
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Fall 12-1-2016

A Build System for Benchmarking and Comparison
of Competing System Implementations
Anthony J. Bentley
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Bentley, Anthony J.. "A Build System for Benchmarking and Comparison of Competing System Implementations." (2016).
https://digitalrepository.unm.edu/ece_etds/298

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalrepository.unm.edu%2Fece_etds%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/298?utm_source=digitalrepository.unm.edu%2Fece_etds%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 , Chairperson

Anthony J. Bentley

Electrical & Computer Engineering

L. Howard Pollard

Daryl Lee

James Plusquellic

A Build System for Benchmarking and
Comparison of Competing System

Implementations

by

Anthony J. Bentley

B.S., Electrical Engineering, University of New Mexico, 2012

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2016

Acknowledgments

I am indebted to many members of the Advanced RF group at Sandia National Lab-
oratories for their assistance and for providing both software licenses and computing
hardware for this thesis, as well as the algorithm described in Chapter 4.

I would like to thank my advisor, Dr. L. Howard Pollard, for his advice, his wealth
of experience, and his patience.

iii

A Build System for Benchmarking and
Comparison of Competing System

Implementations

by

Anthony J. Bentley

B.S., Electrical Engineering, University of New Mexico, 2012

M.S., Computer Engineering, University of New Mexico, 2016

Abstract

When developing a hardware or software system, the problem at hand may lend

itself to multiple solutions. During the implementation process for such systems, it

can be helpful to prototype multiple versions that use distinct paradigms, and deter-

mine the efficiency of each according to some metric, such as execution time. This

paper presents a portable, lightweight build system designed for easy benchmarking

and verification of competing implementations of an algorithm. Also presented is a

sample project that uses this system to compare the performance and correctness of

CPU, GPU, and FPGA implementations of a signal recovery algorithm.

iv

Contents

List of Figures viii

1 Introduction 1

1.1 Motivations . 1

2 Build system design 3

2.1 Foundation: Initial design requirements 3

2.1.1 Interface . 4

2.1.2 Correctness . 4

2.1.3 Portability . 5

2.2 make background . 7

2.2.1 OpenBSD make . 8

2.2.2 GNU make . 9

2.3 Existing build systems and their problems 10

2.4 Other design considerations . 17

v

Contents

2.4.1 Declarative Makefiles as user interface 17

2.4.2 Common non-portable make constructs 18

2.5 Summary . 20

3 Build system implementation 21

3.1 Modular design for additional paradigms 21

3.2 make build logic . 22

3.2.1 Overriding POSIX default rules 22

3.3 Refactoring build logic . 24

3.4 Software modules . 27

3.5 Test modules . 29

3.5.1 POSIX clocks . 29

3.5.2 Benchmarking module . 30

4 Case study: signal recovery 31

4.1 Introduction . 31

4.2 The ‘Computationally Efficient Detection’ algorithm 32

4.2.1 Translating into code . 33

4.3 Selection of hardware for implementation 35

4.4 Software implementation . 36

4.5 GPU Implementation . 37

vi

Contents

4.5.1 Parallelizing Fourier transforms: cuFFT and cuFFTW 38

4.5.2 Parallelizing maxrange.cu: reduction 38

4.5.3 Reduction algorithm optimization 39

4.5.4 Performance considerations: precision 42

4.6 FPGA Implementation . 43

4.7 Test results . 44

5 Conclusions 51

6 Future Work 53

A Build system 56

B Signal recovery implementation 60

References 82

vii

List of Figures

4.1 Block diagram of the ‘computationally efficient detection’ algorithm. 32

viii

Chapter 1

Introduction

1.1 Motivations

Much time is spent, and reams of paper written, on the topic of software develop-

ment processes. Often a lot of effort is spent discussing management processes and

“people”-involved development methodologies. But experience shows that design

of the code can also be a significant factor impacting the usability of software—in

particular, by developers.

With few exceptions, software must be built before it can be executed. Build

systems that turn a collection of source code to executable programs vary dramat-

ically in complexity from project to project, from a simple list of commands to

preprocessors that automatically scan code to develop extensive dependency trees

and distribute compilation work between multiple CPUs. The build system used by

a project has an impact on how code is built—but it can also have an impact on the

act of developing the code.

When a project is being built from infancy, a build system that enforces a modular

1

Chapter 1. Introduction

design from the ground up can provide a useful platform to determine questions such

as, “What hardware targets should I use?” “Is this algorithm faster than that one?”

Is letting the build system enforce design worth it? This thesis demonstrates so by

presenting such a build system and implementing a real-world design on top of it.

Chapter 2 presents a set of design constraints for a build system, especially porta-

bility and lightweight footprint. It defines portability in terms of compliance with

POSIX, the IEEE standard for operating system interfaces. It focuses on the C li-

brary and POSIX-defined make interface, continuing with a survey of build systems

and tools commonly used in software development. The chapter concludes with a

summary of lessons learned from using these build systems and settles on a more

complete set of design constraints.

Chapter 3 introduces a make-based build system designed according to the princi-

ples developed in Chapter 2, in order to facilitate quick prototyping and benchmark-

ing of new programs that have been designed in a modular fashion. It also describes

the facilities that POSIX provides for accurate timekeeping, and accommodations

that must be made in a software project to take advantage of them.

Chapter 4 describes a real-world signal recovery program, purposely written to

take advantage of the build and benchmarking features described in previous chap-

ters. The specifics of developing multiple parallel implementations—CPU, GPU,

and FPGA—are also discussed. The chapter ends with a performance comparison

between the CPU and GPU implementations of the algorithm.

Chapter 5 concludes with lessons learned during the design and implementation

of the build system, and the additional knowledge gleaned during the process of

designing software to use it.

2

Chapter 2

Build system design

2.1 Foundation: Initial design requirements

The fundamental purpose of a build system is to build a project—to generate a final

product from a collection of (typically human-editable) source files. The source files

may be anything; typically, they are a sequence of commands in some programming

language that in the end are converted into machine-executable computer code, but a

build system may also convert graphics or audio content from one format to another,

or perform text processing on documentation, or any number of possibilities.

A number of factors go into the design of any software project. Its interface must

be adequate for the target audience to be able to use it effectively. Obviously, the

software must work (i.e., correctly perform the task given). And it must be designed

in such a way as to properly execute in the target environments that the software

will run in, such as common desktop operating systems or a user’s web browser.

Similarly, the build system’s primary design requirements come from the fact

that it must be configurable by a human (interface), and that it must work properly

3

Chapter 2. Build system design

(correctness), across a variety of target environments (portability).

2.1.1 Interface

Typical examples of configurability in a software project include enabling or disabling

functionality, enabling alternate implementations of internal code, or customizing the

build based on characteristics of the target system.

But too much configurability can be a bad thing! If users are encouraged (or

required) to manually configure the build, human error is likely to introduce bugs

that result in wasted time spent debugging.

Thus, an important factor of a build system’s user interface is how much of the

build process is automated. Why automate? What are the benefits? They are

twofold: less chance for human error, and a simple universal interface means new

developers can get up to speed quickly without training.[13]

2.1.2 Correctness

Reproducibility is a major component of correctness.

A build should generate complete output from a minimal number of inputs. If

an output file o depends on a generated file g, which is generated from an input file

i, the build system should be able to reproduce o from i even if g has been deleted.

Having complete start-to-finish builds reduces the burden of storing intermediate

files in version control, which often are large and typically contain little human-

readable output.

Another factor of correctness is the importance of builds being free of errors. Build

systems often make use of parallelism and concurrency by utilizing multiple CPU

4

Chapter 2. Build system design

cores to compile distinct blocks of code at the same time. In such an environment, a

bug that triggers a race condition may cause serious problems. A build system should

make use of data structures that prevent these race conditions from happening.[16]

2.1.3 Portability

Although portability is a common concern, it is also frequently overlooked and un-

derimplemented. For a given project, builds may occur on operating systems that

provide similar interfaces to each other but different capabilities and extensions. It’s

impractical to comprehensively test software in all such environments. However,

carefully writing code that avoids the use of extensions and instead relies solely on

well-defined behavior provides confidence that the software will work correctly on

standards-compliant platforms—which is, after all, the whole point of standards.

On the other hand, what software development strategies could not be considered

reasonably portable? One method that is widely used, but often leads to unneces-

sarily platform-dependent code, is the #ifdef directive of the C preprocessor.

In a C program, ‘groups’ (sections) of code may be preceded by #ifdef speci-

fying some condition, and followed with a matching #endif. If the condition eval-

uates to true, the group is compiled as normal. Otherwise, the group is ignored.[11]

C programs often wrap explicitly non-portable segments of code in #ifdef with a

condition that is only true on a platform capable of understanding that code.

The authors of Plan 9 from Bell Labs, a network-based operating system and spir-

itual successor to Unix, criticized conditional compilation with #ifdef for making

software difficult to read and for creating multiple divergent codepaths that increase

required testing surface. If a program contains many #ifdefs with a variety of

conditions, possibly adjacent or nested within each other, most programmers will

have trouble knowing at a glance which conditions apply to a given piece of code.

5

Chapter 2. Build system design

The Plan 9 authors instead advocated minimizing dependencies and isolating the few

platform-dependent components of the source code to individual files, rather than

scattering them throughout the codebase.[18]

A similar approach to handling non-standards-compliant environments has been

advocated by others. It is sometimes known as OpenSSH-style portability (named

after one of the higher-profile projects that use it). In this approach, the software

provides a standards-compliant copy of an API and uses it if the system is not capable

of providing a standards-compliant interface itself.[15]

What standards are important, then? The ISO C language[11] and POSIX,

the Portable Operating System Interface[10] are among the most influential and

widespread software standards.

The C programming language was created by Dennis Ritchie of Bell Labs during

the development of the Unix operating system in the early 1970s. It is defined by a

modern and generally comprehensive standard, and includes a standard library with

a variety of functionality including mathematical functions.

Since the ISO took control of the standardization of C in 1989, there have been

two major revisions of the language, one in 1999 and another in 2011 that superseded

it. The 2011 revision remains the canonical C standard.

POSIX is a superset of ISO C: it encompasses the full C standard library plus

added extensions, and also standardizes a host of operating systems–relevant behav-

iors that are out of scope for the ISO C standard.

The POSIX standard is maintained and actively developed by the Austin Group,

a collaborative effort between the IEEE, the Open Group, and the ISO.

The portability benefits of the C and POSIX standards are numerous. The

primary advantage comes from their ubiquity: C is well understood by a vast number

6

Chapter 2. Build system design

of software engineers, and its level of hardware abstraction is relatively easy to grasp.

Meanwhile, POSIX-based systems are extremely common. In practice, POSIX is

a standard most commonly followed by Unix-like operating systems, such as Linux,

OpenBSD, FreeBSD, Mac OS X, and Solaris, but it also governs a number of operat-

ing systems not traditionally thought of as Unix variants, such as certain restricted

versions of Windows.

Relying on a standard as a baseline for software portability is helpful. Standards

committees tend to move more slowly than software developers, so a project that

relies on the output of the C and POSIX committees is less likely to have large

fundamental changes happen without warning; indeed, the C committee explicitly

adds new features in such a way that software complying to the older versions of C

never changes behavior, as long as it was written to be standards-compliant in the

first place.

The C standard library, the C language itself, and the software tools specified

by POSIX have many implementations; by surveying existing versions of POSIX

software one can limit a build system to a widespread subset of functionality to

increase portability.

POSIX provides make, a useful language for designing a build system. It meets

our requirements of portability (it is defined by a standard and has multiple stan-

dards-compliant implementations).

2.2 make background

make has been a part of Unix since Programmer’s Workbench 1.0, a 1977 release

of Unix version 6 designed for software development. make became a prolific build

tool due to Unix’s success, and it continues to be a standard part of most Unix-like

7

Chapter 2. Build system design

operating systems.

make works by constructing a directed acyclic graph (DAG) of build dependencies

and evaluating a set of rules, specified by the programmer in a ‘makefile’. Construct-

ing such a graph manually is a lot of work; as a result, software projects often used

multiple simple makefiles with subtly (or not so subtly) broken build graphs, and put

up with make’s inadequate results (rebuilding targets unnecessarily, or removing al-

ready built results and then redundantly running make again). These practices were

discouraged in Peter Miller’s 1999 paper, “Recursive make Considered Harmful.”[16]

Other ‘meta-build systems,’ such as CMake and Autotools, generate makefiles

using a specification written in their own custom format. These automatically gen-

erated makefiles contain a large amount of boilerplate, but when done right using

them avoids problems with poorly made DAGs.

There are many versions of make, both derivatives of the AT&T UNIX version

and independent reimplementations exist. POSIX attempted to standardize various

features of make, with some success. The build system described in this paper was

written for POSIX compliance and tested on two make implementations that aim

for such compliance.

2.2.1 OpenBSD make

OpenBSD is a Unix-like operating system descended from the Berkeley Software

Distribution of Unix. The OpenBSD project was founded in 1996 by Theo de Raadt,

a former developer of NetBSD, a similar Berkeley derivative. Unlike a typical Linux

distribution, where system software is modular to such an extreme that even the

kernel and base POSIX utilities are considered external packages, OpenBSD and

other BSD derivatives primarily develop a cohesive base system that includes a kernel,

hardware drivers, and system administration utilities, generally including most or all

8

Chapter 2. Build system design

utilities required by POSIX.

The versions of make used by all modern BSD operating systems—namely Open-

BSD, FreeBSD, and NetBSD—are all descended from a common source but have

diverged over the years. Though each system simply calls its implementation make,

they are derived from pmake (“Parallel make”), originally part of the Sprite dis-

tributed network operating system from Berkeley.[5]

Relative to other versions of make, OpenBSD’s version has been modified a num-

ber of times to improve parallelism (such as detecting recursion to avoid exponential

creation of subprocesses) and correctness (both compliance to POSIX and avoidance

of certain race conditions). Over time it has also accumulated new features and

extensions, including some inspired by other versions of make.[7]

2.2.2 GNU make

Development of GNU make began in 1988 by Richard Stallman and Roland Mc-

Grath. It has since become perhaps the most prolific make implementation, being

the default make program on nearly every Linux distribution, as well as Mac OS X,

and available in the package repositories of every major BSD operating system.

GNU make is widely used. For illustration, on OpenBSD, an operating system

where GNU make is available as an option but is not the default version of make,

nearly 20% of the software packages available in its repositories make use of non-

portable GNU make features.1

1 This number was retrieved from an OpenBSD 5.8 system, running the following
sqlite queries against the local sqlports database:
$ echo ‘select fullpkgpath from ports where use_gmake = 1;’ |
sqlite3 /usr/local/share/sqlports | wc -l
1826
$ echo ‘select fullpkgpath from ports;’ |
sqlite3 /usr/local/share/sqlports | wc -l

9

Chapter 2. Build system design

2.3 Existing build systems and their problems

Before building a new project with make, it’s instructive to look at existing build

systems. What considerations were made in their design? What misfeatures do they

have that should be avoided? What can be learned from projects that use these build

systems? Answers to these questions can be found in the following subsections.

Excessive dependencies

Dependencies are programs or libraries that provide capabilities, functions, etc. that

are then used by another program. Although technically any program that uses a

simple function such as printf() has the standard C library as a dependency, the

term does not commonly refer to what provides such fundamental features. Instead,

‘dependencies’ usually provide nonstandard functionality, such as:

• Text translation and internationalization (e.g., Gettext2)

• Complicated or performance-critical mathematics (e.g., the GNU Scientific Li-

brary3 or BLAS4)

• File formats (e.g., Libzip5 to support compressed .zip files)

• Toolkits for graphical user interfaces (e.g., the X Window System6)

• Shell utilities (e.g., xsltproc7 for transforming XML documents)

9291
The majority of the remainder are built on OpenBSD with its own make.
2https://www.gnu.org/software/gettext/
3https://www.gnu.org/software/gsl/
4http://www.netlib.org/blas/
5http://www.nih.at/libzip/
6http://www.x.org/
7http://xmlsoft.org/XSLT/xsltproc.html

10

Chapter 2. Build system design

Dependencies exist because they’re practical. Existing libraries may be highly op-

timized, widely portable, or featureful to an extent that duplicating the functionality

would require significant investment.

On the other hand, dependencies can be a problem. In some situations installing

new programs can be difficult: when disks are small, when system files are stored

on a read-only disk, when disks are immutable in other ways, and so on. Because

dependencies themselves can have dependencies, adding even a single dependency

may drastically increase the installation requirements of a system. Thus, it can be

beneficial to avoid gratuitous use of dependencies.

SCons8 and Waf9 are examples of build systems with significantly large require-

ments. They rely on Python, a large programming language interpreter and runtime.

Similarly, Apache Ant10 is an example of a build system that requires the Java run-

time.

Another interesting example is CMake, which is written in C++. Though the

C++ standard library is not often thought of as an external dependency (unlike, for

example, Python or Java), it comes with its own caveats. C++ and C are two sep-

arate languages, standardized and developed by parallel committees; although there

is some collaboration between the two groups, the languages themselves are separate

and C++ is without question the heavier of the two. Typical open source POSIX-

compliant operating systems, such as Linux or OpenBSD, consist of a majority of C

code with a few (major or minor) components written in C++.

CMake is an example of a build system that must be bootstrapped with C++.

This leads to an interesting problem when a system’s default C++ compiler is built

from a CMake-based build system, as FreeBSD’s does. Out of necessity, FreeBSD,

8http://scons.org/
9https://waf.io/

10https://ant.apache.org/

11

Chapter 2. Build system design

whose default C++ compiler and C++ standard library come from the LLVM

project,11 maintains its own build system for the C++ compiler composed of plain

Makefiles.12

The build system developed in this thesis is intentionally written in a manner

to avoid large dependencies, instead only using programs that are both lightweight

and required by POSIX—programs such as sh, sed, and make. sh is the default

command interpreter on any POSIX system, and must be installed for most systems

to function, so depending on it is not a burden. sed and make are both “building

block” programs; they are so widely used that they are usually either installed by

default or are easily compiled with a simple C compiler.

By intentionally making use of only portable, standardized behavior, the build

system avoids depending on any particular version or derivative of these programs;

therefore, if a target operating system provides a lightweight but standards-compliant

sed (such as the one provided by Busybox13), users do not have the burden of

installing a heaver sed such as GNU’s in order to build their software.

Long ‘configure’ stages

Despite the power and expressiveness of the make language, some software projects

require additional features and processing in their build process that make does not

provide. Rather than calculating configuration options and detecting system features

at build time, they require the user to run a ‘configure’ step before initiating the build.

The configuration itself is typically performed by a script that executes a series of

11http://llvm.org/
12The build infrastructure can be found in the FreeBSD Subversion repository under

https://svn.FreeBSD.org/base/head/usr.bin/clang/.
13 Busybox (https://busybox.net) is a lightweight collection of UNIX utilities, in-

cluding sed, that is often used to provide the basic POSIX system utilities on performance-
critical systems such as routers.

12

Chapter 2. Build system design

shell commands to ‘feel out’ the characteristics of the system (such as filesystem

layout), then generates the actual instructions to be passed to make at build time.

Two build systems that require a configure stage are GNU Autoconf14 and CMake15.

Autoconf in particular has seen very wide adoption; over 27% of packages in the

OpenBSD repositories rely on it.16 Some software projects develop their own custom

configure script from scratch, though this is less common.17

To illustrate typical configure stage behavior, consider the configure script from

GNU Gettext, a widely used internationalization library.18 The source code con-

tains a configure script (named configure) generated by GNU Autoconf. When

executed, configure performs a series of checks:

checking for a BSD-compatible install... /usr/ports/pobj/

gettext-tools-0.19.7/bin/install.c

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... mkdir -p

checking for gawk... (cached) awk

checking whether make sets $(MAKE)... (cached) yes

This continues for several minutes; Gettext executes 1273 of these checks.

To better understand what these checks consist of, one can examine the “thread-

safe mkdir -p” check above. mkdir is a POSIX-specified utility that creates a

directory in a filesystem. By default, it can only create a directory if the parent

directory already exists; for example, “mkdir x/y/” will only create the directory

14https://www.gnu.org/software/autoconf/autoconf.html
15https://www.cmake.org/
16select fullpkgpath from ports where configure style like

‘gnu’;
17Approximately 2.5% of programs in OpenBSD’s package repository: select

fullpkgpath from ports where configure style like ‘simple’;
18 This analysis is based on gettext-0.19.7, available from https://www.gnu.org/

software/gettext/.

13

Chapter 2. Build system design

x/y/ if x/ already exists; if x/ does not exist, mkdir will fail with an error. The

-p option, also specified by POSIX, tells mkdir to create intermediate directories.

So mkdir -p x/y/ will succeed whether x/ exists or not; if x/ doesn’t exist, it

will be created.

The check itself does the following:

1. Test if the user has specified a program to create directories; if so, exit.

2. Walk the user’s executable path: for each directory in /bin/, /usr/bin/,

etc., look for a program named mkdir or gmkdir (GNU mkdir).

3. For each program found, execute it with the nonstandard --version option,

and check if the output identifies it as a GNU version of mkdir.

4. If a GNU mkdir is found, use it as the program to create directories.

5. Otherwise, use an autoconf-generated shell script to create directories.

At the end of this process, the chosen program is substituted into Autoconf-

generated makefiles anywhere directories must be created.

The end result of this process is:

• If the user manually specifies a mkdir, use it.

• Otherwise, if GNU mkdir is found on the system, use it.

• Otherwise, use an Autoconf-generated shell script.

But why doesn’t Gettext just use the system mkdir by default? What’s so

special about the GNU version?

14

Chapter 2. Build system design

It turns out that Gettext didn’t add this check; Gettext’s configure script was

generated by Autoconf, which adds it to every build that needs to create directories.

The reason is detailed in the Autoconf source code:19 the versions of mkdir pro-

vided by Solaris 8 and some versions of the NeXTStep operating system have a race

condition. If mkdir -p x/y/ and mkdir -p x/z/ are executed at the same

time, and x/ does not already exist, it is possible for both processes to detect the

missing x/ and subsequently try to create it, but only one can succeed at creating

x/; the second one to try will fail, and will stop execution of the entire program at

that point, even though creating the subdirectory x/y or x/z would succeed.

This is, of course, a bug, and one that violates the standard. POSIX clearly

specifies that both programs must succeed in the above situation.[10] Any POSIX-

compliant system can be expected to have a working mkdir -p. Newer versions

of Solaris fix the race condition, and NeXTStep is no longer in common use, having

last seen a release in 2000.

So why does Autoconf still check for it? Because rather than assuming a standard

interface, Autoconf has a strong bias in favor of old operating systems. If Autoconf

instead assumed that the operating system is POSIX-compliant, and allowed the

user to specify otherwise, the configure check would instead be:

1. Test if the user has specified a program to create directories; if so, exit.

2. Otherwise, use the mkdir provided in the user’s executable path.

This avoids several filesystem accesses and allows the build system to trust the

underlying operating system. Note that this method is the same as the “OpenSSH-

style portability” mentioned in Section 2.1, except with POSIX as the default target

rather than OpenBSD.[15]

19 As of Autoconf version 2.69, in the file lib/autoconf/programs.m4.

15

Chapter 2. Build system design

Moving to the “assume POSIX, and provide reimplementations otherwise” model

only makes sense given a few assumptions: that POSIX compliance in commonly used

operating system environments generally improves over time, and that the number

of workarounds for POSIX-incompatible systems is manageable.

The benefit is simplicity and improved build performance. As mentioned above,

a typical Autoconf program performs thousands of configure checks, and thousands

of projects use Autoconf.

Programs that use autotools either have an extra dependency that complicates the

build process (autoconf), or they must keep around a huge generated file. Common

practice is to avoid keeping generated files in a source control repository. The reason

is that the files are often large, and when they are regenerated they are likely to

contain thousands of meaningless changes, which makes visual inspection of the

“diff” between two revisions very difficult.

This example demonstrates some of the weaknesses of a configure stage (because

they generate output from a single shell script, they cannot be parallelized; they

can generate excessive output; common implementations ignore the standard and

reimplement more than is necessary on a modern system).

If Autotools is so slow, and so poorly designed, why is it so popular? This is

partly due to historical reasons; Autoconf dates to the 1980s, before the creation

of POSIX and during a period of great diversity in Unix systems. At that time,

Autotools allowed software authors to easily target many of these systems, although

it has resulted in an unfortunate culture where code is not often designed to be

inherently portable.[12]

In more recent times, the main justification for using Autoconf is its wide variety

of build-time features: it easily supports cross-compilers, and can generate build

output in user-specified locations if desired. But as a counterpoint, these are not

16

Chapter 2. Build system design

inherent to how Autoconf is implemented. Many projects write their own configure

scripts that duplicate these useful parts of the Autoconf interface while avoiding the

bloat and performance issues of an Autoconf-derived configure script. For example,

Musl,20 an implementation of the C standard library, contains a configure script that

aside from generating build logic also provides an Autoconf-compatible interface

for cross-compilation, out-of-tree builds, and customization of install location, all

in under eight hundred lines. (Contrast with the GNU C library,21 Musl’s main

competitor, whose Autoconf-generated configure script is over eight thousand lines

long.)

2.4 Other design considerations

2.4.1 Declarative Makefiles as user interface

An example of a build system that is primarily declarative is OpenBSD’s bsd.prog.mk,22

a set of build rules that is included by the Makefiles of most programs in OpenBSD’s

source tree.

An OpenBSD installation contains hundreds of executables out of the box. Most

of these are built in the exact same way: compiling a collection of source files into

an executable, linking against a collection of libraries, and giving the executable a

unique name. Including the build logic in each program’s makefile is unnecessary

duplication; it is better to refactor the identical build logic to a separate include file.

The result is a simple list of variables:

PROG= ls
20https://musl-libc.org/
21https://www.gnu.org/s/libc/
22In the OpenBSD 5.8 source tree, visible at share/mk/bsd.prog.mk.

17

Chapter 2. Build system design

SRCS= cmp.c ls.c main.c print.c util.c utf8.c

DPADD= ${LIBUTIL}

LDADD= -lutil

.include <bsd.prog.mk>

A typical program needs only specify the program name, which source files to

compile, which libraries to link against, as well as adding it as a make dependency.

Although bsd.prog.mk is not portable, the concept of declarative Makefiles is.

The primary benefit of such a Makefile is deduplication. Reducing the amount of

build logic means less chance of human error simply by virtue of requiring less human

maintenance. In addition, by making the primary interface a simple list of variables,

all the capabilities available to the end user are visible in plain sight, removing

the user’s need to mentally envision invisible data structures when inspecting the

Makefile. In these ways, declarative programming is an improvement to the user

interface.

2.4.2 Common non-portable make constructs

Strict portability is a tradeoff. Sometimes it necessitates giving up useful features.

Although equivalent functionality may in some cases be possible through portable

means, finding such other methods is a time investment that may provide a dimin-

ishing return.

The following subsections discuss two nonstandard make features that are com-

monly supported, widely used, but not portable, and were thus avoided for this

project.

18

Chapter 2. Build system design

Metarules

Metarules, or pattern rules, are a non-portable GNU make extension. They act as

a general solution for adding new substitution rules and suffix transformations to

make build logic. A typical example of the shorthand metarules provide is that the

new rule %.o: %.c would be equivalent to the POSIX-compliant rule .c.o:.

POSIX does not require that any version of make support metarules, but it does

acknowledge their existence as a common extension, and strongly recommends that

implementors use this syntax solely for this feature.

Macro shell assignment

Often developers using make wish to dynamically assign the output of shell com-

mands to a make variable.

For example, previous sections of this thesis have shown examples of makefiles

where the user declares the source files or object files used to construct the make

directed acyclic graphs. A makefile that executes “ls *.c” in the shell would

generate a list of all files in the current directory dynamically, with no need for the

author to manually specify the files that make up the project.

There is some question whether automatically generating filename lists is helpful;

after all, it’s common while developing to keep temporary source files in the working

directory that may not need to be linked to the final result. Nonetheless, collecting

filenames with ls is only one of the possible uses for macro shell assignment, which

having access to the full capabilities of the shell has an almost limitless number of

other uses.

As this functionality has never been standardized, different versions of make

implement it differently, if they implement it at all. The most common is the !=

19

Chapter 2. Build system design

operator. Demonstrating through the previous example, SRCS != ls *.c would

assign all .c filenames to the variable SRCS. != is available in OpenBSD make,

versions of GNU make newer than 4.0, and many other makes. David A. Wheeler

has proposed != to the Austin Group for inclusion in the POSIX standard, but as

of the time of this writing it has not yet been accepted by the committee.[19]

2.5 Summary

This chapter explains the rationale behind several design principles appropriate for

build systems:

Rather than attempting to support every system equally, build systems should

target a single standard system (POSIX), and reimplement standards-compliant ca-

pabilities for otherwise incapable systems.

Build systems should make judicious use of interfaces provided by the standard

(make and the C standard library), in order to avoid dependencies.

They should avoid manual user interaction, such as configure stages, because they

are error-prone and require user training and documentation.

A system designed this way eschews complexity. Optimizing for a simple, light-

weight infrastructure allows it to be studied, understood and modified quickly and

easily by new faces.

20

Chapter 3

Build system implementation

The previous chapter described features and misfeatures of various build systems.

The intent was to learn from them, and apply the lessons to a new project.

This chapter shows the results of last chapter’s analysis and demonstrates how

the principles map to real code.

3.1 Modular design for additional paradigms

This section introduces a new feature of the proposed build system: software modules

that can be seamlessly swapped with alternatively implemented modules that have

equivalent functionality.

Consider a hypothetical software tool under development that performs some

computation-heavy data processing task. The developers of such a tool might con-

sider alternative hardware platforms, such as GPUs or field-programmable gate ar-

rays, for potential performance increases over a typical CPU. Ideally, they would

design their tool in such a way that they could seamlessly replace individual func-

21

Chapter 3. Build system implementation

tions written for a CPU with a GPU equivalent, verify that the new module provides

correct results, and benchmark the modules to determine what decisions they should

make in their final product.

The build system in this chapter will be designed to facilitate such software

by providing a simple, clear framework where “alternative” modules keep the same

filename as their “original,” but are stored in a subdirectory based on which platform

the modules run on. These platforms and their associated build infrastructure are

called ‘paradigms’ here.

The build system will include a paradigm that builds modules against CUDA,

Nvidia Corporation’s parallel programming suite designed to run on GPUs.

3.2 make build logic

3.2.1 Overriding POSIX default rules

POSIX specifies a number of default rules for building C and Fortran objects. The

“.c → .o” rule, after variable expansion, is equivalent to:

.c.o:

c99 -O -c $<

In other words, when asked to generate a .o file, make will invoke the C compiler

(c99) with the default optimization level (-O), and generate an object file instead

of a linked executable (-c).

A rule to generate a fully linked executable from a .c file also exists:

.c:

22

Chapter 3. Build system implementation

c99 -O -o $@ $<

These rules are useful in certain situations. For example, given a C program

consisting of a single source file such as foo.c, it is trivial to compile the program

without needing any makefile at all (by running “make foo” from the shell).

Though useful, these rules mostly benefit special cases. In fact, the .c.o rule ac-

tually causes negative effects in our situation, where programs are assumed to consist

of several objects, some sharing filenames, scattered across multiple subdirectories.

This is due to the behavior of the C compiler’s -c flag.

During normal operation, the C compiler generates a linked executable from

source files and object files provided as input. When -c is passed to the compiler, the

result of compilation is an intermediate object file rather than a linked executable.[10]

This turns out to be problematic due to the compiler’s default filenames for

output files. The GNU C compiler manual describes the naming behavior of -c as

follows: “By default, the object file name for a source file is made by replacing the

suffix .c, .i, .s, etc., with .o.” That is true. But what directory is the resulting

object file stored in? It turns out that it is created in the current directory, even if

the original source file was located elsewhere.

To see why this is a problem, consider the module system described earlier in

this chapter. Individual functions are implemented by individual source files. If a

function is written against CUDA, its source code can be found in a subdirectory

named cuda/; functions written in purely CPU-interpreted code will be located

in the same directory as the Makefile. These functions may implement identical

interfaces, and may have similar filenames.

If these functions have similar filenames (such as fft.c and cuda/fft.cu),

then the POSIX rule that invokes the C compiler would generate a file called fft.o,

23

Chapter 3. Build system implementation

and a similar rule that invokes the CUDA compiler would generate a file called

fft.o. . . in the same directory, resulting in a collision—one file would overwrite

the other.

This race condition is a direct result of the compiler flags used by the POSIX

definition of the .c.o rule. Therefore, we do not use it, but instead define our own

replacement. In the case of the C compiler, the POSIX rule:

.c.o:

c99 -O -c $<

becomes:

.c.o:

c99 -O -c -o $*.o $<

This new rule uses the C compiler’s -o flag to force the final filename to a

given value. The Makefile rule generates the argument to -o from the source file’s

pathname via make’s $* variable, which strips the .c suffix but retains any leading

directories. If two modules share a filename but have different suffixes, the object

files generated from them cannot overlap, because the design of the build system

ensures that files of different suffixes must be kept in separate subdirectories.

3.3 Refactoring build logic

Inspired by Chapter 2’s example of bsd.prog.mk as a declarative build system, we

start with a makefile that compiles both C and CUDA source files, and then factor

the build logic into its own makefile so the user-facing makefile can remain primarily

declarative.

24

Chapter 3. Build system implementation

.POSIX:

.SUFFIXES: .c .o .cu

.c.o:

$(CC) $(CFLAGS) -c $< -o $@

.cu.o:

$(NVCC) $(NVCFLAGS) -c $< -o $@

In the beginning, we define the special targets .POSIX (required by the standard)

and .SUFFIXES to allow defining inference rules for CUDA files. Next, we create

inference rules for both C (replacing the default POSIX inference rules for C) and

CUDA.

Although make sets CC and CFLAGS to sensible values by default, NVCC and

NVCFLAGS are custom variables and must be set manually.

CUDADIR =

NVCC = /usr/local/cuda-7.5/bin/nvcc

NVCFLAGS = $(CFLAGS)

OBJECTS = foo.o

CUDA_OBJECTS = cuda/foo.o

The C and CUDA toolchains behave very similarly, so it makes sense to inten-

tionally mimic the typical C variables and rules when building CUDA code.

all: foo cudafoo

25

Chapter 3. Build system implementation

foo: $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $(OBJECTS) -lm

cudafoo: $(CUDA_OBJECTS)

$(NVCC) $(NVCFLAGS) -o $@ $(CUDA_OBJECTS) -lm -lcufft

clean:

rm -f foo cudafoo

rm -f $(OBJECTS) $(CUDA_OBJECTS)

The exact format of the build rules for the executables themselves depends heavily

on the nature of the code being compiled. Any library dependencies will be per

project and based on the source files, so it makes sense to reference a variable instead

of including library names in the literal rules.

A revised version of the last makefile fragment, then, is as follows:

PROGRAM = foo

CLIBS = -lm

CUDALIBS = -lm -lcufft

all: $(PROGRAM) cuda$(PROGRAM)

$(PROGRAM): $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $(OBJECTS) $(CLIBS)

cuda$(PROGRAM): $(CUDA_OBJECTS)

$(NVCC) $(NVCFLAGS) -o $@ $(CUDA_OBJECTS) $(CUDALIBS)

26

Chapter 3. Build system implementation

clean:

rm -f $(PROGRAM) cuda$(PROGRAM)

rm -f $(OBJECTS) $(CUDA_OBJECTS)

The preceding makefile fragments, which are really a single makefile, can be split

into a series of variable assignments in one file and the remainder of the logic in a

second file which is included by the first using make’s include keyword.

Build logic for additional paradigms can easily be added to this library makefile.

Note that the makefile shown above builds only C and CUDA sources; for reasons

discussed in Chapter 4, the FPGA paradigm differs dramatically from C and CUDA

and is left out of the generic implementation.

3.4 Software modules

The characteristics of the build system affect the design of the software itself in cer-

tain ways. Because the goal is to abstract hardware and software into interchangeable

modules, choices in the software API must be considered carefully.

One consequence of the modularity is that memory allocation has to be performed

within the modules, not outside of them. This is a casualty of the hardware-generic

aspirations of this project; it results from the fact that GPU memory and host

memory cannot freely interact with each other. Under normal circumstances, mem-

ory would be managed by passing pointers to buffers between functions. Since the

GPU/host dichotomy makes that impossible, modules that need to pass data to the

outside world do so instead by using static buffers, which are allocated once and then

reused anytime the parent function is called. This does mean that benchmarks of an

individual module should be discarded for the first run.

27

Chapter 3. Build system implementation

It also means the modularity of this approach may be unsuitable for libraries.

Memory allocation in C libraries is best performed by a thin wrapper around the

malloc() function. To see why, we must look at malloc()’s definition:

void *malloc(size_t size);

malloc() attempts to allocate size bytes of memory, and returns a pointer

to the memory if successful. If an error occurs that causes the allocation to fail, the

only way to know is by comparing the returned pointer to the NULL pointer. But

what should happen then?

In a normal application, proper response to a memory allocation failure varies.

Some programs may abort. Others may print a diagnostic message.

But if the allocation occurs in a library, what is the proper response? Aborting

the program is clearly the wrong thing to do—after all, what if the application wishes

to print a diagnostic message? (Imagine a web browser that runs out of memory, then

asks the user to close tabs.) Instead, the library should pass the memory allocation

to the caller, and the simplest way to do that is by implementing a thin wrapper

around malloc().

Since the modules described earlier allocate memory internally without ever ex-

posing the buffer to the outside world, it would be inappropriate to use this module

system to implement library code. Once we make the assumption that the modules

never contain library code, we even further eliminate the need for complicated error

handling. This allows us to optionally write our test programs so that they exit on

error. Of course, a program that requires guaranteed reliability in error handling

may indeed want to make different decisions such as propagating errors to calling

functions. This style of program design, while more complicated than simple error

on exit, is more robust.

28

Chapter 3. Build system implementation

3.5 Test modules

3.5.1 POSIX clocks

Test modules have two purposes. One is to verify the correctness of alternative

implementations of the same module through regression testing. This is effectively

realized by the concept of small, self-contained functional modules; this build system

does not enforce any particular data testing scheme beyond that.

The second purpose is to benchmark alternative implementations of a particular

module by measuring the time of execution. Although there exists great diversity in

timing hardware and operating system clocks, POSIX provides a standard method—

indeed, multiple methods—to interface with time.

The three clocks provided by the POSIX standard are a real-time clock, a mono-

tonically increasing clock, and CPU time.[10] The real-time clock is not appropriate

for benchmarking as it’s subject to skew; the operating system can set the real-

time clock at any time, such as when synchronizing with an atomic clock using the

Network Time Protocol.

CPU time can be useful in certain situations, but it is useless for benchmarking

GPU code as it cannot detect any of the work being done on external hardware.

In contrast, the monotonic clock is quite appropriate for any benchmarking sit-

uation. It accurately measures the distance between any two measured points in

time. This is often implemented with an interrupt that triggers after a fixed interval

of time, during which monotonic clock is incremented. It is not affected by CPU

activity or by any skew when the operating system sets time.

Although the monotonic clock is not required by the standard, it may be provided

as a standard extension and can be detected by the existence of an error when

29

Chapter 3. Build system implementation

calling the clock gettime() function. Thus, the test suite is capable of providing

meaningful error output if the monotonic clock is not available, rather than returning

incorrect results at runtime.

3.5.2 Benchmarking module

In order to measure time with the POSIX monotonic clock, two measurements must

be taken, and the resulting time difference converted to appropriate units. The

benchmarking modules to be discussed in Chapter 4 do so simply and effectly by

simply setting two time “marks” via functions provided by a separate benchmarking

module.

When using this module, the goal is to measure elapsed time, but it is important

to measure the right time. As described in Section 3.4, the startup cost of initial

memory allocation is significant enough to taint the benchmark results, which are

intended to measure recurring costs of the software such as CPU time. A real-world

run may last for hours (due either to huge datasets or streaming input) so startup

cost gets lost in the noise; but benchmarks and particularly accuracy tests generally

aren’t expected to take as long, so it’s important to make sure this isn’t mistakenly

included. The implementation in this thesis does so by printing benchmark results

in real-time, but discarding the first run entirely.

30

Chapter 4

Case study: signal recovery

4.1 Introduction

A build system is not very useful without a project to build. This chapter introduces a

signal recovery algorithm, notes about its implementation in software and hardware,

and considerations regarding its ability to be built and benchmarked with the system

described in Chapter 2.

Signal detection theory attempts to separate signal from noise so that information

can be extracted. Popular applications include radars, communications, etc. The

following implementation uses a “computationally efficient detection” algorithm, or

CED, developed by Sandia National Laboratories.

The intent is to benchmark the performance (in execution time). Hence the sys-

tem was developed in a modular fashion, using the build system to verify consistency

in each module’s outputs and locating performance bottlenecks.

31

Chapter 4. Case study: signal recovery

ℱ(𝑠) 𝑠*
𝑓ref

×
𝑓input

ℱ(𝑠)

IFFT max

Figure 4.1: Block diagram of the ‘computationally efficient detection’ algorithm.

4.2 The ‘Computationally Efficient Detection’ al-

gorithm

The inputs to the algorithm are a reference signal and a constant stream of input

data. The input is repeatedly shifted and cross-correlated against the reference

signal; the outputs are an offset into the range corresponding to the highest cross-

correlation, and the maximum cross-correlation itself.

The highest cross-correlation generally occurs at the point where the signals are

in phase, even if they are not exact. For example, the cross-correlation of a sine wave

and a triangle wave is highest when the peaks and valleys of the triangle wave are

colocated with the peaks and valleys of the sine; as the two signals go out of phase

the cross-correlation will decrease.

32

Chapter 4. Case study: signal recovery

Cross-correlation is most often defined as an integral:

(f � g)(τ) =
� +∞

−∞
f ∗(t) g(t+ τ) dt (4.1)

However, it is more useful to define it in terms of convolution:

(f � g) = f ∗(−t) ∗ g (4.2)

Convolution can be equivalently performed using Fourier transforms:

F{f ∗ g} = k · F{f} · F{g} (4.3)

Therefore, the cross-correlation can be calculated by Fourier transforms as well:

f � g = F−1 {F{f ∗(−t)} · F{g}} (4.4)

4.2.1 Translating into code

Pseudocode of the algorithm follows:

for (i = 0; i < 3 * reflen; i++) {

memcpy(buffer, input, inputlen * sizeof(double complex));

ft(buffer, inputlen);

for (j = 0; j < inputlen; j++) {

buffer[j] = conj(buffer[j]) * (ref + i)[j];

}

ift(buffer, inputlen);

d = maxrange(buffer, inputlen);

if (d > max) {

33

Chapter 4. Case study: signal recovery

max = d;

maxindex = i;

}

}

The näıve algorithm performs many unnecessary copies. It can be reordered to

perform a minimal number of data copies and avoid repeating transforms.

memcpy(buffer, input, inputlen * sizeof(double complex));

ft(buffer, inputlen);

for (i = 0; i < inputlen; i++) {

conjfts[i] = conj(buffer[i]);

}

for (i = 0; i < 3 * reflen; i++) {

for (j = 0; j < inputlen; j++) {

buffer[j] = conjfts[j] * (ref + i)[j];

}

ift(buffer, inputlen);

d = maxrange(buffer, inputlen);

if (d > max) {

max = d;

maxindex = i;

}

}

Convolution is a commutative operation, so we can choose to conjugate either

the input data or the reference signal. The latter is a better choice, because when

the system is used as intended, the input data will dwarf the reference signal in

size. Conjugating the input would provide a small but constant performance hit

throughout the run of the program; conversely, conjugation of the reference signal

only needs to happen once, and the operation falls under the initial startup costs of

34

Chapter 4. Case study: signal recovery

the software, not affecting the general run time.

4.3 Selection of hardware for implementation

Aside from designing a project that suitably exercises the capabilities of the build

system and benchmark system, the motivating factors were to come up with an

appropriate ‘real-world’ system: to solve a specific engineering problem, so that the

end result will have some basis in reality.

The CPU is an obvious target: CPUs are inexpensive, extremely common, suffi-

ciently powerful, and widely understood. Doing the work in software allows for quick

prototyping and instant portability to a wide variety of platforms, including embed-

ded systems and powerful desktop hardware or even supercomputers. C was picked

over C++ due to ubiquity of C compilers combined with the lack of a real need for

typical C++ features such as object orientation, templates, data structures provided

by the C++ standard library, etc., as described in greater detail in Chapter 2.

Using a GPU to perform calculations is another solid choice. GPUs are off-

the-shelf, generic, general-purpose hardware, and have a reputation of substantial

performance improvements in calculation-heavy applications.

FPGAs are fairly domain-specific. They are extremely versatile, and open up the

possibility of completely new designs that are impossible with the limited (but effi-

cient) capabilities of CPUs and GPUs. There can be potential for great performance

due to their flexibility.

35

Chapter 4. Case study: signal recovery

4.4 Software implementation

The CPU implementation was written in a modular way. Later, the GPU implemen-

tation was done one module at a time.

The software consists of a single process and a single thread of execution. Mul-

tithreading was briefly considered but not implemented due to lack of a significant

expected benefit versus cost. In order for the software to take advantage of multiple

CPUs or multiple cores, it would require either a multiprocess design or the use of

one of the standardized threading libraries, POSIX pthreads or ISO C’s own thread-

ing library. But such an implementation would greatly complicate the code, and yet

the benefit, while possibly significant compared to single-core execution, would pale

in comparison to the performance improvements demonstrated by a GPU or FPGA

implementation of the ‘computationally efficient detection’ algorithm.

By design, mathematical operations are performed by C’s standard math library

as much as possible. In particular, complex mathematics are performed using C’s

native complex API, which is provided by the header complex.h, rather than by

rewriting the same functionality (e.g., calculating the norm of a complex number

with cabs(x + I * y) rather than sqrt(x * x + y * y)).

complex.h defines complex types, double complex and float complex,

each of which consists of a pair of (double- and single-precision, respectively) floating-

point numbers representing real and imaginary components.

Complex operations can be performed in a natural manner:

double complex c = 2.5 + 7.7 * I;

complex.h also exposes a number of functions for common complex calcula-

tions, such as cabs(), which calculates the absolute value more concisely than

sqrt(creal(c) * creal(c) + cimag(c) * cimag(c)).

36

Chapter 4. Case study: signal recovery

The required fast Fourier transforms were performed by the FFTW library.

FFTW is a widely used open source library released under the GNU General Public

License.

FFTW provides two types for performing complex mathematics. fftw complex

is a pair of double-precision floating point numbers, one of which is real and one of

which is imaginary. Similarly, fftwf complex is a pair of single-precision floating

point numbers. Happily, FFTW’s complex types are identical to the C standard

definitions of double complex and float complex: an array of one type can

be passed seamlessly to a function expecting an array of the other.[3]

Making use of ISO C’s Generic selections to perform type-generic math was

considered. Unfortunately, Generic support is not yet widespread in deployed open

source compilers. (In particular, Red Hat Enterprise Linux version 6, the operating

system used for both CPU and GPU testing, has as its system compiler GCC version

4.4.7, released in March of 2012.) Instead, measurement of the performance difference

between single- and double-precision floating point was performed by the low-tech

method of automatically replacing double with float in the source code.

4.5 GPU Implementation

Nvidia hardware was available, so CUDA was a natural choice for GPU processing.

Due to the modularity of the CPU design and the similarity of the Nvidia toolchain

to a C compiler—nvcc is configured to call an existing compiler driver to do much

of the work—it was easy to rewrite the algorithm using GPU capabilities.

Two components of the algorithm lend themselves to parallelism: the Fourier

transforms and finding the maximum value of an output array.

37

Chapter 4. Case study: signal recovery

4.5.1 Parallelizing Fourier transforms: cuFFT and cuFFTW

In the CPU implementation, the Fourier transforms necessary to find the correlation

were calculated by the FFTW library. Likewise, in the GPU implementation, the

Fourier transforms are performed by the NVIDIA CUDA Fast Fourier Transform

library (cuFFT)1.

Nvidia actually provides two Fourier transform libraries in the CUDA Software

Development Kit: cuFFT and cuFFTW. The latter is a wrapper around cuFFT

that provides an interface mimicking FFTW.[17] cuFFTW is intended to be used

in software projects that utilize FFTW so they can be easily converted to perform

operations on Nvidia GPUs. Although the software implementation of the ‘compu-

tationally efficient detection’ algorithm might fall into this category, its dependency

on FFTW is not deeply entangled. Due to the modular design, only a single file,

fft.c, had to be written in order to use CUDA’s native FFT library.

4.5.2 Parallelizing maxrange.cu: reduction

The initial version of the code to find a maximum across a range attempted to prevent

race conditions by using mutexes. Mutexes, or mutual exclusions, are a synchro-

nization primitive in concurrent execution. When multiple threads are executing a

sequence of code that requires a mutex, each will attempt to atomically “grab” the

mutex, but only the first to grab it can succeed; the remaining threads block until

the mutex is freed.

Using mutexes, the algorithm was essentially a straight copy of the CPU imple-

mentation, and defined mutexes (with the CUDA-provided check-and-set function

AtomicCAS()) to create a critical section in which to perform the max value com-

1 https://developer.nvidia.com/cufft

38

Chapter 4. Case study: signal recovery

parison.

Although this approach makes sense at first to someone used to software devel-

opment, it is inappropriate for a GPU target. In CUDA, mutexes can only be used

per-warp. Using a mutex is fine as long as such use is restricted to a single thread

within a warp. But if more than one thread attempts to grab the mutex, the code

will hang.

The act of finding the maximum must be represented instead as a parallel reduc-

tion problem.

In parallel reduction, the data to be manipulated is broken up into chunks that can

be operated on repeatedly by the same process. Once everything has been completed,

the results calculated from each chunk are combined into a single dataset, and the

same operation is performed again. For very large datasets, the dataset containing

the initial results can itself be broken into chunks and operated on in parallel.

Finding the maximum is a natural fit for this kind of algorithm. The maximum

value in a set is equal to the maximum of local maxima of subsets, as long as the

subsets contain among them contain the entirety of the original set.

In other words, if A is a set, and B∪C is a proper subset of A (i.e., there are no ele-

ments ofA that are not also elements ofB∪C), then max(A) = max({max(B),max(C)}).
Therefore, if max(B) and max(C) can be calculated in parallel, there is a clear per-

formance win.

4.5.3 Reduction algorithm optimization

The initial version of the function looked like this:

extern __shared__ double maxima[];

39

Chapter 4. Case study: signal recovery

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x * blockDim.x +

threadIdx.x > len ? len :

blockIdx.x * blockDim.x + threadIdx.x;

maxima[tid] = cuCabs(indata[i]);

__syncthreads();

for (unsigned int s = 1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

maxima[tid] = fmax(maxima[tid],

maxima[tid + s]);

}

__syncthreads();

}

Nvidia has published methods for optimizing similar reduction code that calcu-

lates sums instead of maxima.[8] Applying the same principles to maxrange.cu

yields the following:

Replace divergent branching with strided index

The % in the if statement detrimental to performance; it causes the warp to diverge

(that is, it causes each contiguous group of parallel computations to be performed

multiple times to match all possible outcomes). Replace the segment:

if (tid % (2*s) == 0) {

maxima[tid] = fmax(maxima[tid],

40

Chapter 4. Case study: signal recovery

maxima[tid + s]);

}

with:

if (tid < s) {

maxima[tid] = fmax(maxima[tid],

maxima[tid + s]);

}

Perform some calculations during load

Halve the number of blocks, and then perform an initial maximum calculation while

initializing the array:

unsigned int i = blockIdx.x * blockDim.x +

threadIdx.x > len ? len :

blockIdx.x * blockDim.x + threadIdx.x;

maxima[tid] = cuCabs(indata[i]);

becomes:

unsigned int i = blockIdx.x * blockDim.x * 2 +

threadIdx.x > len ? len :

blockIdx.x * blockDim.x * 2 + threadIdx.x;

maxima[tid] = fmax(cuCabs(indata[i]),

cuCabs(indata[i + blockDim.x]));

41

Chapter 4. Case study: signal recovery

Loop unrolling

if (tid == 0) {

outdata[blockIdx.x] = maxima[0];

}

becomes:

if (tid < 32) {

maxima[tid] = fmax(maxima[tid],

maxima[tid + 32]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 16]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 8]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 4]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 2]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 1]);

outdata[blockIdx.x] = maxima[0];

}

4.5.4 Performance considerations: precision

Should the GPU code calculate using single-precision or double-precision floating

point?

42

Chapter 4. Case study: signal recovery

The primary market for GPUs has historically been for video games, where a mi-

nor inaccuracy due to low precision lasts for but a blink of an eye. Although newer

CUDA hardware is capable of high-precision calculations and occasionally introduces

added features and improvements for doing so,[21] Nvidia’s GPU hardware is gener-

ally faster at performing single-precision than double-precision calculations.[1][2]

Similarly, the computationally efficient detection software’s use case doesn’t re-

quire high precision or exact calculations. Using float instead of double is a

sensible design decision.

4.6 FPGA Implementation

While CUDA code is easy to integrate with a C program due to the inherent similari-

ties that come from reusing a C++ compiler driver, FPGA designs are not so similar.

The fundamental differences between FPGAs and software programs, as well as sig-

nificant differences in tooling, make designing hardware modules in a compatible

fashion much more challenging.

To integrate with the rest of the system, some simulation is necessary—a design

instantiated entirely in hardware will have no way to interface with the other modules

of the system. Executing the entire algorithm in simulation is impractical, however,

for performance reasons. Simulating Fourier transforms of thousands or millions of

points is several orders of magnitude slower than performing the same operations

purely in hardware.

Therefore we simulate the outer components, but offload the internal calculations

at runtime to the FPGA.[4]

An alternate approach might use a custom wrapper module on the FPGA instead

of a testbench. It will be much faster even with the hardware co-simulation. But

43

Chapter 4. Case study: signal recovery

in turn it will not be as easy to verify, and it requires a great deal more code.

E.g., can be done perhaps by dropping in a USB core and communicating with a

software helper program; but this requires a dramatic amount of additional software

to be written per module (the helper program) and also requires additional hardware

design and resources (the USB core).

The simulation portion cannot be easily integrated with the rest of the design.

Currently this version simply mimics the interface of the regression tests; an ideal

implementation would integrate more closely with the remaining software.

The need for a method to connect software interfaces to a VHDL design was

described in a paper from Cadence.[14] Their implementation, VHPI (VHDL Proce-

dural Interface),[6] has been incorporated into the 2008 VHDL standard.[9] However,

it is not particularly widespread among vendors yet—particularly Xilinx, who at the

time of this writing does not support VHPI at all in their products.

4.7 Test results

The benchmarks list both “setup time”—that is, the time spent preparing to execute

the first loop such as reading input files and allocating memory—and “loop time”—

the time spent actually performing calculations.

The GPU takes a dramatic amount of time to prepare each function: several

seconds, while the CPU implementations take mere microseconds. But during the

data processing loop, the benchmarks clearly favor the GPU. After 5,000 points

in fft or 8,000 points in maxrange, the GPU implementation comes out ahead,

taking less than one third of the time to process 220 points.

This benchmark can influence future decisions. It is clearly advantageous to

use the GPU in a streaming fashion, repeatedly processing blocks of thousands or

44

Chapter 4. Case study: signal recovery

millions of points as they’re recorded; the setup time becomes irrelevant while the

cumulative benefit of reduced loop time increases with each iteration.

What about float versus double? In fft.c, single-precision loop times are

slightly faster than double-precision, ranging from a 6% to 20% improvement, a

maximum savings of about 4 ms per loop. In maxrange.c, single-precision cal-

culations are invariably 15–17% faster than double-precision. In the GPU modules,

single-precision calculations are consistently 44%–55% faster. Using single-precision

float provides a noticeable improvement in every case.

The various reduction optimizations applied to maxrange.cu make little differ-

ence. Performance improves by about 0.5% to 3%, or between 10 and 20 microsec-

onds. Because the optimizations require only small changes to the code, they are

probably worthwhile, but perhaps time would be better spent searching for other

bottlenecks.

45

Chapter 4. Case study: signal recovery

module precision data length
setup time

(µs)

loop time

(µs)

fft.c

single

210 370 24

211 299 38

212 332 78

213 371 195

214 484 376

215 556 904

216 841 1660

217 1565 3458

218 2807 9098

219 3784 21035

220 3807 43035

double

210 344 24

211 336 42

212 379 84

213 453 208

214 651 411

215 830 1018

216 2528 1853

217 4733 4485

218 8476 11090

219 4967 22334

220 4773 47120

46

Chapter 4. Case study: signal recovery

module precision data length
setup time

(µs)

loop time

(µs)

fft.cu

single

210 2688954 48

211 2675477 51

212 2679220 64

213 2678584 90

214 2676498 143

215 2672351 254

216 2680241 466

217 2679423 911

218 2683741 1464

219 2690675 2997

220 2680750 4830

double

210 2681185 59

211 2676335 72

212 2697671 108

213 2696714 152

214 2682183 263

215 2676765 498

216 2685107 985

217 2677600 1602

218 2676619 2811

219 2681900 5261

220 2687459 10156

47

Chapter 4. Case study: signal recovery

module precision data length
setup time

(µs)

loop time

(µs)

maxrange.c

single

210 9 17

211 6 35

212 7 70

213 17 140

214 9 282

215 6 569

216 19 1129

217 25 2273

218 43 4512

219 27 9037

220 253 18078

double

210 8 20

211 6 40

212 5 82

213 8 162

214 2 331

215 10 652

216 13 1304

217 10 2616

218 18 5209

219 108 10383

220 603 20770

48

Chapter 4. Case study: signal recovery

module precision data length
setup time

(µs)

loop time

(µs)

maxrange.cu

single

210 2415461 63

211 2390590 67

212 2400538 72

213 2396537 85

214 2395962 110

215 2393133 160

216 2391298 262

217 2405549 615

218 2384458 883

219 2384378 1404

220 2391947 2447

double

210 2397766 143

211 2383772 147

212 2387612 159

213 2396757 183

214 2393856 271

215 2391632 4032

216 2371906 4014

217 2394944 944

218 2404087 1470

219 2392970 2515

220 2394822 4641

49

Chapter 4. Case study: signal recovery

module precision data length
setup time

(µs)

loop time

(µs)

maxrange.cu
(pre-optimization) single

210 2397816 73

211 2392495 76

212 2386755 81

213 2390573 92

214 2389357 118

215 2393607 171

216 2393401 274

217 2396502 634

218 2388432 889

219 2386857 1415

220 2395097 2443

50

Chapter 5

Conclusions

The central thesis of this project has been that portable, standards-compliant soft-

ware is not difficult to write, does not result in complicated code, and provides

tangible maintenance benefit to software engineers.

Chapter 2 developed and justified a set of characteristics of useful build systems:

correctness and standards compliance, user interface and automation, and portability

across operating systems. It explained the history and proliferation of the C and

POSIX standards, along with their advantages and some of their useful features. It

then contrasted the simplicity of code written against POSIX to real-world build

systems that focus instead on backwards compatibility to old systems that have lost

relevance.

Chapter 3 took the beneficial build system characteristics articulated in the pre-

vious chapter and used them to create a build system compliant with ISO C and

POSIX; it has a clean design that does useful work in a relatively small amount of

code. This build system also encourages modular software design. Modules allow a

project to be benchmarked or tested for correctness with ease.

51

Chapter 5. Conclusions

Finally, Chapter 4 tests the claims made in previous chapters by implementing

a real-world software program that performs signal processing on multiple hardware

platforms and using the capabilities of the build system to effectively benchmark the

results.

In conclusion, by implementing a project in a modular fashion, a user can effec-

tively benchmark performance of code variants or complete rewrites. This can be

done while following standards; portability is not a heavy burden.

52

Chapter 6

Future Work

This thesis’s build system could potentially be simplified by incorporating additional

features into the POSIX standard, such as those features described in Section 2.4.2.

David A. Wheeler has made several such proposals to the Austin Group; there is

ongoing work to push these proposals into the official standard and to implement

said features in multiple make implementations.[20]

Only a part of the system was implemented on FPGA. It was the version least

like the other components. More work needs to be done to determine how to make

a HDL description fit this build system, or change the build system to accomodate

hardware designs.

A weak point in the FPGA implementation was the tooling for VHDL; software

interfaces to VHDL such as Cadence’s VHPI have been officially standardized but

have not seen wide commercial support. Perhaps Verilog has equivalent features that

are more widely implemented; it may be worth investigating how Verilog and VHDL

tooling differ.

The CPU implementation was tested with multiple compilers (GCC, LLVM/-

53

Chapter 6. Future Work

Clang, and PCC). But the GPU implementation was designed exclusively for CUDA.

Would it make sense to try this with other GPU frameworks such as OpenCL, which

has the advantage of being an open standard?

Multithreading was not seriously considered for this project, as it would provide

only a mild increase in CPU performance that would be greatly eclipsed by GPUs’

and FPGAs’ inherent speed advantages. Nonetheless, projects that might see a

serious benefit from multithreading or that for various reasons may not be able to

use CUDA or the Xilinx toolchain (for example, due to their proprietary nature)

may benefit from such consideration.

54

Appendices

55

Appendix A

Build system

Makefile

.POSIX:

PROJECT = sigrec

OBJECTS = \

initarray.o \

sigrec.o \

maxrange.o \

fft.o \

conjft.o \

ced.o

CUDA_OBJECTS = \

initarray.o \

sigrec.o \

56

Appendix A. Build system

cuda/maxrange.o \

cuda/fft.o \

conjft.o \

ced.o

CLIBS = -lm -fftwf

CUDALIBS = -lm -fftwf -lcufft

include lib.mk

include test.mk

lib.mk

CUDADIR = /usr/local/cuda-7.5

CC = cc

NVCC = $(CUDADIR)/bin/nvcc

all: $(PROJECT) cuda$(PROJECT)

CFLAGS += -g -I.

NVCFLAGS = $(CFLAGS)

$(PROJECT): $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $(OBJECTS) $(CLIBS)

cuda$(PROJECT): $(CUDA_OBJECTS)

$(NVCC) $(NVCFLAGS) -o $@ $(CUDA_OBJECTS) $(CUDALIBS)

57

Appendix A. Build system

.SUFFIXES: .c .o .cu

.cu.o:

$(NVCC) $(NVCFLAGS) -c $< -o $@

clean:

rm -f $(PROJECT) cuda$(PROJECT)

rm -f $(OBJECTS) $(CUDA_OBJECTS)

test.mk

TESTS = tests/testmaxrange tests/cudatestmaxrange

test: $(TESTS)

TESTMAXRANGE_OBJECTS = \

tests/testmaxrange.o \

initarray.o \

test.o \

maxrange.o

CUDATESTMAXRANGE_OBJECTS = \

tests/testmaxrange.o \

initarray.o \

test.o \

cuda/maxrange.o

tests/testmaxrange: $(TESTMAXRANGE_OBJECTS)

58

Appendix A. Build system

$(CC) -o $@ $(TESTMAXRANGE_OBJECTS) -lm -lrt

tests/cudatestmaxrange: $(CUDATESTMAXRANGE_OBJECTS)

$(NVCC) -o $@ $(CUDATESTMAXRANGE_OBJECTS) -lm -lrt

TESTFFT_OBJECTS = \

tests/testfft.o \

test.o \

initarray.o \

fft.o

CUDATESTFFT_OBJECTS = \

tests/testfft.o \

initarray.o \

test.o \

cuda/fft.o

tests/testfft: $(TESTFFT_OBJECTS)

$(CC) -o $@ $(TESTFFT_OBJECTS) -lm -lrt -lfftw3f

tests/cudatestfft: $(CUDATESTFFT_OBJECTS)

$(NVCC) -o $@ $(CUDATESTFFT_OBJECTS) -lm -lrt -lcufft

cleantest: clean

rm -f tests/*.o

59

Appendix B

Signal recovery implementation

conjft.c

#include <tgmath.h>

#include <fftw3.h>

#include "sigrec.h"

/*

* Given an input signal, find the Fourier transform

* and conjugate the result.

*/

void

conjft(double complex *v, int len)

{

int i;

60

Appendix B. Signal recovery implementation

ft(v, len);

for (i = 0; i < len; ++i) {

v[i] = conj(v[i]);

}

}

fft.c

#include <complex.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fftw3.h>

#include "sigrec.h"

/* Take a Fourier transform in-place. */

void

fft(float complex *f, int len, int direction)

{

fftwf_plan plan;

static fftwf_complex *tmp;

if (tmp == NULL) {

tmp = malloc(len * sizeof(fftwf_complex));

if (tmp == NULL) {

fprintf(stderr, "malloc\n");

exit(1);

61

Appendix B. Signal recovery implementation

}

}

memcpy(tmp, f, len * sizeof(fftwf_complex));

plan = fftwf_plan_dft_1d(len, f, f, direction,

FFTW_ESTIMATE);

memcpy(f, tmp, len * sizeof(fftwf_complex));

if (plan == NULL) {

fprintf(stderr, "fftw planning failed\n");

exit(1);

}

fftwf_execute(plan);

}

initarray.c

#include <complex.h>

#include <math.h>

#include <stdio.h>

/*

* Initialize up to len elements of an array with points

* read from a file.

* Return the number of elements initialized, or -1 on error.

*/

int

initarray(float complex *data, FILE *f, int len)

{

float d, e;

62

Appendix B. Signal recovery implementation

int i;

i = 0;

while (len-- && fscanf(f, "%f %f\n", &d, &e) == 2) {

data[i++] = d + I * e;

}

return i;

}

ced.c

#include <tgmath.h>

#include <fftw3.h>

#include "sigrec.h"

/*

* Perform a computationally efficient detection (CED) calculation.

*/

double

CED(double complex *conjfts, double complex *ref,

int reflen, double complex *scratch, int scratchlen)

{

int i, j, maxindex;

double d, max;

63

Appendix B. Signal recovery implementation

max = 0;

for (i = 0; i < 3 * reflen; ++i) {

for (j = 0; j < scratchlen; ++j) {

scratch[j] = conjfts[j] * (ref + i)[j];

}

ift(scratch, scratchlen);

d = maxrange(scratch, scratchlen);

if (d > max) {

max = d;

maxindex = i;

}

}

return max;

}

maxrange.c

#include <tgmath.h>

#include <fftw3.h>

#include "sigrec.h"

float

maxrange(float complex *v, int len)

{

int i;

64

Appendix B. Signal recovery implementation

float max;

for (i = 0, max = 0; i < len; ++i) {

max = fmax(max, fabs(v[i]));

}

return max;

}

sigrec.c

#include <complex.h>

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fftw3.h>

#include "sigrec.h"

void

printvec(double complex *v, int len, double(*f)(double complex))

{

int i;

static int flag;

if (flag) {

fprintf(stderr, "called printvec twice\n");

exit(0);

65

Appendix B. Signal recovery implementation

}

for (i = 0; i < len; ++i) {

printf("%e\n", f(v[i]));

}

flag = 1;

}

int

main(int argc, char *argv[])

{

int len = 1000;

int inputlen, reflen;

int i, j;

double complex *ref;

double complex *input;

double complex *tmpinput;

double complex *inputs;

double max, d;

int maxindex;

if (argc != 3) {

fprintf(stderr,

"usage: sigrec ref.dat input.dat\n");

exit(1);

}

input = (double complex *)fftwf_malloc(

sizeof(double complex) * len);

66

Appendix B. Signal recovery implementation

ref = (double complex *)fftwf_malloc(

sizeof(double complex) * len * 3);

if (input == NULL || ref == NULL) {

fprintf(stderr, "memory allocation failed\n");

exit(1);

}

FILE *f = fopen(argv[1], "r");

if (f == NULL) {

fprintf(stderr,

"could not open file %s: %s\n", argv[1],

strerror(errno));

exit(1);

}

FILE *g = fopen(argv[2], "r");

if (g == NULL) {

fprintf(stderr,

"could not open file %s: %s\n", argv[2],

strerror(errno));

exit(1);

}

reflen = initarray(ref + len, f, len);

if (reflen == 0) {

fprintf(stderr,

"no data in file %s\n", argv[1]);

exit(1);

}

ref = ref + len - reflen;

67

Appendix B. Signal recovery implementation

inputlen = initarray(input, g, len);

if (inputlen == 0) {

fprintf(stderr,

"no data in file %s\n", argv[2]);

exit(1);

}

conjft(ref + reflen, reflen);

memcpy(ref, ref + reflen,

reflen * sizeof(double complex));

memcpy(ref + reflen * 2, ref,

reflen * sizeof(double complex));

max = 0;

maxindex = 0;

tmpinput = malloc(inputlen * sizeof(double complex));

inputs = malloc(reflen * sizeof(double complex));

memcpy(inputs, input,

inputlen * sizeof(double complex));

ft(inputs, inputlen);

max = CED(inputs, ref, reflen,

tmpinput, inputlen);

return 0;

}

68

Appendix B. Signal recovery implementation

test.c

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

void

mark1(struct timespec *t)

{

if (clock_gettime(CLOCK_MONOTONIC, t) == -1) {

fprintf(stderr,

"mark1:clock_gettime(): %s\n",

strerror(errno));

exit(1);

}

}

time_t

mark2(struct timespec *t1)

{

struct timespec t2;

if (clock_gettime(CLOCK_MONOTONIC, &t2) == -1) {

fprintf(stderr,

"mark2:clock_gettime(): %s\n",

strerror(errno));

exit(1);

69

Appendix B. Signal recovery implementation

}

return t2.tv_sec * 1000000 + t2.tv_nsec / 1000 -

(t1->tv_sec * 1000000 + t1->tv_nsec / 1000);

}

testfft.c

#include <complex.h>

#include <errno.h>

#include <getopt.h>

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <fftw3.h>

#include "sigrec.h"

#include "test.h"

int

main(int argc, char *argv[])

{

struct timespec t;

float complex *data;

FILE *f;

70

Appendix B. Signal recovery implementation

int len = 5000000;

unsigned long n;

char *ep;

int ch;

while ((ch = getopt(argc, argv, "n:")) != -1) {

switch (ch) {

case ’n’:

errno = 0;

n = strtoul(optarg, &ep, 10);

if (!(optarg[0] == ’\0’ ||

*ep != ’\0’ ||

errno == ERANGE &&

n == ULONG_MAX))

len = n;

break;

default:

return 1;

}

}

argc -= optind;

argv += optind;

if (argc != 1) {

fprintf(stderr,

"usage: testfft [-n numpoints]"

" input.dat\n");

return 1;

71

Appendix B. Signal recovery implementation

}

f = fopen(argv[0], "r");

if (f == NULL) {

fprintf(stderr,

"Could not open file %s: %s\n",

argv[0],

strerror(errno));

return 1;

}

data = malloc(len * sizeof(float complex));

if (data == NULL) {

fprintf(stderr, "malloc failure\n");

return 1;

}

len = initarray(data, f, len);

mark1(&t);

int m1, m2, m3, m4, m5;

ft(data, len);

m1 = mark2(&t);

ft(data, len);

m2 = mark2(&t);

ft(data, len);

m3 = mark2(&t);

72

Appendix B. Signal recovery implementation

ft(data, len);

m4 = mark2(&t);

ft(data, len);

m5 = mark2(&t);

m5 -= m4;

m4 -= m3;

m3 -= m2;

m2 -= m1;

m1 -= m2;

printf("%d points;\n"

"setup time %d us;\n"

"loop time %d us;\n"

"mean loop %d us\n", len, m1, m2,

(m2 + m3 + m4 + m5) / 4);

return 0;

}

testmaxrange.c

#include <errno.h>

#include <getopt.h>

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#include <tgmath.h>

float maxrange(float complex *v, int len);

73

Appendix B. Signal recovery implementation

int

main(int argc, char *argv[])

{

struct timespec t;

float complex *data;

FILE *f;

int len = 5000000;

unsigned long n;

char *ep;

int ch;

while ((ch = getopt(argc, argv, "n:")) != -1) {

switch(ch) {

case ’n’:

errno = 0;

n = strtoul(optarg, &ep, 10);

if (!(optarg[0] == ’\0’ ||

*ep != ’\0’ ||

errno == ERANGE &&

n == ULONG_MAX))

len = n;

break;

default:

return 1;

}

}

argc -= optind;

74

Appendix B. Signal recovery implementation

argv += optind;

if (argc != 1) {

fprintf(stderr,

"usage: testmaxrange "

"[-n numpoints] input.dat\n");

return 1;

}

f = fopen(argv[0], "r");

if (f == NULL) {

fprintf(stderr,

"Could not open file %s: %s\n",

argv[0], strerror(errno));

return 1;

}

data = malloc(len * sizeof(float complex));

if (data == NULL) {

fprintf(stderr, "malloc failure\n");

return 1;

}

len = initarray(data, f, len);

mark1(&t);

int m1, m2, m3, m4, m5;

75

Appendix B. Signal recovery implementation

maxrange(data, len);

m1 = mark2(&t);

maxrange(data, len);

m2 = mark2(&t);

maxrange(data, len);

m3 = mark2(&t);

maxrange(data, len);

m4 = mark2(&t);

maxrange(data, len);

m5 = mark2(&t);

m5 -= m4;

m4 -= m3;

m3 -= m2;

m2 -= m1;

m1 -= m2;

printf("%d points;\n"

"setup time %d us;\n"

"loop time %d us;\n"

"mean loop %d us\n", len, m1, m2,

(m2 + m3 + m4 + m5) / 4);

printf("%d %d %d %d %d\n",

m1, m2, m3, m4, m5);

return 0;

}

76

Appendix B. Signal recovery implementation

fft.cu

#include <complex.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cuda.h>

#include <cufft.h>

#include <fftw3.h>

//#include "sigrec.h"

/* Take a Fourier transform in-place. */

extern "C" void

fft(float complex *f, int len, int direction)

{

static cuFloatComplex *tmp;

cufftResult result;

static cufftHandle plan;

if (tmp == NULL) {

cudaMalloc(&tmp,

sizeof(cuFloatComplex) * len);

}

cudaMemcpy(tmp, f,

sizeof(cuFloatComplex) * len,

cudaMemcpyHostToDevice);

77

Appendix B. Signal recovery implementation

if (plan == 0) {

result = cufftPlan1d(&plan, len,

CUFFT_C2C, 1);

if (result != CUFFT_SUCCESS) {

fprintf(stderr, "%d ",

result);

fprintf(stderr,

"cufftPlan1d()\n");

exit(1);

}

}

cufftExecC2C(plan, tmp, tmp,

direction == FFTW_FORWARD

? CUFFT_FORWARD

: CUFFT_INVERSE);

cudaMemcpy(f, tmp,

sizeof(float complex) * len,

cudaMemcpyDeviceToHost);

}

maxrange.cu

#include <complex.h>

#include <math.h>

#include <stdio.h>

78

Appendix B. Signal recovery implementation

#include <stdlib.h>

#include <cuComplex.h>

#define BLOCK_SIZE 256

#define GRID_SIZE (32 * 8)

__global__ void static

gpumaxrange(cuFloatComplex *indata,

float *outdata, int len)

{

extern __shared__ float maxima[];

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x * blockDim.x * 2

+ threadIdx.x > len ? len :

blockIdx.x * blockDim.x * 2 +

threadIdx.x;

maxima[tid] = fmax(cuCabsf(indata[i]),

cuCabsf(indata[i + blockDim.x]));

__syncthreads();

for (unsigned int s = blockDim.x / 2;

s > 32; s >>= 1) {

if (tid < s) {

maxima[tid] =

fmax(maxima[tid],

maxima[tid + s]);

}

79

Appendix B. Signal recovery implementation

__syncthreads();

}

if (tid < 32) {

maxima[tid] = fmax(maxima[tid],

maxima[tid + 32]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 16]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 8]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 4]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 2]);

maxima[tid] = fmax(maxima[tid],

maxima[tid + 1]);

outdata[blockIdx.x] = maxima[0];

}

}

extern "C" float

maxrange(float complex *v, int len)

{

float dmax;

cuFloatComplex *idata_dev;

cudaMalloc(&idata_dev,

sizeof(cuFloatComplex) * len);

80

Appendix B. Signal recovery implementation

cudaMemcpy(idata_dev, v,

sizeof(cuFloatComplex) * len,

cudaMemcpyHostToDevice);

float *odata, *odata_dev;

cudaMalloc(&odata_dev,

sizeof(float) * GRID_SIZE);

odata = (float *)malloc(sizeof(float)

* GRID_SIZE);

gpumaxrange <<<GRID_SIZE, BLOCK_SIZE,

BLOCK_SIZE * sizeof(float)>>>

(idata_dev, odata_dev, len);

cudaMemcpy(odata, odata_dev,

sizeof(float) * GRID_SIZE,

cudaMemcpyDeviceToHost);

dmax = -INFINITY;

for (int i = 0; i < GRID_SIZE; i++) {

dmax = fmax(dmax, odata[i]);

}

return dmax;

}

81

References

[1] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
https://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[2] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110. https://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[3] FFTW User Manual, 3.2.1 edition, 2009.

[4] UG817: ISim Hardware Co-Simulation Tutorial: Accelerating Floating Point
Fast Fourier Transform Simulation. Technical report, Xilinx, 2011.

[5] Adam de Boor. PMake—A Tutorial. https://www.freebsd.org/doc/
en/books/pmake/book.html, 1989.

[6] Doub Dunlop. VHPI, A Programming Language Interface for VHDL. Technical
report, Cadence Design Systems, Inc., 1996.

[7] Marc Espie. Making Make Parallel. Technical report, The OpenBSD Project,
2014.

[8] Mark Harris. Optimizing Parallel Reduction in CUDA. Technical report,
NVIDIA.

[9] Institute of Electrical and Electronics Engineers. IEEE Standard 1076-2008:
VHDL Language Reference Manual, 2008.

[10] Institute of Electrical and Electronics Engineers. IEEE Std 1003.1, 2013:
IEEE Standard Portable Operating System Interface for Computer Environ-
ments, 2013.

82

References

[11] International Organization for Standardization. ISO/IEC 9899:2011: C inter-
national standard, 2011.

[12] Poul-Henning Kamp. A Generation Lost in the Bazaar. ACM Queue, 2012.

[13] Brian Kernighan and Rob Pike. The UNIX Programming Environment, 1984.

[14] Françoise Martinolle, Charles Dawson, Debra Corlette, and Mike Floyd. Inter-
operability of Verilog/VHDL Procedural Language Interfaces to biuld a mixed
language GUI. Technical report, Cadence Design Systems, Inc., 1999.

[15] Damien J. Miller. Secure Portability. Technical report, The OpenBSD Project,
2005.

[16] Peter A. Miller. Recursive Make Considered Harmful. The Australian UNIX
and Open Systems Users Group, 1997.

[17] NVIDIA. CUFFT Library User’s Guide, v7.5 edition, 2015.

[18] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing
Systems, 8, 1995.

[19] David A. Wheeler. Add standard support for “!=” (macro shell assignment) in
make. http://austingroupbugs.net/view.php?id=337, 2010.

[20] David A. Wheeler. Improving Make. http://www.dwheeler.com/
essays/make.html, 2014.

[21] Nathan Whitehead and Alex Fit-florea. Precision & Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs.
http://developer.download.nvidia.com/assets/cuda/files/
NVIDIA-CUDA-Floating-Point.pdf.

83

	University of New Mexico
	UNM Digital Repository
	Fall 12-1-2016

	A Build System for Benchmarking and Comparison of Competing System Implementations
	Anthony J. Bentley
	Recommended Citation

	tmp.1477553053.pdf.gBG6Y

