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Vehicle Dashboard Traffic Light Systems at 4-way Intersections 
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M.S., Computer Engineering, University of New Mexico, 2016 

Abstract 

In recent years, a wave of technological innovations have turned many of the gadgets we 

use into smart devices.  However, some areas of industry remain somewhat isolated from 

modernization with little to no improvements in their overall functionality.  Traffic lights 

at an intersection are a perfect example of a technology that has remained behind the 

times.  While there is a lot of potential for reducing CO2 gas emissions, oil consumption, 

and commuting times, research in this area has resulted in minor changes.  In this thesis, 

we improve on what others have learned to provide a solution in vehicle coordination that 

is smart, practical and innovative.  We leverage the power of Vehicle Ad-hoc Networks 

(VANET’s) to develop a Vehicle Traffic Dashboard Light System that can gather real-

time traffic information to effectively coordinate vehicles crossing a 4-way intersection. 

In detail, we developed a Lazy Algorithm that focuses on reducing vehicular average 

waiting times, maximizing intersection throughput and minimizes the number of vehicles 

that need to make unnecessary stops.  We then compare the Lazy Algorithm to two other 

algorithms by conducting various simulations. Furthermore, we study the impact on the 

average waiting time vehicles experience while crossing two consecutive intersections 

equipped with a Vehicle Traffic Dashboard Light System.  The results from our many 
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simulations are promising and indicate that such an algorithm could potentially be used 

for coordinating human-driven vehicles.  Under heavy traffic conditions, we have seen a 

reduction of up to 69.7% in average waiting time in comparison to the tradition Pre-Time 

traffic light algorithm and 89% in comparison to the FIFO Algorithm.  With such results, 

we feel that the VDTL Systems bring us closer to the era of vehicle automation.  
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Chapter 1 Introduction 

 

The 21st century has brought us many innovations in technology that in some way or 

other have improved our quality of life.  However, certain areas remain stagnant and have 

made little to no improvements to its overall functionality.  A good example of this is the 

tradition 4-way traffic light.     

Vehicle traffic lights have been in existence for many decades now, yet the main 

algorithm and mechanics used to coordinate vehicle crossing at an intersection have not 

evolved much.  Yes, sensors have been added to the system and many studies have been 

conducted on determining the optimum light timing but none have been able to yield 

significant improvements over the current model of the dynamic Pre-Time traffic light.  

Meanwhile, the number of vehicles on the streets keeps increasing, forcing local 

governments to install additional traffic lights as a way to maintain traffic flow.  In a 

2011 report, the United States Federal Highway Administration reported there were a 

whopping 246 million registered vehicles in the nation [1].  This volume of vehicles 

traveling on our roadways has become of great concern to many government agencies 

and the community at large.  Not only does it create a traffic flow nightmare but most 

importantly, the impact that fuel consumption and CO2 gas emissions have on the 

environment are quite significant [2]. 

 In recent years, the Obama administration has been particularly interested in 

breaking the U.S. dependence on foreign oil, increasing vehicle fuel consumption, and 

addressing the threat of climate change [3-4].  Yet, little is being done to improve the 

current traffic light system infrastructure that could potentially have a significant 
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reduction in both fuel consumption and emission of CO2 gasses released into the 

environment.   

Early versions of the traffic light signals used a fixed pre-configured timing 

mechanism that would allocate a fixed amount of green time to each direction.  As the 

number of vehicles on our roadways increased, this basic model of coordination proved 

to be inefficient.  It was only then that traffic engineers began using other techniques to 

better determine the traffic light timing that could maximize the intersection use. 

As a way to improve the fixed pre-configured timing model, engineers began 

using induction loop sensors that could determine when a vehicle was present [5]. These 

sensors would then allow the light controller to adjust to traffic light timing throughout 

the day based on traffic patterns obtained from these sensors.  Unfortunately, such 

sensors were very intrusive, expensive and resulted in higher maintenance costs [6].  As 

an improvement, traffic engineers began using non-intrusive type sensors such as motion, 

video, and microwave sensors, to name a few.  While these sensors were less expensive, 

they were also less accurate [6]. 

With the development of wireless networks, the idea of using such a technology 

for traffic coordination has gained more and more support.  In recent years, many 

researchers have proposed the use of Vehicle Ad-hoc Networks (VANET’) such as 

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) to collect data that could 

then be used to adjust the traffic light timing in real-time [7].    

Regardless of the method being used for controlling the traffic light timing, the 

fact is that vehicles are still required to stop.  In some cases, vehicles are required to stop 

and wait for the green light even if there is no other vehicle at the intersection.  Similarly, 
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vehicles taking a trajectory that does not conflict with other vehicles will also be required 

to stop.  As a result, there is a lot of potential to further reduce fuel consumption and CO2 

gas emissions into the environment by reducing the vehicle waiting at the intersections.  

In a paper published by the University of New Mexico in collaboration with the 

University of Shanghai in China, the author suggests evaluating vehicles on an individual 

basis so that non-conflicting vehicles at the intersection can continue without having to 

stop [11].  While the model sounds very promising, the number of vehicles that are 

required to stop at the intersection during moderate and high traffic conditions is still 

quite high.  Furthermore, the model assumes that all vehicles will take 4 seconds to cross 

the intersection when in reality, this time, can vary on vehicle type and velocity. 

In this paper, we improve on a previously proposed algorithm for dispatching 

vehicles in a 4-way intersection by not only evaluating each vehicle individually but also 

as a group.  The solution being proposed in this paper is called Vehicle Dashboard Traffic 

Light (VDTL) System and it consists of an intersection and vehicle transceiver that 

communicate wirelessly to systematically dispatch vehicles across the intersection.  The 

system evaluates each vehicle independently and as a group (platoon) to determine if the 

vehicle can cross the interaction without stopping by making use of what we call a lazy 

algorithm.  The decision is then wirelessly sent to each vehicle and displayed on the 

vehicle’s traffic light dashboard. The purpose of this proposed algorithm is to reduce the 

average waiting time for each vehicle in an effort to increase traffic flow, reduce fuel 

consumption, and reduce CO2 emissions.     
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As we would expect, such change to the vehicle traffic light system shakes the 

foundation of how we think about vehicular traffic flow and presents an option to moving 

it to the 21st century.  

In chapter 2, we analyze the work others have conducted in this area and identify 

gaps that could potentially be addressed by the work on this thesis.  Chapter 3 will look 

into the details of the overall system design, the technologies it relies on to effectively 

operate a VDTL system and describe algorithm being proposed.  In chapter 4, we 

describe the simulation configuration that was developed to compare the Lazy Algorithm 

with other algorithms such as the Pre-Time and FIFO Algorithm. Chapter 5 will go over 

the different simulation scenarios that were performed to identify the parameters that 

produced the best results.  In chapter 6 we go over the performance study results.  

Finally, in chapter 6 we go over the results obtained in simulation and conclude with 

chapter 7 by identifying future areas of research interest.    

Chapter 2 Literature Review 

 

The 4-way Pre-Time traffic control system that we all encounter on a daily basis has 

proven to be very restrictive in terms of maximizing the use of the intersection or what 

we refer to in this paper as the critical zone.  The issue with the Pre-Time traffic control 

system is that vehicles are forced to stop at an intersection when there is possibly no other 

vehicle is making use of the critical zone.  As the number of vehicles on our roads 

increase, the importance of maximizing the use of the critical zone has become more and 

more important.  Not only is overall fuel consumption increased but the amount of CO2 
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gasses released into the environment becomes very significant as we aggregate the 

number of vehicles that travel across US road intersections.   

 In recent years, a lot of research has been conducted in an effort to eliminate 

unnecessary vehicle stops at intersections.  Table 2.1 provides a brief summary of the 

many parameters that have been considered when developing solutions to reduce vehicle 

waiting time at the intersections.    

Evaluating 

Unit 

Technology Frequency 

of Light 

Switching 

Type of 

Vehicle 

Traffic 

Conditions 

Road 

Infrastructure 

- Individual 

- Platoon 

- Sensors 

(Intrusive or 

Non-Intrusive) 

- Vehicle ad-

hoc Networks 

(VANET) 

(V2V or V2I) 

- Per Cycle 

- Per Platoon 

- Per Vehicle  

- Automated  

- Human 

Driven 

- Light 

- Moderate 

- Heavy 

-Traffic Light  

-No Traffic 

Lights 

Table 2.1: Parameters used in Traffic Coordination Schemes 

2.1 Sensors 

 

In a study conducted by Universiti Pultra Malaysia, the authors make a comparison 

between time-based and sensor-based traffic light control systems.  In their research, they 

modulate the light timing based on a set platoon size.  More specifically, their algorithm 

checks the number of vehicles waiting to cross the intersection to determine the amount 

of time the green light should stay on.  If the number of vehicles waiting to cross the 

intersection is small, the resulting green light durations will be short.  If the number of 

vehicles waiting increases, so does the green light duration [6].   
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With such an algorithm, they reduced the vehicle average waiting time by 62% 

under moderate traffic conditions and 15% under heavy traffic conditions.  While such 

results sound very promising, the fact is that vehicles are still required to stop even if no 

other vehicles are present since the system is dependent on a light timing model.  Figure 

2.1 serves as evidence of how intersections with installed sensors still require that 

vehicles stop even when other vehicles are headed to non-conflicting lanes.  By looking 

at the picture, we can see how under the current conditions Vehicle A and Vehicle C 

could possibly be able to cross the intersection without having to stop.  The sensors 

installed at the intersection are circled in red to provide clarity. 

 

 

 

 

 

 

 

 

Figure 2.1: Example of Vehicle Waiting at an Intersection with Sensors 

    Furthermore, the simulation conducted in this study does not consider different 

types of vehicles and the different time required for each to clear the critical zone.  

Lastly, with the development of wireless networks, the use of sensors has become 
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somewhat a thing of the past.  The use of wireless technologies to obtain data directly 

from vehicles approaching the intersection has become a more valuable approach to 

modulating traffic controller light timing.  

2.2 Vehicle Ad-Hoc Networks (VANET’s)  

 

The use of VANETs for coordinating vehicles across intersections has become a very 

popular research topic.  More specifically, the use of Vehicle-to-Vehicle (V2V) and 

Vehicle-to-Infrastructure (V2I) networks have proven to be particularly useful in 

obtaining vehicle information that otherwise would be unobtainable.   For instance, by 

making use of ad-hoc networks, intersection controllers can now obtain real-time 

information such as vehicle speed, lane, type and distance to name a few.  Additionally, 

the possibility of communicating traffic condition from vehicle to vehicle with the use of 

this technology becomes particularly important when needing to redirect traffic after a 

major highway accident.  As one can imagine, the possibilities are endless.      

Studies that have implemented the use of V2V and V2I communication include 

those done by the University of Bucharest in collaboration with Rutgers University.  In 

their study, the V2V network is used to relay a message from one vehicle to another to 

alert the intersection controller of the upcoming vehicle approaching the intersection.  

The vehicle closest to the intersection uses the V2I network to inform the intersection 

controller of the amount of vehicles approaching the critical zone from each direction.  

The intersection controller then uses this information to adjust the green light timing for 

the next cycle.  In other words, the controller uses information obtained from the previous 

cycle to generate a forecast of what the green light timing should be for the next cycle.   
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The cycle length is calculated by finding the flow per capacity ratio based on Webster’s 

formula [8].  Simulation results indicated that a reduction of 28.3% in total delay from a 

Pre-Time intersection could be achieved by implementing such a strategy. 

In a similar manner, Pandit, Ghosal, Zhang, and Chuah make use of VANET’s to 

dynamically adjust the intersection controller light timing.  However, in their Adaptive 

Traffic Signal Control with Vehicular Ad hoc Networks paper, they group vehicles into 

platoons rather than considering each vehicle individually like Grandinescu [7, 8].  In 

their proposed oldest job first (OJF) algorithm, they suggest creating vehicle platoons of 

equal size and allowing groups with the oldest arrival time to cross first.  They leverage 

the power of VANET’s to effectively create the vehicle platoons.  By doing this, they 

discovered that the delay vehicles experienced at the intersections was significantly 

reduced during light and moderate traffic conditions.  Under heavy traffic, they found 

that their OJF algorithm had less of an impact.  In comparing this algorithm to the Pre-

Time traffic algorithm, simulation results suggest a possible reduction of up to 39% in the 

average delay per vehicle [7].   

 Another interesting research that makes use of VANET’s in combination with 

Stochastic and Heuristic Algorithms is one conducted by Kwatirayo et. al.  Their study 

results yield a reduction in average travel time ranging from 17.6% to 21.8%.  In this 

study, they propose a reduction in average travel time by using an optimization method 

called Simultaneous Perturbation Stochastic Algorithm (SPSA) to find the optimal 

solution for setting the maximum green light time [9].  However, the use of optimization 

methods does not eliminate the unnecessary wait time from vehicles waiting for the light 
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to change but rather simply minimizes that wait time as much as possible.  However, 

vehicles with non-conflicting trajectories are still required to stop. 

 Recent research related to vehicle coordination via VANET’s is now focusing on 

the coordination of automated vehicles without the use of traffic lights at each 

intersection [10].  In theory, V2V and V2I networks in combination with collision 

avoidance technologies could be used to virtually eliminate all waiting time experienced 

by vehicles crossing the intersection.  With such a coordination scheme, multiple vehicles 

could be traveling inches apart from each other within the critical zone without the risk of 

collision.  For instance, two vehicles traveling perpendicular to one another could 

possibly cross the critical zone without stopping as long as there is a slight space gap 

between each of them.  Although this could be the ideal solution to intersection 

coordination, the reality is that we are a few years away from seeing fully automated 

vehicles in our roadways.  Therefore, solutions that take into consideration the many 

uncertainties that come with human-driven vehicles will likely be the most effective 

solutions for the short term implementation.   

 A similar approach to coordinating vehicles at an intersection without making use 

of traffic lights while still considering human driven vehicles is one done by Al-

Mashhadani et. al.  They transition the traffic lights from the street to the vehicle by 

introducing a Dashboard Traffic Light (DTL) device that communicates wirelessly with 

the intersection controller.  Their innovative FIFO Algorithm evaluates vehicles 

individually as they approach the intersection.  The intersection controller reserves the 

critical zone on a first come first serve bases and allows vehicles with non-interfering 

trajectories to continue without stopping.  What's more, their multiple simulations 
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ranging from 5 to 90 vehicles per minute yield a promising 86.5% reduction in average 

waiting times in comparison to Pre-Time intersection under heavy traffic conditions.  In 

analyzing the work done in this research, it is clear that realistic variability in time 

required for each vehicle to cross the critical zone is not considered.  For their study, they 

assume that it will take all vehicles 4 seconds to cross the intersection regardless of their 

profile type and speed.  Furthermore, during heavy traffic conditions, the simulations 

results indicate that the percent of vehicles required to stop is higher when using their 

proposed algorithm in comparison with the Pre-Time.  In other words, the FIFO 

Algorithm becomes counterproductive under moderate and heavy traffic patterns.  And 

while no algorithm will completely eliminate vehicle waiting time under heavy traffic 

patterns, it certainly should not make it worse.   

 In this thesis, we propose a heuristic algorithm that helps address the gaps found 

between the Pre-Time Algorithm and the FIFO Algorithm.  The Lazy Algorithm takes a 

combination of both of these approaches to evaluate vehicles individually and as a group 

(platoon) to achieve a lower waiting time experienced by all vehicles.  The strategy 

leverages the power of VANET’s to gather vehicle information that is crucial to the 

constant adjustment of vehicle processing during light, moderate, and heavy traffic 

conditions.  Furthermore, it uses the Vehicle Dashboard Traffic Light (VDTL) system as 

a way of eliminating the use of intersection traffic lights and expediting the dispatch 

process of each vehicle.  In the following chapter will touch on the details of the overall 

systems, parameters, and assumptions that are being considered to make an improvement 

in vehicle waiting time.   
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Chapter 3 VDTL System Design 

 

The Vehicle Dashboard Traffic Light (VDTL) is a system in which no actual traffic lights 

are installed at each intersection but rather displayed within a vehicle’s dashboard.  

Intersections are equipped with transponders connected to an intersection hub responsible 

for coordinating the use of the intersection critical zone.  This is very similar to a 

computer processor model in which tasks need to be performed by a single processor.  

Figure 3.1 illustrates how a VDTL system might look.  Note that the traffic light in each 

vehicle represent the dashboard and the antenna like symbols represent the vehicle 

transceiver.  Lanes are numbered clockwise direction starting from the east end.   

 

 

 

 

 

 

 

 

 

Figure 3. 1 Vehicle Dashboard Traffic Light (VDTL) System 

 

The intersection hub schedules vehicles based on an elaborate Lazy Algorithm 

that not only evaluates vehicles individually but also in a platoon configuration.  
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However, to fully comprehend the design, a basic understanding of how we define 

platoons needs to be reviewed.  Figure 3.2 below explains what we consider to be a 

platoon. 

0
1

5
4

3  2

6  7

Intersection 
Hub

#1

#2

West 
Platoon 1
Straight

Platoon 1 
North 

Straight

West 
Platoon 2  
Straight

(Will need 
to stop)

#3

 
Figure 3.2 Platooning 

A platoon is a group of vehicles that is allowed to consecutively cross the 

intersection critical zone without the interruption of any other trajectory conflicting 

vehicle.  As seen in figure 3.5, the west platoon 1 is made up of 3 vehicles rather than 5.  

This platoon cut off is caused by platoon 1 approaching from the north and arriving at the 

critical zone before platoon 2 approaching from the left.  Both the Pre-Time and Lazy 

Algorithms make use of this platooning mechanism to improve efficiency.   

 This VDTL system assumes that all vehicles are still driven by humans and that 

all vehicles are equipped with a VDTL system device.  And although the system is 

designed specifically for a four-way intersection that has a dedicated lane for turning left 
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and another for going straight or right, it can also be implemented in other configurations 

as parameters were built into account for changes in intersection configuration.  

3.1 Vehicle Transceiver 

 

The vehicle transceiver is a device installed on each vehicle and contains a unique ID.  

When approaching an intersection with the VDTL system, the transceiver is responsible 

for transmitting information such as speed and distance of the vehicle to the intersection.  

Once a response is received from the intersection, the transceiver displays the appropriate 

intersection light status and a countdown of the red light.    

This paper assumes that vehicles approaching the intersection are processed on a 

first in first out basis.  In other words, the possibility of a vehicle in the back 

communicating with the intersection before the vehicle in front is not being considered.  

However, this limitation could potentially be eliminated by the use of GPS data.      

3.2 Intersection Hub 

 

The intersection hub or traffic controller is the brain behind the entire system.  This 

component uses the algorithm developed in this paper to schedule and dispatch vehicles 

across the intersection critical zone.  The transceiver would most likely be located near 

the intersection and be equipped with an antenna capable of receiving and transmitting 

information at a distance of at least 300 meters.  As vehicles broadcast their approach to 

the intersection, the intersection transceiver would capture the vehicle data, run it through 

the algorithm and broadcast the response to each individual vehicle.   

It is assumed that the intersection transceiver is connected to a server capable of 

processing requests at a rate that is as least twice the vehicle arrival rate for the 
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intersection during heavy traffic conditions.  Additionally, the server would have the 

capabilities of storing a log of vehicle stats and calculating in real time the average 

vehicle waiting time and max waiting time per vehicle.     

3.3 Overall VDTL Specifics  

 

The VDTL system is highly dependent on VANET’s for transmitting and receiving data 

between the intersection hub and the vehicles approaching the intersection critical zone.  

At a preconfigured distance from the intersection critical zone, vehicles would broadcast 

the information in table 3.1 to the intersection hub as a way of announcing their trajectory 

toward the intersection critical zone.   

  

Vehicle ID Unique vehicle identification number. 

Arrival Time Time stamp when the vehicle sent the information to the 

intersection hub. 

Location Location obtained via GPS or some other faster mechanism.  This 

thesis considers all vehicles reporting at a distance of 300 meters.      

From  Arrival direction (North, South, East, West). 

To Vehicle destination (Left, Right, Straight). 

Speed  Vehicle constant speed of approach to the intersection  

Lane Lane where the vehicle will remain in until it passes the 

intersection critical zone. 

Type Identify the type of vehicle. (Passenger vehicle or public 

transportation bus).  

Table 3.1: Data Broadcasted by VDTL Vehicle 

Once the intersection hub obtains the vehicle data, the intersection hub starts by 

determining the vehicle’s estimated time of arrival (ETA) to the edge of the intersection 

critical zone.  It then calculates what we call the time-to-pass (T2P), which refers to the 

time it takes the vehicle to pass the critical zone.   

The system was designed to determine the T2P value based on vehicle type, 

trajectory, and light status.  A bus at rest that is turning right will have a 50% higher T2P 
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value than a passenger vehicle headed straight that is also at rest. If SLM is the amount of 

time it takes a sedan in motion to turn left, SLR is the amount of time it would take a sedan 

to turn left when starting at rest once it’s located at the edge of the intersection critical 

zone.  Similarly, BLM is the amount of time it would take a bus in motion to turn left and 

BLR the time needed to turn left from rest. Equations 1, 2 and 3, below describe how we 

calculated the timing for both sedans and buses at motion and rest.  Such T2P equations 

were determined by conducting a time study at a four-way intersection in Albuquerque, 

NM.   

𝑆𝐿𝑀 = 𝑥    |  𝑆𝐿𝑅 = 𝑥 + 0.33 ∗ 𝑥          𝐵𝐿𝑀 = 𝑥    |  𝐵𝐿𝑅 = 𝑥 + 0.25 ∗ 𝑥  (1) 

𝑆𝑆𝑀 = 𝑦    |  𝑆𝑆𝑅 = 𝑦 + 0.50 ∗ 𝑦          𝐵𝑆𝑀 = 𝑦    |  𝐵𝑆𝑅 = 𝑦 + 0.33 ∗ 𝑦  (2) 

𝑆𝑅𝑀 = 𝑧    |  𝑆𝑅𝑅 = 𝑧 + 0.10 ∗ 𝑧          𝐵𝑅𝑀 = 𝑧    |  𝐵𝑅𝑅 = 𝑧 + 0.50 ∗ 𝑧  (3) 

 

The system is designed to assign a different T2P to vehicles that are part of a 

platoon.  As Figure 3.2 explains, the first vehicle in the platoon will be assigned a T2P 

time that is based on vehicle trajectory, vehicle type, and waiting conditions.  The rest of 

the vehicles within that same platoon will get assigned a 1 second T2P, thus creating 

some sort of capsule in which the first vehicle in the platoon always has a slightly higher 

T2P.  As previously mentioned, only the Pre-Time and Lazy Algorithms make use of the 

platooning mechanism and therefore are capable of adjusting the T2P as explained in the 

figure below. 
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Figure 3.3: T2P for Vehicles in a Platoon 

With knowledge of the vehicle’s ETA and T2P, the hub then searches for an 

available time slot for the vehicle to cross the critical zone.  If the ETA of the 

approaching vehicle is before the last vehicle arrival, then the system adds it to the back 

of the queue and adds a one-second delay as a safety guard.  If the ETA is after the last 

vehicle arrival, then the approaching vehicle is simply appended to the end of the queue.  

If the time slot reserved by the intersection hub comes after the vehicle’s ETA, then the 

vehicle will be forced to stop before crossing the intersection critical zone.  The time slot 

taken by the newly arrived vehicle is then reserved and time slots from other conflicting 

trajectories are blocked for the duration of the vehicle’s T2P.  As an example, a vehicle 

arriving from the south and turning left would require that not only the time slot for his 

lane be reserved but also the time slot for vehicles headed straight from the west.  Figure 

3.4 attempts to clarify the concept of time slot reservation by illustrating how multiple 

vehicles in non-conflicting trajectories can arrive at slightly different times, yet still cross 

the critical zone without stopping.   
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Vehicles from conflicting trajectories will be evaluated on a first come first served 

basis and therefore, one or more will be forced to stop and wait.  Figure 3.4 provides a 

detailed example of how time slot blocking works when vehicles with conflicting 

trajectory approach the intersection critical zone. It will also provide an example of when 

two non-conflicting vehicles approach the intersection.  For simplicity reasons, all 

vehicles in the example take 2 seconds to cross the intersection critical zone and arrive in 

consecutive order starting at t=1.   
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Figure 3.4 Example of Time Slot Blocking under FIFO Algorithm 

In the example above, vehicle 1 arrives at second 1 to the intersection so he gets a 

green light and block all other conflicting lanes for 2 seconds.  Vehicle 2 arrives at 

second 2 but has to wait for vehicle 1 to clear the intersection so he blocks the next 

available time slot and all other slots that conflict with his trajectory.  The third vehicle 

arrives at second 3 but is forced to wait for vehicle 2 to clear the intersection, therefore, 
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he blocks the next available time slot along with all other that conflict with its trajectory.  

Vehicle 4 arrives at second 4 but has to wait for vehicle 3 to cross the intersection critical 

zone.  Vehicle 6 arrives but has to wait for vehicle 4 to pass but then a second later, 

vehicle 6 arrives.  Because these last two vehicles do not conflict with each other’s 

trajectory, both are allowed to leave at the same time starting at second 9.  It is important 

to highlight that this concept of time blocking is specifically utilized by the FIFO and 

Lazy Algorithms.   

 The VDTL system uses the following equations to determine what lanes to block 

when a new vehicle arrives: 

Let:  

F  = be the direction from where the vehicle is approaching 

BSR = the straight right time slot in the array that needs to be blocked  

BL =  the left time slot in the array that needs to be blocked 

For vehicles headed left execute setL2Red(): 

𝐵𝑆𝑅 = (𝐹 + 1) % 4      |     𝐵𝐿 = (𝐹 + 1) % 4  (4) 

𝐵𝑆𝑅 = (𝐹 + 2) % 4      |     𝐵𝐿 = (𝐹 + 3) % 4   (5) 

For vehicles headed right execute setR2Red(): 

𝐵𝑆𝑅 = (𝑓𝑟𝑜𝑚 + 2) % 4  (6) 

For vehicles headed straight execute setSR2Red(): 

𝐵𝑆𝑅 = (𝐹 + 1) % 4      |     𝐵𝐿 = (𝐹 + 2) % 4  (7) 

𝐵𝑆𝑅 = (𝐹 + 3) % 4      |     𝐵𝐿 = (𝐹 + 3) % 4   (8)       

After completing the time slot reservation and lane blockings, the intersection hub 

would then send the vehicle a traffic light status.  If the vehicle obtained a green light, 
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which would mean that it can continue its trajectory toward the intersection critical zone 

without stopping.  If the vehicle receives a red light with a countdown, this would result 

in the vehicle having to stop at the edge of the critical zone for a set amount of seconds.  

The countdown clock would not start counting down until the vehicle is at rest at the edge 

of the intersection critical zone.  The concept of deceleration as the vehicle approaches 

the intersections is not being considered in our simulation.   

The intersection hub vehicle light status response process would look something 

similar to what is described figure 3.5.  

 

 

 

 

 

 

 

 

Figure 3.5: Intersection Hub Light Status Response 

 In this case, vehicles A, B, and C would see a green light in their dashboard since 

the intersection hub would detect non-conflicting trajectories.  On the other hand, because 

vehicle D was the last one to report to the intersection hub and the critical zone is already 

busy, it will be forced to stop. As a result, vehicle D would see a countdown red light 

indicating to the driver that it must stop at the edge of the intersection critical zone and 

wait until the light turns to green. 
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A final step for the intersection hub is to calculate the vehicle’s estimated time of 

departure (ETD).  The ETD is the time when the vehicle has completely cleared the 

intersection critical zone.  Ideally, this task could be performed after a light status 

response is sent to the vehicle and kept for statistical reasons.       

Throughout this process, it is assumed that vehicles will maintain lane position, 

trajectory, and constant speed.  The equation below is used to determine the time window 

available for a two-way communication between the vehicle and intersection hub.  

 

𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝑚𝑝𝑠 = 𝑠𝑝𝑒𝑒𝑑 (𝑚𝑝ℎ)       (9) 

𝑡𝑖𝑚𝑒(sec) =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑒𝑡𝑒𝑟𝑠)

𝑠𝑝𝑒𝑒𝑑 (𝑚𝑝𝑠)
   (10) 

 

As an example, it would take a vehicle 19.8 seconds to get to the intersection 

critical zone when traveling at 35mph and at a distance of 300 meters.  In our design, we 

assume that all vehicles will initialize communication with the intersection hub at 300 

meters and that their speed varies between 35mph and 25mph.  As such, it is highly 

suggested that all communication between the vehicle and intersection hub happen within 

a 10-second window.  If the communication time window is missed, there is a very high 

potential of two of more vehicles colliding.  As previously mentioned, all requests to 

make use of the intersection critical zone would be processed on a first come first serve 

basis.  Communication contention from two vehicles with conflicting directions is not 

being considered in this paper.  

3.4 Lazy Algorithm 

Perhaps the most valuable contribution to this research is the heuristic Lazy Algorithm 
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being proposed.   This algorithm attempts to reach a middle ground between the Pre-

Time existing model and other proposed methods that we believe worsen conditions 

rather than improving them [11].  To do this, a unique approach was taken where vehicles 

are evaluated not only on an individual basis but also as a platoon.  This concept becomes 

particularly important during heavy and moderate traffic conditions where other solutions 

have proven to become equivalent to a 4-way stop.      

 The algorithm  uses a combination of parameters, such as vehicle queue count and 

time delay, to determine if vehicles headed in a straight or right direction are required to 

wait before entering the intersection critical zone.  By using a combination of vehicle 

queue count and time delay, we open the possibility of allowing two or more vehicle 

access to the critical zone as a group rather than individually.    The actual flow for the 

Lazy Algorithm is as follows. 

Let: 

Schedule() = function used to determine the time slot to be used by a vehicle  

CarNew() = function that generates vehicles based on Poisson Distribution 

HandleCross() = function that dispatches the vehicles once they have been scheduled 

T = Time delay configured 

Q = Vehicle Q size configured 

VA = Vehicle arrival array  

VF = Direction from where the vehicle is arrives at the intersection  

VT = Direction where vehicle is headed after crossing the intersection 

QNS = Number of vehicles in the north/south queue at time t 

DNS = Delay time before releasing queue in north/south direction 
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QEW = Number of vehicles in the south/west queue at time t 

DEW = Delay time before releasing queue in east/west direction 

Lazy Algorithm 

Input: Vehicle approaching the intersection critical zone 

 

Output: Time slot to cross the intersection critical zone 

 

If VA is empty 

 CarNew() 

If VA is not empty 

  If VT left: 

  Schedule()  the vehicle to cross the intersection   

  setL2Red() block all interfering lanes for time slot 

  Continue  
 If VT right or straight: 

  If VF = east or VF = west 

   Increase QEW by one  

   If QEW >=T or DEW >= Q  

    Schedule() vehicle to cross the intersection 

    If first vehicle in platoon  

Set T2P based on configured parameters 

    If the last vehicle in platoon 

     Set T2P based on configured parameters 

Else  
Set T2P to 1 sec 

    If VT = Right 

     setR2Red() block all interfering lanes for time slot 

If VT = Straight 

     setSR2Red() block all interfering lanes for time slot 

    Continue 

   Else: 

    Stop vehicle until QEW >=T or DEW >= Q is met 

    Continue 

 

  If VF = North or VF = South 

   Increase QEW by one  

   If QNS >=T or DNS >= Q  

    Schedule() vehicle to cross the intersection 

    If first vehicle in platoon  

Set T2P based on configured parameters 

    If the last vehicle in platoon 

     Set T2P based on configured parameters 

Else  
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Set T2P to 1 sec 

    If VT = Right 

     setR2Red() block all interfering lanes for time slot 

If VT = Straight 

     setSR2Red() block all interfering lanes for time slot 

    Continue 

   Else: 

    Stop vehicle until QNS >=T or DNS >= Q is met 

    Continue 

 

for each direction 

HandleCross() Dispatch Vehicle according to the scheduling array  

 

 

Figure 3.6: Lazy Algorithm Pseudo Code 

 The important aspect to understand about the Lazy Algorithm is that vehicles headed 

in a straight and right direction are forced to wait a set amount of time or until a vehicle 

quorum count is met before being allowed to use the intersection critical zone.  

Additionally, the T2P for the first vehicle in the platoon is based on vehicle type, 

trajectory, and vehicle motion.  All vehicles processing the leading vehicle in a platoon 

are assigned a 1 second T2P because it is expected that vehicles will already be in motion 

by the time they get to the edge of the intersection critical zone.  Finally, keep in mind 

that the Lazy Algorithm parameters are configured to avoid becoming a 4-way stop 

during heavy and moderate traffic conditions. 

 To visualize the effects of such a heuristic algorithm, we included an example with 

in Figure 3.7 in which individual vehicles are assigned a 2 second T2P and vehicles are 

encapsulated in a platoon are assigned a T2P of 1second.  Furthermore, vehicles headed 

in a straight and right direction are forced to wait until a vehicle quorum of 3 is met or 8 

seconds have passed.  
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Figure 3.7: Example of Time Slot Blocking under Lazy Algorithm 

Figure 3.7 illustrates how vehicles 1 and 2 are forced to stop because neither 8 

seconds have passed nor a 3 vehicle quorum is met.  Therefore, vehicle 3 is allowed to 

cross the intersection first.  Right after vehicle 3 crosses, vehicle 4 arrives but again, 

neither 8 seconds have passed nor are 3 vehicles in the queue.  Because of this, vehicle 5 

gets to cross immediately after arriving.  Soon after, vehicles 6 and 7 arrive but while 7 

gets to cross, vehicle 6 gets added to the queue along with vehicle 1.  While vehicle 7 

crosses, vehicles 8 and 9 arrive meeting both the vehicle quorum for Platoon A and the 

time delay for Platoon B, therefore allowing both platoons to make use of the intersection 

critical zone.  Lastly, vehicles 10, 11, and 12 are scheduled to cross at the end.   In short, 

the Lazy Algorithm causes vehicles headed in a straight/right direction to wait until 8 

seconds have passed or at least 3 vehicles are in the queue.  
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 While the proposed heuristic algorithm provides what we believe to be an 

improvement to the intersection average waiting time, it is not the optimal solution to the 

problems.  In this thesis, we focused on obtaining a solution that could provide an 

improvement over the well-known Pre-Time Algorithm and FIFO Algorithm developed 

by [11].   Furthermore, the fact that our algorithm targets traffic headed in the straight and 

right direction is based on the assumption that a particular traffic intersection has more 

vehicles headed in the straight and right direction.  During the design process, attempts 

were made to delay vehicles making a left turn. However, such an approach resulted in an 

increase in average waiting time which we attribute to the small amount of vehicles 

headed in the left direction in comparison to those headed straight or right direction. 

3.5 System Dependencies & Limitations  
 

As previously mentioned, the VDTL system would be highly depended on an ad-hoc 

wireless network capable of reaching a preconfigured distance.  Vehicles crossing the 

intersection would be required to have a VDTL device installed and communicate to the 

intersection transceiver at a distance of at least 300 meters.  Vehicles approaching the 

intersection will need to maintain a constant speed that is between the system’s specified 

speed ranges and not change lanes.  The possibility of having vehicles stranded on the 

intersection is not being considered as part of this paper and overall system design.   

Once a vehicle receives a response from the intersection hub on its scheduled time 

to cross the intersection, all communications between the two are terminated and no 

further updates are possible.  In other words, the system is not designed to alter an 

already issued cross schedule.  Once vehicles are given a green light, the deceleration 

speed that is caused by turns is indirectly considered. Vehicle deceleration is considered 
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in the amount of time we specify that it takes a vehicle to cross the intersection.  Vehicles 

turning left and right will require more time to cross the intersection critical zone than a 

vehicle headed in a straight direction.    Finally, it is assumed that vehicles will continue 

to be driven by humans. 

3.6 System Parameters 

 

There is a clear understanding that not all intersections are built in a perpendicular 

direction and that all possesses a different traffic flow. For this reason, the algorithm 

offers the capability of adjusting the vehicle arrival rate per direction, the vehicle queue 

size and waiting time per direction.  As previously mentioned, our algorithm reduces the 

average waiting time by not only considering what is beneficial to individual vehicles but 

rather the platoon as a whole.   To make this possible, a combination of queue time delay 

and vehicle count are considered when determining if a vehicle gets a green light. 

Another important and crucial feature that we feel adds a more realistic approach 

to our solutions is the consideration of the variable time required for vehicles to cross the 

intersection critical zone.  The time to pass (T2P) is the time it takes a vehicle to clear the 

intersection critical zone based on its type and speed.  For instance, a vehicle at rest 

would require more time to clear the intersection than a vehicle that is already in motion.  

Furthermore, a vehicle at rest will require less time to pass the intersection than a bus at 

the intersection.  This is why it is very important the intersection hub knows what type of 

vehicle is making the request as this will help it determine the time to pass.  For this 

reason, the T2P parameter is also modifiable.     
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In our design, we considered vehicles approaching the intersection at speeds 

between 11.2 mps-15.6mps and a distance of 300 meters.  Nevertheless, we understand 

there is a possibility of using this system at intersections that allow a narrower or wider 

range.  Therefore, we have included a parameter to adjust the speed range and the 

distance where communication is initiated.  Table 3.3 goes over the list of parameters that 

can be modified in the code.  

  

Queue Time 

Delay 

The number of second to wait before the straight and right vehicle 

queue can be released.  Separate time can be configured for the 

north/south and east/west directions.   

# Vehicles The number of vehicles to wait before the straight and right 

vehicle queue can be released.  

T2P Time required for a vehicle to pass based on different conditions.   

Distance This is the distance at where vehicle broadcast their data to the 

intersection hub 

Vehicle 

Allocation 

The percentage of vehicles heading straight, right or left  

Green light 

percentage 

For the Pre-Time Algorithm, the amount of green time allocated to 

each direction and trajectory can be modified. 

Table 3.2: Lazy Algorithm Modifiable Parameters 

3.7 Communication Protocol 

 

As specified in the algorithm, the intersection hub was designed to schedule a vehicle and 

transmits a single message update as seen in Figure 3.8.  When the vehicle broadcasts its 

arrival to the intersection hub, the hub then determines when to schedule the vehicle to 

cross the intersection critical zone.  The decision is transmitted to the vehicle to be 

displayed on the dashboard. Once the vehicle has crossed the intersection critical zone, it 

sends a short message to the intersection hub.  This last message serves as confirmation 

to the intersection hub that the vehicle has passed.  However, this design puts a lot of 

restrictions in the way vehicles can behave in the road.  
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Figure 3.8 Single Communication Protocol 

 

For instance, our design requires that all vehicles entering the intersection 

maintain a constant speed.  With a multiple message processing and communication 

protocol, vehicles could potentially modify their speed after broadcasting their 

information to the intersection hub.  Additionally, vehicles could pass and or change 

lanes in intersections with multiple lanes.  In the meantime, the intersection hub would be 

capable of adjusting to the vehicle’s updated changes and provide a reschedule light 

status.  Figure 3.9 demonstrates how a multiple communication protocol would work.   

While the multiple message protocol between vehicles and intersection hub could 

potentially open many possibilities, it also introduces a higher level of complexity.  As 

previously mentioned, based on a 300-meter window, vehicles traveling at a max speed 

of 35mph have approximately a 9-second window to send their information and receive a 

light status.  If vehicles are permitted to adjust their speed and or change lanes, the 
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communication windows would now be less than 9 seconds.  Additionally, if we 

introduce the human reaction time to this, the window for communication could 

potentially be a lot smaller.  This implies that both our vehicle and intersection hub could 

exchange messages in less than a second and continue to do so for multiple seconds. The 

scope of conducting such study and simulation required significantly more time therefore 

we felt was more adequate for Ph.D. work.   

 

Figure 3.9 Multiple Communication Protocol 

Chapter 4 Simulation Configuration 
 

To simulate and measure the performance of the Lazy Algorithm, we developed a 

program built in C to simulate a 4-way intersection with a VTLC system.  The program 

focuses on the performance of the algorithm rather than the communications medium as 

we felt that the emphasis of this study should be on the actual functionality of the VTLC 
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systems in combination with the algorithm.  While the developed program turned out a 

bit complex, the basic functionality was built on three main components:  vehicle arrival, 

vehicle scheduling, and vehicle dispatch.     

4.1 Vehicle Arrival  

The first component of our simulation consisted of developing a mechanism to simulate 

random vehicles approaching the intersection.  To make this possible, we constructed a 

NewVehicle function in which we create a vehicle and then used Poisson distribution 

function to randomly re-execute the NewVehicle function.  By doing this, we simulate 

the arrival of the first vehicle and the let Poisson distribution function determine when the 

next vehicle should arrive.  The reason we used Poisson distribution is it would allow us 

to generate a discrete integer by specifying a desired mean value.  The Poisson Mass 

Distribution Function (PMF) is as follows: 

𝑃(𝑜𝑓 𝑘 𝑒𝑣𝑒𝑛𝑡𝑠 ℎ𝑎𝑝𝑝𝑒𝑛𝑖𝑛𝑔) =  
𝜆𝑘𝑒−𝜆

𝑘!
   (11) 

𝑤ℎ𝑒𝑟𝑒:  

𝜆 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 

𝑒 = 𝐸𝑢𝑙𝑒𝑟′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 2.71828 

𝑘 = 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑧𝑒𝑟𝑜 

𝑘! = 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑜𝑓 𝐾  

 

Therefore, configuring an arrival rate with a mean of 8 would result in 7.5 vehicles 

arriving per minute per direction totaling 30 in all directions.  It is important to highlight 

that the mean value does not specify the vehicle arrival rate but rather when the 

NewVehicle function is called for the next vehicle to arrive.  Table 4.1 goes over the 

mean parameter used for each of the traffic condition used in this study. 
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Traffic Conditions  Poisson Mean  Intersection  Vehicle Rate of Arrival 

Light 8 30 vehicles/minute 

Moderate 7 34.28 vehicles/minute 

Heavy 6 40 vehicles/minute 

Table 4.1: Definition of Traffic Conditions 

Once the vehicle arrived, we then needed to come up with the additional 

parameters that would normally be provided by the vehicle approaching the intersection.  

Table 4.1 goes over these parameters and the possible values that each could take. 

 

Parameter Possible Values 

Vehicle ID Auto increasing integer number that starts at 0 and 

increases by one. 

Distance This is the distance at where the vehicle starts 

communicating with the intersection hub.  Based on our 

code, this could be set to any value. 

From The program is set to assign a vehicle from each 

direction (East, South, West, and North) each second. 

To Randomly selected code where the vehicle is headed to 

(Straight, Right, Left) based on the specified parameters.  

Speed Lower Bound  Specify the lower bound that can be randomly selected 

for vehicle speed. 

Speed Upper Bound Specify the upper bound that can be randomly selected 

for vehicle speed. 

Lane Identify where the vehicle is located based on the To 

direction mentioned above, 

Type Randomly select the type of vehicle (Sedan or Bus) 

based on the parameter specified  

Table 4.2: List of Vehicle Parameters Available 

In addition to the parameters above, our code also offers the option to change a set of 

global parameters.  Table 4.3, goes over the global parameters: 

Parameter Possible Values 

Time Specify the simulation time in seconds  

Mean Specifies the mean separation between vehicles arriving 

at a single side of the intersection. 

Lazy Switch Specify if the Lazy Algorithm is enabled (1=ON) 

Vehicle Queue Timer (Available only on Lazy Algorithm) Specify the amount 

of time a vehicle has to wait before being issues a green 

light. 
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EW Queue Size  (Available only on Lazy Algorithm) Specify the amount 

of vehicles that need to be in the East/West queue before 

being issued a green light. 

NS Queue Size  (Available only on Lazy Algorithm) Specify the amount 

of vehicles that need to be in the North/South queue 

before being issued a green light. 

Cycle Time Total light cycle time in seconds. (Available only on the 

Pre-Time Algorithm) 

Left Turn Time Duration Green light time allocated to left turns in seconds. 

(Available only on the Pre-Time Algorithm) 

Straight/Right Time 

Duration 

Green light time allocated to straight/right in seconds. 

(Available only on the Pre-Time Algorithm) 

Table 4.3: Program Global Parameters 

It is important to highlight that vehicles arriving from a lane that already had a 

vehicle waiting to cross would be forced to match the speed of the vehicle in front.  

Adjusting the speed would prevent a vehicle pileup at the intersection.  Figure 4.1 

illustrates an instance of when vehicle speed would need to be matched by the vehicle in 

front.  The actual mechanism to adjust the vehicle speed was not explored in this paper.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Vehicles Speed Adjustments 
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After all the vehicle parameters have been identified, the code then adds the 

vehicle to a first-in-first-out (FIFO) queue (Linked List) in which it keeps track of the 

order each vehicle arrived. 

*DATA

*NEXT

Node 0

*DATA

*NEXT

Node 1

*DATA

*NEXT

Node 2

 

Figure 4.2: Linked List Used as Queue 

 

As seen in figure 4.2, Node 0 would contain the information regarding the first vehicle 

that arrives at the intersection.  The *Next pointer for Node 0 would hold the address of 

the next vehicle pointer. By taking this approach, we avoid running out of memory as we 

keep adding vehicles to the simulations.     

4.2 Vehicle Scheduling 
 

The second major component of our simulation code involved the actual scheduling of 

the vehicles.  This involves determining when the vehicle is scheduled to make use of the 

intersection critical zone.  To do so, our code first finds the last time slot taken by a 

vehicle located in the same lane as the new vehicle.  If the intersection hub determines 

that the new vehicle will arrive at the intersection critical zone before the last vehicle, it 

automatically blocked a second at the back and append the new vehicle.  The one-second 

separation was added as a precautionary measure.  On the other hand, if the intersection 

hub determines that the new vehicle will arrive after the last vehicle, it simply adds the 

new vehicle to the back of the queue.  After the new vehicle is placed in the appropriate 

time slot, the time slots for conflicting lanes are also blocked.  
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 During this stage, we also assign what we call the time-to-pass (T2P) parameter.  

As previously mentioned, the T2P is the time, in seconds, it takes a vehicle to cross the 

intersection critical zone. The T2P times become particularly important when two 

vehicles with conflicting trajectories are needing to make use of the critical zone.  As see 

in figure 4.2 below. 

 

 

 

 

 

 

 

 

 

  

Figure 4.3: Illustration of Time-to-Pass (T2P) based on Vehicle Type 

4.3 Vehicle Dispatch  
 

In the final stage of our simulation code, we simply process the vehicles in the order they 

got put into the time slot array and queue.  The time slot array specifies the exact time 

when a vehicle should be allowed to use the intersection critical zone.  The queue simply 

keeps track of the order but not the time.  A combination of arrays and queues were used 

as a precautionary measure to ensure vehicles got processed in the correct order.  

Therefore, in our simulation code, we check to make sure that the vehicle specified in the 
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time slot array matches what is next on the queue.  Once the vehicle is released to cross 

the intersection critical zone, the code starts collecting as much statistical information as 

possible to find the average waiting time, longest waiting time, and percent of stopping 

vehicles among others.  A copy of the code is provided in appendix A and a brief 

overview of the functions and their order of execution are illustrated in figure 4.3.  

 

CarArrive (dir, sec) 

 -CarNew (dir, to)  [Added to queue] 

  -IdentofyLane (dir, to) 

 -SchedCross (newptr, sec)  [Added to time slot array] 

  -t2p (schedT, type, to, eta) 

 -CarPrint (newptr, sec) 

HandleCross (dir, sec)  

 CarPass (carptr, dir) 

Figure 4.4: Simulation Code Execution Order 

Chapter 5 Simulation Scenarios 
 

To effectively evaluate the performance of our Lazy Algorithm, we decided to compare it 

with the standard Pre-Time Algorithm and the FIFO Algorithm proposed by [11].  The 

performance of each algorithm was evaluated in terms of average waiting time, 

intersection throughput and percent of stopping vehicles under light, moderate and heavy 

traffic conditions.   

Furthermore, we wanted to compare the performance of both the FIFO and Lazy 

Algorithm through a second 4-way DVTL equipped intersection.  The average waiting 

time for each intersection would then be recorded to see if a second intersection improves 

of worsens the overall traffic flow.  It is important to highlight that our focus was placed 
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on a single direction, meaning that we studied the average waiting time for vehicles 

exiting the first intersection from the west and entering the second intersection from the 

east.  

5.1 Parameter Selection 

 

Before testing each algorithm, we first needed to determine parameters such as T2P and 

vehicle arrival rate among others.  The values obtained are intended for simulation 

purposes and therefore can be adjusted as needed.   

As previously mentioned, the T2P values were determined by conducting a time 

study at an intersection located in Albuquerque, NM.  Table 5.1 are the results we 

obtained and the values we decided to use in all of our scenarios.     

Time to Pass(T2P) 

 Sedans Buses 

Motion Rest Motion Rest 

Left 3 sec 4 sec 4 sec 5 sec 

Straight 2 sec 3 sec 3 sec 4 sec 

Right 1 sec 2 sec 2 sec 3 sec 

Table 5.1:  T2P Times used in Simulation 

As seen in table 5.1, sedans and buses have different T2P based on where they are 

going and if they are at rest.   

To effectively identify the light, moderate, and heavy traffic conditions, we first 

needed to identify the intersection average occupancy, where the vehicle occupancy is 

defined as the number of vehicles that could simultaneously make use of the intersection 

critical zone.  To evaluate our intersection, we came up with the maximum and minimum 

intersection critical zone occupancy.   
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   Figure 5.1: Max Intersection Occupancy     Figure 5.2: Min Intersection Occupancy 

For each of these two cases, we then considered the case where all vehicles could 

be buses or sedans.  We then used both the shortest and the longest T2P to come up with 

an average occupancy rate.  Tables 5.2, 5.3, and equations 12, 13, and 14 go over our 

calculations. 

Maximum Intersection Occupancy  

6 Vehicles 2 Left 

4 Right 

Buses at Rest (2 * 5) + (4 * 3) = 32 seconds 

Buses in Motion (2 * 4) + (4 * 2)  = 16 seconds 

2 Left 

4 Right 

Sedans at Rest (2 * 4) + (4 * 2) = 16 seconds 

Sedans in Motion (2 * 3) + (4 * 1) = 10 seconds 

   Total: 74 seconds 

Table 5.2: Max Intersection Occupancy Calculation 

Minimum Intersection Occupancy 

2 Vehicles 2 Straight Buses at Rest 2 * 4 = 8 seconds 

Buses in Motion 2 * 3 = 6 seconds 

2 Straight Sedans at Rest 2 * 3 = 6 seconds 

Sedans in Motion 2 * 2 = 4 seconds 

  Total: 24 seconds 

Table 5.3: Min Intersection Occupancy Calculation 
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6𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

74 𝑠𝑒𝑐
+  

2 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

24 𝑠𝑒𝑐
=  .164𝑣/𝑠  (12) 

. 164𝑣/𝑠  ∗  60𝑠𝑒𝑐 = 9𝑣/𝑚𝑖𝑛/𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (13) 

9𝑣/𝑚𝑖𝑛/𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 4 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 36 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 /minute (14) 

Based on these results, we decided to use a mean of 7 in our Poison equation for 

the moderate traffic conditions which produced an arrival rate of 34 vehicles per minute. 

Table 5.4 identifies the vehicle arrival rate that was used for each of the three conditions 

we wanted to test for.  

 Heavy  

Traffic 

Moderate  

Traffic 

Light  

Traffic 

Vehicles/Min 40 34 30 

Table 5.4: Traffic Condition Definition 

The rest of the global parameters used for all these scenarios are listed in table 5.5. 

Parameter Value Parameter Value 

Time 1800s % Going Right 20% 

Mean 6,7,8 % Going Left 20% 

Speed Lower Bound 25 mph % Going Straight 60% 

Speed Upper Bound 35 mph % Sedans  80% 

Distance 300 meters % Buses 20%  

Table 5.5: Global Parameter Values used in Simulation 

 

5.2 Pre-Time Algorithm Scenario 
 

The Pre-Time Algorithm refers to the most basic algorithm of processing vehicles across 

an intersection where a set time of green is pre-programmed into the intersection 

controller.  In this thesis, we ran four simulations to find the cycle time that could yield 

the best performance.  Table 5.6 goes over the multiple parameters that were utilized.  
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 Simulation A Simulation B Simulation C 

Cycle Time 200 sec 100 sec 50 sec 

Left Turn Time  

(per direction) 

20% of cycle 20% of cycle 20% of cycle 

Straight Right Time 

(per direction) 

80% of cycle 80% of cycle 80% of cycle 

 Table 5.6: Pre-Time Cycle Time Scenario Parameters 

To gain a better understanding of how the above cycle times are utilized, the pseudo code 

for the Pre-Time Algorithm is explained in figure 5.3. 

Pre-Time Variable 

Let: 

TEW-Left = Green time for vehicle arriving from east/west and headed left 

TEW-Straight = Green time for vehicle arriving from east/west and headed straight  

TNS-Left = Green time for vehicle arriving from north/south and headed left 

TNS-Straight = Green time for vehicle arriving from north/south and headed straight 

QL[dir] = Vehicles in the left queue for each direction (E=0,S=1,W=2,N=3) 

QSR[dir] = Vehicles in the straight/right queue for each direction (E=0,S=1,W=2,N=3) 

Gstart = Time when green light starts in seconds 

Gend = Time when green light ends in seconds  

Pre-Time Algorithm  

If  Gstart >= TEW-Left  <= Gend 

 Schedule the vehicles turning left and arriving from east and west  

 Continue  
If  Gstart >= TEW-Straight <= Gend 

 Schedule the vehicles going straight or right and arriving from east and west  

 Continue  
If  Gstart >= TNS-Left  <= Gend 

 Schedule the vehicles turning left and arriving from north and south  

 Continue  
If  Gstart >= TNS-Straight <= Gend 

 Schedule the vehicles going straight or right and arriving from north and south  

 Continue  
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Repeat the cycle  

 

Figure 5.3: Pre-Time Algorithm Pseudo Code  

5.3 FIFO Algorithm Scenario 

 

The FIFO Algorithm was developed by the University of New Mexico in collaboration 

with Shanghai Jiaotong University in China.  This algorithm is the baseline structure for 

the algorithm developed in this thesis.  However, as previously mentioned, the 

performance of this algorithm worsens in comparison to the Pre-Time Algorithm under 

heavy traffic conditions.  Additionally, their algorithm does not take into consideration 

the different types of vehicles and the time it requires the vehicle to pass the critical zone.   

Most importantly, it does not take advantage of creating platoons to reduce the T2P of 

each vehicle.  The simulation was once again executed using this algorithm for a total of 

1800 seconds and the pseudo code is as follows:  

FIFO Variables 

Let: 

VA = Vehicle arrival array  

VF = Direction from where the vehicle arrives to the intersection  

VT = Direction where vehicle is headed to after crossing the intersection 

FIFO Algorithm 

If VA is not empty 

 Do the following for each VF 

   If VT left: 

   Schedule the vehicle to cross the intersection   

   Then block all interfering lanes for that time slot 

   Continue  
  If VT right: 

   Schedule the vehicle to cross the intersection   

   Then block all interfering lanes for that time slot 
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   Continue  
  If VT straight: 

   Schedule the vehicle to cross the intersection   

   Then block all interfering lanes for that time slot 

   Continue  
If VA is empty 

 Generate a new vehicle  

 

Dispatch Vehicle according to the scheduling array  

Figure 5.4: FIFO Algorithm Pseudo Code 

5.4 Lazy Algorithm Scenario 
 

As previously stated, the Lazy Algorithm has two important parameters that can 

significantly impact its performance.  These parameters are the queue release time delay 

and vehicle queue quorum count.  The queue release time specifies the amount of time (in 

seconds) the intersection hub should wait before releasing a queue of vehicles headed in a 

straight or right direction onto the intersection critical zone.   Similarly, the vehicle queue 

quorum count is the number of vehicles that need to be present in the queue before being 

allowed to use the critical zone.  The Lazy Algorithm requires that one of these two 

parameters be met before releasing the queue onto the intersection critical zone.   

To test this algorithm, we decided to run a total of 5 simulations in which we used 

multiple parameter combinations to find the best solutions.   Table 5.7 illustrates the 

different combinations of parameters that were used.   

  Case A Case  B Case C Case D Case E 

Light 

QCount 20 vehicles 20 vehicles 20 vehicles 40 vehicles 10 vehicles 

Time Delay 2 sec 4 sec 1 sec 2 sec 2 sec 

Moderate 

QCount 20 vehicles 20 vehicles 20 vehicles 40 vehicles 10 vehicles 

Time Delay 10 sec 20 sec 5 sec 10 sec 10 sec 
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Heavy 

QCount 30 vehicles 30 vehicles 30 vehicles 60 vehicles 15 vehicles 

Time Delay 15 sec 30 sec 7 sec 15 sec 15 sec 

Table 5.7: Lazy Algorithm Scenario Parameters 

 In the next chapter, we will go over the results obtained after running the multiple 

simulations.  

5.5 Two Consecutive 4-way Intersection Scenario 

 

In this scenario, we ran a set of vehicles through two VDTL intersections.  To accomplish 

this, we first ran one simulation in which we collected vehicles headed east.   The set of 

vehicles collected in the first simulation was then used as input to the western direction of 

the second simulation.  As indicated in Figure 5.5, vehicles at the first intersection 

(simulation) were all randomly generated.  At the second intersection (simulation), 

vehicles coming from the North, East, and South were randomly generated while those in 

the west were coming from the first intersection. For consistency reasons, the vehicle 

arrival rate and simulation duration were set to the same at both intersections.  Again, 

simulations were conducted for heavy, moderate, and light traffic conditions. 

 

 

  

  

 

 

Figure 5.5: Algorithms through two Consecutive Intersections 
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Chapter 6 Performance Study 
 

In comparing the three algorithms, we were specifically interested in obtaining the 

vehicle average waiting time, intersection throughput and percentage of vehicles that 

stopped.   

To compare the three algorithms, we decided to run multiple simulations in which 

we used a variety of parameter settings.  For each parameter combination (case), the 

simulation was executed a total of 5 times for a duration of 1800 seconds.  The results 

obtained from each set of simulations were then averaged to obtain a better understanding 

of the long-term impacts of such algorithms under light, moderate, and heavy traffic 

conditions.     

 Table 6.1 goes over the results obtained from running four simulations for the 

Pre-Time Algorithm.  We tested with cycle times starting at 200 seconds and went down 

by 50% decrements.  The last simulation was conducted under a cycle time of 50 seconds 

which would allow a left turn to happen in a 5-second window.  Therefore, we felt that 

testing for cycle times lower than 50 seconds would be unrealistic.  The values 

highlighted in yellow represent the set of parameters we utilized in the comparison since 

they produced the best performance.  In the Pre-Time case, it turned out that using the 

same parameter settings resulted in the best performance for all traffic pattern. 

 Case A Case   B Case C 

Cycle Time 200 100 50 

Left Turns 20 sec 10 sec 5 sec 

Straight Right 80 sec 40 sec 20 sec 

Light Traffic Simulations at 30 vehicles/min 

AWT (sec) 61.91 37.87 41.91 
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Throughput 94.17 95.87 94.91 

% Stopped 83.52 85.51 87.33 

Moderate Traffic Simulations at 34 vehicles/min 

AWT (sec) 60.5 45.36 50.33 

Throughput 94.23 95.44 93.06 

% Stopped 84.43 86.34 88.50 

Heavy Traffic Simulations at 40 vehicles/min 

AWT (sec) 66.33 52.33 51.63 

Throughput 94.03 94.32 92.25 

% Stopped 87.33 88.85 90.63 

Table 6.1: Pre-Time Algorithm Performance Study Results 

In running multiple simulations with a different set of parameters, we came to the 

determination that using a total cycle time of 100sec for all light, moderate and heavy 

traffic conditions would yield the lowest AWT and best throughput.  We considered the 

results for cycle 100 and 50 at heavy traffic conditions to be the same. The column 

highlighted in yellow represent the values we utilized in our comparison. 

In a similar manner, multiple simulations were performed to obtain the average 

valued for the FIFO Algorithm.  However, because the FIFO Algorithm did not require 

any parameters, statistics for a single case were obtained.  Table 6.2. goes over the values 

that we used in comparing the FIFO Algorithm to the other algorithms.  

FIFO Algorithm Performance Study Results 
Light Traffic Simulations at 30 vehicles/min 

AWT (sec) 5.31 
Throughput 98.30 
% Stopped 64.79 

Moderate Traffic Simulations at 34 vehicles/min 
AWT (sec) 55.33 
Throughput 93.92 
% Stopped 95.92 

Heavy Traffic Simulations at 40 vehicles/min 
AWT (sec) 147.26 
Throughput 81.46 
% Stopped 99.02 

Table 6.2: FIFO Algorithm Performance Study Results 
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Lastly, simulation results for the Lazy Algorithm were obtained by executing 5 

simulations for each case in which we created a base parameter set and then varied both 

the vehicle queue count and time delay to determine the best combination.  As seen in 

Figures 6.3,6.4, and 6.5 the yellow columns represent the set of values where the 

algorithm performed its best. Therefore, the corresponding parameters to those values 

were used to compare the Lazy Algorithm to both the Pre-Time and FIFO Algorithms.  

As with the Pre-Time Algorithm, we ran into instances where more than one set of 

parameters presented an improvement over both the Pre-Time and FIFO Algorithms.   

Lazy Algorithm Light Traffic Performance Study Results 

30 vehicles/min 

 Base Case Case A Case B Case C Case D 

  2x Time 

Delay 

½ Time Delay 2x Queue 

Count 

½ Queue 

Count 

Queue Count 20 vehicles 20 vehicles 20 vehicles 40 vehicles 10 vehicles 

Time Delay 2 sec 4 sec 1 sec 2 sec 2 sec 
 

AWT (sec) 5.96 7.34 5.96 6.81 6.24 

Throughput (%) 98.00 98.05 98.00 97.91 98.35 

% Stopped 63.24 83.42 63.24 66.61 68.24 

Table 6.3: Lazy Algorithm Light Traffic Performance Study 

Lazy Algorithm Moderate Traffic Performance Study Results 

34 vehicles/min 

 Base Case Case A Case B Case C Case D 

  2x Time 

Delay 

½ Time Delay 2x Queue 

Count 

½ Queue 

Count 

Queue Count 20 vehicles 20 vehicles 20 vehicles 40 vehicles 10 vehicles 

Time Delay 10 sec 20 sec 5 sec 10 sec 10 sec 
 

AWT (sec) 10.79 13.93 48.18 11.59 11.38 

Throughput (%) 97.67 97.84 94.63 97.92 97.82 

% Stopped 94.96 94.95 97.88 95.00 95.65 

Table 6.4: Lazy Algorithm Moderate Traffic Performance Study 

Lazy Algorithm Heavy Traffic Performance Study Results 

40 vehicles/min 

 Base Case Case A Case B Case C Case D 

  2x Time 

Delay 

½ Time Delay 2x Queue 

Count 

½ Queue 

Count 
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Queue Count 30 vehicles 30 vehicles 30 vehicles 60 vehicles 15 vehicles 

Time Delay 15 sec 30 sec 7 sec 15 sec 15 sec 
 

AWT (sec) 15.82  20.95 82.84 18.69 17.77 

Throughput (%) 97.84 97.16 89.21 97.71 97.28 

% Stopped 97.96 95.99 98.95 98.40 98.27 

Table 6.5: Lazy Algorithm Heavy Traffic Performance Study 

In the following section, we combine the set of values for each algorithm that 

produced the best results and compare them.     

6.1 Average Waiting Time 

   

The first parameter used to evaluate the performance of the three algorithms was the 

average waiting time (AWT).  In this paper, the AWT is defined as the total wait time 

divided by the number of vehicles that passed the intersection. In running the simulations 

at different vehicle arrival rates, we noticed that the Lazy Algorithm outperformed  both 

the Pre-Time and FIFO Algorithm.  Figure 6.1 goes over the results obtained. 

 

Figure 6.1: Average Waiting Time Comparison 
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In analyzing the result for the AWT, we noticed an overall reduction in the AWT 

when intersections are equipped with a VDTL systems that use the Lazy Algorithm.  As 

seen in figure 6.6, the Lazy Algorithm proved to reduce the AWT under all traffic 

conditions.  While the Pre-Time Algorithms maintains a somewhat constant AWT, the 

FIFO Algorithm worsens as the rate of vehicles approaching the intersection increases.  

On the other hand, the Lazy Algorithm maintains a low AWT under all traffic conditions 

by taking advantage of the platooning mechanism and adjusting its parameters based on 

traffic conditions.  Recall that the Lazy Algorithm is capable of creating platoons that 

result in a lower T2P for all vehicles encapsulated within the same platoon.  Figure 6.2, 

6.3, and 6.4 present a histogram under heavy traffic conditions of one of the many 

simulations in which we can see how each of the algorithms is capable of creating 

platoons.   

 

Figure 6.2: Pre-Time Algorithm Straight/Right Platoon Bins 
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Figure 6.3: FIFO Algorithm Straight/Right Platoon Bins 

 

Figure 6.4: Lazy Algorithm Straight/Right Platoon Bins 
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Figure 6.5 Average Platoon Size  

 In reviewing these graphs, we can see how the Pre-Time Algorithm platoons are 

way too big which leads to an increase in AWT.  On the other hand, the FIFO Algorithm 

has a hard time creating platoons and it barely makes 59 platoons of two .  However, the 

Lazy Algorithm is capable of creating substantial amount of platoons with 2 or more 

vehicles.   In a sense, the Lazy Algorithm performed well under  heavy and light traffic 

conditions by dynamically scheduling vehicles  in a way that imitates the both Pre-

Time(heavy) and FIFO (light) Algorithms.    

6.2 Intersection Throughput 

 

The intersection throughput was another important parameter we decided to use to 

compare all three algorithms.  As illustrated in figure 6.6, the Lazy Algorithm was able to 

increase the intersection throughput under heavy and moderate traffic conditions in 

comparison to both Pre-Time and FIFO Algorithms.  Under light traffic conditions, the 
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Lazy Algorithms came out slightly lower than the FIFO Algorithm but still better than the 

Pre-Time.    

 

Figure 6.6: Intersection Throughput 
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6.3 Percent of Vehicles that Stopped  
  

Our third evaluating parameter was the percent of vehicles that were forced to stop at the 

intersections for a least 1 second.  This parameter would allow us to see which algorithms 

could potentially become a 4-way stop during heavy traffic conditions.   

 Figure 6.7 clearly illustrates how the Lazy Algorithm slightly reduces the amount 

of vehicles that have to stop under heavy traffic conditions.   

 

Figure 6.7: Percent of Vehicles that Stopped at the Intersection 
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6.4 Two Consecutive 4-way Intersection  

 

In this last simulation, we were particularly interested in finding the AWT for vehicles 

traveling across two consecutive VDTLS intersections using the same processing 

algorithm.  Figures 6.8 and 6.9 illustrate the results. 

 

Figure 6.8: AWT for Consecutive 4-way Intersections using FIFO Algorithm 

 

Figure 6.9: AWT for Consecutive 4-way Intersections using Lazy Algorithm 
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Based on the results obtained, we can conclude that vehicles crossing to VDTL 

intersection with FIFO Algorithm will experience an increase in the overall AWT.  In 

comparison, vehicles traveling through two VDTL intersections using the Lazy 

Algorithm will experience a reduction in AWT under light, moderate and heavy traffic 

conditions.   

Chapter 7 Conclusion 
 

In this thesis, we looked into the development of a Vehicle Dashboard Traffic Light 

Systems that leverages the power of VANET’s to improve traffic flow at a 4-way 

intersection in an attempt to reduce fuel consumption and the amount of CO2 gasses 

released into the environment.  More specifically, we looked into addressing the 

deficiencies that other vehicle processing algorithms fail to overcome.   

 The heuristic Lazy Algorithms presented in this thesis focused on preventing the 

unnecessary vehicle stops that are experienced when utilizing a Pre-Time Algorithm.  

Additionally, it took advantage of the platooning mechanism to avoid becoming a 4-way 

intersection under heavy traffic conditions like the FIFO Algorithm experiences. 

 To evaluate all three algorithms, scenarios were developed and a C based 

simulator was built to test.  The performance of each algorithm was then evaluated based 

on vehicle average waiting time, the percentage of vehicles that passed the intersection, 

percentage of vehicles that were required to stop, and the maximum waiting time 

experienced by a vehicle. 

The results obtained in our multiple simulations indicate that the Lazy Algorithm 

does in fact outperform both the Pre-Time and FIFO Algorithms.  The Lazy Algorithm’s 
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capability of releasing a vehicle headed into the straight/right direction onto the 

intersection critical zone based on vehicle quorum count or time delay has proven to be 

advantageous.  However, after running a significant amount of simulations, we came to 

realize there is a fundamental tradeoff that must happen when configuring each of these 

algorithms.  We found that one needs to find the right balance between minimizing the 

AWT and maximizing the number of vehicles that cross the intersection critical zone. As 

stated in the previous sections, making use of platoons can highly enhance the 

performance of the intersection during heavy and moderate traffic conditions if used with 

moderation.  In other words, the size of the platoon should not be too big or too small.   

7.1 Future Research Opportunities  

 

Without a doubt, the topic of maximizing the traffic flow through a 4-way intersection 

will continue to be a topic of interest.  And while this thesis attempts to bring us closer to 

a feasible solution, there is still plenty of work to be done.   

 To start with, making adaptations to the Lazy Algorithm so that vehicles can 

adjust their crossing schedule after their initial introduction to the intersection would be 

very advantageous.  Vehicles could then be allowed to change lanes when possible 

without impacting the overall crossing schedule.  Furthermore, a queue flush mechanism 

should be developed that would permit vehicles on a particular side to go green when an 

emergency vehicle is approaching.  Lastly, the creation of some sort of failsafe that can 

prevent a pileup in the event that a vehicle breaks somewhere within the intersection 

perimeter.        
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Appendix A 

Code repository: https://github.com/alejflor/VDTL.git 
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