
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-1-2015

Solving the Software Defined Network Controller
Placement Problem Using Complex Network
Analysis
Husain Alyusuf

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Alyusuf, Husain. "Solving the Software Defined Network Controller Placement Problem Using Complex Network Analysis." (2015).
https://digitalrepository.unm.edu/ece_etds/14

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/14?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Husain Al Yusuf

 Candidate

 Electrical and Computer Engineering

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Dr. Gregory Heileman, Chairperson

 Dr. Chris Lamb

 Dr. Ramiro Jordán

ii

SOLVING THE SOFTWARE DEFINED NETWORK CONTROLLER PLACEMENT

PROBLEM USING COMPLEX NETWORK ANALYSIS

BY

HUSAIN AL YUSUF

B. SC. ELECTRICAL & COMPUTER ENGINEERING

KING ABDULAZIZ UNIVERSITY, 2006

THESIS

Submitted in Partial Fulfillment of the

Requirement for Degree of

Master of Science

Computer Engineering

University of New Mexico

Albuquerque, New Mexico

July, 2015

iii

DEDICATION

To my parents who have been my largest influence.

May both live a long healthy life.

To my family who helped me wherever I am.

To my friends who encourage me to succeed my studies.

iv

Solving the Software Defined Network Controller Placement Problem
Using Complex Network Analysis

By
Husain Al Yusuf

B.Sc., Electrical & Computer Engineering, King Abdualziz University, 2006

M.S., Computer Engineering, University of New Mexico, 2015

ABSTRACT

Software Defined Network (SDN) is a new architectural design for networking that is

constructed based on decoupling the control plane from the data plane in networking

devices and providing programmatic interface for the control plane. The introduction of

SDN has raised many new networking problems; one of the most interesting debating

questions is the SDN controller placement problem. In fact, there is no single best solution

for the controller placement problem, as the solution depends on the desired metrics and

requirements. Our research addresses the following question: Where is the best place to

attach the SDN controller in a given large-scale network? Previous work has answered

this question using mathematical models or algorithms. This study proposes a new

approach for solving the controller placement problem by using complex network analysis

and involves finding the most central node in a given network. Our solution will focus on

improving the performance of the network and will be applied to the Internet2 topology

by using GENI platform to simulate our experiment.

v

Table of Contents
1.0. Introduction ... 1

2.0. Software Defined Networks (SDN) .. 3

2.1. SDN Architecture .. 5

2.2. SDN Controller Functionality .. 7

3.0. SDN Controller Placement Problem... 9

4.0. Background .. 11

5.0. Solving the Controller Placement Problem by Complex Network Analysis 16

5.1. Centrality .. 16

5.1.1. Betweenness Centrality .. 17

5.1.2. Closeness Centrality .. 18

5.2. Controller Placement ... 19

5.2.1. MATLAB - Experiment Platform .. 20

5.2.2. MATLAB - Experiment Outcomes ... 21

5.2.3. GENI - Experiment Platform .. 22

5.2.4. GENI - Experiment Outcomes ... 26

5.3. Result Analysis and Reflections .. 28

6.0. Conclusions and Future Work .. 30

7.0. Appendices ... 32

7.1. Appendix A. Internet2 Topology’s Representation in Adjacency Matrix 32

7.2. Appendix B. GENI – Labwiki Script ... 34

7.3. Appendix C. The Experiment Results ... 35

8.0. References ... 36

vi

List of Figures

Figure 1. Traditional Network versus Software Defined Network 3

Figure 2. SDN Architecture ... 5

Figure 3. SDN Controller Functionality – Reactive Forwarding ... 7

Figure 4. Internet2 Network Topology ... 19

Figure 5. GENI – Create Project .. 23

Figure 6. GENI – Create Slice ... 23

Figure 7.Experiment Network’s Topology in GENI ... 24

Figure 8. Labwiki - RTT for ICMP packets with SDN controller in Chicago. 27

Figure 9. Labwiki - RTT for ICMP packets with SDN controller in Kansas 27

Figure 10. Compare Average RTT for Different Controller Locations 28

file:///C:/Users/halyousif/Dropbox/UNM/4th%20Spring2014/report/FinalDraft04232015.docx%23_Toc417560815
file:///C:/Users/halyousif/Dropbox/UNM/4th%20Spring2014/report/FinalDraft04232015.docx%23_Toc417560816

1

1.0. Introduction

Before the Software-Defined Network (SDN) was introduced, the architecture of the

information technology network combined the data plane and the control plane into the

same network element, thus allowing decision-making and packet forwarding to be made

in the same device. The SDN architecture is based on the design concept of decoupling

the control plane from the data plane, and it has programmable interfaces into the

control plane. This new architecture, which utilizes programmable controllers, enhances

the intelligence of the networks’ operations and enables network engineers to serve their

business requirements more efficiently.

SDN capabilities raise many questions related to reliability, scalability, performance, and

security. However, one of the common problems associated with SDN is the placement

of the controller.

In the SDN architecture, the control plane is responsible for the decision-making process,

while the data plane assumes the role of the forwarding element that executes controller

decisions/instructions. This mechanism makes communication between forwarding

elements and controllers a very critical factor for the flow of traffics in any network. This

SDN architecture illustrates the importance of SDN controller placement, as this decision

will greatly affect the overall performance of any SDN network.

Previous research has proposed solutions for the SDN controller placement problem,

often proposing algorithms that sought to discover where to place the minimum amount

2

of controllers required for a given network [11]. Other studies suggest solutions based on

mathematical models [1].

In this paper, a new framework based on centrality theory through the use of complex

network analysis techniques will be proposed to solve the SDN controller placement

problem. This study seeks to find the best placement for a controller in a given network

under the assumption that the network needs only one controller. The SDN controller

placement problem will be simulated using Internet2 topology using GENI platform.

This thesis begins with a brief introduction of SDN technology. Then, a detailed

explanation of the SDN controller placement problem will be presented, along with a

review of previous papers that have discussed this. In Section 5, complex network analysis

is described, and simulation results are provided. Finally, future work and conclusions are

presented.

3

2.0. Software Defined Networks (SDN)

Combining the data plane and control plane in the same device is the base design concept

in traditional network architecture. This architecture utilizes the same processor to

forward the packets. Also, the traditional design of networking prohibits each network

device from having a global view of larger networks.

Figure 1. Traditional Network versus Software Defined Network

SDN is defined differently in many references, although all resources agree that the SDN

concept of decoupling a network’s control plane functions from its forwarding functions

is the main concept of SDN design. The global view for the entire network infrastructure

in a centralized programmable controller is SDN architecture’s strongest asset, which

allowed SDN to become a disruptive technology in the networking industry.

This architecture provides the controllers with a centralized global view. Forwarding

elements that reside in the data plane are primarily responsible for executing the rules

imposed by the controllers. More details about the control plane and the data plane

interactions will be discussed in Section 2.2.

4

Most of the functionalities in traditional networks are implemented in dedicated

appliances, which are technically referred to as middle-boxes (i.e., switch, router,

monitoring tools, or application delivery controller). In addition, within the appliance,

most of the functionality is implemented in hardware such as an ASIC (Application Specific

Integrated Circuit) [5], which increases the complexity of change management,

monitoring, and maintenance services.

From a financial point of view, this design requires engineers with different expertise to

manage and operate such technologies. Eventually, traditional approaches to networking

will increase the initial investments and the operational costs in comparison with SDN

networking.

On the other hand, SDN innovation allows datacenters to reduce the operational cost by

providing the network administrators with the ability to implement most of the

functionalities into one box. This feature allows datacenters to get rid of “one function”

hardware appliances, which usually cost tens of thousands of dollars. Moreover,

traditional networking requires different engineers to manage different functionalities.

For instance, a datacenter’s manager will hire an engineer to handle firewalls and another

engineer for the routers, whereas SDN networks require only SDN expertise to manage

the entire datacenter.

5

2.1. SDN Architecture

SDN networking is a new networking approach, and its new key attributes include:

separation of control and data plane, centralized programmable controllers, and support

of multiple isolated virtual networks [2]. SDN networks contain three main components:

the infrastructure, controller, and application. These components interact with three type

of interfaces (APIs), as shown in the following diagram:

Figure 2. SDN Architecture

 Southbound Interface

The southbound interface is the interface between the programmable controller and the

forwarding elements. This infrastructure uses many protocols, and the most popular

protocol is OpenFlow. The southbound interface eliminates the need for proprietary

protocols and has been adopted by many manufacturers.

6

The OpenFlow protocol -or any other southbound protocol- provides the controllers with

the ability to communicate with any brand or type of hardware that supports OpenFlow.

This design concept forces all manufacturers to implement the OpenFlow agent in most

of their hardware, while also updating firmware for their current products to support

OpenFlow. Southbound interface sends controller’s instructions to forwarding elements.

It also collects data and requests from the forwarding elements and then sends it to the

controllers.

 Northbound Interface

The northbound interface is API between the controller and the applications running on

top of the controllers’ platforms. Firewall, intrusion detection systems, routing, quality-

of-service (QoS), and load-balancer are examples of SDN applications that communicate

with the controllers through the northbound APIs. These APIs can be deployed using

many programming languages (i.e., Python, C, and C++). These applications create rules

and instructions and send them to the controller, which delivers these rules into the

entire infrastructure.

 East-West Interface

The east-west interface is the interface between controllers in the same network. Some

enterprise networks have different geographical locations for their datacenters. These

scenarios may require more than one controller to manage the network. East-west

interfaces are used to exchange information between controllers for interdomain

communication and resiliency in case of a failure.

7

2.2. SDN Controller Functionality

Figure 3. SDN Controller Functionality – Reactive Forwarding

SDN design architecture provides a centralized control plane that can manage all flow

decisions and handle many roles in one box without the need for different types of

middle-boxes. Currently, SDN networks handle most of the required datacenter’s features

and consolidate them into one box. SDN controllers, generally, operate in three modes

[6].

 Reactive Forwarding

Reactive mode reacts to traffic, consults the controller, and creates rules for the

forwarding elements based on the controller’s instruction. As shown in Figure 3,

whenever a new packet hits the switch, the controller’s agent in this switch searches the

contents of the inner flow tables. If no match for the flow is found, the switch creates a

request, which is referred to as OpenFlow-Packet packet-in, and sends it to the controller

for instructions.

8

 Proactive Forwarding

Rather than reacting to a packet, a controller populates the flow tables ahead of time for

all traffic flows that could come into the switch, a process based on historical data

collected by the controller. Flows also can be embedded manually into the controller by

the network administrator in order to populate it toward the forwarding elements. In

proactive forwarding, the flows and actions in a switch flows’ tables are predefined; the

packet-in event never occurs. As a result, all packets are forwarded at line rate merely by

performing flow lookup in the switch flows’ tables. This is the same hardware that

currently populates its forwarding tables from “routing by rumor” routing protocols and

“flood and spray” layer2 learning standards [6]. The flow tables that are created by

proactive forwarding eliminate any latency induced by consulting a controller on every

flow, as is the case in reactive forwarding.

 Hybrid Forwarding

Reactive forwarding adds another overhead to the end-to-end communication latency by

adding the latency of the process of packet-in request, but this method provides a lot of

flexibility. Proactive forwarding is faster, although network administrators find its static

nature burdensome. A combination of both approaches allow more reaction flexibility for

particular sets of granular traffic, while still preserving low-latency forwarding for the rest

of the traffic. Some companies are required to operate in low-latency and restricted

polices, so reactive-forwarding or proactive-forwarding alone would not be beneficial.

Hybrid forwarding, the architecture mostly used in the SDN industry, could be reasonable

in an enterprise if these polices are important.

9

3.0. SDN Controller Placement Problem

Some network engineers argue that the new controller-based architecture improves the

network’s status convergence and yields a flexible/evolvable network, while others raise

concerns about decision latency and availability due to the decoupling of the control

plane from the data plane. Both opinions are right to some extent. The centralized

decision-making and monitoring inside a single programmable box gives the SDN network

the ability to improve the convergence and flexibility of network operations.

On the other hand, adding another hop, the controller, (explained in Section 2.2) in the

communication between two ends may cause additional overhead to the total delay, and

any controller’s failure may cause disturbance to the networks’ services.

Understanding where to place controllers and how many to use is a prerequisite to

answering SDN performance and fault tolerance questions and for comparing them to

traditional architectures. We call this design choice the Controller Placement Problem [1].

In this paper, one part of the controller placement problem will be considered, with an

emphasis on answering the question of where to place the controller. This study will not

address the required quantity of controllers in a given network. Accordingly, we will not

address the effect of controller placement from resiliency prospective, but we will focus

on the performance of the network.

It is reasonable for small/medium datacenters or networks to ignore the controller

placement problem, because the effect of such a problem in small-scale networks is often

negligible. However, proper placement of a controller in a large-scale or wide-area

10

network will minimize propagation delays. In a data center or enterprise, one might

instead maximize fault tolerance or actively balance controllers among administrative

domains.

11

4.0. Background

The SDN placement controller problem is not a new issue in SDN. Every study approaches

the problem from different perspectives. Previous studies have used different

methodology to formulate/resolve the problem [11] [14]; some studies rely on

mathematical models while other construct graphical models for the same problem [11]

[15].

Sherwood et al published one of the most cited papers for the SDN controller placement

problem [1]. This work formulates the controller placement problem as an optimization

problem. This work does not solely consider the location of the controller, but it includes

the number of controllers required for a specific network topology. Their approach is

based on mathematical formulas that consider the “average-latency” and “worst-case-

latency” as the main metrics. These metrics are represented mathematically for a graph

G(V,E) as follows:

 Average-latency: 𝐿𝑎𝑣𝑔 =
1

𝑛
 ∑ 𝑚𝑖𝑛

𝑠∈𝑆′
𝑑(𝑣, 𝑠)𝑣∈𝑉

 Worst-case latency: 𝐿𝑤𝑐 = 𝑚𝑎𝑥
𝑣∈𝑉

𝑚𝑖𝑛
𝑠∈𝑆′

𝑑(𝑣, 𝑠)

, where edges represent propagation latency, n is number of nodes, and 𝑑(𝑣, 𝑠) is the

shortest path between 𝑣 ∈ 𝑉 and 𝑠 ∈ 𝑉.

The module depends mainly on the propagation delay assigned to each edge, which is the

main consideration for the controller placement problem in large-scale networks. The

measurements are based on propagation delay between nodes and controllers, it does

12

not look into the effect of the controller placement on end-to-end communication

between two nodes in SDN networks. Moreover, each optimal placement shown in this

paper comes from directly measuring the metrics of all possible combinations of

controllers. Although this method ensures accurate results, the time complexity is

exponential since the optimal placement was obtained using brute force approach where

every possible location was evaluated.

By applying this to the Internet2 network, the model places the controller in Chicago for

average-latency and Kansas for worst-cast-latency. The paper applied the proposed

solution into WAN networks only, although network’s resiliency has not been considered

into the analysis, which is a very critical factor in WAN networks.

One of the most interesting conclusions from this study indicated that adding more

controllers to the network will not necessarily reduce latency. After a certain amount of

controllers, and depending on the topology, additional controllers will not reduce latency.

Xiao et al addresses the controller placement problem in WAN networks [11]. This

research approaches the controller placement problem differently. Their methodology is

based on partitioning WAN networks into smaller SDN networks (or SDN domains) and

then finding the best placement for the SDN controller in each partition of the network.

A spectral clustering algorithm was used to segregate the WAN network. The success of

such an algorithm depends heavily on the applied metric. The weight of the links between

nodes is implemented as the metric for the spectral algorithm. The propagation latency

have been considered as the weight of the edges between nodes. Accordingly, the nodes

13

with low weighted link are most likely used to create a group of nodes (smaller SDN

network), whereas the links between groups are highly weighted (links between

networks).

The decision of where to place the controller within the segregated SDN networks is based

on the average-latency formula as presented in [1]. This strategy shows that the

contribution of this paper is the technique of splitting the large-scale networks into

smaller ones, while using previous methods to obtain the optimal placement for the SDN

controller within each smaller network.

Their experimental environment contains 36 machines with Beacon controller and cbench

as a tool to simulate open flow switches. Their findings are based on the extracted

measurements from the simulation. This fact made this study more robust in terms of its

findings, in comparison to other studies that lack of experimental measurements for their

proposed resolutions. Moreover the mathematical model used considers metrics other

than latency, such as load-balancing and reliability. This approach does not only improve

the performance, but can significantly improve the reliability of SDN network.

There are several other previous works that discuss the SDN controller placement

problem, however the motivation to resolve the problem is different than the two

previous papers and my work.

Hu et al [12] developed few placement algorithms to find the best location for the SDN

controller in a given network, however his goal was different than previous works. The

objective of these placement algorithms was to maximize reliably, whereas other papers

14

focused on performance. The parameter used to solve the problem was the control path

of the network, where control data transfers between the controllers and the forwarding

elements. The notion was that if fewer control paths fail, then there will be less of an

impact on the network. Therefore, controllers are placed based on the control paths of

the given network.

Beheshti et al in [13] has proposed a similar work to [11]. This paper describes the

controller placement problem in terms of resiliency. The connection resiliency between

the controller and the forwarding elements was considered as the metric. This metric

reflects the ability of the forwarding elements and the controller to protect the control-

paths of the network. The proposed algorithms in this paper aimed to maximize the

possibility of fast failover based on resilience-aware controller placement and routing of

the control’s traffic.

One of the most important findings in this paper was that resiliency can be improved by

pre-configuring backup links/routes in the switches towards the controllers. If there is a

failure in the outgoing link or upstream node of a switch, then these backup

links/interfaces will re-route the control traffic to the controller.

Guo et al has proposed another work [14] that also approaches the placement problem

in term of resiliency. In this research, the analysis of the controller placement are based

on resiliency from the perspective of interdependent networks. They define the SDN

network with two interdependent networks: the switch-to-switch networks, and

controller-switch networks. The interdependence graph allows for the analysis of

15

cascading failure in multiple networks due to their node dependence relationships. By

performing that analysis, they found a positive relationship between the fractions of

nodes that survived at the steady state of the cascading of failure and network’s resiliency

to that failure.

A large number of variants of the controller placement problem have been proposed in

the literature in an attempt to study the performance and solution quality.Most of these

studies are based on mathematical optimization models. To empirically validate their

proposed frameworks, most of these studies used virtual networks. The main drawback

for these results is the fact that they do not simulate real life environments.

To overcome this drawback, we implemented a new method that has a twofold goal: this

method implements for the first time a complex network model to solve the controller

placement problem and besides this method uses a real life environment to validate the

proposed framework.

16

5.0. Solving the Controller Placement Problem by Complex Network Analysis

This research approach to solving the SDN controller placement problem is based on

complex network analysis through the application of the centrality concept. Internet2

network will be used as an example problem for our solution. Before discussing the details

of the solution, the centrality and methodologies used to solve the controller placement

problem will be described.

5.1. Centrality

In order to discuss centrality, we must first examine the graphical representation for

physical networks. Networks are usually donated as graphs {G(V,E)}. Graph G contains a

set of nodes that is represented by vertices V. These nodes are connected with

bidirectional links represented as a set of edges (E).

The definition of centrality can be defined by the answer to the following question: “which

is the most important or central node in a given network?”[4] This is an overly generalized

question that would need to elaborate on the meaning of the phrase “most important”.

In the technology literature, the word "importance" has a vast array of definitions that

can refer to a type of flow or transfer across the network, which allows centralities to be

classified by the type of flow that is considered important. The centrality affect the

cohesiveness of a network, which allows centralities to be classified based on how they

measure cohesiveness. These definitions divide centralities into distinct categories [8].

Accordingly, finding centrality has many methodologies. We will use the betweenness

centrality methodology and the closeness centrality methodology.

17

5.1.1. Betweenness Centrality

Suppose we have a network with consistent data packets (i.e. messages), with the

assumption that data packets always take the shortest path (i.e. geodesic) between all

vertices. In order to understand the betweenness centrality we must answer the following

question: if we wait long enough for large number of messages (i.e. data traffic) to pass

between each pair of vertices in the network, then how many messages have passed

through each vertex in route towards their destination? The answer represents the

betweenness centrality of each vertex, where the vertex with the highest number of

betweenness centrality is the most central vertex for the network. Also, by assuming that

all the messages are passing through each shortest path at the same rate, the number of

messages passing through each vertex is proportional to the number of shortest paths on

which the vertex lies.

The betweenness centrality for a node is the number of shortest paths from all vertices

to all others that pass through that node. The node with the highest betweenness

centrality in a network is the most central node in that network. A node with high

betweenness centrality has a large influence on the transfer of items through the

network. Here is a simple mathematical representation for betweenness centrality:

𝒙𝒊 = ∑ 𝒏𝒔𝒕
𝒊

𝒔𝒕

where 𝑛𝑠𝑡
𝑖 is equal to 1 if vertex 𝑖 lies on the shortest path from 𝑠 to 𝑡 or 0 if it does not

[4].

18

According to the betweenness theory, the vertices with the highest betweenness

centrality will handle the largest number of messages passed through. These vertices

could derive a significant amount of power from their position within the network. If these

vertices were removed from the network, it would most likely disturb communication

between other vertices because they have the highest amount of traffic flow. Based on

the characteristics of betweenness centrality, where the node with the most traffic

passing through it is the most central node. Betweenness centrality has been chosen as

the methodology to solve the SDN controller placement problem because placing the

controller into the most central node reduces the latency caused by the controller traffic.

5.1.2. Closeness Centrality

Closeness centrality differs from betweenness centrality in the method used to count the

centrality of all vertices in the entire network. Closeness centrality measures the mean

geodesic distance from a vertex to all other vertices in the same network and implies that

the more central a node is, the lower its total geodesic distance to all other nodes.

Closeness can be regarded as the amount of time it will take to spread information from

a vertex to all other vertices sequentially. Here is a simple mathematical representation

for closeness centrality:

𝑪𝒊 =
𝒏

∑ 𝒅𝒊𝒋𝒋

where 𝑑𝑖𝑗 is the length of a geodesic path from 𝑖 to 𝑗 (the number of edges along the

path), and 𝑛 is the number of vertices in the entire network. [4]

19

Closeness centrality is typically used in social network analysis because it measures the

mean distance in relationships between people. The people with high closeness centrality

have more influence on others or have access to more information than others. However,

closeness centrality can be used in other types of networks.

In this study, closeness centrality is used to place the controller in a vertex that is centrally

located in geodesic paths for other nodes. This study will explore the ability of closeness

centrality to solve the SDN controller problem in comparison to betweenness centrality.

5.2. Controller Placement

This section presents a detailed explanation of applying complex network analysis to the

Internet2 network [7]. Internet2 topology is shown in the figure below.

Figure 4. Internet2 Network Topology

20

In this work, MATLAB will be used to implement the betweenness centrality and closeness

centrality on Internet2 network. In accordance with MATLAB’s results, the GENI [10]

platform will be used to simulate the SDN controller problem in Internet2.

In this experiment, an adjacency matrix is used to represent the Internet2 network, as

shown in Appendix A. This matrix represents the distances among the nodes in the

network. This study focus on the effect of the distance between nodes on the propagation

delay, because the bandwidth between the nodes in Internet2 is constant. Thus, the

bandwidth does not add any result to our study. While the bandwidth is constant,

distance is a key factor in the propagation delay of the traffic between any two nodes.

5.2.1. MATLAB - Experiment Platform

A network topology can be represented graphically or mathematically; a weighted

adjacency matrix has been used to represent Internet2 topology mathematically.

MATLAB’s library has been used to implement betweenness centrality and closeness

centrality on the Internet2 network. The distance between nodes in Internet2 will be

considered as the weight of the links. Procedure of the experiment installation appear

below:

 List the nodes of the internet2 network and associate each node with a state’s name

and number, as shown in Appendix A.

 Build the weighted adjacency matrix, as shown in Appendix A, and save it in a variable.

This example uses “internet2” as the variable for the matrix.

21

 Select the complex network library in MATLAB that should include the betweenness

centrality and closeness centrality classes.

 Run the following commands:

 For betweenness centrality [x,y]=betweenness_centrality(internet2)”

 For closeness centrality “x=closeness(internet2)”

5.2.2. MATLAB - Experiment Outcomes

Here are the outcomes of the experiment in MATLAB,

>> [x,y]=betweenness_centrality(A) >> x=closeness(internet2)

x = x =

51.5 403.0667 <--- this is Chicago 0.0071 0.0109 <--- this is Chicago

3.6667 0 0.0066 0.0089

2.6667 154.9667 0.0065 0.0094

28 10.6333 0.0066 0.0074

55 302.5 0.0073 0.0096

200.2 85.5 0.008 0.0079

17.6333 132.5 0.0063 0.0083

49.6333 313.7 0.0071 0.0101

251.0333 134 0.0093 0.0078

181.9333 86 0.0088 0.0065

78.3333 42 0.008 0.0057

225.4 18 0.01 0.0053

16.6667 40 0.0083 0.0057

20.6667 106.5 0.0083 0.0066

34.9667 50 0.0082 0.0068

124.1667 95.5 0.0093 0.0072

0 35.6667 0.0083 0.0078

As shown above, the most central node in Internet2 is the Chicago exchange node. The

result shows high betweenness centrality for the Chicago node; no other node has as high

a score for betweenness centrality. This implies that Chicago is the node with most traffic

22

passing through. Interestingly, when applying closeness centrality to Internet2, it gives

the same central node as betweenness centrality, which means that Chicago is the lowest

total distance from all other nodes in Internet2.

5.2.3. GENI - Experiment Platform

GENI (Global Environment for Network Innovations) provides a virtual laboratory for

networking and distributed systems research and education. In technical terms, GENI is

the combination of several datacenters distributed over the United States that are

connected by the Internet2 infrastructure. A GENI user can request resources from one

or many datacenters to perform an experiment or simulation.

The aim of this experiment was to simulate a SDN network into Internet2 topology and to

analyze the impact of controller placement on the network’s performance in terms of

total delay. Because GENI’s racks are connected via Internet2 infrastructure, GENI can

provide the features that allow simulating the SDN placement problem into the Internet2

real network. The following list will describe the experiment in detail:

 The project has to be created by a professor (i.e., an advisor) into GENI, where

only the professor’s user accounts are allowed to create projects. Students cannot

start working in GENI racks without being engaged in a project.

23

 Figure 5. GENI – Create Project

 Join the created project and create a slice, a container that includes resources that

can be requested.

 Figure 6. GENI – Create Slice

 Add resources to the created slice as the following:

a. VM (controller) in Chicago at University of Chicago InstaGENI rack.

b. 2 VMs connected to ovs-switch in Los Angeles at CENIC InstaGENI rack.

c. 2 VMs connected to ovs-switch in DC at MAX InstaGENI rack.

Many types of VMs exist in GENI and the default-vm has been used in this

simulation. All VMs of the same type have similar specifications; end users cannot

change the specifications of any VMs. However, a specific operating system’s

image has been used in the ovs switches and request to install a package into all

VMs. Details about the image and the package are as follows:

24

a. Switches’ image: https://www.geni.it.cornell.edu/image_metadata.php?uuid=06efdaf9-

bd28-11e4-81ff-000000000000

b. VM’s package: http://emmy9.casa.umass.edu/GEC-20/gimidev.tar.gz

 Connect the ovs-switches to the controller in Chicago using “stitched” link.
Stitched link is a type of connection in GENI that allows connecting resources from
different geographical location through Internet2 infrastructure, as shown in the
following diagram:

Figure 7.Experiment Network’s Topology in GENI

 Configure each node as follows:

a. Node-1:
sudo ifconfig eth1 10.10.10.1/24

b. Node-2:
sudo ifconfig eth1 10.10.10.2/24

c. Node-3:
sudo ifconfig eth1 10.10.10.3/24

d. Node-4:
sudo ifconfig eth1 10.10.10.4/24

http://emmy9.casa.umass.edu/GEC-20/gimidev.tar.gz

25

e. Cntr:
sudo ifconfig eth1 10.10.1.1/24
sudo ifconfig eth1 10.10.2.1/24
./pox/pox.py forwarding.l2_learning

f. SW1:
sudo ifconfig eth1 10.10.1.2/24 <--- connected to cntr
sudo ovs-vsctl add-br br0
sudo ovs-vsctl add-port br0 eth2
sudo ovs-vsctl add-port br0 eth3
sudo ovs-vsctl add-port br0 eth4
sudo ovs-vsctl set-controller br0 tcp:10.10.1.1:6633
sudo ovs-vsctl set-fail-mode br0 secure

g. SW2:
sudo ifconfig eth1 10.10.2.2/24 <--- connected to cntr
sudo ovs-vsctl add-br br0
 sudo ovs-vsctl add-port br0 eth2
sudo ovs-vsctl add-port br0 eth3
sudo ovs-vsctl add-port br0 eth4
sudo ovs-vsctl set-controller br0 tcp:10.10.2.1:6633
sudo ovs-vsctl set-fail-mode br0 secure

 Launch Labwiki. Labwiki is a built-in tool in GENI that helps to perform an

experiment with the reserved resources and extracts readings/results from the

experiment. In this example, Labwiki was used to measure RTT (round-trip-time)

of ICMP packets between node-1 and node-4.

 In Labwiki, use the script shown in Appendix B to perform “PINGs” operation

between node-1 in Los Angeles and node-4 in DC. The output of the script will be

presented graphically in Labwiki. Results will be presented in the following section.

 Repeat the same experiment twice more, using a different location for the

controller in each attempt- one in Kansas at Kansas-InstaGENI rack and another in

Minneapolis at Wisconsin-InstaGENI rack.

26

5.2.4. GENI - Experiment Outcomes

The experiment mentioned in the previous section was installed using the reactive

forwarding technique as explain in section 2.2. The ICMP protocol has been used to

measure the effect of the controller’s location on the additional delay of controller-switch

communication. RTT (Round-Trip-Time) is the period of time it takes for the ICMP packet

to travel to the destination host, as well as the time it takes the acknowledgment to reach

the source again. In a reactive controller design, an additional delay will appear during

the first ICMP packet, because the switch consults the controller to know how to forward

the packets. This delay will only occur for the first packet. This experiment measures the

RTT of the ICMP’s traffic between two hosts in Los Angeles and DC with three different

locations for the controller. The following table shows the average RTT (ms) for ten

repetition for this experiment and Figure.10 shows the average for these ten attempts.

Appendix C includes more details about each attempt results

Packet#
Controller Location

Chicago Kansas Minneapolis

1 378.9 475.2 464.2

2 72.6 83.8 72.3

3 71.7 71.5 71.9

4 71.8 71.7 72

5 71.9 71.7 72

27

The following diagrams show samples of the output from the Labwiki tool.

Figure 8. Labwiki - RTT for ICMP packets with SDN controller in Chicago.

Figure 9. Labwiki - RTT for ICMP packets with SDN controller in Kansas

28

5.3. Result Analysis and Reflections

In this section, we will discuss the findings, outcomes, and reflections of the study in its

entirely.

Figure 10. Compare Average RTT for Different Controller Locations

 As shown in the above charts, when the SDN controller is placed in Chicago, the

average RTT for the first ICMP packet is 378.9ms, while average RTT is 464.2ms when

the controller is placed in Minneapolis. Finally, the average RTT is 475.2ms when the

controller is located in Kansas.

 The results indicates that placing the SDN controller in the most central node of the

Internet2 network (which is Chicago according to the analysis in section 5.2.2.) will

provide a better performance and will automatically lower the additional delay that

is usually caused by the controller-forwarding element’s communication.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5

R
T

T
(m

s)

Packet_Sequence#

Average RTT

Chicago

Kansas

Minneapolis

29

 Although 85ms and 96ms may not seem significantly different numerically, this

difference will impact other applications and network engineers will consider it as a

key impact on the end-to-end quality of communication.

 This diagram also shows how the RTT is dramatically decreased in at the second

packet. This occurs because the switch no longer need to send request to the

controller as it has already installed the flow for such packets into all forwarding

elements.

 Solving the controller placement problem with complex network analysis techniques

provides results that are similar to past studies. Chicago was selected as the best

location for Internet2 topology, and this conclusion is also seen in Sherwood’s work

[1]. The similarity in results occurred because the methodologies used in both works

depended on the weight of the links within the shortest paths.

 The simulation findings, as explained in the previous section, also reflect the

theoretical analysis. The simulation was performed on the real Internet2 network,

making our methodology more reliable. In contrast to previous studies that often did

not simulate their findings in a physical networks and typically conducted lab

simulations only.

 The latency of end-to-end communication is an important indicator of the quality of

network architecture performance, hence why PING packets were used to examine

the effect of the controller’s placement into total latency.

30

6.0. Conclusions and Future Work

SDN has begun to appear in datacenters for many industries, after several years of being

exclusively implemented in research labs or technology companies. Some network

engineers are still hesitant to implement it on the WAN networks, although a few

technology companies have already done so [9]. Further research that identifies the

solution for the SDN controller problem will allow SDN technology to gain a strong

presence in industry. While the SDN architecture that decouples the control plane from

the data plane provides many benefits, it also has created some problems, including the

placement of the SDN controller.

Although, many previous studies have proposed solutions for the SDN controller problem

through the use of algorithms and mathematical models, this study has found a new

approach to solving this problem by using complex network analysis with centrality

theory. This work has applied the betweenness centrality and closeness centrality analysis

into a real life topology, such as the Internet2 network. Interestingly, both methods

(closeness centrality and betweenness centrality) lead to the same central node for the

entire Internet2 network, despite the fact that each method uses different metrics to find

the centrality.

Intelligent design of the GENI platform gives us the ability to simulate the SDN placement

problem in Internet2 topology, where GENI uses Internet2 infrastructure as the

connection between its datacenters. The results extracted from the GENI platform reflect

31

the network analysis and its indication that placing the controller in Chicago will provide

better performance (in terms of delay) than placing it in other states.

Controller placement is an important factor in the SDN network’s performance,

scalability, and resiliency. This research has benefited from using methodology that finds

the most central node in a given network based on traffic flow (as in betweenness

centrality) and shortest distance (as in closeness centrality) to ultimately improve

performance. Placing a controller into a central location in any given network will reduce

the total delay of traffic caused by proactive/reactive forwarding techniques used in SDN-

forwarding elements communication.

32

7.0. Appendices

7.1. Appendix A. Internet2 Topology’s Representation in Adjacency Matrix

List of nodes in Internet2 network as shown in Fig.4, where the number that is
associated with the city will be the coordinate of the matrix, for example, node in
Seattle is number 1 then element (1,1) in the adjacency matrix will be a representation
for Seattle node. The list of the nodes as follow:

1- Seattle
2- Portland
3- Sunnyvale
4- Los Angeles
5- Missoula
6- Salt Lake City
7- Phoenix
8- Tucson
9- Denver
10- El Paso
11- Minneapolis
12- Kansas City
13- Tulsa
14- Dallas
15- Houston
16- Equinox
17- Starlight
18- Chicago
19- Columbia
20- Jackson
21- Baton Rouge
22- Cleveland
23- Pittsburgh
24- Charlotte
25- Atlanta
26- Albany
27- Boston
28- Hartford
29- New York
30- Philadelphia
31- Washington D. C.
32- Ashburn
33- Raleigh
34- Jacksonville

33

Here is the full adjacency matrix for Internet2 topology:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 0 173 0 0 477 689 0

2 173 0 666 0 0 1434 0

3 0 666 0 351 0 768 0

4 0 0 351 0 0 590 372 0

5 477 0 0 0 0 0 0 0 0 0 1183 0

6 689 1434 768 590 0 0 0 0 519 0

7 0 0 0 372 0 0 0 116 0

8 0 0 0 0 0 0 116 0 0 318 0

9 0 0 0 0 0 519 0 0 0 632 0 603 0

10 0 0 0 0 0 0 0 318 632 0 0 0 0 906 667 0 0 0 0 1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 1183 0 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 603 0 0 0 271 0 0 0 0 510 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 271 0 258 0

14 0 0 0 0 0 0 0 0 0 906 0 0 258 0 239 0 0 0 0 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 667 0 0 0 239 0 0 0 0 0 443 271 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 1 1 0 0 0 345 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 510 0 0 0 1 1 0 386 0 0 345 0 0 716 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 126 0 0 0 0 0 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 1110 0 0 0 682 443 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 603

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 345 0 345 0 0 0 0 134 0 0 472 0 0 0 0 0 0 0 0

23 0 134 0 0 0 0 0 0 0 0 0 228 0 0

24 0 245 0 0 0 0 0 0 0 168 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 716 0 390 0 0 0 245 0 0 0 0 0 0 0 0 0 346

26 0 472 0 0 0 0 168 0 0 0 0 0 0 0

27 0 168 0 100 0 0 0 0 0 0

28 0 100 0 117 0 0 0 0 0

29 0 117 0 94 0 0 0 0

30 94 0 139 0 0 0

31 0 139 0 32 263 0

32 0 228 0 0 0 0 0 0 0 32 0 0 0

33 0 168 0 0 0 0 0 0 263 0 0 0

34 0 603 0 0 0 346 0 0 0 0 0 0 0 0 0

34

7.2. Appendix B. GENI – Labwiki Script

defProperty('resource1', "node-1", "ID of a resource")
defProperty('sinkaddr11', '10.10.10.1', "Ping destination address")
peak_list = []

defApplication('ping') do |app|
 app.description = 'Simple Definition for the ping-oml2 application'
 # Define the path to the binary executable for this application
 app.binary_path = '/usr/local/bin/ping-oml2'
 # Define the configurable parameters for this application
 app.defProperty('target', 'Address to ping', '-a', {:type => :string})
 app.defProperty('count', 'Number of times to ping', '-c', {:type => :integer})
 # Define the OML2 measurement point that this application provides.
 app.defMeasurement('ping') do |m|
 m.defMetric('remote',:string)
 m.defMetric('ttl',:uint32)
 m.defMetric('rtt',:double)
 m.defMetric('rtt_unit',:string)
 end
end

defGroup('Source1', property.resource1) do |node|
 node.addApplication("ping") do |app|
 app.setProperty('target', property.sinkaddr21)
 app.setProperty('count', 5)
 #app.setProperty('interval', 1)
 app.measure('ping', :samples => 1)
 end
end

onEvent(:ALL_UP_AND_INSTALLED) do |event|
 info "Starting the ping"
 after 5 do
 group('Source1').startApplications
 end
 after 80 do
 info "Stopping the ping"
 allGroups.stopApplications
 Experiment.done
 end
end

defGraph 'RTT' do |g|
 g.ms('ping').select(:oml_seq, :remote, :rtt)
 g.caption "RTT of received packets."
 g.type 'line_chart3'
 g.mapping :x_axis => :oml_seq, :y_axis => :rtt, :group_by => :remote
 g.xaxis :legend => 'Packet_Seq'
 g.yaxis :legend => 'RTT', :ticks => {:format => 's'}
end

35

7.3. Appendix C. The Experiment Results

Location Chicago Kansas Minneapolis

Attempt
Packet_Sequence# Packet_Sequence# Packet_Sequence#

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 671 72 72 72 72 372 111 72 76 71 390 72 72 72 72

2 473 73 72 72 72 375 72 72 72 72 385 72 71 72 72
3 331 73 72 72 72 363 151 72 71 72 412 73 72 72 72

4 338 72 72 72 72 373 72 71 71 71 370 72 72 72 72

5 338 73 71 72 72 741 72 71 71 71 370 72 72 72 72
6 328 73 71 72 72 718 72 71 71 72 740 72 72 72 72

7 298 73 71 71 71 362 72 71 71 72 374 73 72 72 72
8 338 72 72 72 72 354 72 72 71 72 815 72 72 72 72

9 325 73 72 71 72 735 72 71 71 72 407 72 72 72 72

10 349 72 72 72 72 359 72 72 72 72 379 73 72 72 72
Average
RTT (ms)

378.9 72.6 71.7 71.8 71.9 475.2 83.8 71.5 71.7 71.7 464.2 72.3 71.9 72 72

36

8.0. References

[1] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement Problem”, in HotSDN,
New York, NY, USA, 2012.

[2] Myung-Ki Shin, Daejeon, Ki-Hyuk Nam, Hyoung-Jun Kim, “Software-defined networking
(SDN): A reference architecture and open APIs”, in ICTC, South Korea, 2012.

[3] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Rao, “Are We
Ready for SDN? Implementation Challenges for Software-Defined Networks”, in IEEE, USA,
2013.

[4] M. E. J. Newman, “Measure and Metrics”, in Networks, An Introduction, 1st ed. Oxford, UK:
Oxford University Publisher, 2010.

[5] “SDN 101: An Introduction to Software Defined Networking” CITRIX, 2014. <
http://www.citrix.com/content/dam/citrix/en_us/documents/oth/sdn-101-an-introduction-
to-software-defined-networking.pdf>.

[6] Brent Salisbury. (2013, January 15). OpenFlow: Proactive vs Reactive Flows. [Online].
Available: http://networkstatic.net/openflow-proactive-vs-reactive-flows/

[7] Internet2 open science, scholarship and services exchange. <Internet2.com>

[8] Centrality. In Wikipedia. Retrieved February 10, 2015, from
http://en.wikipedia.org/wiki/Plagiarism

[9] Jain, Sushant, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata et al. "B4: Experience with a globally-deployed software defined WAN." In
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3-14. ACM, 2013.

[10] GENI (Global Environment for Network Innovations) provides a virtual laboratory for
networking and distributed systems research and education. <geni.net>

[11] Xiao, Peng, Wenyu Qu, Heng Qi, Zhiyang Li, and Yujie Xu. "The SDN controller placement
problem for WAN." In Communications in China (ICCC), 2014 IEEE/CIC International
Conference on, pp. 220-224. IEEE, 2014.

[12] HU, Yan-nan, et al. "On the placement of controllers in software-defined networks." The
Journal of China Universities of Posts and Telecommunications19 (2012): 92-171.

[13] Beheshti, Neda, and Ying Zhang. "Fast failover for control traffic in Software-defined
Networks." Global Communications Conference (GLOBECOM), 2012 IEEE. IEEE, 2012.

http://www.citrix.com/content/dam/citrix/en_us/documents/oth/sdn-101-an-introduction-to-software-defined-networking.pdf
http://www.citrix.com/content/dam/citrix/en_us/documents/oth/sdn-101-an-introduction-to-software-defined-networking.pdf
http://networkstatic.net/openflow-proactive-vs-reactive-flows/
http://en.wikipedia.org/wiki/Plagiarism

37

[14] Guo, Minzhe, and Prabir Bhattacharya. "Controller Placement for Improving Resilience of
Software-Defined Networks." Networking and Distributed Computing (ICNDC), 2013 Fourth
International Conference on. IEEE, 2013.

[15] Hock, David, et al. "Pareto-optimal resilient controller placement in SDN-based core

networks." Teletraffic Congress (ITC), 2013 25th International. IEEE, 2013.

	University of New Mexico
	UNM Digital Repository
	9-1-2015

	Solving the Software Defined Network Controller Placement Problem Using Complex Network Analysis
	Husain Alyusuf
	Recommended Citation

	tmp.1472502609.pdf._NDYy

