate. Therefore, for each of the 256 possible input

transitions, i.e., from 0000000->xxxxxxxx, 8 PNs are obtained to produce a total of 2048

PNs. Another 2048 are obtained for the precharge phase, i.e., from xxxxxxxx->00000000,

so a total of 4096 PNs are produced, from which a set of 2048 PNDiffs can be uniquely

constructed.

From Fig. 3.3 , the WDDL version of SBOX is combined with the HELP engine

(described using behavioral-level VHDL) in a project that is processed by the Xilinx

Vivado synthesis and implementation tool. The constraints added by the perl script

prevent the FPGA synthesis and implementation tools from optimizing the WDDL

structural netlist. The programming bitstream generated by Vivado is then used to

program the Xilinx 7020 Zynq chip on a Zedboard [38], which is placed in a temperature

chamber.

47

We also synthesized AES SBOX GF(4) and GF(256) versions using a standard

synthesis flow to serve as a comparison to the WDDL implementation. The flow for the

standard versions simply uses VHDL descriptions of the GF(4) and GF(256) as input to

the Xilinx Vivado synthesis tool without any constraints. We instantiate two copies of the

GF(256) in the standard version, with the inputs to the 2nd copy complemented, to model

the complementary network within the WDDL version as a means of making the two

implementations as similar as possible. A similar strategy is used for the GF(4) except

four copies are instantiated (each copy has only 4 inputs/outputs). The input transition

sequence used for the WDDL version are also used here. Note that there are significant

differences in the resource usage by the two GF(256) versions, however. For example, the

standard version uses 80 LUTs in a 2-level logic structure while the WDDL version uses

756 LUTs in a multi-level logic style of up to 13 levels. The GF(4) has only 16 LUTs in 1

level of logic and therefore allows a single LUT delay to be measured.

3.5 Experimental Results

We ran our experiments on 30 copies of the Zedboard [38]. Commercial grade 7020

Zynq chips are incorporated on the Zedboard, which restricts the temperature range

between 0C and 85ooC and the operating voltage between 0.95 V and 1.05 V (5% around

the nominal 1.00 V). The Agilent precision power supply and ESPEC temperature

chamber are controlled using a LABVIEW program running on a host computer. The

Zedboards were tested at 25oC, 1.00 V, which we use as enrollment data, and 9

regeneration corners, which includes all combinations of three temperatures, 0oC, 25oC

48

and 85oC and three voltages, +/- 5% and nominal. The MMCM on the FPGA is

configured with a 25 MHz clock frequency.

 Fig. 3.4 Configuration of the AES SBOX GF(4) [57]

3.5.1 AES SBOX GF(4) Analysis

The goal of the GF(4) analysis is to determine the magnitude of within-die variations

in the shortest constructible path on an FPGA, i.e., paths with 1 launch FF, 1 LUT and 1

capture FF. Fig. XXXXXXXX shows the configuration synthesized by Vivado. Two

copies of the logic expressions for GF(4) given in [57], and two copies implementing their

inverse, synthesized to a set of 16 4-input LUTs labeled L15 down to L0. The inputs, e.g.,

in[7]/in[7] fan-out to the LUTs of the true and inverse copies, resp. and the outputs, e.g.,

out[7]/out[7], wire to a row of capture FFs. Given all inputs are applied simultaneously,

there is no glitching that occurs on the outputs even though the potential exists given the

diverse truth tables implemented with the LUTs. A 25 point sample of the 2048 PNDiffs

measured from the 30 chips at the 10 TV corners is shown in Fig. 3.5 . The PNDiffs are

49

computed by selecting a unique random pair (chosen by an LFSR) of PNs, one from the

rising paths and one from the falling paths (see Fig. 3.2 (a)). The groups of waveforms of

the same color shown along

 Fig. 3.5 TV compensated PNDiffs with (top) and without (bottom) global

variations for 30 chips.

the top have been TV compensated as described in Section 4.4.2, i.e., using the enrollment

values for each chip as the ‘reference’. The vertical offsets between the waveform groups

are caused by global (chip-wide) variations, i.e., variations in the overall performance

characteristics of the chips. Although global variations can be leveraged as a source of

entropy, similar to within-die variations, there are drawbacks to depending on it.

To illustrate this problem, the black waveforms shown along the bottom of Fig. 3.5

are again from the 30 chips but are TV compensated using a special process in which the

50

enrollment data from chip C1 is used as the reference for all chips. This effectively

eliminates the global variations and leaves only measurement noise, uncompensated TV

noise and within-die variations (WDV) (see label in figure). In a large population of chips,

it is highly likely that sets of chips will have the same level of global variations, so this

graph illustrates this case, where only within-die variations can be leveraged as a source of

entropy.

The magnitude of the noise sources is reflected in the width of the band of same

colored waveforms shown along the top of Fig. 3.5 . Measurement noise (with 16 sample

 Fig. 3.6 Histogram of enrollment delay variations using TV compensation of

PNDiffs with no global variations

averaging) is approx. 1 PN on average (approx. 18 ps), so the majority of the variation is

introduced by uncompensated TV noise. The mean value of variation, computed as the

mean of the 3 values of the 10 TV compensated PNDiffs, that remains in the waveforms

is on average approx. +/- 2.5 LCIs or 45 ps above or below the enrollment value, and the

51

worst case value is less than +/- 8 LCIs or 145 ps. This number is important since it

represents the amount of entropy that is lost, i.e., within-die variations less than this LCI

value are more difficult to leverage. Within-die variations are reflected in the change in

shape of the waveform groups for each chip. The magnitude of the variations introduced

by within-die variations is, on average, approx. 4x larger (20 LCIs) than the average

variation introduced by TV noise (5 LCIs), i.e., 360 ps vs 90 ps, resp.

 Fig. 3.7 Inter-chip HD and worst case and average case Intra-chip HD as a function

of PN modulus.

A quantitative analysis of the entropy provided by within-die variations is shown in

Fig. 3.6 using the 2048 PNDiffs from the 30 chips. The range across the 30 chips for each

of the 2048 PNDiffs is computed using the TV compensated waveforms shown along the

bottom of Fig. 3.5 , i.e., those without global variations. Only the enrollment PNDiffs are

considered here, so the histogram plots the distribution of the 2048 ranges without TV

52

noise. Given that measurement noise is very low, the shape of the histogram is

predominated determined by within-die variations. As indicated above, the average value

is close to 20 but the ranges vary from 10 to more than 40.

Fig. 3.7 provides a second quantitative analysis using the hamming distances (HD) of

bitstrings computed using the proposed bitstring generation algorithm and the

ModPNDiffs with and without global variations. The analysis is carried out over a set of

PN modulus (PNMod) values plotted along the x-axis. Inter-chip HD is computed by

counting the number of bits that are different in the 2048-bit bitstrings produced by two

chips during enrollment and then dividing by the number of bits. The values plotted are

the average Inter-chip HDs across all possible pairings of the bitstrings (30*29/2=435

pairings). Intra-chip HD is computed in a similar fashion except the pairings are defined

using the bitstrings produced at the 10 TV corners for each chip (10*9/2=45 pairings). The

value plotted is again the average computed across the 30 individual chip values. Worst-

case Intra-chip HD is simply the maximum value produced by one of the individual chips.

The curves for worst case and average case Intra-chip HD in Fig. 3.7 reflect the noise

levels, while the difference between the Inter-chip and Intra-chip HD curves reflect the

range of usable entropy. The results with global variation included are shown in black

while the results without global variations are shown in blue.

The bit flips created by uncompensated TV noise remains relatively constant

independent of whether global variations are present or not, as shown by the superposition

of the black and blue Intra-chip HD curves. The difference between the Inter-chip HD

without global variations and the worst-case Intra-chip curves varies between 0% on the

53

left to approx. 15% at the widest point around PNMod = 28. The worst-case Intra-chip HD

at PNMod of 48 is approx. 10% while the Inter-chip HD is approx. 20%. This suggests

that the average Inter-chip HD of a large chip population will be smaller than its ideal

value of 50% without some type of entropy amplification process. The Inter-chip HD with

global variations shows that the ideal value of 50% is nearly achieved for PNMods up to

approx. 64. Unfortunately, as just mentioned, this is not likely to hold true as the number

of chips used in the HD calculation increases well beyond the 30 available in our

experiments. Therefore, in these experiments and on this 28 nm FPGA, either entropy

amplification methods or other sources of entropy need to be leveraged to produce good

quality bitstrings.

3.5.2 AES SBOX GF(26), Standard vs. WDDL

The test setup for the Standard GF(256) and WDDL versions of the AES SBOX is

similar to that shown in Fig. 3.4. As indicated above, the structure of the Standard version

is un-constrained and therefore, is subject to static and dynamic hazards occurring

internally and on some outputs, which act to increase the occurrence of bit flips.

Fig. 3.8 (a) presents the statistical HD results in the same fashion as discussed in

relation to Fig. 3.7 . The results are very similar to the GF(4) version except for the

approx. doubling of the worst- and average-case Intra-chip HD over the GF(4) version.

The increase in bit flips is directly attributable to presence of glitching. Note that glitching

can increase both Intra-chip and Inter-chip HD. For paths whose delays are affected by

glitches consistently across all TV corners, the effect is beneficial because the path delay

typically changes by 10 to 100 LCIs, and therefore represents a significant source of

54

within-die variations. For those paths where the glitch is present at some TV corners and

disappears at others, the effect is detrimental, resulting in bit flips. The worst-case Intra-

chip HD and Inter-chip HD curves illustrate that both types occur because the distance

between the curves (and their shape) is similar to the corresponding curves shown in Fig.

3.7 . Although Inter-chip HD increases, this benefit is partially offset by the increase in

worst-case bit-flips. Average-case Intra-chip HD, on the other hand, only increases

slightly. Although we cannot present the results in detail here, it turns out that a small

subset of our chips have many more occurrences of the detrimental form of glitching than

the remaining chips. It was also possible to identify these glitchy chips by the difference in

their rising and falling delays as shown in Fig. 3.2 (a), using data from the WDDL version

of the AES SBOX. The falling PNs (blue waveforms) are offset downwards from the

rising PNs (black waveforms) in the extra glitchy chips, i.e., the falling delays are

noticeable smaller than the rising delays. The extra glitchy chip Intra-chip HDs are 3 times

larger than the less glitchy chips.

3.5.3 Margin Technique

Fig. 3.8 (b) shows the results after applying a Margin technique. The method

identifies PNDiffs during enrollment that have the highest probability of introducing bit

flips. The PN modulus technique illustrated in Fig. 3.2 shows several examples of bit flips

that occur at data points 4, 10 and 14. All of these data points are close to the lines that

represent the boundaries between ‘0’ and ‘1’, i.e, 0, 31 and 63. The Margin technique

classifies an enrollment PNDiff as ‘invalid’ if it falls within a small region (a margin)

around these boundaries. The margin is set ideally to the worst case TV noise level for

55

best results, but can be tuned according to the level of tolerance the server has to bit flips.

A helper data bitstring is constructed during enrollment that records the valid status of

each PNDiff data point. The helper data is stored on the server along with the margin,

PNMod, challenge and response bitstrings. During regeneration, the server sends the

margin, PNMod, challenge and helper data to the token, which uses the helper data to

discard the ‘weak’ bits in the response.

 Fig. 3.8 Hamming distance (HD) results without (a) and with (b) the Margin

technique for the Standard design.

The Margin technique significantly improves both the Intra-chip and Inter-chip HD

results, as shown on the Fig. 3.8 (b). We used a Margin of 7 as the threshold to identify

‘weak’ bits in the response. Inter-chip HD improves because the PNDiffs corresponding to

the generation of the ‘strong’ bits in different chips can now vary. This is true because

within-die variations cause PNDiffs for some chips to fall within the margins, while on

56

others, those same PNDiffs are outside the margins. Another important characteristic is the

lower sensitivity of the results to whether global variations are present or not, which we

indicated earlier is a highly desirable feature.

 Fig. 3.9 Hamming distance (HD) results without (a) and with (b) the Margin

technique for the WDDL design.

The size of the smallest bitstring generated by one of the 30 chips is also plotted in

Fig. 3.8 (b) to illustrate the overhead associated with the helper data. By selecting a

PNMod that is >= 64, the helper data bitstring is no larger than twice the size of the

response bitstring in the worst case. It is also possible to use the complement of the helper

data to generate a second response bitstring when the sum of the regions delineated by the

margins is equal to the sum of the ‘valid’ regions defined for ‘0’ and ‘1’. For example, a

57

PNMod of 64 as shown in Fig. 3.2 requires the margins to be set to 8, yielding valid

regions of size 16. The second response bitstring uses the same set of PNDiffs but first

adds an offset equal to 1/4 of the PNMod (16 in the example) before applying the modulus

operation, which effectively shifts the distribution and converts all of the previous ‘weak’

bits into ‘strong’ bits (and vise versa), thereby making the helper data to response data

ratio 1.

The results using the WDDL version are shown in Fig. 3.9 . The longer paths present

in the WDDL version are responsible for the improvement in the Inter-chip HD to nearly

ideal as shown on the left side in Fig. 3.9 (a). We confirmed this in a separate set of

experiments (not shown) in which the path lengths in the Standard version are doubled.

Therefore, longer paths improve Inter-chip HD but only in the case where global

variations are preserved, i.e., the Inter-chip HD curve without global variations shows a

very different result. The results using the Margin technique shown in Fig. 3.9 (b), on the

other hand, are nearly ideal with or without global variations. The Intra-chip HD curves

also illustrate that the majority of the bit flips that remain in the corresponding results

from Fig. 3.8 (b) are attributable to the glitches produced in the Standard version, i.e.,

margining is not effective for glitches because the change in delay is larger than the worst

case TV noise used as the margin. This is evident by the near 0 values for the worse case

and average Intra-chip HD for the WDDL version.

3.5.4 NIST Statistical Test Results

The enrollment bitstrings generated in each of these 8 experiments were used as input

to the NIST statistical test suite [60]. The small size of the bitstrings (largest is 2,048 bits),

58

allowed up to 10 of the 15 NIST tests to be applied. The test is classified as passed if at

least 28 of the 30 chip bitstrings pass the test. The NIST results are similar for the four sets

of results in Fig. 3.8 (a), where all tests are passed for PNMod values less than 64. The

PNMod of 64 represents a cut-off where some tests are failed but by only 2-3 chip in the

worst case. The fail rates increase for PNMods larger than 64, with only a few passing

some of the tests at the largest PNMod values. In contrast, the NIST results for the WDDL

experiments shown in Fig. 3.9 are good throughout the entire PN modulus range, with

only a few instances of fails, and by only 3 chips in the worst case. These results suggest

that glitchy implementations of the FU produce bitstrings of good statistical quality but

impose restrictions on the PNMod values, while glitch-free FUs are able to produce high

quality bitstrings under a wider range of modulus values.

3.5.5 ATPG Analysis of Entropy

We used CADENCE Encounter Test (ET) to analyze the number of paths in the

WDDL version of the AES SBOX. The underlying entropy source consists of both

individual LUT gate delays and the interconnect routing delays, which are combined in

unique ways and measured as path delays by HELP. Therefore, the number of paths

reflects the amount of entropy present in the functional unit. This analysis will help

support our claim that HELP is a strong PUF, with both a large input and output space,

when used with functional units in which the number of paths is exponentially related to

the number of its inputs.

A WDDL implementation contains two networks of interconnected logic gates (true

and complemented) that ‘cross-over’ at points where inverters occur in the original

59

network. The RC synthesized AND-OR-NOT version of the AES SBOX (see Fig. 3.3)

produced 26 NOT gates in a network of 570 total gates, so the number of cross-overs is

 Fig. 3.10 Proposed authentication protocol.

fairly limited. With 16 inputs, the expected number of paths would be 2^16 or 65,536. ET

reports 15,511 structural paths, which reflects the small interconnection structure between

the two networks. As expected, automatic test pattern generation (ATPG) reports that

98.6% of all paths are hazard-free robust testable, which indicates that the paths are

independent. Using the set of 512 WDDL vectors (Section 4.4.3), 37.8% of these paths are

tested, which indicates that the remaining paths can only be tested by violating the

complementary input patterns required with WDDL. However, testing the WDDL

implementation using illegal patterns is possible and recommended when operating the

functional unit in PUF mode.

60

3.6 Authentication Protocol

The proposed authentication protocol is shown in Fig. 3.10 . During enrollment, the

server generates random challenges, ci, PNModi and margini which are used by the token

as a seed to an LFSR (or a pair of LFSRs to enable arbitrary two vector sequences to be

applied). The PUF produces response ri and helper data hi, which are stored on the server

with the challenge information. In cases where global variations are utilized, a  and rng

are also computed for the chip and stored on the server (note these values can also be used

as a pseudo-id for the chip). The challenge is optionally passed through a cryptographic

hash function to increase the difficulty of model building attacks which attempt to

systematically apply a set of seeds designed to carry out path delay tests in a deterministic

manner. The hash makes it difficult to determine how to choose ci such that the output of

the hash is controlled to specific seed values. The XOR obfuscation function of the

response is optionally added for a similar purpose (note that only one of the input and

output obfuscation methods is needed). As indicated in [39], XOR networks amplify bit

flip behavior in r and therefore, are applicable only when Intra-chip HDs are very low.

Authentication is carried out in a similar fashion except for the direction of transmission of

the helper data, hi, and rng. Note that and rng are not needed if the PNDiffs are TV

compensated to a universal standard (which also eliminates entropy from global

variations).

As indicated, the margin and PNMod parameters are also beneficial because they

expand the CRP space. However, allowing these parameter to be set without constraints

can be used by an adversary to assist with model building. Our experiments suggest that a

61

hard coded margin or allowing only a small range of values, e.g., between 5 and 8,

accomplishes the goal of improving the statistics while maintaining a limited information

leakage channel. The same is true of the PNMod parameter, where only a limited set of

values should be allowed, e.g., restricting to powers of 2 also significantly simplifies the

implementation of the modulus operation while providing a ‘limited’ expansion of the

CRP space.

3.7 Summary and Conclusion

In this chapter, we investigated the strengths and weaknesses of using a delay-based

strong PUF for authentication. Glitch-free functional units were used as the entropy source

and shown to enhance the quality of the generated bitstrings. Within-die variations by

itself is not large enough to produce unique bitstrings across a large population of chips. A

margining technique is shown to significantly improve the statistical quality of the

bitstrings while adding moderately to the storage overhead in the secure database.

The following areas will be investigated in future work. We will investigate the use of

ATPG generated input vectors as challenges, which can target additional sources of

entropy represented by ‘random pattern resistant’ paths, that are not likely tested using an

LFSR scheme. We will also investigate enrollment schemes which store PNDiffs directly

through a one-time interface. These 8-bit values can then be used to generate a set (>> 8)

of bitstrings by changing the modulus and margin parameters, thereby improving the

storage efficiency on the server. Alternative, lower overhead, glitch-free logic

implementation styles will be investigated as an alternative to WDDL. Low power

62

techniques that only reduce the occurrence of glitches will also be investigated.

Although not reported on in this paper, we have also evaluated a voltage-based

enrollment (VBE) scheme, which uses the bitstrings generated at a fixed set of supply

voltages, in particular, those at the extremes of the specification range, and then records, as

weak bits in the helper data, those bits that flip in the regenerated bitstrings. VBE works

well to reduce the Intra-chip HD for normally synthesized functional units, i.e., those with

glitches. We also found significant diversity is created by the synthesis tool in path delays

and the corresponding bitstrings when inconsequential changes are made to the HDL,

which again can be used to expand the input/output space of HELP. Last, we are

investigating the applicability of techniques described here to board-level authentication as

described in [35].

63

CHAPTER 4

Leveraging Distributions in Physical Unclonable Functions

A special class of Physical Unclonable Functions (PUFs) referred to as strong PUFs

can be used in novel hardware-based authentication protocols. Strong PUFs are required

for authentication because the bitstrings and helper data are transmitted openly by the

token to the verifier and therefore, are revealed to the adversary. This enables the

adversary to carry out attacks against the token by systematically applying challenges and

obtaining responses in an attempt to machine-learn and later predict the token’s response

to an arbitrary challenge. Therefore, strong PUFs must both provide an exponentially large

challenge space and be resistant to machine-learning attacks in order to considered secure.

We investigate the security properties of a Hardware-embedded Delay PUF called HELP

in this paper. HELP leverages within-die variations in path delays within a hardware-

implemented macro (functional unit) as a random source of information for bitstring

generation. Several features of the HELP processing engine significantly improve its

resistance to model-building attacks. Most important is a novel linear transformation

proposed within the HELP processing engine for dealing with changes in delay introduced

by adverse temperature-voltage (environmental) variations. The technique also increases

entropy by making the measured path delay values dependent on the other values included

in the distribution used to generate the entire bitstring.

64

4.1 Introduction

A physical unclonable function (PUF) is a next-generation hardware security

primitive. Security protocols such as authentication and encryption can leverage the

random bitstring and key generation capabilities of PUFs as a means of hardening

vulnerable mobile and embedded devices against adversarial attacks. Authentication is a

process that is carried out between a hardware token (smart card) and a verifier (a secure

server at a bank) that is designed to confirm the identities of one or both parties [62]. With

IoT, there are a growing number of authentication applications in which the hardware

token is resource-constrained. Conventional methods of authentication which use area-

heavy cryptographic primitives and non-volatile memory (NVM) are less attractive for

these types of evolving embedded applications [63]. PUFs, on the other hand, can address

issues related to low cost because they can potentially eliminate the need for NVM.

Moreover, the special class of strong PUFs can further reduce area and energy overheads

by reducing the number and type of cryptographic primitives and operations.

A PUF extracts random information (entropy) from variations in the physical and

electrical properties of ICs, that are unique to each IC, as a means of generating digital

secrets (bitstrings). The bitstrings are generated on-the-fly when needed, and are

reproducible under a range of environmental variations. The ability to control the precise

generation time of the secret bitstring and the sensitivity of the PUF entropy source to

invasive probing attacks (which act to invalidate it) are additional attributes that make

them attractive for authentication in hardware tokens.

Most proposed PUF architectures require the insertion of a dedicated array of

65

identically-designed test structures and are classified as weak PUFs because of their

limited number of challenge-response-pairs (CRPs). Authentication applications reveal

both the challenges and responses during authentication operations and therefore weak

PUFs are not suitable. Strong PUFs, on the other hand, are able to produce an exponential

number of challenge-response-pairs (CRPs) but in order to be considered secure, they

must be resistant to model-building attacks.

The hardware-embedded Delay PUF (HELP) analyzed in this paper generates

bitstrings from delay variations that occur along paths in an on-chip macro, such as a

cryptographic primitive. Although it is possible to construct a hardware instantiation of the

functional unit which possesses an exponential number of paths, in an attempt to meet

strong PUF requirements, this is not necessary for HELP for several reasons. First, unlike

other strong PUFs, the task of generating challenges, i.e., test vectors that test all the paths

in a moderately complex functional unit, is non-trivial. Although this is a one-time cost for

a specific implementation, it still represents a significant additional burden for the

adversary.

Second, the HELP processing engine defines a set of user-defined parameters which

are used to transform the measured path delays into bitstring responses. One of these

parameters, called the Path-Select-Mask provides a mechanism to choose k paths from n

that are produced, which enables an exponential number of possibilities. Therefore, the

Path-Select-Mask allows the set of path delays used in the bitstring generation process (the

distribution) to vary from one authenticaton request to the next. This feature when

combined with a second processing step within the HELP engine called Temperature-

66

Voltage-Compensation (TVCOMP), can introduce changes in the bit value produced by a

specific path delay. In other words, the mapping between path delays and bits in the

response is a function related to the values of other components of the delay

distribution.

This is a novel and important source of entropy that is only possible by introducing a

transformation that factors in the behavior of the entire distribution used for bitstring

generation. It should be noted that this type of distribution-based entropy-enhancing

method is not applicable to PUFs which generate ‘soft data’ that is designed to be

identical, e.g., RO PUFs [64], because the characteristics of the distribution are invariant.

The path delays used by HELP vary widely in length, and therefore constructing

distributions with different means and standard deviations is easy to do.

This paper is dedicated to showing this ‘distribution-effect’ on bitstring diversity. The

implications are two fold. First, HELP can make use of smaller functional units, i.e., those

without an exponential number of paths, and still achieve an exponential number of

challenge-response-pairs (CRPs) as required of a strong PUF. Second, the difficulty of

model-building HELP using machine learning algorithms will be more difficult because

the path delays of the physical model are no longer constant.

4.2 Related Work

Although references [65] and Error: Reference source not found describe previous

research on HELP, no prior work exists that describes the security properties of HELP and

the analysis presented in this paper. A method to estimate the “extractable” entropy in

67

PUF-generated bitstrings is proposed in [67] by calculating the mutual information

between the bias measurements done at enrollment and regeneration. The authors in [68]

evaluate the robustness and unpredictability of five different PUFs (including arbiter, RO,

SRAM, flip-flop and latch PUFs) by estimating the entropy from the available responses.

Fig.4.1 Instantiation of the HELP entropy source (left) and HELP processing engine (right).

4.3 HELP Overview

HELP attaches to an on-chip module, such as a hardware implementation of the

cryptographic primitive, as shown in Fig.4.1. The logic gate structure of the functional

unit defines a complex interconnection network of wires and transistors. The functional

unit shown in Fig.4.1 is a 32-bit column from Advanced Encryption Standard (AES)

which includes 4 copies of the SBOX and 1 copy of the MIXEDCOL (called sbox-

mixedcol) [69]. This combinational data path component is implemented in a WDDL

logic style [70], which doubles the number of primary inputs (PIs) and primary outputs

68

(POs) to 64. The implementation of sbox-mixedcol requires approx. 3000 LUTs on a

Xilinx Zynq FPGA and provides approx. 8 million paths. Although the analysis carried out

in this paper uses sbox-mixedcol, the results suggest that smaller functional units, i.e., less

than 1000 LUTs, can be used as an alternative.

HELP accepts challenges in the form of 2-vector binary sequences. The vector

sequences are applied to the PIs of the functional unit and the delays of the sensitized

paths are measured at the POs. Path delay is defined as the amount of time (t) it takes for

a set of 0-to-1 and 1-to-0 transitions introduced on the PIs to propagate through the logic

gate network and emerge on a PO. HELP uses a clock-strobing technique to obtain high

resolution measurements of path delays as shown on the left side of Fig.4.1. A series of

launch-capture operations are applied in which the vector sequence that defines the input

challenge is applied repeatedly using the Launch row flip-flops (FFs) and the output

responses are measured using the Capture row FFs. On each application, the phase of the

capture clock, Clk2, is incremented forward with respect to Clk1, by small ts (approx. 18

ps), until the emerging signal transition is successfully captured in the Capture row FFs. A

set of XOR gates connected between the inputs and outputs of the Capture row FF inputs

(not shown) provide a simple means of determining when this occurs. When an XOR gate

value becomes 0, then the input and output of the FF are the same (indicating a successful

capture). The first occurrence in which this occurs during the clock strobing operation

causes the current phase shift value to be recorded as the digitized delay value for this

path. This operation is applied to all POs simultaneously.

The phase shifting module for Clk2 is shown on the right side of the functional unit in

69

Fig.4.1. On-chip digital clock managers (DCMs) are commonly included in FPGA

architectures. For example, Xilinx FPGAs typically incorporate at least one DCM with a

digitally controlled fine phase shift control mechanism even on their lowest cost FPGAs.

Fig.4.2(a) Example rising and falling path delays (PN), (b) Rise-fall path delays

(PND)and (c) TV Compensated PNDc for 45 chips (individual curves) and 16

TV corners (points in curves).

The digitized path delays are collected by a storage module and stored in an on-chip

block RAM (BRAM) as shown in the center of Fig.4.1. A Path-Select-Mask is also sent by

the verifier, along with the challenges, to allow path delays to be selected from those that

are produced. Each digitized timing value is stored as a 15-bit value, with 11 binary digits

serving to cover a signed range between +/- 1024 and 4 binary digits of fixed point

precision to enable up to 16 samples of each path delay to be averaged. The 7.5 KByte

BRAM allows 4096 path delays to be stored. We configure the applied challenges and

masks to test 2048 paths with rising transitions and 2048 paths with falling transitions.

The 15-bit digitized path delays are referred to as PN.

70

4.3.1 PN Processing

Once the PNs are collected, a sequence of mathematical operations are applied as shown

on the right side of the Fig.4.1 to produce the bitstring and helper data. The PNDiff

module creates unique, pseudo-random pairings between the rising and falling PN using

two seeded linear feedback shift registers (LFSR). The two 11-bit LFSR seeds are user-

defined parameters. PN differences, referred to as PND, are defined as (rising PN - falling

PN), and are stored in the lower 2048 memory locations of the BRAM, overwriting the

original set of rising PN.

Fig.4.2(a) shows an example of this process using two groups of 45 curves, one curve

for each Xilinx Zynq 7020 chip that was tested. The curves shown along the bottom depict

the PN from rising transition tests and those along the top from falling transition tests. The

16 line-connected points associated with each curve represent the chip’s PN measured

under a range of environmental conditions, called temperature-voltage (TV) corners. The

PN at the x-axis position given by 0 are those measured under nominal (enrollment)

conditions, i.e., at 25oC, 1.00V. The PN at positions 1, 2 and 3 are also measured at 25oC

but at supply voltages of 0.95, 1.00 and 1.05 V. Similarly, the other groups of 3

consecutive points along the x-axis are measured at these supply voltages but at

temperatures -40oC, 0oC, 85oC and 100oC. TV corners 1 to 15 are referred to as

regeneration corners. Fig.4.2(b) plots the corresponding PND

As indicated earlier, TV-related effects on delay negatively impacts bitstring

reproducibility. We propose a TV compensation (TVCOMP) process to reduce variations

in the PND introduced by changes in TV conditions (called TV noise). The goal is to

71

define a transformation that eliminates the saw-tooth behavior in the curves shown in

Fig.4.2(b), making them as flat and straight as possible.

TVCOMP is applied to the entire set of 2048 PND measured for each chip during

regeneration (note, Fig.4.2(b) shows only one of the PND from the larger set of 2048 that

exist for each chip and TV corner). The TVCOMP procedure first converts the PND to

‘standardized’ values. Equation (4.1) represents the first transformation which makes use

of two constants, test and Rngtest, obtained from a histogram distribution of the measured

PND.

zval
i
=

(PNDiff test−μtest)

Rng
test

 (4.1)

PNDc
i
=zval

i
⋅Rng

ref
+μ

ref (4.2)

The second transformation is represented by Equation(4.2), which translates the

standardized zvals to a new distribution with mean ref and range Rngref. The ref and Rngref

constants are also user-defined parameters of the HELP algorithm.

The transformation carried out by TVCOMP is depicted in Fig.4.2(b) and Fig.4.2(c).

The data in Fig.4.2(c) is obtained by applying TVCOMP procedure to the 2048 PND

measured under each of the 16 TV corners for each chip, i.e., 16 TV corners * 45 chips =

720 separate applications. Since the same ref and Rngref are used for all transformations,

TVCOMP eliminates both TV noise and chip-wide performance differences between the

chips.

The variations that remain in the PNDc shown in Fig. Fig.4.2(c) are those introduced

by within-die variations (WDV) and uncompensated TV noise (UC-TVNoise). The UC-

72

TVNoise component of the data shown in Fig.4.2(c) is represented by the y-dimensional

variations that occur in each curve (the worst case is approx. 3 which translates to approx.

50 ps). In general, bit-flip errors become more likely for PNDc with larger UC-TVNoise

components. WDV also manifests as y-dimensional variations, but in this case, is

represented by the spread of the curves. The spread is approx. 12 for the curves shown in

Fig.4.2(c). Larger values of WID improve the statistical properties of the generated

bitstrings, including randomness and uniqueness, and is therefore a desirable

characteristic.

The HELP algorithm shown in Fig.4.1 implements TVCOMP by constructing a

histogram distribution in the upper 2048 memory locations of the BRAM using the 2048

PND stored in the lower portion and then parses the distribution to obtain TVx and RngTVx.

Once the distribution constants are available, the PND in the low portion of the BRAM

are converted to PNDc.

The last operation applied to the PN is represented by the Modulus operation shown

on the right side of Fig.4.1. Modulus is a standard mathematical operation that computes

the positive remainder after dividing by the modulus. The Modulus operation is required

by HELP to eliminate the path length bias that exists in the PNDc. The value of the

Modulus is also a user-selectable parameter, similar to the LFSR seeds,  and Rng

parameters. The HELP engine shown in Fig.4.1 overwrites the PNDc after applying the

Modulus. The final values, called modPNDc, are used in the bitstring generation process.

73

4.3.2 Bitstring Generation

The bitstring generation process uses a fifth user-specifiied parameter, called the

Margin, as a means of further improving the reliability of the bitstring regeneration

process (beyond that provided by the TVCOMP process). Fig.4.3 illustrates the bitstring

generation process using two sets of 18 modPNDc from Chip1 labeled MaskSetA and

MaskSetB
1 . A modulus of 20 is used in combination with a set of margins of size 3

surrounding two strong bit regions of size 6. Designators along the top given as ‘s’, ‘w’

classify each of the enrollment data points as either a strong or weak bit. Data points that

fall on or within the hatched areas are classified as weak as a mechanism to avoid bit flip

errors introduced by UC-TVNoise that occurs during regeneration.

Fig.4.3Illustration of the Modulus-Margin process carried out by HELP for bitstring

generation.

1 The reason we include two sets will be explained later.

74

The Margin method improves bitstring reproducibility by eliminating data points

classified as ‘weak’ in the bitstring generation process. For example, 9 of the data points

from MaskSetA are strong and 4 are strong from MaskSetB. The remaining data points are

classifed as weak because they are too close to the bit-flip lines of 0, 9, 10 and 19. A

helper data bitstring is generated to record the status of the bits. When HELP is used in

authentication protocols, the helper data bitstring and strong bitstrings are sent to the

verifier as proof-of-identity.

4.4 Security Analysis

In this section, we investigate several important security properties of HELP that

relate to its resistance to model building and to the number of bitstrings that each token

can generate using the six user-defined parameters described earlier, i.e., Modulus,

Margin, ref and Rngref, two 11-bit LFSR seeds and the Path-Select-Mask. We make the

following assumptions in our security analysis:

• The adversary is not able to configure the token to run in enrollment mode.

Enrollment mode is only possible using a special FPGA programming bitstream,

which is generated and securely stored by a trusted authority.

• The system containing the PUF provides countermeasures against physical attacks

such as differential power analysis and fault injection.

• The adversary has physical access to the token and can activate the PUF an

unlimited number of times to produce both a strong bitstring and helper data

bitstring using arbitrary challenges and masks of his choice.

75

• The adversary can control the six user-defined parameters within the limits

imposed by the PUF implementation. For example, although any arbitrary set of

11-bit LFSR Seeds and Path-Select-Mask can be chosen and applied, the Margin

and Modulus as well as the ref and Rngref are constrained to discrete ranges of

values (discussed below).

• The adversary has full knowledge of the functional unit and implementation

details, and can run timing simulations, typically using the worst case process-

voltage-temperature model provided by the FPGA vendor.

4.4.1 Parameter-Based Bitstring Diversity

Due to the interaction of the user-defined parameters, we present a conservative

lower-bound estimate on the number of possible parameter combinations, i.e., those that

ensure the generated bitstrings are random, reliable and unique for each token. Note that

the source of entropy is fixed in this sub-section to a set of 4096 PN (in contrast to the

analysis presented in the next sub-section).

As discussed above, five of the user-defined parameters, namely, ref, Rngref ,

Modulus, Margin and the two LFSR seeds, can be used to apply different transformations

to the same set of PN as a means of achieving bitstring diversity. The two 11-bit LFSR

seed parameters allow any of the 2048 rising edge PN to be paired with any of the 2048

falling edge PN, yielding 4,194,304 possible combinations. Analysis of the data collected

in our Zynq FPGA experiments indicates that the number of combinations of Margins

and Moduli that yield high reliability (bit flip probability < e) is 20 (using Moduli 16 to

76

30 and Margins 3 to 5). The number of different ref and Rngref parameters is

conservatively estimated to be 10 each. Therefore, a total of 4,194,304 * 20 * 10 * 10 ~=

8.3 billion combinations of these five user-defined parameters are possible. This lower

bounds the amount of effort required by an adversary in possession of the token to read

out all the possible response bitstrings for a fixed set of 4096 PN, i.e., with the Path-

Select-Mask set to select the same set of PN.

4.4.2 Path-Select-Mask-Based Bitstring Diversity

Unlike the parameter-based scheme, bitstring diversity introduced by the Path-

Select-Mask is based on changing the underlying source of entropy. In other words, the

4096 PN are not fixed, but vary from one authentication to the next. The Path-Select-

Mask is used by the server to select a subset k of n path delays produced by the set of

applied challenges.

For example, assume that a sequence of challenges produces a set of 5,000 rising PN

and a set of 5,000 falling PN, from which the server selects a subset of 2048 from each

set. The number of ways of choosing 2048 from 5000 is given by Eq. (4.3). Therefore,

the Path-Select-Mask enables an exponential n-choose-k PN selection process.

Path−select−combs=C2048
5000

=3.3 e1467 (4.3)

Previous work has shown that an exponential number of response bits is necessary

condition for a truly strong PUF but not a sufficient condition. The responses must also

be largely uncorrelated as a means making it difficult or impossible to apply machine

learning algorithms to model-build the PUF. The analysis provided in this section shows

77

that the Path-Select-Mask in combination with the TVCOMP process provides additional

entropy beyond that available in a fixed number of path delays. This is key to enabling

HELP’s entropy source to be relatively small while providing truly strong PUF

characteristics in its output responses.

4.4.3 “Distribution-Effect” Bitstring Diversity

The set of PN selected by the Path-Select-Masks changes the characteristics of the

PND distribution, which in turn impacts how each PND is transformed through the

TVCOMP process. The TVCOMP process was described earlier in reference to Eqs. (3.1)

and (3.2). In particular, Eq. (3.1) uses the test and Rngtest of the measured PND

distribution to standardize the set of PND before applying the reverse transformation

given by Eq. (3.2).

Fig.4.4Impact of the TVCOMP process on PND0 when members of the PND distribution

78

change for different mask sets A and B.

Fig.4.4 provides an illustration of the TVCOMP process. The two distributions are

constructed using data from the same chip using two different sets of Path-Select-Masks,

MaskSetA and MaskSetB. The test and Rngtest of the MaskSetA distribution are given as 0.0

and 100 while the values for the MaskSetB distribution are given as 1.0 and 90. The point

labeled PND0 is present in both distributions but the remaining components (or a portion

as discussed below) are different, which introduces differences in test and Rngtest. Eq.

(3.1) is used to standardize the PND’s of both distributions, which translates PND0

differently in each distribution, to values given by -0.09 and -0.11, resp. Eq. (3.2)

translates the standardized values back into an integer range using a common ref and

Rngref given by 0.0 and 100, resp. The TVCOMP’ed PNDs (PNDc0) are given as -9.0 and

-11.0. This shows that the TVCOMP process introduces variations in PNDc even

when they are generated from the same pairings of rising and falling path delays.

The change in a PNDc occurs because the relative position of its corresponding PND in

each of the multiple distributions is dependent on the other members of the distribution.

The Modulus-Margin graph of Fig.4.3 described earlier provides an example using

actual FPGA data from Chip C1. The subset of modPNDc values shown are in fact

computed from the same set of PN, but are included in PN distributions that are derived

using different mask sets, MaskSetA and MaskSetB. Note that the changes introduced by

the TVCOMP transformation are further obscured by the Modulus, making some points

change by a little and others by a lot (and some not at all).

This ‘distribution-effect’ can be used by the verifier as a means of increasing the

79

unpredictability in the generated response bitstrings. One strategy would be to purposely

skew the test and Rngtest through clever selection of PN to change the bit values generated

by a set of PN that have been used in previous authentications.

4.5 Experimental Results

In order to determine the effectiveness of this type of approach, we construct a set of

PN distributions for evaluations. In all distributions, we include a fixed set of 300 rising

and 300 falling PN and draw the remaining 2048 - 300 = 1748 PN from a rising and

falling ‘Master’ distribution. The remaining 1748 PN are confined to specific regions of

the Master distribution as a means of systematically forcing changes to test and Rngtest.

The regions are called windows in the Master distribution.

Fig.4.5 Master distribution with 4500 rising PN with sequence of ‘windows’ used to draw

remaining components of rising PND components for a total of 2048.

Fig.4.5 illustrates the process used to create the distributions for the rising PN (the

80

same process is used for the falling PN). The PN in the Master distributions are first

sorted according to their worst-case simulation delays. The 300 common PN are

randomly chosen across the entire Master distribution and are represented as ‘x’ in the

Fig.4.6 Hamming distance of strong bitstrings derived from distributions in which at least

300 of the modPNDc values are common in each pair of distributions of size 2,048. The

HD is computed using portions of the bitstrings derived from various pairings of

81

distributions, but using only the set of bits corresponding to modPNDc’s that are common

in both distributions and are identified as strong in both helper data bitstrings of the pair.

(a) Results using first Master distribution over 20 combinations of Margins and Moduli,

(b) same using second Master distribution, (c) change in test Rngtest between the PND

distribution pairs (d) the number of common PND in each PND distribution pair.

figure. A series of windows, labeled Wi, are then created that contain 2000 consecutive

elements from the 4500 elements in the Master distribution. The remaining 1748

components are drawn from within each of these windows of 2000, excluding PN that are

members of the original 300. Each consecutive window is skewed to the right by 10

elements. A total of 267 distributions of 2048 PN are constructed in this fashion. A PND

distribution for Wi is constructed from the corresponding rising and falling Wi PN

distributions. The common set of 300 rising and falling PN are matched in the same

fashion in all PND distributions to create identical PND values. The analysis presented

below creates a set of 266 pairing of PND distributions where each of the W1 through

W266 PND distributions are paired with the W0 distribution. The different between the test

and Rngtest values of the two PND distributions increases for successive pairings, allowing

the distribution-effect to be evaluated systematically. The TVCOMP, Modulus and

bitstring generation processes are applied to the PND distributions. The differences in the

bitstrings from each PND pairing is computed using Hamming distance (HD). We use

only those bits corresponding to the common set of 300 in the HD calculation. draw

remaining components of rising PND components for a total of 2048.

82

Note that the number of PND that are common in each pairing of distributions is

larger than the forced 300 in cases where Wi overlaps with W0. This happens because

random sampling within the overlapping windows chooses additional PN that are

common to both distributions. Additional common rising PN are deliberately paired with

additional common falling PN as a means of creating worst case conditions (the more

commonality that exists, the smaller the change in the test and Rngtest of the two

distributions, which in turn reduces the bitstring HD).

The results shown in Fig.4.6 are computed using data collected from 45 copies of a

Xilinx Zynq 7020 chip. Fig.4.6(a) and (b) show the HD results for two different Master

distributions, one that contains 4.5K rising and falling PN and one that contains 7.5K

rising and falling PN. The larger Master increases the number of window pairs depicted

in Fig.4.5 to 531.

The HDs are computed using bits under the condition that both bits of the pair

are strong. This condition is illustrated in Fig.4.3 for the modPNDc corresponding to bit

7 (which is circled). Eq. (4.4) gives the expression for HD.

HDW i
=

∑
j=0

NumChips

∑
k=0

NumStrongPairs

bW 0, j , k xor bW 0, j ,k

NumChips×NumStrongPairs
 (4.4)

The HDs are reported as percentages by dividing the number of strong bit pairing

differences by the total number of strong bit pairings. The W0-Wi pairings are plotted

along the x-axis in Fig.4.6(a) and (b). The HD curves for 20 different combinations of the

Margins and Moduli are superimposed to illustrate that the trend is similar.

The HDs are zero for cases in which W0-Wi have significant overlap (left-most points)

83

because the test and Rngtest of the two distributions are nearly identical under these

conditions. As the windows separate, the HDs rise quickly to 50%, especially for smaller

Moduli. The smallest and largest shift required to reach 50% is highlighted with vertical

lines for the 4.5K and 7.5K Master distributions, resp. Fig.4.6(c) plots the average

difference in the test and Rngtest of the distribution pairs. Note that the 7.5K Master

distribution achieves the ideal result of 50% for smaller shifts in test and Rngtest, which in

turn allows more flexibility in choosing the PN to achieve the ‘distribution-effect’.

Fig.4.6(d) plots the average number of common PN used in the HD calculation. As

indicated earlier, the number is larger than the ‘forced’ 300 for overlapping windows. The

‘overshoot’ of the HDs above the ideal of 50% is difficult to pin down. Interestingly, this

correlation is less significant beyond distribution pairing number 200.

4.5.1 Security implications

The “distribution-effect” increases bitstring diversity, but is limited to the number of

possible test and Rngtest values (we proposed 10 each earlier). However, the distribution

parameters are determined by the Path-Select-Mask, which provides an exponential n-

choose-k component to bitstring diversity. Therefore, an adversary who is attempting to

clone the behavior of a token, might be able to simulate and catalog all possible

combinations of the other user-defined parameters, but he/she will not be able to do this

for all possible sets of PN. For authentication applications, the adversary will need to wait

for the verifier to send the challenges and Path-Select-Masks in order to construct the

distribution using simulation data, before he/she can respond with a predicted response

84

bitstring. This adds considerable time and complexity to an impersonation attack, beyond

that required to build an accurate model.

4.6 Conclusions

A novel PUF-based entropy-enhancing technique is proposed that is based on biasing

distribution data used in bitstring construction using path selection and a linear

transformation. The technique changes the response bit values associated with a fixed set

of path delays, making the task of model-building more difficult.

85

Chapter 5

A Novel Offset Method for Improving Bitstring Quality of a

Hardware-Embedded Delay PUF

Statistical properties including uniqueness, randomness and reproducibility are

commonly used as metrics for Physical Unclonable Functions (PUFs). When PUFs are

used in authentication protocols, the first two metrics are critically important to the

overall security of the system. Authentication reveals the bitstrings (and helper data if

used) to the an adversary, and makes the PUF vulnerable to tactics that can lead to

successful cloning and impersonation. In this chapter, we investigate security metrics

including Entropy, uniqueness and randomness using hardware data collected from a set

of 45 Xilinx Zynq FPGAs which implements HELP. A novel technique is proposed that

allows the verifier to randomly or purposefully offset path delays to obfuscate (in the

former case) and/or tune (in the latter case) the bitstring generation process. We show that

tuning additionally has a significant impact on the statistical quality of the bitstrings.

5.1 Introduction

Security and trust have become critically important for a wide range of existing and

emerging microelectronic systems including those embedded in aerospace and defense,

industrial ICS and SCADA environments, automotive and autonomous vehicles, data

centers, communications and medical healthcare devices. The vulnerability of these

systems is increasing with the proliferation of internet-enabled connectivity and

86

unsupervised in-field deployment. Authentication and encryption are heavily used for

ensuring data integrity and privacy of communications between communicating devices.

These protocols require keys and bitstrings (secrets) to be stored in persistent, non-

volatile memory (NVM). Current methods utilizing a “burned-in” key represents a

vulnerability, particularly in fielded systems where adversaries can access the hardware

and carry out probing and other invasive attacks uninhibited. Physical Unclonable

Functions or PUFs on the other hand provide the alternative to NVM key storage, and for

the generation of unique and untrackable authentication information.

PUFs extracts random information (entropy) from variations in the physical and

electrical properties of ICs, that are unique to each IC, as a means of generating digital

secrets (bitstrings). The type and amount of information available to a PUF through these

physical-layer variations in the chip are critically important security properties, and are

the most often cited benefits of PUFs over conventional NVM-based alternatives.

A PUF is defined by a source of on-chip electrical variations. The hardware-

embedded Delay PUF (HELP) analyzed in this paper generates bitstrings from delay

variations that occur along paths in an on-chip macro (functional unit), such as a

cryptographic primitive. Therefore, the circuit structure that HELP utilizes as a source of

random information differs from traditional PUF architectures which use precisely placed

and routed arrays of identically designed components. In contract, HELP imposes no

restrictions on the physical layout characteristics of the entropy source.

This departure from a traditional definition of a PUF architecture provides both

advantages and disadvantages. An important advantage is related to the effort involved in

87

constructing the functional unit and the diversity in the number of possible instantiations.

For example, commercial logic synthesis tools such as Xilinx Vivado can be used to

quickly build multiple different instantiations of the functional unit. Each instantiation is

identical in function but has a unique circuit architecture and therefore, a unique set of

path delays.

The widely varying nature of path delays in an arbitrarily synthesized functional unit

represents the disadvantage. A PUF requires the components, which are being compared

to generate a bit, to behave as a random variable, where approx. half of the chips in the

population generate a ‘0’ for any arbitrary pair of components while the other half

generate a ‘1’. Although it is possible to identify paths that are nearly equal in delay and

restrict comparisons within these groups of paths, this greatly constrains the number of

candidate path combinations and adds complexity by requiring accurate timing analysis

and other operational constraints. Moreover, the analysis needs to repeated for each new

instantiation.

HELP addresses the path length bias issue by applying a modulus operation to the

measured path delays. The modulus operator computes the remainder after dividing the

path delay by specified constant, i.e, the modulus. The modulus is chosen to ideally

eliminate the large bias which can be present when paths vary widely in length (and

delay), while simultaneously preserving the smaller variations that occur because of

random processes, e.g., within-die process variations. The best choice of the modulus

makes any arbitrary pairings of path delays a random variable.

In order to ensure that bias is removed for every path pairing combination, the

88

modulus needs to be as small as possible. This is true because the magnitude of the

randomly varying component of path delays differs based on the length of the paths used

in each pairing. Unfortunately, the modulus is lower bounded by measurement,

temperature, supply voltage noise sources. Therefore, the range of suitable moduli that

achieve the PUF’s primary goals of producing unique, random and reproducible bitstrings

is limited.

In this chapter, we propose an offset technique that can be used to increase the range

of suitable moduli, that builds on the concept first presented in [66], Section 5.3. We

describe the technique in reference to a PUF-based authentication scenario, which occurs

between a hardware token and a verifier. In our proposed authentication protocol, a set of

path delays are collected and stored in a secure database during the enrollment process,

i.e., before the token is released for field use. The verifier also computes and stores the

median values of each path delay using the enrollment data of the tokens. During

authentication, the verifier selects a modulus and then computes the difference between

the median path delay and the modulus, and encodes the differences (called offsets) in the

challenge data sent to the token. The token and verifier add the offsets to the measured

(stored for verifier) path delays before computing the corresponding bit. An offset

effectively shifts the distribution of a given path delay such that approx. half of the chips

generate a ‘0’ and half generate a ‘1’.

We evaluate the effectiveness of the offset technique using inter-chip hamming

distance and Entropy metrics from data collected from a set of Xilinx Zynq FPGAs. The

results are compared with those obtained using the original ‘unshifted’ data. The

89

remainder of this chapter is organized as follows. Section 5.2 presents related work and

Section 5.3 provides an overview of the HELP PUF. Section 5.4 presents experimental

results and Conclusions are presented in Section 5.5.

5.2 Related Work

References [37] and [66] describe previous research on HELP. However, the offset

method and analysis presented in this paper are new contributions. To our knowledge, the

offset method has not been proposed elsewhere and is a technique that is only applicable

to PUFs that utilize a modulus method to remove undesirable bias effects as is done in

HELP.

Fig. 5.1 (a) Conversion from PNDc to modPNDc and (b) Strong/Weak PNDc classification using

margining.

5.3 HELP Overview

The instantiation of the HELP processing engine and the PN processing procedures

90

are described in Chapter 4, Section 4.3. Note that after the TVCOMP procedure, the

variations that remain in the PNDc are those introduced by within-die variations (WDV)

and uncompensated TV noise (UC-TVNoise). UC-TVNoise sets the low bound on the

range of suitable moduli as discussed earlier, while WDV defines the upper bound. The

offset method described below is designed to extend the range of suitable moduli

upwards while maintaining or improving the randomness and uniqueness statistical

quality metrics in the generated bitstrings.

5.3.1 Bitstring Generation

The bitstring generation process uses a fifth user-specifiied parameter, called the

Margin, as a means of improving the reliability of the bitstring regeneration process. The

bottom portion of Fig. 5.1(a) plots 18 of the 2048 PNDc from Chip1 along the x-axis. The

red curve line-connects the data points obtained under enrollment conditions (25oC,

1.00V) while the black curves line-connects data points under a set of regeneration TV

corners, which in our experiments, is all combinations of temperatures -40oC, 25oC, 85oC,

100oC with supply voltages 0.95V, 1.00V and 1.05V.

The curves plotted along the top of Fig. 5.1(a) show the modPNDc values after a

modulus of 20 is applied. Fig. 5.1(b) enlarges the upper portion of Fig. 5.1(a) and

includes a set of margins of size 2 surrounding two strong bit regions of size 6.

Designators along the top given as ‘s0’, ‘s1’, ‘w0’ and ‘w1’ classify each of the

enrollment data points as either a strong 0 or 1, or a weak 0 or 1, resp. Data points that

fall on or within the hatched areas are classified as weak as a mechanism to avoid bit flip

errors introduced by UC-TVNoise that occurs during regeneration.

91

The Margin method improves bitstring reproducibility by eliminating data points

classified as ‘weak’ in the bitstring generation process. For example, the data points at

indexes 4, 6, 7, 8, 10 and 14 would introduce bit flip errors at one or more of the TV

corners during regeneration because at least one of the regeneration data points is in the

opposite bit value region from the corresponding enrollment value. We refer to this

bitstring generation technique as the Single Helper Data (SHD) scheme since the

classification of the modPNDc as strong or weak is determined solely by the enrollment

data.

A second technique, referred to as the Dual Helper Data (DHD) scheme, requires

that both the enrollment and regeneration modPNDc be in strong bit regions before

allowing the bit to be used in the bitstring during regeneration. The helper data for

enrollment and regeneration, which represents the classification of the modPNDc as

strong or weak, is bitwise ‘AND’ed, and then both the enrollment and regeneration

bitstrings are generated (the enrollment data is assumed to be collected earlier in time and

stored on a secure server). The DHD scheme doubles the protection provided by the

margin against bit flip errors because the modPNDc produced during regeneration must

now change and move across both a ‘0’ and ‘1’ margin before it can introduce a bit flip

error. This is true because both the enrollment and regeneration modPNDc must be

classified as strong to be included in the bitstring and the strong bit regions are separated

by 2*Margin.

Fig. 5.1 highlights four cases where an enrollment-classified strong bit would be

reclassified as weak in the DHD scheme because 1 or more of the regeneration modPNDc

92

falls within a weak region. This shows that in addition to doubling the protection against

bit flip errors, the DHD scheme can potentially produce different bitstrings each time the

chip regenerates it.

5.4 Offset Method

The offset method is low cost because it leverages the enrollment data already

available on the verifier, and encodes offsets into a set of unused bit positions in the

existing Path-Select-Masks sent to the token.

As we described in Section 5.3, a ‘challenge’ for HELP is defined as a 2-vector

sequence that is applied to the PIs of the functional unit and a Path-Select-Mask which is

used to select a subset of the measured path delays from those that are available on the

POs. The Path-Select-Mask increases the response space of HELP exponentially because

it allows the verifier to implement an n-choose-k strategy. For example, assume that a

sequence of challenges produces a set of 5,000 rising PN and a set of 5,000 falling PN,

from which the server selects a subset of 2048 from each set. The number of ways of

choosing 2048 from 5000 is given by Eq. (4.3).

The Path-Select-Mask actually encodes three possibilities, 1) a ‘1’ is stored for POs

when the paths driving the POs are sensitized (therefore a delay value will be measured

and used by HELP in bitstring generation), 2) a ‘0’ is stored when a path is sensitized but

is not going to be used by HELP and 3) a ‘0’ is also stored when no transition occurs on

the PO. The offset method uses the bit positions for POs that do not have transitions

(scenario 3) to store offset information. The token can easily distinguish cases 2) and 3)

93

based on whether or not a path delay was produced (recall that all paths that have

transitions are timed simultaneously). A typical sequence of challenges for HELP consists

of approx. 400 vectors, assuming 10 of approx. 32 sensitized paths are selected for the

bitstring generation process (a total of 4096 PNs are needed). Therefore, the 400 Path-

Select-Masks have approx. 400 * 32 = 12,800 unused bit positions available for use by

the offset method. The offset method requires either 2048 or 4096 of these bit positions

for encoding either a 1-bit or 2-bit offset for each of the 2048 PNDcs.

Fig. 5.2 Illustration of the Offset Effect on PNDc

The offset method is designed to shift individual PNDc upwards as a means of

centering the population around the one of the 0-1 lines defined by the modulus. This is

accomplished after the token and verifier decide on a set of parameters for the

94

authentication round, which includes the Modulus. The verifier then selects a set of 2-

vector input sequences and randomly chooses 4096 PNs. The Path-Select-Mask is

updated with the PN selection choices. Before transmitting these challenges to the token,

the verifier accesses a set of pre-computed median values for the selected PNs and

applies the PNDiff and TVCOMP processes described in Section 5.3 (see Fig. 4.1) to the

set of median PNs to obtain a set of modPNDc-median values.

The modPNDc-median values can then be used to compute a set of offsets that will be

used to shift the measured and stored PNDc on the token and verifier respectively. The

optimal offset values for each PNDc are the absolute value of (Modulus/2 - modPNc-median).

However, encoding the optimal value requires up to log2(Modulus/2) bits, e.g, for a

Modulus of 30, we need 4 bits to encode the offsets. Our analysis presented below shows

that most of the benefit of the offset method is obtained with 1-bit and 2-bit encoding

schemes. For example, a 1-bit encoding either indicates that the PNDc is to be left as is or

shifted by 1/4*Modulus. A 2-bit scheme allows shifts of 1/8, 2/8 and 3/8*Modulus.

Once the offsets are determined, the verifier inserts the encoding for the 2048 PND c

into the first 2048 or 4096 un-used bit positions of the Path-Select-Mask. The challenges

(2 vector sequences and Path-Select-Masks) are then transmitted to the token. The token

applies the challenges to generate the 4096 PNs. The verifier reads-out the PNs for the

token from its stored enrollment data and both the token and verifier carry out PNDiff

and TVCOMP processes. The appropriate offsets are then added into the individual

PNDc, and the modPNDc computed to enable the completion of the bitstring generation

and subsequent authentication processes.

95

Fig. 5.2 provides an illustration of the 2-bit offset scheme using a set of 13 PNDc

both before the offset is added (labeled ‘Original’) and after (labeled ‘2-bit Offset’) in

two separate columns for better clarity. The line-connected curves represent the PNDc

data for each of the 45 chips, with the x-axis representing the 16 TV corners referenced

earlier. The offset shifts the entire distribution upwards towards one of the 0-1 lines given

as 0 and 10 for the Modulus of 20 used in this analysis. Although not optimally placed,

the shifted ‘2-bit Offset’ data shown on the immediate right of the ‘Original’ data show

the trend of the data sets to center of the 0-1 lines drawn in red. This simple

transformation significantly improves bitstring statistical metrics as discussed in the next

section.

5.5 Experimental Results

We applied the offset method to the data collected from a set of 45 Xilinx Zynq

FPGAs. The results are shown as a series of bar graphs in Fig. 5.3 to make it easy to see

the effect of the offset method. The first 3 rows show results using a Mean scaling factor

for ref and Rngref, computed as the mean value of the test and Rngtest from all PND

distributions across all chips and TV corners. Rows 4, 5 and 6 show the results using the

maximum (Max.) scaling factor associated with one of the chip-TV corner data sets

which produces the largest values for test and Rngtest. Rows 1 and 4 depict the statistical

results for the base case in which no offset is used, while rows

96

(a)

(b)

Fig. 5.3 Inter-chip HD, Entropy using strong bits only, Probability of Failure and smallest

97

bitstring size bar graphs for Margins 2 and 3 and Moduli 10 through 30 within each figure.

Rows 1 and 4 show using the Original data using Mean and Maximum ref and Rngref values

obtained from the native (before TVCOMP) distributions of the 45 chips. Rows 2 and 5 show

the same set of results using a 1-bit offset while rows 3 and 6 give the results using a 2-bit

offset. The increasing trend in each of the two groups of 3 rows for Inter-chip HD and

Entropy columns show the benefit of the offset method. Column 3 shows the offset method has

no impact on reliability. Column 4 illustrates that the smallest bitstring size gets smaller for

the offset method because more of the modPNDc are located in the weak bit regions.

2 and 5 show the results using a 1-bit offset and rows 3 and 6 show the results using a 2-

bit offset.

Each bar graph portrays the results for one of the statistical metrics, labeled as

HDinter, Entropy, Probability of Failure and Smallest Bitstring Size in the column headers.

The analysis was carried out using Margins 2 and 3 and for Moduli between 10 and 30, as

given by the x- and y-axis labels in the graphs. Inter-chip hamming distance (HD inter) is

computed as the average value across all possible pairing of the enrollment-generated

bitstrings from the 45 chips (45*44/2 = 990 pairings) and across a sequence of 256

different pairs of 11-bit LFSR seeds. For each pairing, the hamming distance is computed

by counting the differences between corresponding bits in the bitstrings of length 2048,

but using only bits classified as strong in both bitstrings. The differences are converted to

percentages and the mean of the percentages are plotted. Entropy is computed using Eq.

(5.1) on the strong bits from each bitstring. The frequency pi of ‘1’s is computed as the

98

fraction of ‘1’s at each bit position for only those chips of the 45 which identify the bit as

strong in the enrollment data.

H (X)=−∑
i=1

n

pi⋅log2(p i) (5.1)

The Probability of Failure is reported as an exponent x from 10-x with a value of -6

indicating 1 chance in 1 million. The HDintra is first computed by pairing the enrollment

bitstrings for each chip against each of the 15 regeneration bitstrings. The bits considered

are those that remain strong under the DHD scheme described in Section 5.3.1. The

average HDintra is computed from the average across the 256 LFSR seeds, which is then

converted into a probability of failure. The smallest bitstring size is the length of the

smallest bitstring produced for a chip under the DHD scheme.

The offset method increases the HDintra and Entropy significantly as illustrated by

comparing the bar heights across consecutive columns, while having a near zero effect on

the Probability of Failure. However, the offset method reduces the size of the smallest

bitstring, particularly for Mean scaling data because more of the modPNDc are located in

the weak bit regions. The size of the bitstring can be easily increased by increasing the

number of PNs processed beyond 4096 with only a small impact on time and area

overhead.

5.6 Security implications

The offset method deals effectively with the loss of entropy-per-bit as the Modulus is

increased. It is nearly free of cost because it utilizes enrollment information that is

already available on the verifier and unused Path-Select-Mask bits. The median PNDc

99

need to be computed for each authentication request but the process is very fast because

the PNmedian can be pre-computed in advance of any authentication requests and the

remainder of the process involves only creating the PNDmedian and PNDc-median after the set

of PNs are selected. The insertion of the offsets into the Path-Select-Mask and the

retrieval by the token has negligible time and area cost. The verifier and token add in the

offsets before the modPNDc are created, which involves a extra addition operation for

each of the 2048 PNDc.

It should be noted that the number of combinations possible using the Path-Select-

Mask, according to Eq. (4.3), makes the chances that an identical set of challenges will be

used more than once for any authentication to any token near 0. Therefore, the non-

ideal trending of the HDinter and Entropy of the Original scheme for larger moduli is moot.

However, the offset scheme provides improved security properties for this rare case and

will benefit high security applications. Also note that randomly assigning offset values is

also a valid strategy. In this case, the statistical properties of the bitstrings will remain

unchanged over the Original scheme but the response space will be obfuscated even for

cases in which all other user-defined parameters are help constant.

5.7 Conclusions

An offset method is described in this paper that ‘tunes’ the individual distributions

associated with the path delay values. The tuning is designed to center the populations

over the 0-1 lines used during the bitstring generation process, as a means of increasing

the entropy per bit toward the ideal value of 50%. The offset is very low in overhead,

100

leveraging enrollment information stored by the verifier and integrating offset values into

unused challenge bits in the Path-Select-Mask component. The technique is demonstrated

using data collected from a set of FPGAs to significantly improve the uniqueness and

randomness properties of the generated bitstrings.

101

Chapter 6

Delay Model for the HELP PUF

This chapter proposes a delay model for the HELP PUF and analyzes the feasibility

of applying model-building attack on the HELP PUF. In the proposed delay model, the

delay values of all sensitized paths under a given challenge vector pair can be represented

by the segment delays and the values of the given vector pair. We find that the size of the

delay model will increase exponentially with the path length. Also, there exist uncertainty

that which input transition dominates the timing of the gate under the circumstance where

more than one inputs of the gate possess transitions (no hazard). Although the uncertainty

can be reduced by attaching a nominal delay field to each delay segment in the model, the

within-die variations that exist across chips make it very difficult to eliminate such

uncertainty.

6.1 Delay models for Arbiter PUFs

The basic idea of the classic Arbiter PUF (APUF) is to use the delay difference of

two symmetrically designed paths to generate a binary response bit. The APUF consists

of k-stage switches each of which possesses four delay segments, i.e., Ψi,1, Ψi,2, Ψi,3 and

Ψi,4, for the i-th stage, as shown in Fig. 6.1. A transition is launched from the “en” signal

and propagates via two separate paths through the k-stage switches. In the i-th stage, only

one pair of delay segments will be sensitized depending on the i-th challenge bit value:

the straight segment pair (Ψi,1, Ψi,2) when c[i] = 0 or the crossed segment pair (Ψi,3, Ψi,4)

when c[i] = 1. A response bit is generated according to the total delay difference of the

102

two sensitized paths using an arbiter.

An additive linear model is used to describe the mechanism of APUFs. In the model,

the total delay difference of the two sensitized paths can be represented by the

accumulated delay differences of each stage [1]. The delay difference at the i-th stage is

represented by βic[i], where the superscript c[i] is the i-th

Fig. 6.1 Structure of classic Arbiter PUFs

challenge bit denoting that either the straight segment pair is sensitized (when c[i] = 0) or

the crossed pair (when c[i] = 1). Therefore, we have βi0 = Ψi,1 - Ψi,2 and βi1 = Ψi,4 – Ψi,3 ,

respectively. We define two (k+1)-dimension vectors w⃗ and ϕ⃗(C⃗) so that the total

delay difference can be represented as: Δt = w⃗T
⋅ϕ⃗ . w⃗ is the parameter vector that

encodes segment delays in the APUF stages and the feature vector ϕ⃗(C⃗) is a function

of the applied k-bit challenge C⃗ . In more detail,

 w⃗=(w1 ,w2 , ...,w k ,wk +1
) (6.1)

where w1
=

β1
0
−β1

1

2
, w i

=
βi−1

0
+βi−1

1
+βi

0
−βi

1

2
 and

 ϕ⃗(C⃗)=(ϕ⃗
1
(C⃗) ,ϕ⃗2

(C⃗), ... , ϕ⃗k
(C⃗) ,1) (6.2)

103

ϕi
1

ϕi
4

ϕi
3

ϕi
2

Arbiter
βn

1
βi

1β2
1

β1
0

en r

c1=0 c2=1 c i=1 cn=0

where ϕ⃗l(C⃗)=∏
i=l

k

(1−2c [i]) .

The output value of the arbiter is determined by the sign of the total delay difference, i.e.,

a '0' is generated if Δt < 0 and otherwise a '1' is generated. If we map the output space

from {0, 1} to {-1, 1}, then the output r can be represented as:

 r=f PUF=sign(w⃗T
⋅⃗ϕ) (6.3)

Equation (5) denotes a linear threshold function (LTF) where w⃗T⋅ϕ⃗=0 defines a

hyperplane that separates the space of the feature vector ϕ⃗(C⃗) into two half-spaces:

S1 = { ϕ⃗(C⃗)∈{0,1 }
k+1 | w⃗T

⋅ϕ⃗(C⃗)<0 } and

 S2 = { ϕ⃗(C⃗)∈{0,1 }
k+1 | w⃗T

⋅ϕ⃗(C⃗)>0 }.

If the feature vector of a give challenge is located in S1, then a '-1' is generated at the

output otherwise a “1”. Determining the located space region of the feature vector

enables the prediction of the response of the APUF under a given challenge.

6.2 HELP PUF Structure and Working Mechanism

6.2.1 Measuring path delays using clock strobing

The delays of a set of paths are measured by applying a series of launch-capture

clocking events (called clock strobing) using Clk1 and Clk2 as shown on the left side of

Fig. 2(a). A 2-vector sequence (V1, V2) is applied at the k-bit primary inputs, labeled PI,

using the Launch Row FFs as a means of generating logic transitions in the functional

unit. The first vector V1 represents the initialization vector. The application of the second

vector V2 generates a set of transitions which could be timed by the clock strobing

104

technique. For each repeated application of this 2-vector test sequence, the phase shift

between Clk1 and Clk2 is increased by a small fixed Δt. The phase shift value between

Fig. 6.2 Configuration of the functional unit (FU) and clock strobing method for

measuring path delays for HELP PUF.

the two clocks is digitally controlled, and is referred to as the launch-capture interval

(LCI). The smallest LCI that allows the propagating edge along a path starting from a

Launch FF to be captured in a capture FF is used as the digitized delay value for the path.

The digital delay values for a large number of paths can be obtained by repeating the

clock strobing operation (with a gradually increasing LCI) for multiple 2-vector test

sequences.

105

path1

 Partially
sensitized path

Clk1

Clk2

D D

Clk1

Clk2

Clk strobing

Launch FFs

Capture FFs

k-bit Vec1: 0 1 0 1 0
 k-bit Vec2: 1 1 0 1 1

PI[k-1] PI[k-2] PI[k-3] PI[k-4] PI[k-5]

D D D

D D D D D D

PO[X-1]

path2

path3

PO[X-2] PO[X-3] PO[X-4] PO[X-5] PO[X-6]

dpath1 dpath2 dpath3

6.2.2 Delay processing

The sensitized path delays will be stored into an on-chip BRAM for processing to

generate the final response bitstring. A flow of the response bit generation process is

depicted in Fig 2(b) and described as the procedures as below:

Fig. 6.3 Response bit generation flow and input parameters for HELP PUF

1. Delay measurement as shown in Fig. 6.2.

2. Delay collection and storage: A on-chip BRAM is used to store the collected 4096

path delay values, half of which are sensitized under rising vector pairs and other half

using falling vectors. They are denoted as drise
j and d fall

i respectively.

3. Delay pairing and difference generation: One rising delay and one falling delay

are selected to construct a delay pair using two 11–bit LFSRs. The two 11-bit LFSR seed

values are the 1st user-defined parameter. A delay difference value is generated by the

paired delay values as ddiff
i

=drise
j

−d fall
i .

106

Mod-1

0
Marg

Mod / 2

weak regions

strong '1' region

strong '0' region

strong regions

Mod_di
diffC

(1) Delay Measurement

See Fig. 2

(2) Delay Collection &
 Storage

On-Chip BRAM

d fall
2048d fall

1

drise
1

drise
2048

(3) Delay Pairing &
 Difference Generation

LFSR_seed1
LFSR_seed2

i=LFSR(seed1)

j=LFSR(seed2)

ddiff
i

=drise
j

−d fall
i

Mean:
Range:

(4) TV Compensation
On-Chip BRAM

ddiff
2048ddiff

1

drise
1

d rise
2048

μtest , range test

zval
i =(ddiff

i −μtest)/range test

ddiffC
i

=(zval
i

−μref)/rangeref

μref

rangeref

Normalize:
Scale::

Mod_di
diffC = di

diffC % Mod

Modulus: Mod

(5) Modulus Operation

Margin: Marg

(6) Margin Technique

Marghelper_bit
Mod_di

diffC in weak regions;

1 : otherwise

0 :

responsefinal =

No value (skipped) : if helper_bit = 0

0 :

1 :

if Mod_di
diffC in strong '0' region

if Mod_di
diffC in strong '1' region

(7) Helper data & Response Generation

4. TV compensation: The delay difference is normalized by using the mean 'utest' and

range 'rngtest' derived from the distribution of the 2048 ddiff
i values and then rescaled to

be the compensated delay value of ddiffC
i . The 2nd and 3rd user-defined parameters uref

and rngref are used for the rescaling as shown in the procedure (4) of Fig. 6.3.

5. Modulus operation: A modulus operation is applied to the 2048 ddiffC
i values

using a modulus value Mod used as the 4th user-defined parameter to get the

Mod _ ddiffC
i values.

6. Margin Technique: a 5th user-defined parameter value called margin is provided as

a way of eliminating those Mod _ ddiffC
i which are close to the '0-1' boundary lines to

cause bit flips.

7. Helper data and strong bitstring generation: only those Mod _ ddiffC
i that locate

within the strong regions generate a response bit with the helper data bit assigned as 1. A

zero value is assigned to the helper data bit for those Mod _ ddiffC
i that locate within

weak regions.

6.3 Sensitizing delay segments for HELP PUF

6.3.1 Differences between APUF and HELP PUF

In this section, we will discuss the structural similarities and differences between

APUF and HELP PUF. As mentioned above, HELP measures path delays of the

functional unit and generates a response bit '0' or '1' according to the location of the

107

Mod _ ddiffC
i value that is derived from a pair of path delays.

Arbiter PUFs can be generalized as an additive linear model since the total delay

difference of the two sensitized paths is the sum of the delay differences of each

individual stage. Although HELP PUF also utilizes the delay difference of two sensitized

paths for response generation, there exist several critical differences that make it

impossible to use a linear delay model for HELP:

1. APUF leverages delay difference of two k-stage paths that are identically

designed. For each stage, there are only two fixed pairs of delay segments to select: either

the straight pair or the crossed pair. Which pair is selected as the i-th stage participated

segments of the two sensitized paths only depends on the i-th bit challenge value. Such

systematically stage-wised structure across all k stages makes APUF fits into a simple

linear additive model. In the model, the delay difference of each individual stage can be

represented by a function of one-bit challenge value. HELP PUF, on the other hand, can

never be generalized by such linear additive model since much more complicated

'challenge-to-sensitized-segment' relationship exist for the two sensitized paths. First, the

two paths are with different stage lengths and are separately sensitized by two

independent challenge pairs (one rising and one falling), no one-stage-to-one-challenge-

bit relationship exists. Second, the number of possibly paired delay segments at each

stage (with the same depth) is in the order of n2, where n is the number of structural paths

of the functional unit. Third, whether a delay segment of the i-th stage gets sensitized

depends on multiple challenge bits that are present in the boolean expression of this delay

segment.

108

2. A single challenge pattern is always guaranteed to sensitize only two paths for

APUFs. However, a given challenge pair for HELP could possibly sensitize any number

of structural paths ranges from 0 to the number of primary outputs. In fact, it equals to the

number of primary outputs that have transitions. For instance, 3 structural paths get

sensitized under the given challenge pair in Fig. 6.2.

3. Applying a single challenge pattern to APUF is guaranteed to generate one

corresponding response bit on the fly. However, this is not true for HELP in three aspects:

First, there exists no corresponding response value for those applied challenge pairs that

sensitize zero structural path. Second, the response generation process will not even get

started until 2048 rising and 2048 falling delays have been collected in the on-chip

BRAM. Third, which pair of rising delay and falling delay will be selected from the two

2048 sets further depends on the values of the two LFSRs (procedure (3) in Fig. 6.3).

Fig. 6.4 Sample circuit for illustration of the delay model of HELP

109

a[3] a[2] a[1] a[0]

g1

g3

g2

g5

g1.O

d[1] d[0]

g4

g2.O

g3.O

6.3.2 Preliminaries of delay segments and path sensitization for HELP

For illustration purpose, we describe the process of building a delay model for HELP

using a simple sample function unit shown in Fig. 6.4. The sample functional unit

consists of five two-input logic gates g1~g5 (AND and OR) and has four primary inputs

a[3]~a[0] and two primary output d[1] and d[0].

The HELP PUF leverages the delay of sensitized structural paths as the source of

entropy. A structural path starts from a primary input and ends at a primary output of the

functional unit. To achieve glitch-free operation, the functional unit of HELP is

implemented using positive logic gates [66] and the applied two-vector sequence either

possesses '0' to '1' transitions or '1' to '0' transitions but not both. Such 'glitch-free'

operation maintains the transition direction initialized at the primary input unchanged

along the sensitized structural path. For each structural path, there are two corresponding

transition paths: the rising path and falling path. The rising (falling) path is traversed by a

rising (falling) transition initialized in the primary input and propagating through logic

gates along the path. We regard the two transition paths as two distinct paths in the

following discussions. The nodes along a sensitized path is called the on-path nodes, and

the gates along the sensitized path have only one on-path input and all the others being

off-path inputs. For a sensitized gate at the i-th stage of a sensitized path, two delay

elements contribute to the path delay: 1) the interconnect delay that a signal transition

travels from the output of a previous gate (through a fanout branch) to the on-path input

of the destination gate; 2) the switching gate delay associated with a transition propagates

from the on-path input to the gate output. For convenience, the combination of these two

110

delay elements at each stage is defined as a delay segment so that a path delay can be

represented by the sum of these segment delays at each stage. Similar to the transition

paths, there are two 'transition' delay segments associated with one physical delay

segment: the rising and the falling delay segments.

The concept of delay segments is introduced for the convenience of representing a

path delay using individual delay units. A delay segment can be regarded as an input

segment of a gate, which are considered separate for each input of the gate. Therefore, we

denote a delay segment using the corresponding gate input node and the gate output node

in the form of (gateInput, gateOutput). For example, there are two delay segments

associated with gate g2 in Fig. 6.4 denoted as (a[3], g2.O) and (g1.O, g2.O), respectively,

where 'gX.O' represents the output node of gate 'gX'.

The condition of sensitizing a transition path is that the applied two-vector sequence

will initialize a transition at the primary input and the transition will propagate through

every delay segment along the path. This is equivalent to the requirement that the

conditions of sensitizing each delay segment along the path are met simultaneously, as is

discussed in the following section.

6.3.3 Condition of sensitizing a delay segment

Similar to the 'on-path' input of a gate, we call the input that involves the delay

segment as the 'on-segment' input and all the rest as 'off-segment' inputs of a gate. The

condition of sensitizing an input segment of a gate depends on the logic function of the

gate and the off-segment inputs values. For simplicity, we analyze the condition of

sensitizing a delay segment of the 2-input AND and the 2-input OR gates for the rising

111

and falling transitions as below. Note that the controlling and non-controlling input value

for an AND gate are '0' and '1', respectively, and vice versa for an OR gate.

There are two cases where a delay segment of a gate gets sensitized and dominates

the timing of the gate. The first case is called 'static sensitization' where all the off-

segment inputs of the gate hold a constant non-controlling value and only the on-segment

Fig. 6.5 Condition of sensitizing a delay segment of the 2-input AND and 2-input OR
gate. (a) static sensitization (b) dynamic sensitization

input has a transition, as is illustrated on the left side of Fig. 6.5 (a). Static sensitization is

deterministic because the only transition at the on-segment input is guaranteed to cause a

transition at the gate output and thus dominates the timing of the gate. In the second case,

however, the on-segment input is not the only input that possesses a transition but at least

112

Rising transition

on-segment input
off-segment input

V1 V2

V1 V2
1

V1 V2

0

V1 V2

0 1

V1 V2 V1 V2

Static Sensitization

Dynamic Sensitization

0 1

0 1
V1 V2

Falling transition

V1 V2

1 0

V1 V2

1
V1 V2

0

V1 V2

V1 V2

V1 V2

V1 V2

V1 V2

1 0

1 0

1 0

1 0

1 0

Rising transition Falling transition

0 1

0 1

V1 V2
0 1

Off-segment inputs: Inoff On-segment inputs: Inon

V1, V2 Boolean Expr. V1, V2 Boolean Expr.

AND (V1,V2) = (1,1) (V1,V2)=(0,1)

OR (V1,V2)= (0,0) (V1,V2)=(0,1) (Inoff)v1 &(Inoff)v 2

(Inoff)v1 &(Inoff)v 2 (Inon)v1 &(Inon)v 2

(Inon)v1 &(Inon)v 2

Gate
type

Off-segment inputs: Inoff On-segment inputs: Inon

V1, V2 Boolean Expr. V1, V2 Boolean Expr.

AND (V1,V2)=(X,1) (V1,V2)=(0,1)

OR (V1,V2)=(0,X) (V1,V2)=(0,1)

Gate
type

(Inoff)v1

(Inoff)v 2
(Inon)v1 & (Inon)v 2

(Inon)v1 &(Inon)v 2

(a) Static sensitization for 2-input AND and OR gates
 under rising and falling transition.

(c) Dynamic sensitization for 2-input AND and OR gates
under rising and falling transition

(b) Boolean expressions that represent conditions of static
 sensitization under rising transition.

(d) Boolean expressions that represent conditions of static or
dynamic sensitization under rising transition.

one of the off-segment inputs of the gate, as shown in the graph in Fig. 6.5 (c). We call

this case 'dynamic sensitization' because more than more inputs of the gate possess

transitions and the input transition that dominates the timing is the one that causes the

gate output to change. If the input transitions change from a non-controlling value to a

controlling value (1-to-0 for AND gate and 0-to-1 for OR gate), the input transition that

occurs first is the one that causes the transition at the gate output and thus dominates the

timing. In the opposite case, the input transition that happens last dominates the timing.

Fig. 6.5 (c) enumerates all these scenarios where the transition at the on-segment input

dominates the timing. Note that in order to guarantee the desired order of input transitions

described above, we need the delay information of each on-path segments on previous

stages. Therefore, the dynamic sensitization is non-deterministic in the sense that which

input transitions happens first depends on the gate delays of previous stages.

In order to represent the conditions discussed above in a delay model, we need to

translate these sensitization conditions into corresponding boolean expressions. The final

boolean expression is the ANDed result of two sub-expressions: one for the on-segment

input and the other for the off-segment inputs of the target gate. The table in Fig. 6.5 (b)

lists the boolean expressions that represent the conditions, for the rising transition, where

the sensitized target delay segment dominates the timing under static sensitization. The

corresponding boolean expressions for the falling transition case can be easily inferred

from the falling scenario depicted in Fig. 6.5 (a).

The table in Fig. 6.5 (d) gives the boolean expressions that represent the condition of

a general case where either static or dynamic rising sensitization occurs. Note that such

113

general form of boolean expressions is only able to precisely represent the conditions for

the static sensitization case because the uncertainty feature of the dynamic sensitization

requires gate delay information of previous stages. In order to eliminate the uncertainty of

dynamic sensitization, we can attach a delay field to each delay segment that can be

derived by running post-timing simulations on the functional unit netlist. This delay field

can be referred to latter in the model to decide which input transition dominates the

timing under dynamic sensitization scenarios. However, this strategy will be ineffective if

the nominal delay difference of two input transitions are so small as in the range of

within-die variations (discussed in Section 6.5).

6.3.4 Condition of sensitizing a structural path

With the boolean expressions available that represent the condition of sensitizing

each individual delay segment in the functional unit, the conditions of sensitizing a

specific path can be represented by the ANDed result of these expressions of every on-

path delay segment as below:

 Expr path_ i=∏
j=0

k path _i

Expr seg _ j
path _ i (6.4)

where kpath_i represents the lengths (number of delay segments) of path_i and

Expr seg _ j
path _ i represents the boolean expression of sensitizing the j-th delay segment along

path_i.

Note that the size of the boolean expression Exprseg _ j
path_ i increases exponentially with

the depth of the segment (stage index) along the path. This is true since the number of

primary input literals in the boolean expressions of a gate input at stage j is approx. 2j if

114

all the gate are 2-input gates.

6.4 Proposed Delay Model for HELP

We define an m-dimentional parameter vector w⃗ for HELP where the i-th element

wi represents the delay of the i-th delay segment within the functional unit (m denotes the

total number of delay segments). In order to construct the total delay of a structural path,

we need to sum up the delays of every on-path delay segments. An on-path vector p⃗ is

defined for each structural path as an m-dimensional vector where the i-th element pi

represents whether the i-th delay segment is an on-path segment (being a '1') or an off-

path segment (being a '0'). With w⃗ and p⃗ path _ i , we are able to denote the total delay

of a path dpath_i as:

 d path _ i= w⃗⋅p⃗ path_ i
T (6.5)

An on-path matrix P⃗ can be constructed by putting all the on-path vectors as

individual columns as: P⃗=[p⃗ path_ 1
T , p⃗ path _ 2

T , ... , p⃗ path_ i
T , ... p⃗ path_n

T]

where n represents the total number of transition paths in the functional unit. With

w⃗ and P⃗ , we can derive an n-dimensional path delay vector d⃗ as:

 d⃗=w⃗⋅P⃗=w⃗⋅[p⃗ path_ 1
T , p⃗ path _2

T , ... , p⃗ path_ i
T , ... , p⃗path _ n

T]
=[d path _1 , d path_ 2, ... ,d path_ i , ... , d path_ n]

 (6.6)

The purpose of the delay model is to represent the sensitized path delays under the

applied vector pair. If we use the boolean expressions that represent the conditions of

sensitizing each transition paths to construct a n×n conditional diagonal matrix E⃗

as:

115

 E⃗=[
Expr path _ 1 0 0 ⋯ A1 n

0 Exprpath _ 2 0 0
0 0 Expr path _ 3 0
⋮ ⋮
0 0 0 ⋯ Expr path _n

] (6.7)

 With the conditional diagonal matrix E⃗ and the path delay vector d⃗ , we are

able to get an n-dimensional sensitized_path vector S⃗P that represent all the sensitized

transition paths under any applied vector pair C⃗V 1,V 2 by the equation:

 S⃗P=d⃗⋅E⃗=[dSP 1, dSP 2,⋯, dSPn] (6.8)

where dSPi represents the sensitized path delay value, being either 0 (if path_i is not

sensitized) or dpath_i (if path_i is sensitized under vector pair C⃗V 1,V 2).

6.5 Exponential scaling of the Exprpath size with path length

Using the delay model proposed in the above sub-section, all the sensitized paths can

be represented by individual segment delays along the path under any applied vector pair.

However, as discussed in Section 6.3.4, the size of the boolean Expression for the on-path

segment increases exponentially with its depth. This feature will result in the fact that the

size of the path expression Exprpath of a path with length k will be approx. rk , where r is

the average number of inputs per gate along the path. This indicates that constructing the

delay model will be infeasible if the max path length increases to a certain value like 30

(230 ~ 1 billion).

6.5 Unsolvable uncertainty introduced by within-die variations

As is mentioned in Section 6.3.3, we can attach a nominal delay field (gained by

116

post-timing simulation) to each segment to reduce the uncertainty that which input

transition dominate the timing under the dynamic sensitization. However, if the nominal

delay differences of the multiple input transitions are so small that they are in the range of

within-die variations, then which input transition dominates the timing of the gate will

vary across chip-to-chip. Such with-die variations are random, uncontrollable and

unpredictable across chips, therefore the uncertainty is very difficult to be eliminated in

the delay model.

117

 Chapter 7

Future Work

In chapter 2, the results of applying the proposed scheme to the resistance

distribution data in the public domain show that the bitstring regeneration achieved zero

bit-flip without any type of helper data. This needs to be further verified on real physical

NVM devices in terms of whether the resistance distribution will skew with increasing

number of regenerations. If so, we need to set up a mechanism that periodically re-writes

the old resistance state to each NVM cell to guarantee long-term, reliable bitstring

regenerations.

The experiments presented in chapter 3 analyzes various types of underlying entropy

source within the HELP PUF for both glitchy and glitch-free functional units. What we

expect is that the magnitude of the delay variations could be multiple times larger than

the measurement and temperature/voltage noise (TV noise). Although we used a

temperature/voltage compensation technique (TVCOMP) to reduce the TV noise, there

are still a small portion of path delays that can not be compensated properly. Future work

includes proposing some screening methods to exclude those paths that possess

“uncompensated TV noise”. Since the 'uncompensated TV noise' exhibits systematic

behavior, further research could extend to investigate solutions to eliminate such

systematic behavior, e.g., schemes like dividing the population into separate groups for

TV-compensention.

Chapter 4 demonstrates the difficulty against model-building attack introduced by the

'distribution effect' of HELP PUF. Future work includes applying various machine

118

learning algorithms to demonstrate how difficult it is to build an accurate model of HELP

to predict responses of arbitrary challenges.

The results in Chapter 5 show the effectiveness of a novel 'offset method' that deals

with the bias issue of HELP. We have demonstrated the improved inter Hamming

Distance for the modulus ranges from 10 to 30. Future work may include investigating

the effectiveness of applying the offset method to larger modulus values.

Chapter 6 proposes a delay model for the HELP PUF. The complexity of the delay

model indicates how difficult it is to launch model-building attack to break the HELP

PUF. Future work includes applying different machine-learning algorithms to learn the

challenge-response relationship.

119

Chapter 8

Conclusions

In Chapter 1, I introduced the basic metrics for leveraging qualities of Physically

Unclonable Functions and reviewed different schemes of helper data that are targeted at

addressing the reliability issue of PUFs.

In Chapter 2, I proposed a new type of PUF structure that is able to eliminate the

helper data during the bitstring regeneration process. The PUF is built based on the

unique re-programmability feature of non-volatile memory cells and is described in the

context of an emerging nano-device, i.e., memristors. The methodology is applicable to

any type of non-volatile memories including flash memory.

In chapter 3, a PUF-based authentication protocol based on the HELP PUF is

proposed and various types of entropy source of HELP are investigated. Particularly,

three types of delay variations are investigated, namely, 1) within-die variations that

occur with individual LUT cells, 2) global variations that occurs across all LUTs on the

chip and 3) delay variations introduce by static and dynamic logic hazards. Both glitchy

and glitch-free functional units are analyzed in terms of the magnitude of the delay

variations with respect to measurement and temperature/voltage noise.

In Chapter 4, we demonstrated that the 'distribution effect' within the HELP PUF

processing engine significantly improves the resilience against model-building. The

processed delay difference value used for bitstring generation is dependent on the other

values that participate in the distribution used for the TVCOMP process, which

120

introduces bitstring diversity. Changing the distribution characteristics like mean and

range can be achieved by specifying a user-defined parameter call Path-Select-Mask. Our

experiments show that the Path-Select-Mask combined with the TVCOMP process

introduces additional entropy beyond that available in a fixed number of path delays,

which makes model-building more difficult.

In Chapter 5, we proposed a technique that deals with the bias issue for HELP PUF.

Purposely setting the values of the offset bits is very effective in improving the base inter-

chip Hamming Distance and the entropy without affecting the bit flip error rate. On the

other hand, randomly setting the offset bits by the verifier in the authentication scenario

enlarge the response space dramatically using a fixed set of path delay values. The

overhead of the method is fairly small the offset bits can be assigned to the unused path-

select-mask bits for authentication.

In Chapter 6, a delay model for the HELP PUF is proposed so that the sensitized path

delays can be represented by the delay segments and the given applied vector pair. We

notice that the size of the delay model increases exponentially with the path length. Also

within-die variations makes it very difficult to eliminate the uncertainty that which input

transition dominates the timing of a gate if more than one inputs possess transitions.

121

References

[1] B. Gassend, et al., "Controlled Physical Random Functions," Conference on

Computer Security Applications, 2002.

[2] B. Skoric, et al., “Robust Key Extraction from Physical Uncloneable Functions”,

Chapter in Applied Cryptography and Network Security, 2005.

[3] R. Maes, et al., “Low-overhead Implementation of a Soft Decision Helper Data

Algorithm for SRAM PUFs,” CHES, 2009, pp. 332–347.

[4] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for physical

unclonable functions,” IEEE Design and Test of Computers, vol. 27, pp. 48–65, 2010.

[5] Z. Paral, et al., "Reliable and Efficient PUF-based Key Generation using Pattern

Matching," HOST, 2011, pp. 128-133, Jun. 2011.

[6] J. Delvaux. et al., “Attacking PUF-Based Pattern Matching Key Generators via

Helper Data Manipulation”, Cryptology ePrint Archive: Report 2013/566

[7] A. Maiti , J. Casarona , L. McHale and P. Schaumont “A large scale characterization

of RO-PUF", Proc. IEEE Int. Symp. 2010 Hardware-Oriented Security and Trust

(HOST), pp. 94-99, 2010.

[8] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M.

Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, “A statistical test suite for random and

pseudorandom number generators for cryptographic applications”, National Institute

of Standards and Technology (NIST), special publication 800-22, August 2008.

[9] M.-D. Yu, D. M’Ra ̈hi, S. Devadas and I. Verbauwhede: “Security and Reliability

122

Properties of Syndrome Coding Techniques Used in PUF Key Generation,” in

Government Microcircuit Applications & Critical Technology Conference,

GOMACTech 2013, pp. 1–4, Mar. 2013.

[10] Y. Dodis, L. Reyzin, A. Smith, ‘‘Fuzzy Extractors: How to Generate Strong Keys

from Biometrics and Other Noisy Data,’’ Eurocrypt, 2004.

[11] R Maes, A. Herrewege, I. Verbauwhede, “PUFKY: A Fully Functional PUF-based

Cryptographic Key Generator,” Workshop on Cryptographic Hardware and

Embedded Systems (CHES), 2012, LNCS vol. 7428, pp. 302-319

[12] M. Yu, S. Devadas, "Secure and Robust Error Correction for Physical Unclonable

Functions," IEEE Design and Test of Computers, Special Issue on Verifying Physical

Trustworthiness of ICs and Systems, vol. 27, no. 1, pp. 48-65, Jan./Feb. 2010.

[13] M. Hiller, D. Merli, F. Stumpf, “Complementary IBS: Application Specific Error

Correction for PUFs,” IEEE Int’l Symposium on Hardware-Oriented Security and

Trust (HOST), 2012 .

[14] M. Yu, D. M’Raїhi, R. Sowell, S. Devadas, “Lightweight and Secure PUF Key

Storage Using Limits of Machine Learning,” Workshop on Cryptographic Hardware

and Embedded Systems (CHES), 2011, LNCS vol. 6917, pp. 358-373.

[15] G.E. Suh and S. Devadas, “Physical unclonable functions for device

authentication and secret key generation,” in Design Automation Conference, DAC

2007, pp. 9-14, Jun. 2007 .

[16] J. Ju, et al., “Bit String Analysis of Physical Unclonable Functions based on

Resistance Variations in Metals and Transistors”, HOST, 2012, pp. 13-20.

123

[17] Z. Paral, S. Devadas, “Reliable and Efficient PUF- based Key Generation Using

Pattern Matching,” IEEE Int’l Symposium on Hardware-Oriented Security and Trust

(HOST), 2011.

[18] R. Chakraborty, et al., “A Transmission Gate Physical Unclonable Function and

On-Chip Voltage-to-Digital Conversion Technique”, in Proceedings of the 50th

Design Automation Conference, DAC '13, 2013, May. 2013.

[19] Jeroen Delvaux , Dawu Gu, Dries Schellekens and Ingrid Verbauwhede, “Helper

Data Algorithms for PUF-Based Key Generation: Overview and Analysis ”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015.

[20] P. Koeberl, et al., “Memristor PUFs: A New Generation of Memory-based

Physically Unclonable Functions”, DATE, 2013, pp. 428-431, Mar. 2013.

[21] G. S. Rose, et al., “Hardware Security Strategies Exploiting Nanoelectronic

Circuits”, ASP-DAC, 2013, pp. 368-372, Jan. 2013.

[22] G. S. Rose, et al., “Foundations of Memristor Based PUF Architectures,”

NANOARCH, July 2013.

[23] G. S. Rose, et al., “A Write-Time Based Memristive PUF for Hardware Security

Applications”, ICCAD, 2013, pp. 830-833, Nov. 2013.

[24] O. Kavehei, et al., “mrPUF: A Memristive Device based Physical Unclonable

Function”, CoRR, 2013.

[25] Le Zhang, et al. “Highly reliable memory-based Physical Unclonable Function

using Spin-Transfer Torque MRAM”. ISCAS 2014:2169-2172, June 2014.

[26] Le Zhang, Zhi-Hui Kong, Chip-Hong Chang, Alessandro Cabrini, Guido Torelli:

124

Exploiting Process Variations and Programming Sensitivity of Phase Change Memory

for Reconfigurable Physical Unclonable Functions. IEEE Transactions on

Information Forensics and Security 9(6): 921-932 (2014)

[27] Elena loana Vatajelu, Giorgio Di Natale, Marco Indaco, Paolo Prinetto, “STT

MRAM-Based PUFs ” , DATE, 2015, pp. 872-875, Mar., 2015.

[28] Jayita Das, Kevin Scott, Srinath Rajaram, Drew Burgett, Sanjukta Bhanja ,

“MRAM PUF: A Novel Geometry Based Magnetic PUF With Integrated CMOS ”,

IEEE Transactions on Nanotechnology , Issue. 99, 2015.

[29] J. J. Yang, et al., “Memristive Devices for Computing,” Nature Nanotechnol., vol.

8, pp. 13–24, Jan. 2013.

[30] D. B. Strukov et al, “The Missing Memristor Found”, in Nature, volume 453,

pages 80–83, 2008.

[31] Y. Ho, et al., “Dynamical Properties and Design Analysis for NonVolatile

Memristor Memories”, Trans. CAS, 58-I(4):724–736, 2011.

[32] Q. Xia, et.al. “Memristor-CMOS Hybrid Integrated Circuits for Reconfigurable

Logic”, Nano Letters, vol. 9, no. 10, 2009.

[33] K. Kim, et al., “A Functional Hybrid Memristor Crossbar-array/CMOS System

for Data Storage and Neuromorphic Applications,” Nano Letters, vol. 12, no. 1, pp.

389–395, 2011.

[34] J. Ju, et al., “Stability Analysis of a Physical Unclonable Function based on Metal

Resistance Variations”, HOST, 2013, pp. 143-150.

[35] Zhang, A. Henessy, and S. Bhunia, “Robust Counterfeit PCB Detection

125

Exploiting Intrinsic Trace Impedance Variations”, VLSI Test Symposium, April 2015.

[36] F. Saqib, M. Areno, J. Aarestad and J. Plusquellic, “An ASIC Implementation of a

Hardware-Embedded Physical Unclonable Function”, IET Computers & Digital

Techniques, Vol. 8, Issue 6, Nov. 2014, pp. 288-299.

[37] J. Aarestad, J. Plusquellic, D. Acharyya, “Error-Tolerant Bit Generation

Techniques for Use with a Hardware-Embedded Path Delay PUF”, HOST, 2013, pp.

151-158.

[38] http://zedboard.org/product/zedboard

[39] J. Delvaux, D. Gu, R. Peeters and I. Verbauwhede, “A Survey on Lightweight

Entity Authentication with Strong PUFs”, Cryptology ePrint Archive: Report

2014/977.

[40] R. S. Pappu. Physical One-Way Functions. PhD thesis, MIT, 2001.

[41] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Silicon Physical

Random Functions”, Conference on Computer and Communications Security, 2002,

pp. 148-160.

[42] L. Bolotny and G. Robins, “Physically Unclonable Function-based Security and

Privacy in RFID Systems”, PerCom, 2007, pp. 211-220.

[43] E. Ozturk, G. Hammouri, and B. Sunar, “Towards Robust Low Cost

Authentication for Pervasive Devices”, PerCom, 2008, pp. 170-178.

[44] G. Hammouri, E. Ozturk, and B. Sunar, “A Tamper-Proof and Lightweight

Authentication Scheme, Pervasive and Mobile Computing, 2008, 807-818.

[45] L. Kulseng, Z. Yu, Y. Wei, and Y. Guan, “Lightweight Mutual Authentication and

126

http://zedboard.org/product/zedboard

Ownership Transfer for RFID Systems”, INFOCOM, 2010, pp. 251-255.

[46] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “Enhancing RFID Security and

Privacy by Physically Unclonable Functions”, Information Security and

Cryptography, 2010, pp. 281-305.

[47] S. Katzenbeisser, Unal Kocabas, V. Van Der Leest, A. Sadeghi, G. J. Schrijen, H.

Schroder, and C. Wachsmann, “Recyclable PUFs: Logically Recongurable PUFs”,

CHES, 2011, pp. 374-389.

[48] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi, I.

Verbauwhede, and C. Wachsmann, “Reverse Fuzzy Extractors: Enabling Lightweight

Mutual Authentication for PUF-enabled RFIDs”, Vol. 7397 of Lecture Notes in

Computer Science, 2012, pp. 374-389.

[49] U. Kocabas, A. Peter, S. Katzenbeisser, and A. Sadeghi, “Converse PUF-Based

Authentication” TRUST, 2012, pp. 142-158.

[50] Y. S. Lee, T. Y. Kim, and H. J. Lee, “Mutual Authentication Protocol for

Enhanced RFID Security and Anticounterfeiting”, WAINA, 2012, pp. 558-563.

[51] Y. Jin, W. Xin, H. Sun, and Z. Chen, “PUF-Based RFID Authentication Protocol

against Secret Key Leakage”, Vol. 7235 of Lecture Notes in Computer Science, 2012,

pp. 318-329.

[52] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,

“Slender PUF Protocol: A Lightweight, Robust, and Secure Authentication by

Substring Matching”, Symposium on Security and Privacy Workshop, 2012, pp. 33-

44.

127

[53] Y. Xu and Z. He, “Design of a Security Protocol for Low-Cost RFID”, WiCOM,

2012, pp. 1-3.

[54] Y. S. Lee, H. J. Lee, and E. Alasaarela, “Mutual Authentication in Wireless Body

Sensor Networks Based on Physical Unclonable Function”, IWCMC, 2013, pp. 1314-

1318.

[55] M.-D. M. Yu, D. M’Rahi, I. Verbauwhede, and S. Devadas, “A Noise Bifurcation

Architecture for Linear Additive Physical Functions, HOST, pp. 124-129.

[56] S. T. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. F. Wong, “System-of-

PUFs: Multilevel Security for Embedded Systems”, CODES, pp. 27:1-27:10, 2014.

[57] S. Nikova, V. Rijmen and M. Schlaffer, “Using Normal Bases for Compact

Hardware Implementations of the AES S-Box”, Security and Cryptography for

Networks, Lect. Notes in C.S., Volume 5229, 2008, pp 236-245.

[58] K. Tiri and I. Verbauwhede, “A Logic Level Design Methodology for a Secure

DPA Resistant ASIC or FPGA Implementation”, DATE, 2004, pp. 246-251.

[59] http://en.wikipedia.org/wiki/Hamming_distance

[60] NIST: Computer Security Division, Statistical Tests,

http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

[61] S. M. Nowick and C. W. O’Donnell, “On the Existence of Hazard-Free Multi-

Level Logic”, ASYNC, 2003.

[62] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, “Handbook of Applied

Cryptography,” CRC Press, ISBN: 0-8493-8523-7, Oct. 1996,

http://cacr.uwaterloo.ca/hac/

128

http://cacr.uwaterloo.ca/hac/
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://en.wikipedia.org/wiki/Hamming_distance

[63] S. P. Skorobogatov, "Semi-Invasive Attacks - A New Approach to Hardware

Security Analysis,” Technical Report UCAM-CL-TR-630, 2005.

[64] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Silicon Physical Random

Functions”, Computer and Communication Security Conference, Nov. 2002.

[65] J. Aarestad, J. Plusquellic, D. Acharyya, “Error-Tolerant Bit Generation

Techniques for Use with a Hardware-Embedded Path Delay PUF,” Symposium on

Hardware-Oriented Security and Trust (HOST), 2013, pp. 151-158.

[66] W. Che, F. Saqib, J. Plusquellic, "PUF-Based Authentication", ICCAD, Nov,

2015.

[67] R. van den Berg, B. Skoric, and V. van der Leest, “Bias-based modeling and

entropy analysis of PUFs,” in TrustED’13, November 04, 2013, Berlin, Germany.

[68] S. Katzenbeisser, U. Kocabas, V. Rozic, A. Sadeghi, I. Verbauwhede, and C.

Wachsmann, “PUFs: Myth, Fact or Busted? A Security Evaluation of Physically

Unclonable Functions (PUFs) Cast in Silicon”, CHES 2012, pp. 283-301.

[69] https://en.wikipedia.org/wiki/AES

[70] K. Tiri and I. Verbauwhede, "A Logic Level Design Methodology for a Secure

DPA Resistant ASIC or FPGA Implementation,” DATE, 2004, pp. 246-251.

129

https://en.wikipedia.org/wiki/AES

