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Abstract

Analysis of quadrupole focusing lattices for high-frequency TWTs is presented. This work

is motivated by recent work performed at the Naval Research Laboratory (NRL) which

demonstrated an advantageous case for strong focusing employing a Halbach quadrupole

lattice. Using realistic Permanent Magnet Quadruple (PMQ) field cancellation, the advan-

tage of using PMQ to transport higher current densities than Permanent Periodic Magnet

(PPM) lattices disappears, while other advantages for employing quadrupole focusing re-

main. This dissertation gives a comprehensive analysis of the applicability of PMQ focusing

in vacuum electronic devices.
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Chapter 1

Introduction

1.1 Overview

Novel millimeter–wave vacuum electronic devices (VEDs) that are useful for applica-

tions such as communications, imaging, and radar, are requiring higher performance than

we currently have available to us. In particular, as we go to higher frequencies (greater

than 50 GHz), it is difficult to achieve sufficient power for the desired applications. In this

high-frequency regime one device of interest is the traveling-wave-tube (TWT). TWTs have

demonstrated that they are robust, reliable, and have the potential to be scaled to very

high frequencies. However, at these very minute dimensions there are many challenges

to obtaining sufficient power. The beam voltage must be kept sufficiently low to avoid

electric-field breakdown in the gun region. It is also desirable to keep the beam voltage

down to maintain a portable system as these devices require modulators to drive them and

high voltage modulators are heavy and bulky. In order to achieve sufficient power with

such constraints on the voltage, it is desirable to increase the beam current. Quadrupole

strong focusing is proposed as a potential method to transport higher current densities in

these beams.

Quadrupole strong focusing has long been used to transport high energy, emittance

1



Chapter 1. Introduction

dominated electron beams for accelerator applications. It has not, however, been employed

to transport lower energy, space-charge dominated electron beams for application to linear

VEDs, such as the TWT. Previous work has suggested that there could be advantages for

applying the Periodic Magnet Quadrupole (PMQ) focusing method to space-charge dom-

inated electron beams; specifically, it has been proposed that employing a PMQ focusing

scheme in lieu of traditional focusing schemes would use less magnetic material to focus

and transport a comparable electron beam. In addition, the stronger focusing forces are

believed to be able to transport higher current density electron beams than the traditional

focusing schemes. Despite these advantages, very little work has been performed to analyze

the scope of applicability of this focusing method.

The purpose of this work is to provide a thorough analysis of quadrupole strong fo-

cusing for VED applications. This study includes an analysis of the magnetic fields and

magnet-magnet interactions, a thorough analysis of the beam envelope interaction with the

PMQ transport lattice, an analysis of the beam dynamics for various device dimensions

(scalability) as well as various beam energies, a comparison and limitation study of the

traditional Periodic Permanent Magnet (PPM) focusing method, a discussion of the ap-

plication of PMQ focusing to pencil and other beam geometries, and studies of emittance

growth in PPM and PMQ lattices. Some results from the envelope codes can be found in

[6].

1.2 Electron Beam Focusing and Transport

Linear VEDs rely on an electron beam interaction with an RF wave in which the elec-

tron beam transfers energy to the wave. This interaction requires an electron beam whose

longitudinal dimension is much longer than its transverse dimensions which maintains a

constant transverse cross-section. The electron beam must be confined to counteract the

natural spread of the transverse beam size due to the self-repelling forces of the electrons

for the length of the RF interaction circuit; this is called beam transport.

2



Chapter 1. Introduction

One common method for confining the beam is to apply a uniform axial magnetic field

in the direction of beam propagation– any electron motion which is perpendicular to this

field generates forces which confine the beam. Another common method is to use periodic

focusing cells which counteract the beam spread sufficiently until the beam reaches the

next focusing cell. These systems for maintaining the beam are often called beam focusing

systems, or beam transport systems. The periodic systems are often called focusing or

transport lattices, and the periodic cells employed are often called lenses due to the optical

analog of focusing systems.

The spread of the electron beam due to the self-forces acting on each other with no

constraints is called Universal Beam Spread (UBS) [7].The force due to the space–charge

acting on an electron at an initial radius ri is given by:

eEs
γ2

=
eIori

2πε0cβγ2r2
, (1.1)

where e (defined as negative) is the electron charge, Es is the electric field due to the

electron Coulomb interactions, I0 is the current of the electron beam, ri is the initial

radius of the beam, ε0 is the permittivity of free space, c is the speed of light, β is the ratio

of beam velocity in the inertial frame of reference to the speed of light, γ is the lorentz

relativistic factor, and r is the radius of the electron beam. The effect of UBS on electron

motion for an electron with initial radius ri is graphed for a typical TWT beam in Fig.

1.1.

Since the force on the electron is proportional to its initial radius, electron paths do not

cross; therefore, the evolution of the beam cross-section can be determined by following

the motion of the edge electrons, and this is called the beam envelope. Then the equation

of motion of the edge electron at radius r over time can be determined by

d2r

dz2
=

eI0
2ε0(cβ)3r

, (1.2)

or in terms of beam voltage V0,

d2r

dz2
=

I0

4
√

2πε0
√
e/mV

3/2
0 r

, (1.3)
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Chapter 1. Introduction

Figure 1.1: Universal beam spread or space–charge spread.

where m is the electron mass.

The forces acting on the electron beam can be clearly seen by looking at the envelope

equation of the electron beam, where below we assume that the axial magnetic field on the

cathode is zero:

r′′[s] + κ[s]− 2K0

r[s]2
−
εeff
r[s]3

= 0. (1.4)

The envelope equation represents the motion of the edge of the electron beam, or the beam

“envelope”, r is the radial distance to beam edge as a function of position s. In the second

term, κ is the external magnetic field. In the third term, K0 (which is defined to be > 0)

represents the self–repelling forces of the electrons and is called the “space–charge” term.

In the fourth term, εeff (which is also defined to be > 0) represents the effective beam

emittance. Emittance is a measure of the beam quality and will be discussed in more detail

in Chapter 5. Typically, the space–charge term dominates for electron beams in VEDs and

the emittance term dominates for the higher energy beams used in accelerator applications.

4



Chapter 1. Introduction

To prevent the beam from spreading the second term must at least cancel out the

third and fourth terms in the envelope equation. When the external magnetic field exactly

cancels the space–charge forces, and the emittance term is negligible, the electron beam

is said to be in Brillouin electron flow [8]. When there is an axial magnetic field on the

cathode, it is called confined electron flow and the beam can transport greater current

densities than can be achieved with Brillouin flow.

There are three main magnetic field configurations that will be discussed for trans-

porting linear electron beams: solenoidal fields, PPM fields, and PMQ fields. Solenoids

have the ability to produce very high fields for both Brillouin flow and confined flow. In

addition, the fields are simple to design and produce. However, solenoids are rarely used

for VED devices outside of the laboratory because they are heavy, bulky, and require ex-

ternal power and often cooling systems. As an alternative to solenoids, PPM focusing is

much lighter in weight, much more compact, and does not consume power. It is now the

standard method for electron beam confinement in TWTs. The third method that will be

discussed is PMQ transport. PMQs have much different field profiles from PPMs and are

even lighter in weight and more compact than PPMs.

1.3 Introduction to Quadrupole Focusing

The traditional method for focusing compact linear amplifiers, such as the TWT, uses

an alternating PPM focusing lattice. Motivation for using the PPM focusing scheme over

the solenoidal magnet is the decrease in size and weight of the whole focusing system.

With a standard permanent magnet, if the magnet length is increased by a factor of N,

then all other dimensions of the magnet, i.e., the inner and outer radii, must also be

increased by a factor of N to maintain the same magnetic flux inside the magnet. The

volume, and also the weight, of the magnet increases to N3 times its initial value. Using

an alternating PPM structure instead increases the weight only by a factor of N for an

additional length N, saving a factor of N2 from the weight of the magnet. The PPM

focusing scheme functions well for transporting beams of low to moderate current densities

5



Chapter 1. Introduction

Figure 1.2: Typical PPM focusing lattice featuring a continuously varying field,
invented by Mendel, Quate, Youkum [1].

but fails to transport higher current density beams as it cannot produce sufficient magnetic

fields for stable transport. A PPM lattice schematic can be seen in Fig. 1.2 where it is

clear that the magnetic fields are longitudinal to the direction of beam propagation, and

as the periodicity gets smaller the peak fields are significantly reduced by the proximity

of the adjacent magnet; this effect is termed field bucking. As will be explored more in

Chapter 2, the peak field of the PPM lattice is heavily limited by geometry and as the

device dimensions get very small the maximum magnetic field that can be produced is very

low. A PMQ lattice is not expected to have the same limitation because the focusing fields

are essentially transverse to the beam.

An ideal quadrupole magnet would have four poles with a continuous magnetization

vector (
−→
M) rotation, as in Fig. 1.3. This continuously varying

−→
M produces the strongest

magnetic field gradients. As can be seen from the figure, the magnetic field on axis inside

this ideal quadrupole magnet is a null; however, the quadrupole magnet will produce very

strong magnetic field gradients on axis. A permanent magnet in a PPM lattice uses the

field on axis to focus and/or transport the electron beam, whereas the quadrupole uses

the magnetic field gradient on axis. The Halbach 16-piece model which will be used in

this work is a segmented approximation of the ideal quadrupole. The PMQ lattice is built

on the FODO principle from optics, where FODO stands for focus-drift-defocus-drift. The

FODO principle states that a focusing lens followed by a drift section and then a defocusing

lens has a net “strong” focusing. As illustrated in Fig. 1.4, the first element of the FODO

6



Chapter 1. Introduction

Figure 1.3: An ideal quadrupole magnet.

lattice being employed in the PMQ schematic focuses the electron beam in the x–z plane

while defocusing the beam in the y–z plane. The following element in the lattice is rotated

90 degrees and does the opposite, namely, focuses in the y–z plane and defocuses in x–z

plane, creating a net focusing effect in both planes. Two quadrupole magnets, or elements,

and two drift sections are defined as one lattice period S.

Recent work [2] has demonstrated that quadrupole focusing has the potential to provide

strong focusing for space–charge dominated beams. It was also demonstrated that a PMQ

lattice focuses an equivalent beam as a PPM using 1/3 the magnetic material. Further,

the work suggests that quadrupole focusing lattices can make much larger focusing fields

than can be obtained by traditional PPM focusing lattices. These advantages suggested

by [2] suggest that the PMQ focusing method could allow us to design new TWT devices

for higher frequencies and higher powers.

In addition to the potential to be able to stably transport higher current density beams,

a PMQ lattice is much lighter and smaller than the comparable PPM lattices as seen in Fig.

1.5, and Table 1.1 borrowed from [2], where lq is the magnet width in the z or longitudinal

to beam propagation direction, S is the period, and lattice occupancy λocc is defined as

the ratio
2lq
S . This size and weight advantage alone is very strong motivation for using the

7



Chapter 1. Introduction

Figure 1.4: The PMQ lattice employing the FODO principle.

PMQ focusing method as it significantly lowers cost and increases portability. Moreover,

we believe that PMQ focusing can solve a bigger problem of high frequency devices, and

that is the problem of emittance growth. The force due to emittance scales as 1/r3, where

r is the beam radius; thus, emittance is an important consideration for electron beams

with small radii. Recent literature has also emphasized the importance of emittance for

this regime [9], [10]. It will be shown through Sherzer’s theorem [11] that focusing using

multipole magnets can greatly reduce or eliminate emittance growth all together. These

are strong advantages for employing PMQ focusing lattices over PPM in these devices.

Table 1.1: Design parameters for PMQ and PPM focusing for comparable beam.

Design Parameter PMQ PPM

Magnet length lq 0.81 mm 3.56 mm
Outer magnet radius ro 12.0 mm 13.72 mm
Inner magnet radius ri 4.00 mm 5.05 mm

Lattice Period S 12.46 mm 11.94mm
Lattice occupancy λocc 13% 59.6%

Magnet volume 326 mm3 1820 mm3

Despite these advantages PMQ focusing has many of its own challenges to address.

8



Chapter 1. Introduction

Figure 1.5: Demonstration of the size and weight advantage of PMQ over PPM from
[2].

PMQ focusing has never been used for VEDs and, with the exception of [2],[12], the pub-

lished literature on it is scant. The practical aspect of implementing a PMQ focused

electron beam presents many challenges and it will be essential to demonstrate experimen-

tally that beam transport can be achieved using PMQ for space–charge dominated beams.

Firstly, a PMQ focusing lattice has two axes of symmetry. Therefore the electron beam has

two ripples and more complicated beam motion than for other focusing methods. With an

exotic beam profile, it will be essential to avoid interception with the beam pipe or there

is risk of melting the beam pipe and the interaction circuit. Secondly, strong and small

permanent magnets suffer from minute imperfections that could have a huge impact on

the beam; this will have to be carefully surmounted. Thirdly, TWTs have flanges which

have to be welded on to the TWT tube around the magnets, and permanent magnets

are very heat sensitive. To overcome this, an assembly will need to be designed which

can be put over a TWT tube with the flanges already welded on. Another challenge will

be designing the magnets around the RF input and output ports. Lastly, it will need to

be determined whether the exotic beam profile will properly interact with the interaction

circuit to produce more RF than can be achieved with the simpler beam profile of PPM

focused tubes.

9



Chapter 1. Introduction

1.4 Previous Work

1.4.1 Wessel-Berg

Wessel-Berg in 1993 at the IEEE International Electron Devices Meeting presented a

paper on the potential of focusing high density electron beams using a quadrupole strong

focusing permanent magnet lattice [12]. To him it appeared that the main advantages of

quadrupole focusing, as opposed to the traditional PPM focusing method, was a stronger

field on axis, in large part due to the transverse nature of the fields which do not require pole

pieces. He believed that iron pole pieces in the PPM scheme suffer from demagnetization

effects and saturation problems at small dimensions, small permanent magnets in such

close vicinity would also suffer from demagnetization effects. Both demagnetization and

saturation problems are known to become greater issues when dimensions are minute–at

extremely high frequencies.

Wessel-Berg, through a coupled mode formalism approach and using the paraxial ap-

proximation, analyzed the motion of the beam-edge electrons by dividing them into two

ripples. He delineated the first ripple as the expansion and contraction of the circular beam

profile, and the second as the elliptical rotation back and forth of the beam. He deter-

mined that the second ripple was dominant and concentrated on that component alone in

the lattice design equations. He presented lattice design equations from the dominant rip-

ple driven by the space-charge field and from a second focusing condition from the beam

equilibrium condition. In addition to these design equations, he looked carefully at the

quadrupole strength using both the maximum possible magnetization and the demagne-

tization field in the lattice. The latter was calculated numerically using an exact field

analysis of the demagnetization field in a four-piece quadrupole. From here he considered

two typical examples: the first in the frequency range of 10-20 GHz. He determined that

the field needed to focus the beam is very moderate and easily achieved with quadrupole

magnets. For the second example he considered the 80-100 GHz range for a millimeter-

wave TWT. For this case he also found that the required field strength is easily achievable

10



Chapter 1. Introduction

using quadrupole permanent magnets. In both cases he kept the beam ripple to 0.2, which

is seemingly very reasonable.

His work used the assumption of paraxial theory and he did not perform a full–fledged

comparison and evaluation of the two methods. Nevertheless, he verified the basic strong

focusing power of a PMQ lattice and the limitation of the field available from PPM focusing,

which becomes very small at very high frequencies or at high beam powers.

1.4.2 Work Performed at NRL

In May 2009 in IEEE Transactions on Electron Devices, Abe, Kishek et al. pub-

lished a paper titled, “Periodic Permanent-Magnet Quadrupole Focusing Lattices for Lin-

ear Electron-Beam Amplifier Applications.” In this paper they describe a lattice design

procedure using an envelope code, TRACE3D [13]. More detailed simulations using the

electron-gun and beam transport code MICHELLE [14] with magnetic fields from the An-

sys code Maxwell [15] and an interaction circuit simulated in WARP [16], of a helical TWT

were performed. They developed a PMQ lattice design using the envelope equation for a

matched beam under the smooth approximation theory. They used a 16-piece Halbach

quadrupole [17]. Using their lattice design, they calculated the size and volume of mag-

netic material for a comparable PPM lattice and showed that the magnet volume is reduced

five-fold. They perform a design for a 16 keV, 0.81 A, 0.33 mm initial radius beam and

verified transport using fully 3D PIC simulations.

The nature of the PMQ schematic and the orientation of the forces in the FODO

scheme causes an unusual beam profile to form. As the beam travels in the axial direction

z through one period, S, it’s transverse profile forms an ellipse, longer in x than in y,

briefly becomes circular, and then is forms an ellipse with the magnitudes of the axis

switched in the x and y directions, before briefly becoming circular again. Although it

was beyond the scope of their paper to self-consistently analyze the PMQ focused beam in

an interaction circuit, they did examine the interaction of the electromagnetic waves on a

helix circuit with round beams of radii corresponding to the minimum and maximum radii

11
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Figure 1.6: Maximum transportable current density per lattice period from Eq. 1.5,
and Eq. 1.6 motivated by [2].

of the PMQ beam envelope. These simulations were performed using the 1-D large signal

helix TWT code WARP. They explored the sensitivity of the amplifier performance to the

two extreme beam radii and determined that, over the radial variation of the elliptical

beam, the coupling impedance of the circuit varies approximately 6 percent. This is an

excellent result, demonstrating that the electromagnetic beam-wave interaction is relatively

insensitive to the radial variation of the elliptical beam. It was determined that the gain

per unit length was ≈ 5.6 dB/cm and 6.3 dB/cm for the two beam radii, whereas the

gain is only 3.3 dB/cm for the PPM focused beam with a PPM focusing lattice of the

same periodicity. While they verified the basic methodology and codes, and illustrated

the benefits afforded by the strong focusing PMQ lattices, there was much work left to be

done.

The NRL work included a comparison of PPM vs. PMQ focusing for maximum trans-

portable current as a function of lattice period. The estimation of maximum transportable

current density follows from their equation 6, which is reproduced here as Eq. 1.5.

12
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IPMQmax =
(σ0a0βγ)2

4S2
[

2

IAβγ
+

ε2n1
I1a20

]−1, (1.5)

where a0 is the mean beam radius, σ0 is the zero-current phase advance, S is the lattice

period, εn1 is the normalized emittance for a beam of current I1, and IA is the Alfvén

current, or approximately 17.1 kA.

The estimate of maximum transportable current for PPM focused beams follows di-

rectly the method presented in [2]. It is determined by equating the on-axis magnetic field

value estimate to the Brillouin field on axis and solving for maximum current, assuming

balanced magnetic and space-charge forces. This is presented as Eq. 1.6 below, where Br

is the magnetic field necessary for Brillouin flow, Vk is the beam voltage, and ri, ro are the

inner and outer magnet radii, respectively. Note that the current transported using PPM

focusing cannot be increased arbitrarily by increasing the lattice period L, but rather, is

subject to a stability criterion, which will be explored in more detail later.

IPPMmax =

(
aoVk

1/4

8.32x10−4

)2
B2
rS

2(γβ)3

32 1√
r2i +

(
S
4

)2 − 1√
r2o +

(
S
4

)2
2

. (1.6)

In Fig. 1.6, Fig. 7 from [2] has been recreated, except with current density given in

absolute units instead of being normalized. This figure represents a 16 keV beam with

an inner magnet radius of 4 mm and indicates a strong advantage for transporting higher

current density pencil beams in cases where a shorter lattice period is appropriate. How-

ever, Eq. 1.5 depends on the assumption of a hard-edged quadrupole model which, as

will be shown, does not apply to quadrupole lattices of relevant dimensions for focusing

space-charge dominated beams. A hard-edge model neglects the fringing fields of a magnet

and treats the magnetic field as if it were constant over the length of the magnet and zero

outside the magnet length, as shown in Fig. 1.7. A PMQ focusing lattice with magnetic
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Figure 1.7: Hard-edge magnetic field model, purple, vs. realistic magnetic field
model, blue.

fields sufficient to focus a space-charge dominated beam requires the permanent magnet

lenses to be placed close together such that the fringing fields from each lens overlap. The

effect of the overlapping fields is to significantly reduce the overall field strength compared

to the field strengths calculated using the hard-edge quadrupole field model. As such,

the hard-edge quadrupole field model is not sufficient for estimating transportable current

density for space-charge dominated beams.

The remainder of this dissertation is organized as follows. Chapter 2 will explore the

development of the PPM magnet models that is used, both the analytic field profiles and

simulations which agree with the analytic models for PPM, as well as analytic analysis of an

electron beam traversing this focusing schematic. Chapter 3 will explore the development

of the PMQ magnet model, analytically, with simulations, and pertaining to the beam.

Chapter 4 covers the development of the envelope codes written to study the physics of the

particle beam being transported through the focusing lattices. Chapter 5 studies emittance

growth due to the focusing lattices. Chapter 6 discusses PMQ focusing of other beam

geometries and other PMQ applications. Chapter 7 summarizes the results and discusses

future work.
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Chapter 2

PPM Lattices for Electron Beam

Transport

In this chapter, we analyze in detail the magnetic fields produced by permanent magnets

which will transport the electron beams, specifically for the PPM lattice geometry. The

strength of the magnetic field that can be produced will directly correlate to how much

current density can be transported in a beam for a given beam energy. It is essential for

these purposes to understand the interactions of magnets with their neighboring magnets

as this determines the maximum magnetic field that can be produced on axis. PPM lattices

are presently the transport method of choice for most compact linear vacuum RF sources.

It is essential to understand the limitation of PPM transport in relation to PMQ transport

in the following chapter.

2.1 PPM Magnet Model

Solenoidal magnetic fields generated by permanent magnets, especially when iron pole

pieces are used and when multiple solenoidal magnets are nearby each other, are not trivial

to understand. However, if we can determine the field on axis, we can expand the field
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Chapter 2. PPM Lattices for Electron Beam Transport

off-axis using only the derivatives on axis for axisymmetric geometries. The lowest order

expansion of the field off-axis is known as the paraxial approximation and is commonly

used for beam physics calculations. The on-axis field for a loop of current is obtained using

the Biot-Savart Law:

Bz =
µ0
2

Ia2

(a2 + z2)3/2
, (2.1)

where µ0 is the permeability of free-space, a is the radius of the current loop, z is the

distance from the center of the loop to the observation point, and I is the current carried

by the loop. To obtain the field from a finite solenoid, we need to integrate this loop for

z1<z<z2 and ri<a<ro, where z2 - z1 is the length of the solenoid and ri, ro are the inner

and outer radii of the solenoid, respectively. The axial integration for n turns per unit

axial length and a radial current differential of dI
dr gives:

dBz =
µ0n

2

dI

dr

(
z − z1√

(z − z1)2 + r2
− z − z2√

(z − z2)2 + r2

)
. (2.2)

After the radial integration, we have:

Bz =
µ0nI

2(ro − ri)
((z − z1)ξ − (z − z2)ξ) , (2.3)

where

ξ = log

√
(z − z1)2 + r20 + r0√
(z − z1)2 + r2i + ri

. (2.4)

Equation 2.3 can now be used to find the fields everywhere due to a finite solenoid using

the on-axis expansions. To convert this from a solenoidal field to the field from a finite

cylindrical permanent magnet, also known as a pillbox magnet, we need to look at the

magnetic moments of permanent magnets.

In general, the magnetic flux density is given by

~B = µ0

(
~H + ~M

)
, (2.5)
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where µ = µ0(1 + χm), χm is called the magnetic susceptibility and is dimensionless.

A permanent magnet has a total magnetic dipole of ~m = ~MV where ~M is the magnetic

moment, and V is the volume of the cylinder. The magnetic remanence field is the magnetic

flux density when ~H = 0; this field is called Br. We can represent axisymmetric permanent

magnets using surface currents in a similar way to solenoids. The magnetization ~M results

from an internal distribution of magnetic moments ~m such that a volume element dv has

a magnetic moment of d~m = ~Mdv. These magnetic moments are equivalent to a current

flow and each moment d~m produces a current density of the form ~J = d~m
dS . Using Ampere’s

Law, the vector potential due to d ~M is

d ~A(~r) =
µ0
4π

d~m× ~r
|~r|3

. (2.6)

The total vector potential A for a summation of all magnetic moments in a given volume

is found by integrating the above expression:

~A(~r) =

∫
V

~∇× ~M

r
dV +

∫
S

~M × dn̂
r

dS. (2.7)

We can take the surface outside of the magnet. Doing so eliminates the second integral,

and the first integral implies a magnetic current of the form

~∇× ~M = ~Jm. (2.8)

For a uniform magnetization, as in a permanent magnet, the fields produced by the mag-

netization can be equivalently represented by surface currents on the volume.

We are now justified in replacing the magnetic flux density from the ideal solenoid

µ0n
dI
dr with the remanence field from the permanent magnet, Br, in Eq. 2.3 and have a

model for the on-axis magnetic field due to an annular permanent magnet:

Bz,r=0 =
Br
2

 z − z1√
(z − z1)2 + r2edge

− z − z2√
(z − z2)2 + r2edge

 (2.9)

where the magnet extends from z1 to z2 and redge is the radius of the outside of the

magnet. By alternating the direction of this field and using superposition, a full model of
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the magnetic field from a PPM lattice is achieved as

BPPM =
∑
i,n=2

Br
2

(inner − outer) +
∑

i+1,n=2

Br
2

(−inner + outer) (2.10)

where

inner =

(
z + z1 − Si

((z + z1)2 + r2i )
1/2
− z + z2 − Si

((z + z2)2 + r2i )
1/2

)
, (2.11)

and

outer =

(
z + z1 − Si

((z + z1)2 + r2o)
1/2
− z + z2 − Si

((z + z2)2 + r2o)
1/2

)
, (2.12)

S is the period, the summation is over index i, and n is the index step. This model will be

used to understand multi-magnet interactions to get a better understanding of the PPM

model and its limitations. In Chapter 4 this model of the fields will be implemented in the

PPM envelope code.

A comparison of a “pillbox” magnet, i.e. a magnet whose inner radius is finite with

no outer radius, and a finite permanent magnet as used for PPM focusing is evident in

Fig. 2.1 and shows the complicated field profiles achieved with permanent magnets. The

peak fields of the pillbox magnet are very close to the remanence field of 1.2 Tesla of a

neodymium permanent magnet until the magnet becomes very short. The fields from the

finite magnets, however, are significantly more complicated, with much lower central fields

and large field magnitudes at the ends for longer magnet lengths.

2.1.1 PPM Multi-Magnet Interactions

A detailed analysis of the PPM fields as they relate to beam dynamics will be given in

the next section where we will assume a sinusoidal field profile. Here we analyze the fields

with the permanent magnet model we established in the previous section. Note that this

model does not account for the iron pole pieces that are used in practice to strengthen and

smooth the fields.

First, Figs. 2.2, 2.3, and 2.4 show the PPM field from stacks of magnets with 1.25

cm, 2.5 cm, and 5 cm lengths, respectively. All figures are for inner magnet radii of 1.25
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Figure 2.1: Effects of finite radius in permanent magnets.

Figure 2.2: B-field profiles for lp= 1.25 cm.

Figure 2.3: B-field profiles for lp= 2.5 cm.

cm, and include outer magnet radii of 2.5 cm, 5 cm, and infinite size. We summarize the

peak magnetic field in Table 2.1, along with the cases for 10-cm and 20-cm long permanent

magnets.
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Figure 2.4: B-field profiles for lp= 5.0 cm.

Table 2.1: Peak field strengths - ri = 1.25 cm, various outer radii.

Magnet Length lp ro = 2.5cm ro = 5cm ro = infinite

1.25 cm 0.153 T 0.163 T 0.163 T
2.50 cm 0.426 T 0.579 T 0.589 T
5.00 cm 0.388 T 0.809 T 0.971 T
10.0 cm 0.323 T 0.644 T 1.13 T
20.0 cm 0.313 T 0.591 T 1.18 T

It is clear that as the pillbox magnet length, lp, increases, the outer magnet radius

needs to increase to achieve the asymptotic field. The asymptotic field is defined as the

peak field obtained with an infinite outer radius. However, as the magnet length decreases,

the asymptotic field is achieved with significantly decreased outer magnet radii. For us this

means that when using thin magnets, the outer magnet radius does not need to be large.

What we also observe, given that the magnet period in Fig. 2.2 is one quarter the period

as that in Fig. 2.4, is that the asymptotic field is significantly reduced by using shorter

magnet periods, in this case by 85%. This reduction in asymptotic field can be attributed

to the zero crossing of the field between magnets whose fields are in opposite directions.

This is field bucking, as was defined earlier. This is the effect of multi-magnet interactions,

and is very significant for small lattice periods.

One can also observe that, for small lattice periods, the magnetic field can be easily

estimated by a sine function, but when the magnet length becomes longer, as in Fig. 2.5,

the field pattern becomes highly non–sinusoidal. In the analysis in the next section, we

will assume a sinusoidal pattern and assume shorter magnets, less than 2.5 cm.
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Figure 2.5: Highly non–sinusoidal PPM field with long magnet period.

From the multi-magnet interactions, it is obvious that there is an on–axis field drop–off

with decreasing period S. This field drop–off is plotted in Fig. 2.6, as a function of the

inner magnet radius, and will be a key part of the maximum transportable current for

PPM lattices.

2.2 PPM Limitations

Periodic focusing is separated into two main classes, thin lens focusing, and continuously

varying fields. The main difference between the two is the separation of the focusing lenses.

In order to transport lower-energy (space-charge dominated) electron beams, it is necessary

to use continuously varying fields. Higher energy electron beams, which are termed “stiff”

because of their velocities, are emittance-dominated beams and can be successfully trans-

ported using thin–lens focusing. For beam transport in TWTs, the two common transport

methods are solenoids and PPM focusing. The motivation for using PPM focusing is a

reduction in weight compared to a solenoid and no power supplies or external cooling re-

quired, making PPM focusing systems much more compact and lightweight than solenoids.
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Figure 2.6: PPM field dropoff for decreasing period S, infinite outer radius.

PPMs, however, can only transport Brillouin flow, as opposed to the confined flow that

solenoids can transport. The basic PPM schematic was introduced in Chapter 1, and as

can be seen from Fig. 1.2, and also from Fig. 2.4 the magnetic field will be continuously

varying. We can assume the form for the axial magnetic field to be sinusoidal and estimate

it by:

Bz(z) = Bp cos
2πz

S
, (2.13)

where Bp will be the maximum magnetic field, and L is the period of the focusing lat-

tice. Using conservation of canonical angular momentum, also known as Busch’s Theorem,

and keeping lowest order terms approximation, we can solve for the azimuthal velocity

component as:

θ̇[z] =
e

2mγ

(
Bp cos

(
2πz

S

)
− r2c
r2
Bc

)
, (2.14)
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where Bc is the magnetic field on the cathode, and rc is the beam radius at the cathode.

Substituting in for the azimuthal velocity solved in Eq. 2.14, the radial equation of motion

becomes:

r′′ =
I

IA

2r

β3γ3r3b

(
1−

B2
p

B2
BR

1 + cos
(
4πz
S

)
2

)
, (2.15)

where BBR is defined below. This is a key PPM design equation. Mendel et. al [1] showed

that a minimum beam ripple is achieved if Bp =
√

2BBR. Equation 2.15 can be rewritten

as what is called the Universal PPM Equation:

d2σ

dT 2
+ α[1− cos(2T )]σ − βSCσ = 0 (2.16)

where σ = r/a, T = 2πz
L , α = S2

4π2
I
IA

B2
p

β3γ3r2bBBR2 , and βSC = 2 S2

4π2r2b

I
IAβ3γ3

. This universal

equation describes the beam trajectory in terms of the normalized beam edge radius σ,

and the normalized axial distance T . It is used commonly in PPM design [18]. If σ′′ is

small, the cos term in Eq. 2.16 can be neglected and the equation is reduced to

d2σ

dT 2
+ ασ − βSCσ = 0. (2.17)

where α is the magnetic field coefficient, and βSC is the space–charge coefficient. The flow

is considered balanced if α = βSCC , which is equivalent to B2
p = 2B2

BR, where BBR is the

magnetic field necessary for Brillouin flow. When α 6= βSC and there is either insufficient

magnetic field or excess magnetic field there will be larger oscillations than the design

ripple [19].

Equation 2.17 is an equation of the Mathieu type, and follows the well known Mathieu

stability condition which has stability pass and stop bands on the scale of parameter α.

The pass bands are located at

α < 0.66, 1.72 < α < 3.76, and a > 6.10, (2.18)

where α is a parameter that quantifies the amount of “ripple” or radial variation in the

beam edge. To maintain a low ripple, the maximum practical α is about 0.2. Using this

parameter and the fact that PPM structures can only transport Brillouin flow beams, we
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can calculate the maximum transportable current density as a function of lattice period

S. To do this we set the magnetic field required for Brillouin flow equal to the magnetic

field from the PPM lattice from the focusing parameter α and solve for the current density.

The Brillouin field is

B2
BR =

√
2I0

πε0|η|V 1/2
0 a2(γβ)3

. (2.19)

Then solving for I and converting it to current density J , the maximum current density

that can be transported in a PPM stack is given by

JPPM = πr2bαIA(γβ)3
2π2

S2
, (2.20)

requiring a peak field strength of

Br = 4π
mcγβ

eS
. (2.21)

It seems easy enough to be able to transport arbitrarily high current densities by just

deceasing the period S. However, decreasing S will tend to reduce the possible field on–

axis, as we saw from the field drop–off in Fig. 2.6. Equation 2.20 was plotted in Chapter

1 as Fig. 1.6

In practice, PPM lattices employ iron pole pieces between and around the PPM mag-

nets. The effect of the pole pieces is to limit the external magnetic field, smooth the field

profile between magnets, and amplify the center field somewhat. Pole pieces do effectively

increase the maximum current density transportable. We use the field models without pole

pieces because the analytic expressions are much more straight forward and demonstrate

the same magnet effects. PPM design criteria, including pole pieces, can be found in [20].

Pole pieces do suffer from some limiting effects in high-frequency tubes, namely, they can

suffer from saturation and demagnetization effects which are amplified at small dimensions.

The PPM field model developed here in this chapter will be used in the envelope codes de-

veloped in Chapter 4 to analyze the beam dynamics for various parameters as well as look

at the maximum transportable current density for PPM which can be compared exactly

to the same parameters for PMQ focusing lattices.
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PMQ Lattices for Electron Beam

Transport

In this chapter we begin by discussing how the analytic model for the fields from

quadrupole magnets were created and verified. Simulations are presented to verify the

analytic model and for use with subsequent simulations. Subsequently, the quadrupoles’

ability to produce high fields on axis will be analyzed with respect to the multi-magnet

interactions. An equation is presented for calculating the field drop–off observed with

multi-magnet interactions. Lastly, analytic beam transport equations for PMQ lattices are

analyzed with respect to the amount of current density that can be transported using this

method.

3.1 PMQ Analytic Magnet Model

Following the choice of the NRL team to use a segmented 16-piece Halbach quadrupole

permanent magnet in their designs, we developed an analytic model for the fields to use

in our envelope code. The 16-piece Halbach magnet is chosen over the traditional 4–piece

quadrupole magnet model as it can achieve higher magnetic field gradients and approxi-
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Figure 3.1: Magnetization vectors for the 16-piece Halbach quadrupole magnet [3].

mates the ideal quadrupole presented in Chapter 1.

A PMQ design for a space-charge dominated beam necessarily has magnets which are

very close together. The close magnet proximity invalidates the hard-edge approximation

which is traditionally used for quadrupole fields in beam-envelope codes such as TRACE3D.

It is, therefore, necessary to develop a magnetic field model that accounts for the overlap-

ping fringe-fields from the individual permanent quadrupole magnets. Halbach derived an

expression for the fringing magnetic fields for the 16–piece semi–infinite quadrupole magnet

[3]. The 16–piece Halbach quadrupole (see Fig. 3.1 for the orientation of the magnetiza-

tion vectors ~M) is chosen to have a 4–fold increase in the gradient of the magnetic field on

axis than the standard 4–piece quadrupole magnet [21]. We modify Halbach’s expression

by subtracting another semi–infinite magnet to represent the fields of a finite width mag-

net. Then, using the principle of superposition, an analytic expression is developed for the

gradient of the magnetic field for a lattice of n+ 1 quadrupole magnets [22], given as
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dB

dx
=

n∑
i=1

GF [i, S, lq]−
n+1∑
i=2

GF [i, S, lq],

(3.1)

where

F = F

[
−i
(
S

2
− lq

)
+ S − lq

2

]
− F

[
−i
(
S

2
− lq

)
+ S +

lq
2

]
, (3.2)

F =
1

2
− z

16

(
1

ri
+

1

ro

)(
vi

2vo
2

vi + vo

(
vi

2 + vo
2 + 4 + 8vivo

))
, (3.3)

and

vi,o =
1√

1 +
(

z
ri,o

)2 . (3.4)

The constant G is defined by

G = 2Bpole

(
1

ri
− 1

ro

)
sinc

(
3π

M

)
, (3.5)

where M is the number of sections in the quadrupole and Bpole is the magnetic flux density

at the magnet pole.

The gradient of the magnetic field in the x–z plane is shown in Fig. 3.2 for 9.5 magnet

periods, or 19 quadrupoles. The quadrupole lattice geometry and representative symbols

are shown in Fig. 3.3, where F represents a focusing lens, and D a defocusing lens.

3.2 Simulated Magnet Model

For verification of this analytic expression, a geometric magnet model was constructed

using the Ansoft code Maxwell [15]. The Maxwell model accounts for the complicated
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Figure 3.2: PMQ field profile from [3.1].

Figure 3.3: Quadrupole lattice geometry.

physics of the permanent magnet interactions. The magnetic material was chosen as

SmCo28, and the magnetic pole field or residual magnetic field was calculated as 1.2 T.

To compare the simulation results with the results from our analytic model, the ex-

ported fields were analyzed using a Python script. To determine the value of the gradient

of the magnitude of the magnetic field and to verify its symmetry, the field results were
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analyzed with the following definitions of the field gradient. We define the gradient of the

magnetic flux density B along the z axis on the positive x axis as:

∇Bx+ =
|B(x = 5)| − |B(x = 0)|

∆x
(3.6)

at each value of z = −40 mm to z = 40 mm, with ∆x = 5 mm. The gradient of B along

the z axis on the negative x axis is given as

∇Bx− =
|B(x = −5)| − |B(x = 0)|

∆x
(3.7)

at each value of z = −40 mm to z = 40 mm, with ∆x = 5 mm. This was performed

similarly for positive and negative y. This gives us four versions of the gradient of the

magnetic flux density ~B which should be identical if the symmetry that we expect exists

in the simulations.

The magnetization vectors were determined by rotating ~M 45◦ per section with respect

to the magnet, each magnet is rotated by 22.5◦. Therefore, each magnetization vector is

rotated 67.5◦ with respect to the origin. Note that in determining the orientations of each

~M the approximation tan(67.5) ≈ 2.41 was used. Some unexpected anomalies appeared at

the peak of the field gradient, as seen in Fig. 3.4. A second tangent approximation with

more significant digits was also simulated, the second tangent approximation tan(67.5) ≈

2.41421. It is important for us to understand what level of precision is necessary for the

orientation of ~M because the precision with which real magnets will be magnetized should

not make a large difference in the resulting focusing fields. If too high precision is necessary

the application of this method will not be practical. The gradient using the first tangent

approximation to determine the vector positions of each ~M is seen in Fig. 3.4, whereas the

second approximation is seen in Fig. 3.5. No appreciable change is noted in the magnitude

of the field, or in the anomalies at the top of the graph. The second tangent approximation

did slightly improve the symmetry of the simulation, but not the anomalies.

The anomalies seen in Figs. 3.4, 3.5 became worse for wider magnets, and decreased

for narrower magnets. Progress was only made on resolving the anomalies by lowering the

percentage of acceptable error. By default, simulations were set to a maximum error of
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Figure 3.4: Gradient of magnetic flux analyzed using python script for first tangent
approximation.

1%. When the error was set to 0.1% the simulation run time was greatly extended, but

the anomalies given by the simulation were different. We graph the gradient of B for a

magnet with width of 25 mm for the two different error conditions in Fig. 3.6. It would be

useful to lower the error even further to improve simulation fidelity, but lowering the error

any more than 0.1% demanded more than the 8 GB of computer memory available.

The magnet dimensions used in the simulations for the results that follow were ri =

7 mm and ro = 14 mm, while the width of the magnet in the z direction, lq, is variable.

The vector plots from a single quadrupole magnet are shown in Figs. 3.7, 3.8. Note the

field symmetry and the transverse nature of the fields interior to the magnets: nearly all

the interior fields are in the x–y plane. We can see from these vector plots that the fringing

fields are not insignificant. Note that these vector plots physically represent only field

magnitude.

To verify that this model is giving us the same field profile as the analytic model, it is

necessary to look at plots of the gradient of the magnetic field from our simulations and
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Figure 3.5: Gradient of magnetic flux analyzed using python script for second tangent
approximation.

compare them to the analytic plots. Magnetic field gradient plots are not available directly

from the Maxwell code; therefore, the magnitude of the magnetic field was exported onto

a grid for points interior to the magnets, with the export grid defined in Table 3.1.

Table 3.1: Export grid for fields (mm).

Axis min max stepsize

x -5 +5 0.1
y -5 +5 0.1
z -40 40 0.5

The magnetic field gradient ∇Bx+ is visualized in Fig. 3.9 by looking at the field

magnitude on various boxes inside a single quadrupole magnet. The gradient was measured

at 45◦ intervals around the z axis to ensure symmetry, and was found to be consistent. The

percent error convergence in the simulations was reduced until the gradients were identical

for different error requirements.

The simulations agreed with the analytic calculations within 7% for a variety of mag-
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Figure 3.6: Gradient of magnetic flux for magnet width 25 mm with errors of 1%
and 0.1%.

Figure 3.7: B-vectors in the y–z plane showing that most of the field is transverse.
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Figure 3.8: B-vectors in the x–y plane.

net dimensions. On average, the simulations gave a field ≈ 5% higher than the analytic

model. Therefore, the analytic model was found to be sufficient for the magnet model to

be employed in the envelope codes of Chapter 4. A comparison of the analytic model to

the Maxwell model for various magnet widths l is shown in Fig. 3.10. This agreement was

considered to be excellent.
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Figure 3.9: Magnetic field inside quadrupole in the y–z plane.

3.3 PMQ Multi-Magnet Interactions

As discussed in Chapter 2 with the PPM magnets, permanent magnets have compli-

cated fields and field interactions that change drastically with magnet dimensions. The

multi-magnet interactions for PMQs are equally as important as those for the PPM mag-

nets studied in Chapter 2. In particular, all the work that has been done on PMQ lattices

for RF amplifiers has neglected the multi-magnet interactions of the PMQ lattices. The

fringing fields of the magnets have a strong interaction which decreases the peak B strength

as well as the Brms field strength.

To analyze these interactions, a PMQ magnet model was created using Halbachs’ fringe-

field model and simulations were performed for a variety of lattice parameters.
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Figure 3.10: Analytic quadrupole model (top) and simulated quadrupole model (bot-
tom). The different colors represent different magnet widths, l, as indicated in the
legend.

3.3.1 PMQ - Multi-Magnet Interactions

Multi-magnet interactions for PMQ lattices were studied using the analytic PMQ field

model developed in section 3.1. Single magnet simulations were compared to the analytic

field model in the previous section, and here we verify that the simulations match the

analytic field model for multiple magnets. For this purpose, we simulated two magnet
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Figure 3.11: Magnetic flux density B for two PMQ periods from simulated
quadrupole model (right) and the absolute value of ∇Bx for simulations versus that
obtained by Eg. 3.2 (left).

periods in Maxwell and analyzed a two-period set of magnets using Eq. 3.1 and graphed

the absolute value of the gradients from both in Fig. 3.11. The magnetic field interior to

the magnets for two periods from Maxwell is seen in Fig. 3.12.

We were able to verify that superposition, used to add the linear fields from the analytic

model, is sufficient to construct the magnetic field due to a magnet lattice with accurate

representation of the multi–magnet interactions.

We performed a parameter scan for various magnet lengths and various magnet pe-

riodicities to determine how the peak and rms B fields change with the multi-magnet

interactions. In Fig. 3.13 a magnet length of lq = 1 was simulated in a lattice with pe-

riodicities: S = 10 mm + lq, 5 mm + lq, 2.5 + lq mm, and lq. Figure 3.14, and Fig. 3.15

use lq = 5 mm, and lq = 10 mm, respectively, with the same periodicity as defined for Fig.

3.13.

In Fig. 3.13, where a short magnet of length lq = 1 mm (Lq in the figures) is used, the

decrease of peak field strength is very dramatic, decreasing from a peak field of 15 T/m
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Figure 3.12: Magnetic flux density B for two PMQ periods from simulated
quadrupole model.

to a peak field of just 1.5 T/m when the periodicity is reduced from S = 22 mm to S = 7

mm. The field profile changes completely when these short magnets are placed right next

to each other, i.e. the period S is equal to the magnet length 2lq. For a slightly longer

magnet, as in Fig. 3.14, the peak field strength is still reduced significantly when the period

is reduced. For longer magnets as in Fig. 3.15, the maximum field is barely reduced, and

the profile is still acceptable when the period S is equal to 2lq. All three figures show a

dramatic relationship between the rms B field and the period S of the lattice. The closer

together the magnets become, the rms B field decreases proportionately. In addition, the

rms B field decrease is dependent on the length lq of the magnet. This indicates that for the

case of short magnets and small periodicities, the non–linear interactions of the magnetic

fringe–fields on the total B field is significant. These curves are best fit by the hyperbolic

tangent function to within 5% error for all the magnet parameters tested. ∇Bmax is given

by
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Figure 3.13: Analytic PMQ model to study multi-magnet interactions, magnet length
lq = 1 mm with various periods S.

∇Bmax = S2 tanh(0.013λocc). (3.8)

We graph the peak fields for PMQ lattices vs. lattice occupancy in Fig. 3.16.

Another approximate analytic model can be constructed assuming the sinusoidal nature

of the fields, and the amplitude factor obtained by Eq. 3.8 as

∇Bx ≈ S2tanh[0.013λocc] sin

[(
2π

S

)
s

]
, (3.9)

where s is the direction of propagation, in this case, z. This completes the analysis of the

PMQ fields for the purposes of constructing the envelope code in the following chapter. In
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Figure 3.14: Similar to Fig. 3.13, but with larger magnet length lq = 5 mm and
various periods S.

the next section, we will look at an analysis of the PMQ focusing channel as performed in

Reiser [23], this analysis neglects the complicated field interactions analyzed here.
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Figure 3.15: Similar to Figs. 3.13, 3.14, but with magnet length lq = 10 mm and
various periods S.
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Figure 3.16: Peak magnetic fields versus magnet occupancy for PMQ lattices.

Figure 3.17: Equation 3.8, dashed lines and simulation data, solid lines.
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3.4 PMQ Analysis

An analytic model of beam transport though a PMQ lattice can be performed with

certain approximations which will be clearly noted. Here we derive the analytic calculation

for maximum transportable current density used by [2], and used in Fig. 1.6 in Chapter 1.

We begin with the envelope equation derived from the paraxial equation with the space–

charge term. We assume the mean azimuthal beam rotation in the ~B field is small enough

that the axial self–magnetic field is negligible. Use of the paraxial ray equation assumes

that the beam model is uniform, i.e. that v/c << 1, βr << βz, and βθ << βz. It also

demands that the generalized perveance is substantially less than unity, |K| << 1. Then

the envelope equation using the paraxial ray equation takes the form:

r′′m +
γ′r′m
β2γ

+
γ′′r′m
2β2γ

+

(
eBext

2mcβγ

)2

rm −
(

pθ
mcβγ

)2 1

r3m
− ε2n
γ2β2r3m

− K0

rm
= 0 (3.10)

where rm is the maximum radial particle ray, εn = βγεeff is the normalized emittance, as

will be described in more detail in Chapter 5, and K0 is the generalized perveance also

known as the space–charge term. Perveance is known as the ratio I/V 3/2, and is a common

parameter in beam physics used to describe the beam. The generalized perveance K0 is

likewise proportional to I/V 3/2 in the non–relativistic limit, and proportional to I
β3γ3

in

general. Due to the size of the quantities, perveance has units of micropervs (µpervs)

which are equivalent to A
V 3/2 10−6. It is illustrative to note that the emittance term and the

angular momentum term have the same 1/r3 dependence; both represent forces that tend

to cause beam expansion. Thus, the canonical angular momentum has the same effect as

the normalized emittance, and effectively increases the emittance of the beam. For this

reason it is general practice to shield the cathode from the magnetic field, i.e. ensure that

there is no external B field on the cathode, so that the initial canonical angular momentum

of the beam is zero.

Using the analysis of beam transport in a long uniform focusing channel, we can assume

that there is no applied accelerating electric field so that γ′ = 0. Likewise, we can ensure

that B = 0 at the cathode so that the canonical angular momentum pθ goes to zero. It is
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then possible to rewrite the paraxial ray equation as the envelope equation:

r[s]′′ + k0r[s]−
K0

r[s]
−
ε2eff
r[s]3

= 0 (3.11)

where k0 is the external magnetic focusing force. Reiser [23] shows in section 4.4 that in the

smooth approximation, where only average forces are considered, a quadrupole periodic–

focusing channel behaves like solid cylinder filled with opposite charge around the beam.

Mathematically, the average behavior of the particle motion, or beam envelope, in a pe-

riodic quadrupole lattice is identical to that of particle transport through a stationary

cylinder of opposite charge with uniform density ρe.

The radial E field due to a uniform charge distribution of density ρe is

Er =
ρer

2ε0
. (3.12)

Equation 3.11 must have one solution where r[s] = a = constant, r′[s] = 0, r′′[s] = 0.

This case is what we call a matched beam, and Eq. 3.11 reduces to

k20a−
K0

a
−
ε2eff
a3

= 0. (3.13)

If we allow space–charge to be negligible for the moment, then K0 = 0 and we can solve

Eq. 3.13 for a beam radius we call a0 and define a0 =
(
εeff
k0

)2
. For the case of the matched

beam, we can replace the emittance term as εeff = α where α = k0a
2
0 and a0 is the average

beam radius.

Solving for K0 and rewriting Eq. 3.13 in terms of the parameter α as, we obtain

K0 = k20a
2 −

ε2eff
a2

= k0a

(
1−

εeff
α

)2)
. (3.14)

Setting Eq. 3.14 equal to the space–charge term as defined by Lawson [24], we obtain

K0 =
2I

I0β3γ3
= k0

(
1−

(εeff
α

)2)
, (3.15)
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and solving for current I we obtain

I =
I0
2

(βγ)3k0α

(
1−

(εeff
α

)2)
. (3.16)

To arrive at a useful equation for the PPM lattice design, we need to substitute α with

k0a
2
0, and rewrite k0 in terms of the phase advance σ. Phase advance, σ, is defined by

σ = 2πS
λ , where S is the period of the focusing lattice, and k = 2π

λ or k0 = 2π
λ0

. Hence

σ0 =
2π

λ0
, and k0 =

σ0
S
. (3.17)

We can replace α in Eq. 3.16 with

α =
σ0
S
a20, (3.18)

and obtain

S = σ0

(
2I

a20I0β
3γ3
−
(
εeff
a20

)2
)−1/2

. (3.19)

Equation 3.19 is the main design equation used to show a strong advantage for current den-

sity transport using PMQ lattices over PPM lattices. If it is solved for current density, we

recover Eq. 1.5. In the next chapter the difference between this theoretical calculation for

determining the maximum transportable current density and the maximum transportable

current density determined from envelope calculations using the magnet model developed

in the previous section will be compared.
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Development of Envelope Codes

Envelope codes are very useful tools to develop designs of magnet lattices for electron

beam focusing. The beam envelope follows the trajectory of the outermost electron in a

beam. For accurate envelope calculations, we assume a laminar beam, i.e., the trajectories

of the electrons in the beam do not cross; this ensures that the electron trajectory we follow

does represent the entire beam. Standard envelope codes like Trace 3-D [13] are available;

however, most of these codes only have hard–edge quadrupole models in them. In order

to more accurately account for the fringing fields and the multi-magnet interactions, we

developed our own envelope codes using the field models developed in the previous two

chapters. First, we developed the PPM envelope code and used it to verify our method

by comparing it with well-known design equations for PPM current density transport. We

then developed the envelope code for beams traversing PMQ lattices.

Both envelope codes were developed with the same methodology, which is outlined as

follows:

1. Develop an analytic magnetic field model for the magnet lattice, as discussed in

Chapters 2, 3.

2. Solve the equations of motion (Lorentz force law) for single particle motion.
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3. Calculate the zero-current phase advance σ0 using the period of the single particle

trajectory.

4. Add Lawson’s space–charge term, K0, to account for multi-particle physics.

5. Solve the nonlinear differential equations using the standard differential equation

solver in Mathematica.

6. Match the beam at the highest phase advance possible to determine maximum trans-

portable current density per lattice. Beam matching is performed by adjusting the

initial conditions in the differential equation solver.

4.1 Derivation of the Envelope Equation

The Distribution Function

To derive the envelope equation that we use in Chapter 3, we must start with the

particle distribution function. The distribution of N particles in phase space can be written

as:

f(−→x ,−→p ) =
N∑
i=1

δ3(−→x −−→xi)δ3(−→p −−→pi ) (4.1)

where δ3(−→x −−→xi)δ3(−→p −−→pi ) is the product of two three-dimensional Dirac delta-functions

to indicate each particle position in six dimensional phase space: (~xi, ~pi), where each ~xi

represents a particle’s position, and each ~pi represents a particle’s momentum.

The full distribution function contains all the information needed to describe the state of

the non–interacting beam particles. If we view it as a continuous function, which allows us

to ignore higher-order microscopic interactions, the distribution evolution can be described

by the well-known Vlasov equation:
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df

df
+ −̇→x ·

−−→
∇−→x f + −̇→p ·

−−→
∇−→p f = 0. (4.2)

A theoretical model that satisfies Eq. 4.2 is the distribution of Kapchinsky and

Vladimirsky, known as the K–V distribution [25]. The K–V distribution can be defined

as a delta function of the transverse emittances, and is consistent with the distribution

function we gave above as Eq. 4.1. The K–V beam has the property that the density

profile is uniform with sharp boundaries. Since the self–fields of a uniform density beam

are linear with position s, the density remains uniform and sharply bounded as the beam

propagates through linear focusing systems. This is the typical distribution associated with

beam envelopes.

For a description of the distribution evolution that will lead to the envelope equation,

one can take moments of the distribution, which are defined by

∫ ∞
−∞

∫ ∞
−∞

xnpmx f(x, px)dxdpx, (4.3)

where n, m are zero or positive integers, and the quantity n+m is called the order of the

moment. This description currently employs the transverse phase plane (−→xi ,−→pi ). We want

to use equivalent trace space (x, x′). The moments in equivalent trace space are defined by

∫ ∞
−∞

∫ ∞
−∞

xn(x′)mfx(x, x′)dxdx′. (4.4)

To use the equivalent trace space we replace the momentum with the angle x′ in phase

plane plots.

The zeroth-order moment in trace space is just the normalization condition on the

distribution function:
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∫ ∞
−∞

∫ ∞
−∞

fx(x, x′)dxdx′ = 1. (4.5)

The first-order moments are called the centroids of the distribution:

〈x〉 =

∫ ∞
−∞

∫ ∞
−∞

xfx(x, x′)dxdx′, (4.6)

〈x′〉 =

∫ ∞
−∞

∫ ∞
−∞

x′fx(x, x′)dxdx′. (4.7)

Physically, the first-order moments go to zero when the beam is aligned to its design axis.

The second order moments are:

σx2 = 〈x2〉 =

∫ ∞
−∞

∫ ∞
−∞

x2fx(x, x′)dxdx′, (4.8)

σx′2 = 〈x′2〉 =

∫ ∞
−∞

∫ ∞
−∞

x′2fx(x, x′)dxdx′, (4.9)

and

σxx′ = 〈xx′〉 =

∫ ∞
−∞

∫ ∞
−∞

xx′fx(x, x′)dxdx′, (4.10)

where, physically, σx is the rms beam width, σx′ is the rms momentum width, and σxx′

indicates the degree of correlation between x and x′. We are interested in the evolution of

the second moments of the distribution function because they determine the evolution of

the trace space distribution of the beam.

RMS Envelope Equation

The standard formalism for including non-trivial beam self-forces and external focusing

forces is by use of an envelope analysis. As such, we will develop what is called the rms

beam envelope equation. To begin, we write the first derivative of the rms beam radius

derived in the previous section as
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dσx
dz

=
d

dz

√
〈x2〉 =

1

2σx

d

dz
〈x2〉, (4.11)

=
1

2σx

d

dz

∫ ∞
−∞

∫ ∞
−∞

x2fx(x, x′)dxdx′, (4.12)

=
1

σx

∫ ∞
−∞

∫ ∞
−∞

xx′fx(x, x′)dxdx′, (4.13)

=
σxx′

σx
. (4.14)

Using this relationship, we can take the second derivative of the envelope equation as

d2σx
dz2

=
d

dz

σxx′

σx
, (4.15)

=
1

σx

dσxx′

dz
−
σ2xx′

σ3x
, (4.16)

=
1

σx

d

dz

∫ ∞
−∞

∫ ∞
−∞

xx′fx(x, x′)dxdx′ −
σ2xx′

σ3x
. (4.17)

Applying the chain-rule we obtain

=
〈x′2〉+ 〈xx′′〉

σx
−
σ2xx′

σ3x
, (4.18)

=

(
σ2x′ + 〈xx′′〉

)
σ2x

σ3x
−
σ2xx′

σ3x
. (4.19)

Upon rearranging:

σ′′x =
σ2xσ

2
x′ − σ2xx′
σ3x

+
〈xx′′〉
σ3x

. (4.20)

Let σ2xσ
2
x′ − σ2xx′ be called ε2x,rms.
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Then we can rewrite the last equation as:

σ′′x =
ε2x,rms
σ3x

+
〈xx′′〉
σx

. (4.21)

From optics, the deflection from an external linear focusing force as a ray description is

x′′ + κ2x = 0. (4.22)

where Eq. 4.22 is the equation of single particle motion with some external focusing force,

κ2. Substituting Eq. 4.21 into Eq. 4.22, we obtain:

σ′′x + κ2xσx −
ε2x,rms
σ3x

= 0. (4.23)

Electron Self-Fields

To add the force due to the electron self–fields, we will assume a laminar beam with

uniform charge density ρo. Since space–charge gives rise to a radial force and depends on

current density we derive the equations of motion with a term corresponding to space-

charge.

The charge density for a continuous uniform cylindrical beam is defined by:

ρ(z) =

ρ0, for r < ra

0, for r > ra

(4.24)

where ra is the beam edge radius.

The self-forces of the electrons are derived using the radial Lorentz force law,

Fr = e(Er − βcBθ). (4.25)
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We are assuming that the paraxial assumption holds (i.e. particle velocities vr, vθ << vz ≈

v), and that the difference in potential energy across the beam is small compared to the

kinetic energy of the beam. The charge density of the beam is related to the beam current

by the continuity equation, such that:

ρ0 =
I

πr2av
. (4.26)

The electric field can be found from Gauss’s Law as

∮
S
ε0 ~E · ~dS =

∫
v
ρ0dV, (4.27)

2πrlε0Er = ρ0πlr
2 → Er =

ρ0r

2ε0
for r < a. (4.28)

Similarly, Bθ can be found from Ampere’s Law as∫
~B · dl = µ0

∮
S

~J · ~dS, (4.29)

2lπBθ = µ0Jlr → Bθ =
µ0Jr

2
=
µ0rI

2πr2a
for r < a. (4.30)

Substituting c =
√

1
µ0ε0

, and Bθ = β
cEr into the radial Lorentz Force Law, we obtain

Fr = e(Er − βcBθ) = e(1 + β2)Er =
eEr
γ2

, (4.31)

Fr =
e

γ2
ρ0rar̂

2ε0
, (4.32)

m
d2r

dt2
=
|e|r

2γ2ε0

I

πr2av
. (4.33)
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Dividing by m, and transforming from dt to dz using d2r
dt2

= β2c2 d
2r
dz2

we obtain

d2r

dz2
=

|e|Ir
2πγ3v3mε0r2a

, (4.34)

where

K0 =
|e|I

2πγ3v3mε0
. (4.35)

Including this term in the envelope equation derived earlier, and accounting for the two

planes of symmetry x–z, y–z we arrive at the full envelope equations

x′′[s] + κxx[s]− 2K0

x[s] + y[s]
−
ε2x,rms
x[s]3

= 0, (4.36)

and

y′′[s] + κyy[s]− 2K0

x[s] + y[s]
−
ε2y,rms
y[s]3

= 0. (4.37)

It is easy to show that these space–charge force terms satisfy Poisson’s Equation.

4.2 PPM Envelope Code

The PPM envelope code employs the general envelope equation:

r′′ + κppmr −
K0

r
= 0, (4.38)
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Figure 4.1: PPM envelope demonstrating stable transport.

where

κppm =
e
mB

2
ppm

8Vk
, (4.39)

Bppm is the magnetic field developed in Chapter 2 and Vk is the beam voltage. K0 is

Lawson’s space–charge term, also known as the electron self–field term and the generalized

perveance and is fully relativistic. It is given by

K0 =
qeI0

2πε0c3β3γ3
. (4.40)

Solving Eq. 4.38 using the numerical differential solver in Mathematica gives the beam

envelope trajectory in Fig. 4.1.

Figure 4.1 shows stable beam transport with the small oscillations matching the focus-

ing periodicity. The larger oscillations demonstrate a very slight mismatch of the beam.

Simulations were performed for a variety of lattice parameters, in particular varying the

lattice period. The matched beam was found for each case and the amount of current
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Figure 4.2: Verification of the PPM envleope code to theory.

density in the matched beam per lattice period S is presented in Fig. 4.2. Results from the

PPM envelope code are shown with theoretical PPM calculations based on the commonly

used Sterrett-Heffner PPM design formula from [20]. This agreement is considered very

good; there is slight divergence from the theoretical curve when we get to large lattice pe-

riods which should be due to the inclusion of iron pole piece effects in the Sterrett-Heffner

equations. The regime we are particularly concerned with is limited to the smaller lattice

periods.

We did add an emittance term to the PPM envelope equation analyzed and for low

emittances, e.g. εeff ≈ 0.1 π-mm-mrad, saw no difference in the trajectories or trans-

portable current density.
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4.3 PMQ Envelope Code

Having verified the envelope code methodology for the PPM envelope equation, a simi-

lar envelope code was developed with the PMQ magnetic field model developed and verified

in Chapter 3. The PMQ envelope code, including space-charge effects, was developed with

a full fringing field model of the Halbach 16-piece quadrupole magnets. Each PMQ lattice

was optimized using the envelope code to obtain the maximum current density trans-

portable for a given beam energy and appropriate magnet dimensions.

For this work, lattice parameters appropriate for transporting a beam in a 30 GHz

coupled-cavity TWT were chosen. The beam energy is varied from 16 keV to 50 keV, the

mean beam radius is ≈ 0.5 mm, and the inner and outer magnet dimensions are fixed at

ri = 4 mm and ro = 12 mm. The lattice period S is varied.

4.3.1 Single Particle Tracking

Single particle tracking is performed to ensure that the beam remains stable according

to the Mathieu stability conditions. Single particle tracking uses the Lorentz equation of

motion and tracks the trajectory of a single electron traversing a magnetic focusing lens,

or lattice of lenses in this case. The beam is determined to be stable when the zero-current

phase advance σ0 is less than 90 degrees [23]. Since the quadrupole focused beam has

two planes of symmetry, two coupled equations of motion are required. The equations of

motion from the Lorentz force law for an electron traveling though a focusing force with

two planes of symmetry are

γmx′′ = evzBy and γmy′′ = −evzBx. (4.41)

In our case the focusing force is generated by a 16–piece Halbach quadrupole lattice with

By = dB
dy x, and Bx = dB

dx y where dB
dy = dB

dx . We can therefore replace Bx and By with their

gradient multiplied by y and x respectively. The equations of motion then become

x′′ +
qvz
γme

dB

dx
x = 0 and y′′ − qvz

γme

dB

dx
y = 0. (4.42)
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Thus, as the beam traverses one element, we get focusing in one plane and defocusing in

the other. Now we can eliminate time and rewrite these equations of motion as trajectory

equations letting z = vzt ≈ v ≈ constant, and d2

dt = v2 d2

dx2
. Then Eqs. 4.42 become Eq.

4.43 and Eq. 4.44. These equations are solved with the full magnetic field profile of the

quadrupole lattice, Eq. 3.1, from Chapter 3. The equations give the position of the particle

in the x–z and the y–z planes as

x′′[s] + κxx[s] = 0 (4.43)

and

y′′[s] + κyy[s] = 0, (4.44)

where

κx =
edBdx [s]

γmcβ
, (4.45)

and κx = −κy. Equations 4.43, 4.44 were solved using the standard differential equation

solver in Mathematica [26], the solutions of the particle motion for each plane is seen in Fig.

4.3. To determine stability, it is necessary to determine the phase advance of the particle

motion. A sinusoidal curve fit was used to determine the period of the particle trajectory.

The particle trajectory in x–z plane is shown in Fig. 4.4 with a sinusoidal curve fit. The

period of the particle trajectory is then used to determine the phase advance per lens, σ0

from Eq. 3.17. To maintain a stable beam while transporting maximum current, σ0 is

kept as close to 90 degrees as possible without exceeding it. For comparison with theory, a

lattice with no overlapping fringing fields was selected and the phase advance determined

by envelope simulations was compared to the phase advance determined analytically using

the hard-edge quadrupole approximation from Eq. (3.354) in [23]. Equation (3.354) is

reproduced here as

σ0 = cos−1[cos θ cosh θ +
Lθ

l
∗ (cos θ sinh θ − sin θ cosh θ)], (4.46)

56



Chapter 4. Development of Envelope Codes

Figure 4.3: Single particle tracking in the x–z plane (green) and the y–z (blue) plane.

where θ represents the focusing strength of the lenses and is defined by θ = (κx,y)
2 lq. For

the lattice shown in Fig. 3.3, with l = 1.9 mm and L
2 − l = 5 mm, the phase advance as

calculated using Eq. 4.46 is 58.7 degrees, and the phase advance derived from the particle

tracking is 64 degrees. This is within the standard error for the hard-edge quadrupole

model.

4.3.2 Space-Charge Effects

The maximum transportable current density can be found by including space-charge

effects in the single particle tracking calculation. The equations of motion then become the

envelope equations. Since the space–charge term is a function of current, the maximum

current density transportable for a given PMQ lattice can be determined by incrementally

increasing the current density until the depressed phase advance, the phase advance of the

beam envelope with space–charge, goes to zero. Thus, the larger the phase advance up to
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Figure 4.4: The particle trajectory in the x–z plane (green) and a period fitting
function (red).

90◦, the higher the transportable current density.

Space–charge effects were accounted for by including the space-charge term [24] in Eqs.

4.43, 4.44. This results in two coupled nonlinear second order differential equations:

x′′[s] + κxx[s]− 2K0

x[s] + y[s]
= 0 (4.47)

and

y′′[s] + κyy[s]− 2K0

x[s] + y[s]
= 0, (4.48)

where K0 is the generalized perveance and a function of the beam current. Solving Eqs.

4.47, 4.48 allows for the calculation of the depressed phase advance. When the depressed

phase advance goes to zero degrees, the beam is matched and the current density trans-

ported is maximized. Profiles of the beam envelope for unmatched and matched beams are
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Figure 4.5: The x–z particle trajectory (black) and the y–z particle trajectory (red).
Top: for the case of an unmatched beam; bottom: for the case of a matched beam.
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shown in Fig. 4.5. Similar to the PPM envelope trajectory, the small oscillations represent

the particles moving through a single set of quadrupole magnets showing the defocusing

and refocusing of the beam-edge, the periodicity of the oscillations matching that of the

magnet lattice. The large oscillations are artifacts from the unmatched conditions, known

in the accelerator community as betatron oscillations. Beam matching is performed by

adjusting the parameters a through d in x[0] = a, y[0] = b, x′[0] = c, y′[0] = d.

4.3.3 Stability and Optimization

Optimization of the lattices required parameter scans of different magnet occupancies

for each lattice period. For each period, simulations were performed calculating the phase

advance and the maximum transportable current density for each matched beam. Results

from one lattice optimization are presented in Table 4.1 for a 50 keV electron beam with

magnet dimensions ri = 4 mm and ro = 12 mm.

Table 4.1: Current Density Transportable per Occupancy– Period S = 11 mm.

Occupancy λocc Phase advance σ0 Max Current Density
4.16% 4.46◦ 4.2 A/cm2

8.33% 9.82◦ 15.8 A/cm2

12.5% 16.11◦ 32.6 A/cm2

16.6% 22.91◦ 53.8 A/cm2

20.83% 30.68◦ 77.8 A/cm2

25.00% 39.19◦ 103.2 A/cm2

29.16% 48.44◦ 130.3 A/cm2

33.33% 58.7◦ 159.3 A/cm2

37.50% 69.48◦ 186.3 A/cm2

41.60% 82.84◦ 214.6 A/cm2

45.83% 95.87◦ unstable
50.00% 112.75◦ unstable

It is evident from Table 4.1 that a certain magnet occupancy is optimal for transporting

the most current density for a given lattice period S, too much magnetic field creates

unstable transport. For smaller lattice periods, even 100% occupancy cannot achieve a

sufficient phase advance for transporting large current densities, this can be seen in Table
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4.2. Phase advance is the crucial stability factor for PMQ focusing and transport, and

it creates two distinct regions, a region where the phase advance is limited by magnet

dimensions and is too low to transport sufficient current densities, and a region where

the phase advance is nearly 90◦ and the magnet occupancy decreases as the periodicity is

increased. This second region is where the size and weight advantage of PMQ over PPM

can clearly be seen. Both size and weight are proportional to λocc.

Table 4.2: Occupancy and Phase Advance for various S, 25 keV beam.

S lq Occupancy λocc Phase advance σ0 Max J
2 mm 1.0 mm 100% 3.89◦ 0.09 A/cm2

3 mm 1.5 mm 100% 13.40◦ 0.51 A/cm2

4 mm 2.0 mm 100% 30.90 ◦ 5.54 A/cm2

5 mm 2.5 mm 100% 61.59◦ 63.66 A/cm2

6 mm 2.5 mm 90% 86.85◦ 57.0 A/cm2

7 mm 2.0 mm 57% 86◦ 43.0 A/cm2

8 mm 1.3 mm 32.5% 86◦ 38.0 A/cm2

9 mm 1.1 mm 24.4% 86◦ 32.0 A/cm2

10 mm 0.85 mm 17% 86◦ 23.0 A/cm2

4.3.4 Maximum Transportable Current Density

The maximum transportable current density through a PMQ lattice was determined

for the limiting factors of beam energy and inner magnet radius. The outer radius of

the magnets can be made as large as needed to reach the asymptotic value of magnetic

field intensity without being unreasonably large. As such, the outer magnet radius is not

a limiting factor in transportable current density. For an inner magnet radius of 4 mm,

the current density as a function of period is optimized. Optimization was performed by

varying the magnet width lq and the space between magnets in the single-particle-tracking

code to obtain the zero-current phase advance as close to 90 degrees as possible. As the

lattice period becomes small, the beam cannot achieve 90 degrees phase advance for any

magnet thickness, resulting in the drop off in maximum current density observed in Fig.

4.6, but not seen in Fig. 1.6. In Fig. 4.6 the black curve represents the 16 keV beam,
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Figure 4.6: Maximum transportable current density optimized per lattice period for
the beam energies indicated.

which is comparable to the black curve in Fig. 1.6. The maximum transportable current

density for various reasonable values of beam energy are presented in Fig. 4.6.

It is worth noting that for a single case, stable beam transport using a PMQ lattice

for a space–charge dominated beam has been simulated using the 3D particle-in-cell code

MICHELLE [14], [27] in [2]. Results from the envelope code agree with these simulation

results, however, their predictions for other cases were based on the analytic PMQ transport

model.

If we compare our results to the analytic PMQ transport model, we see a drastic

difference for small lattice periods. The analytic model does not take into account the

drop–off of the field due to small lattice periods, as well as the low phase advance achievable

for small periods. This can clearly be seen in Fig. 4.7. It is important to note that the

maximum current density transportable that was calculated used a maximum beam radius

size instead of an average beam radius size. The theoretical calculations did use an average

beam radius size, so the comparisons are not perfect, they are a modest approximation.
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Figure 4.7: Maximum transportable current density from envelope calculations ver-
sus analytic transport model.

4.3.5 Emittance

For completeness, we added an initial emittance term to the simulations assuming a

cathode temperature of 1100◦. The envelope equations then become

x′′[s] + κxx[s]− 2K0

x[s] + y[s]
−

ε2eff−x
(x[s] + y[s])3

= 0 (4.49)

and

y′′[s] + κyy[s]− 2K0

x[s] + y[s]
−

ε2eff−y
(x[s] + y[s])3

= 0. (4.50)

Results for the emittance emittance studies were similar to what was obtained before with

the equations of motion with space–charge, a slightly stronger focusing force was required

to achieve stable transport, but only very slightly; the same current density per phase

advance was achieved for beams of moderate radius, a0 = 0.5 mm. For smaller radii, a

larger difference was noted but not quantified here.
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Emittance Growth in Transport

Lattices

Emittance increasingly becomes an issue for high-frequency RF amplifiers as dimensions

become minute. This is currently an active area of research with articles being published

in 2014 to address designing emittance dominated beams for linear RF amplifiers [28].

Emittance growth, on the other hand, has never been thought to be an issue for RF

amplifiers. In this section, we develop a method for determining the emittance growth

that can be caused by PPM focusing lattices. This can be used as a tool for determining

important beam related design issues in RF amplifiers.

5.1 Beam Emittance

The source of the electron beam is the electron gun, consisting of a piece of metal (cath-

ode) from which electrons are born and accelerated across a potential difference between

the cathode and anode, and emerge through a hole in the anode. Electrons are produced

on the cathode by various means: the cathode can be heated – thermionic emission, the

cathode can be cold and solely use the potential between the anode and cathode to induce
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emission of electrons – field emission, or the cathode can be bombarded with photons to in-

duce emission – photoemission. Whatever the method of emission, the nature of the source

causes an initial kinetic energy spread, and a random velocity spread, of the electrons in the

beam. Each electron is born with a slightly different direction and magnitude of velocity -

this random velocity spread is proportional to the initial temperature of the cathode and

causes an intrinsic thermal velocity spread which remains with the beam at any distance

from the cathode. The intrinsic thermal velocity spread, also called the random velocity

spread, can be increased by temperature fluctuations on the cathode itself, aberrations due

to space–charge fields, and various other instabilities. The greater and the less uniform

the initial energy and velocity spreads are, the poorer the beam quality is. Emittance is a

measure of the beam quality.

The two beams of interest for us are the axisymmetric case of the PPM focused beam,

and the two–plane symmetry of the PMQ focused beam. We will focus on the two–plane

case which reduces to the axisymmetric case. In phase space, each particle can be described

by its three spatial coordinates and three momentum coordinates (x, y, z, Px, Py, Pz) at

any given time. A collection of particles is considered a beam if its momentum in one

dimension is much greater than its momentum in the other two dimensions; namely, in a

particle beam moving along the z axis, Pz >> Px, Py. Considering the symmetric case of a

PMQ focused beam, we have particles traveling in the x–z and in the y–z planes. The slope

of the trajectory of the particle in the x–z plane is defined by x′ = dx
dz = ẋ

ż ≈
Px
Pz

. Trace

space is defined by the position and the slope of the particle trajectory moving along the

direction of beam propagation; each particle has a point in x–x′ space. The area occupied

by all the points representing the particles in the beam form an area given by

Ax =

∫∫
dxdx′. (5.1)

The area of the beam in trace space is related to the definition of beam emittance.

It is tempting to define the trace–space area as the beam emittance; however, it does.

Defining Ax to be beam emittance does not distinguish between a laminar beam in a linear

focusing system and a beam with the same trace space area but a distorted shape due to

nonlinear forces and aberrations in the focusing lenses. The definition that follows for beam
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emittance is presented in [23] in order to measure beam quality rather than trace–space

area. Beam emittance needs to measure beam quality which we define as the product of

the beam’s width and its divergence. Divergence is related to the random velocity spread.

To define an rms emittance ε̃x quantity, we use moments of the distribution function. More

information on moments can be found in Chapter 4. The rms emittance ε̃x is given by

ε̃x =
(
〈x2〉〈x′2〉 − 〈xx′2〉

)1/2
= x̃

ṽx,th
v0

. (5.2)

The term 〈xx′2〉 represents a relationship that exists between x and x′ when the beam is

either converging or diverging and is zero at the waist of a uniform beam. ṽx,th represents

the x–component of the random kinetic energy, or equivalently, the rms velocity spread,

and x̃ = 〈x2〉1/2 is the x–component of the rms beam width. Using this definition, beam

emittance, ε̃x, does increase when the beam passes through nonlinear focusing lenses even

though the area Ax of the trace–space ellipse remains constant (which it must by Liouville’s

theorem [29]). As a special case, in a system where all forces acting on the particles are

linear, the trace space area Ax is elliptical in shape, and if the ellipse is upright, having

xm and (x′)m being the major and minor axes, the area of the ellipse is given by:

Ax = xm(x′)mπ and εx = xm(x′)m =
Ax
π

(5.3)

where (x′)m denotes the maximum value of the divergence x′ and not the slope of the

width dxm
dz . The definition εx = Ax

π also applies if the ellipse is tilted and is very useful for

systems where the forces are linear.

The rms emittance gives very important quantitative information about the particle

beam. A more useful measure of the beam quality is then defined as the effective emittance

εeff which is generally expressed as:

εeff = kεεrms, (5.4)

where kε is a constant of proportionality which can change with the particle density dis-

tribution. For a beam with a uniform particle density distribution, or a K–V distribution,

the relationship between the rms quantities ε̃x, x̃, and x̃′th and the effective quantities εeff ,
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Figure 5.1: Trace–space ellipse used to understand beam quality or emittance.

xm, and (x′)m are given by

xm = 2x̃, (5.5)

(x′)m = 2x̃′th, (5.6)

and

εeff = 4ε̃x. (5.7)

Then, for a K–V distribution, kε = 4, which is often referred to as the four-times-rms-

emittance. The last definition of emittance, which is essential for comparing emittances

from beams of different energies, is the effective normalized emittance εn = γβεeff .

The beam width, whether rms or not, has units of meters, and the beam divergence

has units of radians; therefore the units of measurement for emittance are m-rad. However

since the quantities measures are typically on the order of millimeters and milliradians, it is

customary to use units of mm-mrad as shown in Fig. 5.1. Many of the authors who define

the emittance as the trace–space area of the beam Ax will include the factor of π either

implicitly or explicitly, defining emittance as either εx = Ax, or εxπ = Ax, and include π

in the units, e.g., εx = 20π mm-mrad.

67



Chapter 5. Emittance Growth in Transport Lattices

In the case of the beam with two-plane symmetry traveling along the z–axis, a com-

plete description of the beam requires the beam width ym, the divergence, (y′)m, and the

effective emittance εy. If the beam is not continuous, but rather is bunched, i.e. the length

of the beam is comparable to its diameter, longitudinal phase-space properties must be

considered, which we neglect here.

5.2 Emittance for High Frequency TWTs

Usually, in vacuum-electronics, the electron beams employed have negligible emittance

and are considered space–charge dominated. Increasingly, linear RF amplifiers are oper-

ating in frequency regimes where emittance is no longer negligible. Specifically, if we look

again at the envelope equation introduced in Chapter 1 as Eq. 1.4:

r′′[s] + κ[s]− 2K0

r[s]2
−
εeff
r[s]3

= 0,

where εeff is the effective emittance defined above. The emittance term scales as 1
r3

and

so as the beam radius gets smaller as in devices operating at millimeter, submillimeter,

and terahertz frequencies, the emittance term becomes increasingly important. We define

a threshold emittance εthr as the emittance quantity which makes the space–charge term

equal to the emittance term, e.g.

2K0

r[s]2
=

εthr
r[s]3

or εthr = 2K0r[s]. (5.8)

It is known that emittance growth can be expected from a variety of sources, including

space–charge fields for beams with non-uniform current density profiles, and from applied
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magnetic fields that vary nonlinearly with radius, as in a PPM field. However, over the

typical length of an RF circuit, and for the types of beams common to RF amplifiers,

emittance growth from these causes has not been observed appreciably in simulations, at

least to the accuracy of the calculations within a few percent [28], [30].

It is, however, of great interest to have an analytic model which will give information

about the emittance growth due to PPM focusing as devices are being built which employ

beams that are on the limit between being space–charge and emittance dominated. The

dominant forces in the electron beam define many of the device parameters and force dif-

ferent design choices for the amplifier from beam capture, confinement, and propagation.

High emittance electron guns, particularly gridded guns, are also being used in high fre-

quency amplifier design [31], and with a high initial emittance, a small emittance growth

will have a much larger effect on device performance. The next section of this chapter is

dedicated to quantifying emittance growth from PPM focusing as an important parameter

for limitations in the design of high-frequency amplifiers.

5.3 Analytic Emittance Growth Calculations

In 1936, Scherzer showed that higher order radial terms always add in cylindrical mag-

netic lenses, leading to an unavoidable aberration in electron microscopes that limit resolu-

tion to 50 to 100 wavelengths which, for us, causes emittance growth [11]. This is known as

Scherzer’s Theorem, and we will evaluate its effect for the PPM model we developed earlier.

It is also important to note that Scherzer, in 1947, showed that multipoles could be used

to eliminate this aberration and that focusing using only multipoles could be aberration

free [32].

For this calculation, we begin with electrons that are fixed in radius and have zero

initial divergence traversing a PPM stack. These particles accumulate radial focusing as

they go through the magnetic field. The linear part of the focusing is exactly cancelled by

an equivalent space-charge force, but the residual non-linear part of the focusing leads to a
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curvature in phase space. Because this geometry has radial symmetry, it is most convenient

to calculate the resulting emittance growth using the particles’ radial coordinate. We will

calculate the emittance growth per unit length as a useful tool for understanding the

emittance growth due to PPM fields over the length of an RF circuit.

The change in radial divergence after passing through an axial length is then

∆r′(r) =
e

mcγβ

2
[
Bz(r, z)∆z

r

∫ r

0
Bz(ρ, z)ρdρ+

1

r3

∫ r

0
Bz(ρ, z)ρdρ

∫ r

o
Bz(ρ, z)ρdρ

]
, (5.9)

where the magnetic field is found from the second order expansion of the field on–axis from

Bz(r, z) = B0(z)−
r2

4
B′′0 (z). (5.10)

If we assume the electrons are in laminar flow, we can calculate the emittance. Assume

the field is periodic:

B0(z) = Bpcos(kwz), (5.11)

where kw = 2π
L and where L is the magnet period. Expanding to second order, the field

everywhere is then

Bz(r, z) = Bp

(
1 +

k2wr
2

4

)
cos(kwz). (5.12)

Integrating we obtain

∫ r

0
Bz(ρ, z)ρdρ = Bp

(
r2

2
+
k2wr

4

16

)
cos(kwz), (5.13)
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and

∆r′(r) = −∆z

(
e

2mcγβ

)2

rB2
p

(
1 +

k2wr
2

2

)
cos2(kwz). (5.14)

Averaging over some distance, we have

∆r′ave(r) = −∆z

(
e

2mcγβ

)2

r
B2
p

2

(
1 +

k2wr
2

2

)
. (5.15)

It is worth noting that if the field is decomposed into harmonics as

B0(z) =

∞∑
n=1

Bncos(nkwz), (5.16)

the induced convergence from the focusing is

∆r′ave(r) = −∆z

(
e

2mcγβ

)2 r

2

∞∑
n=1

B2
n

(
1 + n2

k2wr
2

2

)
, (5.17)

which is due to the orthogonality of the Fourier expansion. Keeping terms only to third

order in radius is consistent with Scherzer’s Theorem.

Now it is possible to calculate the emittance growth from the fundamental Fourier

component of the axial magnetic field (n = 1). Note that it does not matter how this

field is generated, the emittance growth will be the same. Moreover, since the fundamental

component of the field is chosen to provide balanced flow for some given current, any PPM

lattice that is designed for the same given current will lead to the same emittance growth.

Therefore, henceforth we can use the transportable current as the design parameter. If

the current is beyond the transport limit of the PPM structure it does not make sense to

discuss emittance growth.
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For balanced flow, the linear part of the induced convergence cancels the space-charge

repulsion, which is linear if the beam is laminar and uniform. The emittance growth over

a distance is then due to the nonlinear extra convergence, or

∆r′ave(r) = −∆z

(
eBpkw
4mcγβ

)2

r3. (5.18)

With the following rms quantities:

〈r2〉 =
r2a
2
, 〈r′2〉 = ∆z2

(
eBpkw
4mcγβ

)4 r6a
4
, 〈rr′〉 = −∆z

(
eBpkw
4mcγβ

)2 r4a
3
, (5.19)

where rb is the beam radius, the change in emittance is

(∆εnorm)2 =
1

4
γ2β2

(
〈r2〉〈r′2〉 − 〈rr′〉2

)
=

1

4
γ2β2 (∆z)2

(
eBpkw
4mcγβ

)4 r8a
72
, (5.20)

or

∆εnorm = r4a
γβ

12
√

2

(
eBpkw
4mcγβ

)2

∆z. (5.21)

To understand the effect of emittance growth we consider the axisymmetric envelope equa-

tion:

r′′[s] =

(
I/IA
β3γ3

1

r[s]2
−
(
eBrms
2mcβγ

)2
)
r[s] +

4ε2norm
β2γ2r[s]3

. (5.22)

Equating the focusing term with the space–charge term,

r2a

(
eBp

4mcγβ

)2

=
I/IA
β3γ3

, (5.23)
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we can rewrite the emittance growth for the case of balanced laminar flow as in a PPM

focused beam as

∆εnorm =
r2ak

2
w(I/IA)

12
√

2γ2β2
∆z. (5.24)

Equation 5.24 is our main result for emittance growth with PPM focusing. For the emit-

tance term to equal the space-charge term, (what we define as the threshold emittance

εthres) the following condition must be met:

εnorm,thres = ra

√
I

IA

1

8γβ
. (5.25)

These last two equations can be combined to calculate what length of PPM structure

is needed for the emittance grow to equal the space–charge term in the envelope equation,

what we previously defined as the threshold emittance. This is a first order calculation to

provide an estimate as the emittance actually increases, the field strength would have to

be increased accordingly with an associated increase in the emittance growth rate:

∆zthres =
L2

ra

3

2π2
(γβ)3/2√
I/IA

. (5.26)

It is illustrative to consider a few different cases, a higher energy case with longer period

and a lower energy case with shorter period. First, a traditional PPM focused beam that

is commonly found in TWTs would have an energy of 20 keV employing a PPM focusing

lattice with an inner magnet radius of 1.25 cm and a sufficiently large outer radius to reach

the asymptotic field. The maximum current density transportable by this PPM lattice is

about 80 A/cm2. The corresponding beam radius for a 1 µP beam is about 1.06 mm for a

total current of 2.8 A. The threshold emittance is about 9.1 µm-mrad and the emittance

growth rate is about 9.0 µm-mrad/m. Thus, the emittance does not begin to dominate the
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beam dynamics and transport until about a meter of drift. This would be unusually long

for an RF circuit and the emittance growth is a non–issue in devices like these.

For another case, we consider beam and lattice parameters for a 17 keV, Ka-band TWT

device with an inner PPM magnet radius of 7 mm and an outer radius of 14 mm. The

maximum beam current density is about 135 A/cm2 therefore, the beam current is about

2.8 A with a beam radius of 0.81 mm, i.e. a perveance of about 1.26 µP. Here, the threshold

emittance is about 5.5 µm-mrad with an emittance growth rate of about 8.4 µm-mrad/m,

so the emittance growth becomes important for transport of the beam on the order of 1/2

meter.

An extreme extension of this case is to consider a 2.5 mm beam radius at the same

energy, suitable for use in a 30 GHz tube (with a 1-cm RF wavelength). This beam would

have a current of 26.5 A, i.e. an extreme 12 µP beam. The threshold emittance scales as

the radius squared if the current density is held constant; therefore, the increase in current

and radius now gives a threshold emittance of 68 µm-mrad, but the emittance growth

rate, which scales as the radius to the fourth power, has increased even more, to 1310 µm-

mrad/m. For this extreme case, the emittance growth will dominate the transport after

only 5 cm.

It is clear to see from this analysis that most beams for RF interactions will not need

to worry about emittance growth. It is, however, a very useful tool for calculating the

threshold emittance for design considerations of RF tubes that are using more extreme

electron beams, particularly beams of high perveance and beams of very small radii for

high frequency amplifiers.

It is impossible to analytically calculate an emittance growth due to PMQ focus-

ing, which is theoretically zero. With robust magnet models however, a beam code like

MICHELLE should be able to calculate the emittance growth due to a PPM lattice and

demonstrate a similar beam transport length with PMQ fields that have no emittance

growth.
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Other PMQ Applications

6.1 Focusing Other Geometries

Another method for meeting the need for high current density electron beams for

terahertz frequency devices is to use sheet beam geometry. There is currently much research

in the area of sheet-beam amplifiers and sheet beam electron guns [31]. Options for beam

transport for these devices is similar to the options for the pencil beam, namely, solenoidal,

PPM, and PMQ. Solenoidal focusing of sheet beams is only possible for short transport

distances as the diocotron instability affects longer distance transport [33]. There have been

a few instances of using a version of PPM focusing to transport electron sheet beams [34],

[35], [36]. It is of interest to see if PMQ could provide a more compact method of transport

for sheet beams. Recent work by Wang et. al. [37] suggested a nonsymmetric quadrupole

field for stable sheet beam transport. The conditions for stable sheet beam transport

are presented in their article. We had performed multiple simulations to determine if a

sheet beam could be transported using symmetric quadrupoles but with different spacing

between the focus and defocus cells but were unable to support stable beam transport.

Nonetheless, PMQs are a viable option for transporting electron sheet beams in a more

compact way while transporting high current densities.
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6.2 Metamaterial TWTs

The University of New Mexico (UNM) is currently part of a MURI program to develop

metamaterial TWTs. In a metamaterial TWT, the slow wave structure is replaced by a

novel electromagnetic interaction structure based on metamaterial properties [38]. TWTs

will be explained in the following subsection, followed by an explanation of how PMQ

focusing can be used to advantage with them. Among UNM’s MURI partners, UC Irvine

and Ohio State are both studying structures with degenerative band–edge modes and frozen

modes. MIT is studying complementary split ring resonator structures like that pictured

in Fig. 6.1.

Figure 6.1: Novel interaction structure by researchers at MIT [4].

Due to the ability to transport relatively high current densities using PMQ lattices with

lower occupancy, free space is left between the magnets. With PPM magnet lattices there

is no free space in the lattice, even when the magnets are less than half the lattice period.

In addition, pole pieces are required to smooth the fields between magnets and minimize

field leakage. Pole pieces are not required in quadrupole focusing due to the transverse

nature of the fields. These free space spaces in the focusing lattice are unique to PMQ

focusing for space–charge dominated beams. We believe they could prove very useful for

studying new novel electromagnetic structures because they allow for probes and other
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Figure 6.2: Typical TWT - helix variety [5].

diagnostics to be easily put into the interaction space between magnets in the lattice. This

is a very attractive feature for experimentalists.

6.2.1 TWTs

Traveling–wave tubes are microwave and millimeter wave devices that utilize an electro-

magnetic field and particle beam interaction to slow down electrons, drawing kinetic energy

out of the electrons and transferring it into RF energy. The strongest interaction between

the field and the beam occurs when their velocities are equal, since electromagnetic fields

typically travel at velocities near the speed of light, the longitudinal component of the field

has to be slowed down to a velocity that is achievable for the electron beam. This is done

by forcing the field to travel down a periodic structure which splits the field velocity into

a transverse and a longitudinal velocity component. The periodic structure is aptly called

the slow–wave structure (SWS) and is traditionally either a helix or a coupled–cavity struc-

ture. The helix structure is frequently used for lower power devices since higher powers can

warp the helix structure, a typical helix TWT is pictured in Fig. 6.2. For higher–power

handling TWTs, coupled-cavities are the SWS of choice. The process of converting electron

energy into RF energy is stable, robust, and operates at a range of temperatures in which

solid–state devices cannot operate.

TWTs are amplifiers and are used extensively for satellite communication due to their
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temperature insensitivity, and are frequently used for military radar as well. The electro-

magnetic field profile in these devices is crucial, as the strength of the coupling between

the field and the electron beam determines the gain of the device. Computer simula-

tions play an important role in determining the performance of these devices as well as in

studying physical phenomena inside the device. Simulations which can calculate both the

fields and the charged particle motion theoretically provide a complete description of the

electromagnetic fields.

Beam focusing was demonstrated through the envelope codes. In order to analyze the

focused beam interaction with RF fields, a more computationally intensive simulation is

required. Three dimensional simulation codes to predict electromagnetic field behavior,

and particle behavior as the electrons interact with the fields, have proven to be very

useful for studying physical phenomena and for determining the performance of the TWT

device in question. It is important to determine whether or not the exotic beam profile of

the PMQ focused electron beam will have an effect on the beam-field interactions inside

a TWT. Work by NRL in 2009 [2], performed TWT simulations in the coupled-cavity

TWT simulation code CHRISTINE and determined a relative insensitivity to beam radius

by achieving similar gain (within 5 dB) for a TWT device with beams of the minimum

and maximum radii of the PMQ focused beam. These are good results but we wanted to

determine how the RF interaction and especially the space–charge bunching of the beam

would be affected by the unique beam profile.

Simulations were performed using a fully electromagnetic finite–difference–time–domain

particle-in-cell code which solves both Maxwell’s equations and Newton’s equations of mo-

tion at each time step. The code used is ICEPIC, developed and maintained by the Air

Force Research Laboratory at Kirtland Air Force Base [39]. This code allows us to fully

simulate the interaction of the electron beam with the RF fields in an amplifying struc-

ture, such as the TWT. For this simulation, a coupled–cavity TWT structure is chosen

which operates in the Ka-band, around 35 GHz. The device geometry can be pictured

in Fig. 6.3, and detailed dimensions can be found in [40]. This particular coupled–cavity

TWT is chosen for ease of manufacturing, ease of simulation geometry, and scalability to
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Figure 6.3: Cross-sectional view of the double-slot coupled cavity SWS circuit.

higher frequencies. Accurate representations of the electromagnetic fields and the charged

particle, in this case the electron beam, are required to determine device performance.

To study this, a coupled-cavity TWT structure was chosen to be simulated with the

PMQ focused electron beam. The intention was to import the magnet simulations from

Maxwell into ICEPIC. We were able to import the magnetic field, but the resolution of the

magnet simulations was limited by computer memory and we observed non–uniformity in

the imported fields, similar to the anomalies described in Chapter 3. This non–uniformity

prevented successful transport in ICEPIC. It is believed that successful transport will not

be achieved without more robust magnetic field simulations, or an analytic analytic off-axis

expansion of the quadrupole field such that the ideal fields can be calculated on a grid for

importing into ICEPIC or a similar code. The magnetic field loops inherent to ICEPIC

are insufficient to construct the dual-plane symmetry of the quadrupole field lattice. We

believe that the periodicity of the magnet lattice could have an effect on the RF–beam

interaction as in PPM focusing. Due to the inability to successfully transport the beam,

TWT simulations are suggested as future work that can better explore the effects of PMQ

focusing both on beam-wave interaction and on emittance growth.
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A full analytic study of the magnetic fields due to PPM and PMQ focusing lattices

has been performed especially to the end of developing thorough envelope codes for space–

charge dominated electron beam transport. Envelope codes were developed and analyzed

for different magnet parameters and different beam parameters. Using these envelope

codes, a full analysis and comparison between the compact confining methods using PPM

and PMQ lattices was performed with full parameter studies to show the limitations of each

method depending on magnet parameters and beam voltage. An optimization method was

developed for determining the maximum transportable current density per period S. It was

determined that PMQ focusing can transport relatively high current densities; however, it is

not an advantage over PPM focusing as was suggested by previous work. The advantageous

region of transportable current density suggested by the analytic model disappeared when

accurate magnet models were used. Figure 7.1, previously shown in Chapters 1 and 4,

respectively, demonstrates this clearly.

The actual advantages of using PMQs over PPMs is due to their lower occupancy and

to the elimination of emittance growth. Lower occupancy decreases the cost and weight

of the magnetic material required to transport a comparable beam to PPM focusing. The

analytic emittance growth due to the nonlinear fields in PPM lattices was calculated; this is
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Figure 7.1: Maximum transportable current density per lattice period from Eqs. 1.5
and 1.6, top, and from envelope code calculations, bottom.

an important tool for determining design parameters for more extreme electron beams with

higher perveance, higher initial emittance, and smaller areas. The advantage of eliminating

emittance growth will become a factor as we move towards more extreme beams to achieve

the power levels and performance requirements at terahertz frequencies.

Further study should be performed of very high fidelity simulations of the RF interac-

tion with the exotic true beam profile of the PMQ focused beam to ensure the space–charge

bunching of the beam remains stable. Theoretically, it is likely the PMQ profile will in-

teract properly with the RF field since, in the case of PPM focused beams, the changing
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radius in the profile of the beam does not affect the space–charge bunching of the beam.

We also know from previous work that the beam–wave interaction is relatively insensitive

to the percentage of radial variation over the PMQ focused beam.

Further work is also needed to verify though computer simulations the analytic proof

of emittance growth through PPM focusing lattices as well as to verify the theoretical zero-

emittance growth of beams traversing PMQ lattices. This will require high performance

computing to achieve the accuracy needed.
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