
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

1-28-2015

Optimization and Regulation of Performance for
Computing Systems
Jose Marcio Luna Castaneda

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Luna Castaneda, Jose Marcio. "Optimization and Regulation of Performance for Computing Systems." (2015).
https://digitalrepository.unm.edu/ece_etds/163

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/163?utm_source=digitalrepository.unm.edu%2Fece_etds%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 José Marcio Luna Castañeda
 Candidate

 Electrical and Computer Engineering Department

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Chaouki Abdallah , Chairperson

 Gregory Heileman

 Rafael Fierro

 Jens Lorenz

Optimization and Regulation of
Performance for Computing Systems

by

José Marcio Luna Castañeda

B.Sc., Electronics Engineering, Universidad Distrital Francisco José
de Cáldas, 2004

M.Sc., Electrical Engineering, University of New Mexico, 2010

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2014

c©2014, José Marcio Luna Castañeda

iii

Dedication

A mi familia

A mi abuelita Blanca

A la memoria de Mamita Hely

iv

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Chaouki T. Abdallah
for his guidance, understanding, sincerity and support during all these years. I am
really proud of being his student.

I would like to thank my dissertation committee for their support in the culmi-
nation of this work. Thanks to Dr. Gregory Heileman, Dr. Rafael Fierro, and Dr.
Jens Lorenz.

To my wife, Roberta Arruda for her patience, support and company which were
essential to accomplish my studies.

To Aura E. Castañeda Lobo, José Moisés Luna Rondón, Claudia Lorena Luna
Castañeda, Juan Diego Luna Castañeda and David Ernesto Luna Luna, to whom I
dedicate this work.

Thanks to Blanca Stella Lobo Turizo, my beloved grandmother.

Special thanks to my friend Joel Becktell for doing so much for me.

To my old friends Mauricio Soto, Sebastian Patrón, Luz Marcela Carolina Ayala,
Héctor Cristyan Manta, and Javier Ulises González, my soul brothers.

To all my friends in Albuquerque, life was definitely better because of you.

v

Optimization and Regulation of
Performance for Computing Systems

by

José Marcio Luna Castañeda

B.Sc., Electronics Engineering, Universidad Distrital Francisco José

de Cáldas, 2004

M.Sc., Electrical Engineering, University of New Mexico, 2010

Ph.D., Engineering, University of New Mexico, 2014

Abstract

The current demands of computing applications, the advent of technological advances

related to hardware and software, the contractual relationship between users and

cloud service providers and current ecological demands, require the refinement of

performance regulation on computing systems. Powerful mathematical tools such

as control systems theory, discrete event systems (DES) and randomized algorithms

(RAs) have offered improvements in efficiency and performance in computer scenarios

where the traditional approach has been the application of well founded common

sense and heuristics.

The comprehensive concept of computing systems is equally related to a micropro-

cessor unit, a set of microprocessor units in a server, a set of servers interconnected

in a data center or even a network of data centers forming a cloud of virtual re-

sources. In this dissertation, we explore theoretical approaches in order to optimize

vi

and regulate performance measures in different computing systems. In several cases,

such as cloud services, this optimization would allow the fair negotiation of service

level agreements (SLAs) between a user and a cloud service provider, that may be

objectively measured for the benefit of both negotiators.

Although DES are known to be suitable for modeling computing systems, we

still find that traditional control theory approaches, such as passivity analysis, may

offer solutions that are worth being explored. Moreover, as the size of the problem

increases, so does its complexity. RAs offer good alternatives to make decisions

on the design of the solutions of such complex problems based on given values of

confidence and accuracy.

In this dissertation, we propose the development of: a) a methodology to opti-

mize performance on a many-core processor system, b) a methodology to optimize

and regulate performance on a multitier server, c) some corrections to a previously

proposed passivity analysis of a market-oriented cloud model, and d) a decentralized

methodology to optimize cloud performance. In all the aforementioned systems, we

are interested in developing optimization methods strongly supported on DES theory,

specifically Infinitesimal Perturbation Analysis (IPA) and RAs based on sample com-

plexity to guarantee that these computing systems will satisfy the required optimal

performance on the average.

vii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 5

1.3 Contributions . 6

1.4 Organization . 7

2 Performance Optimization and Regulation for Many-core Proces-

sors 9

2.1 Introduction . 9

2.2 Previous Work: Throughput Regulation 11

2.2.1 IPA for Throughput Regulation 13

2.2.2 Regulation Algorithm . 14

viii

Contents

2.3 Regulation of Additional Performance Metrics through IPA 14

2.3.1 Estimate of Average System Time Derivative 15

2.3.2 Estimate of Average Waiting Time Derivative 15

2.4 Statistical Learning for Optimal Reference 16

2.5 Case Study: Energy Savings and Wait States 20

2.5.1 Performance Function . 21

2.6 Simulation Results . 22

2.7 Conclusions . 27

3 Performance Optimization and Regulation for Multitier Servers 31

3.1 Introduction . 31

3.2 A Multitier Model Based on Queue Networks 34

3.3 IPA for Performance Regulation . 37

3.3.1 Unbiasedness of IPA Estimators 38

3.3.2 Sample Function for Throughput and its Derivative 42

3.4 Statistical Learning for Optimal Parameterization 49

3.4.1 Performance Function . 51

3.5 Simulation Results . 52

3.6 Conclusions . 53

4 Cloud Computing Model with Time-Varying Workload 56

ix

Contents

4.1 Introduction . 56

4.2 Market-Oriented Cloud Model . 58

4.3 More About Passivity Analysis . 61

4.4 Effect of Equilibrium Points in Stability 64

4.5 Effect of Time-Varying w(k) . 65

4.6 Simulation Results . 67

4.7 Conclusions . 68

5 Resource and Security Provisioning on the Cloud 71

5.1 Introduction . 71

5.2 Probabilistic Performance Analysis 73

5.2.1 Worst-case Performance for Finite Families 73

5.3 Resource Optimization in the Cloud 77

5.3.1 Security Metrics based on Cryptography 78

5.3.2 RA for Optimization . 80

5.3.3 Heuristics for Execution Time Reduction 83

5.4 Experimental Verification . 87

5.4.1 Experimental Results . 89

5.5 Conclusions . 93

6 Concluding remarks, future work and recommendations 99

x

Contents

6.1 Performance Optimization and Regulation for Many-Core Processors 100

6.1.1 Concluding Remarks . 100

6.1.2 Future Work and Recommendations 100

6.2 Performance Optimization and Regulation for Multitier Servers . . . 101

6.2.1 Concluding Remarks . 101

6.2.2 Future Work and Recommendations 102

6.3 Market-oriented Cloud Model with Time-varying Workload 102

6.3.1 Concluding Remarks . 102

6.3.2 Future Work and Recommendations 103

6.4 Optimal Performance and Security Provisioning in the Cloud 103

6.4.1 Concluding Remarks . 103

6.4.2 Future Work and Recommendations 104

A Event Time Derivatives for Three-Tier Servers 106

B Recalculation of û(k) for Market-oriented Cloud 108

C Heuristic Execution Time Reduction for Security and Performance

Optimization in the Cloud 110

References 112

xi

List of Figures

1.1 Block diagram of interaction between the plant, the open-loop opti-

mizer and the closed-loop regulator. 6

2.1 Block diagram of out-of-order execution core. 12

2.2 Open-loop optimizer and closed-loop regulator in the many-core pro-

cessor problem. 17

2.3 Regulated average waiting time sk for all four cores in the simulation. 26

2.4 Regulated throughput yk for all four cores in the simulation. 27

2.5 Regulated average waiting time wk for all four cores in the simulation. 28

2.6 Frequency signal φk for all four cores in the simulation. 29

2.7 Step-size term in the gradient descent algorithm, Kk
en−1k

y′
k
(φ)

for all four

cores in the simulation. 29

2.8 Performance function Jk for all four cores in the simulation. 30

3.1 Multitier server in series. 33

3.2 Model of a multitier server. 35

xii

List of Figures

3.3 Open-loop optimizer and closed-loop regulator in the multitier server

problem. 37

3.4 State transition diagram of the two-tier server model. 44

3.5 Model of a one-tier server. 46

3.6 Model of a three-tier server. 49

3.7 Plot of regulated throughput for a three-tier server. 53

3.8 Plot of the controlled parameter µ1 for a three-tier server. 54

3.9 Plot of the regulation error of the throughput for a three-tier server. 55

4.1 Block diagram of the market-oriented cloud presented in [1]. 58

4.2 Non-asymptotically stable example that satisfies the sufficient con-

ditions for asymptotic stability given in [1]. 64

4.3 Simulation showing that the market-oriented cloud model in [1] is ISS. 68

4.4 Simulation showing bounded d(k) with random and bounded w(k). . 69

4.5 Simulation showing bounded b(k) with random and bounded w(k). . 70

4.6 Simulation showing bounded s(k) with random and bounded w(k). . 70

5.1 Example step 1. The available configurations 020, 107 and 210 (encir-

cled) block the selection of the adjacent remaining entries (highlighted). 85

5.2 Example step 2. The previously selected configurations are discarded

(crossed out) and the new available ones are 115 and 200. 86

5.3 Example step 3. The previously selected configurations are discarded

and the repeated configuration 120 is the last available one. 88

xiii

List of Figures

5.4 CPU utilization for all three users in Experiment # 1. 92

5.5 Memory utilization for all three users in Experiment # 1. 93

5.6 Optimal performance functions Jk(λ, ψ
∗) for all three users in Ex-

periment # 1. 94

5.7 CPU utilization for all three users in Experiment # 2. 95

5.8 Memory utilization for all three users in Experiment # 2. 96

5.9 Optimal performance functions Jk(λ, ψ
∗) for all three users in Ex-

periment # 2. 96

5.10 CPU utilization for all three users in Experiment # 3. 97

5.11 Memory utilization for all three users in Experiment # 3. 97

5.12 Optimal performance functions Jk(λ, ψ
∗) for all three users in Ex-

periment # 3. 98

xiv

List of Tables

5.1 Measure of security associated to ciphers and modes of operation . . 79

5.2 Example: Number of cycles of Algorithm 6 and Instance Configurations 87

5.3 Coefficients for Multi-objective Function in Experiments 90

xv

Chapter 1

Introduction

1.1 Motivation

The widespread use of computer applications in areas such as business, research

and entertainment have increased the demand for computational resources such as

processing, storage capability and memory size. The development and posterior

popularization of data networks has encouraged the development of efficient com-

munication protocols and methodologies to, among other things, reduce latency and

improve throughput in network applications. Thanks to recent advances in network-

ing, very demanding processing tasks may be carried out by a group of computers

working in parallel in data centers. Moreover, virtualization technology along with

the current networking services available have made possible the interconnection of

data centers to offer virtualized resources to remote users through the services of the

cloud.

In a common scenario, a user runs an application from a remote location. This

could be accomplished by using a remote multiprocessor computer, by accessing a

remote server or by taking advantage of virtual resources available in the cloud,

1

Chapter 1. Introduction

among other possibilities. Notice that these three scenarios are part of a bottom-up

structure with different levels of complexity where the cloud operates on a group of

data centers, in turn, data centers contain groups of processors which usually contain

multiple cores.

Power consumption in computing systems have become a major budget concern.

In large data centers about 23-50% of the income should be invested on energy [2].

In fact, up to 40% of the technology budget of a company covers the cost of energy

[3] since for every 1 W of power spent on the operation of servers, 0.5–1 W of addi-

tional power are required for the cooling equipment [4]. Furthermore, IT produces

around 2% of global CO2 emissions, an amount equivalent to the emissions of global

air traffic. Therefore, the search for mechanisms to reduce power consumption have

become a very relevant topic given its potential economical and environmental bene-

fits. However, the reduction of power consumption may have negative effects on the

processing performance of computing system.

Recently, cloud computing services have become the paradigm of large scale in-

frastructure where a third party provides computational services through shared

virtual computing and storage resources to a client [5, 6]. The use of the third party

infrastructure translates into cost reductions for the client who does not invest in

infrastructure and maintenance. However, the fact that the interactions between

clients and infrastructure are carried out through shared computer networks, has

raised serious concerns about security, trust and privacy [7, 8]. Service Level Agree-

ments (SLAs) are the required documents that define the relationship between a

service provider and a client or recipient [9, 10, 11]. These documents provide the

description of the contractual commitments of both parties, focusing mainly on the

desired performance of the service. SLAs are supported over performance metrics

known as Server Level Objectives (SLOs), such as, desired response time, availability

and reliability of the system. Until very recently, cloud security was not considered

2

Chapter 1. Introduction

in the SLAs because of the difficulties to quantify security levels. The cloud commu-

nity has pointed out that by specifying security in SLAs, it facilitates the modeling

and assessment of the security on the provided services [12]. The authors in [13, 14]

proposed quantitative mechanisms to asses cloud security levels based on Reference

Evaluation Methodology (REM) and Quantitative Policy Trees. These security met-

rics are our starting point to incorporate security provisioning in a unified approach

to optimize performance and provide security in the cloud.

Due to the complexities of the aforementioned computing systems, heuristic ap-

proaches are commonly proposed to solve the complex problems of power consump-

tion reduction, performance optimization and regulation, and security provision. In

the last few years, control theory has had a productive but yet limited relationship

with computing theory and systems [15, 16]. Control theory is being used in prob-

lems such as managing power consumption for microprocessors [17, 18], data centers

[2, 19, 20, 21] and managing resources in cloud computing applications [10, 22] among

others. The traditional approach assumes an available model that encompasses the

main features of the phenomena to be controlled. Assuming an operative model, the

controller designer proceeds to develop mathematical tools to obtain “well-behaved”

systems, i.e., systems that allow a convenient control of the outputs based on the

excitation at the inputs of the system. Depending on the particular goals of the con-

troller, the output of the problem could be regulated to a reference value, the states

of the system could track a trajectory, reject disturbances or reach specific values in

finite or infinite time, among the variety of options offered by control theory.

Traditional control theory assumes deterministic models of the plants that are

defined through differential equations for continuous-time systems and difference

equations for discrete-time systems [23]. This approach has been used in several

computing problems [6, 24, 25]. However, obtaining the dynamic equations of com-

puting systems is not always possible. Thus, a common approach is to use model

3

Chapter 1. Introduction

identification [26]. It consists of assuming a parameterized mathematical function of

the model, and by using adaptive filtering techniques the parameters are estimated

based on the measured inputs and outputs of the system. Since computing systems

have proven to be essentially time-varying [6] the parameters should be calculated

continuously, and this implies an overhead on the performance of the actual con-

troller, which may be significant even if the structure of the model is assumed to be

time-invariant and linear.

Computing systems are an example of complex technological systems that are

governed by operational rules controlled and designed by humans [23, 27]. As a

consequence, rather than being time driven, as in the case of systems governed by

differential or difference equations, they may be modeled as driven by asynchronous

and discrete events such as pushing a bottom, sending a message packet or a random

system failure. These systems are known as discrete event systems (DES) [28]. For

all the aforementioned problems related to performance regulation and optimization,

DES theory offers powerful mathematical tools that allow efficient theoretical anal-

ysis to guarantee stability and regulation of the different performance measures on

the average. Sensitivity analysis allows the evaluation of the effect of a parameter

in the behavior of a DES automaton. infinitesimal perturbation analysis (IPA) is a

powerful tool for sensitivity analysis that allows the estimation of the derivatives of

performance functions in DES automata from a sample path taken at the output of

the automata. By being able to calculate these estimates, we may use a gradient de-

scend optimization approach to minimize a cost function that is directly proportional

to a regulation error as in [17, 29, 30]. The simplicity of the implementation of IPA

algorithms is suitable for real-time applications, however, its further development has

been hindered by the limited spectrum of problems where unbiased estimates may

be guaranteed. However, further experimental evidence has proven that even with

biased but bounded estimates, IPA may be enough to solve more complex problems.

4

Chapter 1. Introduction

Randomized algorithms (RAs) have been previously proposed to solve robust con-

trol design problems and have proven useful and implementable in a wide variety of

NP-hard problems. RAs are based on sample complexity and tail inequalities and

are the basis of statistical learning theory [31]. RAs take advantage of powerful

results associated with Monte Carlo simulations and the uniform law of large num-

bers. Necessary conditions have been proposed to design efficient RAs to estimate

a cost function whose closed form is not available. These algorithms are not guar-

anteed to work all the time, but most of the time [32], because the probability that

the algorithm fails cannot be made identically zero. In complex systems such as

many-core processors, multitier servers or cloud computing services, RAs offer sev-

eral possibilities to optimize performance given the intrinsic randomness of DES and

the sometimes non-convex nature of the performance metrics involved.

We are interested in regulating and optimizing performance in computing sys-

tems at different complexity levels. We focus on three different levels namely a)

microprocessor level, b) multitier server level and c) cloud computing level. Notice

that each level can be understood as a cluster containing a set of elements of the

previous one. This dissertation aims to propose methods for performance regulation

and optimization using mainly feedback techniques based on sensitivity analysis and

open-loop solutions based on RAs as illustrated in Fig. 1.1.

1.2 Thesis Statement

This PhD dissertation proposes the implementation of mathematically rigorous per-

formance regulation and optimization techniques for computing systems at different

levels of complexity, namely, microprocessor level, multitier level and cloud comput-

ing level. The main goal is to develop a formal mathematical approach to optimize,

and under certain assumptions, regulate hardware performance to a desired value on

5

Chapter 1. Introduction

Figure 1.1: Block diagram of interaction between the plant, the open-loop optimizer
and the closed-loop regulator.

the average. RAs, DES theory and IPA are the main mathematical tools to guar-

antee that the aforementioned computing systems will satisfy the required optimal

performance on the average.

1.3 Contributions

A list of the main contributions of this dissertation includes:

• Development of a mathematical background based mainly on DES modeling,

6

Chapter 1. Introduction

IPA and RAs to regulate multiple performance metrics in many-core processors

and multitier servers.

• The formal introduction of a multi-objective optimization approach to auto-

mate the calculation of optimal parameter values for regulation of performance

metrics at the microprocessor level and the multitier level.

• A theoretically justified approach to optimize virtual resources in the cloud

while provisioning security, with special emphasis on its application in SLA

negotiations.

• The validation of the theoretical results through simulations in the micropro-

cessor and multitier levels.

• The validation of the theoretical results through experimentation at the cloud

level.

1.4 Organization

This doctoral research specializes in the development and adaptation of mathematical

solutions to the problem of optimization and regulation of performance of comput-

ing systems. Four problems have been identified that determine the organization of

this dissertation as follows: Chapter 2 presents a theoretical approach to regulate

many-core processor systems using statistical learning and IPA. This includes the

analysis of a case study based on a real processors model supported by simulation

results. Chapter 3 proposes an approach to apply statistical learning along with

IPA to regulate performance on a previously validated queue model of a multitier

server. Simulation results of the optimization and regulation of multiple performance

measures on a three-tier server are presented. Chapter 4 presents a detailed stabil-

ity analysis of a previously proposed market-oriented cloud model. An additional

7

Chapter 1. Introduction

sufficient condition for asymptotic stability and a proof that the system is input-to-

state-stable (ISS) are presented. These results have been previously published in [33].

Chapter 5 presents an RA based on sample complexity for finite families to optimize

virtual resources in the cloud. This approach is validated through an implemen-

tation using Amazon Web Services, Amazon Elastic Compute Cloud (AWS EC2).

This work has been submitted to [34]. Finally, chapter 6 presents the conclusions

and future work.

8

Chapter 2

Performance Optimization and

Regulation for Many-core

Processors

2.1 Introduction

Given the power limitations of current microprocessor architectures, the exponen-

tial performance growth obeying Moore’s Law [35] and Dennard’s scaling [36] has

stalled in recent times. The transition from single core processors to multiple core

processors offered a short-term solution to this issue, by increasing the throughput

of the processors and by using several cores working in parallel but at lower fre-

quencies. Subsequently, the transition from in-order to out-of-order cores produced

an additional improvement in performance and in the implementation of affordable

chip power envelopes. Out-of-order cores implement instruction-level parallelism

and speculative execution, thus relaxing the order of execution while increasing the

throughput. However, some limitations we must deal with are the increase of the

9

Chapter 2. Performance Optimization and Regulation for Many-core Processors

power consumption and area. The strong pipeline implemented in these cores, affects

the predictability of the system, in detriment of its energy efficiency. To reduce the

chip power consumption, many-core processors were introduced. Power consump-

tion remains however the main limitation to increase processor speed while keeping

affordable architectures [37, 38].

Dynamic voltage frequency scaling (DVFS) has been the most successful and ac-

curate mean to minimize and regulate chip power consumption [39, 40]. Reducing

frequency and voltage in a processor translates into cubic power reductions [38].

Nowadays, most of the commercial processors incorporate per-core DVFS capabili-

ties, which allow the implementation of decentralized and scalable performance con-

trollers in many-core processors. Throughput regulation proved to be beneficial in

real-time applications such as, video streaming and processing, as well as improving

the predictability and energy efficiency of the system [41, 42, 43, 44].

In the recent work in [17], the authors propose DVFS in order to modify the

frequency of a multiprocessor system thus regulating throughput. The approach as-

sumes that the throughput is regulated to a previously chosen reference value. In

this dissertation, we propose a mathematical approach that allows the automatic cal-

culation of the optimal reference value of the throughput. Moreover, we propose the

regulation of the average system time and average waiting time per core, in addition

to regulating throughput. In this way, the many-core processors may be defined as a

multiple-input-multiple-output (MIMO) system that allows the regulation of linear

or nonlinear combinations of several performance measures.

Along the same lines of [17], we implement a DES approach [28] using feedback

control techniques through IPA. Finally, we propose the use of sample complexity

based on statistical learning theory [31] to calculate the optimal reference value of

performance. This chapter is organized as follows: In Section 2.2, we present the

previous work on throughput regulation using IPA presented in [17]. In Section 2.3,

10

Chapter 2. Performance Optimization and Regulation for Many-core Processors

we introduce the mathematical equations to regulate the average system time and

the average waiting time at each core using IPA. In Section 2.4, we introduce the

concept of statistical learning and present an RA to calculate an optimal reference

value for performance regulation. In Section 2.5, we present a case study where a

four-core processor is interfaced with a slower peripheral. In Section 2.6, we present

some simulation results based on our case study. In Section 2.7 we present our

conclusions.

2.2 Previous Work: Throughput Regulation

Almoosa et al., present a throughput regulation method based on IPA in [17]. A

descriptive scheme of the out-of-order execution core is shown in Fig. 2.1. The

following equations model the dynamics of the k-th core,

aik = lk(i)θk, (2.1)

αik = max{aik , δκ(ik)}+ θk, (2.2)

δik =







αik + nikθk, sync. instructions or cache memory fetch

αik + Tmemk
, other memory fetches

, (2.3)

dik = max{δik + θk, di−1k}+ θk, (2.4)

where the index i denotes the index of the i-th instruction arriving to the k-th core,

aik denotes the enqueue time, l(ik) represents the clock-cycle count of the enqueue

time aik . θk is the clock period of the processor, αik denotes the issue time of the

instruction to be processed after arrival, δik represents the complete time of the

instruction after processing and dik the dequeue time of the instruction.

Since the i-th instruction may need data from a previous instruction that has not

yet been completed, let us denote κ(ik) the index of the previous instruction that

11

Chapter 2. Performance Optimization and Regulation for Many-core Processors

Figure 2.1: Block diagram of out-of-order execution core.

produces the results to be used by the i-th instruction. The i-th instruction may be

executed as a synchronous instruction or a cache memory fetch. In the first case, the

time it takes to be processed is modeled as a multiple of an integer number less than

or equal to 10 denoted by n(i). If the instruction is executed as a memory fetch (or

other kind of asynchronous fetch), then the time to process it is modeled as Tmemk

which is equal to period θk of the processor multiplied by a factor which depends

on the benchmark problem, usually equal to several hundreds. The frequency of the

processor φk is given by φk = 1/θk. Finally, the throughput yk is estimated by,

yk =
Mk

dMk

, (2.5)

for a given integer Mk which indexes the last processed instruction in the k-th core.

12

Chapter 2. Performance Optimization and Regulation for Many-core Processors

2.2.1 IPA for Throughput Regulation

Since the system requires high speed to compute a controller that regulates the

throughput, the ability of IPA to carry out sensitivity analysis of random signals

with few calculations offers an alternative to implementing gradient optimizers in real

time. However, IPA has the disadvantage of providing statistically-biased gradients

even for simple systems [45]. There is experimental evidence that suggests that

biased IPA estimates may be used in not so trivial applications as long as the bias is

bounded [27, 46]. Given the stochastic nature of the performance metrics that can

be extracted from the many-core processors, their derivative may be estimated using

IPA. The following proposition provides the equations to estimate the derivative of

the dequeue time with respect to the frequency of a processor core.

Proposition 1 Given the DES model (2.1)–(2.4), the following equations apply for

the k-th core with i = 1, . . . ,Mk,

α′ik(θk) =







α′κ(i)k(θk) + vk(κ(i)) + 1, if Ii stalls upon arrival

lk(i) + 1, if Ii does not stall upon arrival.

d′ik(θk) = α′m(i)k
(θ) + vk(m(i)) + i−mk(i) + 2, (2.6)

where,

vk(i) =







0, if Ii is a memory fetch that is not from cache

nik , otherwise,

mk(i) = max{mk(i) ≤ i : Im did not stall following its execution}. (2.7)

Proof The proof is provided in [17]. �

13

Chapter 2. Performance Optimization and Regulation for Many-core Processors

With the estimate of the derivative d′ik(θ), the authors estimate the derivative of

the throughput with respect to the processor frequency as,

y′k(φk) =
1

Mk

(

yk
φk

)2

d′Mk
(θk). (2.8)

2.2.2 Regulation Algorithm

The expression in (2.8) allows for the calculation of an integral control gain, which

may be interpreted as an application of a gradient descent method to minimize the

performance function of the k-th core given by the square of the regulation error:

(ek)
2 = (yrefk − yk)

2,

where yrefk is the required throughput. Finally, the update of the frequency of the

k-th core is given by the following equation,

φnk = φn−1k +Kk

ekn−1

y′k(φk)
(2.9)

whereKk ∈ R is a positive scalar that determines the step-size of the gradient descend

method along with ekn−1 and y′k(φk). The index variable n = 1, 2 . . ., represents the

discrete time instants.

2.3 Regulation of Additional Performance Met-

rics through IPA

Given the recursive equations for d′ik(θ) in Proposition 1, we proceed to calculate ad-

ditional performance measures as functions of the departure time dik . In this section,

we present our first contribution by introducing the IPA equations to calculate the

average system time and the average waiting time of each instruction in a processor

core.

14

Chapter 2. Performance Optimization and Regulation for Many-core Processors

2.3.1 Estimate of Average System Time Derivative

The average system time sk is defined as the average time that an instruction spends

in the k-th core, i.e., the average difference between the dequeue and enqueue time

and it may be estimated by the equation,

sk =
UMk

Mk

(2.10)

where

UMk
=

Mk
∑

i=1

dik − aik ,

for some positive integer Mk. Therefore, the derivative with respect to φk gives,

s′k(φk) = −
U ′Mk

(θk)

Mkφ
2
k

,

then,

s′k(φk) = −

∑Mk

i=1 d
′
ik
(θ)− lk(i)

Mkφ2
k

,

with d′ik(θk) given by (2.6).

2.3.2 Estimate of Average Waiting Time Derivative

The average waiting time wk is the elapsed time between the arrival instant of an

instruction and the time it starts being served, and it is given by,

wk =
Uγk
Mk

, (2.11)

with γk = {i ∈ Z : di−1k − aik > 0} and

Uγk =
∑

i∈γk

di−1k − aik .

15

Chapter 2. Performance Optimization and Regulation for Many-core Processors

Therefore,

w′k(θk) = −
MkU

′
γk
(θk)

M2
kφ

2
k

= −
U ′γk(θk)

Mkφ
2
k

,

then,

w′k(θk) = −

∑

i∈γk
d′i−1k − lk(i)

Mkφ2
k

.

2.4 Statistical Learning for Optimal Reference

The sensitivity analysis guarantees the regulation of performance measures using a

closed-loop controller, and it is assumed that the reference value is provided a priori.

In this section, we contribute an approach to automate the generation of appropriate

reference values for regulation using sample complexity analysis based on statistical

learning theory. This approach consists of designing a cost function to be minimized

in order to get an optimal reference value. In this particular problem, the use of

statistical learning aims at estimating an optimal frequency that leads to optimal

performance.

Since the statistical learning section of the controller works in open loop, the

system is not guaranteed to regulate the performance measures to the calculated

values if the statistics change due to variations in the benchmark problem. Therefore,

our controller consists of two stages, a) a statistical learning stage where the reference

performance measures are calculated through an optimization process and b) an IPA

regulation stage where the system guarantees that the performance measures stay in

a neighborhood of the desired reference values. These stages are illustrated in Fig.

2.2.

A very useful inequality for the purposes of this chapter is Hoeffding’s [31]. In

this section, we present some results on sample complexity that are derived from this

inequality.

16

Chapter 2. Performance Optimization and Regulation for Many-core Processors

Figure 2.2: Open-loop optimizer and closed-loop regulator in the many-core processor
problem.

Theorem 1 (Two-sided Hoeffding’s inequality) Consider a set of N indepen-

dent random variables x1, . . . ,xN such that xi ∈ [a, b] ⊂ R and define the new random

variable ςN =
∑N

i=1 xi. Then, for any ǫ > 0,

PR {|ςN − E(ςN)| ≥ ǫ} ≤ 2e
− 2ǫ2

N(b−a)2 , (2.12)

where PR denotes probability of the event in curly braces, and E(ςN) denotes the

expectation of the random variable ςN .

Proof The proof is provided in [31]. �

In what follows, λ ∈ Λ ⊆ R
nλ is a random variable with probability distribution

function fλ(λ) and λ
(1,...,N) is a multi-sample of λ. Let us consider the performance

function J : Λ→ [0, 1] and calculate its empirical mean,

ÊN(J(λ)) =
1

N

N
∑

i=1

J(λ(i)),

17

Chapter 2. Performance Optimization and Regulation for Many-core Processors

From (2.12) we get that,

PR

{∣

∣

∣
E (J(λ))− ÊN (J(λ))

∣

∣

∣
≥ ǫ

}

≤ 2e−2Nǫ
2

. (2.13)

Now, let us modify the performance function by defining a parameter vector

ψ ∈ Ψ ⊆ R
nψ such that J : Λ×Ψ→ [0, 1]. Assuming that the set Ψ is finite with

cardinality M , then we get a finite family [47] of functions.

JM =
{

J(λ,ψ(1)), . . . , J(λ,ψ(M))
}

=
{

J(ψ(1)), . . . , J(ψ(M))
}

, (2.14)

where ψ(1,...,M) is a multi-sample of ψ.

The tail inequality in (2.13) applies for a single performance function J . However,

the bound of the probability of deviation between the empirical and the actual mean

of all the performance functions in the finite family (2.14) are calculated by applying

the tail inequality (2.13) over and over M times, in order to obtain,

PR

{

sup
J∈JM

∣

∣

∣
E (J(λ))− ÊN (J(λ))

∣

∣

∣
≥ ǫ

}

≤ 2Me−2Nǫ
2

. (2.15)

Notice that as N goes to infinity in (2.15), the probability of deviation tends to

zero asymptotically. However, we are interested in providing statements based on

finite sample bounds which is the best we can do in real implementations. An RA

aims at estimating the probability of fulfillment of a given performance specification.

This estimate should be within a previously defined accuracy ǫ ∈ (0, 1) from the

current value with “high” confidence 1− δ, δ ∈ (0, 1).

Given the uncertainties that λ incorporates into the performance function, a

closed deterministic expression of J(λ,ψ) is difficult to obtain. Hence, the best we

can do is to try to calculate E (J(λ, ψ)). In general, the exact calculation of the

expected value is computationally demanding since it usually involves the solution

18

Chapter 2. Performance Optimization and Regulation for Many-core Processors

of multiple integrals with non-convex domains of integration. Therefore, we proceed

to calculate the empirical version,

ÊN(J(λ, ψ)) =
1

N

N
∑

i=1

J(λ(i), ψ).

Given a desired accuracy ǫ1 and confidence 1 − δ1 we require that the estimate

ÊN(J(λ) satisfies,

PR

{

sup
J∈JM

∣

∣

∣
E (J(λ))− ÊN (J(λ))

∣

∣

∣
≥ ǫ1

}

≤ δ1.

To fulfill this requirement, (2.15) provides the sufficient condition 2Me−2Nǫ
2
1 ≤ δ1

which implies that,

N ≥
ln 2M

δ1

2ǫ21
.

Therefore, given the accuracy ǫ1, the confidence 1 − δ1 and the cardinality M

of the finite parameter set Ψ, we are able to determine the minimum number of

random samples N needed to estimate the expectation of the performance function

E (J(λ, ψ)). Notice that the RA may provide an erroneous estimate with proba-

bility at most δ1. The following Theorem provides the basis for the performance

optimization.

Theorem 2 Given the empirical probable parameter vector,

ψ̂M1M2
= arg min

i=1,...,M2

ÊM1(J(λ,ψ
(i))),

and the performance function J : Λ×Ψ→ [0, 1] with λ ∈ Λ ⊂ R
n, and ψ ∈ Ψ ⊂ R

m,

for some given ǫ1, ǫ2, δ ∈ (0, 1), let,

M2 ≥
ln 2

δ

ln 1
1−ǫ2

, (2.16)

19

Chapter 2. Performance Optimization and Regulation for Many-core Processors

and

M1 ≥
ln 4M2

δ

2ǫ21
, (2.17)

Then, with confidence 1− δ, it holds that

PR

{

E (J(λ,ψ)) < ÊM1

(

J(λ,ψM1M2
)
)

−ǫ1

}

≤ ǫ2.

Proof The proof is given in [31]. �

Since all the assumptions of Theorem 2 are satisfied by the DES model of the

many-core processor proposed in [17], we propose to use Algorithm 1 [27] to carry

out the performance optimization. Now, we proceed to validate our approach by

carrying out a simulation of a 4-core processor.

Algorithm 1 Performance Optimization

Define: J : Λ×Ψ→ [0, 1]

Define: ǫ1, ǫ2, δ ∈ (0, 1)

1: M2 ←
ln 2
δ

ln 1
1−ǫ2

⊲ According to Theorem 2

2: M1 ←
ln

4M2
δ

2ǫ21

3: ψ ← randSamples(M1) ⊲ Draw M1 samples of ψ

4: λ← randSamples(M2) ⊲ Draw M2 samples of λ

5: return ψ̂M1M2
← arg min

i=1,...,M2

1
M1

∑M1

k=0 J(λ
(k),ψ(i))

2.5 Case Study: Energy Savings and Wait States

In this case study, we assume that a microprocessor is exchanging data with a pe-

ripheral that runs at a slower clock frequency e.g., an external memory. Although

microprocessors have evolved to run at very high speeds, the speed of memories has

20

Chapter 2. Performance Optimization and Regulation for Many-core Processors

not grown at the same rate. The most common practice in these cases is to add

wait states to the bus cycles. Wait states extend the processors read or write cycles

by a number of clock cycles [48]. However, they are nothing but a waste of perfor-

mance and some modern technical approaches such as branch prediction, instruction

prefetch and simultaneous multithreading are aimed at reducing them, hiding them,

or even eliminating them. Using our approach, we try to estimate a processor fre-

quency that lowers the throughput to values in the operation range of the peripheral.

Thus, we not only reduce the wait states of the processor, but by downscaling the

frequency, we save processor power, while keeping low average system and waiting

times for the instructions. Notice from (2.5), (2.10) and (2.11) that the throughput

is directly proportional to the frequency, while the average system and waiting times

are inversely proportional to the frequency.

2.5.1 Performance Function

Let us assume that we have a set of Ñ cores in a many-core processor. For the k-th

core, we consider the performance metrics yk, sk and wk given by (2.8), (2.10) and

(2.11) respectively for optimization, with k = 1, . . . , Ñ .

Let us define the parameter set,

Ψ =
{

ψ ∈ ΦÑ : ψ = (φ1, . . . , φÑ)
}

,

which consists of the vector containing the frequencies of all cores.

It is reasonable to assume that under normal operation of the k-th core in the

processor, we can estimate finite bounds for all the performance measures, such that,

21

Chapter 2. Performance Optimization and Regulation for Many-core Processors

yk ∈ [ykmin
, ykmax], sk ∈ [skmin

, skmax] and wk ∈ [wkmin
, wkmax]. Now, let us define,

ȳk =
yk − ykmin

ykmax − ykmin

,

s̄k =
sk − skmin

skmax − skmin

, (2.18)

w̄k =
wk − wkmin

wkmax − wkmin

,

so that the range of all the normalized performance measures is [0, 1].

Now, let us define the random vector,

λk = (ȳk, s̄k, w̄k)
T ∈ Λ, (2.19)

and let us define the performance vector function,

J = (J1, . . . , JN)
T , (2.20)

where Jk(λ,ψ) = Jk for the k-th user is given by,

Jk = αkȳk + βks̄k + γkw̄k, (2.21)

where αk, βk, γk ∈ R
+ are chosen so that Jk : Φ→ [0, 1], with φk ∈ Φ.

2.6 Simulation Results

In this section, we present some simulation results using the DES model given by

(2.1)–(2.4) along with the statistical learning approach explained in Section 2.4.

These simulations were carried out using MatlabR©. We base our simulated processor

cores on the AMD Opteron processor which works in the frequency range 0.8 − 2.7

GHz and a voltage range of 1.0 − 1.35 V [49]. Let us assume that it exchanges

communications with a real-time multi-media peripheral in the lower frequency range

0.1− 2.5 Ghz, which implies the presence of wait states in the communications.

22

Chapter 2. Performance Optimization and Regulation for Many-core Processors

We proceed to normalize all the performance measures as described in (2.18).

Based on (2.20) and (2.21) we propose to minimize the following performance vector

function,

J =















J1

J2

J3

J4















=















1
3
s̄1 +

1
3
ȳ1 +

1
3
w̄1

3
5
s̄2 +

1
5
ȳ2 +

1
5
w̄2

5
14
s̄3 +

2
7
ȳ3 +

5
14
w̄3

1
3
s̄4 +

2
3
ȳ4 +

1
3
w̄4















(2.22)

For this particular example we choose δ = ǫ1 = ǫ2 = 0.02. Based on (2.16) and (2.17),

in order to obtain a minimum for the multi-objective function (2.20) and (2.22) with

accuracy 0.02 and confidence 0.98 we need to test at least M1 = 228 samples of

the frequency vector ψ = (φ1, φ2, φ3, φ4)
T and at least M2 = 13, 410 samples of the

performance measurement vector (2.19) for each frequency vector sample.

One of the strengths of our approach is that every core may have independent

priorities. This is reflected in the weights of the multi-objective function (2.22).

Based on the definition of J1, all three performance measurements have the same

priority in the optimization process. In J2, the minimization of the average system

time s̄2 has more weight than the remaining performance metrics. In J3 the mini-

mization of s̄3 and w̄3 have higher priority than the minimization of ȳ3. Lastly, in

J4 the minimization of the throughput ȳ4 is more relevant than the minimization of

the remaining performance measures. The optimal frequency φ∗ and the optimal

performance function vector J∗ obtained from Algorithm 1 are,

φ∗ =
(

1.5142× 109, 2.0097× 109, 2.0040× 109, 8.2734× 108
)T
,

J∗ = (0.1009, 0.09548, 0.1403, 0.1044)T , (2.23)

23

Chapter 2. Performance Optimization and Regulation for Many-core Processors

and the related optimal performance vectors give,

s∗ =
(

2.2905× 10−7, 1.8237× 10−7, 1.8920× 10−7, 4.6386× 10−7
)T
,

y∗ =
(

9.1114× 108, 1.1570× 109, 1.1103× 109, 4.5532× 108
)T
,

w∗ =
(

2.2795× 10−7, 1.8151× 10−7, 1.8830× 109, 4.6167× 10−7
)T
.

(2.24)

The optimal values of φ∗ and J∗ are the references for the desired performance of

the four cores. Nevertheless, statistical variations in the benchmark problems running

in the processor may yield changes in the statistics of the cores. This implies that

the optimization process is not enough to guarantee the desired performance. As

another strength of our approach, and given the problem-specific priorities, we are

able to regulate each one of the performance metrics of interest, namely, s̄k, ȳk and w̄k

through DVFS. In fact, we are able to regulate linear or non-linear combinations of

the performance function. For this example, let us assume that the reference values

for regulation are organized in the normalized reference vector r as follows,

r =















r1

r2

r3

r4















=















s̄∗1
1
2
(s̄∗2 + ȳ∗2)

1
2
(s̄∗3 + ȳ∗3)

ȳ∗4















(2.25)

where s̄∗ = (s̄∗1, . . . , s̄
∗
4), ȳ

∗ = (ȳ∗1, . . . , ȳ
∗
4) and w̄∗ = (w̄∗1, . . . , w̄

∗
4) are the normalized

versions of the vectors (2.24) with s̄∗k, ȳ
∗
k, w̄

∗
k ∈ [0, 1] for k = 1, . . . , 4. This nor-

malization is necessary given the remarkable difference of orders among the optimal

throughput ȳ∗k and the remaining variables.

In this example, we are assuming that on average, 20% of the arriving instructions

depend on the results of another instruction, and that about 50% of the instructions

are memory fetches in each core. This is of course, an extreme case but one that will

24

Chapter 2. Performance Optimization and Regulation for Many-core Processors

be useful for illustration purposes. Since we are simulating statistical variations in the

processor, then by using a uniform random number generator we vary the average of

dependent instructions between 10− 30%, and the average memory fetches between

30−70% of the total number of executed instructions. With a value of Kk = 0.005 in

(2.9), we proceed to regulate the performance variables in all four cores. The results

are presented in Fig. 2.3–2.5.

Fig. 2.3, presents the regulated average system time sk for all four cores in the

processor. Notice from (2.25), that the only case where the average system time is not

explicitly regulated is in r4 which corresponds to Core 4 (black line with pentagram

markers) in the plot. In spite of the indirect regulation to its reference value due to

its correlation with the other performance variables, the average system time of Core

4 does not exhibit the same transient behavior as in the plots for Cores 1, 2 and 3 in

Fig. 2.3. Furthermore, from (2.22), the highest priority to minimize sk is assigned

to Core 2, which goes in accordance with the blue line with squared markers in Fig.

2.3 that illustrates the minimal average system time among all four cores.

From (2.22), the highest priority for regulating throughput yk is assigned to Core

4, which corresponds to the black line with pentagram markers in Fig. 2.4. In fact,

this line exhibits the minimum throughput among all four cores.

The average waiting time wk is illustrated in Fig. 2.5. This variable is highly

correlated to the average system time sk based on (2.10) and (2.11). Although both

variables do not have the same exact values, the plots in Fig. 2.3 and 2.5 illustrate

their similarity. This raises the question of whether these two variables should be

regulated together or separately. The answer to this question is out of the scope

of this dissertation. However, regarding this dependency among variables, notice

that in (2.25) we only regulate the average system sk and the throughput yk, taking

advantage of the correlation between sk and wk.

25

Chapter 2. Performance Optimization and Regulation for Many-core Processors

0 0.5 1 1.5

x 10
−4

0

1

2

3

4

5
x 10

−7

Time (s)

A
ve

ra
ge

 S
ys

te
m

 T
im

e
(s

)

Core 1
Core 2
Core 3
Core 4

Figure 2.3: Regulated average waiting time sk for all four cores in the simulation.

Since the main tool for implementing this controller is DVFS, we plot the varia-

tions of frequency (control signal) that keep this system regulated in Fig. 2.6. The

variations in amplitude and period of the signal illustrate the adaptability of the

controller as the system approaches the reference value.

The step-size term given by φn − φn−1 in (2.9) is illustrated in Fig. 2.7. The

adaptability of the IPA controller is evident through the decrease in step-size term

as the system approaches the reference value in all four processors. Finally, the

regulated performance functions Jk are shown in Fig. 2.8. The values correspond to

the optimal ones presented in (2.23).

26

Chapter 2. Performance Optimization and Regulation for Many-core Processors

0 0.5 1 1.5

x 10
−4

0

2

4

6

8

10

12

14
x 10

8

Time (s)

T
hr

ou
gh

pu
t (

IP
S

)

Core 1
Core 2
Core 3
Core 4

Figure 2.4: Regulated throughput yk for all four cores in the simulation.

2.7 Conclusions

We presented a methodology to regulate multiple performance functions in a DES

model of a many-core processor. The performance functions covered in this chapter

are the throughput, the average system time and the average waiting time. A statisti-

cal learning approach is proposed to calculate the optimal frequency that satisfies the

optimal performance of a multi-objective function. After the optimal performance

is calculated, we carry out a regulation process through an integral control while

estimating the derivatives online using IPA. This regulator keeps the performance of

the closed-loop system in the vicinity of its optimal value.

We validated our approach through simulations using a simplified model of the

microprocessor. We observed that if the regulated variables are highly correlated,

such as in the case of average waiting time and the average system time, the difference

between regulating one or both does not make a substantial difference as reflected in

27

Chapter 2. Performance Optimization and Regulation for Many-core Processors

0 0.5 1 1.5

x 10
−4

0

1

2

3

4

5
x 10

−7

Time (s)

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(s

)

Core 1
Core 2
Core 3
Core 4

Figure 2.5: Regulated average waiting time wk for all four cores in the simulation.

Fig. 2.3 and 2.5. However, this approach proves to be valuable for the decentralized

regulation of a group of cores since a decentralized regulator is highly scalable. Its

importance becomes more apparent as the number of cores embedded in a processor

keeps increasing.

28

Chapter 2. Performance Optimization and Regulation for Many-core Processors

0 0.5 1 1.5

x 10
−4

0.5

1

1.5

2

2.5

x 10
9

Time (s)

F
re

qu
en

cy
 (

H
z)

Core 1
Core 2
Core 3
Core 4

Figure 2.6: Frequency signal φk for all four cores in the simulation.

0 0.5 1 1.5

x 10
−4

−3

−2

−1

0

1

2
x 10

5

Time (s)

S
te

p
S

iz
e

Core 1
Core 2
Core 3
Core 4

Figure 2.7: Step-size term in the gradient descent algorithm, Kk
en−1k

y′k(φ)
for all four

cores in the simulation.

29

Chapter 2. Performance Optimization and Regulation for Many-core Processors

0 0.5 1 1.5

x 10
−4

−0.05

0

0.05

0.1

0.15

Time (s)

N
or

m
. P

er
fo

rm
ac

e
F

un
ct

io
n

J(
λ,

ψ
)

Core 1
Core 2
Core 3
Core 4

Figure 2.8: Performance function Jk for all four cores in the simulation.

30

Chapter 3

Performance Optimization and

Regulation for Multitier Servers

3.1 Introduction

Common internet services such as, e-mail, online retails, news and e-commerce are

based on client-server architectures where multiple clients access an online server

concurrently. The dynamics of these services are difficult to model because of the

randomness induced by the event-based interactions between clients and servers, as

well as the amount of clients accessing the system and sharing web resources. Server

unavailability and thrashing are undesired behaviors directly related to variations in

heavy workloads usually present in these systems. Admission control is a common

practice to improve the availability of internet services [50]. It consists of limiting

the number of clients of the server by defining a multi-programming level (MPL)

parameter. The MPL is a quantity that defines the maximum number of requests

that may be processed by the server. Whenever a server reaches its concurrency

limit, the subsequent requests are dropped generating an error message and activat-

31

Chapter 3. Performance Optimization and Regulation for Multitier Servers

ing a timeout mechanism that allows the reissue of the request for a number of times

before the request is either processed or finally abandoned. This approach is mainly

supported by heuristics, trial and error and ad-hoc tunning instead of formal theo-

retical concepts. This raises concerns about its lack of optimality since it is proven

to have a strong effect on the quality of service (QoS), server performance and server

availability [50, 51].

Internet applications employ multitier architectures distributed on a cluster of

servers. Each tier provides a specific functionality which carries out a part of the

overall request. Every tier uses the service provided by its successor and provides a

service to its predecessor in order to process the overall request following the layout

illustrated in Fig. 3.1. Multitier servers may have as many tiers as it is required.

However, a typical server consists of three tiers namely, a front-end tier which usually

carries out the HTTP tasks, a middle tier that implements core applications, (e.g.,

Java enterprise server), and a back-end tier which implements a database server.

In this case the MPL parameter is usually defined for each tier, and the contention

control is carried out between tiers, therefore, every tier is able to drop requests from

its predecessor once its MPL has been reached.

Mathematical modeling is a powerful tool to optimize, regulate and predict perfor-

mance of systems with dynamic behavior. Linear differential and difference equations

to describe multitier server behavior were proposed in [52]. However, the dynam-

ics of multitier servers are intrinsically nonlinear [53], which makes the linear models

limited for an accurate analysis of the system. Furthermore, computing systems such

as the multitier server, are event-based rather than time-based, which makes the uti-

lization of time-dependent differential equations not entirely suitable. DES models

may provide an accurate description of the behavior of multitier servers [54, 55]. For

some real-time applications, such as video streaming and remote monitoring, being

able to improve the predictability of the system’s behavior is important to get a reli-

32

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Figure 3.1: Multitier server in series.

able estimate of performance measures of the system and to guarantee the provision

of the service at a consistent frequency.

Our regulation approach provides not only a way to reduce power while guar-

anteeing average performance but it may potentially improve the predictability of

multitier servers. Although the main drawback of DES approaches is the complexity

of the model calibration process and of their mathematical analysis [56], IPA esti-

mators have proven rather easy to implement. However, the price to pay for this

“easiness” of implementation is the difficulty of carrying out rigorous mathematical

analyses, making it possible only for simple cases. Guaranteeing the unbiasedness of

IPA estimates in fairly complex systems is still an open problem. These limitations

have hindered IPA’s further development and raised questions about its applicability

[17]. Experimental evidence and current work in the area, suggested that unbiased-

ness may not be a necessary condition for the successful application of optimization

and control algorithms in practical applications. In fact, such evidence indicates that

33

Chapter 3. Performance Optimization and Regulation for Multitier Servers

low-complexity estimators with bounded bias rather than unbiased estimators may

be enough to guarantee the applicability of IPA in complex event-based automata.

Urgaonkar et. al., present and validate an analytical model that captures the

dynamics of multitier servers in [52]. Based on the aforementioned model, we propose

to use mathematical tools such as sensitivity analysis and statistical learning theory

to optimize and regulate performance in these servers. To the best of the author’s

knowledge, no existing solution has been proposed towards this goal.

This chapter is organized as follows: Section 3.2, explains in detail the multi-

tier model based on queueing network proposed in [52]. Section 3.3, describes the

sensitivity analysis carried out over the queue network and how this result may be

used to regulate throughput in the server. We introduce some additional modeling

assumptions to guarantee unbiased IPA estimates. We present algorithms to regu-

late throughput in servers with one and three tiers. In Section 3.4, we incorporate

an open-loop stage to optimize the configuration of the multitier servers prior to the

regulation process by using a statistical learning approach. In Section 3.5, we present

a case study simulation to minimize mean service rates, and indirectly, to minimize

power consumption while keeping the throughput of the multitier server regulated.

In Section 3.6, we present our conclusions.

3.2 A Multitier Model Based on Queue Networks

The following model was proposed in [52]. Let us assume an application with R tiers

modeled by a closed queueing network interconnected as shown in Fig. 3.2. Each

queue Qi with i = 1, . . . , R represents a tier. The system has a constant population

of N requests moving through the queues, such that the network is able process

a maximum number of N concurrent requests, and once a request is processed,

a new request enters the system in order to replace the processed one. When a

34

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Figure 3.2: Model of a multitier server.

request arrives to tier Qi, it activates one or more requests at tier Qi+1. In real

internet applications, a request may trigger parallel requests in some of the tiers,

(e.g., a keyword in an online store that searches several catalogs at the same time

[52]). In this approach, parallel requests are modeled as sequential requests that

visit the tiers multiple times. Therefore, there are transitions from tier Qi to Qi−1

that allow every request to make multiple visits to every tier when processing the

overall request. After a request has been processed by tier Qi, it either proceeds to

Qi+1 with probability pi or returns to Qi−1 with probability 1 − pi. Notice that the

last tier QR returns all its requests to queue QR−1 and the first tier Q1 completes its

request every time there is a return to the preceding stage Q0.

The first stage of the model, labeled Q0, consists of an infinite server queueing

system which incorporates the session-based nature of the internet workload. Every

time an internet session is open, several requests are generated. This is modeled

35

Chapter 3. Performance Optimization and Regulation for Multitier Servers

by assuming sequential requests at Q1 that start traveling back and forth between

the tiers as required by the system until the overall request is processed and then it

returns to Q0. The processed request spends a so-called think time at Q0 and after

that, the following request of the same session enters the queueing network.

The think time is denoted by the random variable Y with E{Y } = 1
ρ
. The random

variable representing the service time of the i-th tier is denoted Zi with E{Zi} =
1
µi
,

therefore, ρ represents the mean think rate and µi the mean service rate of the i-th

tier. The mean service rate µi provides the average number of requests that are

served in the i-th tier per unit of time, and is therefore an average measure of the

operation frequency of every tier. The fact that it is modeled as a random variable

conveys a) the idea that requests may be processed randomly in several cycles by the

tiers, and b) the randomness induced in the tiers given the multiple open sessions

being processed at every tier.

In the model proposed in [52], the authors assumed product form closed queueing

networks to be able to calculate response times through the mean-value analysis

(MVA) algorithm [57]. A broad class of queue networks are known to have product

form solutions which is convenient for modeling a wide variety of multitier servers.

Our goal is to tune the mean service rate in the front-end tier, namely, µ1 so that,

we are able to regulate the throughput to a reference value defined a priory by

implementing a regulator based on IPA. In order to reduce power consumption, we

propose an open-loop optimizer which reduces the values of the parameters µi with

i = 1, . . . , R, which are directly proportional to the frequency of the server processors,

thus, by DVFS the power consumed by the server is reduced. In Fig. 3.3, we present

a block diagram illustrating the open-loop optimizer and the closed-loop regulator.

36

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Figure 3.3: Open-loop optimizer and closed-loop regulator in the multitier server
problem.

3.3 IPA for Performance Regulation

The product form closed queueing network assumption specified in [52] is key to

guarantee that the MVA algorithm is applied to estimate performance measures of

this queueing network. Since this is a closed queueing network formed by a set of R

interconnected queues, the stationary state probability has the form

p(x1, . . . , xR) =
1

C(N)

R
∏

i=1

fi(xi),

where fi(xi) is a function of the state xi of the i-th queue and C(N) is a normalizing

constant dependent on the request population size N . One of the advantages of this

37

Chapter 3. Performance Optimization and Regulation for Multitier Servers

particular model is its generality, since product form networks are not necessarily

Markovian in nature. In fact, product form networks such as the BCMP network [27]

may have several customer classes as well as a variety of possible queuing disciplines

such as first-come-first-served (FCFS), processor sharing (PS), last-come-first-served

(LCFS), and different service time distributions, among other complexities. The

model in [52] was not defined considering sensitivity analysis applications. Therefore,

we proceed to determine the sufficient conditions to guarantee the validity of IPA

for the aforementioned model.

3.3.1 Unbiasedness of IPA Estimators

In this problem, we need to estimate the expectation of the derivative of a perfor-

mance function J : Λ×Ψ→ R, such that, J(ψ) = E {L(λ, ψ)}, where L(λ, ψ) is the

sample function of interest, i.e.,

dJ(ψ)

dψ
= E

{

dL(λ, ψ)

dψ

}

, (3.1)

where λ ∈ Λ ⊆ R
nλ is a random variable with probability distribution function fλ(λ)

and λ(1,...,N) is a multi-sample of λ. ψ ∈ Ψ ⊆ R
nψ is the parameter vector. This

means that the sample derivative is an unbiased estimate of dJ
dψ
. First of all, let us

analyze the continuity of the sample function L(λ, ψ). A necessary condition for

continuity is the commuting condition (CC).

Commuting Condition

Let us use the convention p(y|x, α) to denote the probability that the queueing

network goes to state y after the feasible event α is observed while being at state x.

Now, we proceed to present the main result of commuting condition based on [27].

38

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Theorem 3 Let us consider a queue network whose state space is denoted by X and

whose event set is denoted by Ξ. Let us define Γ(x) ⊂ Ξ as the set of feasible events

when the current state is x ∈ X . Now, let x, y, z1 ∈ X and α, β ∈ Γ(x) such that,

p(z1|x, α) · p(y|z1, β) > 0.

Then, for some z2 ∈ X , we get that,

p(z2|x, β) = p(y|z1, β),

and

p(y|z2, α) = p(z1|x, α).

Moreover, for any x, z1, z2 ∈ X such that p(z1|x, α) = p(z2|x, α) > 0, we get z1 = z2.

Proof The proof is provided in [58]. �

The CC is not necessarily fulfilled by all product form queueing networks. How-

ever, there is a subset of such networks that has been proven to satisfy the CC. These

networks are known as Jackson-like networks.

Jackson-like Networks [27]

Definition 1 Jackson-like networks are open or closed queueing networks such that,

every queue has one server with infinite queueing capacity and each queue implements

a FCFS queue discipline. Furthermore, these networks process a single class of cus-

tomers and the routing of costumers between queues is probabilistic.

39

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Event Time Derivatives

In order to derive expressions for event time derivatives we proceed to make the

following assumptions based on [27].

Assumption 1 Let us denote the lifetime of the k-th occurrence of the event α ∈ Ξ

by Vα,k(ψ), where Ξ is the set of feasible events. Let us assume that for all event α,

Vα,k(ψ) is almost surely continuously differentiable in ψ, with k = 1, 2,

Assumption 2 For all event α ∈ Ξ, with cumulative distribution function (cdf)

Fα(x, ψ), with parameter ψ ∈ Ψ and x ∈ X . Let us assume that Fα(x, ψ) is contin-

uous in ψ and Fα(0, ψ) = 0.

Given the event α with associated event lifetime distribution Fα(x, ψ) with pa-

rameter ψ, we can define the lifetimes as functions of ψ, i.e., Va,k(ψ). If Assumptions

1 and 2 are fulfilled, the derivative
dVα,k
dψ

may be calculated as,

dVα,k
dψ

= −
∂Fα(x, ψ)/∂ψ

∂Fα(x, ψ)/∂x

∣

∣

∣

∣

x=Vα,k

. (3.2)

Although closed expressions can be calculated for some probability distributions

using (3.2), some expressions can be easily determined by taking advantage of the

definitions of scale and location parameters [27].

Definition 2 Given two random variables X1 and X2 with cdfs FX1(x1, ψ1) and

FX2(x2, ψ2) respectively, where ψ1, ψ2 ∈ Ψ, we say that ψ1 is a scale parameter if

the cdf of ψ1X1 is independent of ψ1. Furthermore, we say that ψ2 is a location

parameter if the cdf of X2 − ψ2 is independent of ψ2.

As an example, the normal distribution has a location and a scale parameter, namely,

the mean and the standard deviation respectively. In another example, the expo-

nential distribution has a scale parameter which is the inverse of its mean. The

40

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Cauchy distribution has a location parameter which corresponds to its mean. Based

on Definition 2 and (3.2), it is easy to prove that if a random variable X1 has scale

parameter ψ1 then,

dX1

dψ1
= ψ1X1. (3.3)

Moreover, if a random variable X2 has a location parameter ψ2 then,

dX2

dψ2
= 1.

A general-purpose algorithm for evaluating event time derivatives while a sample

path is observed in a General-Semi-Markov-Process (GSMP) is presented in [27]. We

reproduce it in Algorithm 2.

Algorithm 2 Event time derivative for stochastic times automata.

If event α is feasible at x0: ∆α ←
dVα
dψ

Else, for all other event α ∈ Ξ : ∆α ← 0

1: while Queueing network is in execution do

2: if Event β is observed then

3: if Event α is activated with lifetime Vα then

4: Calculate dVα
dψ

using (3.2)

5: Calculate ∆α ← ∆β +
dVα
dψ

6: end if

7: end if

8: end while

A Sufficient Condition for Unbiasedness

Based on [27], the equality in (3.1) is enforced by the dominated convergence theorem

if we can determine a finite upper bound R, E{R} <∞ such that,
∣

∣

∣

∣

L(ψ +∆ψ)− L(ψ)

∆ψ

∣

∣

∣

∣

≤ R.

41

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Assuming that the sample function L(λ, ψ) is continuous and differentiable, the

generalized mean value theorem asserts that,

∣

∣

∣

∣

L(ψ +∆ψ)− L(ψ)

∆ψ

∣

∣

∣

∣

≤ sup
γ∈[a,b]

∣

∣

∣

∣

dL(γ)

dψ

∣

∣

∣

∣

. (3.4)

Therefore, by calculating bounds for the sample derivatives dL(λ,ψ)
dψ

we can assure

that (3.1) is satisfied and the IPA estimates are unbiased.

3.3.2 Sample Function for Throughput and its Derivative

The model proposed in Section 3.2 should be simplified in order to enforce (3.1) and

to be able to implement the IPA approach for performance regulation. In order to

satisfy Assumptions 1 and 2 it is enough to assume that the service times have an

exponential distribution with parameter µ1, µ2, . . . , µR for the queues Q1, Q2, . . . , QR

respectively. We assume that the servers in the infinite server queueing system Q0

are identical and their think times occur at a rate ρ according to a Poisson process.

This means that the think time process at the output of the server Q0 when the

server is hosting a population of n requests from a total of N requests in the network

now have the superposition of (N − n) Poisson processes. This is proven to be a

Poisson process with parameter ρ(N − n) [59].

Now, let us assume that the queues Q1, Q2, . . . , QR have infinite queueing capac-

ity, implement a FCFS queue discipline and that there is a single class of customers.

Moreover, by implementing the probabilistic routing defined by p1, . . . , pR in Fig.

3.2 this network belongs to the Jackson-like networks described by Definition 1, and

consequently, CC is satisfied.

The satisfaction of CC can be graphically verified for the two-tier server whose

state transition diagram is shown in Fig. 3.4. The two numbers defining the states

represent the queue length of Q1 and Q2 respectively. Based on the model in Fig.

42

Chapter 3. Performance Optimization and Regulation for Multitier Servers

3.2, let us denote by a the event of an arrival to queue Q1, and by dij the event

of a departure from Qi to Qj with i ∈ {1, 2, . . . , R} and j ∈ {l ∈ {0, 1, . . . , R} :

[(l = i− 1) ∨ (l = i+ 1)] for some i}. As an example, for a three-tier server the pos-

sible departure events are d10, d12, d21, d23 and d32. From Theorem 3, assuming that

the system is in a particular initial state x, and if, based on the available events,

we follow the state transitions defined by a specific sequence of events, we should be

able to reach the same final state by following the same sequence of events but in

reversed order, e.g., if we start at state 11, and then we follow the sequence of events

{a, d32, d10}, with transitions indicated by the red arrows in Fig. 3.4, then the system

ends up at state 20. If we start again at state 11 and we follow the reversed sequence

of events, namely, {d10, d32, a}, with transitions indicated by the pink arrows, the

system ends up at state 20 again, proving that CC is satisfied.

Estimation of Throughput

To continue with our development, let us define Tα,M as the time of the M-th occur-

rence of some event α. The throughput y of the multitier model is measured at the

output of the first tier, since a departure d10 means a request has been completed.

Consequently, the sample function for the throughput of the system afterM requests

have been completed is given by,

y(µ1) =
M

Td10,M
, (3.5)

where Td10,M is the time of the M-th occurrence of the event d10.

Since we want to estimate the derivative of the throughput y with respect to the

mean service rate of the first tier µ1, we proceed to calculate dy

dµ1
by applying the

chain rule and we get,

dy

dµ1

=
−M

T 2
d10,M

(

dTd10,M
dµ1

)

, (3.6)

therefore, all that is left is to estimate
dTd10,M

dµ1
.

43

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Figure 3.4: State transition diagram of the two-tier server model.

Regulation Algorithm

The regulation algorithm follows the same approach described in Section 2.2.2. This

means that given a reference value yref and with the quadratic error defined by,

e2 = (yref − y)
2, (3.7)

the update of the parameter µ1 is carried out through the equation,

µ1n = µ1n−1 +K
en−1
dy(µ1)
dµ1

, (3.8)

where K ∈ R is a positive scalar that determines the step-size of the gradient descent

optimizer given by (3.8) with n = 1, 2

44

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Unbiasedness of IPA for Multitier Servers

The following corollary, provides us with the sufficient conditions for continuity of

the throughput y.

Corollary 1 If Assumptions 1 and 2, as well as the CC, are satisfied by the queueing

network described in Fig. 3.2, then the sample function,

Ld10,M(ψ) =

∫ Td10,M

0

dt = Td10,M ,

is (almost surely) continuous in ψ for finite Td10,M .

Proof This proof trivially follows from Theorem 11.1 in [27]. �

From Corollary 1, and under the assumptions we have made on the model in

Section 3.3.2, we have that y given by (3.5) is continuous. The proof of unbiasedness

is out of the scope of this section, but roughly speaking, by taking advantage of the

Markovian nature of our simplified model and assuming that the lifetimes
dVd10,j

dψ
<

c < ∞, for some c ∈ R we should be able to carry out a case-by-case analysis of

the states of the network [27]. It turns out that all possible combinations of the

perturbation propagation will be upper bounded by polynomial combinations of c

and M which are finite. The generalized mean value theorem then implies (3.4),

allowing us to apply the dominated convergence theorem, thus the unbiasedness of

the IPA estimates is assured.

Estimation of Throughput Derivative for One-tier Servers

Now, we proceed to estimate
dTd10,M

dµ1
. We apply the generalized Algorithm 2 to the

one-tier server model shown in Fig. 3.5. In this problem, the two possible events

are the arrival of a request to the server Q1 denoted by a, and the departure of a

45

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Figure 3.5: Model of a one-tier server.

request from Q1 denoted by d10. Notice that if the server is not empty, i.e., the

queue-length x1 6= 0, the lifetime of the event d10, namely, Vd10,i, with i = 1, 2, . . . ,M

depends only on the (i − 1)-th occurrence of the same event d10. Remember that

the service times are governed only by the parameter µ1. If the event a is observed

while x1 6= 0, it will not have any effect on the lifetime Vd10,i. However, if the queue

is empty, a departure d10 will not be feasible until the first arrival a is observed, i.e.,

if x1 = 0, then the lifetime Vd10,i depends on the first arrival a. After that, the queue

will not be empty, i.e., x1 6= 0 and the following observation of d10 will depend on

the observation of the previous departure.

Based on Algorithm 2, we have that if the event a is observed and x1 = 0, the

perturbation propagation ∆d10 is obtained by ∆d10 = ∆a+
dVd10
dµ1

. On the other hand,

if x1 6= 0 and d10 is observed, then, the perturbation propagation ∆d10 is obtained

by ∆d10 = ∆d10 +
Vd10
dµ1

and ∆a is updated by ∆a = ∆d10 +
dVa
dµ1

= ∆d10 . Remember

that dVa
dµ1

= 0 because the think time Y depends on ρ and not on µ1. This result is

illustrated in Algorithm 3.

46

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Algorithm 3 Event time derivative for one-tier servers.

Initial state x1 ← 0, then event a is feasible and ∆a ← 0

and event d10 is unfeasible, then ∆d10 ← 0

1: while Queueing network is in execution do

2: if Event a is observed ∧ x1 = 0 then

3: ∆d10 ← ∆a +
dVd10
dµ1

4: end if

5: if Event d10 is observed ∧ x1 6= 0 then

6: ∆a ← ∆d10

7: ∆d10 ← ∆d10 +
dVd10
dµ1

8: end if

9: end while

Remark 1 In this model, we are assuming that the service times have an exponential

distribution with parameter µ1 which is a scale parameter. The calculation of
dVd10
dµ1

is provided by (3.3), therefore,
dVd10
dµ1

= µ1Z1, where, as established in Section 3.2, Z1

is the random variable defining the service time of the tier Q1.

Remark 2 The perturbation propagation provides an estimate of the derivative
dTd10
dµ1

, given by ∆d10 . Hence, based on (3.6), the estimate of the derivative of the

throughput at the M-th observation of the event d10 is given by,

ŷ′ =
−M

T 2
d10,M

(∆d10) . (3.9)

Estimation of Throughput Derivative for Three-tier Servers

The model of the three-tier server is shown in Fig. 3.6. This queueing network has

the possible events a, d10, d12, d21, d23 and d32. One of the main differences with the

47

Chapter 3. Performance Optimization and Regulation for Multitier Servers

one-tier case is the presence of the routing probabilities p1 and p2. The effect of the

routing probabilities becomes apparent when estimating the event time derivatives.

In the three-tier server case, the service times at every tier are assumed to be expo-

nential, and queues Q1 and Q2 present bifurcations at the output. These bifurcations

have distributions formed by a superposition of exponential random variables with

parameter µ1 and µ2, and Bernoulli random variables with parameter p1 and p2. In

particular, the event time derivatives associated with the departure events at tier Q1

namely,
dVd10
dµ1

and
dVd12
dµ1

are given by,

dVd10
dµ1

= Z1µ1(1− p1), (3.10)

dVd12
dµ1

= Z1µ1p1. (3.11)

This is equivalent to defining the scale parameter associated with the event d10 as

µ1(1− p1) and the one associated to d12 as µ1p1.

Therefore, the analysis of the dependencies between lifetimes and events should

consider the states of each tier. Let us illustrate this idea by studying the perturba-

tion propagation when the parameter µ1 is changed in tier Q1. Let us assume that

the event d12 is observed. Events d12 and d10 are coupled because both are depar-

tures from Q1 and depend on µ1. Therefore, by following Algorithm 2, we have that

the perturbation ∆d10 is obtained by ∆d10 = ∆d12 +
dVd10
dµ1

and ∆d12 is obtained by

∆d12 = ∆d12+
dVd12
dµ1

. However, if x2 = 0 then Q2 is receiving a first arrival after an idle

time, which means that the events d21 and d23 are activated. Hence, ∆d21 is updated

by ∆d21 = ∆d12 +
dVd21
dµ1

= ∆d12 and ∆d23 is updated by ∆d23 = ∆d12 +
dVd23
dµ1

= ∆d12 .

Remember that
dVd21
dµ1

=
dVd23
dµ1

= 0 because the service time Z2 depends on µ2 and not

on µ1. Notice that variations of µ1 in Q1 couples with the events d21 and d23 in tier

Q2 only when the state x2 = 0. Following similar analyses for all the possible events

in the system, we obtain Algorithm 5, shown in Appendix A, to estimate
dTd10,M

dµ1
.

48

Chapter 3. Performance Optimization and Regulation for Multitier Servers

Figure 3.6: Model of a three-tier server.

Remark 3 The event time derivatives in Algorithm 5, in Appendix A, are calculated

using (3.10) and (3.11).

Remark 4 Similar to the one-tier server, the perturbation propagation provides an

estimate of the derivative
dTd10,M

dµ1
, which is provided by ∆d10 . Hence, the estimate of

the derivative of the throughput at the i-th observation of the event d10 is given by

(3.9).

3.4 Statistical Learning for Optimal Parameteri-

zation

Up to this point, we have been able to guarantee the regulation of throughput to a

reference value yref . However, we are interested not only in regulating throughput

but also in reducing power consumption. The problem of throughput regulation

49

Chapter 3. Performance Optimization and Regulation for Multitier Servers

is solvable for infinite configurations of µ1, µ2 and µ3. Roughly speaking, since we

are assuming M/M/1 queues whose arrivals are supplied by Poisson processes, the

departure processes of the queues in the network will be Poisson distributed by

Burke’s Theorem [27]. This implies that for queues Q1, Q2 and Q3, their respective

throughputs, namely, y1, y2 and y3 will be given by,

y1 =







λ(N − n) if µ1 > λ(N − n)

µ1 otherwise
, (3.12)

y2 =







µ1p1 if µ2 > µ1p1

µ2 otherwise
, (3.13)

y3 =







µ2p2 if µ3 > µ2p2

µ3 otherwise
. (3.14)

From (3.12)–(3.14), we can infer that as long as the mean arrival rate parame-

ters, namely, λ(N − n), µ1p1 and µ2p2, are less than or equal to their correspondent

mean service rate parameters, namely, µ1, µ2 and µ3 respectively, we should be able

to regulate the throughput of all three queues by controlling µ1. Otherwise, the

throughputs are saturated by a value proportional to one of the mean service rates

µi with i = 1, 2, 3. This in turn, implies that there is not a unique triplet (µ1, µ2, µ3)

to regulate the throughput to a certain value. In fact, the set of possible triplets that

provide a solution is infinite. Therefore, we propose an optimization approach to re-

duce the values of the triplet of mean service rate while guaranteeing the regulation

of the throughput of the system.

This optimization step is carried out in open-loop based on power requirements.

We take advantage of the direct relation between power and throughput making use

of DVFS. As mentioned in Section 2, the consumed power is directly proportional

to the frequency of operation and this, in turn, is directly proportional to the mean

service rate µi. The main goal is to minimize the mean service rates µi so that the

50

Chapter 3. Performance Optimization and Regulation for Multitier Servers

regulation error (3.7) is minimized on average. This will provide a reduced power

consumption while guaranteeing a minimum regulation error in the system.

3.4.1 Performance Function

Let us assume that we have a set of R tiers in a multitier processor. The throughput

of the system, namely, y is given by (3.5) which, as explained above, depends on the

output of the tier Q1.

Let us define the parameter set,

Ψ =
{

ψ ∈ R
R : ψ = (µ1, . . . , µR)

}

,

which consists of the vector containing the mean service rates of all tiers.

Based on hardware considerations we determine the finite bounds for the pa-

rameters µk, such that, µk ∈ [µkmin
, µkmax], with k = 1, 2, . . . , R. Thus, we define,

µ̄k =
µk−µkmin

µkmax−µkmin
, so that µ̄k ∈ [0, 1]. Similarly, let us assume that we can calculate

finite bounds for e in (3.7), such that e ∈ [emin, emax], so we define ē = e−emin

emax−emin
.

Now, let us define the random sample,

λ = y ∈ Λ ⊂ R,

and the performance function,

J(λ,ψ) = J = αk

R
∑

k=1

µ̄k + βē, (3.15)

where αk, β ∈ R
+ are chosen so that J : Λ×Ψ→ [0, 1].

51

Chapter 3. Performance Optimization and Regulation for Multitier Servers

3.5 Simulation Results

To validate our approach we carried out a simulation of a queueing network modeling

the three-tier server. For this simulation we assume a set of N = 100 concurrent

requests in the system, a mean think time 1
ρ
= 331

3
s and nominal probabilities

p1 = p2 =
1
2
. Our goal is to regulate the throughput of the system to a reference value

yref = 3 requests/s while minimizing the mean service rates µ1, µ2, µ3 ∈ [1, 50] ⊂ R

with accuracy ǫ = 0.02 and confidence 1 − δ = 0.98. We have chosen αk = 1
30

with

i = 1, 2, 3 and β = 0.9 in (3.15). Furthermore K = 0.1 in (3.8).

For the given values of ǫ and δ and using Algorithm 1 we obtain that M1 = 228

values of the parameter triplet (µ1, µ2, µ3) should be evaluated. Furthermore, per

each evaluated parameter triplet, M2 = 13, 410 samples should be observed. After

running Algorithm 1 the system calculates the following mean service rates µ∗1 =

2.4262, µ∗2 = 8.3696, and µ∗3 = 28.1239 request/s.

In Fig. 3.7 we show the transient behavior of the regulated throughput. The blue

line with circular markers shows the regulation applied to the model with routing

probabilities p1 = p2 = 0.5, i.e., the same used for the optimization. The green

line with triangular markers shows the regulation when the routing probabilities are

perturbed so that their value changed to p1 = 0.6 and p2 = 0.4. Notice that even in

the perturbed case the system manages to stay regulated. However, regulating the

perturbed system requires a higher mean service rate µ1 as illustrated in Fig. 3.8,

which implies more power consumption in tier Q1. The regulation error is illustrated

in Fig. 3.9, which, in accordance with Fig 3.7, goes asymptotically to zero.

52

Chapter 3. Performance Optimization and Regulation for Multitier Servers

0 0.5 1 1.5 2

x 10
4

1.5

2

2.5

3

3.5

Time (s)

y
(r

eq
ue

st
/s

)

p
1
=p

2
=0.5

p
1
=0.6, p

2
=0.4

Figure 3.7: Plot of regulated throughput for a three-tier server.

3.6 Conclusions

We have presented an approach that optimizes and regulates performance in a mul-

titier server. In this particular case, given a reference value for the throughput, we

optimize the values of the mean service rates at each tier in the server. This parame-

ter is directly proportional to the operation frequencies of the tiers, and therefore, by

using a DVFS approach we are able to guarantee power consumption reduction while

satisfying throughput requirements. Statistical learning is used to calculate reduced

values of the mean service rates of the multiple tiers present in the system that satisfy

the throughput requirements. After the optimization process is carried out, an IPA

algorithm is implemented to regulate the throughput of the system to the reference

value in a closed loop. The control parameter of the throughput corresponds to the

mean service rate µ1 of Q1. In consequence, the values of the mean service rates of

all but the front-end tier Q1 are kept constant in their original value, while µ1 keeps

53

Chapter 3. Performance Optimization and Regulation for Multitier Servers

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

25

30

Time (s)

µ 1 (
re

qu
es

t/s
)

p
1
=p

2
=0.5

p
1
=0.6, p

2
=0.4

Figure 3.8: Plot of the controlled parameter µ1 for a three-tier server.

the general throughput of the system regulated. We validate our approach using a

queueing network model that satisfies the required sufficient conditions to guarantee

unbiased IPA estimates.

We validated our results by carrying out the simulation of a three tier server in

MatlabR©. The results showed that the system is able to calculate the optimal mean

service rate parameters in all three servers for the given accuracy and confidence.

The IPA-based regulator not only converges to the reference value of throughput,

but keeps it regulated under small variations of the routing probabilities.

Although the initial simulations results show that the system carried out the re-

duction of power and the regulation of throughput, the mathematical simplifications

of the model does not allow the analysis of more sophisticated and complex con-

trol mechanisms, such as, contention control, load balancing or processing sharing

that cover more realistic scenarios. Since recent evidence has revealed that biased

54

Chapter 3. Performance Optimization and Regulation for Multitier Servers

0 0.5 1 1.5 2

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

e
(r

eq
ue

st
/s

)

p
1
=p

2
=0.5

p
1
=0.6, p

2
=0.4

Figure 3.9: Plot of the regulation error of the throughput for a three-tier server.

and bounded IPA estimates may be useful in regulation and optimization problems,

our future research will explore models of more complex queueing networks in order

to cover several of the aforementioned control mechanisms and include them in the

optimization problem.

55

Chapter 4

Cloud Computing Model with

Time-Varying Workload

4.1 Introduction

In the last few years, control theory has had a productive but still limited relationship

with computing theory and systems [15, 16]. Control theory is being used in problems

such as managing power consumption for microprocessors [17], data centers [19, 20],

application performance [60, 61] and management of resources in cloud computing

[19, 22].

At the cloud computing level, and within the infrastructure-as-a-service (IaaS)

framework [62], the costumer controls the software running over a virtual server

which has been instantiated by a resource provider. Resources are usually leased

and may consist of application and storage servers. Currently available services in-

clude AWS EC2, Google Cloud and Joyent. In some services the users must rely on

coarse-grained visibility of the system [24, 62]. A common control theory-based ap-

proach involves model identification and optimal control [6, 62] where, under certain

56

Chapter 4. Cloud Computing Model with Time-Varying Workload

assumptions a model of the cloud is estimated in order to control and optimize some

performance measure, e.g., latency and throughput. The problem of virtual resource

allocation to regulate application performance may then be studied as discussed in

[6, 24, 25].

In the recent paper [1], the author proposes a passivity framework to ensure

asymptotic stability of a feedback controlled system where the controller regulates

power while guaranteeing response time management in the cloud. The author pro-

poses a market-oriented discrete-time model to describe the routing of the consumer’s

workload in the cloud through the interaction of brokers and servers. Roughly speak-

ing, the servers communicate with the brokers to let them know how busy they are,

while the brokers distribute the consumer’s workload to be processed between the

servers based on the current status of the servers. This framework takes advantage

of the passivity inherited by a system formed by interconnecting passive subsystems.

Following the ideas proposed by [1] we present a number of enhancements related

to the analysis of the market-oriented cloud model. Among other results, we provide

mathematical propositions to justify the use of passivity theory to the analysis of this

problem, and an additional sufficient condition to guarantee the asymptotic stability

of the system. Furthermore, we provide comments about the stability of the system

in the presence of time-varying consumer’s workload.

This chapter is organized as follows: Section 4.2 describes the market-oriented

cloud model as presented in [1]. In Section 4.3 we present passivity analysis to study

the asymptotic stability of the system. Section 4.4 analyzes a counter-example to

illustrate the need for an additional sufficient condition for asymptotic stability. Such

condition is explicitly provided and proven. In Section 4.5, we prove that the system

is robust to time-varying consumer’s workload as long as such workload is bounded.

In Section 4.6 we present simulation results to validate our approach. Finally, in

Section 4.7 we provide our conclusions.

57

Chapter 4. Cloud Computing Model with Time-Varying Workload

-

�(�)

�

��

��

Broker System

Server System

��
+
-

Figure 4.1: Block diagram of the market-oriented cloud presented in [1].

4.2 Market-Oriented Cloud Model

The discrete-time model for the cloud based on a market-oriented view was proposed

in [1]. The block diagram in Fig. 4.1, illustrates the dynamics corresponding to a set

B of N brokers and a set S of M servers. A consumer’s workload vector w(k) ∈ R
N

serves as a reference input for the system at time k. The amount of workload that

should be routed to the servers is calculated by the set of brokers. The set of brokers

send the vector y(k) ∈ R
N with the dispatched workload and the servers receive a

fraction of the consumer’s workload through the vector ŷ(k) ∈ R
M . The fraction of

the workload that is not completed is buffered and the servers send a throttling signal

vector û(k) ∈ R
M that tells the brokers the current load at the servers. Thus, the

brokers receive the vector signal u(k) ∈ R
N and, based on it, calculate the fraction

of w(k) that should be routed to the servers in the next time iteration.

58

Chapter 4. Cloud Computing Model with Time-Varying Workload

The following state-space equations for the j-th broker were proposed in [1]. The

state dj(k) with j = 1, 2, . . . , N , corresponds to the maximum dispatch level at time

instant k ∈ Z
+, and the dynamics are given by:

dj(k + 1) = [(1− β1j)dj(k) + β1jwj(k)− β2juj(k)]
+ , (4.1)

with β1j ∈ (0, 1) ⊂ R and β2j(0,∞) ⊂ R. The projection operator is defined as

[·]+ = max(·, 0) and the output is given by,

yj(k) = min{wj(k), dj(k)}. (4.2)

Similarly, the state-space model of the i-th server is defined by two state vari-

ables, namely, bi(k) and si(k) with i = 1, 2, . . .M . bi(k) corresponds to the amount

of pending workload to be processed by the i-th server. si(k) corresponds to the

maximum amount of workload that the i-th server processes at time instant k and

is upper bounded by the physical limit service s̄i. Thus, the state-space equations

are given by,

bi(k + 1) = [bi(k) + ŷi(k)− si(k)]
+ , (4.3)

si(k + 1) = min{s̄i, (1− σi)si(k) + bi(k) + ŷi(k)},

(4.4)

with σi ∈ (0, 1). The designed output in [1] is given by,

ûi(k) = 2σibi(k) + 2σisi(k). (4.5)

This system may be expressed in matrix form as,

ξi(k + 1) = min{ξ̄i, [Aiξi(k) +Biŷi(k)]
+}, (4.6)

ûi(k) = Cξi(k). (4.7)

59

Chapter 4. Cloud Computing Model with Time-Varying Workload

where,

ξi(k) =





bi(k)

si(k)



 , ξ̄i =





∞

s̄i



 ,

Ai =





1 1

σi 1− σi



 ,

Bi =





1

σi



 ,C = (2σi, 2σi).

The broker and server blocks are connected through the matrices R(k) ∈ R
M×N

and Q(k) ∈ R
N×M . Such matrices allow for the consideration of a different number

of brokers and servers in the model. The entries of the matrices, namely, Rij(k) and

Qji(k) satisfy
∑

iRij(k) = 1 and
∑

j Qji(k) = 1.

From now on, we omit the subindices j and i when referencing the j-th and i-th

entries of the corresponding vectors in the systems of brokers and servers. To analyze

the passivity of the j-th broker, [1] proposes the following storage function,

V1(d) = d2(k),

and assuming that the reference input of the system w(k) = 0 and the projection in

(4.1) is inactive we have that

∆V1 ≤ u(k)d(k) + ((1− β1)
2 − 1)d(k),

which indicates that the system is output strictly passive. Notice that

((1− β1)
2 − 1)d2 ≤ 0 since β1 ∈ (0, 1).

By assuming that the projection in (4.1) is active, the difference of the storage

function becomes,

∆V1 = −d
2(k) ≤ u(k)d(k)− d2(k),

60

Chapter 4. Cloud Computing Model with Time-Varying Workload

and [1] concludes that the broker system is output strictly passive.

Analyzing the passivity of the server system, [1] also proposes the following stor-

age function,

V2(ξ) = ξT (k)Pξ(k), (4.8)

with the positive definite matrix,

P =





σ −σ/2

−σ/2 1



 .

The projection in (4.3) is assumed to be inactive and the first difference of (4.8)

satisfies the following inequality,

∆V2 ≤ û(k)ŷ(k).

Similarly, using the same storage function but assuming that the projection in

(4.3) is active, [1] concludes that

∆V2 ≤ û(k)ŷ(k),

and the system is shown to be passive. Therefore, from Proposition 1 and Proposition

2 in [1] the origin of the feedback system with w(k) = 0 is asymptotically stable. One

interesting result of this approach is the utilization of passivity concepts to calculate

a certificate that once satisfied, guarantees the stable operation of the system.

4.3 More About Passivity Analysis

Even though the passivity approach was already applied to this problem, it is worth

asking the following question: Is it possible to apply passivity analysis to the market-

oriented cloud system? The answer is yes, but we must be careful. Recall that the

61

Chapter 4. Cloud Computing Model with Time-Varying Workload

output of the j-th broker is y(k) = min{d(k), w(k)}, then w(k) is an input of the

broker system as shown in Fig. 4.1. When carrying out the passivity analysis in [1],

the reference input is assumed to be w(k) = 0 then y(k) = 0.

Since y(k) = d(k) if and only if d(k) ≤ w(k), special care should be taken before

directly applying the passivity propositions to show asymptotic stability as presented

in [1]. However, if we are able to prove that there exists a finite number of time steps

N ∈ Z
+ such that y(k) = d(k), ∀k ≥ k0 + N , we can eliminate the input w(k)

indicated by the dashed blue arrow in Fig. 4.1, and make sure that y(k) = d(k) as

described next.

Proposition 2 Consider the state-space dynamics of the j-th broker defined by (4.1)

and (4.2). For any initial condition d(k0) such that d(k0) > w(k) = w > 0 with

w ∈ R
+ constant, there exists N <∞, N ∈ Z

+ such that

y(k) = min{w, d(k)} = d(k), ∀k ≥ k0 +N.

Proof Let us define a new state variable

d0(k) = d(k)− w(k) +
β2
β1
u(k), (4.9)

therefore, we obtain the new dynamical equation,

d0(k + 1) = (1− β1)d0(k), β1 ∈ (0, 1). (4.10)

Now, let us propose the following Lyapunov function candidate,

V3(d0) = d20(k),

and the first difference gives,

∆V3 = (−1 + (1− β1)
2)d20(k) ≤ 0, (4.11)

62

Chapter 4. Cloud Computing Model with Time-Varying Workload

and the origin of (4.10) is asymptotically stable.

Let us assume an initial condition d(k0) > w. Furthermore, from (4.11) we know

that for any d(k0) > 0 there exists η ∈ R
+ such that

∆V3 < (−1 + (1− β1)
2)d20(k) < −η,

therefore,

V3(k + 1)− V3(k) < −η,

and solving the recurrence equation we get,

V3(k) ≤ V3(k0)− (k − k0)η, (4.12)

If we take any feasible δ ∈ R
+ in the trajectory of d0(k) such that d0(k0) > δ > 0

we get V3(δ) = δ2. Therefore, if starting from the initial condition d0(k0) we arrive

at d0(k) = δ for some k, we get from (4.12) that,

δ2 ≤ V3(d(k0))− (k − k0)η,

therefore,

k ≤ k0 +
V3(k0)− δ

2

η
<∞.

Then, the number of steps required to go from any initial state d0(k0) > 0 to

another state d0(k) > 0 in the trajectory of the solution of (4.10) is finite. From (4.9)

we conclude that starting from an initial state d(k0), there exists N ∈ Z
+, N < ∞

such that 0 < d(k) ≤ w, ∀k > k0 + N , therefore, y(k) = min{w, d(k)} = d(k) >

0, ∀k > k0 +N . �

Remark 5 Notice that for the case w(k) = w = 0 the foregoing Proposition does

not apply, since from [1], d(k)→ 0 as k →∞ asymptotically, i.e., in infinite time.

Remark 6 Notice that in Proposition 2 we do not consider the case where the pro-

jection of d(k) is active because we have assumed that d(k) > 0.

63

Chapter 4. Cloud Computing Model with Time-Varying Workload

0 5 10 15 20 25 30 35 40
0

50

100

150

Time Steps k

S
ta

te
 v

ar
ia

bl
es

 a
nd

 C
on

tr
ol

 S
ig

na
l

Non−Asymp. Stable, 1 broker,1 server

d(k)
b(k)
s(k)
w(k)
u(k)

Figure 4.2: Non-asymptotically stable example that satisfies the sufficient conditions
for asymptotic stability given in [1].

4.4 Effect of Equilibrium Points in Stability

As mentioned before, based on [1], the market-oriented cloud described in Section

4.2 was shown to be asymptotically stable. However, let us implement the foregoing

model assuming only one broker and one server with β1 = 0.9, β2 = 0.9, w(k) = w =

40, s̄ = 50 and initial conditions d(k0) = 45, b(k0) = 20, s(k0) = 5. Furthermore, let

us replace (4.5) by,

û1(k) = 2σb(k) + 2σs(k) + σŷ(k). (4.13)

with σ = 0.9. We provide a detailed justification for using (4.13) in Appendix B.

We obtain the plot shown in Fig. 4.2, which does not show an asymptotically

stable trajectory. In order to explain the result, we provide the following Proposition,

64

Chapter 4. Cloud Computing Model with Time-Varying Workload

Proposition 3 A condition to guarantee the asymptotic stability of the feedback con-

nection between the broker system given by (4.1) and (4.2), and the server system

given by (4.3), (4.4) and (4.13) is,

0 < β2u(k) ≤ β1w(k). (4.14)

Proof let us calculate the equilibrium points of the j-th broker and the j-th server,

deq = w(k)−
β2
β1
u(k), (4.15)

beq = 0,

seq = y(k). (4.16)

Now, let us assume

0 < w(k) <
β2
β1
u(k), (4.17)

but from the projection in (4.1) the equilibrium point deq ≥ 0, which contradicts

(4.17). Therefore,

w(k) ≥
β2
β1
u(k) ≥ 0, (4.18)

and the sufficient condition (4.14) follows. �

Examining the plots of uβ(k) = β2
β1
u(k) = u(k) and w(k) in Fig. 4.2, we see

that at every oscillation, the inequality (4.18) is not satisfied at some time intervals,

therefore, asymptotic stability cannot be guaranteed.

4.5 Effect of Time-Varying w(k)

Now, we consider our last question: Do bounded inputs guarantee bounded states in

the market-oriented model? This property is termed input-to-state stability (ISS) and

65

Chapter 4. Cloud Computing Model with Time-Varying Workload

is related to the capacity of the states of the system to remain in the neighborhood

of its equilibrium points. In this specific case, we are assuming that w(k) in (4.1) is

a time-varying vector function. Although the simulation results shown in [1] suggest

that the system may be ISS, this needs to be formally proven as described in the

following result.

Proposition 4 Given the feedback connection in Fig. 4.1 defined by the broker

system with dynamics (4.1) and (4.2) with 0 < β1 < 1, β1 ∈ R and 0 < β2, β2 ∈ R,

and the server system with dynamics (4.3),(4.4) and (4.13) with σ ∈ (0, 1) ⊂ R, the

resulting system is ISS. Furthermore, if 0 < β2u(k) < β2w(k), the system tracks the

equilibrium points (4.15)–(4.16) asymptotically.

Proof Let us study the broker system defined by (4.1) and (4.2), and let us define,

e1 = w(k)−
β2
β1
u(k),

then, the system (4.1) may be rewritten as,

d(k + 1) = [(1− β1)d(k) + β1e1]
+ . (4.19)

Assuming no active projection in (4.19), we notice that the system is linear time

invariant (LTI). It was proven in [1] that the broker system is output-strictly passive

with a positive definite storage function. Since it is zero-state observable as well, the

origin with e1(k) = 0 is asymptotically stable. Since the system is LTI we conclude

that it is bounded-input-bounded-output (BIBO) stable as well.

Similarly, the server system given by (4.3), (4.4) and (4.13) was proven to be

passive with a positive definite storage function, and therefore its origin is stable

with ŷ(k) = 0. Assuming no active projection, the dynamics are given by (4.6) and

(4.7) which describe an LTI system, therefore the system is BIBO stable. Assuming

66

Chapter 4. Cloud Computing Model with Time-Varying Workload

an active projection in the server system the system matrix A becomes,

A =





0 0

σi 1− σi



 ,

and the system is LTI, therefore it is BIBO stable.

Furthermore, with y(k) <∞ and ŷ(k) = R(k)y(k) where all the entries of R(k),

namely, Rij(k) ∈ [0, 1], then ŷ(k) < ∞. Since u(k) = Q(k)û1(k) where the entries

of Q(k), namely, Qji(k) ∈ [0, 1], then u(k) <∞.

Since we know that β2
β1
u(k) <∞ and w(k) <∞, then w(k)− β2

β2
u(k) <∞, and the

system is ISS. If in addition (4.14) is satisfied, then the system tracks the equilibrium

points asymptotically. �

4.6 Simulation Results

In Fig. 4.3, we present simulation results using two brokers and three servers with

β1 = 0.95, β2 = 0.1, σ = 0.5, s̄ = 20 and w(k) = 12.5 + 12.5 sin(2πk
100

). Notice that

(4.18) is being fulfilled, since we are plotting u1β(k) = β2
β1
u(k) represented by the

purple dotted line, which avoids undamped oscillating behaviors. Notice that all the

other states are in the neighborhood of their respective equilibrium points given by

(4.15)–(4.16). Notice also that the subindices in the plot of Fig. 4.3, indicate that

we are plotting the inputs and outputs of broker 1 and server 2 respectively.

Furthermore, now that we have shown that the system is ISS stable, we are able

to assure that the states remain bounded, as long as the consumer’s workload stays

bounded. In comparison with the results shown in [1] we carry out simulations using

three brokers and five servers. The parameters are β1 = 0.95, β2 = 0.1, σ = 0.5

and s̄ = 20. The consumer’s workload is modeled as a Gaussian white noise with

mean µ = 2 and variance σ2
g = 1. At time step k = 100 the mean of w(k) abruptly

67

Chapter 4. Cloud Computing Model with Time-Varying Workload

0 50 100 150 200 250 300
0

5

10

15

20

25

Time Steps k

S
ta

te
 v

ar
ia

bl
es

 a
nd

 C
on

tr
ol

 S
ig

na
ls

ISS Stability 2 brokers,3 servers, time varying w(k)

d

1
(k)

b
2
(k)

s
2
(k)

w
1
(k)

u
1β

(k)

Figure 4.3: Simulation showing that the market-oriented cloud model in [1] is ISS.

changes to µ = 25 and at k = 210 it goes back to µ = 2. Later, at k = 425 the

mean goes to µ = 16 and at k = 632 it returns to µ = 2. As anticipated by the

theory, the system is ISS. In Fig. 4.4, 4.5 and 4.6 we observe that all states remain

bounded. However, in contrast to the simulation presented in Fig. 4.3, we can no

longer assure the asymptotic tracking of the equilibrium points (4.15)–(4.16) because

the natural oscillations due to the stochastic nature of the process do not guarantee

that condition (4.14) is satisfied.

4.7 Conclusions

We have presented an in depth analysis of the passivity framework introduced in [1]

for power control and response time management in the cloud. We enhanced the

original theoretical result with a detailed analysis of the stability and stabilization

68

Chapter 4. Cloud Computing Model with Time-Varying Workload

0 200 400 600 800 1000
0

5

10

15

20

25

30

Time Steps k

D
is

pa
tc

he
d

W
or

kl
oa

d
d(

k)

Figure 4.4: Simulation showing bounded d(k) with random and bounded w(k).

of the system. We have presented a rigorous approach to guarantee that passivity

analysis is suitable for this specific problem in order to guarantee asymptotic stability.

Moreover, using a counterexample as a starting point, we have formally provided an

additional sufficient condition for the asymptotic stability of the market oriented

cloud model. Furthermore, we have formally proven that the proposed cloud model

is ISS in the presence of time-varying consumer’s workload vectors. All the theoretical

results have been validated through simulation.

69

Chapter 4. Cloud Computing Model with Time-Varying Workload

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

Time Steps k

S
er

ve
r

B
ac

kl
og

 b
(k

)

Figure 4.5: Simulation showing bounded b(k) with random and bounded w(k).

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

20

Time Steps k

S
er

ve
r

W
or

kl
oa

d
s(

k)

Figure 4.6: Simulation showing bounded s(k) with random and bounded w(k).

70

Chapter 5

Resource and Security

Provisioning on the Cloud

5.1 Introduction

The negotiation of SLAs in IaaS in the cloud remains a challenging problem. One

of the main difficulties of guaranteeing performance in the cloud is the inherent ran-

domness produced by the massive amount of time-varying interactions and events

taking place in the system. However, it is possible to optimize different performance

measures on the average based on the amount and size of the available virtual re-

sources. This optimization process may be complemented with some closed-loop

control methodologies related to control systems theory and DES [23, 26, 28] to reg-

ulate the calculated optimal performance. Although many approaches have been

proposed to overcome this problem, commercial clouds have not been able to imple-

ment systems where users pay for specific performance measures such as CPU and

memory utilization rather than a flat hourly rate service.

In commercial IaaS, such as the one provided by AWS EC2, the input variables

71

Chapter 5. Resource and Security Provisioning on the Cloud

are coarse-grained [62, 63]. This fact complicates the application of performance

regulation and optimization using multivariable control systems theory as in the

CPU controller proposed in [64] or the performance regulation of the cloud in [6].

In those two cases, the main assumption is that the input variables of the system

are fine-grained. In [62], the authors present the proportional thresholding technique

which is effective in keeping performance confined in an interval for systems with

coarse-grained inputs. However, this approach is limited to single-input-single-output

(SISO) systems. Another methodology implements online model identification [23,

26, 65] by using well known techniques such as, recursive least square (RLS) or least

mean square (LMS) filters [26] to approximate the dynamics of the cloud to a linear

system and then to find a regulating controller. These techniques are however prone

to oscillations whenever the input variables are coarse-grained.

Given the complexities involved in the definition of security, as well as its depen-

dency on particular concepts and applications, the formulation of metrics of security

is a difficult problem. In the work presented in [13, 14], the authors proposed quan-

titative methods to measure cloud security levels based on Reference Evaluation

Methodology (REM) and Quantitative Policy Trees. This methods, in the IaaS con-

text, allow for the incorporation of security in the SLA. However, this is something

that has not been formally proposed yet. Moreover, there is a proven need to protect

sensitive information stored in and traveling through the cloud. Encryption offers a

solution to some of the current security issues [66, 67] associated with data storage.

In order to address all of these issues, we present a probabilistic method for re-

source optimization and security provisioning in the cloud based on RAs [31]. We

propose a multi-objective function which allows the addition of metrics of security

based on cryptographic algorithms. To the best of the authors’ knowledge this is the

first formal approach that incorporates security along performance as a negotiable

variable in the SLA. This chapter is organized as follows: In Section 5.2 we introduce

72

Chapter 5. Resource and Security Provisioning on the Cloud

a sample complexity result for finite families. This result support our probabilistic

approach for optimization. In Section 5.3 we present an example of a metric of se-

curity based on cryptographic ciphers and provide the details of the multi-objective

function. Moreover, we explain the RA for optimization and describe a complemen-

tary heuristic algorithm to reduce the execution time of the optimization process. In

Section 5.4 we present an implementation using the AWS EC2 service and validate

our approach through experimental results. In Section 5.5 we present our conclu-

sions.

5.2 Probabilistic Performance Analysis

As suggested above, our approach points towards a technique that allows us to

optimize the distribution of large amounts of virtual resources in the cloud among

a large number of users or clients. One of the main tools supporting this technique

are tail inequalities which consist of closed mathematical expressions that bound the

probability that random variables with no compact support take values in the tail of

the distribution, i.e., far from the mean [59]. Markov’s and Chebychev’s inequalities

are typical examples of such inequalities. Next, we introduce mathematical results

to support the implementation of our probabilistic resource optimization.

5.2.1 Worst-case Performance for Finite Families

In this section, we present the calculation of the sample complexity for worst-case

performance in finite families, but first, we introduce the following result from [31].

Corollary 2 Given the performance function J : Λ → R and the multi-sample

λ(1,...,N1) ⊆ Λ picked at random, let us define the constant γN1min
= min

i=1,...,N1

J(λ(i)).

73

Chapter 5. Resource and Security Provisioning on the Cloud

For any δ ∈ (0, 1) and ǫ ∈ (0, 1), if

N1 ≥
ln 1

δ

ln 1
1−ǫ

, (5.1)

then,

PR{J(λ) ≥ γN1min
} ≥ 1− ǫ,

with probability of at least 1− δ.

Proof The proof is provided in [68].

The sample complexity for worst-case performance in Corollary 2 assumes a single

performance function. The following result applies whenever we need to optimize over

a finite family of performance functions.

Lemma 1 Given the performance function J : Λ× Ψ→ R, where Ψ is a finite set

of parameter vectors with cardinality ñC ≤ nC and the multi-sample λ(1,...,N2) ⊆ Λ

picked at random, let us define the finite family JñC =
{

J(λ,ψ(1)), . . . , J(λ,ψ(ñC))
}

and the constant γN2min
= min

i=1,...,N2

J(λ(i)), ∀J ∈ JñC .

For any δ2 ∈ (0, 1) and ǫ2 ∈ (0, 1), if

N2 ≥
ln nC

δ2

ln 1
1−ǫ2

, (5.2)

then,

PR
{

∀J ∈ JnC : J(λ) ≥ γN2min

}

≥ 1− ǫ2,

with confidence 1− δ2.

Proof From the proof of Corollary 2 in [68], we get,

PR
{

PR{J(λ) ≥ γN2min
} ≥ 1− ǫ2

}

> 1− (1− ǫ2)
N2,

74

Chapter 5. Resource and Security Provisioning on the Cloud

therefore,

PR
{

PR
{

J(λ) < γN2min

}

> ǫ2
}

< (1− ǫ2)
N2.

Now, we proceed to bound the probability of deviation for all J ∈ JñC ,

PR
{

∃J ∈ JñC : PR
{

J(λ) < γN2min

}

> ǫ2
}

≤

ñC
∑

i=1

PR
{

PR
{

J(λ) < γN2min

}

> ǫ2
}

<

ñC
∑

i=1

(1− ǫ2)
N2 ≤ nC(1− ǫ2)

N2.

Therefore, nC(1 − ǫ2)
N2 ≤ δ2 should be satisfied, and solving the inequality for

N2 we obtain (5.2).

Remark 7 Since the minimum value of N2 is directly proportional to lnnC, this

approach becomes more efficient for large values of nC.

Remark 8 Note that for small values of δ2 and ǫ2 it may happen that nC < N2,

i.e., we get more samples to draw than parameters ψ ∈ Ψ. This does not represent a

contradiction, since the random samples are taken with replacement for our particular

problem. The cloud is a very complex and interconnected system [69] with permanent

variations of performance, therefore, there are no guarantees of observing the same

behavior when running the same test in two instances with the same configuration

running the same benchmarks.

Our performance optimization and security provisioning problem aims at mini-

mizing a cost function J to be described in detail in the sections to follow. Given the

75

Chapter 5. Resource and Security Provisioning on the Cloud

complexities of the IaaS environment in the cloud, we propose an RA to carry out

such minimization through the calculation of a probable minimum of ÊN(J(λ, ψ)).

To fulfill this goal, we are required to determine the required sample complexity to

solve the optimization problem with a given accuracy and confidence. This aspect is

addressed by the following corollary.

Corollary 3 Given the empirical probable parameter vector,

ψ̂M1M2
= arg min

i=1,...,M2

ÊM1(J(λ,ψ
(i))),

and the performance function J : Λ × Ψ → [0, 1], where Ψ is a finite set of

parameter vectors with cardinality ñC ≤ nC. Let,

M2 ≥
ln 2nC

δ

ln 1
1−ǫ2

, (5.3)

and

M1 ≥
ln 4M2

δ

2ǫ21
, (5.4)

then,

PR

{

E (J(λ,ψ)) < ÊM1

(

J(λ,ψM1M2
)
)

−ǫ1

}

≤ ǫ2,

with probability at least 1− δ.

Proof Let us define δ = 2δ1 = 2δ2 in (5.3) and (5.4), then by Lemma 1 we are

guaranteed that,

∣

∣

∣
E (J(λ, ψ))− ÊM1(J(λ, ψ))

∣

∣

∣
≤ ǫ1 (5.5)

and

PR

{

ÊM1 (J(λ,ψ)) ≥ ÊM1

(

J(λ, ψ̂M1M2
)
)}

≥ 1− ǫ2, (5.6)

76

Chapter 5. Resource and Security Provisioning on the Cloud

hold with joint confidence of at least (1− δ
2
)2 > (1 − δ). Furthermore, (5.6) implies

that,

PR

{

ÊM1 (J(λ,ψ)) < ÊM1

(

J(λ, ψ̂M1M2
)
)}

< ǫ2.

From (5.5) we get that,

ÊM1(J(λ,ψ)) ≤ E (J(λ,ψ)) + ǫ1,

therefore,

PR

{

E (J(λ,ψ)) + ǫ1 < ÊM1

(

J(λ,ψM1M2
)
)

}

≤ PR

{

ÊM1(J(λ,ψ) < ÊM1

(

J(λ,ψM1M2
)
)

}

< ǫ2.

�

5.3 Resource Optimization in the Cloud

As mentioned before, previous research considered the optimal distribution of virtual

resources in the cloud [6, 69, 70]. Although security metrics have been proposed in the

past [13, 14], never before has security been formally introduced as a resource to be

optimized and provided along with other performance measures. In this methodology,

we not only address the challenging problem to serve SLAs based on performance

rather than on amount of resources, but we also provide a mathematical framework

to incorporate security as a service in the cloud. The following sections provide the

details of this technique.

77

Chapter 5. Resource and Security Provisioning on the Cloud

5.3.1 Security Metrics based on Cryptography

Securing information stored in the cloud is a crucial problem. Given the amount

of variables associated with the very complex concept of security, the process of

determining a metric for the “amount” of security is far from being straightforward

and univocal. For this specific problem we propose assigning values to different

security levels as shown in Table 5.1. We restrict the concept of security to the

organization and implementation of several cryptographic algorithms or ciphers for

data storage. We are aware that security encompasses a broader set of techniques

and methodologies, and other security metrics may later be incorporated in this

approach. Moreover, Table 5.1 can be easily modified to satisfy the particular needs

of the cloud service providers and the clients.

In the first column of Table 5.1 we present the security measure values given by

numbers between 0 and 1. Security performance increases going from top to bot-

tom. This is not only based on the key sizes, but on the ability of the cryptographic

algorithm to be run in parallel, to be synchronizable, and its immunity to crypt-

analysis. As described later in Section 5.3.2, the security level is the only variable

inversely proportional to the performance function in this particular approach. In

the second column we describe the cipher, the key size and its mode of operation

by using various security standards. The highest value of 1 is assigned to the No

encryption option. The next security level value goes to the data encryption stan-

dard (DES1). After that, we follow with the advanced encryption standard (AES)

with the electronic codebook (ECB) mode of operation and a key size of 128 bits.

Following the sequence, we proceed to increase the key size up to 256 bits, and then

we proceed to add enhancements by progressively changing the modes of operation

which go from cipher-block chaining (CBC), cipher feedback (CFB), cipher feedback

with shift registers (CFB-1/CFB-8), output feedback (OFB) and counter (CTR). All

1Not to be confused with the initial of Discrete Event Systems used in previous sections.

78

Chapter 5. Resource and Security Provisioning on the Cloud

Table 5.1: Measure of security associated to ciphers and modes of operation
Sec. Lvl Cipher Observation

Si Mode of Op.

1 No encryption No encryption whatsoever

Short key sizes,

0.39984 DES 64-bit encryption blocks,

time issues with large

files, prone to

cryptanalysis

Does not hide data

0.15978 AES-128-ECB patterns well,

128-bit key size

Does not hide data

0.06375 AES-192-ECB patterns well,

192-bit key size

Does not hide data

0.02534 AES-256-ECB patterns well,

256-bit key size

Non-parallel encryption,

0.00998 AES-256-CBC 256-bit key size

Non-parallel encryption,

0.00383 AES-256-CFB 256-bit key size,

No padding

Non-parallel encryption,

0.00138 AES-256-CFB-1 256-bit key size,

AES-256-CFB-8 Synchronizable,

No padding

Non-parallel encryption,

0.00039 AES-256-OFB 256-bit key size,

Synchronizable,

faster block cipher

operations

Parallel encryption,

0 AES-256-CTR 256-bit key size,

Synchronizable

the relevant advantages and disadvantages of each mode of operation are specified

in the third column of the table. Notice that the ciphers found in the table can be

subject to cryptanalysis and, after a successful attack, may be ruled out for use in

sensitive applications. Therefore, one of the advantages of this approach is that by

using tables such as Table 5.1, we are able to change them and update them ac-

79

Chapter 5. Resource and Security Provisioning on the Cloud

cording to the security requirements of our problem. Moreover, the security metrics

presented in [13, 14] are compatible with this methodology.

5.3.2 RA for Optimization

One of the goals of our approach is to calculate the optimal distribution of resources

among different users of IaaS while offering different levels of security. As discussed

earlier, the inherent randomness of the behavior of the cloud complicates the search

for an optimal solution. The ever increasing number of potential users and available

virtual resources motivates the implementation of a decentralized methodology.

Within the scope of SLA requirements between users and cloud service providers,

we propose to optimize the distribution of cloud resources based on the user needs,

while guaranteeing cost savings to the provider. In this section, an unconstrained

optimization problem is proposed based on the mathematical framework provided in

Section 5.2.

Performance Function

Let us assume that we have a set of Ñ users whose resources need to be optimized.

For the k-th user, we consider the following performance metrics for optimization,

Cµk = % of CPU utilization,

Mµk = % of memory utilization,

Tk = Total execution time of benchmark,

Wk = Hourly cost of instance usage.

with k = 1, . . . , Ñ .

80

Chapter 5. Resource and Security Provisioning on the Cloud

Let us define the parameter set,

Ψ = {inst-type-1, inst-type-2, . . . , inst-type-n1,

enc-cipher-1, enc-cipher-2, . . . , enc-cipher-n2,

volume-1, volume-2, . . . , volume-n3}.

which encompasses the set of instance types, security levels and volume (hard drive)

sizes available to the users to configure the required virtual resources. n1, n2 and n3

represent the number of instances, volume sizes and security levels available to the

users respectively.

With the possible exception of the processing time T ≥ 0, all the foregoing vari-

ables are upper and lower bounded by finite real numbers. It is reasonable to assume

an upper bound for T that may be statistically estimated by an RA for probabilis-

tic worst-case performance [31]. By defining upper and lower bounds for the ran-

dom variables, we are able to calculate the normalized versions, Cµk ,Mµk , T k,W k ∈

[0, 1] ⊂ R.

Next, let us define the random vector,

λk =
(

Cµk ,Mµk , T k,W k

)T
∈ Λ,

and propose the following performance function Jk(λ,ψ) = Jk for the k-th user,

Jk =
1

5
E
{

α1kCµk+α2kMµk+α3kT k+α4kSk+α5kW k

}

, (5.7)

then, we define the performance vector function,

J = (J1, . . . , JN)
T , (5.8)

where α1k , . . . , α5k ∈ [0, 1] correspond to the weights given to the variables based on

the SLA requirements of the k-th client in the cloud.

81

Chapter 5. Resource and Security Provisioning on the Cloud

Remark 9 The proposed optimization method aims at maximizing security while

minimizing the remaining metrics in (5.7) at the users’ convenience. This implies

that the minimization of the security metric should decrease as the security perfor-

mance improves. This goes according to the organization of the metrics in Table

5.1.

Remark 10 Note that the minimization of Cµk does not imply the minimization of

Mµk , since some benchmark problems that affect CPU performance do not necessarily

affect memory usage and vice-versa.

Remark 11 It is expected that Cµk and Mµk are inversely proportional to T k, so

the weights αjk , j = 1 . . . 5, would determine whether minimizing Cµk and Mµk is

more important than minimizing T k based on the user’s needs.

The RA to optimize performance and provision security is described in Algorithm

4. It is entirely based on Corollary 3.

Algorithm 4 Performance and Security Optimization

Define: J : Λ×Ψ→ [0, 1]

Calculate: n(Ψ)← ñC , ñC ≤ nC ⊲ Cardinality of ψ

Define: ǫ1, ǫ2, δ ∈ (0, 1)

1: M2 ←
ln

2nC
δ

ln 1
1−ǫ2

⊲ According to Corollary 3

2: M1 ←
ln

4M2
δ

2ǫ21

3: ψ ← randSamples(M1) ⊲ Draw M1 samples of ψ

4: λ← randSamples(M2) ⊲ Draw M2 samples of λ

5: return ψ̂M1M2
← arg min

i=1,...,M2

1
M1

∑M1

k=0 J(λ
(k),ψ(i))

82

Chapter 5. Resource and Security Provisioning on the Cloud

5.3.3 Heuristics for Execution Time Reduction

One of the main issues related to the implementation of optimization algorithms for

virtual resources is the boot time of the instances. Very often, when carrying out

hardware configurations for performance tests in the cloud, the instances should be

stopped and restarted, e.g., to attach and detach volumes.

Moreover, in order to gather performance measurements, such as CPU and mem-

ory usage, we need to have access to system information files. The acquisition and

processing of these files produce an additional workload on the system, i.e., by mea-

suring the performance of the instances in the cloud, we are affecting the same

performance we are trying to measure. In order to reduce the perturbations in the

performance of the system, the measurements should be taken at a low frequency

rate. Taking the number of samples given by (5.3) and (5.4) may take prolonged

times at the typical sample frequency of 1 Hz adopted by most system monitor tools

[71, 72], as the accuracy and confidence requirements become more stringent.

Given the aforementioned prolonged implementation times, we propose a heuristic

algorithm to reduce the duration of the optimization. The idea behind this approach

consists of taking performance measures in parallel based on the availability of the

resources and their combinations. Let us illustrate its operation through an example.

Example: Execution Time Reduction

Let us assume that one user whose virtual resources are to be tested has three

different instance types, three different volume sizes and ten security levels available.

Every instance, volume and security levels are indexed by integer numbers starting

from zero, e.g., the three volume sizes are indexed by i = 0, 1, 2. Let us assume that

we need to test seven random samples, and after we draw them we get the following

sequence {020, 120, 120, 219, 210, 200, 107}.

83

Chapter 5. Resource and Security Provisioning on the Cloud

The three numbers at each value encode the index of the three available resources,

i.e., 219 means that the instance type with index 2, the volume size with index 1 and

the security level with index 9 are the instance configuration selected to be tested.

Furthermore, notice that if the values in the random sequence are evaluated one at

a time and in the order they appear, we can make the following observations:

1. To test each instance configuration we need at least 7 cycles of the algorithm.

2. During the first change of configuration which goes from 020 to 120 in the

random sequence, volume 2 which is associated with instance 0 should be de-

tached and attached to instance 1. With the current infrastructure of cloud

services, this is only possible by stopping the instance before the detachment is

carried out. The time to reboot may take up to several minutes and, based on

the random sequence in the example, the instances should reboot three more

times.

3. Note that the security level depends on the software configuration of the in-

stance and not on the hardware, therefore, the change of security levels does

not determine the reboot of instances.

After the random sequence is generated, Algorithm 6 in Appendix C organizes

the samples in the matrix-like disposition illustrated in Fig. 5.1, and which we refer

to as configuration matrix from now on. The index of each position corresponds to

the indexes of the instance type and the volume size, e.g., the numbers 210 and 219

are located in the position 21 of the matrix. The index of the security levels is not

considered in the configuration matrix because, as pointed out before, it does not

affect the hardware configuration of the instance.

The algorithm explores the entries of the matrix one row at a time from left to

right and from top to bottom. Therefore, the first configuration to be tested would

84

Chapter 5. Resource and Security Provisioning on the Cloud

Figure 5.1: Example step 1. The available configurations 020, 107 and 210 (encircled)
block the selection of the adjacent remaining entries (highlighted).

be 020. Since the instance type 0 and the volume size 2 have been assigned for

testing, then all the entries in row 0 and in column 2 cannot be selected as shown in

Fig. 5.1. Continuing with the exploration of the matrix we find that the first entry

that is available is the one with index 10, hence, the configuration 107 is selected

for testing. This choice automatically blocks the selection of all remaining entries

located in row 1 and in column 0. Searching available configurations we find that

the entry with index 21 is available, therefore, configuration 210 is chosen. Note that

configuration 219 cannot be used along with 210, however, since they share exactly

the same resources, switching between both tests would not require instance reboot.

Now, we are ready to compute the configurations to be assessed in the next

cycle. First of all, we proceed to discard the configurations that have been tested as

indicated by the entries that appear crossed out in Fig. 5.2. Therefore, we search for

85

Chapter 5. Resource and Security Provisioning on the Cloud

Figure 5.2: Example step 2. The previously selected configurations are discarded
(crossed out) and the new available ones are 115 and 200.

an available configuration which turns out to be the entry with index 11, therefore,

the selected configuration is 115. This selection blocks the entry whose index is 12.

After that, the entry with index 20 is available and is selected to be assessed in the

third cycle of our RA.

Finally, we proceed to discard the instance configurations that have been pre-

viously chosen for evaluation as indicated in Fig. 5.3. For the fourth cycle of our

algorithm, the only instance configuration available is the one in the entry indexed

12, namely, 120 which should be tested twice. Note that instance reboot is not

required this time either.

The sequence of configurations to be tested by the RA is shown in Table 5.2.

By using the heuristic algorithm, we have reduced the number of cycles from 7 to

5, and the number of instance reboots from 4 to 2. As it will be illustrated in the

86

Chapter 5. Resource and Security Provisioning on the Cloud

experimental section, as the number of available resources increases, this algorithm

becomes more efficient in reaching reductions of the required number of cycles of up

to 63.91%. The pseudo-code of the heuristic algorithm for execution time reduction

is shown in Algorithm 6 in Appendix C.

Table 5.2: Example: Number of cycles
of Algorithm 6 and Instance Configu-
rations

Cycle Instance Configurations

1: 020 107 210

2: 219

Reboot Instances

3: 115 200

Reboot Instances

4: 120

5: 120

5.4 Experimental Verification

To verify our approach we proceed to carry out experiments by using the AWS EC2

service. We emulate three simultaneous users who have different requirements for

IaaS. Each user may choose between five different instance types, namely, t2.micro,

t2.small, t2.medium, m3.medium and m3.large. The technical specifications of each

instance can be found in [73]. Furthermore, each user has access to the set of encryp-

tion ciphers listed on Table 5.1 and to ten volume sizes containing the root partition

of the instances, namely, 12 GB, 14 GB, 16 GB, . . . , 30 GB.

To test the performance of each instance, every volume should be previously

configured to run their required benchmarks. To emulate this environment we have

87

Chapter 5. Resource and Security Provisioning on the Cloud

Figure 5.3: Example step 3. The previously selected configurations are discarded
and the repeated configuration 120 is the last available one.

prepared an AWS EC2 snapshot with an installation of Ubuntu Server 14.04 LTS,

64 bits. The system is provided with an installation of the Java SE Runtime Envi-

ronment to be able to run the dacapo benchmark suite [74]. This suite incorporates

a set of applications with non-trivial memory loads oriented to benchmarking. Since

the encryption process affects the general performance of the instance as well, we

propose to test security and performance at the same time. This is carried out by

encrypting a large file, in this particular case a set of DVD movies (4.7 GB) that

are previously stored in the snapshot. The security levels require the installation of

OpenSSL [75] which has a full-strength general purpose cryptography library. All the

cryptographic ciphers listed on Table 5.1 are available in such a library. Thus, while

the system is carrying out the evaluation of performance by running the benchmark

problem, the system would be encrypting the DVD files with the selected cipher, pro-

viding the desired level of security and the required measurements of performance

88

Chapter 5. Resource and Security Provisioning on the Cloud

listed in Section 5.3.2.

Every instance is in charge of measuring its own performance by running a script

developed in Python [76]. Such a script accesses two system files, namely, /proc/stat

to calculate the CPU utilization and /proc/meminfo to calculate memory utilization.

These measurements are taken according to Corollary 3 at a frequency of 1 Hz and

then sent to text files. The execution time of the benchmark is extracted from the

output of the dacapo benchmark suite. Once all this information is formatted by the

python script the probabilistic resource optimization is carried out.

Up to this point, we have assumed that instances, volumes and security levels

are somehow configured to work together and form a virtual resource able to run all

the applications for performance measurement. However, every client should be able

to test different configurations and get measurements. This is carried out through

the Boto SDK for AWS [77], which provides APIs with capacities for launching a

variety of instances, creating customized volumes based on preconfigured snapshots

and allowing the attachment of volumes to instances as required, while exploiting

the benefits of Python scripts and libraries.

5.4.1 Experimental Results

In this section, we provide experimental results involving three users with different

performance requirements. For our first experiment, we carry out the optimization

of (5.7) and (5.8) assuming that the k-th users do not have concerns about neither

security Sk nor hourly cost W k with k = 1, 2, 3. Table 5.3 illustrates the priority

coefficients for all three users.

89

Chapter 5. Resource and Security Provisioning on the Cloud

Table 5.3: Coefficients for Multi-objective Function in Experiments

Coefficients User1 User2 User3

Experiment # 1

(k = 1) (k = 2) (k = 3)

α1k 1 0 0

α2k 0 1 0

α3k 0 0 1

α4k 0 0 0

α5k 0 0 0

Experiment # 2

α1k 1 0 0

α2k 0 1 0

α3k 0 0 1

α4k 0.05 0.05 0.05

α5k 0 0 0

Experiment # 3

α1k 1 0 0

α2k 0 1 0

α3k 0 0 1

α4k 0.05 0.05 0.05

α5k 0.1 0.1 0.05

Experiment # 1

From Table 5.3 and from (5.7), we conclude that for User1 the priority is exclusively

the minimization of the CPU utilization. For User2 what matters is to minimize the

memory utilization. Finally, User3 aims at the minimization of the execution time

of the benchmark problem.

Based on Corollary 3, given accuracy ǫ1 = ǫ2 = 0.05 and confidence 1− δ = 0.95

90

Chapter 5. Resource and Security Provisioning on the Cloud

we getM1 = 1, 930 andM2 = 194. With our heuristic algorithm the number of cycles

is reduced from 194 to 77, a reduction of 60.3%, with only 11 reboots of the tested

instances during the entire experiment. Since the sampling rate of the performance is

1 Hz, then, by neglecting the reboot times, the total experiment lasted approximately

41.28 hr.

Based on Fig. 5.4, User1 (dotted green line) is the only one whose priority is

to minimize Cµ1 , hence exhibiting the best CPU utilization in the plot. Memory

utilization is illustrated in Fig 5.5, which according to Table 5.3 is optimized only

by User2 (dashed blue line). Note that since User2 assigns no priority to the storage

security the instance does not carry out file encryption. User3 (solid red line) is the

only one for whom the execution time of the benchmark is the priority. Note from

Fig. 5.4 and 5.5 that the red line abruptly decays at 474s indicating that User3

is able to finish the benchmark problem first, however, at a high cost of the CPU

and memory utilization. Finally, the optimal performance functions Jk(λ, ψ
∗) with

k = 1, 2, 3 are shown in Fig 5.6.

Experiment # 2

Our second experiment includes the level of security Sk of the instances. A weight of

α4k = 0.05 has been added to the performance function of each user. As illustrated in

Fig. 5.7 and 5.8, the results are consistent with Experiment # 1, i.e., User1 continues

to get the best CPU performance, User2 obtains the best average memory usage and

User3 gets the best execution time. However, User2 and User3 have changed from

No encryption to a couple of intermediate encryption ciphers, namely, AES-256-

CFB1 and AES-256-ECB as indicated in the plot legend. This is coherent with

the increase in security that was requested by the user. In this case, the heuristic

algorithm reduced the number of cycles from 194 to 72, a reduction of 62.88%. The

number of total instance reboots was 13. The plot of the performance functions for

91

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500
0

20

40

60

80

100

120

Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, No encryption,20 GB,m3.large

User
3
, No encryption,28 GB,t2.small

Figure 5.4: CPU utilization for all three users in Experiment # 1.

all three users is shown in Fig. 5.9.

Experiment # 3

Finally, we assume that all users decided to incorporate the hourly cost of the in-

stances in the optimization problem. Therefore, the weights shown in Table 5.3 have

been added to the performance function. From Fig. 5.10 and 5.11 we get that the

inclusion of these coefficients was enough to change the instances initially used by

User2 fromm3.large to t2.medium. User3 changed from instance t2.small to t2.micro.

In both cases, the hourly cost was reduced as expected. However, the variables con-

sidered in the performance function can be conflictive, and as expected, the cost

reduction of the instances affects the CPU and memory performance. This is clearly

visible in Fig. 5.11, where in spite of the good performance of User2’s average mem-

ory usage in the experiment, it seems to be surpassed by User1’s performance after

92

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500
1

2

3

4

5

6

7

Time (s)

M
em

or
y

U
til

iz
at

io
n

(%
)

 User
1
, −AES−256−CFB,12 GB,t2.medium

User
2
, No encryption,20 GB,m3.large

User
3
, No encryption,28 GB,t2.small

Figure 5.5: Memory utilization for all three users in Experiment # 1.

1103s. Fig. 5.12, shows the optimal performance for all users.

5.5 Conclusions

In this chapter, we have presented a formal mathematical approach to optimally

distribute virtual resources in the cloud between a set of users. This novel technique

uses the notion of tail probabilities and sample complexity to determine bounds of

probability that a random variable, with a non-compact pdf, takes a value in the tail

of the distribution far from the mean.

Some theoretical results that provide the sample complexity to solve an optimiza-

tion algorithm given certain accuracy ǫ and confidence 1 − δ, with ǫ, δ ∈ (0, 1) have

been provided. Moreover, we introduced a heuristic algorithm for the parallelization

of the optimization process given the sometimes prohibitive number of iterations that

93

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

Time (s)

P
er

fo
rm

an
ce

 fu
nc

tio
n

J(
λ,

ψ
)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, No encryption,20 GB,m3.large

User
3
, No encryption,28 GB,t2.small

Figure 5.6: Optimal performance functions Jk(λ, ψ
∗) for all three users in Experiment

1.

may be obtained from the sample complexity analysis.

Security has been introduced as part of the virtual resources to be optimized.

This approach proposes a security metric consisting of an ordered classification of

cryptographic algorithms based on their key-length, their capacity of hiding identifi-

cation patterns, their immunity to cryptanalysis, the parallelization of the algorithm

and their capacity of overcoming errors. Furthermore, this approach is compatible

with the security metrics presented in [13, 14].

This approach has been implemented and tested in the AWS EC2 cloud, which

is a commercial cloud widely used around the world. The results have been verified

showing that this approach is able to optimize resources in open loop based on

measured performance. Its implementation reflects not only its applicability but its

compatibility with other closed-loop approaches.

94

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500
0

20

40

60

80

100

120

Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, −AES−256−CFB1,28 GB,m3.large

User
3
, −AES−256−ECB,24 GB,t2.small

Figure 5.7: CPU utilization for all three users in Experiment # 2.

Furthermore, since every instance runs its own optimization problem, this ap-

proach is decentralized and therefore, scalable. The scalability of the algorithm is

not affected by the number of users to be considered during the optimization because

RAs are independent of the dimension of the performance function vector J.

Finally, this approach is compatible with closed-loop regulators previously pro-

posed in the literature. Typical approaches involve model identification to adjust

the parameters of the controller online while keeping the system stable. Our RA

is able to provide optimal reference values or configurations to be regulated by the

closed-loop controller.

95

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500
1

2

3

4

5

6

7

Time (s)

M
em

or
y

U
til

iz
at

io
n

(%
)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, −AES−256−CFB1,28 GB,m3.large

User
3
, −AES−256−ECB,24 GB,t2.small

Figure 5.8: Memory utilization for all three users in Experiment # 2.

0 500 1000 1500
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Time (s)

P
er

fo
rm

an
ce

 fu
nc

tio
n

J(
λ,

ψ
)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, −AES−256−CFB1,28 GB,m3.large

User
3
, −AES−256−ECB,24 GB,t2.small

Figure 5.9: Optimal performance functions Jk(λ, ψ
∗) for all three users in Experiment

2.

96

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500
0

20

40

60

80

100

120

Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, −AES−256−CFB1,16 GB,t2.medium

User
3
, −AES−256−CTR,14 GB,t2.micro

Figure 5.10: CPU utilization for all three users in Experiment # 3.

0 500 1000 1500
2

3

4

5

6

7

8

9

10

11

12

Time (s)

M
em

or
y

U
til

iz
at

io
n

(%
)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, −AES−256−CFB1,16 GB,t2.medium

User
3
, −AES−256−CTR,14 GB,t2.micro

Figure 5.11: Memory utilization for all three users in Experiment # 3.

97

Chapter 5. Resource and Security Provisioning on the Cloud

0 500 1000 1500

0

0.05

0.1

0.15

0.2

0.25

Time (s)

P
er

fo
rm

an
ce

 fu
nc

tio
n

J(
λ,

ψ
)

User

1
, −AES−256−CFB,12 GB,t2.medium

User
2
, −AES−256−CFB1,16 GB,t2.medium

User
3
, −AES−256−CTR,14 GB,t2.micro

Figure 5.12: Optimal performance functions Jk(λ, ψ
∗) for all three users in Experi-

ment # 3.

98

Chapter 6

Concluding remarks, future work

and recommendations

We have presented novel theoretical solutions to the problem of regulation and op-

timization of performance in computing systems. We have covered four case studies

with different levels of complexity, namely, a) optimization and regulation of through-

put and average system time in many-core processors, b) optimization and regulation

of throughput in multitier servers, c) stability of a market-oriented cloud model, and

d) optimization of CPU and memory utilization, hourly cost and security provision-

ing in IaaS in the cloud.

Our approach consists of two stages, namely, an open-loop optimizer and a closed-

loop regulator. The optimizer is based on the implementation of an RA to calculate

the optimal performance based on the specific requirements of the problem. The

closed-loop regulator is based on IPA and keeps the performance measure in the

vicinity of the optimal performance calculated by the open-loop optimizer.

99

Chapter 6. Concluding remarks, future work and recommendations

6.1 Performance Optimization and Regulation for

Many-Core Processors

6.1.1 Concluding Remarks

In the many-core processor problem, we used the out-of-order processor model previ-

ously proposed in [17] and calculated the IPA expressions to estimate the derivatives

of the average system time and average waiting time. Furthermore, we provided the

mathematical background and conditions for the implementation of the RA-based

optimizer. We validated our theoretical approach by carrying out a simulation of four

cores interacting with a slower peripheral using MatlabR©. In order to reduce the wait

states, and therefore the power consumption of the microprocessor we proposed a

multi-objective function which minimized the throughput, the average system time

and average waiting time of each core independently. After the optimal frequency

and the optimal performance values were calculated, the IPA-based regulator kept

the many-core processor regulated to linear combinations of the aforementioned per-

formance metrics. The system remained regulated even when affected by statistical

changes of its dynamics due to simulated variations of the running benchmark.

6.1.2 Future Work and Recommendations

• The simulation results that have validated the incorporation of statistical learn-

ing theory, as well as the addition of the average system time and average

waiting time regulation were obtained using MatlabR©. However, by carrying

out simulations using highly detailed microprocessor simulators such as Zesto

[78], recently incorporated to Manifold [79], the results will provide meaningful

insights about the real behavior of the many-core processors due to variations

of frequency and its repercussions over the power consumption of the system.

100

Chapter 6. Concluding remarks, future work and recommendations

• Although complex in nature, the experimental implementation of a many-core

processor architecture for validation is possible by using reconfigurable hard-

ware, such as Field Programmable Gate Arrays (FPGAs) [80]. This imple-

mentation will provide really conclusive results about the applicability of our

theoretical approach.

6.2 Performance Optimization and Regulation for

Multitier Servers

6.2.1 Concluding Remarks

In the multi-tier case study, we used the queueing network model proposed in [52].

We present some additional mathematical assumptions and conditions to guarantee

the unbiasedness of the IPA algorithm in order to estimate the derivative of the

throughput of a multi-tier server. In this case, the open-loop optimizer calculated

the optimal average service rate parameters of each server to guarantee that the

IPA-based regulator was not affected by the low values of the service rates at the

output of each tier. After the optimization process was carried out, the closed-loop

regulator controlled the average service rate parameter of the front-end tier in order

to regulate the throughput around a reference value assumed to be given a priori.

Our algorithm was successfully simulated using MatlabR©, showing that the system

was able to optimize and regulate the performance of a three-tier server, even when

the system was subject to statistical variations of its nominal parameters.

101

Chapter 6. Concluding remarks, future work and recommendations

6.2.2 Future Work and Recommendations

• Several simplifications have been proposed in order to satisfy the mathematical

conditions to guarantee unbiased IPA estimators. However, based on [52], the

model may be enhanced to support contention control, load balancing and pro-

cessor sharing [52]. With the implementation of queues with finite capacity, as

well as load balancers and multiple servers per queue the queueing network is

not guaranteed to satisfy the conditions for unbiased IPA estimates. However,

even if the theoretical analysis is not viable, the current simulation results are

limited by the stringent assumptions imposed over the model. Therefore, em-

pirical simulation results involving the aforementioned modifications are worth

to be carried out in order to explore further the applicability of our theoretical

approach.

• Contention control is compatible with our proposed open-loop optimizer. The

performance requirements can be easily adapted to the multi-objective function

to guarantee the required performance measures based on the MPL. Therefore,

a natural step forward once the queues with finite capacity have been incor-

porated to the model is the implementation of contention control in open loop

using RAs.

6.3 Market-oriented CloudModel with Time-varying

Workload

6.3.1 Concluding Remarks

In the cloud computing case, we proceeded to enhance the passivity analysis proposed

in [1]. Some sufficient conditions have been introduced to guarantee that the passivity

102

Chapter 6. Concluding remarks, future work and recommendations

approach is valid in this context, and to correct the fact that an additional sufficient

condition was required in order to guarantee that the system is asymptotically stable

and ISS. The results have been verified by carrying out simulations in MatlabR©.

6.3.2 Future Work and Recommendations

• Although this is a conceptual chapter, in principle, the approximated broker-

server model may be implemented as an application running in the cloud.

Therefore, we recommend to carry out the actual implementation of the dy-

namics of the brokers and servers described in [1] and [33] to verify their capa-

bilities and services.

6.4 Optimal Performance and Security Provision-

ing in the Cloud

6.4.1 Concluding Remarks

In the problem of optimization of performance in the cloud, we only implemented the

open-loop optimizer. Different to the previous cases, the RA of the optimizer is based

on sample complexity of finite families. We provided some additional theoretical

results that defined the steps of RA for this case study. For each client in the cloud,

the performance metrics considered in the cost function were the CPU and memory

utilization, the hourly cost of the instance, the volume size and the security level. We

defined our security metric based on the performance of ten different cryptographic

cyphers for data storage. This approach was validated through experiments carried

out using AWS EC2. The system was able to satisfy the requirements given by the

emulated users in a decentralized fashion. Although the possibility of implementing

103

Chapter 6. Concluding remarks, future work and recommendations

an IPA-based closed-loop regulator is hindered by the coarse-grained granularity

of the controllable parameters, this approach is compatible with the closed-loop

approaches presented in [60, 61, 62].

6.4.2 Future Work and Recommendations

• The measure of security using cryptographic cyphers that was implemented in

our case study may be modified by implementing the security level agreements

proposed in [13, 14]. This approach incorporates additional cloud security

levels that are expected to prove the viability of our optimization process under

different security metrics.

• The experimental verification of our approach should be carried out with a

larger number of clients in the cloud. The main purpose of these experiments

is to prove that the scalability of the algorithm is not highly affected by the

increase on the number of clients.

• The exploration of constrained optimization problems to improve the perfor-

mance of the heuristic algorithm for execution time reduction may be carried

out. Notice that by assuming that the optimization problem can be decom-

posed into subproblems, allows the potential implementation of a dynamic

programming approach [81] in order to optimally reduce execution time.

104

Appendices

Event Time Derivatives for Three-Tier Servers 106

Recalculation of û(k) for Market-oriented Cloud 108

Heuristic Execution Time Reduction for Security and Performance

Optimization in the Cloud 110

105

Appendix A

Event Time Derivatives for

Three-Tier Servers

The pseudo-code shown in Algorithm 5, illustrates the steps to carry out the event-

time derivatives of the lifetimes associated to the three-tier problem with respect to

µ1. This three-tier problem is explained in Section 3.3.2.

106

Appendix A. Event Time Derivatives for Three-Tier Servers

Algorithm 5 Event time derivative for three-tier servers w.r.t µ1.
Initial state x1 ← 0, x2 ← 0, x3 ← 0, then event a is feasible and ∆a ← 0

Events d10, d12, d21, d23 and d32 are unfeasible,

then, ∆d10 ← 0,∆d12 ← 0,∆d21 ← 0,∆d23 ← 0,∆d32 ← 0

1: while Queueing network is in execution do

2: if Event a is observed ∧ x1 = 0 then

3: ∆d10 ← ∆a +
dVd10
dµ1

4: ∆d12 ← ∆a +
dVd12
dµ1

5: end if

6: if Event d10 is observed then

7: ∆a ← ∆d10

8: ∆d10 ← ∆d10 +
dVd10
dµ1

9: ∆d12 ← ∆d10 +
dVd12
dµ1

10: end if

11: if Event d12 is observed then

12: ∆d10 ← ∆d12 +
dVd10
dµ1

13: ∆d12 ← ∆d12 +
dVd12
dµ1

14: if x2 = 0 then

15: ∆d21 ← ∆d12

16: ∆d23 ← ∆d12

17: end if

18: end if

19: if Event d21 is observed then

20: ∆d23 ← ∆d21

21: if x1 = 0 then

22: ∆d10 ← ∆d21 +
dVd10
dµ1

23: ∆d12 ← ∆d21 +
dVd12
dµ1

24: end if

25: end if

26: if Event d23 is observed then

27: ∆d21 ← ∆d23

28: if x3 = 0 then

29: ∆d32 ← ∆d23

30: end if

31: end if

32: if Event d32 is observed ∧ x2 = 0 then

33: ∆d21 ← ∆d32

34: ∆d23 ← ∆d32

35: end if

36: end while

107

Appendix B

Recalculation of û(k) for

Market-oriented Cloud

In order to satisfy the sufficient conditions derived from the passivity approach in [1]

some adjustments must be carried out in (4.5). By using the storage function (4.8)

and assuming that projection in (4.3) is inactive the first difference of (4.8) gives,

∆V2 ≤ ξT (k + 1)Pξ(k + 1)− ξT (k)Pξ(k)

= ξT (k)(ATPA− P)ξ(k) + 2ξTATPBŷ(k)

+ŷ(k)BTPBŷ(k)

= 2ξTATPBŷ(k) + ŷ(k)BTPBŷ(k)

= 2σb(k)ŷ(k)− σs(k)ŷ(k) + σŷ2(k)

≤ 2σb(k)ŷ(k) + 2σs(k)ŷ(k) + σŷ2(k)

= û1(k)ŷ(k).

with,

û1(k) = 2σb(k) + 2σs(k) + σŷ(k).

108

Appendix B. Recalculation of û(k) for Market-oriented Cloud

Now, using the same storage function but assuming that the projection in (4.3)

is active we obtain,

∆V2 ≤ σ(σ − 1)(s(k)− b(k))2 + 2σb(k)ŷ(k)

+2σs(k)ŷ(k)

≤ 2σb(k)ŷ(k) + 2σs(k)ŷ(k) + σŷ2(k)

= û1(k)ŷ(k).

and the server system is still passive with the output (4.13).

109

Appendix C

Heuristic Execution Time

Reduction for Security and

Performance Optimization in the

Cloud

The pseudo-code shown in Algorithm 6, shows the steps carried out by our heuris-

tic algorithm to reduce the execution times of the experiments in the cloud. This

algorithm is explained in Section 5.3.3.

110

Appendix C. Heuristic Execution Time Reduction for Security and Performance Optimization in the

Algorithm 6 Heuristics for Reduction of Execution Time
npar, nsamp ⊲ Number of parameters and samples

ninst, nvol, nsec ⊲ Number of available resources

1: inst[:]← int(ninst ∗ rand(npar)) ⊲ Ind. for instances

2: vol[:]← int(nvol ∗ rand(npar)) ⊲ Ind. for volume size

3: sec[:]← int(nsec ∗ rand(npar)) ⊲ Ind. for sec. levels

4: ind[:][0]← inst[:] ⊲ Array of arrays for indices ind

5: ind[:][1]← vol[:]

6: ind[:][2]← sec[:]

7: M [:][:]()← 0 ⊲ Configuration matrix

⊲ The entries are arrays indexed by ()

8: Ma[:][:]← ’avail’ ⊲ indicator matrix for available instances

9: seq[]()← [] ⊲ Output array of arrays with reduced cycles

10: for i← 0; i < ninst; i
++ do ⊲ Building the configuration matrix

11: for j ← 0; j < nvol; j
++ do

12: M [i][j](:)← ind [find (ind[:][0] = i and ind[:][1] = j)][:] ⊲ Locating seq. in M according to inst and vol

13: end for

14: end for

15: k ← 0

16: while M [:]: 6= 0 do ⊲ Building the output seq[]()

17: for i← 0; i < ninst; i++ do

18: for j ← 0; j < nvol; j
++ do

19: if M [i][j]() 6= 0 and Ma[i][j] = ’avail’ then ⊲ Condition for available instance

20: for m← 0;m < len(M [i][j]);m++ do

21: seq[k](l)←M [i][j](m)

22: if len(M [i][j]) > 1 then

23: k++

24: l← 0

25: end if

26: end for

27: M [i][j]← 0 ⊲ Discarding conf. from M

28: Ma[i][:]← ’unavail’ ⊲ Blocking row

29: Ma[:][j]← ’unavail’ ⊲ Blocking column

30: l++

31: end if

32: end for

33: end for

34: k++

35: l← 0

36: Mava[:][:]← ’avail’ ⊲ Resetting Mava

37: end while

38: return seq:

111

References

[1] M. D. Lemmon, “Towards a passivity framework for power control and response
time management in cloud computing,” in Proceedings of the International
Workshop on Feedback Computing, San Jose, CA, September 2012.

[2] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu, “Introduction
to control theory and its application to computing systems,” in Performance
Modeling and Engineering. Springer, 2008, pp. 185–215.

[3] C. Poussot-Vassal, M. Tanelli, and M. Lovera, “Linear parametrically varying
mpc for combined quality of service and energy management in web service
systems,” in Proceedings of the American Control Conference (ACC-2010), Bal-
timore, MD, June 2010, pp. 3106–3111.

[4] Z. Wang, N. Tolia, and C. Bash, “Opportunities and challenges to unify work-
load, power, and cooling management in data centers,” in Proceedings of the
ACM International Workshop on Feedback Control Implementation and Design
in Computing Systems and Networks (Febid-2010), Paris, April 2010, pp. 1–6.

[5] D. Hilley, “Cloud computing: A taxonomy of platform and infrastructure-level
offerings,” Georgia Institute of Technology, Tech. Rep., April 2009.

[6] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing performance
interference effects for qos-aware clouds,” in Proceedings of the ACM European
Society in Systems Conference 2010, Paris, France, April 2010, pp. 237–250.

[7] B. D. Chung, H. Jeon, and K.-K. Seo, “A framework of cloud service quality
evaluation system - focusing on security quality evaluation,” International Jour-
nal of Software Engineering and its Applications, vol. 8, no. 4, pp. 41–46, May
2014.

[8] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future
Generation Computer Systems, vol. 28, no. 3, pp. 583–592, 2012.

112

References

[9] B. R. Kandukuri, V. R. Paturi, and A. Rakshit, “Cloud security issues,” in
IEEE International Conference on Services Computing (SCC-09), Bangalore,
India, September 2009, pp. 517–520.

[10] S. Pearson and A. Benameur, “Privacy, security and trust issues arising from
cloud computing,” in IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom-2010), Indianapolis, IN, November 2010, pp.
693–702.

[11] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra, “Control-
ling quality of service in multi-tier web applications,” in IEEE International
Conference on Distributed Computing Systems (ICDCS-2006), 2006, pp. 25–32.

[12] M. Dekker and G. Hogben, “Survey and analysis of security parameters
in cloud slas across the european public sector,” 2011. [Online].
Available: http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-
computing/survey-and-analysisof-security-parameters-in-cloud-slas-across-the-
european-public-sector

[13] J. Luna, H. Ghani, T. Vateva, and N. Suri, “Quantitative assessment of cloud
security level agreements: A case study,” Rome, Italy, July 2012.

[14] J. Luna, R. Langenberg, and N. Suri, “Benchmarking cloud security level agree-
ments using quantitative policy trees,” in Proceedings of the ACM Workshop on
Cloud computing security, Raleigh, NC, October 2012, pp. 103–112.

[15] J. M. Luna and C. T. Abdallah, “Control in computing systems: Part i,”
in IEEE International Symposium on Computer-Aided Control System Design
(CACSD-2011), Denver, CO, September 2011, pp. 25–31.

[16] ——, “Control in computing systems: Part ii,” in IEEE International Sympo-
sium on Computer-Aided Control System Design (CACSD-2011), Denver, CO,
September 2011, pp. 32–36.

[17] N. Almoosa, W. Song, Y. S. Yalamanchili, and Y. Wardi, “Throughput regu-
lation in multicore processors via ipa,” in Proceedings of the American Control
Conference (ACC-2012), Montreal, June 2012, pp. 7267–7272.

[18] N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili, “A power capping con-
troller for multicore processors,” in Proceedings of the American Control Con-
ference (ACC-2012), Montreal, 2012, pp. 4709–4714.

[19] Y. Zhang, Y. Wang, and X. Wang, “Capping the electricity cost of cloud-scale
data centers with impacts on power markets,” in Proceedings of the International

113

References

Symposium on High Performance Distributed Computing, San Jose, CA, June
2011, pp. 271–272.

[20] Z. Wu, C. Giles, and J. Wang, “Classified power capping by network distribution
trees for green computing,” Cluster computing, vol. 16, no. 1, pp. 17–26, 2013.

[21] H. Yuan, C.-C. Kuo, and I. Ahmad, “Energy efficiency in data centers and cloud-
based multimedia services: An overview and future directions,” in International
Green Computing Conference, Chicago, IL, August 2010, pp. 375–382.

[22] Z. Abbasi, T. Mukherjee, G. Varsamopoulos, and S. K. S. gupta, “Dynamic
hosting management of web based applications over clouds,” in Proceedings
of the International Conference on High Performance Computing, Tempe, AZ,
December 2011, pp. 1–10.

[23] J. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of
Computing Systems. John Wiley & Sons, 2004.

[24] G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz, “Topology-aware resource
allocation for data-intensive workloads,” in Proceedings of the ACM Asia-Pacific
Workshop on Systems (ApSys-2010), New Delhi, India, August 2010, pp. 1–6.

[25] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mis-
tral: Dynamically managing power, performance, and adaptation cost in cloud
infrastructures,” in IEEE International Conference on Distributed Computing
Systems (ICDCS-2010), Genoa, June 2010, pp. 62–73.

[26] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.

[27] C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G. Payaniotou, “Per-
turbation analysis for on-line control and optimization of stochastic fluid mod-
els,” IEEE Transactions on Automatic Control, vol. AC-47, no. 8, pp. 1234–
1248, 2002.

[28] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York: Springer, 2008.

[29] Y. Wardi and C. Seatzu, “Infinitesimal perturbation analysis of stochastic hybrid
systems: Application to congestion management in traffic-light intersections,”
arXiv preprint arXiv:1407.7200, 2014.

[30] C. Seatzu and Y. Wardi, “Performance regulation via integral control in a class
of stochastic discrete event dynamic systems,” in Proceedings of the IFAC/IEEE
Workshop on Discrete Event Systems, Cachan, France, May 2014, pp. 259–264.

114

References

[31] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for Anal-
ysis and Control of Uncertain Systems, with Applications, 2nd ed. London:
Springer-Verlag, 2013.

[32] M. Vidyasagar, “Statistical learning theory and randomized algorithms for con-
trol,” IEEE Control Systems Magazine, vol. 18, pp. 69–85, 1998.

[33] J. M. Luna, C. T. Abdallah, and G. L. Heileman, “On the stability of a market-
oriented cloud computing model with time-varying workloads,” in International
Workshop on Feedback Computing, San Jose, CA, June 2013.

[34] ——, “Probabilistic resource optimization and security provisioning in the
cloud,” IEEE Transactions on Cloud Computing, 2014, submitted.

[35] G. Moore, “Cramming more components onto integrated circuits,” Proceedings
of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[36] R. Dennard, F. H. Gaensslen, V. L. R. Hwa-Nien Yu, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimen-
sions,” IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 38–50,
2007.

[37] M. Pedram and S. Nazarian, “Theral modeling, analysis and management in
vlsi circuits: Principles and methods,” Proceedings of the IEEE, vol. 94, no. 8,
pp. 1487–1501, August 2006.

[38] P. Bose, Encyclopedia of Parallel Computing. Springer US, 2011, ch.
Power Wall, pp. 1593–1608. [Online]. Available: http://link.springer.com/
referenceworkentry/10.1007%2F978-0-387-09766-4 499

[39] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,” in
IEEE Symposium on Low Power Electronics. Digest of Technical Papers, San
Diego, October 1994, pp. 8–11.

[40] T. D. Burd and R. W. Brodersen, “Energy efficient cmos microprocessor design,”
in Proceedings of the International Conference on System Sciences, Wailea, HI,
January 1995, pp. 288–297.

[41] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Formal online methods
for voltage/frequency control in multiple clock domain microprocessors,” ACM
SIGARCH Computer Architecture News, vol. 32, no. 5, pp. 248–259, 2004.

[42] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark, “Coordinated, dis-
tributed, formal energy management of chip multiprocessors,” in Proceedings of

115

References

the International Symposium on Low Power Electronics and Design (ISLPED-
2005), New York, 2005, pp. 127–130.

[43] Y. Zhu and F. Mueller, “Exploiting synchronous and asynchronous dvs for feed-
back edf scheduling on an embedded platform,” ACM Transactions on Embedded
Computing Systems, vol. 7, no. 1, pp. 3:1–3:26, December 2007.

[44] J. Suh and M. Dubois, “Dynamic mips rate stabilization in out-of-order proces-
sors,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3, 2009, pp.
46–56.

[45] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic
Systems. Boston: Kluwer Academic Publishers, 1991.

[46] C. G. Cassandras, Stochastic Hybrid Systems: Recent Developments and Re-
search Trends. New York: CRC Press, 2006, ch. Stochastic Flow Systems:
Modeling and Sensitivity Analysis, pp. 139–167.

[47] T. Alamo, R. Tempo, A. Luque, and D. R. Ramı́rez, “The sample complexity
of randomized methods for analysis and design of uncertain systems,” arXiv
preprint arXiv:1304.0678, 2013.

[48] S. Ball, Embedded Microprocessor Systems: Real World Design, 3rd ed. Newton,
MA, USA: Butterworth-Heinemann, 2002.

[49] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws
of diminishing returns,” in Proceedings of the Workshop on Power Aware Com-
puting and Systems (HotPower-2010), Vancouver, October 2010, pp. 1–8.

[50] L. Malrait, “Qos-oriented control of server systems,” in Proceedings of the In-
ternational Workshop on Feedback Control Implementation and Design in Com-
puting Systems and Networks, Paris, April 2010, pp. 16–21.

[51] C. Lu, X. Wang, and X. Koutsoukos, “Feedback utilization control in distributed
real-time systems with end-to-end tasks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 6, pp. 560–561, June 2005.

[52] B. Urgaonkar, G. Pacifi, P. Shenoy, M. Spreitzer, and A. Tantawi, “Analytic
modeling of multitier internet applications,” ACM Transactions on the Web,
vol. 1, no. 1, May 2007.

[53] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus,
“Using control theory to achieve service level objectives in performance man-
agement,” Real-Time Systems, vol. 23, no. 1-2, pp. 127–141, 2002.

116

References

[54] S. Ranjan, J. Rolia, H. Fu, and E. Knightly, “Qos-driven server migration for
internet data centers,” in IEEE International Workshop on Quality of Service,
2002, pp. 3–12.

[55] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers in the applica-
tion tier for e-commerce systems,” ACM Transactions on Internet Technology,
vol. 7, no. 1, p. 7, 2007.

[56] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Admission control
for web server systems-design and experimental evaluation,” in IEEE Conference
on Decision and Control (CDC-2004), vol. 1, 2004, pp. 531–536.

[57] M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed multichain queu-
ing networks,” Journal of the ACM, vol. 27, no. 2, pp. 313–322, 1980.

[58] P. Glasserman, Gradient estimation via perturbation analysis. Springer, 1991.

[59] H. Stark and J. W. Woods, Probability and random processes with applications
to signal processing. Upper Saddle River, N.J. Prentice Hall, 2002.

[60] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal,
“Application heartbeats: a generic interface for specifying program performance
and goals in autonomous computing environments,” in Proceedings of the inter-
national conference on Autonomic computing, Washington DC, June 2010, pp.
79–88.

[61] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva,
“Controlling software applications via resource allocation within the heartbeats
framework,” in Proceedings of the IEEE Conference on Decision and Control
(CDC-2010), Atlanta, GA, December 2010, pp. 3736–3741.

[62] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated control in cloud
computing: Challenges and opportunities,” in Proceedings of the Workshop on
Automatic Control for Datacenters and Clouds, New York, June 2009, pp. 13–18.

[63] J. V. Vliet and F. Paganelli, Programming Amazon EC2. Oŕeilly Media Inc.,
2011.

[64] J. Yao, X. Liu, X. Chen, X. Wang, and J. Li, “Online decentralized adaptive
optimal controller design of cpu utilization for distributed real-time embedded
systems,” in Proceedings of the American Control Conference (ACC-2010), Bal-
timore, MD, June 2010, pp. 283–288.

[65] R. Kulhavý, “Restricted exponential forgetting in real-time identification,” Au-
tomatica, vol. 25, no. 5, pp. 589–600, 1987.

117

References

[66] S. Subashini and V. Kavitha, “A survey on security issues in service deliv-
ery models of cloud computing.” Journal Network and Computer Applications,
vol. 34, no. 1, pp. 1–11, 2011.

[67] D. Chen and H. Zhao, “Data security and privacy protection issues in cloud com-
puting,” in Proceedings of the International Conference on Computer Science
and Electronics Engineering - (ICCSEE-2012), Washington, DC, USA, 2012,
pp. 647–651.

[68] R. Tempo, E.-W. Bai, and F. Dabbene, “Probabilistic robustness analysis: Ex-
plicit bounds for the minimum number of samples,” in Proceedings of the IEEE
Conference on Decision and Control (CDC-1996), vol. 3, 1996, pp. 3424–3428.

[69] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling vir-
tualized applications using machine learning techniques,” in Proceedings of the
ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, Lon-
don, England, UK, 2012, pp. 3–14.

[70] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “Dejavu: Accel-
erating resource allocation in virtualized environments,” SIGARCH Computer
Architecture News, vol. 40, no. 1, pp. 423–436, Mar. 2012.

[71] “System monitor,” 2013. [Online]. Available: https://apps.ubuntu.com/cat/
applications/quantal/gnome-system-monitor/

[72] “View cpu utilization and other performance information,” 2014. [On-
line]. Available: http://windows.microsoft.com/en-us/windows/view-cpu-
utilization-performance-information\#1TC=windows-7

[73] “Amazon ec2 instances,” 2014. [Online]. Available: http://aws.amazon.com/
ec2/instance-types/

[74] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The DaCapo bench-
marks: Java benchmarking development and analysis,” in Proceedings of the
annual ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA-2006), Portland, OR, USA, October
2006, pp. 169–190.

[75] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL: Cryp-
tography for Secure Communications. O’Reilly Media, Inc., 2002.

118

References

[76] M. Lutz, Programming python. O’Reilly Media, Inc., 2010.

[77] J. Murty, Programming Amazon Web Services: S3, EC2, SQS, FPS, and Sim-
pleDB. ” O’Reilly Media, Inc.”, 2008.

[78] G. Loh, S. Subramanian, and Y. Xie, “A cycle-level simulator for highly detailed
microarchitecture exploration,” in Proceedings of the International Conference
on the Performance Analysis of Software Systems (ISPASS-2009), Boston, April
2009, pp. 53–64.

[79] J. Wang, “Manifold: A parallel simulation framework for multicore systems,”
Ph.D. dissertation, Georgia Institute of Technology, 2011.

[80] R. J. Francis, J. Rose, and Z. G. Vranesic, Field-programmable gate arrays.
Springer, 1992, vol. 180.

[81] D. Bertsekas, Dynamic programming and optimal control, 4th ed. Belmont,
MA: Athena Scientific, 2007.

119

	University of New Mexico
	UNM Digital Repository
	1-28-2015

	Optimization and Regulation of Performance for Computing Systems
	Jose Marcio Luna Castaneda
	Recommended Citation

	tmp.1472502609.pdf.0BXTX

