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by

CONG ZONG

M.E., Computer Science, Tianjin University, 2014

M.S., Computer Engineering, University of New Mexico, 2016

Abstract

The thesis develops robust algorithms that are used to provide joint control of re-

constructed video quality, computational complexity, and compression rate for intra-

mode video encoding in HEVC. The approach uses a configuration parameter that

controls the partitioning of the coding tree unit (CTU) so as to provide for finer

control of the encoding process. By jointly sampling the quantization parameter and

the configuration mode, the approach generates a finely-sampled, Pareto-optimal,

rate-quality-performance surface.

A robust, spatially-adaptive control algorithm is proposed for solving the mini-

mum bitrate, maximum quality, and minimum computational complexity optimiza-

tion problems. The approach is demonstrated on 17 videos from four different classes.

For all videos, the approach provides for substantial savings in computational com-

plexity and bitrate, and slight improvements in image quality. Furthermore, the

thesis demonstrates dynamic switching between the low, medium and high profiles

within the same video.
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Chapter 1

Introduction

High-efficiency video coding (HEVC) has provided substantial improvements to video

compression through the introduction of new coding tools. Examples of new HEVC

technologies include recursive coding/transform units complex intra prediction modes,

and asymmetric inter prediction unit division. Overall, HEVC aims at a 50% bit rate

reduction at equivalent video quality levels [1]. Unfortunately, bitrate performance

improvements come at substantial increase in computational complexity.

Recently, there have been many efforts to reduce computational complexity. For

reducing inter encoding complexity, we have the introduction of several configuration

modes as discussed in [2]. For reducing intra encoding complexity, we have the

introduction of rough mode sets (RMS,[3]), gradient based intra prediction [4], and

coding unit(CU) depth control[5]. To introduce our approach, let T denote encoding

time per frame, R denote the number of bits per sample, and Q denote a measure of

video quality (e.g., PSNR of average SSIM). Furthermore, let C denote the set of all

possible video encoding configurations. We want to design methods that can solve

minc∈C (T, B,−Q), where the negative sign in front of Q is needed in order to express

our need to maximize quality (and hence minimize −Q).
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Chapter 1. Introduction

In order to jointly control T, R and Q, we provide bounds on each one of them.

For improving performance and guarantee computations within specific time limits,

let Tmax denote an upper bound on the encoding time. Similarly, for communicating

within a specific bandwidth, let Bmax denote an upper bound on the available bits per

pixel. Then, to guarantee a minimum level of quality, let Qmin denote a lower bound

on the encoded video quality. Thus, in general, we are only interested in encoding

configurations that jointly satisfy: (T ≤ Tmax)&(B ≤ Bmax)&(Q ≥ Qmin). Clearly, for

very low values of Tmax, Bmax and high values of Qmin, it may not be possible to find

an encoding configuration that satisfies the constraints. On the other hand, for very

high values of Tmax, Bmax and low values of Qmin, we can get a large number of encoding

configurations that can satisfy the constraints. Thus, it makes sense to optimize for

one of the objectives while placing bounds on the other two. We thus consider three

optimization modes:

• Themaximum performance mode provides the best computational performance

by minimizing encoding time. An acceptable, optimal encoding configuration

is obtained by solving:

min
c∈C

T subject to: (Q ≥ Qmin) & (R ≤ Rmax). (1.1)

• The minimum rate mode reduces bitrate requirements without sacrificing qual-

ity or slowing down encoding time to an unacceptable level. The optimal con-

figuration requires the solution of:

min
c∈C

R subject to: (Q ≥ Qmin) & (T ≤ Tmax). (1.2)

• The maximum quality mode: provides the best possible quality without exceed-

ing bitrate or computational requirements. The optimal encoding is selected

by solving:

max
c∈C

Q subject to: (T ≤ Tmax) & (R ≤ Rmax). (1.3)

2



Chapter 1. Introduction

The modes given by equations (1.1)-(1.3) can be used to describe a large number

of different, practical, scenarios. For example, for video streaming applications,

we can simply set Tmax to Tmax = 1/fps where fps denotes the number of frames

per second at which the video is generated. We can also adapt to a time-varying

communications channel by setting Rmax to the time-varying, available bandwidth.

The methods and solutions proposed in this manuscript represent a substantial

extension over prior research centered on dynamically reconfigurable hardware. A

Dynamically Reconfigurable Architecture System (DRASTIC) for motion JPEG was

described in [6] and earlier versions in conference papers [7], [8]. In [6], a dynamically

reconfigurable DCT architecture was used to control dynamic power, bitrate, and

quality. Hardware architectures that employ multi-objective optimization have been

presented for the Discrete Periodic Radon Transform (DPRT) [9] (see earlier work in

[10], [11] ), the parallel pixel processors [12], and 2D filterbanks [13] (also see [14]).

Dynamically reconfigurable filterbanks for video processing were presented in [15].

Earlier research also focused on the development of hardware cores for HEVC

and H.264. Examples include a hardware architecture for intra-prediction for HEVC

[16] and H.264 deblocking filters [17]. An attempt to optimize the quantization table

to maximize perceptual quality has been developed in [18]. An earlier conference

paper related to the current manuscript has been presented in [19], [20].

The thesis extends prior research by developing algorithms for jointly control-

ling the rate-quality-performance surface for intra-prediction applications. The ap-

proaches introduces a hierarchical parameterization of the partitioning of the coding

unit so as to provide a dense sampling of the rate-quality-performance control sur-

face. The thesis develops a model of the rate-quality-performance surface that is

used to develop algorithms that can find appropriate encodings for the minimum bi-

trate, maximum quality, and maximum performance modes. The approach leads to

substantial improvements over the standard use of the HEVC intra-encoding modes.

3



Chapter 1. Introduction

1.1 Thesis Statement

The thesis will develop a new methodology for fine, joint control of rate-quality-

performance for HEVC intra-encoding applications. The new optimization approach

is expected to yield significant improvements over the standard HEVC encoding

approaches.

1.2 Contributions

The primary contribution of the thesis include:

• Hierarchical coding unit (CU) partitioning for fine, joint control of rate-quality-

performance: Intra-encoding control is achieved by controlling the minimum

size of the coding unit (CU). The minimum size encoding parameter ensures

hierarchical partitioning. The minimum size ranges from 0 to 13, where 0 does

not allow any partitioning (minimum size = 64 × 64), 1 supports top-level

partitioning, and 13 supports the finest possible partitioning (minimum size

= 4 × 4). The set of possible partitions is hierarchical in the sense that for

minimum sizes i, j with i < j, j represents a finer partition of i. As a re-

sult, an increase in the minimum code size will always result in better coding

performance since we have more choices. Thus, increasing the minimum code

size increases quality, increase computational complexity, and bitrate. Simi-

larly, decreasing the minimum code size will decrease quality, computational

complexity, and bitrate.

4



Chapter 1. Introduction

• Static and dynamic control of rate-quality-performance: The thesis develops a

model of how the rate-quality-performance surface depends on the minimum

coding size and QP and uses the model to implement the minimum bitrate, max-

imum quality, and maximum performance modes. The approach also allows

dynamic switching between modes.

• System implementation validation on 17 standard video sequences: The system

is implemented using HM-11.0 and validated on 17 standard video sequences.

For the same performance targets, the proposed approach achieves significant

improvements over the original HEV st7C encoder for the same performance

targets.

1.3 Thesis Overview

The remainder of the thesis is organized into 8 chapters. The first chapter provides

an introduction, the thesis statement, a list of contributions, and a summary of the

rest of the thesis.

Prior research in rate control for HEVC is given in chapter 2. In chapter 2 ,

we discuss three rate control algorithms implemented in the HEVC HM model: the

unified RQ model [21, 22], the R-lambda model [23], the SATD model [24]. Chapter 3

summarizes the intra-encoding model and associated parameters. The intra-encoding

is controlled by setting the QP and the minimum coding unit (CU) size. Here, note

that increasing the CU size will simultaneously reduce quality, encoding time, and

bitrate.

Chapter 5.3 provides details the joint control of rate, quality, and performance.

The basic approach involves modeling the rate-quality-performance surface, model

update, and fine control by adjusting QP and the minimum coding unit size.

5



Chapter 1. Introduction

Chapter 5 provides a summary of the basic rate-quality-performance results. The

results are presented on 17 video sequences using all of the optimization modes. For

the results, we consider low, medium, and high constraints on bitrate, quality, and

performance.

Chapter 6 provides results based on dynamic adaptation between different modes.

Dynamic adaptation is initialized using a model derived from the video database. The

initial model is adapted to the current input video and used for switching between

modes.

Chapter 7 discusses the contribution of the current approach compared against

different approaches.

Chapter 8 provides concluding remarks and provides possible, future work.

6



Chapter 2

Rate Control in HEVC

In this chapter, we provide a summary of the rate-control methods that were im-

plemented in the HEVC reference software. In section 2.1, we discuss the unified

RQ model [21, 22]. In section 2.2, we summarize the R-lambda model [23]. Then,

in section 2.3, we present sum of absolute tranformed distance (SATD) based rate

control [24].

2.1 Rate control based on the Unified RQ model

The unified RQ (URQ) model is used in HM-6.1 [21, 22]. The proposed rate control

algorithm works at the GOP level, the frame level, and the largest coding unit (LCU)

level. The basic idea is to select the quantization parameter to meet specific bitrate

requirements.

In what follows, let i be used to refer to the i-th GOP. Also, let j be used to refer

to the j-th video frame.

Let Bi(j) denote the number of budget bits that are available to cover the needs

7



Chapter 2. Rate Control in HEVC

of the j-th and the remaining frames in the GOP. Similarly, let Vi(j) denote the

number of bits stored in the virtual buffer, bi(j − 1) denote the number of actual

number bits required for the (j − 1)-th frame, and RAvgPic denote an estimate of the

average number of bits per frame. At the GOP level, we have:

Bi(j) =







RAvgPic · NGOP − Vi(j), j = 0,

Bi(j− 1)− bi(j− 1), j = 1, 2, . . . , NGOP.
(2.1)

Next, let bppi(j) denote the average number of bits per pixel, Ti(j) denote the total

number of bits, Npixels,i(j) denote the total number of bits. Then, at the frame level,

we clearly have:

bppi(j) =
Ti(j)

Npixels,i(j)
. (2.2)

Let MADpred,i(j) denote the mean absolute deviation (MAD) for the j-th frame. To

predict MADpred,i(j), let MADactual,i(j−1−M) denote the actual MAD for the (j−1−

M)-th frame. We can estimate MADpred,i(j) using:

MADpred,i(j) = a1 · MADactual,i(j− 1− M) + a2 (2.3)

where M = 1 when using a hierarchical reference structure, and a1, a2 are adaptively

estimated.

Rate control at the j-th frame level is achieved by selecting appropriate values

for QPi(j). Using the target bitrate bppi(j), estimated MAD MADpred,i(j), the QPi(j)

can be selected by solving a second-order quadratic equation for 1/QPi(j) given by:

bppi(j) = α ·
MADpred,i(j)

QPi(j)
+ β ·

MADpred,i(j)

QP2i(j)
(2.4)

where α, β are adaptively estimated.

Similarly, let bppi(j, m) denote the number of bits per pixel for the m-th CTU.

Then, as done at the frame level, rate control at the largest coding unit (LCU) can

be achieved by selecting QPi(j, m) so as to satisfy:

bppi(j, m) = α ·
MADpred,i(j)

QPi(j, m)
+ β ·

MADpred,i(j)

QP2i(j, m)
. (2.5)

8



Chapter 2. Rate Control in HEVC

2.2 Rate control based on the R-lambda Model

Rate control based on the R-lambda model was implmented in HM-9.0 [23]. Here,

the QP is determined by the target rate allocated top from the top GOP level down

to LCU level.

Let RPicAvg denote the target bitrate for each video frame. We have that:

RPicAvg =
Rtar

f
(2.6)

where f denotes the number of frames per second, and Rtar denotes the target number

of bits per second.

Let SW denote the size of a smoothing window. The goal is to achieve RPicAvg

by distributing any deviation from the target to the remaining frames. This is

accomplished by defining a new target for the average frame in the GOP using:

TAvgPic = RPicAvg +
RPicAvg · Ncoded − Rcoded

SW
(2.7)

where TAvgPic is the revised target, Rcoded denotes the total number of bits used for

SW video frames, and Ncoded denotes the number of encoded video frames. Over the

entire GOP, the target number of bits becomes:

TGOP = TAvgPic · NGOP (2.8)

where NGOP denotes the number of video frames that make up the GOP.

Once the GOP target has been determined, we can allocate bits at the individual

frame level. Let CodedGOP denote the number of bits already allocated. Furthermore,

let wi denote the weight to be used for allocating bits for the i-th video frame. The

number of bits to be allocated to the current video frame are then given by:

TCurrPic =
(TGOP − CodedGOP) · wCurrPic

∑

NotCodedPic
wi

. (2.9)

9



Chapter 2. Rate Control in HEVC

Using the number of bits allocated to the entire picture, we can determine the number

of bits to be allocated to each CTU. First, for each CTU, determine the MAD using:

MADCTU =
1

Npixels

∑

i

|predi − orgi| (2.10)

where predi, orgi determine the predicted (encoded) pixel and original pixel values.

An allocation weight for each CTU is calculated using:

wCTU = MAD2CTU. (2.11)

Using the weights, the target number of bits for each CTU is then given by:

TCurrCTU =
(TCurrPic − Bitheader − CodedPic) · wCurrCTU

∑

NotCodedCTU
wi

(2.12)

where Bitheader denotes the number of bits allocated to the header, and CodedPic

denotes the number of bits that have already been used in the encoding.

To determine the QP, we use the R-lambda model. The R-lambda model can be

used to perform RD optimization at both the CTU and picture levels. The model

assumes a rate-distortion (RD) relationship given by:

D(R) = C · R−K (2.13)

where C, K denote constants, R denotes the rate, and D denotes the distortion. Starting

from (2.13), we have:

λ = −
∂D

∂R

= C · K · R−K−1

= α0 · R
β
0

= α · bppβ. (2.14)

The QP is then estimated using:

QP = 4.2005 ln λ+ 13.7122. (2.15)

10



Chapter 2. Rate Control in HEVC

After encoding one CTU or one picture, α and β of (2.14) are updated using:

αnew = αold + δα(lnλreal − lnλcomp) · αold (2.16)

βnew = βold + δβ(lnλreal − lnλcomp) · ln bppreal (2.17)

where:

λcomp = αold · bpp
βold
real, (2.18)

and δα = 0.1 and δβ = 0.05.

2.3 Intra Frame Rate Control Based on SATD

SATD based intra frame rate control is implemented in HM-10.0 [24]. The approach

is also based on an R-lambda model.

To introduce the approach, we begin with defining a relationship between the rate

and the complexity of each CTU. Within each CTU, let hi,j denote the Hadamard

transform coefficients computed over 8×8 image blocks. Then, SATD captures CTU

complexity as given by:

C =
N−1
∑

i=0

N−1
∑

j=0

|hi,j|. (2.19)

Using C, for a target rate Rtarget, we have:

λ = α ·

(

C

Rtarget

)β

(2.20)

which leads to an expression of QP given by:

QP = 4.2005 · lnλ+ 13.7122. (2.21)

The λ parameter is kept constant for the entire frame. To update λ, we update α, β

in (2.20) using:

α = α · e∆λ (2.22)

11



Chapter 2. Rate Control in HEVC

β = β +
∆λ

ln(C/Rreal)
(2.23)

where:

∆λ = δ · β · (ln Rreal − ln Rtarget) (2.24)

and δ is a scaling parameter (set to 0.25 for our simulations). Then, the updated

α, β are used to update λ using (2.20) and a new value for QP using (2.21).

For bit allocation, we need to determine RCTUtarget(i) which represents the target

number of bits for the i-th CTU within each video frame. Let ~Rleft denote the

remaining number of bits for the frame. Also, let w(i) denote the weight allocated

to the i-the CTU. We have:

RCTUtarget(i) = w(i) · ~Rleft (2.25)

where the weights are given by:

w(i) =
CCTU(i)

∑M−1
j=i CCTU(j)

(2.26)

and M denotes the total number of CTUs in the coded frame.
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Chapter 3

Hierarchical coding

In this Chapter, we introduce a parametrization for controlling the partitioning of the

coding tree unit (CTU). In terms of rate, quality, and performance, we demonstrate

that the parametrization leads to a Pareto optimal surface. We also introduce a linear

model for describing the relationship between the objectives and the parameters.

3.1 HM Intra Encoding

3.1.1 Basic ideas

We begin with basic defintions based on [1]. Color images are divided into coding

tree units (CTUs) of equal squared sizes. Each CTU consits of L × L luma coding

tree blocks (CTBs) and (L/2)× (L/2) chroma CTBs.

Blocks can be subdivided into smaller blocks. CTBs can be further subdivided

into coding blocks (CBs). The CBs can be subdivided into prediction blocks (PBs).

For intra-mode encoding, as described here, the PBs are set to be equal to the CBs,

except for the smallest CBs. The smallest CBs can be further subdivided into smaller

13



Chapter 3. Hierarchical coding

PBs so as to allow for a finer subdivision. The combination of luma and chroma PBs

form the prediction units (PUs).

Subdivision always supports quadtree decompositions. For quadtree decomposi-

tions, each square is split into 4 smaller squares. The approach is recursive. Each

square can be further subdivided into its 4 constituent squares. In addition to

quadtree decompositions, the subdivision of CBs into PBs also supports rectangular

tiles as depicted in Fig. 3 of [1].

For residual encoding, the CBs can be further subdivided into transform blocks

(TBs). This partitioning only supports quadtree decompositions. Thus, the resulting

quadtree decomposition uses CBs and their constituent TBs.

3.1.2 Intra prediction using Rough Mode Sets

The HM11.0 reference software implementation [25] makes use of a rough mode set

(RMS) for Luma prediction modes. The idea is to simplify the search for an optimal

partitioning of the coding units through a simplified rate-distortion model. RMS

includes 8 modes for 4×4 and 8×8 Coding Units and 3 modes for other CUs [26, 3].

Initially, the sum of absolute Hardmarf transform coefficients are used as a measure

of distortion and the initial mode as a measure of rate. The best prediction mode

is determined based on the RMS where the distortion is measured as the sum of

square errors in the reconstruction and the rate based on the number of bits used

when the largest transform unit (TU) is deployed. Due to the reduction in the

number of chroma pixels, RMS is not used for chroma predition. Instead, for chroma

prediction, the best croma prediction mode is selected from 5 possible modes based

on their RD performance. Here, the RD performance is once again measured in

terms of the number of bits for the largest TU and the sum of squared errors in the

reconstruction.
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Chapter 3. Hierarchical coding

An exhaustive subdivision process is used for determining the optimal partitioning

of the coding blocks into the transform blocks. The final partition is based on the

best RD performance.

The reconstructed image quality can be further enhanced using a deblocking

filter (DBF) and sample adaptive offests (SAO). DBF and SAO are not used in our

approach since they will slow-down the decoding process.

3.2 Scalable Partitioning of the Coding Tree Unit

In this section, we introduce a scalable partitioning of the coding tree unit. The

basic approach can be used to generate a Pareto-optimal surface of the rate, quality,

and performance parameters.

Consider a full, quadtree decomposition of the coding tree unit. Each block is

subdivided into four constituent subblocks. We then list all of the blocks in a breadth

first fashion and assign a processing id to each one as listed in Fig. 3.1.

In order to model the partitioning, we introduce a configuration parameter:

Config. Initially, for Config = 0, no splitting is allowed. For the first full split,

we assign Config = 5 (see [20] for other cases). In terms of splitting, we have the

following additional splittings:

Config = 6 : Split first 32× 32 block into 16× 16 blocks.

Config = 7 : Split first two 32× 32 blocks into 16× 16 blocks.

Config = 8 : Split three 32× 32 blocks into 16× 16 blocks.

Config = 9 : Split all 32× 32 blocks into 16× 16 blocks.

Similarly, Config = 10, 11, 12, 13 refers to splitting the first, first two, first three,

and all four 16× 16 blocks. We present the case of Config = 6 in Fig. 3.1. We have
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the splitting of the original 64 × 64 block into four 32 × 32 blocks and the further

splitting of the first 32× 32 block into its four 16× 16 constituent blocks.

We thus have that larger values of the Config parameters will lead us to consider

finer partitioning of the coding tree unit. Furthermore, it is important to note

that partitions associated with higher configuration values also include partitions

associated with lower configuration values. Since we are following a breadth-first-

search ordering, higher configurations simply partition additional blocks that were

not previously split. As a result, we expect that finer partitioning will always yield

improved coding performance.

Figure 3.1: Scalable Coding Tree Unit (CTU) partitioning following a breadth-first-
search splitting pattern. Each block is recursively partitioned into four sub-blocks
using a quadtree decomposition. The case of Config = 6 is shown. The labeled
partitioned block ids are also shown.
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3.2.1 Pareto front using scalable partitioning

We present a multi-objective optimization example based on the proposed CTU

partitioning. In Figs. 3.2, 3.3 and 3.4, we demonstrate the performance of our

approach in terms of time (seconds per sample), rate (bits per sample), and quality

(PSNR) for the RaceHorsesC video (832× 480). The space was generated by using

QP ∈ [6, 51) with step=3 and Config = 0, 1, 2, . . . , 13 For each case, we only consider

the median values from the first 6 frames of the video.

The approach generated 210 Pareto-optimal configurations. In other words, it

is not possible to improve on any one of the objectives without sacrificing on the

remaining objective(s). As expected, higher configurations lead to better RD perfor-

mance at increased complexity. Similarly, increasing QP leads to lower rates, higher

distortions, and reduced computational complexity. Overall, the Pareto surface is

smooth, without any inflection points.

3.3 A Simple Linear Model

We consider a simple linear model for describing the relationship between the objec-

tives and the parameters. We consider:

Q = a1 · QP+ b1 · Config + c1

T = a2 · QP+ b2 · Config + c2

R = a3 · QP+ b3 · Config + c3

(3.1)

where Q is measured in terms of the mean squared error (MSE), T denotes the time

(in ns, 10−9 second) required for processing a single pixel, and R denotes the number

of bits per sample. This simple model will be adaptively updated for each video. A

detailed control algorithm will also be carefully developed.
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Figure 3.2: Rate-distortion projection of multi-objective space for RaceHorses video.
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Figure 3.3: Rate-complexity projection of multi-objective space for RaceHorses video.
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Figure 3.4: Complexity-distortion projection for multi-objective space for Race-
Horses video.

20



Chapter 3. Hierarchical coding

bits per pel

0.0
0.5

1.0
1.5 2.0 2.5 3.0

time(ns) per pel
0

2000
4000

6000
8000

10000

psnr

30

35

40

45

50

Figure 3.5: Multi-objective performance space for RaceHorses video. The space is
generated by varying QP and Config and estimating complexity, rate, and perfor-
mance.
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Rate-quality-performance control

4.1 Algorithm overview

The basic system is shown in Fig. 4.6. The proposed approach allocates time,

quality, and rate to each CTU by controlling QP and Config. A feedback loop is

used to provide measurements of time, quality, and rate to the control algorithm.

The main control algorithm is presented in Fig. 4.1. and Fig. 4.3. The basic idea

is to encode each CTU independendly while staying within the budget allocated to

the entire frame.

The basic components of the approach are covered in detail in the remaining

sections. Budget allocation is described in section 4.2. Spatially adaptive model

updating is described in section 4.3. Robust estimation of the encoding parameters

is covered in section 4.4.
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4.2 Budget allocation

Budget allocation refers to not only to bit allocation, but also quality and complex-

ity allocation. We use Rtarget, Qtarget and Ttarget for the target rate, quality and

complexity. We use bits per sample (all is referred as pixel in video encoding) for

the rate, Peak Signal-to-Noise Ratio (PSNR), Mean of Square Error (MSE), and

Sum of Square Error (SSE) for image quality, and nano-seconds per sample for com-

plexity measurements. In our model, performance budget allocation is based on the

pre-computed mean absolute deviation (MAD) computed by the HEVC reference

standard

4.2.1 Rate Budget Allocation

Bit allocation requires that we assign the encoding bits for each CTU. Our bit alloca-

tion strategy is not simple average bit allocation for all CTUs. Instead, bit allocation

is based on pre-computed MAD that also take into account uncontrolled, internal

factors of the HEVC that are associated with live video streaming.

We estimate the required number of bits per pixel bpptarget using:

bpptarget =
Rtarget/f− HeaderBits

Npixels
(4.1)

where Rtarget denotes the target number of bits per second for each video frame, f

denotes the number of frames per second, Npixels denotes the number of pixels in each

frame, and HeaderBits = 25 are used for storing the header for HEVC intra-frame

encoding. Each frame gets Rtarget bits using:

Rtarget = Npixels · bpptarget. (4.2)

23



Chapter 4. Rate-quality-performance control

Using Rcoded, the total number of bits already used in the current frame, we

estimate the number of bits remaining for the rest of the image using:

Rleft = Rtarget − Rcoded (4.3)

where Rleft denotes the number of bits allocated in the budget that are still available.

Let Radj refer to the budget correction that we need to make based on mean

absolute deviation (MAD). In other words, Radj is used as given by

Rallocated = Rleft − Radj (4.4)

to modify the number of bits that have been allocated for the entire frame. We

adjust the budget using

Radj = Rcoded −

(

1−
Dleft

Dtotal

)

· Rtarget (4.5)

where Dleft refers to the pre-computed MAD sum for the remaining CTUs, and Dtotal

refers to the total MAD allocated for the current frame. In (4.5), our goal is to weight

bit allocation to be proportional to the remaining MAD that needs to be accounted

for. After encoding each CTU using (4.5), Dleft gets reduced. Dleft should converge

to zero. Thus, effectively, the use of (4.5) is meant to ensure that the remaining

CTUs get a number of bits that is proportional to their contribution towards the

reduction of Dtotal to zero. After updating Rallocated by substituting (4.5) into (4.4),

we allocate the number of bits for the current, i-th CTU using

Rtarget,i =

(

Di

Dremaining

)

· Rallocated (4.6)

where Di refers to the MAD reduction associated with the i-th CTU, Dremaining refers

to the MAD still left to do for the entire frame.

4.2.2 Complexity Budget Allocation

Similar to bit allocation, the complexity budget for each CTU is based on the pre-

computed MAD. The encoding time per pixel time per pixeltarget is computed
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using

time per pixeltarget =
Timetarget

Npixels
(4.7)

where Timetarget denotes the number of seconds allocated per frame. The total

amount of time allocated to the entire frame Ttarget is given by

Ttarget = Npixels · time per pixeltarget. (4.8)

The amount of time left for encoding the remaining CTUs Tleft is given by

Tleft = Ttarget − Tcoded (4.9)

where Tcoded refers to the total amount of bits already used. The allocated time for

each CTU is adjusted using Tadj given by

Tadj = Tcoded −

(

1−
Dleft

Dtotal

)

· Ttarget (4.10)

based on remaining MAD to cover, as done for the rate. The allocated time for entire

CTU is similarly update using

Tallocated = Tleft − Tadj. (4.11)

Finally, the amount of allocated for the CTU is given by its share of the remaining

MAD:

Ttarget,i =

(

Di

Dremaining

)

· Tallocated. (4.12)

4.2.3 Quality Budget Allocation

Image quality is measured using the PSNR. At the CTU level, it is more efficient

to work with the sum of squared error (SSE). Thus, there is a need to convert back

and forth between PSNR and SSE budget requirements. As for rate and complexity,

allocation is based on the MAD.

25



Chapter 4. Rate-quality-performance control

PSNR requirements are converted into SSE requirements using

Qtarget = SSEtarget =
2(2·bitDepth) · Npixels

10PSNR/10
(4.13)

where SSEtarget refers to the allocated SSE for the entire frame, and bitDepth refers

to the number of bits used to represent each pixel. After encoding a CTU, the

remaining SSE budget is similarly given by:

Qleft = Qtarget − Qcoded. (4.14)

Adjustments are similarly made using

Qadj = Qcoded −

(

1−
Dleft

Dtotal

)

· Qtarget (4.15)

and

Qallocated = Qleft − Qadj. (4.16)

Also, the CTU SSE is given by

SSEtarget,i =

(

Di

Dremaining

)

· SSEallocated. (4.17)

4.2.4 Budget Reallocation

Significant content variation can lead to mis-prediction of the required budgets for

each frame. In such cases, no action is taken if the variations stay withing the

budgets. However, when mis-prediction results in budget deficits, we need to re-

allocate the remaining budget to avoid significant artifacts in the reconstructed video.

Thus, after the budget is used up, the remaining budget needs to be adjusted to

minimize the budget violation.

Budget violations are reduced by reducing the estimates of the remaining budget

using:

Badj = α · (Di,left/Di) · Btarget (4.18)
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Tadj = α · (Di,left/Di) · Ttarget (4.19)

SSEadj = α · (Di,left/Di) · SSEtarget (4.20)

where α was set to 0.15 after experimenting with different videos. Clearly, α = 0

would lead to significant artifacts while α = 1 would not attempt to minimize budget

violations and would thus allow significant changes in video content to violate the

constraints.

4.3 Spatially Adaptive Model Update

The rate-quality-complexity model is spatially adapted to the input video content.

A linear model is built based on the encoding of three neighboring CTUs as depicted

in Fig. 4.3.

Let i = 1, 2, 3 denote the neighboring CTUs. Furthermore, let each CTU be

encoded using the pair of (QPi, Configi) to results in (SSEi, Ti, Ri). To estimate the

linear model, define the parameter matrix A using:

A =











a1 b1 c1

a2 b2 c2

a3 b3 c3











. (4.21)

Then the basic linear model is described by:











SSEi

Ti

Ri











=











a1 b1 c1

a2 b2 c2

a3 b3 c3





















QPi

Configi

1











. (4.22)

Suppose that the 3 CTU encodings use 3 different pairs of (QPi, Configi). In this

case, we expect that the 3 rows of [QPi Configi 1] should also be linearly independent
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since the ranges of QP and Config are quite different. Thus, when working with three

different CTU encodings, we can estimate the parameters using:










a1

b1

c1











=











QP1 Config1 1

QP2 Config2 1

QP3 Config3 1











−1 









SSE1

SSE2

SSE3











, (4.23)











a2

b2

c2











=











QP1 Config1 1

QP2 Config2 1

QP3 Config3 1











−1 









T1

T2

T3











, and (4.24)











a3

b3

c3











=











QP1 Config1 1

QP2 Config2 1

QP3 Config3 1











−1 









R1

R2

R3











. (4.25)

For robust model update, we also consider the case when the neighboring CTUs do

not use 3 independent encodings. In this case, we select [ai bi ci] associated with

the best predictions. To implement this approach, for the i-th CTU, we compute

the prediction errors using:

SSEerror, i = |SSEi − a1 · QPi − b1 · Configi − c1|,

Rerror, i = |Ri − a2 · QPi − b2 · Configi − c2|, and

Terror, i = |Ti − a3 · QPi − b3 · Configi − c3|.

Then, we build the model by using the coefficients associated with the minimum

prediction errors. For example, for A1,i = [a1,i b1,i c1,i], we solve:

min
i

SSEerror,i (4.26)

and use the A1,j associated with j-th CTU model that minimizes (4.26). The idea is

also demonstrated in Fig. 4.3.

Another problem occurs in coming up with an initial model for the first row and

first column in each frame. For this case, we create virtual CTUs above the first row
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and to the left of the first column as shown in Fig. 4.4. Then, for each virtual CTU

we simply compute the Pareto front based on the average of the current encodings.

For the first frame, we simply use an initial model trained on other videos. After

a few frames, we simply compute the Pareto front from the current video. Here,

we note that the Pareto front is obtained through an exhaustive evaluation of all

possible Config and QP values. However, the cost of estimating the Pareto front is

restricted to CTUs over a few frames and offline computations using other videos.

4.4 Robust Estimation of CTU Encoding Param-

eters

We use the updated linear models to estimate values for QP and Config that can sat-

isfy the constraints and minimize bitrate, maximize quality, or minimize complexity.

We also provide a robust approach for minimizing constraint violations.

We use the minimum bitrate mode to demonstrate the basic concepts. All other

models are similar and will not be repeated here. As explained in the section 4.2,

the constraints are used to determine target values for Q, T, R as needed. For the

minimum bitrate mode, we want to match the constraints on quality Qtarget and time

Ttarget. We use the linear model to determine the encoding parameters:





Qtarget

Ttarget



 =





a1 b1 c1

a2 b2 c2















QP

Config

1











. (4.27)

Using (4.27), we estimate initial values of the encoding parameters using:





QPest

Configest



 =





a1 b1

a2 b2





−1

·





Qtarget − c1

Ttarget − c2



 (4.28)
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We then round QPest and Configest to the nearest integer values. We then use the

model given by

Q = a1 · QP+ b1 · Config + c1

T = a2 · QP+ b2 · Config + c2

R = a3 · QP+ b3 · Config + c3

(4.29)

to perform a local search with QP ∈ [QPest − 2, QPest + 2] and Config ∈ [Configest −

2, Configest + 2] for the minimum bitrate that also satisfies the constraints. Alter-

natively, if no parameters can satisfy the constraints, we compute the normalized

constraint violations using:

norm(X) =
X− Xmin

Xmean
. (4.30)

We then select the (QP, Config) pair that minimizes the total normalized constraint

violation as given in Table 4.1. for the minimum bitrate mode.

Similarly, for the maximum quality mode, we first use the target budget values for

bitrate and performance to determine initial estimates and select optimal encoding

parameters based on local search or minimum constraint violation. Then, for the

minimum complexity mode, we use the target bitrate and quality for the initial

search.

4.5 Constraint Update for Valid Encoding

While the linear model is simple and robust, it can fail to produce valid values for

QP and Config. This failure occurs because the linear model does not impose any

restrictions on the constraints. Thus, the constraints end up being significantly above

or below the rate-performance-quality surface. When the constraints are significantly

off, we automatically modify them to bring them close to the control surface.
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Table 4.1: Constraint violation objectives. When no configuration will satisfy the
constraints, we select (QP, Config) that minimizes the normalized constraints.

Mode Objective (minimum)

Minimum Rate norm(abs(MSEest − MSEtarget))
+norm(abs(Timeest − Timetarget))

Minimum Complexity norm(abs(MSEest − MSEtarget))
+norm(abs(BPSest − BPStarget))

Maximum Quality norm(abs(Timeest − Timetarget))
+norm(abs(BPSest − BPStarget))

For valid encodings, we require that QP ∈ [0, 51] and Config ∈ [0, 13]. When

either parameter falls out of range, we modify the constraints to produce valid en-

codings.

In general, rate, constraint, and computation complexity are non-linearly related.

Our linear model is excellent for local approximations to the non-linear relationship.

However, globally, the linear model will not work.

We present examples of the non-linear relationships between distortion and rate

in Fig. 4.5. We fit the curves that describe the relationships between any pair of

constraints using:

T = a1 · SSEb1, a1 > 0, b1 < 0.

SSE = a2 · Rb2, a2 > 0, b2 < 0.

T = a3 · Rb3, a3 > 0, b3 > 0.

(4.31)

Next, we provide detailed explanations of how to modify the constraints for the

minimum rate algorithm. As for the linear model, we use the neighboring CTU en-

codings to adaptively estimate the relationships between the constraints (see Fig.4.6).

The main algorithm for estimating T = a · SSEb is given in Fig. 4.7. Based on the
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Chapter 4. Rate-quality-performance control

relationship, we move either the quality or the complexity constraint to lie on the

curve as given in Fig. 4.8. Similarly, for the minimum complexity mode, we estimate

SSE = a · Rb as given in Fig. 4.9 and update the constraints as given in Fig. 4.10.

The model update and algorithm for the maximum quality (minimum distortion)

model is given in Figs. 4.11 and 4.12.

We also account for the case of failing to estimate the model. For example, if

the left and top CTUs are encoded in the same way, we simply use the configuration

from the last CTU. Similarly, if the constraint update is excessive, we also use the

configuration from the last CTU.

The updated constraints are used for estimating new, valid values for QP and

Config. We prevent large changes by requring that the QP to remain within ±4 of

the average of the neighboring CTUs. Furthermore, the final encoding parameters

are forced to stay within the valid ranges.
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1: Estimate budgets for T, Q, R for all CTUs.
2: Estimate QP and Config using initial model.

⊲ Encode frame by iterating through the CTUs.
3: for each CTU in current frame do

⊲ Robust allocation T, Q, R within available budgets.
4: Allocate T, Q, R based on available budgets.
5: Update remaining budgets for T, Q, R.
6: if any remaining budget < 0 then

⊲ Adjust budget to minimize the violation.
7: ReAllocate CTU budgets using a fraction

of the remaining total frame budget.
8: end if

⊲ Robust model update
9: Update model using three neighboring CTUs.
10: if model update failed then
11: Update model with neighboring CTU model

that gave best prediction.
12: end if

⊲ Robust parameter estimation and optimization.
13: Estimate QP and Config based on the model.
14: Solve optimization problem using local search.
15: if either QP or Config is out of range then

⊲ Update constraints and fix encodings
16: Update constraints and estimate new

estimates of QP and Config.
17: Constrain QP to be within ±4 of

neighboring CTUs.
18: Enforce QP and Config within valid ranges.
19: end if

⊲ Encode CTU and store encoding parameters.
20: Encode CTU using QP and Config.
21: Compute T, Q, R for current CTU.
22: Save QP, Config, T, Q, R and CTU location for

model updates.
23: end for

Figure 4.1: Common framework for mode implementation
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Figure 4.2: Diagram for DRASTIC HEVC Intra Encoding System with Time, Rate
and Quality input. Time, Rate, and Quality are already computed in the standard
HEVC implementation.
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Figure 4.3: Model update using neighboring CTUs. For the CTU indexed as
(CTUy, CTUx), the 3 neighbor CTUs are indexed as (CTUy, CTUx−1), (CTUy−1, CTUx−1)
and (CTUy − 1, CTUx). When the neighboring CTUs share encodings, the model is
constructed using the best predictions (see text). Thus, it is possible for a model
to select model parameters associated with SSE1, R2, T3 because each of them gave
minimum errors.
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Figure 4.4: Model updates for the first row and column. The virtual CTU encodings
assume the Pareto front that is initialized from other videos and then updated based
on the encodings of the first few frames of the current video.
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Figure 4.5: Non-linear relationship between distortion(in MSE) and rate(in bpp)

Figure 4.6: Performance constraint model update using neighbor CTUs. for CTU
indexed as (CTUy, CTUx), we will refer to 2 neighbor CTUs indexed as (CTUy, CTUx−1)
and (CTUy − 1, CTUx)
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⊲ Use CTU SSE and times T to estimate a, b.
1: if (SSEtop != SSEleft) and (Ttop != Tleft) then
2: b = log(Ttop/Tleft)/ log(SSEtop/SSEleft)
3: a = Ttop/SSEtop

b

4: end if

Figure 4.7: Time-quality relationship model update for minimum bitrate mode.

⊲ Estimate ratios associated with current CTU.
1: Tused ← T/Ttarget,i
2: SSEused ← SSE/SSEtarget,i
3: if (SSEused > 1) and (Tused > 1) then

⊲ Above the target.
4: if (SSEused ≤ Tused) then

⊲ Reduce time to meet the curve.
5: Ttarget,i = a · Qtarget

b

6: else
⊲ Reduce SSE to meet the curve.

7: Qtarget = (Ttarget/a)
1/b

8: end if
9: else

⊲ Below the target.
10: if (SSEused ≥ Tused) then

⊲ Increase time to meet the curve.
11: Ttarget = (Qtarget/a)

1/b

12: else
⊲ Increase SSE to meet the curve.

13: Qtarget = a · Ttarget
b

14: end if
15: end if

Figure 4.8: Constraint updates for minimum bitrate mode.

⊲ Use CTU SSE and bitrates R to estimate a, b.
1: if (SSEtop != SSEleft) and (Rtop != Rleft) then
2: b = log(SSEtop/SSEleft)/ log(Rtop/Rleft)
3: a = SSEtop/Rtop

b

4: end if

Figure 4.9: Quality-rate relationship model update for minimum computational com-
plexity mode.
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1: Rused ← R/Rtarget,i
2: SSEused ← SSE/SSEtarget,i
3: if (Rused > 1) and (SSEused > 1) then
4: if (SSEused ≤ Rused) then
5: Rtarget = (Qtarget/a)

1/b

6: else
7: Qtarget = a · Rtarget

b

8: end if
9: else
10: if (SSEused ≥ Rused) then
11: Rtarget = (Qtarget/a)

1/b

12: else
13: Qtarget = a · Rtarget

b

14: end if
15: end if

Figure 4.10: Constraint update for minimum computational complexity mode.

1: ⊲ Use CTU encoding times T and rates R
2: ⊲ to estimate a, b for the model.
3: if (Ttop != Tleft)) and (Rtop != Rleft) then
4: b = log(Ttop/Tleft)/ log(Rtop/Rleft)
5: a = Ttop/Rtop

b

6: end if

Figure 4.11: Time-rate relationship model update for maximum quality (minimum
distortion mode).
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1: Tused ← T/Ttarget,i
2: Rused ← R/Rtarget,i
3: if (Rused > 1) and (Tused > 1) then
4: if (Tused ≤ Rused) then
5: Ttarget = a · Rtarget

b

6: else
7: Rtarget = (Ttarget/a)

1/b

8: end if
9: else
10: if (Tused ≥ Rused) then
11: Rtarget = (Ttarget/a)

1/b

12: else
13: Ttarget = a · Rtarget

b

14: end if
15: end if

Figure 4.12: Constraint update for minimum distortion mode (maximum quality).
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Results for Basic Control of

Rate-quality-performance

We describe the database of the test videos in section 5.1. We then describe the

basic settings for the HEVC encoder in section 5.2. The constraints and the low,

medium, and high profiles used for HEVC mode optimization are given in section

5.3. The results are given in section 5.4.

5.1 Test video sequences

We present results on 17 standard JCT-VC videos from four different classes. The

videos, associated class, resolution, and frame rates are given in Table 5.1. The

classes are differentiated based on the size of each frame. Within each class, we have

different fame rates (FPS) and number of frames.
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Table 5.1: Test Video Sequences.

Name Class Frame Count Resolution FPS

Traffic A 150 2560x1600 30
PeopleOnStreet A 150 2560x1600 30
NebutaFestival10bit A 300 2560x1600 60
SteamLocomotiveTrain10bit A 300 2560x1600 60
Kimono B 240 1920x1080 24
ParkScene B 240 1920x1080 24
Cactus B 500 1920x1080 50
BQTerrace B 600 1920x1080 60
BasketballDrive B 500 1920x1080 50
RaceHorsesC C 300 832x480 30
BQMall C 600 832x480 60
PartyScene C 500 832x480 50
BasketballDrill C 500 832x480 50
RaceHorses D 300 416x240 30
BQSquare D 600 416x240 60
BlowingBubbles D 500 416x240 50
BasketballPass D 500 416x240 50

5.2 HM Encoder Setting

We compute baseline encodings using the HEVC HM-11.0 encoder. For the baseline

encoding, we use the basic HEVC intra-mode encoding as detailed in Table 5.2. The

encoder configuration is stored in the file titled encoder intra main.cfg.

5.3 Video Encoding Profiles and Constraints

For comparison purposes, we used the standard HEVC encoder HM-11.0 to compress

the first 30 frames of each video sequence using different profiles. For each video, we

generate HEVC encodings using: (i) low-profile for QP = 37, (ii) medium-profile for

QP = 32, and (iii) high-profile for QP = 27. We set the constraints associated with the

low, medium, and high profiles using the average rates, quality, and computational-
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Table 5.2: The functions and techniques blocked in our experiments

Option Setting

Sample adaptive offset filter (SAO) Off
In-loop deblocking filter (LoopFilterDisable) Off
Rate-distortion-optimized quantization (RDOQ) Off
PCM (PCMEnabledFlag) Off

Rate-distortion-optimized quantization
for transform-skipped TUs (RDOQTS) Off

Transform-skipping mode decision
for 4x4 TUs (TransformSkip) Off

Reduced testing of the transform-skipping
mode decision for chroma TUs(TransformSkipFast) Off

complexity for each case. For each video frame, we consider a constraint to be

satisfied if it is not violated by more than 5%. Encoding times are based on com-

putations using an Intel(R) Xeon(R) Processor E5-2630 v3 (8 cores, 2.4GHz, Turbo,

HT, 20M, 85W) using Ubuntu 14.05 that was used to run HM11.0 standard software.

5.4 Results

The results are given in Tables 5.3, 5.4, and 5.6. In what follows, we present dif-

ferent image examples that demonstrate the advantages of using joint control of

rate-performance-quality.

We present comparative encodings of the 10th frame of the RacehorseC (832x480)

video in Fig. 5.1. Compressions with different optimization modes using QP = 32

and Config = 13 are shown in Fig. 5.2.

An example of significant bitrate savings is shown in Fig. 5.3. In this example,

based on RaceHorseC, the constraints on time and quality were successfully met.

Yet, using the high profile, the bitrate was reduced by 20.2% without sacrificing

image quality.
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Figure 5.1: Original 10th frame in test sequence PartyScene (832x480).

An example of significant bitrate savings is demonstrated in Fig. 5.4. For the

RaceHorseC video, using the high profile, bitrate and quality constraints are met at

a substantial 37.1% reduction in bitrate.

An increase in image quality is demonstrated in Fig. 5.5. In this example, time

and bitrate constraints are met with a PSNR gain of 0.383 using the high profile.

We provide an example of image quality enhanced in Figs. 5.6, 5.7a, and 5.7b. In

the example, for baseline encoding, it is not possible to see the hair under the chin

of the horse. On the other hand, the horse hair is easy to see in minimum distortion

(maximum image quality) encoding. Here, for the minimum distortion mode, quality

was enhanced without requiring extra computational complexity or a higher bitrate.

We also present statistical summaries for each mode and profile in Table 5.6.

For the minimum bitrate mode, we have average bitrate savings in the range of
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Figure 5.2: Baseline encoding using QP = 32 and Config = 13 for 10th frame of test
sequence PartyScene (832x480).

15 to 20 percent. Here, it is important to note that we have the highest average

bitrate savings of 20 percent for the high-quality profile. We also have substantial

percentage savings using the minimum complexity mode. The savings range from

38 to 46 percentage that can nearly double the encoding frame-rate (at 50 percent).

Average savings for the maximum image quality mode range from 0.38 to 0.94 dB.

The low-quality mode get the maximum improvement at nearly 1dB.
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Table 5.3: Results for Minimum Rate Mode for the low, medium, high profiles. The
savings over standard HEVC encodings are given under improvements (Imp). For
each profile, we list (i) the savings over standard HEVC encodings (Sav), and (ii)
the percentage of video frames that satisfied the constraints.

Low Med High
Name Constr Sav Constr Sav Constr Sav

Traffic 100% 16.3% 100% 22.8% 100% 21.5%
PeopleOnStreet 100% 12.3% 100% 14.4% 96% 18.7%
NebutaFestival10bit 100% 18.1% 100% 19.5% 100% 19.8%
SteamLocomotiveTrain10bit 100% 8.3% 100% 2.8% 100% -6.4%
Kimono 100% 2.8% 100% 12.4% 100% 19.2%
ParkScene 100% 23.7% 100% 27.7% 93.3% 24.3%
Cactus 100% 18.0% 100% -1.9% 83.3 -9.8%
BQTerrace 73% 22.9% 73.3% 17.6% 83.3% 18.6%
BasketballDrive 100% 12.0% 100% 29.5% 100% 41.2%
RaceHorsesC 100% 21.7% 100% 20.2% 96.7% 18.9%
BQMall 100% 11.7% 100% 18.1% 86.7% 27.1%
PartyScene 96.7% 23.4% 100% 16.8% 93.3% 14.8%
BasketballDrill 100% 17.0% 100% 25.3% 90% 29.2%
RaceHorses 100% 12.1% 100% 19.0% 100% 26.7%
BQSquare 100% 6.7% 100% 12.5% 100% 13.0%
BlowingBubbles 100% 18.3% 100% 21.4% 96.7% 32.7%
BasketballPass 100% 13.9% 100% 18.8% 96.7% 34.0%
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Figure 5.3: Minimum bitrate encoding for the high profile for 10th frame of test
sequence PartyScene (832x480).
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Table 5.4: Results for the Minimum Complexity Mode.

Name Low Medium High
Constr Sav Constr Sav Constr Sav

Traffic 100% 51.0% 100% 45.0% 100% 48.1%
PeopleOnStreet 100% 44.2% 100% 43.6% 100% 46.0%
NebutaFestival10bit 100% 56.7% 100% 52.8% 100% 48.7%
SteamLocomotiveTrain10bit 100% 58.0% 100% 58.0% 100% 54.3%
Kimono 100% 58.8% 100% 54.9% 100% 47.6%
ParkScene 100% 52.6% 100% 46.5% 100% 51.5%
Cactus 100% 52.2% 100% 48.7% 100% 56.5%
BQTerrace 100% 43.0% 100%, 41.8% 100% 47.4%
BasketballDrive 93.3% 49.9% 100% 54.4% 100% 56.2%
RaceHorsesC 93.3% 52.4% 100% 37.1% 100% 23.0%
BQMall 100% 45.8% 100% 32.6% 100% 27.2%
PartyScene 100% 43.3% 100% 42.4% 100% 42.5%
BasketballDrill 93.3% 40.7% 100% 39.2% 100% 41.4%
RaceHorses 93.3% 36.0% 100% 26.5% 100% 26.4%
BQSquare 83.3% 26.6% 100% 20.1% 90% 15.0%
BlowingBubbles 93.3% 42.3% 100% 22.5% 100% 14.1%
BasketballPass 80% 37.4% 100% 26.1% 93.3% 15.0%
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Figure 5.4: Minimum computational complexity mode for PartyScene (832x480)
using the high profile mode.
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Table 5.5: Results for the Minimum Distortion (maximum quality) Mode.

Name Low Medium High
Constr Sav Constr Sav Constr Sav

Traffic 93.3% 0.715 96.6% 0.295 90% 0.276
PeopleOnStreet 16.6% 1.129 26.6% 0.774 36.6% 0.630
NebutaFestival10bit 63.3% 1.263 86.6% 0.852 100% 0.846
SteamLocomotiveTrain10bit 33.3% 1.118 60% 0.632 86.6% 0.542
Kimono 46.6% 0.698 46.6% 0.016 80% -0.025
ParkScene 30% 0.636 43.3% 0.361 63.3% 0.310
Cactus 66.6% 0.562 70% 0.190 70% 0.312
BQTerrace 16.6% 0.760 56.6% 0.069 46.6% 0.291
BasketballDrive 10% 0.571 6.6% 0.168 30% -0.083
RaceHorsesC 86.6% 1.164 96.6% 0.671 96.6% 0.525
BQMall 50% 1.072 50% 0.319 60% -0.132
PartyScene 80% 1.014 80% 0.556 90% 0.684
BasketballDrill 90% 0.782 73.3% 0.412 83.3% 0.353
RaceHorses 96.6% 1.042 90% 0.628 90% 0.503
BQSquare 100% 1.415 100% 0.904 93.3% 1.105
BlowingBubbles 63.3% 0.958 63.3% 0.474 56.6% 0.281
BasketballPass 90% 0.998 93.3% 0.269 93.3% 0.118

Table 5.6: Overall savings for all modes and profiles.

Percentage savings for minimum bitrate mode
Profile Mean Std Dev 25th Pctle Median 75th Pctle

Low 15.2 6.0 11.85 16.3 20.0
Medium 17.5 8.0 13.45 18.8 22.1
High 20.2 12.9 16.70 19.8 28.2

Percentage savings for minimum computational complexity mode
Profile Mean Std Dev 25th Pctle Median 75th Pctle

Low 46.5 8.6 41.5 45.8 52.5
Medium 40.7 11.8 29.6 42.4 50.8
High 38.9 15.2 24.7 46.0 50.1

PSNR (dB) savings for maximum image quality mode savings
Profile Mean Std Dev 25th Pctle Median 75th Pctle

Low 0.9351 0.2527 0.7065 0.998 1.1235
Medium 0.4464 0.2694 0.2295 0.412 0.6515
High 0.3844 0.3267 0.1970 0.312 0.586
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Figure 5.5: Minimum distortion (maximum quality) mode for the high profile for
10th frame of test sequence PartyScene (832x480).

Figure 5.6: Uncompressed original 10th frame of RaceHorseC (832x480).
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(a) Compressed 10th frame of Race-
HorseC (832x480) using baseline encod-
ing with HM-11.0 for high profile.

(b) Compressed 10th frame of Race-
HorseC (832x480) for the minimum dis-
tortion mode for the high profile.

Figure 5.7: The detail enhancement comparison
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Results for Dynamic Control of

Rate-quality-performance

The proposed joint-control method can also be used to dynamically switch between

profiles and different optimization modes. In this chapter, we will demonstrate

switching between profiles to satisfy different time-varying constraints. Switching

is performed over several frames to avoid visual artifacts due to rapid encoding

switching.

6.1 Profile Switching

We consider the RacehorseC (832x480) as an example test video sequence. The goal

of our example is to demonstrate the ability to switch from a low profile to a medium

and then a high profile.

For our examples, we define the low, medium, and high profiles by fixing QP to

27, 32 and 37 respectively. Furthermore, for comparing to the proposed approach,
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for controlling both the bit rate and PSNR, we use the full range depth configuration

(Config = 13). We require frames 0-30 to use the low profile, frames 31-60 to use

the medium profile, and frames 61-90 to use the high profile.

Figure 6.1: Profile switching by varying QP without the use of the joint-control al-
gorithm. There is no way to enforce constraint satisfaction. The example is demon-
strated on the PartyScene video sequence (832x480).

Profile switching for the minimum bitrate mode is shown in Fig. 6.2. To gener-

ate the example, the constraints are listed in Table 6.1. The example demonstrates

dynamic adaptation of the PSNR to approximate the constraint. Furthermore, the

PSNR constraint is met by avoiding any violations that are more than 5% less than

the constraint value. Adaptation is achieved by adjusting the QP and Config param-

eters together. For the plots, for each video frame, we present the average QP and

Config values for all CTUs.

Dynamic profile switching for the minimum complexity mode is shown in Fig.
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Table 6.1: Constraints for switching profiles for the minimum bitrate mode.

Performance Constr. Quality Constr.
Profile in nano-seconds/frame PSNR

High Profile 2,139,956,683 37.019
Medium Profile 2,024,068,684 33.695
Low Profile 1,916,881,835 31.628

6.3. The corresponding constraints are given in Table 6.2. The example clearly

shows that the PSNR constraints have been exceeded while never exceeding the

bitrate requirements. The complexity gets reduced as compared to the standard

switching example of Fig. 6.2.

Profile switching for the minimum distortion (maximum image quality) mode is

shown in Fig. 6.4. The associated constraints are given in Table 6.3. The example

Figure 6.2: Profile switching for the minimum rate mode using the PartyScene video
sequence (832x480).
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Table 6.2: Constraints for switching profiles using the minimum computational com-
plexity mode.

Bitrate Constr. Quality Constr.
Profile in Kbps in PSNR

High Profile 10261.4 37.02
Medium Profile 6760.9 33.67
Low Profile 4478.8 31.63

clearly demonstrates that all of the constraints have been met. Furthermore, there

is a nice, steady increase in the PSNR.

Figure 6.3: Profile switching using the minimum complexity mode for the PartyScene
video sequence (832x480).
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Table 6.3: Constraints for switching profiles for the minimum distortion (maximum
quality) mode.

Bitrate Constr. Quality Constr.
Profile in Kbps PSNR

High Profile 10261.4 37.02
Medium Profile 6760.9 33.70
Low Profile 4478.8 31.63

Figure 6.4: Profile switching using the minimum distortion mode (maximum quality
mode) for the PartyScene test sequence (832x480).
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Discussion

The proposed approach provides new algorithms that allow for the joint control of

rate, complexity, and quality. Prior methods have been restricted to rate control.

We provide comparisons of improvements achievable through the use of the best rate

control algorithms to show that the savings are similar to our minimum distortion

(maximum image quality) mode. Nevertheless, we note that, unlike rate-control

methods, the minimum distortion mode also allows to constrain computational com-

plexity.

Rate control algorithms are used to either constrain the bitrate used for each

frame or to maintain a constant bitrate while delivering higher quality. Instead, the

use of multi-objective optimization allows us to use control surfaces that can be used

to solve many different constraint optimization problems, not just problems involving

the encoding rate. In fact, the approach is easily generalized to handle any number

of objectives.

Next, we summarize results from each approach. Results from the unified R-Q

algorithm for the random access mode are shown in Table 7.1. For the R-Lambda

algorithm, results are shown in Table 7.2. For the SATD algorithm, results are shown
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in Table 7.3. Then, results for the minimum distortion mode are shown in Table 7.4.

From the tables, we can see that the rate control algorithms perform somewhat

better than the minimum distortion model. However, the comparisons are misleading

because the rate-control algorithms do not address complexity issues. The rate-

control algorithms do not control computational complexity and thus there is no

guarantee that they can meet a complexity bound.

Table 7.1: RQ model performance with RA, LB and LP for fluctuating ranges of
∆kbps and ∆PSNR

Mode Random Access Low Delay B Low Delay P
∆kbps ∆PSNR ∆kbps ∆PSNR ∆kbps ∆PSNR

Avg 0.72% 0.42db 0.64% 0.61db 0.66% 0.39dB

Table 7.2: R Lambda model performance with RA, LB and LP for fluctuating ranges
of ∆kbps and ∆PSNR

Name Random Access Low Delay B Low Delay P
∆kbps ∆PSNR ∆kbps ∆PSNR ∆kbps ∆PSNR

Avg 0.22% 1.08 dB 0.06% 0.29 dB 0.13% 0.29 dB

Table 7.3: SATD model performance with RA and LB for fluctuation ranges of kbps
and PSNR

α and β update
Before frame encoding After frame encoding

∆kbps ∆kbps

Avg 3.52% 0.74%
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Table 7.4: Savings based on the minimum distortion mode (maximum quality) based
on 5% bound violation.

Name Low Medium High
∆kbps ∆PSNR ∆kbps ∆PSNR ∆kbps ∆PSNR

Avg 5% 0.935db 5% 0.446db 5% 0.384db
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Conclusion

8.1 Conclusion

The thesis presented a robust methodology for the joint control of rate-performance-

quality for intra-mode HEVC encoding. The approach relies on the use of multi-

objective optimization that can be easily extended to support more objectives. The

joint-control algorithm has been used to solve the minimum bitrate, minimum com-

plexity, and minimum distortion (maximum quality) optimization problems subject

to constraints. As a result, the algorithm achieved significant reductions in bitrate,

complexity, and distortion while satisfying realistic constraints.

8.2 Future Work

This section provides a summary of different directions to be considered in future

research. There are three major recommendations.

In future research, the recommendation is to extend the concepts to different lay-
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ers of HEVC and other encoding standards. For example, we can consider extensions

from the GOP down to the TU levels. By working with more video encoding layers,

the expectation is that we can provide significant improvements over the methods

proposed in the thesis.

There is also room for improving budget allocation, model estimation, and con-

straint updates. The idea is to ensure that the approach works on many different

scenarios based on more flexible conditions. The development of more flexible meth-

ods should also lead to performance improvements.

The approach should also be extended to adapt as a function of video content.

The basic idea is to adjust the constraints and switch modes based on real-time

video content. For this approach, the goal would be to support switching at the

Group of Pictures (GOP) level. It would be very beneficial to be able reconsider the

optimization problems from the GOP down to the Coding Tree Unit(CTU) level.

An example would include encoding regions of interest through time to support live

streaming.
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