
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-1-2015

Solving the Software Defined Network Controller
Placement Problem Using Complex Network
Analysis
Husain Alyusuf

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Alyusuf, Husain. "Solving the Software Defined Network Controller Placement Problem Using Complex Network Analysis." (2015).
https://digitalrepository.unm.edu/ece_etds/14

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/14?utm_source=digitalrepository.unm.edu%2Fece_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


i 
 

     Husain Al Yusuf 

       Candidate  

     Electrical and Computer Engineering 

     Department 

    

     This thesis is approved, and it is acceptable in quality and form for publication: 

     Approved by the Thesis Committee: 

               

     Dr. Gregory Heileman, Chairperson 

  

     Dr. Chris Lamb 

 

     Dr. Ramiro Jordán 

 

      

 

  



ii 
 

 

 

 

 

SOLVING THE SOFTWARE DEFINED NETWORK CONTROLLER PLACEMENT  

PROBLEM USING COMPLEX NETWORK ANALYSIS  

 

 

 

BY 

HUSAIN AL YUSUF 

B. SC. ELECTRICAL & COMPUTER ENGINEERING 

KING ABDULAZIZ UNIVERSITY, 2006 

 

 

 

 

THESIS 

 

 

 

Submitted in Partial Fulfillment of the  

Requirement for Degree of  

 

Master of Science 

Computer Engineering 

 

 

 

University of New Mexico 

Albuquerque, New Mexico 

 

July, 2015 

 



iii 
 

DEDICATION 

 

To my parents who have been my largest influence. 

May both live a long healthy life. 

 

To my family who helped me wherever I am. 

 

To my friends who encourage me to succeed my studies.  



iv 
 

Solving the Software Defined Network Controller Placement Problem  
Using Complex Network Analysis 

 
 

By  
Husain Al Yusuf 

 
B.Sc., Electrical & Computer Engineering, King Abdualziz University, 2006 

 
M.S., Computer Engineering, University of New Mexico, 2015 

 
 

 

ABSTRACT 

Software Defined Network (SDN) is a new architectural design for networking that is 

constructed based on decoupling the control plane from the data plane in networking 

devices and providing programmatic interface for the control plane. The introduction of 

SDN has raised many new networking problems; one of the most interesting debating 

questions is the SDN controller placement problem. In fact, there is no single best solution 

for the controller placement problem, as the solution depends on the desired metrics and 

requirements. Our research addresses the following question: Where is the best place to 

attach the SDN controller in a given large-scale network? Previous work has answered 

this question using mathematical models or algorithms. This study proposes a new 

approach for solving the controller placement problem by using complex network analysis 

and involves finding the most central node in a given network. Our solution will focus on 

improving the performance of the network and will be applied to the Internet2 topology 

by using GENI platform to simulate our experiment. 
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1.0. Introduction  

Before the Software-Defined Network (SDN) was introduced, the architecture of the 

information technology network combined the data plane and the control plane into the 

same network element, thus allowing decision-making and packet forwarding to be made 

in the same device. The SDN architecture is based on the design concept of decoupling 

the control plane from the data plane, and it has programmable interfaces into the 

control plane. This new architecture, which utilizes programmable controllers, enhances 

the intelligence of the networks’ operations and enables network engineers to serve their 

business requirements more efficiently. 

SDN capabilities raise many questions related to reliability, scalability, performance, and 

security. However, one of the common problems associated with SDN is the placement 

of the controller. 

In the SDN architecture, the control plane is responsible for the decision-making process, 

while the data plane assumes the role of the forwarding element that executes controller 

decisions/instructions. This mechanism makes communication between forwarding 

elements and controllers a very critical factor for the flow of traffics in any network. This 

SDN architecture illustrates the importance of SDN controller placement, as this decision 

will greatly affect the overall performance of any SDN network.  

Previous research has proposed solutions for the SDN controller placement problem, 

often proposing algorithms that sought to discover where to place the minimum amount 
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of controllers required for a given network [11]. Other studies suggest solutions based on 

mathematical models [1].  

In this paper, a new framework based on centrality theory through the use of complex 

network analysis techniques will be proposed to solve the SDN controller placement 

problem. This study seeks to find the best placement for a controller in a given network 

under the assumption that the network needs only one controller. The SDN controller 

placement problem will be simulated using Internet2 topology using GENI platform.    

This thesis begins with a brief introduction of SDN technology. Then, a detailed 

explanation of the SDN controller placement problem will be presented, along with a 

review of previous papers that have discussed this. In Section 5, complex network analysis 

is described, and simulation results are provided. Finally, future work and conclusions are 

presented. 
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2.0. Software Defined Networks (SDN) 

Combining the data plane and control plane in the same device is the base design concept 

in traditional network architecture. This architecture utilizes the same processor to 

forward the packets. Also, the traditional design of networking prohibits each network 

device from having a global view of larger networks.  

 
Figure 1. Traditional Network versus Software Defined Network 

SDN is defined differently in many references, although all resources agree that the SDN 

concept of decoupling a network’s control plane functions from its forwarding functions 

is the main concept of SDN design. The global view for the entire network infrastructure 

in a centralized programmable controller is SDN architecture’s strongest asset, which 

allowed SDN to become a disruptive technology in the networking industry. 

This architecture provides the controllers with a centralized global view. Forwarding 

elements that reside in the data plane are primarily responsible for executing the rules 

imposed by the controllers. More details about the control plane and the data plane 

interactions will be discussed in Section 2.2.   
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Most of the functionalities in traditional networks are implemented in dedicated 

appliances, which are technically referred to as middle-boxes (i.e., switch, router, 

monitoring tools, or application delivery controller). In addition, within the appliance, 

most of the functionality is implemented in hardware such as an ASIC (Application Specific 

Integrated Circuit) [5], which increases the complexity of change management, 

monitoring, and maintenance services.  

From a financial point of view, this design requires engineers with different expertise to 

manage and operate such technologies. Eventually, traditional approaches to networking 

will increase the initial investments and the operational costs in comparison with SDN 

networking. 

On the other hand, SDN innovation allows datacenters to reduce the operational cost by 

providing the network administrators with the ability to implement most of the 

functionalities into one box. This feature allows datacenters to get rid of “one function” 

hardware appliances, which usually cost tens of thousands of dollars. Moreover, 

traditional networking requires different engineers to manage different functionalities. 

For instance, a datacenter’s manager will hire an engineer to handle firewalls and another 

engineer for the routers, whereas SDN networks require only SDN expertise to manage 

the entire datacenter. 
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2.1. SDN Architecture 

SDN networking is a new networking approach, and its new key attributes include: 

separation of control and data plane, centralized programmable controllers, and support 

of multiple isolated virtual networks [2]. SDN networks contain three main components: 

the infrastructure, controller, and application. These components interact with three type 

of interfaces (APIs), as shown in the following diagram: 

 
Figure 2. SDN Architecture 

 Southbound Interface 

The southbound interface is the interface between the programmable controller and the 

forwarding elements. This infrastructure uses many protocols, and the most popular 

protocol is OpenFlow.  The southbound interface eliminates the need for proprietary 

protocols and has been adopted by many manufacturers.  
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The OpenFlow protocol -or any other southbound protocol- provides the controllers with 

the ability to communicate with any brand or type of hardware that supports OpenFlow. 

This design concept forces all manufacturers to implement the OpenFlow agent in most 

of their hardware, while also updating firmware for their current products to support 

OpenFlow. Southbound interface sends controller’s instructions to forwarding elements. 

It also collects data and requests from the forwarding elements and then sends it to the 

controllers. 

 Northbound Interface 

The northbound interface is API between the controller and the applications running on 

top of the controllers’ platforms. Firewall, intrusion detection systems, routing, quality-

of-service (QoS), and load-balancer are examples of SDN applications that communicate 

with the controllers through the northbound APIs. These APIs can be deployed using 

many programming languages (i.e., Python, C, and C++). These applications create rules 

and instructions and send them to the controller, which delivers these rules into the 

entire infrastructure. 

 East-West Interface 

The east-west interface is the interface between controllers in the same network. Some 

enterprise networks have different geographical locations for their datacenters. These 

scenarios may require more than one controller to manage the network. East-west 

interfaces are used to exchange information between controllers for interdomain 

communication and resiliency in case of a failure.  
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2.2. SDN Controller Functionality 

Figure 3. SDN Controller Functionality – Reactive Forwarding 

 

SDN design architecture provides a centralized control plane that can manage all flow 

decisions and handle many roles in one box without the need for different types of 

middle-boxes. Currently, SDN networks handle most of the required datacenter’s features 

and consolidate them into one box. SDN controllers, generally, operate in three modes 

[6]. 

 Reactive Forwarding 

Reactive mode reacts to traffic, consults the controller, and creates rules for the 

forwarding elements based on the controller’s instruction. As shown in Figure 3, 

whenever a new packet hits the switch, the controller’s agent in this switch searches the 

contents of the inner flow tables. If no match for the flow is found, the switch creates a 

request, which is referred to as OpenFlow-Packet packet-in, and sends it to the controller 

for instructions.  
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 Proactive Forwarding 

Rather than reacting to a packet, a controller populates the flow tables ahead of time for 

all traffic flows that could come into the switch, a process based on historical data 

collected by the controller. Flows also can be embedded manually into the controller by 

the network administrator in order to populate it toward the forwarding elements. In 

proactive forwarding, the flows and actions in a switch flows’ tables are predefined; the 

packet-in event never occurs. As a result, all packets are forwarded at line rate merely by 

performing flow lookup in the switch flows’ tables. This is the same hardware that 

currently populates its forwarding tables from “routing by rumor” routing protocols and 

“flood and spray” layer2 learning standards [6]. The flow tables that are created by 

proactive forwarding eliminate any latency induced by consulting a controller on every 

flow, as is the case in reactive forwarding. 

 Hybrid Forwarding 

Reactive forwarding adds another overhead to the end-to-end communication latency by 

adding the latency of the process of packet-in request, but this method provides a lot of 

flexibility. Proactive forwarding is faster, although network administrators find its static 

nature burdensome. A combination of both approaches allow more reaction flexibility for 

particular sets of granular traffic, while still preserving low-latency forwarding for the rest 

of the traffic. Some companies are required to operate in low-latency and restricted 

polices, so reactive-forwarding or proactive-forwarding alone would not be beneficial. 

Hybrid forwarding, the architecture mostly used in the SDN industry, could be reasonable 

in an enterprise if these polices are important.   
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3.0. SDN Controller Placement Problem  

Some network engineers argue that the new controller-based architecture improves the 

network’s status convergence and yields a flexible/evolvable network, while others raise 

concerns about decision latency and availability due to the decoupling of the control 

plane from the data plane. Both opinions are right to some extent. The centralized 

decision-making and monitoring inside a single programmable box gives the SDN network 

the ability to improve the convergence and flexibility of network operations.  

On the other hand, adding another hop, the controller, (explained in Section 2.2) in the 

communication between two ends may cause additional overhead to the total delay, and 

any controller’s failure may cause disturbance to the networks’ services.  

Understanding where to place controllers and how many to use is a prerequisite to 

answering SDN performance and fault tolerance questions and for comparing them to 

traditional architectures. We call this design choice the Controller Placement Problem [1].  

In this paper, one part of the controller placement problem will be considered, with an 

emphasis on answering the question of where to place the controller. This study will not 

address the required quantity of controllers in a given network. Accordingly, we will not 

address the effect of controller placement from resiliency prospective, but we will focus 

on the performance of the network.  

It is reasonable for small/medium datacenters or networks to ignore the controller 

placement problem, because the effect of such a problem in small-scale networks is often 

negligible. However, proper placement of a controller in a large-scale or wide-area 
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network will minimize propagation delays. In a data center or enterprise, one might 

instead maximize fault tolerance or actively balance controllers among administrative 

domains. 
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4.0. Background 

The SDN placement controller problem is not a new issue in SDN. Every study approaches 

the problem from different perspectives. Previous studies have used different 

methodology to formulate/resolve the problem [11] [14]; some studies rely on 

mathematical models while other construct graphical models for the same problem [11] 

[15].  

Sherwood et al published one of the most cited papers for the SDN controller placement 

problem [1]. This work formulates the controller placement problem as an optimization 

problem. This work does not solely consider the location of the controller, but it includes 

the number of controllers required for a specific network topology. Their approach is 

based on mathematical formulas that consider the “average-latency” and “worst-case-

latency” as the main metrics. These metrics are represented mathematically for a graph 

G(V,E) as follows: 

 Average-latency:   𝐿𝑎𝑣𝑔 =  
1

𝑛
 ∑ 𝑚𝑖𝑛

𝑠∈𝑆′
𝑑(𝑣, 𝑠)𝑣∈𝑉         

 Worst-case latency:  𝐿𝑤𝑐 =  𝑚𝑎𝑥
𝑣∈𝑉

𝑚𝑖𝑛
𝑠∈𝑆′

𝑑(𝑣, 𝑠)  

, where edges represent propagation latency, n is number of nodes, and 𝑑(𝑣, 𝑠) is the 

shortest path between 𝑣 ∈ 𝑉 and  𝑠 ∈ 𝑉.  

The module depends mainly on the propagation delay assigned to each edge, which is the 

main consideration for the controller placement problem in large-scale networks. The 

measurements are based on propagation delay between nodes and controllers, it does 
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not look into the effect of the controller placement on end-to-end communication 

between two nodes in SDN networks.  Moreover, each optimal placement shown in this 

paper comes from directly measuring the metrics of all possible combinations of 

controllers. Although this method ensures accurate results, the time complexity is 

exponential since the optimal placement was obtained using brute force approach where 

every possible location was evaluated.  

By applying this to the Internet2 network, the model places the controller in Chicago for 

average-latency and Kansas for worst-cast-latency. The paper applied the proposed 

solution into WAN networks only, although network’s resiliency has not been considered 

into the analysis, which is a very critical factor in WAN networks.  

One of the most interesting conclusions from this study indicated that adding more 

controllers to the network will not necessarily reduce latency. After a certain amount of 

controllers, and depending on the topology, additional controllers will not reduce latency. 

Xiao et al addresses the controller placement problem in WAN networks [11]. This 

research approaches the controller placement problem differently. Their methodology is 

based on partitioning WAN networks into smaller SDN networks (or SDN domains) and 

then finding the best placement for the SDN controller in each partition of the network.  

A spectral clustering algorithm was used to segregate the WAN network. The success of 

such an algorithm depends heavily on the applied metric. The weight of the links between 

nodes is implemented as the metric for the spectral algorithm. The propagation latency 

have been considered as the weight of the edges between nodes. Accordingly, the nodes 
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with low weighted link are most likely used to create a group of nodes (smaller SDN 

network), whereas the links between groups are highly weighted (links between 

networks). 

The decision of where to place the controller within the segregated SDN networks is based 

on the average-latency formula as presented in [1]. This strategy shows that the 

contribution of this paper is the technique of splitting the large-scale networks into 

smaller ones, while using previous methods to obtain the optimal placement for the SDN 

controller within each smaller network.  

Their experimental environment contains 36 machines with Beacon controller and cbench 

as a tool to simulate open flow switches. Their findings are based on the extracted 

measurements from the simulation. This fact made this study more robust in terms of its 

findings, in comparison to other studies that lack of experimental measurements for their 

proposed resolutions. Moreover the mathematical model used considers metrics other 

than latency, such as load-balancing and reliability. This approach does not only improve 

the performance, but can significantly improve the reliability of SDN network.  

There are several other previous works that discuss the SDN controller placement 

problem, however the motivation to resolve the problem is different than the two 

previous papers and my work. 

Hu et al [12] developed few placement algorithms to find the best location for the SDN 

controller in a given network, however his goal was different than previous works. The 

objective of these placement algorithms was to maximize reliably, whereas other papers 
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focused on performance. The parameter used to solve the problem was the control path 

of the network, where control data transfers between the controllers and the forwarding 

elements. The notion was that if fewer control paths fail, then there will be less of an 

impact on the network. Therefore, controllers are placed based on the control paths of 

the given network. 

Beheshti et al in [13] has proposed a similar work to [11]. This paper describes the 

controller placement problem in terms of resiliency. The connection resiliency between 

the controller and the forwarding elements was considered as the metric. This metric 

reflects the ability of the forwarding elements and the controller to protect the control-

paths of the network. The proposed algorithms in this paper aimed to maximize the 

possibility of fast failover based on resilience-aware controller placement and routing of 

the control’s traffic.  

One of the most important findings in this paper was that resiliency can be improved by 

pre-configuring backup links/routes in the switches towards the controllers. If there is a 

failure in the outgoing link or upstream node of a switch, then these backup 

links/interfaces will re-route the control traffic to the controller. 

Guo et al has proposed another work [14] that also approaches the placement problem 

in term of resiliency.  In this research, the analysis of the controller placement are based 

on resiliency from the perspective of interdependent networks. They define the SDN 

network with two interdependent networks: the switch-to-switch networks, and 

controller-switch networks. The interdependence graph allows for the analysis of 
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cascading failure in multiple networks due to their node dependence relationships. By 

performing that analysis, they found a positive relationship between the fractions of 

nodes that survived at the steady state of the cascading of failure and network’s resiliency 

to that failure.  

A large number of variants of the controller placement problem have been proposed in 

the literature in an attempt to study the performance and solution quality.Most of these 

studies are based on mathematical optimization models. To empirically validate their 

proposed frameworks, most of these studies used virtual networks. The main drawback 

for these results is the fact that they do not simulate real life environments.   

To overcome this drawback, we implemented a new method that has a twofold goal: this 

method implements for the first time a complex network model to solve the controller 

placement problem and besides this method uses a real life environment to validate the 

proposed framework.  
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5.0. Solving the Controller Placement Problem by Complex Network Analysis 

This research approach to solving the SDN controller placement problem is based on 

complex network analysis through the application of the centrality concept. Internet2 

network will be used as an example problem for our solution. Before discussing the details 

of the solution, the centrality and methodologies used to solve the controller placement 

problem will be described.  

5.1. Centrality 

In order to discuss centrality, we must first examine the graphical representation for 

physical networks. Networks are usually donated as graphs {G(V,E)}. Graph G contains a 

set of nodes that is represented by vertices V. These nodes are connected with 

bidirectional links represented as a set of edges (E). 

The definition of centrality can be defined by the answer to the following question: “which 

is the most important or central node in a given network?”[4] This is an overly generalized 

question that would need to elaborate on the meaning of the phrase “most important”. 

In the technology literature, the word "importance" has a vast array of definitions that 

can refer to a type of flow or transfer across the network, which allows centralities to be 

classified by the type of flow that is considered important. The centrality affect the 

cohesiveness of a network, which allows centralities to be classified based on how they 

measure cohesiveness. These definitions divide centralities into distinct categories [8]. 

Accordingly, finding centrality has many methodologies. We will use the betweenness 

centrality methodology and the closeness centrality methodology. 
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5.1.1. Betweenness Centrality 

Suppose we have a network with consistent data packets (i.e. messages), with the 

assumption that data packets always take the shortest path (i.e. geodesic) between all 

vertices. In order to understand the betweenness centrality we must answer the following 

question: if we wait long enough for large number of messages (i.e. data traffic) to pass 

between each pair of vertices in the network, then how many messages have passed 

through each vertex in route towards their destination? The answer represents the 

betweenness centrality of each vertex, where the vertex with the highest number of 

betweenness centrality is the most central vertex for the network. Also, by assuming that 

all the messages are passing through each shortest path at the same rate, the number of 

messages passing through each vertex is proportional to the number of shortest paths on 

which the vertex lies. 

The betweenness centrality for a node is the number of shortest paths from all vertices 

to all others that pass through that node. The node with the highest betweenness 

centrality in a network is the most central node in that network. A node with high 

betweenness centrality has a large influence on the transfer of items through the 

network. Here is a simple mathematical representation for betweenness centrality: 

𝒙𝒊 =  ∑ 𝒏𝒔𝒕
𝒊

𝒔𝒕

 

where 𝑛𝑠𝑡
𝑖  is equal to 1 if vertex 𝑖 lies on the shortest path from 𝑠 to 𝑡 or 0 if it does not 

[4]. 
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According to the betweenness theory, the vertices with the highest betweenness 

centrality will handle the largest number of messages passed through. These vertices 

could derive a significant amount of power from their position within the network. If these 

vertices were removed from the network, it would most likely disturb communication 

between other vertices because they have the highest amount of traffic flow. Based on 

the characteristics of betweenness centrality, where the node with the most traffic 

passing through it is the most central node. Betweenness centrality has been chosen as 

the methodology to solve the SDN controller placement problem because placing the 

controller into the most central node reduces the latency caused by the controller traffic.   

5.1.2. Closeness Centrality 

Closeness centrality differs from betweenness centrality in the method used to count the 

centrality of all vertices in the entire network. Closeness centrality measures the mean 

geodesic distance from a vertex to all other vertices in the same network and implies that 

the more central a node is, the lower its total geodesic distance to all other nodes. 

Closeness can be regarded as the amount of time it will take to spread information from 

a vertex to all other vertices sequentially. Here is a simple mathematical representation 

for closeness centrality: 

𝑪𝒊 =  
𝒏

∑ 𝒅𝒊𝒋𝒋
 

where 𝑑𝑖𝑗 is the length of a geodesic path from 𝑖 to 𝑗 (the number of edges along the 

path), and 𝑛 is the number of vertices in the entire network. [4] 
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Closeness centrality is typically used in social network analysis because it measures the 

mean distance in relationships between people. The people with high closeness centrality 

have more influence on others or have access to more information than others. However, 

closeness centrality can be used in other types of networks.  

In this study, closeness centrality is used to place the controller in a vertex that is centrally 

located in geodesic paths for other nodes. This study will explore the ability of closeness 

centrality to solve the SDN controller problem in comparison to betweenness centrality.   

5.2. Controller Placement 

This section presents a detailed explanation of applying complex network analysis to the 

Internet2 network [7]. Internet2 topology is shown in the figure below.  

 
Figure 4. Internet2 Network Topology 
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In this work, MATLAB will be used to implement the betweenness centrality and closeness 

centrality on Internet2 network. In accordance with MATLAB’s results, the GENI [10] 

platform will be used to simulate the SDN controller problem in Internet2. 

In this experiment, an adjacency matrix is used to represent the Internet2 network, as 

shown in Appendix A. This matrix represents the distances among the nodes in the 

network. This study focus on the effect of the distance between nodes on the propagation 

delay, because the bandwidth between the nodes in Internet2 is constant. Thus, the 

bandwidth does not add any result to our study. While the bandwidth is constant, 

distance is a key factor in the propagation delay of the traffic between any two nodes.    

5.2.1. MATLAB - Experiment Platform 

A network topology can be represented graphically or mathematically; a weighted 

adjacency matrix has been used to represent Internet2 topology mathematically. 

MATLAB’s library has been used to implement betweenness centrality and closeness 

centrality on the Internet2 network. The distance between nodes in Internet2 will be 

considered as the weight of the links. Procedure of the experiment installation appear 

below: 

 List the nodes of the internet2 network and associate each node with a state’s name 

and number, as shown in Appendix A. 

 Build the weighted adjacency matrix, as shown in Appendix A, and save it in a variable. 

This example uses “internet2” as the variable for the matrix. 
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 Select the complex network library in MATLAB that should include the betweenness 

centrality and closeness centrality classes. 

 Run the following commands:  

 For betweenness centrality   [x,y]=betweenness_centrality(internet2)”  

 For closeness centrality   “x=closeness(internet2)” 

5.2.2. MATLAB - Experiment Outcomes 

Here are the outcomes of the experiment in MATLAB, 

>> [x,y]=betweenness_centrality(A) >> x=closeness(internet2) 

x =    x =    

51.5  403.0667 <--- this is Chicago 0.0071  0.0109 <--- this is Chicago 

3.6667  0  0.0066  0.0089  

2.6667  154.9667  0.0065  0.0094  

28  10.6333  0.0066  0.0074  

55  302.5  0.0073  0.0096  

200.2  85.5  0.008  0.0079  

17.6333  132.5  0.0063  0.0083  

49.6333  313.7  0.0071  0.0101  

251.0333  134  0.0093  0.0078  

181.9333  86  0.0088  0.0065  

78.3333  42  0.008  0.0057  

225.4  18  0.01  0.0053  

16.6667  40  0.0083  0.0057  

20.6667  106.5  0.0083  0.0066  

34.9667  50  0.0082  0.0068  

124.1667  95.5  0.0093  0.0072  

0  35.6667  0.0083  0.0078  

 

As shown above, the most central node in Internet2 is the Chicago exchange node. The 

result shows high betweenness centrality for the Chicago node; no other node has as high 

a score for betweenness centrality. This implies that Chicago is the node with most traffic 
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passing through. Interestingly, when applying closeness centrality to Internet2, it gives 

the same central node as betweenness centrality, which means that Chicago is the lowest 

total distance from all other nodes in Internet2. 

5.2.3. GENI - Experiment Platform 

GENI (Global Environment for Network Innovations) provides a virtual laboratory for 

networking and distributed systems research and education. In technical terms, GENI is 

the combination of several datacenters distributed over the United States that are 

connected by the Internet2 infrastructure. A GENI user can request resources from one 

or many datacenters to perform an experiment or simulation.  

The aim of this experiment was to simulate a SDN network into Internet2 topology and to 

analyze the impact of controller placement on the network’s performance in terms of 

total delay. Because GENI’s racks are connected via Internet2 infrastructure, GENI can 

provide the features that allow simulating the SDN placement problem into the Internet2 

real network.  The following list will describe the experiment in detail: 

 The project has to be created by a professor (i.e., an advisor) into GENI, where 

only the professor’s user accounts are allowed to create projects. Students cannot 

start working in GENI racks without being engaged in a project. 
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          Figure 5. GENI – Create Project 

 

 Join the created project and create a slice, a container that includes resources that 

can be requested.  

 
         Figure 6. GENI – Create Slice 

 

 Add resources to the created slice as the following: 

a. VM (controller) in Chicago at University of Chicago InstaGENI rack. 

b. 2 VMs connected to ovs-switch in Los Angeles at CENIC InstaGENI rack.  

c. 2 VMs connected to ovs-switch in DC at MAX InstaGENI rack.  

Many types of VMs exist in GENI and the default-vm has been used in this 

simulation. All VMs of the same type have similar specifications; end users cannot 

change the specifications of any VMs. However, a specific operating system’s 

image has been used in the ovs switches and request to install a package into all 

VMs. Details about the image and the package are as follows:  
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a. Switches’ image: https://www.geni.it.cornell.edu/image_metadata.php?uuid=06efdaf9-

bd28-11e4-81ff-000000000000 

b. VM’s package: http://emmy9.casa.umass.edu/GEC-20/gimidev.tar.gz 

 Connect the ovs-switches to the controller in Chicago using “stitched” link. 
Stitched link is a type of connection in GENI that allows connecting resources from 
different geographical location through Internet2 infrastructure, as shown in the 
following diagram: 

 

 
Figure 7.Experiment Network’s Topology in GENI 

 

 Configure each node as follows: 

a. Node-1:  
sudo ifconfig eth1 10.10.10.1/24 
 

b. Node-2:  
sudo ifconfig eth1 10.10.10.2/24 
 

c. Node-3:  
sudo ifconfig eth1 10.10.10.3/24 
 

d. Node-4:  
sudo ifconfig eth1 10.10.10.4/24 

http://emmy9.casa.umass.edu/GEC-20/gimidev.tar.gz
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e. Cntr:  
sudo ifconfig eth1 10.10.1.1/24 
sudo ifconfig eth1 10.10.2.1/24 
./pox/pox.py forwarding.l2_learning 
 

f. SW1:  
sudo ifconfig eth1 10.10.1.2/24  <--- connected to cntr 
sudo ovs-vsctl add-br br0 
sudo ovs-vsctl add-port br0 eth2 
sudo ovs-vsctl add-port br0 eth3 
sudo ovs-vsctl add-port br0 eth4 
sudo ovs-vsctl set-controller br0 tcp:10.10.1.1:6633 
sudo ovs-vsctl set-fail-mode br0 secure 
 

g. SW2:  
sudo ifconfig eth1 10.10.2.2/24  <--- connected to cntr 
sudo ovs-vsctl add-br br0 
 sudo ovs-vsctl add-port br0 eth2 
sudo ovs-vsctl add-port br0 eth3 
sudo ovs-vsctl add-port br0 eth4 
sudo ovs-vsctl set-controller br0 tcp:10.10.2.1:6633 
sudo ovs-vsctl set-fail-mode br0 secure 
 

 Launch Labwiki. Labwiki is a built-in tool in GENI that helps to perform an 

experiment with the reserved resources and extracts readings/results from the 

experiment. In this example, Labwiki was used to measure RTT (round-trip-time) 

of ICMP packets between node-1 and node-4. 

 In Labwiki, use the script shown in Appendix B to perform “PINGs” operation 

between node-1 in Los Angeles and node-4 in DC. The output of the script will be 

presented graphically in Labwiki. Results will be presented in the following section.  

 Repeat the same experiment twice more, using a different location for the 

controller in each attempt- one in Kansas at Kansas-InstaGENI rack and another in 

Minneapolis at Wisconsin-InstaGENI rack. 
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5.2.4. GENI - Experiment Outcomes 

The experiment mentioned in the previous section was installed using the reactive 

forwarding technique as explain in section 2.2. The ICMP protocol has been used to 

measure the effect of the controller’s location on the additional delay of controller-switch 

communication. RTT (Round-Trip-Time) is the period of time it takes for the ICMP packet 

to travel to the destination host, as well as the time it takes the acknowledgment to reach 

the source again. In a reactive controller design, an additional delay will appear during 

the first ICMP packet, because the switch consults the controller to know how to forward 

the packets. This delay will only occur for the first packet. This experiment measures the 

RTT of the ICMP’s traffic between two hosts in Los Angeles and DC with three different 

locations for the controller. The following table shows the average RTT (ms) for ten 

repetition for this experiment and Figure.10 shows the average for these ten attempts. 

Appendix C includes more details about each attempt results  

Packet# 
Controller Location 

Chicago Kansas Minneapolis 

1 378.9 475.2 464.2 

2 72.6 83.8 72.3 

3 71.7 71.5 71.9 

4 71.8 71.7 72 

5 71.9 71.7 72 
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The following diagrams show samples of the output from the Labwiki tool. 

 

 

 

 

Figure 8. Labwiki - RTT for ICMP packets with SDN controller in Chicago. 

Figure 9. Labwiki - RTT for ICMP packets with SDN controller in Kansas 



 

28 
 

5.3.  Result Analysis and Reflections 

In this section, we will discuss the findings, outcomes, and reflections of the study in its 

entirely. 

 
Figure 10. Compare Average RTT for Different Controller Locations 

 

 As shown in the above charts, when the SDN controller is placed in Chicago, the 

average RTT for the first ICMP packet is 378.9ms, while average RTT is 464.2ms when 

the controller is placed in Minneapolis. Finally, the average RTT is 475.2ms when the 

controller is located in Kansas.  

 The results indicates that placing the SDN controller in the most central node of the 

Internet2 network (which is Chicago according to the analysis in section 5.2.2.) will 

provide a better performance and will automatically lower the additional delay that 

is usually caused by the controller-forwarding element’s communication.  
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 Although 85ms and 96ms may not seem significantly different numerically, this 

difference will impact other applications and network engineers will consider it as a 

key impact on the end-to-end quality of communication.  

 This diagram also shows how the RTT is dramatically decreased in at the second 

packet. This occurs because the switch no longer need to send request to the 

controller as it has already installed the flow for such packets into all forwarding 

elements.   

 Solving the controller placement problem with complex network analysis techniques 

provides results that are similar to past studies. Chicago was selected as the best 

location for Internet2 topology, and this conclusion is also seen in Sherwood’s work 

[1]. The similarity in results occurred because the methodologies used in both works 

depended on the weight of the links within the shortest paths.  

 The simulation findings, as explained in the previous section, also reflect the 

theoretical analysis.  The simulation was performed on the real Internet2 network, 

making our methodology more reliable. In contrast to previous studies that often did 

not simulate their findings in a physical networks and typically conducted lab 

simulations only.  

 The latency of end-to-end communication is an important indicator of the quality of 

network architecture performance, hence why PING packets were used to examine 

the effect of the controller’s placement into total latency.   
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6.0. Conclusions and Future Work 

SDN has begun to appear in datacenters for many industries, after several years of being 

exclusively implemented in research labs or technology companies. Some network 

engineers are still hesitant to implement it on the WAN networks, although a few 

technology companies have already done so [9]. Further research that identifies the 

solution for the SDN controller problem will allow SDN technology to gain a strong 

presence in industry. While the SDN architecture that decouples the control plane from 

the data plane provides many benefits, it also has created some problems, including the 

placement of the SDN controller. 

Although, many previous studies have proposed solutions for the SDN controller problem 

through the use of algorithms and mathematical models, this study has found a new 

approach to solving this problem by using complex network analysis with centrality 

theory. This work has applied the betweenness centrality and closeness centrality analysis 

into a real life topology, such as the Internet2 network. Interestingly, both methods 

(closeness centrality and betweenness centrality) lead to the same central node for the 

entire Internet2 network, despite the fact that each method uses different metrics to find 

the centrality. 

Intelligent design of the GENI platform gives us the ability to simulate the SDN placement 

problem in Internet2 topology, where GENI uses Internet2 infrastructure as the 

connection between its datacenters. The results extracted from the GENI platform reflect 



 

31 
 

the network analysis and its indication that placing the controller in Chicago will provide 

better performance (in terms of delay) than placing it in other states.  

Controller placement is an important factor in the SDN network’s performance, 

scalability, and resiliency. This research has benefited from using methodology that finds 

the most central node in a given network based on traffic flow (as in betweenness 

centrality) and shortest distance (as in closeness centrality) to ultimately improve 

performance. Placing a controller into a central location in any given network will reduce 

the total delay of traffic caused by proactive/reactive forwarding techniques used in SDN-

forwarding elements communication. 
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7.0. Appendices 

7.1. Appendix A. Internet2 Topology’s Representation in Adjacency Matrix 

List of nodes in Internet2 network as shown in Fig.4, where the number that is 
associated with the city will be the coordinate of the matrix, for example, node in 
Seattle is number 1 then element (1,1) in the adjacency matrix will be a representation 
for Seattle node. The list of the nodes as follow: 

1- Seattle 
2- Portland 
3- Sunnyvale 
4- Los Angeles 
5- Missoula 
6- Salt Lake City 
7- Phoenix 
8- Tucson 
9- Denver 
10- El Paso 
11- Minneapolis 
12- Kansas City 
13- Tulsa 
14- Dallas 
15- Houston 
16- Equinox 
17- Starlight 
18- Chicago 
19- Columbia 
20- Jackson 
21- Baton Rouge 
22- Cleveland 
23- Pittsburgh 
24- Charlotte 
25- Atlanta 
26- Albany 
27- Boston 
28- Hartford 
29- New York 
30- Philadelphia 
31- Washington D. C. 
32- Ashburn 
33- Raleigh 
34- Jacksonville
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Here is the full adjacency matrix for Internet2 topology: 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

1 0 173 0 0 477 689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 173 0 666 0 0 1434 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 666 0 351 0 768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 351 0 0 590 372 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 477 0 0 0 0 0 0 0 0 0 1183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 689 1434 768 590 0 0 0 0 519 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 372 0 0 0 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 116 0 0 318 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 519 0 0 0 632 0 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 318 632 0 0 0 0 906 667 0 0 0 0 1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 1183 0 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 603 0 0 0 271 0 0 0 0 510 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 271 0 258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 906 0 0 258 0 239 0 0 0 0 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 667 0 0 0 239 0 0 0 0 0 443 271 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 1 1 0 0 0 345 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 510 0 0 0 1 1 0 386 0 0 345 0 0 716 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 126 0 0 0 0 0 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 1110 0 0 0 682 443 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 603 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 345 0 345 0 0 0 0 134 0 0 472 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 134 0 0 0 0 0 0 0 0 0 228 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245 0 0 0 0 0 0 0 168 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 716 0 390 0 0 0 245 0 0 0 0 0 0 0 0 0 346 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472 0 0 0 0 168 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 0 100 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 117 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117 0 94 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94 0 139 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 139 0 32 263 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 228 0 0 0 0 0 0 0 32 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 0 0 0 0 0 0 263 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 603 0 0 0 346 0 0 0 0 0 0 0 0 0 
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7.2. Appendix B. GENI – Labwiki Script 

defProperty('resource1', "node-1", "ID of a resource") 
defProperty('sinkaddr11', '10.10.10.1', "Ping destination address") 
peak_list = [] 
 
defApplication('ping') do |app| 
  app.description = 'Simple Definition for the ping-oml2 application' 
  # Define the path to the binary executable for this application 
  app.binary_path = '/usr/local/bin/ping-oml2' 
  # Define the configurable parameters for this application 
  app.defProperty('target', 'Address to ping', '-a', {:type => :string}) 
  app.defProperty('count', 'Number of times to ping', '-c', {:type => :integer}) 
  # Define the OML2 measurement point that this application provides. 
  app.defMeasurement('ping') do |m| 
    m.defMetric('remote',:string) 
    m.defMetric('ttl',:uint32) 
    m.defMetric('rtt',:double) 
    m.defMetric('rtt_unit',:string) 
  end 
end 
 
defGroup('Source1', property.resource1) do |node| 
   node.addApplication("ping") do |app| 
    app.setProperty('target', property.sinkaddr21) 
    app.setProperty('count', 5) 
    #app.setProperty('interval', 1) 
    app.measure('ping', :samples => 1) 
  end 
end 
 
onEvent(:ALL_UP_AND_INSTALLED) do |event| 
  info "Starting the ping" 
  after 5 do 
    group('Source1').startApplications 
  end 
  after 80 do 
    info "Stopping the ping" 
    allGroups.stopApplications 
    Experiment.done 
  end 
end 
 
defGraph 'RTT' do |g| 
  g.ms('ping').select(:oml_seq, :remote, :rtt)  
  g.caption "RTT of received packets." 
  g.type 'line_chart3' 
  g.mapping :x_axis => :oml_seq, :y_axis => :rtt, :group_by => :remote 
  g.xaxis :legend => 'Packet_Seq' 
  g.yaxis :legend => 'RTT', :ticks => {:format => 's'} 
end
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7.3. Appendix C. The Experiment Results 

 

 

Location Chicago Kansas Minneapolis 

Attempt 
Packet_Sequence# Packet_Sequence# Packet_Sequence# 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 671 72 72 72 72 372 111 72 76 71 390 72 72 72 72 

2 473 73 72 72 72 375 72 72 72 72 385 72 71 72 72 
3 331 73 72 72 72 363 151 72 71 72 412 73 72 72 72 

4 338 72 72 72 72 373 72 71 71 71 370 72 72 72 72 

5 338 73 71 72 72 741 72 71 71 71 370 72 72 72 72 
6 328 73 71 72 72 718 72 71 71 72 740 72 72 72 72 

7 298 73 71 71 71 362 72 71 71 72 374 73 72 72 72 
8 338 72 72 72 72 354 72 72 71 72 815 72 72 72 72 

9 325 73 72 71 72 735 72 71 71 72 407 72 72 72 72 

10 349 72 72 72 72 359 72 72 72 72 379 73 72 72 72 
Average 
RTT (ms) 

378.9 72.6 71.7 71.8 71.9 475.2 83.8 71.5 71.7 71.7 464.2 72.3 71.9 72 72 
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