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Abstract

In this paper we use a simple a model for a stochastically moving plume center and

determine sufficient measurement schemes, for three cases of measurement noise,

that reduce the support of the plume center’s probability distribution. We assume

a multivariate gaussian plume that moves according to a stochastic discrete-time

stochastic linear time-invariant model. We also assume a measurement function

that is a function of proximity to the center of the plume distribution. Using both

knowledge of the dynamics and the behaviour of this measurement function a recur-

sive probability distribution was formulated. We then found sufficient measurement

schemes that reduce the support of this recursive probability distribution such that

the area of the support behaves like a supermartingale.
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Chapter 1

Introduction

Advancements in robotics, most popularly quad-copters, and a wide-variety of esti-

mation algorithms allow us to track and understand phenomena that are either too

dangerous or are unfeasible for humans to measure directly [1] [2] [3] [4] [5]. The

list of phenomena that fall into this category is large and varied; natural disasters

make up a large group, for example volcanic flows [6], volcanic ash dispersion [7], and

dust storms [8], as well as man-made problems such as pollution plumes or chemical

spills [9], [10], [11]. Accurately tracking and predicting phenomena of these types

can prevent the loss of lives, property, and nature as well as provide better insight

into the phenomena itself.

One of the most difficult problems with tracking phenomena, or in the specific

case we will consider, plumes, is that there are a large variety of predictive models

that exist, each with nuances that are application specific and depend largely on the

type of plume being tracked [6] [7] [8]. Other methods focus on optimally covering

fluctuating fields [12] [13] or a specific type of dispersion model [10] [14] [15] [16].

There are also many algorithms that rely on fusing a model specific to dispersion

of the phenomena and satellite imagery [7] [9] and [8]. Many localization problems

1



Chapter 1. Introduction

focus on placing stationary sensors with an environment [17] [18].

In this paper we setup a more general framework for plume tracking that is not

tailored towards a specific phenomenon but instead relies on knowledge of general

plume shape, LTI dynamics, and measurement noise. We then address the question

of how propagating sensor information through dynamics should influence the next

best measurement location. We specifically consider a multivariate Gaussian plume

with a stochastic source and three different types of measurement noise: noiseless,

uniform, and Gaussian. The aim is to find a measurement scheme for each case of

noise such that we are guaranteed the possible locations for the plume center decrease

with each measurement.

The main contributions of this thesis are: 1) Consideration of a new plume esti-

mation framework where a physical structure of the plume is known, 2) Determine a

recursive probability distribution for plume, and 3) Identify sufficient measurement

schemes to reduce the search area at successive instants .

The work in this thesis will be submitted to a refereed conference:

• ”Stochastic Plume Estimation: Measurement Sampling for a Supermartingale

Support”, American Control Conference 2017, to be submitted, September

2016.

and has not been published elsewhere.

The assumptions made for the dynamics and measurements are given in Section II

as well as a problem statement for the distribution estimation and support reduction

problem. A general expression for the probability distribution and its update is

characterized in Section III. A solution for the noiseless case and infeasibility for

Gaussian case are also both shown. Section IV deals specifically with the uniform

noise solution. A couple of examples are shown with simulation results in Section V.

2



Chapter 1. Introduction

Finally, conclusions and possible extensions are briefly discussed in VI.
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Chapter 2

Problem Formulation

2.1 Plume Dynamics

We presume a plume whose center moves stochastically according to the discrete-time

stochastic linear time-invariant system

x[k + 1] = Ax[k] +W [k] (2.1)

with state x ∈ R2 that represents the spatial Cartesian coordinates of the plume

center, the state matrix A ∈ R2×2, and process noise W ∈ R2. We presume that W

is a weighted, uniformly distributed, discrete random variable where each element is

described by the tuple S = (ΩD,FD, PD), with the sample space give by a discrete

set of outcomes ΩD, discrete set of events FD, and probability measure PD : FD →

[0, 1].Outcomes ω ∈ ΩD are integer multiples of ψ ∈ R, that is,

ΩD = {ψ, 2ψ, . . . , nψ}, n ∈ Z+ (2.2)

In order to define the weighted distribution, we define a set of weights q = {qi ∈ R}

where i = {1, . . . n}, n ∈ Z+. The likelihoods of the outcomes PD(ω) are given by

4



Chapter 2. Problem Formulation

the following probabilities,

PD(w = ψi) =
qi
n
, i = 1, . . . , n (2.3)

with
∑n

i=1 PDw(ψi) = 1 and
∑n

i=1 qi = n. The corresponding probability mass

function pw is then,

pw(ψi) =

PD(w = ψi) i = 1, . . . , n

0 otherwise
(2.4)

2.2 Plume Measurements

The plume is observed through measurement y that may be noisy. In particular,

y[k] = h(xm[k], x[k]) + V [k] (2.5)

The measurement function

h : R2×R2 → R is determined not only by the true location of the plume, but also

the location xm ∈ R2 of the measurement, and may be corrupted by measurement

noise V ∈ R2.

We presume that h takes the form of a multivariate Gaussian function in R2 given

by N (x[k],Σ) with mean x and a known positive definite variance Σ = σ2I, where

σ ∈ R and I is the identity matrix in R2x2.

h(xm, x) =
1√

(2π2|Σ|
e( 1

2
(xm−x)T Σ−1(xm−x))

(2.6)

Three types of measurement noise V [k] are considered whose value is unknown in all

cases.

1. No noise case:

V [k] = 0 (2.7)

5



Chapter 2. Problem Formulation

2. Uniform noise case:

V [k] ∼ U [x[k]−∆, x[k] + ∆] (2.8)

3. Gaussian noise case:

V [k] ∼ N (x[k], σ2
N)N (2.9)

Note that h is a many-to-one function, meaning that its inverse will (in general)

return a set of possible values. The shape of these sets differs by measurement noise.

A symmetric multivariate gaussian has radial symmetry. Given xm and y a radial

distance r from xm to a possible x can be calculated. The inverse map can then be

described as the a set satisfying a circle.

h−1(xm, y) = {x|(x1 − xm1)
2 + (x2 − xm2 = (r + V [k])2} (2.10)

Then for the noiseless case (2.7), the mapping is a single circle. For the uniform

case (2.8), the map returns a set of equally likely circles with a range of radii. The

gaussian case (2.9) the inverse map yields a set of gradually less likely circles that

span all of R2 and decrease in probability as distance is increased from the mean.

These sets are described informally as a ’ring’ for (2.7), as an ’annulus’ for (2.8), and

as a ’cinder-cone’ for for (2.9).

2.3 Plume Estimate

In order to define probabilities of sets of x that are subsets of R2 we define the

probability space S2 = (Ω,F ,P). Where Ω = R2 is the sample space , F = B(R2)

is the Borel σ-algebra on R2, and P is a probability measure given by the map

P : B ∈ F → [0, 1]. The density p associated with P is given by the Lebesque

measure defined by P(B) =
∫
B
p(x)dx.

6



Chapter 2. Problem Formulation

We denote the set of all possible locations for the plume center x, given current

measure y and no previous information, as the set X̂ ⊂ R2,

X̂ = {x | h(xm, x) + V = y} (2.11)

such that, P(x ∈ X̂) = 1. The density is uniform about the set. We indicate the

probability density function of this set as fX̂ . This estimate will be coupled in later

sections with dynamic information to contruct a probability density function for the

system.

Definition 1. fx,k(x): Probability Density Function of x[k]

Given space S2 we denote the probability density function of all possible centers,

at time k, as fX,k(x).

If conditioned against current measurement information xm, y and knowledge of

how the measurement information maps to X̂, the pdf is given by fx,k+1(x|Y = y).

Definition 2. supp(g(x)): Support of a Function We define the support of a function

g as:

supp(g(x))
4
= {x ∈ X|g(x) 6= 0} (2.12)

Definition 3. Q(fx(x)): Area function

We define the metric Q to be the area of a distribution fx(x), given by:

Q(fx(x))
4
=

∫
{x|fx(x)6=0}

1dx (2.13)

Definition 4. Martingale Criteria

We define a function g that satisfies the supermartingale criteria as one that

satisfies for all n ∈ Z+:

E[gn+1|g1, ..., gn] ≤ gn (2.14)

7



Chapter 2. Problem Formulation

2.4 Problem Statement

Problem 1. Given plume dynamics (2.1) with measurement process described by

(2.7), (2.8), or (2.9), determine

1. The recursive probability density function of plume locations fx,k+1(x|Y = y).

2. A measurement scheme that causes the area of the support of fx,k+1 to satisfy

the supermartingale criteria,

E[Q(supp(fx,k+1(x)))] ≤ Q[supp(fx,k(x))] (2.15)

We denote subproblems for 2) for the three types of noise as 2a) for ()2.7), 2b) for

(2.8), and 3c) for (2.9).

A solution to this problem yields a representation of possible plume locations that

is guaranteed to shrink with time making it easier to triangulate the true location of

x as time elapses.

8



Chapter 3

Methods

In this section we determine the probability density function for the plume, develop a

recursion given the previous distribution and measurement information, and finally

discuss the distribution over three steps for the three types of measurement noise

given by (2.7), (2.8), and (2.9). A sufficient measurement scheme satifying (2.15) is

determined for (2.7), a solution for (2.8) is discussed in the next session, and (2.9)

is shown to be infeasible for (2.15).

3.1 Estimating the Probability Distribution

In order to describe the distribution of x[k + 1] we need to know which states are

possible to map to at the next instant, or the support of the distribution. We call

the support of the distribution at the next time instant the reachable set. The

probability distribution at the next instant is then defined by the new support as

well as knowledge of how the probability measure is assigned to elements in the new

support or reachable set.

We assume that the true center x in contained in a support set Φ ⊂ R2. We then

9



Chapter 3. Methods

suppose, given no other information, there is a uniform density function defined on

Φ given by fk,x : R2 → [0,∞]. The support of this probability distribution function

is then given by the set Φ. We then have the following where probability density p

is as previously defined in the space S2,

fk,x =

p(x), for x ∈ Φ

0, elsewhere
(3.1)

To generate the support of fk,x at the next instant, or supp(fk+1,x) we start

by choosing a possible x ∈ Φ given by x̃. We can generate a possible x̃[k + 1] by

propagating the point x̃ through the dynamics for each choice of W [k] = wi. Suppose

i = 1, 2, · · ·n choices for W [k], where n ∈ Z+.

Updating a point to the next instant given only a single choise of W [k] = wi is

given by,

x̃i[k + 1] = Ax̃[k] + wi (3.2)

where wi ∈ ΩD.Updating all points in a set given only a single choice of W [k] = wi

is defined as branch given by,

bi[k + 1] = {x̃i[k + 1]| ∀x̃[k] ∈ Φ} (3.3)

The support of the distribution fk+1,x or the reachable set is then given by the union

of all branches, or the evolution of all points given all choices of W [k], this is given

by,

supp(fk+1,x) = {
n⋃

i=1

{bi[k + 1]}}

= Φ[k + 1]

(3.4)

We have now determined the support update but we now have to consider the

assignment of measure in order to fully describe the distribution fk+1,x(x). Using the

10



Chapter 3. Methods

probability space defined previously by SD, if we consider the update of a singular

discrete point whose probability of being the true x is already known, P (x̃ = x), its

next state has a probability induced by the probability of wi.

PD(x̃i[k + 1] = x) = PD(W [k] = wi)P (x̃ = x)
n∑

i=1

PD(x̃i[k + 1] = x) = P (x̃ = x)
(3.5)

If try to assign probabilities to future sets rather than future points we have to then

map exisiting probability density rather than existing probability mass, we then

consider the space S2.

From (3.4) the reach set is a mapping from one set Φ to n sets or branches whose

union represents Φ[k + 1]. This more simply corresponds to a shift of the entire set

by the LTI dynamics for each possible W = wi. In probability, a re-scaled density

of each of these new shifted sets (branches) corresponding to the probability of the

branch occuring is required. This given by PD(W = wi), this is a scaling factor on

the existing probability density in similar fashion to 3.5. This shifting and scaling is

then given by the following,

fk+1,x(x) =
∑

P (W = wi)fk,x(A−1(x− wi))
(3.6)

We now have an update for the distribution of possible centers given a starting

set and dynamics but this update is not considering the available measurement in-

formation. We incorportate this additional information by using a Bayes update in

the next part of this section.

11



Chapter 3. Methods

3.2 Recursive Estimate of Plume center

In this section the general Bayes estimate is used to develop a recursive estimate for

all three cases of measurement noise. The general Bayes Rule is as follows, where x

is a location and y is measurement information as before,

fX(x|Y = y[k]) =
fY (y|X = x[k])fX(x)∫∞

−∞ fY (y|X = x[k])fX(x)dx
(3.7)

Suppose now we don’t have access to the current distribution at time k, we only

have access to the distribution at the previous time step k − 1. We then use the

R operator, defined by the update (3.6) discussed in the previous section, on the

nonzero valued states of fX(x).

fk+1,x(x) = R(fk,x(x)) (3.8)

Lemma 1. Solution for Distribution Update - Problem 1, part 1: The

recursive update for the probability distribution of possible plume centers is given by

fk,X(x|Y = y[k]) =
fX̂[k]R(fk−1,X(x))∫∞

−∞ fX̂[k]R(fk−1,X(x))dx
(3.9)

Proof 1. Recursive Estimate of Plume Center

Using 3.7 and the substitution given by 3.8 we have,

fk,X(x|Y = y[k]) =
fk,Y (y|X = x)R(fk−1,X(x))∫∞

−∞ fk,Y (y|X = x)R(fk−1,X(x))dx
(3.10)

The first term fk,Y (y|X = x) describes the measurement distribution. This was

previously given by X̂[k]. Making this substitution yields,

fk,X(x|Y = y[k]) =
fX̂[k]R(fk−1,X(x))∫∞

−∞ fX̂[k]R(fk−1,X(x))dx
(3.11)

12



Chapter 3. Methods

We now have our recursive update for the probability of possible plume centers. Prob-

lem 1) is solved.

The significance behind the other two terms is the following:

• The second term R(fk−1,X(x)) is the reach of the support of distribution with

appropriate probability as discussed in the previous section.

• The term
∫∞
−∞ fk,Y (y|X = x)R(fk−1,X(x))dx describes the total probability that

was induced from the previous instant; if there are events no longer possi-

ble due to the measurement information this is a normalizing term ensuring∫
fX(x) = 1.

Figure (X) shows three measurements of this process for both the no noise and

uniform noise cases.

If we consider (3.10) and assume again that fx,0 = R2 (we initially have no idea

where in R2) for three steps in the noise free case we have the following:

fk=1,X(x|Y = y[1]) = fX̂[1]

fk=2,X(x|Y = y[2]) =
fX̂[2]R(X[1])∫

X
fX̂[2]R(X[1])dx

fk=3,X(x|Y = y[3]) =
fX̂[3]R(fk=2,X(x|Y = y[2]))∫

X
fX̂[3]R(fk=2,X(x|Y = y[2])dx

(3.12)

Analytical Minimization: If we were to solve for the best measurement scheme

analytically we would need to maximize our chances to satisfy the inequality. We

then seek to minimize the expected value of Q. The optimization for this problem is

then the following:

(x∗m) = arg(xm)(min(E[Q(ftn,X(x|Y = y))) (3.13)

13
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Then is necessary to compareQ(m∗n) toQ(m∗n+1) to see if Q is a martingale, E[Q(m∗n+1)] ≤

Q(m∗n). This is in general a hard optimization.

We instead seek to find a sufficient scheme and first take a look at how the distribu-

tion changesd for each case. We consider the three cases of measurement noise and

describe briefly the shape of each distribution under random measurements in refer-

ence to the three step distribution given by (3.12). That is, each step corresponds to

a distribution update and then conditioning the distribution against a measurement

y.

Figure 3.1: This figure shows three possible steps of example distributions for the
no noise and uniform noise cases. Each step is broken down into the distribution
(shown in blue) before and after measurement information (shown in orange).

14
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No Measurement Noise

For the noise free case the set represented by X̂[k] forms a ring with zero thickness.

The area of this set is zero. The probability is distributed radially such that the line

integral about the ring yields 1 in probability.

• Step 1) A single measurement ring with uniform probability about it.

• Step 2) A collection of points. This comes from the intersection of two collec-

tions of rings: branches from the distribution in step 1 and a new measurement

from step 2. The intersection forms disjoint points that each have an associated

probability mass.

• Step 3) A single point. This comes about from the intersection of the branches

of the collection of points from step 2) and a new measurement ring.

The reasoning behind step 3 is the following: We are guaranteed to intersect with at

least one point because each measurement provides all possible valid locations. The

likelihood we happen to intersect with another point however is zero. This is because

the sets of points that lie equidistantly between every two branch points (points the

would yield intersections with two points) form lines that have measure zero in R2

and therefore have zero chance of occurring.

Therefore, given random measurements we are able to identify the true center

of the plume after three steps. The distribution for the noiseless case satisfies the

martingale trivially as at all time steps the distribution has a support with zero area.

Lemma 2. Sufficient Scheme for Noiseless Case - Problem 1, 2a)

Random measurement locations are sufficient for the noise case given by (2.7)

the area of the support of (3.12) has zero area.

15
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Proof 2. Sufficient Scheme for Noiseless Case:

Given the measurement function (2.11), where measurement noise is given by

case (2.7), we have the following:

Q(supp(X̂[k])) = 0 ∀k

Q(supp(fX,k+1(x)))] = Q[supp(fX,k(x))]

= 0, ∀k

(3.14)

The conditions required by (2.15) are then automatically satisfied. A random mea-

surement scheme is therefore sufficient. Problem 2a) is solved.

Uniform Measurement Noise

For the uniform noise case the set represented by X̂[k] forms an annulus with thick-

ness proportional to ∆ and the relative distance from the true center x. The prob-

ability is distributed uniformly about this annulus such that the integral about the

annulus yields 1 in probability. If we consider (3.12) and assume again that fx,0 = R2

(we initially have no idea where in R2) for three steps in the noise free case we have

the following:

• Step 1) A single annulus with uniform probability about it.

• Step 2) A collection of regions. This comes from the intersection of two collec-

tions of annuli: branches from the distribution in step 1 and a new measure-

ment from step 2. The intersection forms regions that each have an associated

probability density.

• Step 3) Another collection of regions. This comes from the intersection of

two collections of annuli: branches from the distribution in step 2 and a new

measurement from step 3. The intersection forms regions that each have an

associated probability density.
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This is a distribution that has a complicated interaction with its measurements that

will be discussed in detail the next section. A sufficient measurement scheme for

supermartingale support will be shown there.
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Gaussian Measurement Noise

Lemma 3. Infeasibility for Gaussian Noise Case - Problem 1, 3C)

No measurement scheme is sufficient for the gaussian noise case given by (2.9);

the area of the support of (3.12) increases for all k.

Proof 3. Infeasibility for Gaussian Case:

Given the measurement function (2.11), where measurement noise is given by

case (2.8), we have the following:

Q(supp(X̂[k])) = R2 ∀k

Because the support of the measurement spans all of R2 successive measurements will

not reduce the area of the support.

Q(supp(fX,k+1(x)))] > Q[supp(fX,k(x))] ∀k (3.15)

Therefore no scheme is sufficient to satisfy criteria for (2.15) for measurement noise

of type (2.9); the Gaussian noise case Problem 2c) is infeasible.

In this section we have shown solutions for part 1 of problem 1 as well as parts

2a) and 2c), the next section focuses on solving the final portion part 2c).
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Methods: Uniform Noise Solution

In this section we focus on solving the uniform noise case. We describe a simple mea-

surement scheme, two modes of intersections, introduce the idea of minimal expected

branch distance tracking, use a maximum likelihood estimator (MLE) argument for

each mode, and finally show convergence of the support under this proposed mea-

surement scheme.

4.1 Proposed Measurement Scheme and Intersec-

tion Modes

The support for the conditioned distribution is equal to the intersection of the mea-

surement support and the distribution’s previous support. Therefore, we will refer

to the remaining support after conditioning as an intersection.

The basis of the proposed sub-optimal but sufficient scheme measurement scheme

is the following observation: If reoccurring measurements are made at a point in the

distribution such that the intersection contains the same amount of area as a previous
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Chapter 4. Methods: Uniform Noise Solution

branch, or sufficiently intersects with only a single branch, then the distribution

cannot grow.

For the Gaussian plume and uniform noise case we have measurements in the form

of an annulus. The measurement has a measurable radius returned by the function

r : R → R. For the Gaussian plume case the r function is inversely proportional

to signal strength this can be understood by noting that the highest signal value y

for a gaussian distribution corresponds to the smallest x. This yields the following

observations and expressions:

For a gaussian r is inversely related to y:

∀y, r(y[k + 1]−∆)] > r(y[k + 1) + ∆) (4.1)

The outermost radii of the annuli is given by distance

r(y[k + 1]−∆)] (4.2)

The innermost radii of the annuli is given by distance

r(y[k + 1] + ∆)] (4.3)

The diameter of a branch is then given by distance

2r(y[k + 1]−∆)] (4.4)

The thickness of a measurement annulus is given by

r(y[k + 1]−∆)− r(y[k + 1) + ∆) (4.5)

Which is illustrated in figure 4.1.
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Figure 4.1: This figure has three branches with measurement and branch distances
shown

Lemma 4. Sufficient Condition for Support Area Reduction

A sufficient condition for area reduction is given by,

r(y[k]−∆) ≥ no

2
(r(y[k + 1]−∆)− r(y[k + 1) + ∆)) (4.6)

Where no ∈ Z+ is the number of possible intersection branches. For the linear case

n0 = 2. For the grid case of 9 possible dynamics n0 = 8.

Proof 4. Lemma: Sufficient Condition for Support Area Reduction

Given a starting distribution f0 and an update, k → k+1, we have now a support

whose area is given by n0Q(supp(f0)) where n0 is the number of possible intersection

branches. For the area to remain constant we require a measurement whose support

overlaps only one branch worth of area.

A sufficient condition is then that the diameter of a branch (4.4) exceeds that of

n0 multiples of the thickness of the next measurement annuli (4.5). This is given by,
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2r(y[k]−∆) ≥ no(r(y[k + 1]−∆)− r(y[k + 1) + ∆))

or

r(y[k]−∆) ≥ no

2
(r(y[k + 1]−∆)− r(y[k + 1) + ∆))

Therefore 4.6 is a sufficient criteria.

4.2 Types of Measurement Outcomes

We introduce two types outcomes measurements can have and the notion of branch

distance number that will be used throughout the next two sections:

1. Thinning - making a measurement on the center of the correct branch such

that the noise is reduced.

2. Localization - making a measurement on the center of the incorrect branch

such that section(s) of correct branch(es) are identified.

3. ’Branch Distance Number’, is an integer Z+ that indicates how many branches

away the correct branch was identified.

Thinning then corresponds to a branch distance of 0 and localizing corresponds

to any other integer in Z+. Branch number is an important way of differentiating

measurements that will be a useful later when we separate measurement outcomes

into collections

In the figure below we illustrate both modes. thinning with branch distance 0 and

localizing with a branch distance of 1. The blue indicates the existing distribution

and red indicates the new measurement distribution. The new valid region after
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the intersection is considered is indicated with black arrows. The black dot is the

location of xm.

Figure 4.2: This figure shows two intersection modes, thinning on the left and local-
ization on the right. The tan regions are the remaining support of the pre-existing
distribution (blue) given the intersection of the new measurement (red).

4.3 Minimal Expected Branch Distance Tracking

In this section the point in the distribution that has the minimal expected branch

distance (MEBD) is identified. The motivation for this section is to identify a scheme

with the best chances of satisfying the sufficient condition given by (4.6).

Lemma 5. Measurement Scheme to Satisfy Sufficient Criteria

A measurement scheme that gives the sufficient conditions (4.6) a better chance

of succeeding is given by the MEBD method.

Proof 5. Measurement Scheme to Satisfy Sufficient Criteria

Given a gaussian mapping, the radius measure ’r’ increases as in inverse function

of y.

r(y + ∆) < r(y −∆)
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Then, necessarily the radius of the measurement annulus increases in thickness in-

versely with y.

(r(y[k + 1]−∆)− r(y[k + 1) + ∆)

The outcome of ’y’ can be measured using the branching distance metric. To minimize

the expected overlap we can then minimize the expected branch distance. Therefore

the MEBD method gives the sufficient condition a better chance of succeeding.

Determining the optimal branch for minimizing expected branch length can be

accomplished by considering the grid of dynamics as a simply connected graph and

evaluating the closeness centrality of each point while weighting the edges by the

probability of occurrence (probabilistic centrality). The centrality of node p ∈ Z+

with respect to other nodes q ∈ Z+ and distance function d : (Z,Z)→ Z,

d =
√

(x1p − x1q)2 + (x2p − x2q)2 (4.7)

where x1p, x2p are the spatial coordinates of node p and x1q, x2q are the spatial coor-

dinates of node p. The centrality measure is then given by given by

C(p) = 1/(
∑
q

d(p, q)) (4.8)

The probabilistic centrality, PC : Z→ R, is then given by,

PC(p) = 1/(
∑
q

P (q)d(p, q)) (4.9)

The node corresponding to the minimum expected branching distance (MEBD) is

then,

MEBD = argmax(PC(p)) (4.10)

The spatial coordinates of this node are indicated by the point

MEBD = (minE
b
[x1],minE

b
[x2]) (4.11)
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where minEb indicates the minimal expected branch.

If an intersection is generated such that the measurement location is no longer

the center of probability mass (denoted xc) the distance from the measurement to

the center of mass of the intersection region can also be calculated. The next desired

measurement is then the combination of both distances.

Figure 4.3: This figure shows base idea behind minimal expected dynamic tracking,
where the expectation shown is with respect to minimal branch distance. The update
grid is the gird of possible update measurement locations given all possible W.

4.4 Maximum Likelihood Estimation

We have now provided a method for selecting a measurement point that gives con-

dition (4.6) the best chance for success. However, we have not yet shown that the

area of the support of the distribution will decrease. In this section we assume (4.6)

holds, due to ∆ being small and MEBD being utilized. We then show that by de-

composing a sequence of measurements into sets based on branching distance and

using maximum likelihood estimators (MLE) on each set we can prove the support

of the distribution will decrease.

Let D be a sequence of di that are measurement outcomes defined on the set of

branching distances {0, 1, . . . n} where the n ∈ Z+. The outcome indicates the mea-
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surement’s branch distance in branch lengths where 0 corresponds to the thinning,

and 1, . . . n are localizations at different branch lengths.

Suppose D consists of a sequence of only 0, this means the region is thinned

forever. Let Q be the area function as previously defined. We then would like to

know what the following evaluates to,

Q{
N⋂
k=0

X̂[k|xm]} (4.12)

Now suppose rather than the support of X̂[k|xm] in R2 we consider only a slice since

X̂[k|xm] has radial symmetry. We now have a uniform interval in R where we don’t

know the true center.

This problem can be cast as an estimation problem, specifically a Maximum Like-

lihood Estimator problem (MLE) where we are trying to estimate the true location

of the interval center (s∗) of a uniform random variable U ∼ U [s∗−∆, s∗+∆]. Max-

imum Likelihood Estimators (MLE) for uniform intervals are well known. Existing

theory of MLEs through the law of large numbers (LLN) tells us that the exact lo-

cation for the true center can be found almost surely in the limit. However, instead

of returning the center of the uniform interval we would like to know the estimator’s

support, or the band of all possible centers.

Lemma 6. Convergence of Single Mode Support Area

The area of D consisting of a sequence of the same branch length outcomes tends

towards an area of zero.

Q{
N⋂
k=0

X̂[k|xm]} → 0, As N →∞
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Proof 6. Convergence of Single Mode Support Area

Let sk,where k = 1 . . . n, be samples of U [s∗ −∆, s∗ + ∆]

and let MLE(s∗) := ŝ∗

Then supp(MLE(s∗)) =
N⋂
k=1

[sk −∆, sk + ∆]

ŝ∗ ∈
N⋂
k=1

[sk −∆, sk + ∆]

For some k, supp(MLE(s∗)) = [sk − ε1, sk + ε2]

lim
N→∞

supp(MLE(s∗)) causes ε1, ε2 → 0 as N →∞

Then Q{
N⋂
k=0

X̂[k|xm]} → 0 as N →∞ (4.13)

This corresponds to eventually converging to the no noise case because we tend

towards a singular valued support. The support can then be visualized as a decreasing

annulus that eventually converges to a ring. This same argument can also made for

the localization annuli (ex. sequence D of only 1 or only 2 etc.).

4.5 Proof of Support Area Convergence

We have now shown for cases where D consists of only one type of branching distance

outcome the support converges to zero. We now suppose an alternate sequence D =

{di} that consists of random elements.

We define a collection C(i) as being all measurement information, that is, the

support and measure, associated with the branch number i. For example, if a process

is defined from k = 1 to k = 3 and all three measurements result in a branch distance

of 1. Then the collection C(1) contains the entire distribution with the proper

measure and all other collections are the null set with measure zero.
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It can be shown (see Appendix A) that changing propagation and intersection

order such that all intersections occur last causes an upper bound.

Lemma 7. Sufficient Scheme for the Uniform Noise Case

Given sufficient condition (4.6) is satisfied through the combination of ∆ being suf-

ficiently small and choosing measurements according to the MEBD measurement

scheme the area of the support satisfies the martingale criteria.

Proof 7. Sufficient Scheme for the Uniform Noise Case

This follows from the one mode MLE argument (4.13) combined with the fact prop-

agation before intersection forms an upper bound (see appendix).

Suppose the distribution is decomposed into collections given by C(i).

f(x, k) =
n⋂

i=0

C{i}

From (4.13), Q(supp(C{i}))→ 0 as #C{i} → ∞

Therefore, Q(supp(
n⋂

i=0

C{i}))→ 0 as #C{i} → ∞

or, Q(supp(f(x, k)))→ 0 as #C{i} → ∞

Then E[Q(supp(fx,k+1(x)))] ≤ Q[supp(fx,k(x))]

(4.14)

We have now shown solutions for 1,2a, and 2b, and infeasibility for 2c. We

have addressed of all parts of our problem and move on towards some implemented

examples.
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Example

The sufficient dynamic expected tracking measurement scheme was coded for the

noiseless case using two different methodologies - ’intersect, branch, iterate’ and

’branch all then intersect’.

For the noisy case only the latter was used to avoid needing to represent inter-

section regions with polytopes. For the noiseless case these methods are equivalent.

For the noisy case the branch all then intersect forms an upper bound (see proof in

appendix).

For examples 1 through 3 the state matrix A is the identity to make the figures

easier to visualize.

5.1 Example 1: Noiseless Case

The noiseless case converges to a point using both methods in three steps. The

diamond is the true and correctly identified center.
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Figure 5.1: This figure shows the second and third steps for the noiseless case. The
collection of points is the distribution at k = 2, the measurement at k = 3 is the ring
shown, and finally the diamond is the singular point representing the distribution at
k = 3.
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5.2 Example 2: Uniform Noise Case, Thinning

The following shows three steps where all measurements correspond to a branch

distance of zero and both the line and grid disturbances are considered.

Figure 5.2: This figure shows three steps from left to right for the line case you can
see thinning occur.

Figure 5.3: This figure shows three steps from left to right for the grid case you can
see thinning occur.
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5.3 Example 3: Color Coded Mixed Thinning and

Localization

The following are figures for an example for the 3x3 grid noise case. In this example

a mix of thinning and localization occurs. The color code is as follows.

• Red and Black both correspond to information according to the first measure-

ment where Red is the outer bound of a branch and Black is the inner bound.

• Green and Pink both correspond to information according to the first mea-

surement where Green is the outer bound of a branch and Pink is the inner

bound.

• Blue and Cyanbboth correspond to information according to the first mea-

surement where Blue is the outer bound of a branch and Cyan is the inner

bound.

The blue circle corresponds to the true center location.

Figure 5.4: Step 1: First Measurement and Intersection
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Figure 5.5: Step 2: Second Measurement and Intersection

5.4 Example 4: Elliptical Example

The following shows three steps for the elliptical case where A is not the identity

matrix. The blue

Figure 5.6: Step 1
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Figure 5.7: Step 2

Figure 5.8: Step 3
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Conclusion and Future Directions

In this Thesis a variation of the plume tracking problem was explored. The variation

assumed a known mapping mapping from sensor data to a known plume structure

allowing a distribution of all possible potential plume centers to be constructed. The

question we successfully answered was, given this known mapping and assuming

known discrete stochastic dynamics, can we make measurements in such a fashion

to reduce the support of possible plume centers.

To explore this problem we assumed a plume given by a multivariate Gaussian

structure and discrete stochastic LTI dynamics and determined a recursive update

(3.10) for the probability distribution and three types of noise were considered. It

was shown that a random measurement scheme satisfied the noiseless case (3.14), the

gaussian case was found to be infeasible (3.15), and a sufficient scheme was derived

for the uniform measurement case (4.14).

The main practical result here is give the particular problem set-up and assump-

tions an simple algorithm was shown that allows a robot or a network of robots to

hone in on a discrete set of points for their target (for the noiseless and uniform

cases) rather than disjoint sets that potentially grow in size.
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6.1 Possible Extensions

This was an initial investigation of a problem structure of this type but from this

preliminary work it is clear that there are many potential directions for future work

that have a wide variety of practical applications.

• Volume minimization: Instead of optimizing over area, bring in probability as

an optimization parameter.

• Gaussian Mixture: Consider an h function given by a Gaussian mixture. This

problem becomes equivalent to this problem in a parallel fashion. Each mea-

surement made can be interpreted with respect to a different Gaussian plume.

• A time varying h function

• Other h functions

• Reach constraints on xm: Suppose the measurements are made by quadopters

or some drones with some dynamics that limit the feasible measurement spaces

at each k.

• Quadcopter dispersion problem: Given a distribution at time k optimally assign

several quad-copters to different regions.

• Non-discrete inputs - consider disturbances given by continuous intervals rather

than discrete values. This yields branching connected tubes rather than branch-

ing sets.

• Consider the Uniform noise case bounds as two separate noiseless problems.

Each noiseless problem will yield a point - something may be able to be con-

cluded about the convex hull.
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Intersection Order Lemma and

Proof

Let b be a branching function that maps a branch x1 to x11∪x12...∪x1N . A branching

process b with n = 3 then has the following properties:

b(r1) = r11 ∪ r12 ∪ r13

b(b(r1) = r111 ∪ r121 ∪ r131 ∪ r112 ∪ r122 ∪ r132 ∪ r113 ∪ r123 ∪ r133

b(r2) = r21 ∪ r22 ∪ r23

Lemma 8. Propogation Before Intersection Forms Upper Bound

The support associated with propagating all measurement information through a

branching process before taking their intersection forms an upper bound on intersect-

ing the support between measurements during each propagation step.

Proof 8. Propogation Before Intersection Forms Upper Bound

Suppose a branching process b with N = 3. Let A be a process that has measure-

ment intersections between each branch step. Let B be a process that has a single
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measurement intersection after completion of all branch steps.

DistA = b(b(r1) ∩ r2) ∩ r3

DistB = b(b(r1)) ∩ f(r2) ∩ r3

DistA = f(f(r1) ∩ r2) ∩ r3

= f((r11 ∪ r12 ∪ r13) ∩ r2) ∩ r3

= (((r111 ∪ r121 ∪ r131) ∩ r21) ∪ ((r112 ∪ r122 ∪ r132)

∩ r22) ∪ ((r113 ∪ r123 ∪ r133) ∩ r23)) ∩ r3

DistB = b(b(r1)) ∩ b(r2) ∩ r3

= (r111 ∪ r121 ∪ r131 ∪ r112 ∪ r122 ∪ r132 ∪ r113

∪ r123 ∪ r133) ∩ (r21 ∪ r22 ∪ r23) ∩ r3

Let

R1 = (r111 ∪ r121 ∪ r131)

R2 = (r112 ∪ r122 ∪ r132)

R3 = (r113 ∪ r123 ∪ r133)

Then

DistA = ((R1 ∩ r21) ∪ (R2 ∩ r22) ∪ (R3 ∩ r23)) ∩ r3 (A.1)

DistB = (R1 ∪R2 ∪R3) ∩ (r21 ∪ r22 ∪ r23) ∩ r3 (A.2)
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Using the distributive property (A∩ (B ∪C) = (A∩B)∪ (A∩C) of intersections on

DistB yields:

DistB = ((R1 ∩ (r21 ∪ r22 ∪ r23)) ∪ (R2 ∩ (r21 ∪ r22 ∪ r23)) (A.3)

∪ ((R3 ∩ r23) ∩ (r21 ∪ r22 ∪ r23)))

Clearly, comparing (A.3) to (A.1), DistB is a larger collection and DistA and DistB

are not equivalent.

39



References

[1] S. Sahyoun, S. Djouradi, and H. Qi, Dynamic Plume Tracking Using Mobile
Sensors, in 2010 American Control Conference, pp2915 - 2920.

[2] M. Fahad, N. Saul, Y. Guo, and B. Bingham, Robotic Simulation of Dynamic
Plume Tracking by Unmanned Surface Vessels, in 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pp2653-2659.

[3] Shuai Li, Yi Guo, and Brian Bingham, Multi-robot Cooperative Control for
Monitoring and Tracking Dynamic Plumes, in 2014 IEE International Confer-
ence on Robotics Automation (ICRA). pp 67-73.

[4] Georges S. Aoude et al. Mobile Agent Trajectory Prediction using Bayesian
Nonparametric Reachability Trees, in American Institute of Aeronautics and
Astronautics, pp 1-17.

[5] Chufeng Huang et al. Bayesian Source detection and parameter estimation of
a plume model based on sensor network measurements in Applied Stochastic
Models in Business and Industry 2010. pp331-348.

[6] K. Dalbey, A. K. Patra, et al. Input uncertainty propagation methods and hazard
mapping of geophysical mass flows, in Journal of Geophysical Research, Vol. 113,
2008

[7] R. Mandankan, S. Pouget, et. al, Computation of probabilistic hazard maps and
source parameter estimation for volcanic ash transport and dispersion, in Journal
of Computational Physics, 271, 2014, pp 39-59.

[8] Ian Ashpole and Richard Washington. A new high-resolution central and western
Saharan summertime dust source map from automated satellite dust plume
tracking in Journal of Geophysical Research: Atmospheres Vol 118. pp 6981-
6995. 2013.

40



References

[9] Gade, Martin et al. Multisensor monitoring of plume dynamics in the north-
western Mediterranean Sea, in Journal of Coastal Conservation 9. pp 91-96.
2003.

[10] A. Marjovi and L. Marques, Optimal spatial formation of swarm robotic gas
sensors in odor plume finding, in Auton Robot, 2012.

[11] D. Zarshitsky, D. Spears, and D. Thayer, Experimental studies of swarm robotic
chemical plume tracing using computational fluid dynamic simulations, in Inter-
national Journal of Intelligent Computing and Cybenetics, Vol. 3 No. 4, 2010,
pp 631-471.

[12] Xiaodong Lan and Mac Schwager. A Variational Approach to Trajectory Plan-
ning for Persistent Monitoring of Spatiotemporal Fields, in American Control
Conference (ACC) 2014. Portland, Oregon USA. Pp 5627-5632.

[13] Jose Marcio Luna, et al. An Adaptive Coverage Control for Deployment of
Nonholonomic Mobile Sensor Networks Over Time-Varying Sensory Functions,
in Asian Joural of Control, Vol 15, No. 4 pp. 988-1000.

[14] D. Chang, et al., A Bio-inspired Tracking Algorithm for Mobile Sensing Swarms
in Turbulent Flow, in 2013 IEEE International Conference on Robotics and
Automation (ICRA), pp 921-926.

[15] C. Bizon et al. Plume Dynamics in quasi-2D turbulent convection. American
INstitue of Physics. 1997. Pp 107-124.

[16] Emily S. C. Ching et al. Extraction of Plumes in Turbulent Thermal Convection,
in The American Physical Society. Volume 93, Number 12.

[17] R. Luo, O. Chen, and P. Lin, Indoor Robot Human Localization Using Dynamic
Triangulation and Wireless Pyroelectric Infrared Sensory Fusion Approaches, in
IEEE International Conference on Robotics and Automation, Saint Paul, MN,
2012, pp 1359-1364.

[18] O. Tekdas and V. Isler, Sensor Placement for Triangulation-Based Localization,
in IEEE Transactions on Automation Science and Engineering, Vol. 7, No. 3,
July 2010, pp 681-685.

41


	University of New Mexico
	UNM Digital Repository
	7-1-2016

	Stochastic Plume Estimation: Measurement Sampling for a Supermartingale Support
	Steven Cutlip
	Recommended Citation


	tmp.1474482981.pdf.1Zwzz

