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Abstract

Given the continuous growth of illicit activities on the Internet, there is a need for

intelligent systems to identify malicious web pages. It has been shown that URL anal-

ysis is an e↵ective tool for detecting phishing, malware, and other attacks. Previous

studies have performed URL classification using a combination of lexical features,

network tra�c, hosting information, and other strategies. These approaches require

time-intensive lookups which introduce significant delay in real-time systems. This

paper describes a lightweight approach for classifying malicious web pages using URL

lexical analysis alone. The goal is to explore the upper-bound of the classification

accuracy of a purely lexical approach. Another aim is to develop an approach which

could be used in a real-time system. These goal culminate in the development of a

classification system based on lexical analysis of URLs. It correctly classifies URLs

of malicious web pages with 99.1% accuracy, a 0.4% false positive rate, an F1-Score

of 98.7, and requires 0.62 milliseconds on average. This method substantially out-

performs previously published algorithms on out-of-sample data.
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Glossary

Uniform Resource Locator (URL) Specifies the location of a resource on a

network.

Natural Language Processing (NLP) A field of computer science and compu-

tational linguistics which researches the interactions between computers and human

languages.

Feature A quantified property of a phenomenon being observed.

Phishing Is a scheme designed to steal private user information.

Malware Also known as Malicious software, is designed to harm computer systems.

Lexical Is an adjective describing the relation to a vocabulary of words.

Classification is the problem of finding the category to which a data sample be-

longs based on a trained data model.

Classifier A program that implements a classification algorithm.

Classification Accuracy The number of samples that a classifier has correctly

classified out of the total number of samples.

Hypertext Transfer Protocol (HTTP) An application protocol for various in-

formation systems.

IP Address, domain name, geo-location, and WHOIS is a numerical identi-

fier for a device operating in a network.

Domain Name is a identifier string which defines a realm of control on a network.

WHOIS is a protocol that is used to query databases that store users of an Internet
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Glossary

resource, such as a domain name, or block of IP Addresses.

False Positive (FP A sample that is actually benign that was classified as mali-

cious.

True Positive (TP) A sample that is actually malicious that was classified as

malicious.

False Negative (FN) A malicious sample that has been classified as benign.

True Negative (TN) A malicious sample that has been classified as malicious.

F-Measure

F� = (1 + �

2) · precision · recall
(�2 · precision) + recall

Where precision and recall are defined respectively as:

TP

TP + FP

and
TP

TP + FN

xi



Chapter 1

Introduction

The Internet provides a wide-reaching platform for fraud. It can be extremely di�cult

for Internet users to be on guard for the latest scams, malware, and other malicious

activities. Therefore, there has been much study dedicated to protecting Internet

users from harm. Machine learning algorithms have been shown to be an e↵ective

way of detecting maliciousness [11]. Previous work has implemented several e↵ective

classification systems for malicious web page detection [2, 23].

Internet users have come to expect quick results: they may become impatient if

there is any extra latency in content delivery. Therefore, any classifier that is built to

protect the user from malicious content must deliver its decisions quickly. However

there is a trade-o↵ between e�ciency and e↵ectiveness. We must decide how much

safety we are willing to sacrifice in order to deliver content as seamlessly as possible.

The characteristics of malicious web pages di↵er based on the type of exploitation

techniques used (e.g, phishing, drive-by-downloads, and infected adware networks).

Therefore, the more comprehensive detection schemes take longer to execute as they

have more to look for.

The reality is that the most accurate approaches for classifying malicious web
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Chapter 1. Introduction

pages tend to take the most time. Dynamic classifiers execute the page thoroughly

to look for malicious content in the behavior of the page (e.g, honeypot clients). This

is necessary when malicious content is obscured in a sophisticated way. However, due

to the resource and time-consuming nature of this approach, it is not compatible with

the uninterrupted service that users expect. In other words, the ongoing task is to

quickly detect malicious web pages without sacrificing a high degree of accuracy [25].

The appeal of static tools are the speed at which they can classify compared

to their dynamic counterparts. Static approaches attempt to classify a web page

based on its URL and content without executing the page. As such, classification

based on static features is e�cient and easily scalable. However, classifiers built to

analyze static features have limited success with highly sophisticated schemes such

as obfuscated JavaScript based drive-by-downloads [17]. Obfuscation is a technique

designed to elude static detectors. Static detection tools can be evaded when the

meaning of known malicious strings are scrambled.

Savvy Internet users can often detect, for example, phishing scams with a quick

glance at a link embedded in an email. Machine learning techniques can do the same

with a high degree of accuracy. It has been shown that URL analysis alone can

provide a means to detect malicious content [11]. With the right training a machine

learning- based system can extend this skill far beyond the capabilities of the human

eye. These systems can detect malicious characteristics that would be subtle to even

the most scrupulous human user.

Previous studies have built static classifiers that detect malicious websites using a

combination of URL lexical features, network tra�c, hosting information, and other

strategies [10, 20]. These studies used lexical features with a bag-of-words approach

that yields very large feature vectors (on the order of hundreds of thousands). These

studies also made use of URL features which required hosting information to be

looked up on a remote server. The use of these lookups introduces significant latency

2



Chapter 1. Introduction

when classifying URLs. This latency precludes the use of these approaches in a real-

time system. Though it would be possible to remedy this latency by caching the

results of these queries, any sort of comprehensive cache would be on the order of

hundreds of gigabytes and preclude their use in a lightweight application such as in

a browser extension.

Though previous work had utilized URL Lexical analysis as a component, what

was lacking was the exploration of the full potential of a purely lexical approach. This

potential could prove to be beneficial both as a component in a more comprehen-

sive system or as a tolerable substitute in applications that demanded a lightweight

and/or fast approach.

This paper presents an approach which uses an n-gram model to develop a new

lightweight classification system that adheres to the strict time-constraints required

for a real-time system. The system increases accuracy on out-of-sample testing data

while maintaining overall classification accuracy comparable to previous work [11, 10,

2, 23]. This approach uses the J48 decision tree algorithm to perform classification of

URLs using 16 features extracted from an n-gram model and 71 features from other

lexical properties. J48 is an open-source, Java implementation of the C4.5 algorithm

[6].
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Chapter 2

Background

2.1 Introduction

Since the Internet was introduced to the general public, the security of computers

on the network has been a concern. The first attack to gain widespread attention

was the Morris worm unwittingly unleashed by a Cornell graduate student in 1988

[15]. This worm infected 1 in 20 computers while reducing their computing power

to a fraction of normal capacity. Since then, the types of attacks have only grown

in scope and maliciousness. Because of this growth, Cybersecurity has become an

important field of research and the resultant anti-virus software has become a critical

part of most computing environments.

As industries have moved many vital services on to the Internet, the breadth of

the Internet as well as its number of subscribers have grown exponentially. Due to

the naivet of many Internet users, malicious web pages have been an e↵ective tool

for pilfering money and private information. These web pages commonly contain

two types of attack schemes: phishing and the distribution of malicious software.
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Chapter 2. Background

The content of Phishing web pages usually mimics that of popular legitimate web

pages. These web pages are usually visited by users who receive seemingly legitimate

emails with links that obscure their fraudulent destinations. When users visit, for

example, a website which imitates that of a bank’s they will enter their usernames

and passwords when prompted to do so. Thus the user surrenders the access to their

bank account (and perhaps more since many people use the same usernames and

passwords for many di↵erent services).

Websites that distribute malware will often display desirable content while down-

loading software to the user’s system in the background. Users also unintentionally

infect their computers by downloading software which they believe to be legitimate.

There are many types of malware that perform various functions. A common malady

is for the infected computer to become part of a botnet. Botnets are made up of an

army of infected computers which are then able to further spread malware or a host

of other insidious activities.

Due to the large number of malicious web pages infecting the Internet, there

have been ongoing e↵orts to develop methods to identify those sites which should be

avoided.

2.2 Previous Work

Historically, the most widely adopted method for identifying malicious web pages

has been the construction of blacklists such as the Google Safebrowsing API. These

blacklists are constructed by reporting web sites after they have already successfully

executed their attacks any number of times. However, blacklists can quickly become

outdated as scammers tend to obtain and abandon domains rapidly.

Blacklists have shown to be weak in the zero hour of a phishing campaign [19],

5



Chapter 2. Background

since they can take hours to update. Numerous machines may potentially be infected

in the meantime. Extracting machine learning features from blacklist features have

also been shown to be less e↵ective than features extracted by URL lexical analysis

[11].

Training a classifier to detect phishing attacks has been subject to numerous

studies. One approach has been to combine host-features with URL lexical analysis

to form a static classifier [11, 20, 23, 2]. Host-based feature sets include IP address,

domain name, geo-location, and WHOIS properties.

Blum et al. [1] developed an online confidence weighted classification model with

URL lexical features alone. This model di↵ers from ours in that it uses a much larger

binary bag-of-words approach that yields vectors of 369,585 features. This work was

largely based on Ma et al. [12] with the major di↵erence being the absence of host

based features.

Le, Markopoulou, and Faloutsos [10] studied the e↵ectiveness of using only lexical

features vs. combining them with additional features. They also researched the

di↵erence between batch classifiers and online learning classifiers in this problem

space.

Canali et al. [2], created Prophiler, a static classifier which acts as a filter for a

dynamic classifier. Prophiler is designed to filter the majority of benign pages while

maintaining its priority of low false negatives. This method reduces the computa-

tional load on a subsequent honey-client.

Xu et al. [25] Implemented a cross-layer approach wherein corresponding network

layer data was utilized for feature extraction. Their goal was to add network data

to extend the accuracy of a static analysis. They obtain speeds of 4.9 seconds to

extract the features and classify previously unseen URLs.

Thomas et al. [20], developed Monarch, a real-time URL classification system
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Chapter 2. Background

which classifies web pages using features from host information, the URL, javascript

events, HTTP header information, plugin-usage, redirects, HTML tags, DNS infor-

mation, geo-location information, routing data, page links, and pop-up windows.

Their vectors contain 50 million distinct features. This system was designed to clas-

sify 15 million URLs a day. Monarch achieves an overall classifcation accuracy of

91% and takes 5.54 seconds to classify a single URL on average.

With the exception of Thomas et al. [20] and Le, Markopoulou, and Faloutsos[10],

all of the previous work focuses on either classifying malware or phishing, but not

both. No previous work has focused on a system for a lightweight real-time applica-

tion and none have attempted a language model other than bag-of-words.
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Chapter 3

Approach

3.1 Overview

The general approach is explained first, followed by discussions on the features uti-

lized, the data collected, and selection of the J48 algorithm for classification.

The goal of this study was to explore how quickly and accurately malicious web

pages could be classified using only their associated URLs. This minimal approach

leads to the fastest possible classification time since, unlike most other approaches,

all the features are extracted from the characters of the URL and not by visiting the

web page itself. Therefore we collected URLs from blacklisted and trusted websites,

labeling them malicious and benign respectively.

We collected two kinds of malicious URLs: phishing and malware. Phishing

URLs, in order to collect private information, are designed to lure users into clicking

on links that lead to fraudulent web pages. Sites that contain malware (malicious

software) seek to infect the user’s system by downloading and executing harmful

programs–users are often infected without realizing it.
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Chapter 3. Approach

Malicious content has been detected by analyzing static components of web pages

as well as the dynamically executed content. The more e�cient static methods often

include the collection HTTP header information, HTML tags and host-based features

at classification time. We chose not to extract any information beyond the URL of the

web page. While this additional information would likely yield higher classification

accuracy [10], by the eliminating the collection of all features found on the page itself,

the classification time is greatly reduced.

Furthermore, most previous work all relied on information which required lookups

of publicly available information such as WHOIS and geolocation. Due to the lookups

required to obtain these features, these approaches require a minimum of a few sec-

onds to classify a single URL. Further complicating this problem is that WHOIS

servers limit the number of requests over a given time period. A possible solution to

this problem could be to store the lookup information in a local database. However

this local database would need to be on the order of 100 gigabytes and, therefore,

preclude the use of the system in a lightweight application such as a browser exten-

sion.

As a baseline we implemented a bag-of-words model based on previous work

without utilizing any time-consuming components. Our approach utilizes an n-gram

language model which improved on the performance of the bag-of-words model when

classifying out-of-sample data. While modeling URLs with an n-gram approach has

been done [9], this method had not, to our knowledge, been been previously applied

to malicious URL detection.

9



Chapter 3. Approach

3.1.1 Modeling the Language of URLs

Standard Language Models

The goal of a language model is to assign a probability to any string of a particu-

lar language. A good language model will assign high probabilities to common and

grammatical strings while assigning low probabilities to uncommon and ungram-

matical strings. Building on this concept we attempted to construct a model of the

language of benign URLs. A standard language model would calculate the proba-

bility of the occurrence of a given benign URL. However, we calculate what we call

the similarity value of a given URL. The similarity value of a URL measures how

closely its properties are related to a URL in the benign set (this concept is further

explained in the n-gram section).

N-gram Models

A common method when constructing language models is to parse N-sized grams of

the dataset, where N is an integer. The grams can be words, phonemes, syllables, or

letters. N-grams are built using Markov chains. Markov chains make the assumption

that the probability associated with any event depends only on the probability of the

events directly preceding it. This concept is called the independence assumption. A

first order Markov chain assumes that the probability for the occurrence of a given

gram is conditioned only by the preceding gram. A second-order chain calculates

the probability based on the preceding two grams (in this case the previous state

is defined as the preceding two grams). These chains are referred to as bigrams

and trigrams. We used n-gram models to calculate the probability of a sequence of

characters occurring in a URL. Much research has proven this model to be e↵ective

in the task of language modeling and di�cult to improve on [8].

10



Chapter 3. Approach

Bag-Of-Words Model

As a baseline we followed previous studies [11, 1, 10, 20] by building a binary bag-

of-words model which parses the URL into tokens which are unique in terms of

their content and location. The bag-of-words is a set that contains every single

unique token in the training data. Feature vectors contain an element representing

each token in the bag. If a given URL contains a token found in the bag, the

corresponding element in the feature vector is given the value of 1. This creates

highly sparse vectors, containing all zeros except for a few ones which represent

the tokens of the given URL and any other standard lexical features utilized. On

average our training data contained 122,000 binary features when using the bag-of-

words model (the variability in the number of features was due to di↵erent data sets

being used for each the tests).

3.1.2 Features

We implemented and expanded upon features based on the previous work of Ma et

al.[11] and Whittaker, Ryner, and Nazif [21].

Phishing URLs, tend to contain a lot of key words and symbols out of place since

they are designed to deceive users. For example, it is common to see trusted brand

names such as “paypal” or “google” distributed throughout a phishing URL. In order

to capture this observation we created a feature which performs similarity checks on

common domain names, another feature searches for any brand names that are out

of place.
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Chapter 3. Approach

Figure 3.1: URL Components

URL Processing

Following Blum et al. [1], we separated the URL into three sections. Unlike Blum et

al., we chose to separate the URL into hostname, path, and parameter components

(see Figure 3.1). Each component was then further separated into tokens. Hostname

tokens are separated by dots, path tokens by slashes, and parameter tokens by ques-

tion marks. Within each section we further tokenized strings using the delimiters

specified in Ma et al.[11], namely ‘/’ , ‘?’ , ‘.’ , ‘=’, ‘-’ and ‘ ’.

We separated the URL into component parts in order to preserve the context of

their tokens. A feature will yield a di↵erent value when extracted from the hostname,

than the same feature in the path. For example, the average number of dots will

be 2 or 3 in a hostname, while often 0 in the path. So if the path contained an

number of dots, it would be seen as unusual. We calculated nearly all features on all

three sections of the URL as well as the entire URL. Though we implemented many

of the features on the entire URL as well as the subsections we were careful not to

introduce any feature redundancies.

In total we developed 87 features, which are categorized into five groups: n-grams,

Lengths, Counts, Binaries, and Ratios.

Features Extracted from N-gram Models

In our analysis we implemented bigrams, trigrams and fourgrams. We also calculated

a unigram probability which is context-independent. We created our n-gram models
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Chapter 3. Approach

for the benign training data only. This was done based on the hypothesis that

benign URLs are drawn from a smaller set than the URLs of malicious websites.

Therefore there is a higher degree of variability in the characteristics of malicious

URLs. Rather than having to capture all of this variability in the training set, the

system would be better able to di↵erentiate malicious URLs since their grams would

not be characterized by the n-gram models. This hypothesis was confirmed by testing

the system with inclusion of the malicious URLs in the models. These tests yielded

lower classification accuracies.

To calculate any given n-gram, we divided each URL of the benign set into

strings of a particular size. More specifically, a unigram model maps single char-

acters whereas a bigram model maps two consecutive characters (e.g: ‘i’ and ‘it’

respectively). The unigram model does not implement Markov chains, it calculates

probability based on the frequency distribution of single character grams in the data

set, the bigram, trigram, and fourgram models implement 1st, 2nd, and third order

Markov chains.

In general, we define � as an gram string of length L (where L = 1, specifies

a unigram model, L = 2 specifies a bigram model, and so on), we generate an n-

gram model to contain all unique occurrences of strings of size L for a given section.

Therefore the n-gram map of our training data is represented by the set:

� = {�L1 , �L2 , �L3 , . . . , �Lm}

where each �i is a unique n-gram and m is the total number of unique L-sized grams

found in the data. Let ✓ be the total number of occurrences of each � in the entire

data set D.

We now have a set ⇥ where:

13
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⇥ = {✓L1 , ✓L2 , ✓L3 , . . . , ✓Lm}

Where each ✓i represents the number of occurrences of its corresponding �i.

Once we have a map ⇥ we can calculate the probability ⇢i for any given ✓i. We

calculate the unigram frequency by dividing the total occurrences of � by the sum

of all ✓L=1. To calculate a bigram probability of a given �i occurring in any URL in

D we take the quotient of two grams. Where the numerator is the given bigram and

the denominator is the unigram which makes up the first half of that bigram. The

general equation for any ⇢i is given here

⇢i =

8
>>>><

>>>>:

✓

L
iPm

i=1 ✓
L
i

if L = 1

✓

L
i

✓

L�1
i

if L > 1

Given any �L we calculate its probability by conditioning it with the �L�1 sequence

which is contained within it. For example, the probability of a string “ate” depends

entirely on the probability of string “at”. In other words, we calculate the probability

of “ate” occurring, given that we know “at” has already occurred.

We can now represent the probability of a single occurrence of any �i with the

set:

P = {⇢L1 , ⇢L2 , ⇢L3 , . . . , ⇢Lm}

We calculated our n-gram models using the benign portion of the data set only.

The intuition is that if we model probabilities on only one class, the other class

will have lower values for the feature, which will aid the classifier in its decision.
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By modeling on the benign portion of the data we capture two key insights. First,

the set of benign URLs changes at slower rate than the set of malicious URLs.

Second, malicious data will have very low values for these features, this increases the

classifier’s performance on out-of-sample data (see table 4.2).

For each test we built the n-gram model dynamically based on the samples in the

training data for that given test. This way the model contained no prior information

on the testing data.

In order to assign real feature values, each URL was parsed into segments of size

L. We then looked up each value of ⇢Li and summed them all together. If a value

was not found in P

L, the lookup table, we simply added 0. After summing all ⇢Li we

divided by total number of � present in the URL, this normalizes the n-gram feature

value by the length of the URL.

These features are not probabilistic representations of the URL. A probabilistic

feature would would have summed all log-probabilities of �Li . We tested this ap-

proach. However, we achieved higher results with summation of the probabilities of

�.

Our choice of probability addition yields the union of the probabilities for all �i:

Similarity(URL) =
⇢1 [ ⇢2 [ . . . [ ⇢m

Length(URL)

Summation, or what we will call similarity, resulted in higher classification accu-

racy (see Table 4.5).

Besides those based on the N-gram models, the rest of our feature set includes:
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Length

We implemented a total of 10 length features. These features are the length of the:

hostname, first-directory, URL, path, parameters, top-level-domain, and second-level

domain. We also calculated the longest-token in host, path, parameter and URL.

Counting Features

These features count occurrences of a sequence or character. Some examples of

character counts are the number of: delimiters,‘-’, ‘@’, ‘?’, ‘.’, ‘=’, ‘%’, ‘http’, ‘www’,

digits, numbers, letters, tokens, non-alpha numeric, and directories. We implemented

a total of 29 count features.

Pattern Features

Pattern features look for specific patterns within the URL and count occurrences

of the pattern. Pattern counts were performed all all three subsections of the URL

as well as the entire URL. Some examples are: case changes, most consecutive oc-

currences of a character, most frequent token, similarity to blacklist words, blacklist

word count. Our list of blacklist words was drawn from Garera et al. [5]. We

implemented a total of 15 pattern features.

Binary Features

Binary features are the following: ‘.com’ out of place, IP address for a hostname,

similarity to alexa-top-10 domains, and the presence of an alexa top-10 domain out

of place. We used the DamerauLevenshtein algorithm to check the edit distance in

order to detect phishing attacks that use domain squatting (e.g. gooogle.com). We
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checked distances for the top-10 alexa domains. Domain-out-of-place determines if a

domain word from the Alexa top-ten list is not in its correct position. For example

the URL www.malicious.com/www.google.com shows google.com (the number one

Alexa site as of this writing), as out of place.

Ratio Features

Ratio features calculate the ratio between di↵erent types of characters or tokens.

Some examples are: vowel / consonant ratio, digit / letter ratio, average length of

tokens for each subsection and the entire URL. There are a total of 12 ratio features.

We implemented a total of 87 features.

3.1.3 Data Sets

We began by collecting the same training data as Ma et al. [11]. We then sought out

further sources of data in an attempt to build a more comprehensive training set.

The training data was drawn from six web sites: Phishtank.org, Openphish.com, mal-

waredomainlist.org, malwaredomains.org, DMOZ.org, and Alexa.com. The training

data set contains a total of 68,031 malicious and 122,550 benign URLs.

Malicious Data Collection

Phishing data was drawn from Phishtank.com and OpenPhish.com. Both web sites

contain lists of phishing URLs. The Phishtank data is verified by human users.

OpenPhish data is confirmed as phishing by autonomous algorithms. Since it was

launched in June 2014, none of the literature that we studied had access to this data.

The URLs from websites dispensing malware were drawn from lists found on
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malwaredomainlist.com and malwaredomains.com. These block lists provide only

domain names. Therefore we configured a web crawler to extract links from web

pages contained in these inventories of Malware domains. From this set, we removed

any URLs which pointed to domains outside the block lists since malicious pages

may contain links to trusted domains.

Benign Data Collection

To collect the benign data set, we configured a crawler to collect links from the

DMOZ.org directory and the Alexa.com top 1000 domains. DMOZ is a directory of

the entire Internet which is manually managed. DMOZ links are posted by approved

human editors. Alexa.com ranks websites based on tra�c. As with previous studies

[3, 17], we assumed the most highly tra�cked websites to be the most highly scru-

tinized, and therefore, safe. However, since pornographic sites tend to be sources

of malware, and yet highly tra�cked, we manually removed any site whose domain

name suggested the presence of pornography.

Table 3.1: Training Data

Source URLs Subset Training Set

Alexa 105,806 Benign

122,550
Benign

122,550
DMOZ 16,744

Phishtank 17,531 Phishing

25,388OpenPhish 7,857
Malicious

68,031
MalwareDomains 39,230 Malware

42,643MalwareDomainList 3,413

Finally, we cross-referenced the domains from the malicious and benign sets, if

any domain was present in both sets, we removed them entirely from our training

data. This became necessary since a highly tra�cked Chinese website, qq.com, which
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is ranked in the Alexa top 1000, had been reported as distributing malware on one

of the block lists (URLs from qq.com were found in and removed from both of our

benign and malicious data sets). A breakdown of the whole dataset can be seen in

Table 3.1.

Data Analysis

Table 3.2 shows that the average values for length and count attributes tend to be

largest for phishing URLs, and smallest for malware URLs. Phishing and Benign

URLs are designed to attract users: much thought is put into the domain and path

tokens. Malware URLs, on the other hand, are often only seen after the user has

been redirected from other pages: their utility is not in the attraction of user clicks.

URL Characterizations
Attribute Benign Malware Phishing
Length 64.06 58.94 101.97
Delimiter Count 6.13 5.68 8.30
Digit / Letter Ratio 0.13 0.15 0.21
Number of Dashes 1.40 1.13 1.16
Count of Blacklist
Words

0.13 0.16 0.95

Number of Non-Alpha-
numeric Characters

47.27 43.05 83.75

Length of Parameter 15.19 10.89 21.96
Digit Count in Host 0.34 0.55 1.06
Non-Alphanumeric
Count in HostName

13.14 14.14 20.64

Length of 1st directory 8.50 10.09 11.21
Vowel / Consonant
Ratio in Hostname

0.45 0.39 0.55

Table 3.2: Examples of Average Feature Values
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3.1.4 Classification Algorithms

In this study we compared the e↵ectiveness of several classification methods with

our data and feature sets.

Baseline

As a baseline for comparison we built a linear classifier using regularized logistic

regression. Logistic regression is a parametric model for binary classification where

examples are classified by their distance from a decision boundary. We implemented

L1 regularized logistic regression model from the LibLinear package as was done by

Ma et al.[11]. The methodology was to ensure that our system performed with higher

accuracy than previous studies with our data set.

N-gram Based System

For the implementation of the classifier based on n-gram modeling we used the

J48 algorithm (an implementation of the C4.5 decision tree). J48 is one of many

classification algorithms available in the popular Weka machine learning suite[7]. We

chose J48 due to its reputation of success in this domain [24] and after evaluating

its performance in comparison to Bayesian Logistic Regression, Logistic Regression,

Naive Bayes, and K-Nearest Neighbors classifiers.

Comparison of Algorithms

In order to evaluate performance of each algorithm, we compared their overall accu-

racy and receiver operating characteristic (ROC) curve.

A classifier’s accuracy is not the only necessary metric to evaluate its performance.
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The ambiguity lies in the fact that classification accuracy may not have equal mis-

classification costs: an accuracy of 98% tells nothing about the false positive and

negative rates. In fact, in a real-world deployment of any classifier, it is often true

that the error rate of one class of data comes at a higher cost than misclassifying

other types of data.

Table 3.3: ROC Area Under Curve Values

Classifier AUC

NaiveBayes 91.1

BayesianLogisticRegression 92.8

LogisticRegression 98.7

Knn 99.0

J48 99.3
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An ROC curve shows the false-positive and false-negative rates on the X and Y axes

respectively. Therefore, the curve represents the predictive quality of the classifier

independent of error costs (and class imbalance in the training data) [16]. In order

to choose our classifier we examined the ROC area under the curve value (AUC)

and Accuracy rate of each type of classifier. Table 3.3 shows J48 outperforming its

counterparts in AUC of the ROC. Furthermore, the J48-based system achieved the

highest overall classification accuracy for the n-gram model.

3.1.5 The J48 Algorithm

J48, a top-down single decision tree, is a recursive algorithm which seeks to best

divide the data based on its attributes. It creates child nodes to split the data

based on the highest value of either the information gain or gain ratio of the given

attributes. The selection of splitting criterion is a free parameter choice. Both during

and after the construction of the tree J48 implements pruning features in order to

avoid overfitting the training data.

Derivation of J48

Let T be the the set of choices of size S at a particular node. Then the information

gain is defined as:

gain = info(T )�
SX

i=1

|Ti|
|T | · info(Ti)

where info(T ) is the entropy function:

info(T ) = �
nX

j=1

freq(Cj, T )

|T | · log2(
freq(Cj, T )

|T | )
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where n is the number of data classes, and Cj is a particular class [18].

Choosing the information gain equation minimizes the entropy found in the chil-

dren of the split. However, this tends to reward splits which contain large numbers

of remaining samples. Information gain ratio, the default setting for J48, divides the

information gain by the information provided by the children of the split [22]:

Split(T ) = �
SX

i=1

|Ti|
|T | · log2(

|Ti|
|T | )

This process continues until J48 hits one of its base cases which are:

1. All remaining samples belong to the same class.

2. Information gain ratio is zero for all features.

3. A class value is seen for the first time.

J48 Feature Selection

A feature will only be used if and when it is the choice which provides the highest

information gain in determining the class of a data vector. This indicates the rele-

vancy of a given feature: If a feature does not provide the best split of the data at

any of the nodes in the tree, it is never used.

3.1.6 E↵ectiveness Metrics for Features

As each feature was implemented, we compared the e↵ectiveness of the classifier to

its previous iteration using the following e↵ectiveness metrics: F1-score, accuracy,

false-negative rate (FNR), and false-positive rate (FPR). Accuracy was measured on
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the entire data set, whereas the F1-score, FNR, and FPR are defined from the point-

of-view of the malicious data. Therefore, accuracy is simply the percentage URLs

that are correctly classified, FPR rate is the percentage of benign URLs classified as

malicious, and FNR rate is the percentage of malicious URLs classified as benign.

F-Score Equation

The F-score is defined as:

F� = (1 + �

2) · precision · recall
(�2 · precision) + recall

Where precision and recall are defined respectively as:

TP

TP + FP

and
TP

TP + FN
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Results

4.1 Results Compared to Previous Work

We implemented a bag-of-words model with L1 logistic regression (LR) in order

to have a baseline comparison with the most e↵ective previous work. The overall

classification results were quite similar as seen in Table 4.1. However Table 4.2 shows

that the J48 model outperforms LR-based model when testing on out-of-sample data.

Table 4.1: Classifier Performance, 10-Fold Cross Validation on Training Set Size
131,520.

Accuracy F1-Score FPR FNR

J48 99.1 98.9 1.7% 0.4%

LR 99.1 98.7 1.7% .5%

4.1.1 Similarities With Previous Work

Table 4.1 shows the results of both models are virtually identical tested with 10-

fold cross validation using a 1:1 ratio of benign to malicious URLs on the entire
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training data. FPR and FNR are the malicious false positive and false negative rates

respectively. Both classifiers take less than one millisecond to classify a URL. All

tests were run on a computer with a 1.8 GHz Intel i5 processor and 8GB of memory.

4.1.2 Di↵erences from Previous Work

The tests shown in Table 4.2 demonstrate that our n-gram model achieves with

higher accuracy on out-of-sample malicious URLs then the previous work. The data

in Table 4.2 is the resultant malicious True Positive Rate (TPR) when training

on one source of malicious data set while testing on another. MDomains refers

to data drawn from the source MalwareDomains.com, MDList is data drawn from

MalwaredomainList.com, OpenPhish is drawn from Openphish.com and PhishTank

from phishtank.com.

Table 4.2: Training with one malicious data set, while testing with another. True
Positive Rate
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4.1.3 Discussion of Out-of-sample Data Test

By training on one source of data and testing against the other, the classifier’s

performance on out-of-sample data is tested. J48 performs with higher accuracy in

the majority of cases. LR has a lower TPR for a number of tests. Overall these

tests show that the n-gram model with J48 generalizes to new data with higher

accuracy than bag-of-words with LR. This test is atypical in that a classifier would

not normally be expected to perform well on a data type that it has never seen

before. However, since the J48-based system uses language models that are only

based on benign websites, anything that does not “look” like a benign URL is likely

to be classified as malicious.

The landscape of malicious URLs changes rapidly since attackers obtain and

abandon domains rapidly to avoid detection. Whereas, the set of benign URLs

changes very slowly in comparison since brand names are meticulously cultivated

over time (e.g, google.com or facebook.com). Therefore, if the n-gram language

models are comprehensively built to include the large majority of benign websites,

this system will be well equipped to detect fly-by-night malicious operators. Since,

as Table 4.2 shows, it performs well in classifying malicious data that looks nothing

like anything it has ever encountered.

Table 4.3 shows the confusion matrix for the J48 model. In general we see that

false positives and negatives were quite even.

Table 4.3: Confusion Matrix : P = predicted value, R = real value.

Malicious - P Benign - P

Malicious-R 65316 444

Benign-R 452 65333
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4.1.4 Feature E↵ectiveness

Table 4.4 shows the top 25 features ranked by information gain ratio for the entire

training data. These scores are calculated for the entire training data which is the

same calculation that J48 makes at the root of the tree: before it has made any splits

of the data. Even though some features may provide little information at the top

of the tree, J48 re-calculates the information gain ratio before the creation of each

node. Thus some of the features that tank lower at the root, they provide higher

information gain lower in the tree when the data sets are highly split.

In order to quantify the e↵ectiveness of each feature type, we trained and tested

the classifier with each feature group separately: count, length, binary, ratio, n-gram,

and pattern. The results are shown in Figure 4.1. The n-gram group has the highest

accuracy of 98.23% which correlates with Table 4.4.

N-Gram Similarity Features

Our first attempt at utilizing the n-gram model was to sum the log-probabilities

of the n-grams. However, the classification accuracy increased when these features

were calculated using the summation of the probabilities themselves. We call this

feature the similarity value of a URL. In summary: rather than calculating the

probability that a given URL belongs to the benign set, this feature represents the

similarity of the test URLs to the URLs in the benign set. This is why the classifier

is highly e↵ective in classifying malicious data that is unlike any that it has previous

encountered (Table 4.2).

Table 4.5 shows the results of the J48 trained with the n-gram model using both

the similarity and a probability approach. When calculating the probability value

we used log probabilities to avoid underflow.
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Figure 4.1: Performance of J48 Classifier When Trained and Tested on Individual
Feature Categories.

4.1.5 Tuning

It is possible to tune the classifier to focus on false positives or false negatives. This

is done by adjusting the ratio of benign to malicious samples in the training data.

An example application of tuning would be the integration of the classifier with a

firewall. An administrator might desire to tune the classifier to keep false positives

low in order to reduce complaints about blocked sites. Otherwise, if it is desired to

keep false negatives low in order to reduce the spam and viruses in the network, this

could be done as well. Table 4.6 shows tuning results for the J48 classifier. As the

number of malicious samples is increased the false negative rate is decreased.
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4.1.6 Dataset Validation

Since many of our URLs come from the same domains, there are duplicate portions

contained in multiple URLs. If there are several URLs in the training set that contain

identical tokens to URLs in the testing set, this could overweight the decision tree

toward certain features.

In order to test against this we created a set of URLs where all domains were

unique. This increased the variation between data samples. The results of this test

are shown in Table 4.7. It is notable that the two models di↵er significantly in their

FPR and FNR rates. This could be a deciding factor on which method to implement.

The lowered accuracy of both classifiers can be accounted for in the reduced training

size (12,000 URLs). If a larger training set of unique domains was constructed (on

the order of 120k), the accuracy of both classifiers would improve.
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Table 4.4: Features Ranked by Information Gain Ratio on the Training Data
Rank Feature Info Gain Ratio

1 HostName QuadGram 0.8544122

2 HostName TriGram 0.7644311

3 HostName BiGram 0.7359932

4 HostName UniGram 0.7325711

5 URL QuadGram 0.3948905

6 Path QuadGram 0.1502406

7 Parameters QuadGram 0.145088

8 URL TriGram 0.1243128

9 Vowel/Consonant Hostname 0.1225869

10 Path TriGram 0.1151544

11 LongestToken Hostname 0.1113489

12 AverageLengthOfTokens Hostname 0.1051401

13 Path BiGram 0.1011293

14 Path UniGram 0.0905633

15 Length Hostname 0.0846729

16 Parameters TriGram 0.081808

17 Length 2LD 0.0795415

18 LongestToken URL 0.0763964

19 LongestToken Path 0.0739061

20 Digit/Letter Path 0.072608

21 AverageLengthOfTokens Path 0.0672172

22 AverageLengthOfTokens URL 0.0662559

23 Length URL 0.0606642

24 Number NonAlphaChars URL 0.0604375

25 Length Path 0.0568101

Table 4.5: J48 N-Gram model: Training on Similarity Value Features vs Probability
Value Features

Accuracy F1-Score FPR FNR

Probability 96.489 96.5 0.035 0.035

Similarity 99.01 99 0.012 0.006
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Table 4.6: Classification tuning results. Total Training Samples : 65,679

Ben: Mal Acc F1-Score FPR FNR

3 : 1 98.96% 99.0 1.0% 1.1%

1 : 1 98.8% 98.9 1.3% 0.8%

1 : 3 97.7% 97.8 3.3% 0.4%

Table 4.7: Test with Unique Domain Names, Training Size: 12,000 URLS

classifier Acc F1Score FPR FNR

J48 94.76 94.7 9.8 1.7

LR 96.3 96.79 4.7 3.8
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Evasion

A fundamental flaw in the study of malicious website classification is that attackers

have access to most of the same data that researchers use to train detection systems

[24]. Therefore, attackers can design their attacks to evade detection. A purely

lexical approach relies on common characteristics of malicious URLs in order to

di↵erentiate them from benign URLs. If an attacker were to manipulate their URLs

to avoid features that detection algorithms use to detect maliciousness, it is possible

to evade detection. However, there could be cost associated with manipulating these

features depending on the intended use of a particular URL.

5.1 Evading detection with phishing URLs

URLs used for phishing attacks are designed to lure a human user into believing

that a link is legitimate. For example, familiar brand names such as “google” or

“facebook” are commonly distributed throughout the URL. Therefore, in order to

detect these URLs it is useful to look for an overuse of tokens that would normally be

associated with legitimate websites. Another strategy is to determine whether these
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seemingly legitimate tokens are out of place (e.g. facebook.com should be classified

as legitimate, whereas facebook.xyz.com should be classified as malicious). In order

to evade this particular feature, attackers would need to remove the brand name

tokens. However, the removal of these tokens would reduce the likelihood of fooling

the user. Thus by attempting to avoid detection through this route the attackers

would also be lowering the e↵ectiveness of their attack.

5.2 Evading detection with malware URLs

Unlike phishing URLs, Malware URLs are not always designed to fool users. These

URLs are often landed on after redirection from other domains. Therefore, the

lexicon of malware URLs is less intrinsic to the attack itself. At the present time,

our charactization of malware URLs seems to suggest that attackers put very little

thought into the tokens seen in URLs leading to malware. However it is clear that

malware URLs do not currently look like regular URLs, as long as this remains true,

the n-gram Model will detect all things that are not benign.

5.3 Evading Detection with Shortened URLs

URL shortening services are becoming increasingly popular both with attackers and

the general public[14]. When a user clicks on a shortened URL, it redirects to the

full length URL of the page. URL Lexical analysis designed to measure the features

of a full length URL only. Currently, our system rejects shortened URLs.
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5.4 Strength of n-gram Modeling

The landscape of malicious URLs changes rapidly since attackers obtain and abandon

domains rapidly to avoid detection. Whereas, the set of benign URLs changes very

slowly in comparison since brand names are meticulously cultivated over time (e.g,

google.com or facebook.com). Many of the features in our system are based on n-

gram models of of the most common benign URLs. This allows the system to assign

a similarity value to the likelihood that a URL is benign based on the number of

legitimate tokens that are present. In order to evade detection, the characteristics

of Malicious URLs will continue to change. However, since the characteristics of

malicious URLs, will always di↵er from benign URLs by some degree of similarity,

given regular retraining, the n-gram models will be able to detect URLs that are

dissimilar from benign URLs.
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Conclusion and Future Work

6.1 Summary

In this paper we have presented a novel, lightweight approach for classifying malicious

URLs. Once built, the classifier can process and classify a URL with an average speed

of 0.627 milliseconds and an accuracy of 99.1%. Unlike previous work, this level of

accuracy is achieved without time-consuming lookups and is capable of detecting

two di↵erent types of malicious URLs. This is important as we envision our classifier

being integrated with an existing small-scale security system such as a firewall or

browser extension. To test production readiness we would generate network tra�c

and measure the performance of the system in handling a high volume of data.

Though Previous work had utilized URL Lexical analysis as a component, what

was lacking was the exploration of the full potential of a purely lexical approach. This

potential could prove to be beneficial both as a component in a more comprehen-

sive system or as a tolerable substitute in applications that demanded a lightweight

and/or fast approach.
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6.2 Drawbacks

Though the our classifier performs at a high level in its niche, it is not without its

share of limitations. URL shortening services are becoming increasingly popular both

with attackers and the general public. When a user clicks on a shortened URL, it

redirects to the full length URL of the page. Our system is designed to measure the

features of a full length URL only. Currently, our system rejects shortened URLs.

We would ideally add a component of our system that would follow the shortened

URL and pull for classification the URL that it refers to.

6.3 Future Work

In the future we would also like to add a component to the system that performs

detection of domain names that were created by Digitally Generated Algorithms

(DGA) since a DGA domain name suggests the presence of malicious activity such

as the presence of a botnet.

The characteristics of malicious web pages and URLs will continue to evolve. As

with any security system, this one will need to keep up with the latest trends. To

do this, there is need for the implementation a component of the system that would

regularly retrain the classifier with the latest benign data. Though the set of highly

tra�cked benign websites does not change quickly compared to malicious websites,

regular retraining will be necessary.
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Appendix: Class Diagrams

Figure 6.1: Feature Extraction Classes
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Figure 6.2: Data Processing Classes
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Figure 6.3: Classification Classes
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Figure 6.4: System Architecture
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