
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

6-26-2015

Design and Implementation of a Pivot Shift
Prototype for Quantitative Analysis
Marco Antonio Espinoza Sanchez

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Espinoza Sanchez, Marco Antonio. "Design and Implementation of a Pivot Shift Prototype for Quantitative Analysis." (2015).
https://digitalrepository.unm.edu/ece_etds/81

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/81?utm_source=digitalrepository.unm.edu%2Fece_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Marco Antonio Espinoza Sanchez
 Candidate

 Electric and Computer Engineering
 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Wei Wennie Shu , Chairperson

 Thomas P. Caudell

 Marios S. Pattichis

i

Design & Implementation of a Pivot Shift
Prototype for Quantitative Analysis

by

Marco Antonio Espinoza Sanchez

B.S., Chihuahua Institute of Technology, 2011

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2015

©2015, Marco Antonio Espinoza Sanchez

iii

Dedication

To my family and friends which always supported me through the University years.

I probably wouldn’t be writing this thesis without their help.

iv

Acknowledgments

I would like to thank and sincerely acknowledge my Thesis advisor Dr. Wei Wennie
Shu for the guidance and support provided during the realization of this work. I
would also like to thank Dr. Thomas P. Caudell and Dr. Marios S. Pattichis for
being part of the thesis evaluation committee.

As well I would like to express my gratitude to CONACYT (Consejo Nacional
de Ciencia y Tecnoloǵıa) for all the support to make this happen.

Special thanks to my friend Engineer Jose Dı́az for the help with the design and
support of the prototype and to the medical staff leaded by Edmundo Berumen M.D.
and Carlos Vega M.D. collaborating on the patient trials.

v

Design & Implementation of a Pivot Shift
Prototype for Quantitative Analysis

by

Marco Antonio Espinoza Sanchez

B.S., Chihuahua Institute of Technology, 2011

M.S., Computer Engineering, University of New Mexico, 2015

Abstract

This thesis presents the utilization of a portable medical device intended to help

in the diagnosis of the Anterior Cruciate Ligament(ACL) knee injury. The prototype

consists of an embedded system integrated with various sensors including accelerome-

ters and gyroscopes to provide force, orientation, and acceleration measurement. The

prototype has been used to quantify the results of a medical test called pivot shift

which tests the dynamic stability of the patient’s knee. With the initial prototype

built, limited clinical trials were conducted. Two schemes (metric based classification

and k nearest neighbors) have been applied to the data set to empirically learn and

judge ACL diagnosis.

vi

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 How the project got started . 1

1.2 The ACL Injury . 2

1.3 Diagnosis . 4

1.3.1 Knee Arthroscopy . 4

1.3.2 Non-Invasive Techniques . 5

2 The Pivot Shift Prototype: Hardware Design 12

2.1 Arduino . 12

2.1.1 Arduino Mini Pro 328 . 13

2.2 MEMS:Accelerometer and Gyroscope 15

2.2.1 Accelerometers . 16

vii

Contents

2.2.2 Gyroscope . 18

2.2.3 MMA7361LC: Three Axis Low-g Accelerometer 20

2.2.4 LSM9DS0: 3D Accelerometer/Gyroscope module 27

2.2.5 I2C Protocol . 29

2.2.6 Getting data from the LSM9DS0 31

2.3 The Prototype . 36

3 The Pivot Shift Prototype: Software Design 41

3.1 Processing . 41

3.2 The Basics . 43

3.3 The Pivot Shift Software . 45

3.3.1 The Coding . 46

3.3.2 Beginning the test . 49

3.3.3 During the test . 51

3.3.4 From angular velocity to angular displacement 56

3.3.5 Ending the test and storing data 60

4 Clinical Trials 63

5 Data Acquisition and Analysis 67

5.1 First glance at graphs and PyPlotter 68

5.2 Interpretation of Graphical Data . 72

viii

Contents

5.3 Adjusting Left leg X axis readings . 76

5.4 Transforming to G’s . 78

5.5 Tools and Packages used . 80

5.6 Data Statistics . 82

5.6.1 Left and Right legs statistics 87

5.7 Classifying patients from data . 89

5.7.1 Metric classifiers . 90

5.7.2 Non parametric classification: K Nearest Neighbors 95

6 Conclusion and Future Work 102

6.1 Limitations and Future Work . 102

6.2 Conclusion . 106

A Arduino and Processing Code 108

References 109

ix

List of Figures

1.1 Normal knee anatomy, front view . 3

1.2 Frontal view of a knee with ACL injury 4

1.3 Arthroscopy equipment and setup on patient’s knee 5

1.4 MRI: Acute anterior ligament tear 7

1.5 KT-1000 test measuring anterior-posterior knee translation 8

1.6 Clinical assessments for the ACL diagnosis 9

1.7 Pivot Shift test . 10

2.1 Arduino Mini Pro . 14

2.2 MEMS components diagram . 16

2.3 Piezoelectric accelerometer, spring moves as acceleration forces act

upon the sensor, producing a voltage proportional to that force . . . 17

2.4 Three-Axis accelerometer LIS331DLHXY used in iPhone 4 in detail,

micromachined proof mass interleaved with capacitive sensors 19

2.5 MEMS gyroscope submitted to Coriolis effect 20

x

List of Figures

2.6 MEMS gyroscope submitted to angular motion 21

2.7 MEMS gyroscope submitted to linear acceleration 21

2.8 MMA7361LC analog accelerometer breakout board showing respec-

tive directions for each axis . 22

2.9 MMA7361LC and Arduino connection diagram 22

2.10 Reading the output of the MMA7361LC accelerometer resting at

horizontal position . 25

2.11 The effect of gravity on accelerometer readings 26

2.12 I2C signals, showing the start condition, address and data frames,

,and stop condition . 31

2.13 Schematic diagram of two LSM9DS0’s connected to an Arduino Mini

board under I2C . 32

2.14 Reading the output of the LSM9DS0 accelerometer resting at hori-

zontal position . 36

2.15 MRI, complete tear of ACL ligament 37

2.16 MRI, partial tear of ACL ligament 38

2.17 The pivot shift tester, one sensing module located in the tibia and

the second one in the femur . 39

3.1 Simple application using Processing 44

3.2 High level algorithm for pivot shift software 45

3.3 A selection of controllers available with ControlP5 library 47

xi

List of Figures

3.4 User interface for the pivot shift tester 48

3.5 Pivot Shift UI, dual layout presentation 54

3.6 Sample acceleration graph: x axis in red, y axis green, and z axis in

blue . 56

3.7 LSM9DS0 module: directions for acceleration and angular rates . . . 57

3.8 Sample test using angular velocity 58

3.9 Sample test using angular displacement 59

3.10 Sample test showing axes signals individually 61

3.11 Sample test showing the magnitude for acceleration and angular dis-

placement . 62

4.1 Prototype used during pivot shift maneuver 66

4.2 Graph showing acceleration output per axis from pivot shift test . . 66

5.1 Pivot shift plot analyzer . 69

5.2 Patient graphs: left leg (left side), right leg (right side) 69

5.3 Patient’s side to side acceleration comparison for each axis 70

5.4 Side to side comparison for X axis in four different patients 72

5.5 The pivot shift movement step by step, bottom describes positive

directions for acceleration on each of the axis 74

5.6 Interpretation of the maneuver . 75

5.7 Compensation of internal tibial rotation for X axis readings 77

xii

List of Figures

5.8 Side to side X axis comparison: left side with original data, right side

compensating rotation . 78

5.9 Histograms for complete dataset: a) X axis, b) Y axis, c) Z axis . . . 83

5.10 Mean, median and sd for complete data set by axis 85

5.11 Mean, median and sd by healthy and ACL patients 85

5.12 Taking the median of the maximum values 86

5.13 Left legs: mean, median and sd for ACL and healthy patients 93

5.14 Right legs: mean, median and sd for ACL and healthy patients . . . 94

5.15 From (acceleration, time) to (X,Z) sample points 96

5.16 XZ datasets corresponding to right leg 97

5.17 Creating subsets of the healthy class with equal size of ACL class . . 98

5.18 Testing and training set examples 99

5.19 Classification results for patient file P12PD 100

6.1 XBee module implementation . 103

6.2 Disparity in sample size and beginning of test 105

6.3 Recent test after software changes, 3/14/15 105

xiii

List of Tables

2.1 Zero-g voltage taken from data-sheet and device testing 25

2.2 LSM9DS0 Accelerometer characteristics 27

2.3 LSM9DS0 Gyroscope characteristics 28

2.4 I2C terminology . 30

3.1 Conversion from angular velocity to angular displacement in X axis . 60

5.1 Patients distribution . 82

5.2 Summary statistics for X, Y and Z data for all patients 84

5.3 Summary for X, Y and Z data for patients by groups 84

5.4 Maximum and minimum acceleration metrics 87

5.5 Example table showing maximum and minimum values for 5 patients 87

5.6 Summary statistics for X, Y and Z in left and right legs 88

5.7 XYZ summary for patients by groups, left and right legs 88

5.8 Maximum and minimum values for patients by groups, left and right

legs . 89

xiv

List of Tables

5.9 Magnitude metrics summary for healthy and ACL patients 90

5.10 Results of different metric based classification approaches 92

5.11 MagnitudeXZ metrics summary for healthy and ACL patients 94

5.12 XZ Magnitude metric classification results 95

5.13 KNN results for Left leg . 100

5.14 KNN results for Right leg . 101

5.15 KNN: missclassifications rates by groups 101

6.1 Variability in sample size from test to test 104

xv

Chapter 1

Introduction

This Thesis is based on the implementation of a previously design pivot shift pro-

totype and its tests results in patients trails. The project consisted of an interdisci-

plinary collaboration between engineering and medical professionals.

The patient trials took place in Chihuahua, Mexico with collaboration of Ed-

mundo Berumen M.D. and Carlos Vega M.D. at the Christus Muguerza del Parque

Hospital between May 2013 and May 2014.

1.1 How the project got started

Part of the work showed in this Thesis backs from early 2013 before my arrival

to UNM. Everything started with a call from a friend MD. Carlos Vega, that at

that moment was working on some orthopedical research with regards of the ACL

(anterior cruciate ligament) knee injury. In that call he mentioned got an idea of

an electronics project that i may could possibly be interested in. He started talking

about how he was working on this routine test called pivot shift and the problems it

had with the equipment that he was using to measure the results. Then he finally

1

Chapter 1. Introduction

said “could be a way to measure the movement or the force used during the test??,

something to see the results on a PC..”. After that I contacted my friend also

an electronics engineer Jose Diaz, got together, bought some microcontrollers and

sensors and started playing with the project.

1.2 The ACL Injury

Knee injuries comprise about 55% of all sports injuries. Out of those, ACL (anterior

cruciate ligament) tear represents one of the most common ones. Athletes involved

in high demand disciplines like basketball, soccer, and football are more likely to

develop this injury.

Briefly analyzing the knee anatomy the main three bones being part of the knee:

• Femur

• Patella

• Tibia

These bones connect to each other by ligaments to keep knee stability and protection

limiting the movement. These ligaments can be described as:

• Collateral ligament. These ligaments can be found on the sides of the knees.

The lateral collateral is located on the outside while the medial collateral on

the inside. Their function consist on controlling the knee sideways motion and

prevent unusual movement.

• Cruciate ligaments. Ligaments that are found inside the knee joint. The pos-

terior cruciate ligament being located on the back while the anterior posterior

2

Chapter 1. Introduction

lies on the frontal part of the knee. They are responsible of the back and forth

dynamic of the knee.

Figure 1.1: Normal knee anatomy, front view

Figure 1.1 shows the anatomy of a healthy knee where it can be seen how the

ACL runs in the middle of the knee in diagonal direction, because of this prevents

the tibia from sliding or moving out in front of the femur [1].

In the other hand figure 1.2 exposes a knee with the ACL injury, which among

other things can be caused by:

• Direct impact or collision on one side of the knee

• Sudden stop of movement

• Overextend the knee joint

• Quick stop of motion and change direction while turning, landing from a jump

or running.

• Slowing down while running

• Landing from a jump incorrectly

3

Chapter 1. Introduction

Figure 1.2: Frontal view of a knee with ACL injury

1.3 Diagnosis

Once there is the suspicion of an ACL tear, Doctors often use several techniques

to determine if in fact an injury exist. There are invasive techniques like the knee

arthroscopy and multiple non-invasive that can identified in two main groups, one

being imaging tests like Radiography, CT scans and MRI, and the ones called routine

tests or medical assessments including lachman, pivot shift and drawer tests.

1.3.1 Knee Arthroscopy

Knee arthroscopy is a minimally invasive technique that allows orthopedic surgeons

to assess and treat several conditions affecting the knee joint. The procedure consist

of a small incision in the vicinity of the affected joint. Then a tiny camera (around

size of a pencil) is inserted along with fiber optics to provide light source. The camera

transmits the images in real time to a monitor in the operating room, this way the

specialist can gain multiple views of the joint area.

The surgeon can use this technique to assess, repair or remove damaged tissue,

to do so, other small surgical equipment is inserted via a secondary incision around

4

Chapter 1. Introduction

Figure 1.3: Arthroscopy equipment and setup on patient’s knee

the knee. Aside from the invasive nature of this technique, it is the most effective

one to determine the existence and severity of an ACL injury.

1.3.2 Non-Invasive Techniques

This section describes the routine tests and imaging techniques used in the diagnosis

of the ACL injury, all of the following are considered non-invasive tests.

Computer Tomography

Commonly known as CT or CT scans. During the test, the scanner sends X-ray

pulses to the patient’s body. These pulses act during less than a second taking

pictures of a thin slice of the area or organ of interest. In some cases the scanner is

able to tilt its position allowing three dimensional CT.

This kind of scans are typically used to study an organ but can be used to examine

blood vessels, bones, and the spinal cord.

In order to make the image analysis easier, an iodine dye (constrast material) is

used to provide more clear pictures on the organs or area of study. This dye can be

put in a vein (IV) or can be orally administrated.

5

Chapter 1. Introduction

CT can be used to visualize the ACL, however its visibility is not the best when

haemarthrosis (bleeding into joint spaces) is present, situation where MRI has more

significant results. Therefore, CT scan is used in cases when the patient cannot be

exposed to an MRI, for example when the patient has a peacemaker, brain aneurysm

clip or cochlear implant (ear implant).

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology

to help physicians diagnose and treat medical conditions. One of the highlights of

this technique is its non-invasive nature in the sense that no ionizing radiation (x-

rays) is used. Instead, MRI makes use of powerful magnetic field and radio frequency

pulses to produce pictures of tissues, organs and bones.

Protons (hydrogen atoms) in tissues containing water molecules are used to create

a signal that after being processed forms an image of the body. Energy from the

magnetic field at a certain resonant frequency is applied to the patient. Then, the

excited protons emit a radio frequency signal that is measured by a receiver coil. This

radio signals can be used to encode position information by changing the magnetic

field using gradient coils. The contrast between different tissues is determined by

the rate at which the excited atoms go back to an equilibrium state. Similarly to the

CT scan, contrast agents may be used to provide better image results.

MRI results in better quality images of soft tissues like the ACL, having a high

rate on ACL tear diagnosis with accuracy, sensitivity and specificity of more than

90%[2]. As well, MRI is also best for detecting concomitant mensiceal, ligamentous

or chondral injuries[3].

6

Chapter 1. Introduction

Figure 1.4: MRI: Acute anterior ligament tear

KT-1000

This test developed by Dale Daniel, MD, back in the 1980’s has been widely used

over the years for the diagnose and follow up on patients with the ACL injury. This

arthrometer is an objective instrument for the ACL reconstruction, which measures

the anterior tibial translation in relation to the femur[4] between 20 and 30 degrees

of knee flexion.

To perform the test, the KT-1000 is firmly attached to the patient’s leg by two

bands, after this the arthrometer is pulled to the tibia to provide an anterior force.

Audible feedback (beeping) to the examiner is noticed at 15, 20 and 30 pounds of

applied force. The output of the test consist on the tibia translation with respect to

the femur in millimeters (mm). With this data, the laxity (how loose the ligament

is) is calculated in side-to-side difference between the patient knees.

From extensive testing, the literature states that an intact or partial ACL tear

7

Chapter 1. Introduction

Figure 1.5: KT-1000 test measuring anterior-posterior knee translation

have less than 3 mm of increased anterior translation during the test[4].

Lachman test

The Lachman test named after orthopedic surgeon John Lachman , is a noninvasive

medical test performed for the diagnose of the ACL injury known for its high accu-

racy. In order to make the test, the examiner ensures the tibia with one hand while

securing the femur with the other one. The knee, is flexed at 30◦ while the patient

lies supine. The examiner stabilizes the femur and applies force in anterior direction

on the tibia. While a healthy ACL should prevent forward translational movement,

a positive result for an ACL injury will be a noticeable anterior translation of the

tibia. Depending on the anterior translation registered its laxity is defined as: grade

I for 1 mm-5 mm, grade II for 6 mm-10 mm and grade III for anterior translation

over 10 mm.

This test can be complemented with the use of the KT-1000 in order to determine

the anterior translation in millimeters[5].

8

Chapter 1. Introduction

(a) Lachman test (b) Drawer test

Figure 1.6: Clinical assessments for the ACL diagnosis

Drawer test

The drawer test is a clinical test used in the initial evaluation when there is suspicion

of an ACL tear injury. Similarly to the Lachman test the patient stands with the

hips flexed 45◦ and knees flexed to 90◦ with the feet flat on the table. With the knee

flexed verification of the relaxation is done by hamstring palpation, this is done in

order to prevent false negatives. The thumbs are placed along the joint line on both

sides of the patellar tendon. After setup of the grip, an anterior force is then applied

to the proximal tibial with gentle to and fro (back and forth) movement to assess

for increased translation between knees. The test is considered to be positive if the

tibia pulls in forward or backward direction more than normal.

Pivot Shift test

This test is the combination of internal rotation and valgus force applied to the leg

which helps to determine the dynamic instability of the knee. The test is performed

with the patient lying in supine position starting from the knee in full extension and

then gently flexing to approximately 40◦ . A valgus torque and internal rotation are

applied to the leg. A positive pivot shift test is defined as a forward subluxation

9

Chapter 1. Introduction

Figure 1.7: Pivot Shift test

of the tibia during the change of direction. This clinical test tries to reproduce the

event when an ACL tear occurs, when the knee gives way due the loss of the ACL[6].

The pivot shift is a relatively complex test. For this reason and the lack of a

quantitatively accepted method to measure the results[7], is evaluated only on the

basis of the examiner’s experience[8].

Still with this limitations the test is considered one of top three applied techniques

towards the diagnosis of an ACL condition, part of this has to do with the fact that

contrary to the Lachman and Drawer tests, the Pivot Shift is the only of the three

that analyses the dynamic and rotational stability of the anterior cruciate ligament,

which more accurately relates to the knee function.

The complexity of the test using rotational and valgus forces makes the quanti-

tative analysis more challenging in comparison with uniplanar stress testing like the

one present in the Lachman test that can be measured with the KT-1000.

For this reason, several studies[7, 9] have tried to decompose the pivot shift

movement into quantifiable parameters suggesting:

• anterior posterior translation

• anterior posterior acceleration

10

Chapter 1. Introduction

• anterior posterior rotation

as valid metrics towards giving objective nature to the test results.

The work showed in this thesis represent the effort of the design and implemen-

tation of a portable electronic prototype capable of reproducing acceleration and

rotational metrics out of the pivot shift. “The ideal instrumented clinical examina-

tion test should be noninvasive, portable, and applicable in both operating room and

office environments”[9].

11

Chapter 2

The Pivot Shift Prototype:

Hardware Design

This chapter describes in detail the hardware specifics of the previously designed

prototype, including an overview of the microcontroller used, the sensors and their

specifications as well as the communication that takes place between the embedded

system and the PC.

2.1 Arduino

Arduino is an open source and open hardware computing platform based on sim-

ple input/output (board) and a development environment that is based on the

Processing[10] programming language.

Hardware wise Arduino consist of a microcontroller with a set of peripherals like

digital input/output pins, analog input pins (likely to be used when working with

analog sensors), LED’s for power and user feedback, and support for communication

12

Chapter 2. The Pivot Shift Prototype: Hardware Design

protocols like Serial, I2C[11], SPI and Bluetooth among others.

Arduino offers more than a dozen of different development boards varied in dimen-

sion, features and application. However they share the same programming language,

which facilitates porting applications from one board to another. The board connects

to a computer via USB and communicates using standard serial port and can run

both standalone or connected to another device or computer.

Both the Arduino software and the boards itself are cross-platform running on

Windows, Linux, and Mac OSX. This was a very important feature taken in consid-

eration to choose this embedded solution [12].

The Arduino IDE provides the functionality of code editor, serial monitor, and

lastly and more important it is used to translate the Arduino code which is based on

Wiring (an open-source programming framework for microcontrollers) into C code,

then handed over to the avr-gcc compiler that makes the final translation producing

the program that gets flashed in the microcontroller. Besides the use of the Arduino

programming language, extended functionality and low level programming can be

achieved creating custom C/C++ libraries[13].

A thing worth mentioning is the big role the community plays on the success

and continue development the Arduino platform, this due contributions in code and

projects from enthusiasts and hobbyists alike.

2.1.1 Arduino Mini Pro 328

This board takes a small and minimal design of the Arduino which made it more

suitable for the project. These are the main features of the board:

• Microcontroller Atmega328[14] at 8MHZ

13

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.1: Arduino Mini Pro

• Low voltage board, 3.3V

• Thin PCB 0.8mm

• 3.3V regulator

• Max 150mA output

• DC input 3.3V up to 12V

• Power and Status LEDs

• Analog Pins: 8

• Digital I/Os: 14

The main and most important component is the Atmega328p microcontroller,

which is a 8-bit AVR RISC-based microcontroller[15] that combines 32 KB ISP flash

14

Chapter 2. The Pivot Shift Prototype: Hardware Design

memory, 2 KB SRAM, 1 KB EEPROM, 23 general purpose I/O lines, 32 general

purpose working registers, internal and external interrupts support, three timers, a

Serial programmable USART, SPI and IC2 port, a 10 bit A/D converter. All with

low power requirements from 2.7-5.5 volts.

2.2 MEMS:Accelerometer and Gyroscope

MEMS (Microelectromechanical systems) is a process technology to bundle together

mechanical and electrical components in tiny integrated devices or systems. They

are fabricated using integrated circuit (IC) batch techniques and can range in size

from a few micrometers to millimeters.

MEMS increased their popularity in the last few years and now can be seen in

multiple areas such as automotive, medical, electronic, communication, etc. Exam-

ples are:

• accelerometers for airbag sensors

• inkjet printer heads

• hard drives read/write heads

• microvalves

• blood pressure sensors

• log exercise activity on professional athletes[16]

Practically speaking a MEMS is a silicon chip which contains mechanical mi-

crostructures, microelectronics, microsensors and microactuators.

15

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.2: MEMS components diagram

The microsensors detect changes in the environment measuring mechanical, ther-

mal, magnetic, chemical or electromagnetic information, while the microelectronics

take this information to signal the microactuators in order to react and create changes

to the environment.

Nowadays power management in portable electronics is a must to extend battery

life, a good thing about MEMS sensors is that they can sense when a device is not

being used and put it into sleep mode.

The following section describes the functionality and characteristics of the MEMS

acceleromer and gyroscope used in this project.

2.2.1 Accelerometers

A MEMS accelerometer is different from a integrated circuits in the fact that a proof

mass is machined into the silicon. Then when acceleration a is applied, the mass

m displaces according to Newton’s second law F = ma, which is detected by the

sensor. This mass proof disturbs the capacitance of a nearby node; that change is

16

Chapter 2. The Pivot Shift Prototype: Hardware Design

measured and then filtered.

One of the most important specifications to have in mind when looking for an

accelerometer is the number of axes. MEMS proof mass can measure one parameter

in each available axis, that being said a one axis accelerometer can sense the g force

(g = 9.8m
s2

) in a single direction. Now is getting more common to use three-axis

devices which returns the acceleration on X,Y,and Z directions.

The output of a three-axis accelerometer can be calculated as

am =
1

m
(F − Fg) (2.1)

where am represents the acceleration, m the mass of the body, F the sum of all

the forces actuating on the body (gravity included), Fg is the gravity force. As

mentioned before, the accelerometer can be constructed attaching a proof mass to a

spring. An upward or downward acceleration in the sensor causes the proof mass to

displace, which can be measured to calculate the acceleration. This acceleration can

be accounted to the term F in equation 2.1.

(a) (b)

Figure 2.3: Piezoelectric accelerometer, spring moves as acceleration forces act upon
the sensor, producing a voltage proportional to that force

17

Chapter 2. The Pivot Shift Prototype: Hardware Design

The second term Fg is part of the model of the accelerometer because the force of

the gravity not only accelerates the sensor body, it also produces the displacement

of the proof-mass. For example, if the accelerometer stays still in horizontal position

on a table, is not accelerating and F = 0, but still gravity produces a downward

deflection on the proof mass that appears equivalent to an upward acceleration of

the sensor at 1g. Free fall shows a similar situation, in which F = Fg and there is

no displacement of the proof mass, therefore no acceleration is measured (output of

the accelerometer is zero)despite the fact that the device is accelerating at 9.8 m/s

due the gravity. This phenomenon is a consequence of the statement from Newton’s

law that the sum of the gravitational and inertial forces equals to zero on an body

in free fall. From the previous we can conclude the following:

• when the accelerometer lies at rest it will output an a = 1g, due gravity.

• when the device is on free fall the acceleration outputs a = 0.

2.2.2 Gyroscope

A gyroscope is a device used to measure rotation and detect inertial angular motion.

There are many kind of gyroscopes which can work based on different principles for

example the mechanical kind of gyroscope that measures the Coriolis force applied

to a body in a rotating frame. MEMS gyroscopes typically use vibrating structures

because of the size constrain that makes difficult to incorporate micro-machined

rotating parts with the required mass[17].

MEMS gyroscopes use the Coriolis effect. Taking as example figure 2.5, consider

a mass moving in v direction. When an angular motion is applied (red arrow), the

Coriolis effect makes the mass experience a force in the direction of the yellow arrow.

18

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.4: Three-Axis accelerometer LIS331DLHXY used in iPhone 4 in detail,
micromachined proof mass interleaved with capacitive sensors

In this kind of gyroscope (MEMS) the resulting physical displacement is read using

capacitive sensors.

These gyroscopes use a tuning fork configuration, in which two masses are placed

side to side, they oscillate and move constantly in opposite directions. When angular

motion is applied the Coriolis force on each mass acts in opposite direction. The

difference between their capacitance is then measured to produce the rotation metric.

As counter example, when linear acceleration is applied to the two masses, both

move towards the same direction, this produces a differential capacitance of zero,

which makes the measurements of the gyroscopes not to be affected by acceleration

forces.

Similarly to the accelerometers, MEMS gyroscopes can be found in single axis or

three-axis presentations. Since they measure the angular rate or velocity the output

19

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.5: MEMS gyroscope submitted to Coriolis effect

unit is often dps (degrees per second), RPMs (revolutions per minute), and radians

per second.

2.2.3 MMA7361LC: Three Axis Low-g Accelerometer

The MMA7361LC was the accelerometer used in the first pivot shift prototype and

from which came many of the test results to be analyzed in following chapters. Since

this is an analog device, the output signals are voltages proportional to the measured

acceleration. The main features of the device are:

• selectable sensitivity ±1.5g,±6g

• acceleration sensing for X, Y and Z axis

• 2.2 to 5 supply voltage range

• low current consumption 400uA

20

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.6: MEMS gyroscope submitted to angular motion

Figure 2.7: MEMS gyroscope submitted to linear acceleration

• 800 mV/g sensitivity at ±1.5g range

• low cost

The interaction between the accelerometer and the Arduino is as follows. The

accelerometer is powered up to 3.3 volts provided by the Arduino (therefore reference

voltage is 3.3v). Out of the box the MMA7361LC works on sleep mode reducing the

operating current to 3uA, which is great for power saving purposes but turns off the

output signals. In order to disable sleep mode and turn on the x, y, and z outputs

sleep mode pin (#7) should be set high, which was achieved using a pull up resistor.

21

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.8: MMA7361LC analog accelerometer breakout board showing respective
directions for each axis

The three axis outputs are then connected to analog inputs in the Arduino de-

noted by A0, A1, and A2 pins. Capacitors are connected to the outputs to minimize

clock noise and on VDD to decouple the power source.

Figure 2.9: MMA7361LC and Arduino connection diagram

The Arduino reads these analog voltages from the accelerometer and then digital-

izes them using the internal analog to digital converter. In this model the analog to

22

25

Chapter 2. The Pivot Shift Prototype: Hardware Design

digital converter has a 10 bit resolution which means that it will map input voltages

from 0 to 3.3 volts into integer values between 0 to 1023 (210− 1). This gives a reso-

lution of 3.3V/1024 or 3.2mV between readings. The maximum number of samples

that can be read in a second is 10,000, it takes about 100 microseconds to read an

analog input.

The device can measure both positive and negative acceleration (depending on

the direction of the force being applied). With no acceleration the output should be

at midsupply. For positive acceleration the output voltage will increase above VDD/2

as for negative will go decrease below VDD/2.

The following is a simpe Arduino code to read the three outputs from the ac-

celerometer and print the values via the serial port [18].

1

2 /* MMA7631 ANALOG 3axis accelerometer test*/

3 char breaktrans;

4 float valx ,valy ,valz;

5 void setup()

6 {

7 while (! Serial);

8 Serial.begin (19200);

9 Serial.println("Send a 1 to start transmission)");

10 while (Serial.available () <= 0) {} // waiting for some

string ..

11 breaktrans=’1’; // to start the

test

12 }

13 void loop()

14 {

15 breaktrans=Serial.read();

16 if(breaktrans ==’1’){ //read data from sensor

17 while (1){

18 breaktrans=Serial.read(); //to be able to stop

19 valx=analogRead(A0);

20 valy=analogRead(A1);

21 valz=analogRead(A2);

22

23 Serial.print("x "); Serial.println(valx);

23

26

Chapter 2. The Pivot Shift Prototype: Hardware Design

24 Serial.print("y "); Serial.println(valy);

27 Serial.print("z "); Serial.println(valz);

28 if(breaktrans ==’0’){break;} // stop transmission

29 }

30 }

31 }

This code (sketch) initializes the serial port at a baud rate of 19200bps then in

order to start the transmission the Arduino waits until receiving a string ’1’ (can come

from another embedded system or computer connected to the device). Transmission

is ended after receiving a string equal to ’0’. This pairing routine to start and

end transmission is important when the system is designed to run on battery. The

analogRead() function takes care of the ADC sampling of the pins used as analog

inputs, in this case the constants A0, A1 and A2 mapped to pins 23, 24 and 25 of

the Atmega328.

After uploading the code to the Arduino board we can see how the voltages are

received and coded to integer values between 0 and 1023 (due the 10 bit analog to

digital converter).

Looking at figure 2.14b it’s clear how the output registered by the z axis (blue)

presents an offset from the other two axis. This difference represents the gravitational

force being applied to that axis. Conversely if the device is rotated 90 degrees

horizontally and vertically then the gravitational force will be spotted acting on the

x and y axis.

Once the system is able to get and perform the quantization of the accelerometer

outputs, two things are helpful to give some context to the data obtained. The first

thing to is to convert the raw value returned by the ADC (analog to digital converter)

to Volts. To do so we do:

ADCV oltage = RawADC ∗ V ref/1023 (2.2)

24

Chapter 2. The Pivot Shift Prototype: Hardware Design

(a) Arduino IDE serial port monitor (b) Output for x, y and z axis

Figure 2.10: Reading the output of the MMA7361LC accelerometer resting at hori-
zontal position

Where RawADC is the integer from 0 to 1023 got from the ADC, V ref is the reference

voltage in this case 3.3V and the 1023 representing the levels of quantification or

discrete values the ADC can provide.

After this, the Zero-g voltage is subtracted from the ADCV oltage. The Zero-

g voltage is the voltage that each of the axis outputs when no acceleration (0g

acceleration) is being applied. This is typically provided in the device data-sheet

although is easy (and recommended) to calculate practically because can vary from

chip to chip.

Data-Sheet From device testing
Xout 1.65 V 1.591 V
Yout 1.65 V 1.705 V
Zout 2.45 V 2.205 V

Table 2.1: Zero-g voltage taken from data-sheet and device testing

25

Chapter 2. The Pivot Shift Prototype: Hardware Design

(a) Gravity acting on Y axis (b) Gravity acting on X axis

Figure 2.11: The effect of gravity on accelerometer readings

From the table above it can be seen a slight difference between the typical values

provided from the data-sheet and the actual values got from testing the device.

Now finally to go from Volts to G’s (1g = 9.8m/s2) the following calculation is

performed for each of the axis

Gx = (ADCXV oltage − ZeroX)/sensitivity

Gy = (ADCY V oltage − ZeroY)/sensitivity

Gz = (ADCZV oltage − ZeroZ)/sensitivity

(2.3)

where ZeroX , ZeroY , and ZeroZ are 1.59V, 1.705V and 2.205V respectively (from

table 2.1). The sensitivity value comes directly from the device specifications which

can be 800mv/g or 206 mv/g for ±1.5g and ±6g operation ranges, which in this case

is set to operate at ±1.5g.

26

Chapter 2. The Pivot Shift Prototype: Hardware Design

2.2.4 LSM9DS0: 3D Accelerometer/Gyroscope module

The LSM9DS0 is a system in package featuring a three-axis accelerometer, gyroscope

and magnetometer also known as a nine degrees of freedom device (9DOF). Each

of the three sensors in the device supports programmable operating ranges. The

accelerometer has a full scale of ±2g/±4g/±8g/±16 g, the gyroscope an angular rate

of ±245/± 500/± 2000 dps (degrees per second) and the magnetometer a magnetic

field of ±2/± 4/± 8/± 12 gauss. The device includes an I2C serial bus supporting

standard and fast mode (100 kHz and 400 kHz) and an SPI serial interface.

Accelerometer and Gryoscope characteristics are found in the following tables:

Parameter Test conditions Specification Unit

Linear acceleration
measurement range

±2

g
±4
±6
±8
±16

Linear acceleration
sensitivity

Linear acceleration=±2 0.061

mg/LSB
Linear acceleration=±4 0.122
Linear acceleration=±6 0.183
Linear acceleration=±8 0.244
Linear acceleration=±16 0.732

Linear acceleration sensitiv-
ity change vs. temperature

From -40 ◦ C to +85 ◦ C ±1.5 %

Linear acceleration typical
zero-g level offset accuracy

±60 mg

Operating temperature
range

−40 to +85 ◦ C

Table 2.2: LSM9DS0 Accelerometer characteristics

Before continuing, lets define some of the terminology showed on the previous

tables. When talking about sensors it is common to see terms like range, sensitivity

and zero levels.

27

Chapter 2. The Pivot Shift Prototype: Hardware Design

Parameter Test conditions Specification Unit

Angular rate
measurement range

±245
dps±500

±2000

Angular rate
sensitivity

Angular rate=±245 8.75
mdps/digitAngular rate=±500 17.50

Angular rate=±2000 70
Angular rate sensitivity
change vs. temperature

From -40 ◦ C to +85 ◦ C ±2 %

Angular rate typical
zero-rate level

245 dps ±10
dps500 dps ±15

500 dps ±25

Table 2.3: LSM9DS0 Gyroscope characteristics

The range represents the levels the sensor’s output signal can achieve (maximum

and minimum values), that in regards of the accelerometer is expressed in ±g, with

option of five different ranges to choose from. For instance, if the accelerometer is

working in the ±2g range, this means that if a 4g force is applied it will not be

properly displayed by the output since the maximum is set to 2g. For this reason is

important to know the application in which the device will be used on, to select the

appropriate output range. From the previous statement would be very tempting to

say that the best solution is to select the broadest range, however this is were the

sensitivity comes into play.

The sensitivity is the ratio of change between the input and output signal in

the sensor. The metric is specified at a particular operating voltage typically in

mV/unit for analog devices and LSB/unit or unit/LSB for digital output devices.

For the accelerometer it’s seen in mg/LSB, where LSB stands for least significant bit.

LSB relates to accuracy of the digital representation of the measured unit, in this

case acceleration. For example from table 2.2 we see that when using range ±2g there

is a sensitivity equal to 0.061mg/LSB, this means that when the lowest order bit in

the output changes, the acceleration had a change of 0.061mg’s or 0.0005978m/s2,

28

Chapter 2. The Pivot Shift Prototype: Hardware Design

in other words 0.0005978m/s2 is the tinniest change in acceleration the sensor can

have between readings. Looking at the specification can be seen how for a broader

range the sensitivity value increments as well, which makes the sensor less accurate.

Additional to the convenience of providing both acceleration and gyroscope met-

rics in the same chip, the LSM9DS0 output signals deliver digital data in useful

units like G’s and dps for acceleration and angular velocity respectively. That being

said, when interfacing with digital sensors like the LSM9DS0 there is no longer need

of using the analog to digital converter of the Arduino board, removing some over-

head of reading and sampling the analog inputs, as well as making the conversion

of ADC units to Voltage and then G’s as seen previously using the MMA7361LC

accelerometer.

Other fact worth mention is that the digital sensor eases the scalability of the

system, e.g when using the MMA7361 three input lines are required to communicate

the device with the Arduino. Now, if we were to implement a second accelerome-

ter or gyroscope in the system, three additional lines would be required (Xout, Yout,

Zout), which equals the maximum number of analog inputs for the Atmega328 mi-

crocontroller that supports up to 6 (without multiplexing[19]). In the other hand, to

communicate two LSM9DS0’s with the Arduino (2 accelerometers and 2 gyroscopes)

via I2C requires only two lines as the following section will show.

2.2.5 I2C Protocol

From the two protocols offered by the LSM9DS0 I2C was the one used to communi-

cate the accelerometer to the Arduino board.

The I2C protocol requires two wires to connect a single master to a slave, unlike

SPI that requires four lines to achieve the same. I2C supports multi-master system

that allows more than one master to communicate with all slaves in the bus. I2C

29

Chapter 2. The Pivot Shift Prototype: Hardware Design

Term Description

Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device that initiates a transfer, generates clock sig-

nals and terminates transfers
Slave Device addressed by the master

Table 2.4: I2C terminology

supports two main data rates called normal and fast mode running at 100kHz and

400 kHz respectively.

There are two signals associated with the I2C bus: the serial clock line (SCL)

and serial data line (SDA). The SDA line is a bidirectional line that can be used for

sending and receiving data both by master and slave devices. These lines use pull-up

resistors to keep a high state when the bus is free.

The bus drivers are “open drain”, which means that they can pull the signal line

to a low state, but cannot turn it to high. This implementation prevents potential

damage to the drivers and excessive power dissipation, disables what is known as

bus contention where a device tries to drive the line high while other tries to pull it

low.

Bus operation

The operation on the bus starts when the master performs a start condition, which

is defined as a high to low transition on SDA (data line) while SCL (clock line) is

high, at this point the bus is considered busy. The next byte of data contains the

address of the slave in the first 7 bits, the 8th bit determines whether the device is

transmitting or receiving from the slave, while a 9th bit is used as NACK/ACK bit.

When this address is sent, then all devices compare it with their own to check if they

30

Chapter 2. The Pivot Shift Prototype: Hardware Design

are being addressed by the master.

Acknowledge is mandatory for this protocol, both for the data and address frames.

Once the first 8 bits (address and r/w) are sent, the receiving device is given control

over the SDA line. To successfully generate the acknowledge, the receiver needs to

pull low the SDA line prior the 9th clock pulse.

Figure 2.12: I2C signals, showing the start condition, address and data frames, ,and
stop condition

Data transmission can start after the address frame has been sent. During data

transmission the master continues the with the control and generation of the clock

pulses while the data is placed in SDA line by the master or the slave, depending the

value of the r/w bit (8th bit of address frame). The number of data frames is arbi-

trary, and most slaves will auto-increment the internal registers to allow subsequent

reads or writes.

The operation of the protocol end with a stop condition defined by a low to high

transition on the data line SDA while the clock line stays high.

2.2.6 Getting data from the LSM9DS0

This section shows the required connections to be made between the LSM9DS0

and the Arduino board in order to communicate. The following schematic shows

a configuration of two LSM9DS0 connected to the Arduino Mini board using the

31

Chapter 2. The Pivot Shift Prototype: Hardware Design

previously introduced I2C communication protocol.

Figure 2.13: Schematic diagram of two LSM9DS0’s connected to an Arduino Mini
board under I2C

Compared to the connection of the MMA7361 back in figure 2.9 this one looks

pretty straightforward considering that includes two LSM9DS0 modules. In this

configuration the Arduino acts as master for the I2C leaving the LSM9DS0’s as

slaves.

The two LSM9DS0 boards share the bus for the clock and data signals SCL and

SDA. The clock signal is controlled and generated by the Arduino while the SDA can

be used to send and receive data from the accelerometers. Initially both LSM9DS0

boards have the same address which makes impossible to the master to differentiate

from each other. To solve this, the least significant bit of the address of one of the

modules is changed by setting pins SDOG and SDOXM to a low state. Arduino

board and inertial modules are powered up by 3.3 Volts.

32

39

Chapter 2. The Pivot Shift Prototype: Hardware Design

The next code snippet shows the Arduino data adquisition from the LSM9DS0

inertial module.

1 #include <Wire.h>

2 #include <Adafruit_LSM9DS0.h>

3 #include <Adafruit_Sensor.h>

4 /*

5 * i2c arduino pins

6 * Arduino analog input 5 - I2C SCL

7 * Arduino analog input 4 - I2C SDA

8 */

9 Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0 ();

10 char breaktrans;

11 void setupSensor ()

12 {

13 // 1.) Set the accelerometer range

14 lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);

15 // 2.) Setup the gyroscope

16 lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_245DPS);

17 }

18

19 void setup()

20 {

21 while (! Serial);

22 Serial.begin (19200);

23 Serial.println("Send a 1 to start the test");

24 while (Serial.available () <= 0) {} // waiting for some

string ..

25 breaktrans=’1’; // to start the

test

26 // Try to initialise the device

27 if (!lsm.begin())

28 {

29 Serial.println("Unable to initialize the LSM9DS0. Check

your wiring!");

30 while (1);

31 }

32 Serial.println("Found LSM9DS0 9DOF");

33 Serial.println("");

34 }

35

36 void loop()

37 {

33

40

Chapter 2. The Pivot Shift Prototype: Hardware Design

38 breaktrans=Serial.read();

41 if(breaktrans ==’1’){ //read data from sensor

42 while (1){

43 breaktrans=Serial.read(); // continue to read to catch

stop condition

44 // getting the sensor event

45 sensors_event_t accel , mag , gyro , temp; //from

adafruit sensor master library

46 lsm.getEvent (&accel , &mag , &gyro , &temp)

47 // reading the accelerometer

48 Serial.print("accelx "); Serial.println(accel.

acceleration.x);

49 Serial.print("accely "); Serial.println(accel.

acceleration.y);

50 Serial.print("accelz "); Serial.println(accel.

acceleration.z);

51 // reading the gyroscope

52 Serial.print("gyrox "); Serial.println(gyro.gyro.x);

53 Serial.print("gyroy "); Serial.println(gyro.gyro.y);

54 Serial.print("gyroz "); Serial.println(gyro.gyro.z);

55 if(breaktrans ==’0’){break;} // stop transmission

56 }

57 }

58 }

This code provides the same functionality shown in the program for the MMA7361

with the difference of addition of angular velocity provided by the gyroscope. Two

main libraries are imported, Wire which allows communication with I2C/TWI de-

vices, and the Adafruit library[20] that incorporates the class Adafruit LSM9DS0

that includes useful functions to easily configure the device to the different ranges as

well to get the outputs from each of the axis and sensors available (accelerometer,

gyroscope and magnetometer) without coding to a register level.

The function setupAccel lets you choose the range of operation for the accelerom-

eter from the following options

• LSM9DS0 ACCELRANGE 2G

34

Chapter 2. The Pivot Shift Prototype: Hardware Design

• LSM9DS0 ACCELRANGE 4G

• LSM9DS0 ACCELRANGE 8G

• LSM9DS0 ACCELRANGE 16G

whereas setupGyro allows setting the angular velocity range to

• LSM9DS0 GYROSCALE 245DPS

• LSM9DS0 GYROSCALE 500DPS

• LSM9DS0 GYROSCALE 2000DPS

sensor event t is a structure that provides a single sensor events in a common format.

In this way each sensor creates its own object from which it can retrieve its respective

data from. Calling getEvent grabs sensors new data, so in order to continuously get

new readings it needs to be executed recursively.

Similarly to the test done with the analog accelerometer, these are the results of

flashing the Arduino board with the previous code and getting some data from the

sensor.

As expected the graph of the three axis acceleration at rest (horizontal postition)

is pretty similar of what was presented on 2.14b with the difference that in this case

the outputs are in g’s already.

With the goal of comparing the sampling rate between each of the chips, previous

Arduino programs were slightly modified to transmit data during a period of 10

seconds. In the results the MMA7361C delivered an average of 165 triplets (Xout,

Yout, Zout) as the LSM9DS0 delivered an average of 650 triplets. This difference

is caused in some proportion to the overhead caused by reading the analog inputs

and performing the analog to digital conversion when using analog sensors. When

35

Chapter 2. The Pivot Shift Prototype: Hardware Design

(a) Arduino IDE serial port monitor (b) Output for x, y and z axis

Figure 2.14: Reading the output of the LSM9DS0 accelerometer resting at horizontal
position

performing the same test but adding the angular velocity readings from the gyro the

results were an average of 290 samples for each variable.

2.3 The Prototype

This section describes the idea behind the pivot shift tester prototype and how it

was implemented. Going back to what was introduced in the first chapter we saw

the different medical tests and tools commonly used in the diagnose of the injury of

the anterior posterior ligament. We were able to identify them in two main groups:

• imaging techniques

• routine tests

The problem with the first group (imaging) resides in the fact that uses equipment

considerably expensive, in such a way that the patient often needs to visit a clinic or

36

Chapter 2. The Pivot Shift Prototype: Hardware Design

hospital to take test. It is highly unlikely to find them in the specialist’s office and

both CT scans and MRI typically have a cost superior to $1000 US dollars. Aside

from the economic factor, other disadvantage that the imaging techniques have is

that both tests the patient’s leg and knee in a static environment, reason why in

some cases is difficult to assess a definitive diagnose if the information provided by

the image is not completely evident.

Here we provide an example, the first image (MRI) shows a complete tear of the

ACL ligament. In an image like this the specialist is able to confirm the ACL injury

without much hesitation, because the ligament simply is not there anymore.

Figure 2.15: MRI, complete tear of ACL ligament

Compared to the first image this second one looks not that straightforward. The

MRI shows an incomplete tear of the ACL ligament, that still represents a problem,

however is difficult to grade the severity of the damage by the image itself.

Is in this situation where routine tests like the lachman and pivot shift test help

the specialist providing information about the stability of the knee in motion. From

what was shown in chapter 1, it can be established that the results of the lachman test

can be related to the results of the test using the KT-1000 arthrometer[5]. Therefore

can be stated that the KT-1000 helps to provide quantitative (anterior posterior

37

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.16: MRI, partial tear of ACL ligament

translation in millimeters) information to the lachman test.

Unlike the lachman test, at this point there is not a definitive instrument or tool

used for the measurement of the pivot shift. The work shown in this thesis project

tries to fill that gap by introducing a non-invasive prototype aimed to be used during

the pivot shift maneuver to collect data about the test.

Recalling image 1.7, it is known that what makes particular this test is the ap-

plication of valgus and rotational forces, which will be tracked using accelerometer

and gyroscopes modules.

The concept is to implement two sensing modules, one placed in the patient’s

tibia and the other in the bottom of the femur. With this it is possible to take one

point as reference and get differential acceleration readings representing the anterior

posterior translation force applied during the test.

Both acceleration modules are connected to the Arduino board, which handles

the data acquisition and performs the following calculation for each new sample:

38

Chapter 2. The Pivot Shift Prototype: Hardware Design

Figure 2.17: The pivot shift tester, one sensing module located in the tibia and the
second one in the femur

Accx = (AccXfemur − AccXtibia)

Accy = (AccY femur − AccY tibia)

Accz = (AccZfemur − AccZtibia)

(2.4)

where AccXfemur is the acceleration output registered by the rightmost module

on image 2.17 whereas AccXtibia the one on the left side. Therefore Accx is the

differential acceleration between femur and tibia during the test.

The prototype is powered up to a polymer lithium ion (LiPO) battery of 3.7V.

While the test takes place the Arduino board sends the readings using the serial port

interface, which makes the data accessible to other embedded system or computer.

39

Chapter 2. The Pivot Shift Prototype: Hardware Design

The next chapter describes in detail how the data is presented to the user in

real time (while the test happens) via an user interface created in the Processing

programming language.

40

Chapter 3

The Pivot Shift Prototype:

Software Design

In this chapter we explore the design and implementation of the software created

to interact with the pivot shift prototype previously introduced. The application

visually displays the readings from both the accelerometers and gyroscopes while the

test takes place. The application was coded in the java based programming language

Processing.

3.1 Processing

Processing is an open source, cross-platform programming language and integrated

development environment initiated back in 2001 by Casey Reas and Benjamin Fry

from the MIT Media Lab.

Initially intended as a introduction to programming for visual artists and design-

ers, now has evolved to a development tool for professionals being used by students,

41

Chapter 3. The Pivot Shift Prototype: Software Design

researchers and hobbyists alike.

Processing takes software concepts and transforms it to principles of visual form,

motion and interaction. Within this visual context, Processing is set to work as

a software sketchbook. The language is text based and implements a wide variety

of functions and libraries aimed for computer graphics techniques like vector/raster

drawing, color models, image processing, network communication, and object ori-

ented programming. Custom made libraries can extend the functionality to generate

sounds, send and receive data in different formats and enhance 2D and 3D file for-

mats.

All programs created on Processing are a subclass of the PApplet Java class,

additional classes are treated as inner classes when the code is translated to Java

code before compilation.

Processing allows two main modes, the Java and Javascript mode, applications

in Java are executed as a standalone window applet whereas the Javascript mode

translates the code to work and run in a browser. Applications can be exported to

Linux, Mac and Windows operating systems, with the option to embed Java runtime

which is recommended to ensure the same performance between platforms.

Core libraries, and code used in the exported application and applets are licensed

under GNU Lesser General Public License, allowing the programmer to release their

code with license of choice[21].

There is extensive community support and resources to learn this programming

language, recommended sites for this purpose are https://processing.org and

http://www.openprocessing.org.

42

4

Chapter 3. The Pivot Shift Prototype: Software Design

3.2 The Basics

Here we describe the particularities of the programs created in this programming

language and a basic example, which will help to assimilate more easily the main

application to be introduced later on [22].

In Processing, all sketches have two main functions:

• setup()

• draw()

The setup() function is called once during the execution of the sketch and it is

used to initialize variables and run setup routines. The draw() function is the main

loop of the application, and it runs automatically after setup() function, it should

not be called explicitly. The function executes the lines of code contained inside its

block until the application stops or noLoop() is called. The functions used to control

the behavior of the main loop are:

• noLoop()

• redraw()

• loop()

If the main loop is stopped by noLoop() it can be reestablished using loop() or in

the other hand if redraw() is called then the code inside draw() will be re-executed

only one more time.

The following code snippet is an equivalent of a hello world for processing. This

sketch will paint a point in the current position of the mouse cursor.

43

5

Chapter 3. The Pivot Shift Prototype: Software Design

1 // Hello world

2 void setup() {

3 size (400, 400);

6 stroke (200 ,22 ,22);

7 strokeWeight (5);

8 background (200, 200, 200);

9 fill (240 ,20 ,20);

10 textSize (25);

11 text("Hello World" ,50,50);

12 }

13

14 void draw() {

15 point(mouseX , mouseY);

16 }

These is the result

Figure 3.1: Simple application using Processing

Now that we showed the premise of programming in processing can go further

and talk about the design of the pivot shift user interface software.

44

Chapter 3. The Pivot Shift Prototype: Software Design

3.3 The Pivot Shift Software

The following diagram describes in high level the functionality of Processing’s pivot

shift application.

Figure 3.2: High level algorithm for pivot shift software

45

Chapter 3. The Pivot Shift Prototype: Software Design

All starts establishing the communication with the embedded device, this is done

via serial port. When using the Arduino board there are two options from which the

serial port can be accessed, the first one via the digital pins 0 (RX) and 1 (TX), and

the second one and the used in this project via USB. First there is a routine to check

for the presence of a device connected in the serial port. After the device is found,

then a pairing routine is executed. This routine establishes the the mode of operation

for the test which consist of whether the user wants to use both sensing modules (to

calculate differential metrics), or work with only one accelerometer. Once operation

mode is defined a message is sent back to the embedded device to properly setup

and initialize the sensors. Concluded the setup, the Arduino sends back a string

specifying that is ready to start the test, at this point is in control of the Processing

application to start the data acquisition.

The user begins the test via the user interface and starts to poll data from the

sensors. While the test runs the acquired data is showed both in text format and by

plotting a graph. Finally when the user stops the test an csv file containing all the

readings from the test is saved along with a png image of the graph.

3.3.1 The Coding

Before starting coding the application few libraries are imported:

• processing.serial

• controlP5[23]

• java.io

processing.serial enables support for the serial port class, controlP5 is GUI and

controller library that incorporates elements like sliders, buttons, toggles, knobs,

46

Chapter 3. The Pivot Shift Prototype: Software Design

textfields among others to ease user interaction. This library is very convenient

because Processing don’t provide GUI elements out of the box although they can be

manually implemented. The java.io library is used to manage filesystem capabilities

and have access to local files and be able to save test results to disk.

Figure 3.3: A selection of controllers available with ControlP5 library

As was mentioned previously, the core structure of a Processing sketch is found

in the functions setup() and draw(). Global variables are allowed as well, and they

need to be declared outside the scope of setup() and draw() functions. Many global

variables and classes are defined to setup the visual environment among other things

including:

• initialize serial port class

• initialize ControlP5 class

• setup window size and color scheme

• define text labels and plotting area position and defaults

47

Chapter 3. The Pivot Shift Prototype: Software Design

• setting default operation mode:

– 1 accelerometer

– 2 accelerometers

• plot mode:

– acceleration only

– accelerometer and gyroscope

• declare acceleration and rotation arrays

After global variables and classes are defined setup() is called and draws the initial

user interface positioning text labels, plotting area and GUI elements like buttons

and toggles, as well as looking for a connected device in the serial port. At the end

of setup() execution we end up with this:

Figure 3.4: User interface for the pivot shift tester

48

5

Chapter 3. The Pivot Shift Prototype: Software Design

Figure 3.4 shows the initial state of the UI (user interface) at launch. At that

point the UI can be defined in 5 blocks showed as yellow rectangles, the first block

indicates the area where the graph will be drawn, block number two is the area

where text labels are placed to indicate the current metric e.g. for acceleration can

be “x 1.25 , y 2.00, z .98” to specify current g values in each axis. Block three is the

area where y axis (acceleration or rotation) and x axis (number of samples) labels

are set for the graph. Fourth block contains four toggle buttons:

• Start-Stop. Used to begin and end the test

• Operation mode. Sets up the test to use one or two accelerometers.

• Enable Magnitude. Switches the graph to display each axis as its own curve

or enables a single curve showing the magnitude of the three components.

• Graph Mode. Toggles view mode to display acceleration only or acceleration

and rotation in a single view.

finally block five contains a dropdown menu to select serial port (in case more than

one device is using the port), a Save image button that saves both an image of the

test and an csv file containing all the data generated during the test. Open previous

graph button allows the user to open an csv file from a previous test and display its

graph.

3.3.2 Beginning the test

Once the application is launched and the visual environment is setup, then the serial

communication between the embedded system and the PC begins.

1 Serial myPort;

2 try{

49

6

Chapter 3. The Pivot Shift Prototype: Software Design

3 myPort = new Serial(this , portName , 19200);

4 myPort.bufferUntil(’\n’);

7 println("Starting test");}

8 catch(Exception e){

9 println("No serial port available");

10 }

This sample code initializes the serial port using a baud rate of 19200 bps. The

variable portName holds the name of the serial port selected from the dropdown

menu located in the upper left part of the UI. At this point the embedded system

waits to receive some initialization strings from the serial port indicating how many

accelerometers to use and when to start sending sensor data.

1 if(theEvent.controller ().name()=="start")// Start the test

2 {

3 if(start==true)

4 {

5 timestart=millis ();

6 if(first_time ==true)

7 {

8 println("Selected serial port "+ dropDownItemName);

9 portName = dropDownItemName;

10 myPort = new Serial(this , portName , 19200);

11 }

12 Cleargraph (); // clear data arrays to start new

test

13 first_time=false;

14 myPort.bufferUntil(’\n’);

15 if(opMode ==true){ //opMode -Operation mode

16 myPort.write(’b’); //2 accelerometers mode

17 myPort.write(’1’);

18 }

19 else{

20 myPort.write(’a’); //1 accelerometer mode

21 myPort.write(’1’);

22 }

23 }

24 }

50

Chapter 3. The Pivot Shift Prototype: Software Design

This code is executed when the event on the Start toggle is activated (when

pressed), it checks the state of the other toggle called OpMode (right next to Start

toggle) to see if the user chose one accelerometer or two. A boolean value true for

OpMode means using two accelerometers, as false specifies to use only one. Now

the embedded system expects two strings, the first one indicates the mode ’a’ for 1

accelerometer and ’b’ for two, and a start/stop flag used to begin or finalize the test,

’1’ starts as ’0’ terminates.

3.3.3 During the test

Once the embedded system starts sending data from the sensing modules the impor-

tance resides in properly display it and store it for future analysis.

The strings the Arduino sends including the sensor’s readings have an specific

format illustrated by the following examples, for acceleration these are valid strings:

• x 1.26

• y 0.98

• z -1.08

and for rotation:

• gx 25.30

• gy 15.00

• gz 85.96

where x, y, and z represent acceleration and gx, gy, and gz rotational metrics from

the gyroscope. Therefore the string is formatted in a ’metric+space+value’ manner.

51

Chapter 3. The Pivot Shift Prototype: Software Design

The strings are parsed during the serial port event in the application, dividing them

in two sections, the first identifying the metric and axis that belongs to, and the last

part is converted to a float specifying the magnitude.

1 if(sdata.indexOf("x") >=0)//x axis

2 {

3 sdata2=split(sdata ,’ ’);

4 arrayx.add(float(sdata2 [1]));

5 }

In this snippet sdata is the string containing the newest line of data from the serial

port. The string then is separated into numerical and metric part.

Six global arrays are defined arrayx, arrayy, arrayz, arraygx, arraygy, arraygz

each one storing the data for its corresponding metric and axis. This is how the

application continuously stores the data coming from the embedded device, the next

step once each of the metrics has at least one sample is to proceed with the display

of the graph.

An additional array arraytime is used. This array keeps track of the minimum

total of samples that all of the metrics have at a given point. The main reason

for this is to know up to what number of sample the graph can be displayed. The

following output displays the number of samples that each array haves at 4 seconds

of elapsed time.

1 x:142 y:142 z:142 gx:142 gy:141 gz:142 ## elapsed test time

:4.291s

For this example arraytime should have a value of 141.

As was showed, the plotting area is defined to use the majority of the UI space.

In Processing the size of the application window is specified explicitly in most cases

using pixels. In other approach it can be set to have a size based on the screen

resolution, which makes the application not to depend on specific hardware. In this

52

2

Chapter 3. The Pivot Shift Prototype: Software Design

application it is set to have a size of about 85% of the screen width and height. Then

after size is defined two variables are automatically set width and height as we can

see in the code:

1 size(round(displayWidth *.85), round(displayHeight *.85));

2 // Single graph layout

3 plotX1 = 120;

4 plotX2 = width - 120;

5 plotY1 = 100; //70

6 plotY2 = height - 85;

7 //Dual layout

8 plotY1_1=plotY1;

9 plotY2_1=plotY1+plotY2 *.40; //end of first plot area

10 plotY1_2=plotY2_1 +50; // start of second area for plot

11 plotY2_2=plotY1_2+plotY2 *.40; //end of second plot area

the size() function takes two parameters being the width and height. What the

code does is setting variables that represent corners of the rectangle enclosing the

plotting area. As the application is set to show acceleration or acceleration and

rotation, two layouts are predefined. This code is found inside the setup function

called at the beginning of the sketch and having those dimensions already defined

facilitates switching layout during runtime. The next screen-shot illustrates the

position of the rectangle’s vertices for the plotting areas. Function rect(a, b, c, d) is

used to draw the rectangles each parameter describing:

• a- x-coordinate of rectangle (upper left corner by default)

• b- y-coordinate of rectangle

• c- width of the rectangle

• d- height of the rectangle

Therefore, in order to draw rectangles for acceleration and rotation rect() needs

to be called with parameters:

53

3

1

Chapter 3. The Pivot Shift Prototype: Software Design

1 rect(plotX1 , plotY1_1 , plotX2 , plotY2_1); // upper rectangle

acceleration

4 rect(plotX1 , plotY1_2 , plotX2 , plotY2_2); //bottom , rotation

Figure 3.5: Pivot Shift UI, dual layout presentation

Now that the area to display the graphs is properly defined, it is time to map the

values obtained from the sensors (acceleration and rotation) into the area enclosed

by the rectangles.

The final graph for each of the metrics has as the Y axis the values for acceleration

and rotation, as the X axis represents the number of samples for the test. To draw

this line graph, sample i is connected with sample i + 1 by a line. To achieve this

the first thing is to transform the value of the sample (acceleration or rotation value)

to its corresponding pixel value inside the coordinate system created by the plotting

rectangle.

This is done using the map() function:

54

2

Chapter 3. The Pivot Shift Prototype: Software Design

3 float map (float value ,float low1 , float high1 ,

4 float low2 , float high2) {

5 return high2 + (high2 - low2) *((value - low1) /(high1 -

low1))

6 }

where value stands for the number to map or transform, low1 and high1 are the

minimum and maximum values in the original space, in this case, if the metric is

acceleration then low1 should be the minimum value of all the acceleration samples

stored so far, as high1 works in the same way taking the maximum. The arguments

low2 and high2 represent the new range in which the value will be mapped into. In

short, the function takes a numeric value and transforms it from the scale low1−high1

to a new value in the range from low2− high2.

For example, if the current value for acceleration is 1.25 g’s, then map function

has to be called twice to get the corresponding X and Y position (in pixels) of the

sample inside the plotting area.

1 xplot=map (1.25 ,1,arraytime.size(),plotx1 ,plotx2) //X

position in pixels

2 yplot=map (1.25 ,minval ,maxval ,ploty2 ,ploty1) //Y position

in pixels

For the X axis the original boundaries are between 1 (the minimum number of

samples) and the total number of samples. The new range is defined by the width

of the plotting area that is between plotx1− plotx2. The Y axis goes from the range

defined by the minimum and maximum acceleration values to the range between the

points ploty2− ploty1.

To finally reproduce the graph of the three axes in real time , a function called

Plotarray(arraytime, arraymetric, strokecolor) is defined. The first argument ar-

raytime is the array holding the values for the horizontal axis, arraymetric can be

one of six choices arrayx, arrayy, arrayz, arraygx, arraygy, or arraygz storing the

55

Chapter 3. The Pivot Shift Prototype: Software Design

acceleration or rotation of one of the axes. The strokecolor parameter specifies the

color of the line to be drawn. Therefore, in order to generate the continuous graph

of the acceleration metric, the following piece of code needs to be called inside the

draw() loop:

1 PlotArray(arraytime ,arrayx ,"R");

2 PlotArray(arraytime ,arrayy ,"G");

3 PlotArray(arraytime ,arrayz ,"B");

leading to a graph like this:

Figure 3.6: Sample acceleration graph: x axis in red, y axis green, and z axis in blue

since the Plotarray() function is called during the main loop, it automatically

scales the graph to the values stored in the data arrays. The image shows the

resulting acceleration (in g’s) signals for each of the axes during the test.

3.3.4 From angular velocity to angular displacement

Recalling the features of the sensing module LSM9DS0 from the previous chapter,

we know that incorporates both an accelerometer and a gyroscope. The acceleration

is presented as g’s while the angular velocity is presented in dps (degrees per sec-

ond). Angular velocity is defined as the rate of change in angular displacement while

56

Chapter 3. The Pivot Shift Prototype: Software Design

angular displacement is the angle through which a body is rotated in a specific sense

(direction) and axis. This section shows the procedure taken to convert gyroscope

output from angular velocity to angular displacement.

Directions for acceleration and angular rate are presented in the following image:

Figure 3.7: LSM9DS0 module: directions for acceleration and angular rates

the directions for rotation of each of the axes are presented, which are commonly

known in flight dynamics like:

• roll: rotation in X axis

• pitch: rotation in Y axis

• yaw: rotation in Z axis

For this the Pivot Shift application it was considered to be more helpful to con-

sider the angular displacement rather than the angular velocity. Using angular dis-

57

Chapter 3. The Pivot Shift Prototype: Software Design

placement allows to clearly identify the directions which the prototype was rotated

during test time, as it will be presented shortly.

Expressed in other terms, as we recall that the Pivot Shift maneuver takes both

a valgus and rotational force, it is assumed that we can track the valgus force via

acceleration while for rotation angular displacement is needed rather than velocity.

Now it will be compared the results of using angular velocity and angular dis-

placement.

Figure 3.8: Sample test using angular velocity

Both of the tests showed by the graphs describe a similar motion as it can be

seen from the acceleration plot (upper one). Initial state of the device is at rest in

horizontal position, then it is rotated in an angle between 20◦ and 30◦ in the X axis

(take figure 3.7 as reference).

Analyzing the first image showing angular velocity, can be seen how the angular

speed picks up at the very moment that the object accelerates on the Y axis, after

58

Chapter 3. The Pivot Shift Prototype: Software Design

Figure 3.9: Sample test using angular displacement

that point starts to lose velocity de-accelerating to return to its initial state. While

this still is useful, it cannot provide information of the magnitude of the rotation,

which is clearly seen in the subsequent image.

Looking at the graph using angular displacement, the movement done during

the test can be reconstructed in some way, it can be said that while the device was

positively rotated (rolled) about 23◦ it reached an acceleration on the Y axis about

0.374 g’s.

The method used to transform the angular velocity to angular displacement in-

volved adding the timestamp of each of the angular velocity samples got from the

embedded device, in this way is known the difference in time between the current sam-

ple and the one received previously. To have that information the function millis()

was used, which returns the number of milliseconds since the program started.

To provide the difference in time between samples two variables are used, one

59

Chapter 3. The Pivot Shift Prototype: Software Design

representing sample i (current sample) and sample i − 1 (previous sample). Once

the difference between the samples is known, angular displacement can be described

as:

Angle =
(timestampi − timestampi−1)

1000
∗ AngularV eli (3.1)

where both timestamps are provided in milliseconds by the function millis() and

AngularV eli is the current angular rate (dps) provided by the gyroscope, and Angle

represents the angular displacement between sample i and sample i− 1. Next table

shows an example of how angular displacement is calculated in three consecutive

samples. First column represents the timestamp difference between the two samples

in seconds, the second column is the current angular rate coming from the gyroscope

in dps, and the third column shows the resulting angular displacement (degrees)

between consecutive samples.

tgxi − tgxi−1(s) Angular Vel. (dps) Angular displacement (◦)
0.03 -1.71 -0.0513
0.03 -2.23 -0.0669
0.029 -1.78 -0.05162

Table 3.1: Conversion from angular velocity to angular displacement in X axis

3.3.5 Ending the test and storing data

Once the Pivot Shift maneuver has been performed the test can be terminated, to

do so it’s a matter of sending a string ’0’ to the Arduino executing the following line

of code:

1 myPort.write(’0’);

60

Chapter 3. The Pivot Shift Prototype: Software Design

when the Arduino receives the string stops sending sensing data and stays in an idle

state waiting for the next test to start, sending a string ’1’ enables that.

At this point the user can save the test data on an csv file and a png image, in

this way the graphs can be easily reproduced using an spreadsheet software and the

data can be further analyzed.

Additionally to storing the acceleration and rotation metrics from each of the axes

the software calculates the magnitude of both of the metrics to provide an additional

graph in which the three axes are combined into a single signal, e.g. to calculate

acceleration’s magnitude:

accelerationmag = 2

√
acceleration2

X + acceleration2
Y + acceleration2

Z (3.2)

Figure 3.10: Sample test showing axes signals individually

where accelerationX , accelerationY , and accelerationZ are acceleration samples

for each of the axes. Figure 3.11 illustrates the magnitude for the acceleration and

61

Chapter 3. The Pivot Shift Prototype: Software Design

rotation signals of the test coming from image 3.10.

Figure 3.11: Sample test showing the magnitude for acceleration and angular dis-
placement

62

Chapter 4

Clinical Trials

This section explains the origin of the previously collected data set used for the

statistical analysis in this thesis.

Once the hardware and software were implemented, a completely functional pro-

totype based in the first accelerometer MMA7361LC was handed off to a medical

staff leaded by the orthopedist Edmundo Berumen Nafarrete M.D. and Carlos Vega

Najera M.D. from the the Christus Murguerza hospital located in Chihuahua, Mexico

with the goal of testing the prototype in clinical trials.

The inclusion criteria for this trials consisted on patients who attended orthopedic

examination with the specialist and volunteer to be part of the study, no gender, age

or specific medical conditions were restricted to the study.

The study group included a total of 156 patients, with mean age 24; range, 11-76

years; 37 women, 119 men. All patients participated voluntarily in the study by

reading and signing a consent form approved by Christus Murguerza hospital ethics

committee. Clinial trials took place from May 2013 to May 2014.

The study group can be further classified in three groups:

63

Chapter 4. Clinical Trials

• healthy patients.

• patients with previous knee or leg condition unrelated to an ACL injury.

• patients with the ACL (anterior cruciate ligament) injury.

For this trails each patient was submitted to two clinical tests:

• pivot shift test

• KT-1000 test

The examiners group was small consisting of 2 physicians and the lead surgeon.

Physician were instructed by lead surgeon on the execution of the pivot shift tech-

nique in order to perform the test as similarly as possible.

The pivot shift shift test was perform three times in each knee for every patient

with the intention of assessing test repeatability. Patients with a previously con-

firmed ACL diagnosis where submitted to special treatment and had the test done

under anesthesia.

For each of the patients, clinical evaluation of the pivot shift maneuver was de-

termined manually by the physician and documented to keep track on patients with

positive results (to later compare with prototype results). As for the prototype, pa-

tient’s results consisted in two images and two csv files corresponding to each leg

acceleration readings.

The KT-1000 test was perform in both of the patient’s legs, documenting the indi-

vidual result for each one as well as the absolute difference between legs, as described

in chapter 1. This results were manually captured and stored on a spreadsheet file.

Figure 4.2 shows the resulting graph of the acceleration readings coming from the

pivot shift test. The graph shows three noticeable maximum and minimum values

64

Chapter 4. Clinical Trials

for each of the axis. These values are related to each of the three consecutive tests

performed in the patient as described previously.

The specifications of the PC used with the prototype were the following:

1 ##CPU DETAILS ##########################

2 Architecture: i686

3 CPU op -mode(s): 32-bit , 64-bit

4 Byte Order: Little Endian

5 CPU(s): 2

6 On -line CPU(s) list: 0,1

7 Thread(s) per core: 1

8 Core(s) per socket: 2

9 Socket(s): 1

10 Vendor ID: GenuineIntel

11 CPU family: 6

12 Model: 15

13 Stepping: 6

14 CPU MHz: 2000.000

15 BogoMIPS: 3990.22

16 Virtualization: VT -x

17 L1d cache: 32K

18 L1i cache: 32K

19 L2 cache: 4096K

20 ## MEMORY ###############################

21 total used free

22 Mem: 2014 1610 403

23 -/+ buffers/cache: 933 1081

24 Swap: 2044 0 2044

Running Linux distribution:

1 3.11.0 -12 - generic #19- Ubuntu SMP Wed Oct 9 16:12:00 UTC 2013

i686 i686 i686 GNU/Linux

2

3 Distributor ID: LinuxMint

4 Description: Linux Mint 16 Petra

5 Release: 16

6 Codename: petra

Next chapter introduces the results from testing the prototype on over a hundred

65

Chapter 4. Clinical Trials

patients, performing a data analysis and final thoughts about the results.

Figure 4.1: Prototype used during pivot shift maneuver

Figure 4.2: Graph showing acceleration output per axis from pivot shift test

66

Chapter 5

Data Acquisition and Analysis

This chapter takes the results of testing the pivot shift prototype with a study group

of 156 patients, and analyzes the data files and graphs generated during these trials.

The data generated from the trails consisted in the following:

• 280 csv files

– 140 for left leg

– 140 for right leg

• 280 graphs

– 140 for left leg

– 140 for right leg

• a spreadsheet file containing patient data like: age, weight, KT-1000 test re-

sults, and patient observations

The total number of patients during the trials was 156, however inconsistencies

where found in some of them like: missing tests results (csv file) for one of the legs,

67

Chapter 5. Data Acquisition and Analysis

user typos while naming the output file making the test impossible to relate to an

specific patient. Due this complications some of the results had to be excluded in

the following data analysis, leaving a total of 140 patients.

5.1 First glance at graphs and PyPlotter

At the time the data from patients became available, the first thing was to visually

examine the group of graphs in order to get familiar with how real pivot shift tests

acceleration graphs looked like. As well, a particularly interesting thing was to

identify noticeable patterns or differences between the tests coming from left and

right patient’s legs. This is important because as was stated previously, given the

direction of the movement, accelerometers can register both negative and positive

acceleration for any of the given axis.

A Python/Qt[24] application was developed to ease this process of visual exami-

nation of the tests, featuring:

• Ability to reproduce graphs from csv files.

• Selectable axis, the user can display acceleration of three axis X, Y, and Z or

choose which ones to use.

• Ability to overlap two graphs: useful to compare left and right legs in a same

patient.

• Graphs can be zoomed and saved to png, svg, and pdf formats.

• Load all csv files from a given directory to easily plot different files.

• Works both for graphs produced by the MMA7361LC prototype (only acceler-

ation) and LSM9DS0 prototype (acceleration + gyro).

68

Chapter 5. Data Acquisition and Analysis

Figure 5.1: Pivot shift plot analyzer

with this, side to side comparison was done in patients to spot if obvious patterns

were present. Next figure shows a patient left and right resulting acceleration graphs.

Figure 5.2: Patient graphs: left leg (left side), right leg (right side)

From this point on, for all upcoming XYZ acceleration graphs the color scheme

used for each axis is:

• X axis: red

• Y axis: green

69

Chapter 5. Data Acquisition and Analysis

• Z axis: blue

Quickly looking at figure 5.2 is difficult to assess something at first glance. The

recreation of the three consecutive pivot shift maneuvers is spotted without much

effort as each of the axis presents 3 peaks or maximum points with similar values.

To compare left leg with right leg accelerations the following plots were done via

the Python application:

(a) X axis (b) Y axis

(c) Z axis

Figure 5.3: Patient’s side to side acceleration comparison for each axis

These group of plots show the acceleration differences on each of the axis (X, Y,

Z) between left and right leg of the patient. Although one limitation of the data

produced during the trails is noticed, left and right leg tests will not exactly match

in the sense that do not equal in number of samples. This is caused due the fact

70

Chapter 5. Data Acquisition and Analysis

that is practically impossible for the the physician to execute both maneuvers (pivot

shift for right and left leg) with the exact same timing, that is why an offset between

the two tests can be seen as well. Despite this limitation, it will be shown how this

overlapping plots still are useful for the analysis.

After reviewing this new graphs over several patients showing side to side com-

parison for each of the axis separately one thing became quite noticeable.

Recalling the pivot shift technique, we can consider its two main components as

the rotation and valgus force applied to the knee. This rotation is called internal

tibial rotation which makes reference to the direction in which the movement occurs

and can be described as a rotation towards the direction of the other knee. That

being said, e.g. the internal tibial rotation in the left leg is seen as rotating the leg

towards the right leg.

Now that internal tibial rotation was defined we can go further and state the

following: there should be a noticeable difference between patient’s right and left leg

pivot shift tests, the reason for this is that the rotation applied while performing the

test on each side is opposite to its counter part.

Next graphs make clear this left to right side difference in rotation while the test

takes place.

Figure 5.4 shows side to side acceleration graphs for the X axis on four different

patients. Red curves correspond to left leg while magenta to right. Each of the

graphs shows how right leg values tend to be considerably more positive than left

ones. This effect on the X axis is produced mainly by two factors:

• difference in the direction of the rotation while performing the test on each leg

• the effect to the gravitational force going from the Z axis to the X axis while

rotation happens

71

Chapter 5. Data Acquisition and Analysis

Figure 5.4: Side to side comparison for X axis in four different patients

Next section tries to describe the pivot shift movement and translate it to sections

on the already presented acceleration graphs.

5.2 Interpretation of Graphical Data

This section breaks down portions of the graphs and relates them to parts of the

pivot shift movement to help make sense of the shape found on the data.

The pivot shift maneuver can be divided en the following frames:

1. knee goes into extension

72

Chapter 5. Data Acquisition and Analysis

2. while extension application of tibial internal rotation

3. application of valgus force

4. flexion of the knee while applying both valgus and internal rotation

5. going back to knee joint extension

Figure 5.5 shows each of the movements produced during the pivot shift maneuver

(just listed above). The bottom of the image works as reference to show the initial

position and orientation that the accelerometer has when the test is about to start.

This is critically important because keeps consistency on each axis among the tests.

The way each of the axis is presented (bottom of the image) makes them relate to

particular movements during the maneuver; in this case X axis handles the internal

tibial rotation, Y axis the back and forth movement of the leg, and lastly the Z axis

registers the knee flexion and extension. Due the importance of this, the prototype

was marked to indicate to the physicians the correct way to align the accelerometers

while conducting the tests.

Next to it the graph in figure 5.6 is the resulting left leg plot generated from the

patient test shown in figure 5.5. Looking at it, can be seen how there is a similar

pattern in the X and Y axis in portions of the graph, both axis have a negative bump

followed by an increase in the acceleration on the Z axis. This pattern is clearly seen

for each time the test was repeated in that graph (4 times). Relating this patterns

with the movements during the pivot shift it can be established that the negative

bumps coming from the X and Y axis are consequence of the knee rotation during

the test. First there is the negative bump followed by a period of stabilization to

similar values prior the rotation, and this has to do with the fact that close to the

end of the test (frames 5 and 6) the knee reverts the rotation and extends to its

natural position.

73

Chapter 5. Data Acquisition and Analysis

Figure 5.5: The pivot shift movement step by step, bottom describes positive direc-
tions for acceleration on each of the axis

74

Chapter 5. Data Acquisition and Analysis

Figure 5.6: Interpretation of the maneuver

Regarding the Z axis, the initial values correspond to the leg in full extension

(up to sample 12 approximately), after this internal rotation happens (frame 2)

which slightly generates a negative acceleration on the Z axis (towards the floor)

that can be seen in the graph by the minimum values seen between samples 13 to 20

approximately. Finally, once rotation is in place then the flexion happens (lifting the

knee) generating the peaks around sample number 30. This Z axis dynamic repeats

for this test four times as seen in the graph.

The image showed for this example was a left leg test. The same visual interpre-

tation can be assumed for the right leg results taking in consideration the obvious

difference between the internal tibial rotation reflected on the X axis from one leg

to the other (they have opposite direction). As showed in previous side to side re-

75

Chapter 5. Data Acquisition and Analysis

sults in figure 5.4, left side rotation is measured as a -X acceleration, while its right

counterpart as +X acceleration force.

5.3 Adjusting Left leg X axis readings

So far it has been stated that the most significant difference (visually) in the results

of a pivot shift test between a left and right leg relates to difference found in the X

axis results, which are produced by the direction of the internal tibial rotation that

each knee has during the test.

Considering that many of the statistical calculations to be presented in following

sections involve side to side comparisons of tests results, e.g. looking at the difference

in maximum and minimum acceleration readings between legs or getting the mean

value of the acceleration for all patients X axis (both legs). If those calculations were

to be made taking the data as it is, it would be no problem in directly comparing side

to side values taken from Y and Z axis since they tend to generate the same movement

(from back and forth leg movement, and lifting leg towards flexion) whether the tests

was from one leg or the other. Conversely, this represents a problem with the readings

from the X axis since they will have the tendency to cancel each other due their

opposite values. For this reason this section shows the method used to transform all

the results taken from the X axis in left leg tests, in order to compensate the opposite

rotation between legs. Once this done, it’s possible to perform accurate side to side

data comparisons involving X axis as well.

The function applied to perform this transformation is described as:

X(i) = −X(i) + 2(Xinitial) (5.1)

where X represents the array or vector containing al X axis samples and Xinitial

76

Chapter 5. Data Acquisition and Analysis

stands for the first element or sample value in the array. This operation is done to

all the samples in the X axis array with the exception of the first one, this due that

the initial position for the device (accelerometer) in both legs (left and right) still is

the same, this operation only tries to compensate the rotation, it does not mirrors

the entire function horizontally which can be easily performed by doing −X(i) as it

will be showed.

The results of applying this operation have the form:

Figure 5.7: Compensation of internal tibial rotation for X axis readings

where the red signal is the original signal of a left leg test. As shown before, left

leg internal rotation will be measured as a negative X axis acceleration, while a right

one comes as positive.

Yellow signal corresponds to the result of applying the operation described by

equation 5.1, which at the end creates the effect as if the rotation had the same

direction for both left and right pivot shift tests.

77

Chapter 5. Data Acquisition and Analysis

Figure 5.8 shows the difference in comparing X axis results using the raw data

and after compensating rotation.

Figure 5.8: Side to side X axis comparison: left side with original data, right side
compensating rotation

Analyzing the resulting graph (right side) it show how the magnitude of the

acceleration for both maneuvers (left and right side) reaches similar maximum values.

Now we can see how it makes more sense to perform this transformation prior to any

side to side data comparison or metric calculation involving the entire dataset (three

axis, both legs).

5.4 Transforming to G’s

The resulting graphs presented up to this point share something in common that

is, all of them have their acceleration values expressed in ADC (analog to digital

converter) units, that is why the magnitudes can have a value of hundreds of units.

Taking a step back down to chapter 2 of this work, it was defined that when using

a 10 bit ADC (like the one used in this prototype based on the MMA7361LC ac-

celerometer) the range of the output signal will have a value from 0 to 1023. Now,

the reason why the results shown so far contain negative values and there is none

78

1

Chapter 5. Data Acquisition and Analysis

reaching this maximum 1023 is that since it is required to differentiate between posi-

tive and negative accelerations on each axis, a posterior calculation was made which

will be explained shortly.

The way the output of the accelerometer (analog) operates is that if no input

acceleration is applied, the output will reach a value equal to half the ADC range, in

this case 1024/2 = 512. In short, with no acceleration the expected output in ADC

units should be 512 for each axis.

Other important fact is that from the ADC range half of all possible values are

used to represent negative acceleration while the second handles positive accelera-

tion. Therefore, by default values from 512 to 1023 reflect positive forces while ADC

values from 0 to 511 negative accelerations. To make this negative and positive ac-

celerations ADC units representation more straightforward the following calculation

was performed for each sample:

ADCout = ADCout − 512 (5.2)

this simple subtraction makes negative accelerations be in the 0 to -512 range

and positive accelerations in the 0 to 512 range.

This explanation provides context to understand the reason behind the accel-

eration values shown so far, however in order to provide meaningful results to the

calculations and metrics to be presented in the following sections it is required to step

away from the ADC units and make use of an standard unit of acceleration. In this

case the complete dataset was transformed to g’s, remembering that 1g = 9.8m/s2.

Next snippet shows the function created to convert the complete dataset to g’s

using the R programming language.

79

2

Chapter 5. Data Acquisition and Analysis

3 ### CHANGE FROM ADC VALUES TO G’S FOR MMA ACCELEROMETER#

4 ## call example: datahealthyG=togs(testdata_healthy) ###

5 togs <-function(dataset){

6 out=dataset

7 for(i in 1: length(dataset)){ #for each test file

8 ## (ADCVAL +512)*VREF/1023- ZEROV/SENSIBILITY

9 out[[i]][[1]]= sapply(dataset [[i]][,c(1)],function(i){ #Y

values ..

10 ((i+512)*(3.3/1023) -1.65)/.8})

11 out[[i]][[2]]= sapply(dataset [[i]][,c(2)],function(i){ #Y

values ..

12 ((i+512)*(3.3/1023) -1.65)/.8})

13 out[[i]][[3]]= sapply(dataset [[i]][,c(3)],function(i){ # Z

values ..

14 ((i+512)*(3.3/1023) -1.65)/.8})

15 }

16 out

17 }

This code applies the already covered procedure to get g’s from chapter’s 2 equa-

tion 2.3.

5.5 Tools and Packages used

The list of software packages and tools used to perform the majority of the calcula-

tions were the following:

• Python 2.7.9

– python2-matplotlib 1.4.2-3 [25]

– python2-numpy 1.9.1-1 [26]

• RStudio 0.98.1091

– r 3.1.2-1

80

Chapter 5. Data Acquisition and Analysis

– pysch 1.5.1 library [27]

– Qt 4.8.6

• libreoffice 4.3.5.2

with hardware specifications:

1 [mrhyde@arch76 ~]$ lscpu

2 Architecture: x86_64

3 CPU op -mode(s): 32-bit , 64-bit

4 Byte Order: Little Endian

5 CPU(s): 8

6 On -line CPU(s) list: 0-7

7 Thread(s) per core: 2

8 Core(s) per socket: 4

9 Socket(s): 1

10 NUMA node(s): 1

11 Vendor ID: GenuineIntel

12 CPU family: 6

13 Model: 58

14 Model name: Intel(R) Core(TM) i7 -3740QM CPU @ 2.70

GHz

15 Stepping: 9

16 CPU MHz: 3531.304

17 CPU max MHz: 3700.0000

18 CPU min MHz: 1200.0000

19 BogoMIPS: 5390.64

20 Virtualization: VT -x

21 L1d cache: 32K

22 L1i cache: 32K

23 L2 cache: 256K

24 L3 cache: 6144K

25 NUMA node0 CPU(s): 0-7

26 Memory: 12G

running a Linux distribution:

1 Linux arch76 3.18.6-1 - ARCH #1 SMP PREEMPT x86_64 GNU/Linux

2 LSB Version: 1.4

3 Distributor ID: Arch

4 Description: Arch Linux

81

Chapter 5. Data Acquisition and Analysis

5 Release: rolling

5.6 Data Statistics

This section starts to statistically described the data obtained from patients trials

and considering that by this point two major operations have been perform to the

orginal or raw dataset:

• X axis compensation (due internal tibial rotation)

• Conversion from ADC units to g’s

The complete dataset consist of the right/left pair of csv files containing the tests

results for 140 patients. As mentioned in chapter 4, each of the patients was clini-

cally evaluated by the medical staff and classified the patients in three main groups:

healthy, with observations and ACL patients. were patients with observations refer

to those presenting some leg or knee previous condition unrelated to a torn ACL.

Third group consisted on patients with ACL injury. The final distribution of the

patients was the following:

ALL Healthy Observation ACL
140 100 32 8

Table 5.1: Patients distribution

leaving a 71.4% of healthy patients, 22% patients with observations and 5.7%

patients with ACL injury. The overall total of acceleration samples produced by

the prototype during the 140 tests came to 27605 XYZ triplets; 18188 form healthy

patients, 7128 patients with observations, and 2289 from ACL patients.

82

Chapter 5. Data Acquisition and Analysis

(a) X axis (b) Y axis

(c) Z axis

Figure 5.9: Histograms for complete dataset: a) X axis, b) Y axis, c) Z axis

From the histograms it can be show how for the X axis the majority of the data

samples are between the 0g and -1g values, Y axis in the 0g to -0.5g range while the

83

Chapter 5. Data Acquisition and Analysis

Z axis does the same in the 0g-0.5g range.

axis mean sd median min max range se
ALLX -0.1448 0.5939 -0.1835 -3.2883 2.8085 6.0967 0.0035
ALLY -0.1857 0.3759 -0.0746 -1.9294 2.0625 3.9919 0.0022
ALLZ 0.1708 0.5095 0.1835 -1.9738 2.0544 4.0282 0.0030

Table 5.2: Summary statistics for X, Y and Z data for all patients

variable mean sd median min max range se
HX -0.1561 0.5967 -0.2077 -2.5988 2.8085 5.4073 0.0044
HY -0.1845 0.3721 -0.0827 -1.9254 2.0625 3.9879 0.0028
HZ 0.1311 0.5060 0.1391 -1.9657 2.0544 4.0202 0.0038
OX -0.1392 0.6146 -0.1754 -3.2883 2.0262 5.3145 0.0073
OY -0.2083 0.4002 -0.0665 -1.9294 1.5060 3.4355 0.0047
OZ 0.2468 0.5092 0.2923 -1.9738 2.0464 4.0202 0.0060
ACLX -0.0728 0.4931 -0.0827 -2.3448 1.5020 3.8468 0.0103
ACLY -0.1246 0.3153 -0.0262 -1.7399 1.8730 3.6129 0.0066
ACLZ 0.2499 0.5017 0.3246 -1.5665 1.9335 3.5000 0.0105

Table 5.3: Summary for X, Y and Z data for patients by groups

These previous tables describe the data of left leg and right leg results combined.

Prefix H specifies healthy patients, O patients with observations and ACL patients

with the ligament injury. From the data can be seen that both X and Y have

negative mean values while Z stays positive. Out of the three axis Y is the one with

the highest standard deviation. Graph 5.11 displays the same statistics but divided

by healthy and ACL patients, from here it can be seen some differences in the mean

value between axis.

These metrics like mean, maximum, and minimum values taken out of each group

of patients (healthy and with the injury) will be used later on in this chapter with

the goal of seeing if a patient can be recognized as a healthy or injured patient based

on these reported values.

84

Chapter 5. Data Acquisition and Analysis

Figure 5.10: Mean, median and sd for complete data set by axis

Figure 5.11: Mean, median and sd by healthy and ACL patients

85

Chapter 5. Data Acquisition and Analysis

Other metric calculated out of the tests was related to the maximum and mini-

mum acceleration values registered during the pivot shift movement. As mentioned

earlier, for each of the tests the pivot shift movement was reproduced three times in

a row (reason why all the graphs present three similar spikes in the signal) in order to

asses repeatability of the acceleration readings. Taken that into account there were

some cases in which one of the three maximum or minimum values was significantly

different in comparison of the other two.

Figure 5.12: Taking the median of the maximum values

For this reason as shown in 5.12 it was decided to take the median of the maximum

and minimum acceleration values while computing these metrics, e.g. while getting

the maximum Z acceleration for the patient file used in this figure art3a-p006pd.csv,

the reported value will be the median represented in this case by Zmax2. This

prevents outline readings like Zmax3 to affect statistics in further calculations.

86

Chapter 5. Data Acquisition and Analysis

The metrics computed based in the maximum and minimum acceleration values

per axis are displayed in table 5.4:

variable mean sd median min max range se
ALLXmin -0.9307 0.4683 -0.8952 -2.2722 0.6915 2.9637 0.0280
ALLXmax 0.8023 0.5497 0.8044 -1.4335 2.7802 4.2137 0.0329
ALLYmin -0.8184 0.4252 -0.6976 -1.9214 0.0706 1.9919 0.0254
ALLYmax 0.2622 0.2283 0.2016 -0.1673 1.0948 1.2621 0.0136
ALLZmin -0.6659 0.4306 -0.6391 -1.7278 0.3649 2.0927 0.0257
ALLZmax 0.9818 0.5261 0.9940 -0.3085 2.0181 2.3266 0.0314

Table 5.4: Maximum and minimum acceleration metrics

These calculations came from summarizing information like the one presented in

the following table which shows the X, Y and Z maximum and minimum acceleration

values per patient.

xmin xmax ymin ymax zmin zmax patient
-1.0222 0.3851 -0.8327 0.0020 -0.4859 2.0181 p001pd.csv
-0.9052 0.3891 -0.8488 0.2923 -0.8810 0.6794 p001pi.csv
-0.7923 0.9294 -0.4012 0.2964 -0.3367 1.6714 p002pd.csv
-0.7601 0.5383 -0.1794 0.2399 -0.7157 0.4657 p002pi.csv
-1.4778 0.8609 -1.3165 -0.0423 -0.3690 1.5665 p003pd.csv
-1.3488 0.4536 -0.5948 1.0544 -1.2117 0.4617 p003pi.csv
-0.8810 1.2762 -0.6956 0.0585 -0.3851 1.8367 p004pd.csv
-0.7762 0.4133 -0.3609 0.3972 -0.8448 0.8004 p004pi.csv
-1.0060 0.7117 -0.6754 0.5141 -0.4133 1.5060 p005pd.csv
-0.8407 0.1875 -0.1794 0.1956 -0.9133 0.1069 p005pi.csv

Table 5.5: Example table showing maximum and minimum values for 5 patients

5.6.1 Left and Right legs statistics

Unlike the test using the KT-1000 arthrometer that requires to be performed in both

right en left legs to produce a diagnosis, the pivot shift test is able to asses the ACL

87

Chapter 5. Data Acquisition and Analysis

knee injury without testing both patient legs, for this reason further analysis shows

the results from each legs separately.

Data is displayed for all patients as well as divided by healthy and injured groups:

variable mean sd median min max range se
ALLX-L -0.0582 0.6646 -0.1310 -3.2883 2.8085 6.0968 0.0057
ALLY-L -0.1534 0.3501 -0.0625 -1.9294 2.0625 3.9919 0.0030
ALLZ-L -0.0273 0.4797 0.0343 -1.9738 1.9214 3.8952 0.0041
ALLX-R -0.2300 0.5007 -0.2198 -2.0544 2.0504 4.1048 0.0042
ALLY-R -0.2174 0.3970 -0.0907 -1.8609 1.8770 3.7379 0.0034
ALLZ-R 0.3655 0.4606 0.3206 -1.9657 2.0544 4.0202 0.0039

Table 5.6: Summary statistics for X, Y and Z in left and right legs

One thing worth noticing is that even after performing the fix on left legs X

axis data (compensating the rotation due contrary anterior posterior tibial rotation

in section 5.3) still there is a significant difference in the mean values from left to

right leg, which backs up the idea of performing the analysis in left and right legs

separately.

variable mean sd median min max range se
HX-L -0.0682 0.6545 -0.1593 -2.5988 2.8085 5.4073 0.0068
HY-L -0.1430 0.3494 -0.0665 -1.9254 2.0625 3.9879 0.0037
HZ-L -0.0647 0.4623 -0.0101 -1.8810 1.9214 3.8024 0.0048
HX-R -0.2447 0.5172 -0.2440 -2.0383 2.0504 4.0887 0.0054
HY-R -0.2263 0.3893 -0.1069 -1.8609 1.8770 3.7379 0.0041
HZ-R 0.3285 0.4703 0.2762 -1.9657 2.0544 4.0202 0.0049
ACL L-X -0.5411 0.2660 -0.5988 -1.2319 0.7601 1.9919 0.0119
ACL L-Y -0.1291 0.3266 -0.0544 -1.0900 0.9300 2.0200 0.0146
ACL L-Z -0.2728 0.3223 -0.1900 -1.3327 0.4214 1.7540 0.0144
ACL R-X -0.1234 0.3550 -0.0948 -1.3044 1.2359 2.5403 0.0156
ACL R-Y -0.1690 0.4184 0.0060 -1.7077 1.8730 3.5806 0.0184
ACL R-Z 0.3833 0.4401 0.3770 -1.5665 1.7440 3.3105 0.0194

Table 5.7: XYZ summary for patients by groups, left and right legs

88

Chapter 5. Data Acquisition and Analysis

And finally the data summarizing the average maximum and minimum accelera-

tion values per leg by healthy and injured groups.

variable mean sd median min max range se
HXmin-L -0.7663 0.5299 -0.6935 -2.0948 0.6915 2.7863 0.0530
HXmax-L 0.7722 0.6167 0.7742 -0.5665 2.7802 3.3468 0.0617
HYmin-L -0.6651 0.4028 -0.5464 -1.9214 0.0706 1.9919 0.0403
HYmax-L 0.2760 0.2030 0.2319 -0.0343 1.0544 1.0887 0.0203
HZmin-L -0.9551 0.2837 -0.9597 -1.7278 -0.1714 1.5565 0.0284
HZmax-L 0.5715 0.3778 0.5101 -0.3085 1.5746 1.8831 0.0378
HXmin-R -1.0793 0.3295 -1.0282 -1.8327 -0.3246 1.5081 0.0329
HXmax-R 0.8812 0.4036 0.8589 -0.3931 1.9778 2.3710 0.0404
HYmin-R -0.8871 0.3879 -0.7843 -1.8165 -0.3327 1.4839 0.0388
HYmax-R 0.2474 0.2239 0.1875 -0.0706 0.9496 1.0202 0.0224
HZmin-R -0.4163 0.3365 -0.3790 -1.6149 0.3649 1.9798 0.0336
HZmax-R 1.3745 0.2965 1.4234 0.7560 1.9536 1.1976 0.0296
ACLXmin-L -0.9753 0.5346 -0.9172 -2.0867 -0.3528 1.7339 0.1890
ACLXmax-L 0.3891 0.7380 0.3448 -0.8206 1.4214 2.2419 0.2609
ACLYmin-L -0.5599 0.3876 -0.4980 -1.1593 -0.1593 1.0000 0.1370
ACLYmax-L 0.2927 0.2866 0.1573 0.0948 0.8800 0.7852 0.1013
ACLZmin-L -0.9959 0.3639 -1.0442 -1.5343 -0.4133 1.1210 0.1287
ACLZmax-L 0.3778 0.2829 0.2774 0.0867 0.7278 0.6411 0.1000
ACLXmin-R -0.8458 0.2633 -0.8649 -1.2238 -0.4093 0.8145 0.0931
ACLXmax-R 0.8982 0.3452 0.9315 0.3891 1.4335 1.0444 0.1220
ACLYmin-R -0.9526 0.4404 -0.9254 -1.6351 -0.3931 1.2419 0.1557
ACLYmax-R 0.3407 0.2695 0.2238 0.0907 0.8931 0.8024 0.0953
ACLZmin-R -0.2273 0.2995 -0.2621 -0.6633 0.1673 0.8306 0.1059
ACLZmax-R 1.4068 0.2524 1.4315 1.0746 1.8770 0.8024 0.0892

Table 5.8: Maximum and minimum values for patients by groups, left and right legs

5.7 Classifying patients from data

After showing the statistic properties of the data from patient trails, this section

focuses on seeing up to what degree is possible to tell from a healthy patient and

89

Chapter 5. Data Acquisition and Analysis

injured patient based on the metrics provided by the data presented in the previous

section. Different approaches were taken in consideration from taking the mean,

minimum, maximum or a combination of the three as main parameter to perform

the classification.

The following experiments that we will call metric classifiers make use of the

magnitude of the acceleration [28] can be define as follows:

Magacc =
√
X2 + Y 2 + Z2 (5.3)

which combines the three acceleration components into one.

5.7.1 Metric classifiers

The first attempt takes as main parameter the mean value of the acceleration pre-

sented on each of the patient groups.

variable mean sd median avg-min avg-max kurtosis se
Mag H L 0.7603 0.4640 0.6664 0.2739 1.5847 2.0334 0.0049
Mag H R 0.8060 0.4577 0.7215 0.2666 1.7663 -0.1010 0.0048
Mag ACL L 0.7878 0.2098 0.7700 0.3478 1.1516 0.5318 0.0094
Mag ACL R 0.6655 0.4921 0.5348 0.1698 1.5837 -0.0985 0.0216

Table 5.9: Magnitude metrics summary for healthy and ACL patients

For example, Mag H L represents magnitude metrics for left leg healthy patients.

The first metric (first column) in the table, is the result of taking the mean value

of the acceleration in each of the patients, in this case the total hundred healthy

patients and taking the average of that quantity.

90

Chapter 5. Data Acquisition and Analysis

The following snippet shows the coded function (Python) meanClassifier which

was applied to all patient files which takes as an input the patient tests file (csv file

generated from the software described in chapter 3) and the specification of if it is a

right or left leg test file.

1 def meanClassifier(testfile , leg="left", mag="xyz"):

2 print "filename: "+testfile

3 data=getdataMag(testfile , mag)

4 datamean=np.mean(data)

5 meanaclL =0.7878379

6 meanaclR =0.6654715

7 meanHL =0.7603489

8 meanHR =0.8060259

9 #evaluate the test

10 if leg=="left":

11 delta_acl=abs(datamean -meanaclL)

12 delta_h=abs(datamean -meanHL)

13 if delta_acl <delta_h:

14 print "DataMean :\t"+str(datamean)+"\t"+"MeanACL_L

:\t"+str(meanaclL)+"\t"+"Delta_acl :\t"+str(

delta_acl)+"\t"+"ACL"

15 else:

16 print "DataMean :\t"+str(datamean)+"\t"+"MeanH_L :\t

"+str(meanHL)+"\t"+"Delta_h :\t"+str(delta_h)+"\t"

+"Healthy"

17 else:

18 delta_acl=abs(datamean -meanaclR)

19 delta_h=abs(datamean -meanHR)

20 if delta_acl <delta_h:

21 print "DataMean :\t"+str(datamean)+"\t"+"MeanACL_R

:\t"+str(meanaclR)+"\t"+"Delta_acl :\t"+str(

delta_acl)+"\t"+"ACL"

22 else:

23 print "DataMean :\t"+str(datamean)+"\t"+"MeanH_R :\t

"+str(meanHR)+"\t"+"Delta_h :\t"+str(delta_h)+"\t"

+"Healthy"

The idea is simple, the function already contains the calculated mean values for

healthy and ACL patients. The input files contain the X,Y, and Z acceleration

readings for that particular pivot shift test, so the first thing is to calculate the

91

Chapter 5. Data Acquisition and Analysis

magnitude array (to get magnitude of the acceleration) that is handled by the get-

dataMag() function. The function contains as fixed parameters the calculated mean

values for the ACL and healthy class (seen in the previous table). Then two variables

are calculated delta ACL and delta h which are the absolute difference between the

mean of the testing file (patient to classify) and the ACL and healthy means respec-

tively. If delta h is less than delta ACL then the patient is classified as healthy, that

is if the patient’s mean is closer to a healthy patient mean.

Leg Missclassified Error % Classifier
Left 55 40.41 MeanClassifier
Right 52 38.23 MeanClassifier
Left 94 69.11 MaxClassifier
Right 87 63.7 MaxClassifier
Left 91 66.91 MinMaxClassifier
Right 86 63.23 MinMaxClassifier
Left 90 66.17 MeanMaxClassifier
Right 90 66.17 MeanMaxClassifier

Table 5.10: Results of different metric based classification approaches

Previous table show the results of trying to classify patient data based on:

• mean value

• maximum value

• minimum and maximum values

• mean and maximum values

First column of the table specifies which leg the results are coming from, the

second one (Missclassified) indicates the average number of patients that were incor-

rectly classified, and the third one shows the percentage that those missclassifications

92

Chapter 5. Data Acquisition and Analysis

represent out of the total number of patients. As can be seen clearly the error rate

is too high, so a different approach was taken after trying this method.

Going back to what was shown in figure 5.5 while describing the pivot shift

movement was mentioned the importance that X axis has while taking care of the

acceleration during the internal tibial rotation as the Z axis registers the anterior

posterior translation acceleration. Back and forth movement of the leg is assessed by

the Y axis and could be considered as the least important feature of the three just

mentioned during the pivot shift test[29].

Figure 5.13: Left legs: mean, median and sd for ACL and healthy patients

Now, following this hypothesis and looking at graphs 5.13 and 5.14 we can see how

it seems to be a noticeable difference in the ACL and healthy groups specifically in the

X axis (most strong one) and Z axis. Seeing that and continuing with our emphazis

of the importance of these two particular axis (XZ) the following try consisted in

repeating the same metric classification methods but with the main difference of

discarding Y axis. In this context the new magnitude was taken as follows:

MagXZacc =
√
X2 + Z2 (5.4)

93

Chapter 5. Data Acquisition and Analysis

Figure 5.14: Right legs: mean, median and sd for ACL and healthy patients

Once done this, was needed to recalculate the same metrics (like in table 5.9)but

this time based on XZ acceleration only, leading to:

variable mean sd median avg-min avg-max se
MagXZ-H-L 0.6916 0.4154 0.6176 0.2178 1.4774 0.0043
MagXZ-H-R 0.7038 0.4013 0.6283 0.2124 1.6750 0.0042
MagXZ-ACL-L 0.7051 0.2108 0.7043 0.2799 1.1495 0.0094
MagXZ-ACL-R 0.5721 0.3928 0.5199 0.1499 1.4425 0.0173

Table 5.11: MagnitudeXZ metrics summary for healthy and ACL patients

And the results of implementing the same classifiers was the following:

As simple as the change was from using the information from three axis to going

to only XZ data, it’s interesting to see how that effectively reduced the error rate

almost in half for some of the proposed classifiers.

94

Chapter 5. Data Acquisition and Analysis

Leg Misclassified Error % MagXZ Classifier
Left 57 41.91 MeanClassifier
Right 42 30.88 MeanClassifier
Left 45 33.08 MaxClassifier
Right 42 30.88 MaxClassifier
Left 46 33.82 MinMaxClassifier
Right 47 34.55 MinMaxClassifier
Left 46 33.82 MeanMaxClassifier
Right 43 31.61 MeanMaxClassifier

Table 5.12: XZ Magnitude metric classification results

5.7.2 Non parametric classification: K Nearest Neighbors

Previous section introduced some classification efforts purely based on statistical

metrics pulled out of the testing data. As simplistic as they were they managed to

be close to 70% accurate while classifying all the patients from the trails.

This section takes another approach towards trying to classify patients based on

the data produced by the pivot shift prototype. The method implemented is a known

algorithm commonly used in classification[30] and regression analysis.

The method used is the K nearest neighbors algorithm. To implement this algo-

rithm and following the constrain of using the XZ acceleration data, we can say that

the classification problem involves:

• 2 dimensions (X,Z)

• 2 classes (healthy, injured)

therefore the data coming from the patient trails is used in a different way this

time, instead of looking at a patient file as a acceleration vs time graph, now it is

seen as a collection of (X,Z) sample points where X takes the horizontal axis and Z

the vertical one.

95

Chapter 5. Data Acquisition and Analysis

In this context, now we have two main XZ datasets one containing the samples

for healthy patients and a second one for the injured class.

One major thing to consider is that the number of samples from healthy patients

is clearly higher than the available on patients with the injury, and in order to

accurately make use of the knn(k nearest neighbor) algorithm training data must be

of equal size for all classes (this case healthy and ACL patients).

Figure 5.15: From (acceleration, time) to (X,Z) sample points

Figure 5.16 shows all the data available for the right leg. Red points are data

for injured patient as black dots correspond to healthy ones. The total of points per

class are:

• ACL 517

• healthy 9054

To overcome this difference in the total number of samples per class, the approach

taken was to produce different subsets of the healthy dataset with equal number of

samples to the ACL class, an example is shown in figure 5.17.

When classifying using the knn algorithm the output results in defining to what

class each testing sample belongs to. This class is a result of a vote scheme in

96

Chapter 5. Data Acquisition and Analysis

Figure 5.16: XZ datasets corresponding to right leg

which the object to classify calculates the k nearest samples to itself. The called or

resulting class will be the one presenting the highest number of occurrences in those

k neighbors.

Figure 5.18 illustrates an example in which one patient is being classified (right

leg ACL patient). The upper left image shows the training sets for both classes

(healthy and injured), upper right image adds to it the testing set corresponding to

the patient to be classified (blue).

The image at the bottom contains a portion of the upper right figure (zoomed).

Here we can see a testing point (in blue). If we were to apply knn with k parameter

equal to 3 the resulting class would be the ACL or injured class, this because out of

the 3 nearest neighbors to the sample point 2 belong to the injured class and only

one to the healthy class, therefore ACL is the class with more occurrences in the

neighbors. Due this voting nature of the algorithm is recommended to use only odd

97

Chapter 5. Data Acquisition and Analysis

Figure 5.17: Creating subsets of the healthy class with equal size of ACL class

numbers as k parameter in order to avoid ties.

For this particular example, can be seen how even setting k to 5 produces the same

result classifying that sample as part of the injured class. These are the classification

results for that particular patient when k=3.

That specific test file contains a total of 170 XZ samples, out of which 17 were

classified as healthy and 153 as ACL. The result accurately classified the patient

as injured (patient P12 was indeed an injured patient) having an error rate of 10

percent. For this example k was set to 3 for illustrative purposes, in theory knn

algorithm is said to be optimal as k goes to infinity[30] but to do so infinite data

would need to be available, so in practice our selection on the k value is totally

dependent on the amount of data available. In either case for the following results

our k value is bounded to half of the training set. For each of the patients tested

knn algorithm was run recursively starting from setting k equal to 1 up to half the

98

Chapter 5. Data Acquisition and Analysis

(a) Training sets (b) Training sets and testing set (blue)

(c) Zoomed plot: example knn with k=3

Figure 5.18: Testing and training set examples

training set, the final classification results were the one reporting the minimum error

rate. For example the results just seen from P12 were k=3 with an error rate equal

to 10%. Optimal result obtained for this patient was using k=155 with an error rate

of 1.76% (this patient did pretty good).

Tables 5.13 and 5.14 are the results obtained while classifying all the patients

both right and left legs using knn rule.

From the results we have that for the right leg the average number of patients

99

Chapter 5. Data Acquisition and Analysis

Figure 5.19: Classification results for patient file P12PD

avg # patients %
Missclassified 34.7500 25.5515
Classified 101.0000 74.2647
Avg Error 26.5699
Avg Error Class 10.8085
Avg Error Miss 68.5398
+ 70% accurate 86.7500 63.7868

Table 5.13: KNN results for Left leg

missclassified was of 15.07% and 25.55% for left legs. The mean average error rate

for all patients was around 26%, this is considering all outputs both classified and

missclassified results. The metric Avg. Error Class represents the mean error rate

present in the patients correctly classified as Avg. Error Miss does the same for

the missclassified part. The last metric from the tables specifies the percentage of

patients that were correctly classified with more than 70% confidence or in other

words less than 30% error rate.

Next are the average error rates per class. The first column specifies the average

number of patients missclassified taking in consideration that there were a total of

100

Chapter 5. Data Acquisition and Analysis

avg # patients %
Missclassified 20.5000 15.0735
Classified 115.5000 84.9265
Avg Error 26.3211
Avg Error Class 20.5500
Avg Error Miss 54.3915
+ 70% accurate 62.8333 46.2010

Table 5.14: KNN results for Right leg

132 healthy patients and 8 with the injury, however out of those 8 patients 4 had the

injury on the left leg as the other 4 on the right. For this reason previous tables had

a total of patients of 136. The metric avg class error is the avg error rate that was

present in the correctly classified tests and avg miss error is the same for the ones

that were missclassified patients.

avg # miss patients miss % avg class error avg miss error leg
H 34.75 26.3257 0.1096 0.6854 left
ACL 0 0.0000 0.0720 0.0000 left
H 23.6 17.8787 0.2473 0.6616 right
ACL 1 25.0000 0.2256 0.5109 right

Table 5.15: KNN: missclassifications rates by groups

The average error found in the correct classified patients was of 16.36% including

both legs and classes. Average error in the incorrectly classified patients was of

46.44% for both classes and legs. Regarding the ACL patients, all of the left legs

were correctly classified (reason why avg miss error is zero) as the right counterpart

missclassified 1 out of the 4 patients.

101

Chapter 6

Conclusion and Future Work

6.1 Limitations and Future Work

In the course of developing this project and specially at the moment of starting

the patient trials and data analysis some limitations were found. The fact that this

project involves both medical and engineering staff and that the prototype was finally

implemented by the end user (medical team) really helped up the project towards

future development, since the staff came up with several improvement ideas that

would not have been identified if the prototype had not been implemented.

Some of them involved minor hardware changes in the prototype, like a reset

button or the use of an LED to display battery status to little more complicated like

going wireless since the prototype needed to be directly connected to the pc via an

USB cable. This was resolved by adding a pair of XBEE modules[31] based on the

IEEE 802.15.4 which are fairly ease to use.

As well there were software related observations like making the application able

to generate the graph in real time to small UI details to make it more intuitive and

102

Chapter 6. Conclusion and Future Work

Figure 6.1: XBee module implementation

easy to use.

While starting looking at the resulting data from patient trials some design flaws

were found. Two of the main ones were:

• The number of samples per tests was not the same

• Start of the actual test varied form patient to patient

These two observations became pretty evident at the begging of the data analysis,

figure 6.2 shows tests results from left and right leg for the same patient. To begin

with, it can be seen how one test has a total of samples for each axis of about

85 while the other leg has about 35. There were two factors that caused this, the

first one was related to a software constrain in the application designed to capture

the readings. The initial configuration of the application required the examiner to

manually start and end the test using a button from the user interface (or a key

shorcut), which automatically makes this disparity in sample size logical, it is highly

improbable for the examiner to stop the test meticulously after an specific number

of seconds every time. The second factor has to do with the actual execution of the

103

Chapter 6. Conclusion and Future Work

pivot shift maneuver. From examiner to examiner the technique may be the same

but the timings or speed at which they perform it varies.

of samples left leg right leg
mean 96.18 97.43
std 54.79 55.26

median 75 83

Table 6.1: Variability in sample size from test to test

The second observation it’s clearly shown in 6.2a, the initial 35 samples (ap-

proximately) are acceleration readings prior of making the pivot shift test and are

expected to exist in the results but for some files were considerably high. Since this

initial samples do not represent acceleration readings caused by the actual medical

test, they had to be manually removed from each file which added considerable time

to the analysis.

To reduce the impact of these two findings in future, additions to the software

were made:

• added a countdown prior of starting capturing data

• limited the test duration with a 10 second timer

The implementation of the countdown helped to reduce the number of initial-

ization samples (before the actual movement) as automatically ending the test after

10 seconds helped to impose the examiner to a particular rhythm of execution and

helped as well to ensure that all the tests have similar sample size. After the addition

of the timer the average of samples per test is 215 samples ± 4 samples, fact that

will help to facilitate further data analysis.

104

Chapter 6. Conclusion and Future Work

(a) patient left leg (b) patient right leg

Figure 6.2: Disparity in sample size and beginning of test

Figure 6.3: Recent test after software changes, 3/14/15

105

Chapter 6. Conclusion and Future Work

6.2 Conclusion

The project in this thesis introduces the design and implementation of an electronic

device able to store quantifiable data out of the clinical pivot shift test. This test

is considered a very valuable asset in the diagnose of the ACL (anterior cruciate

ligament) injury and in the evaluation of its reconstruction surgery, however is often

questioned over its subjective interpretation[32].

This debate over the subjectiveness of the test highlights the importance of hav-

ing a device that produces quantifiable data out of this screening test. The successful

implementation of the proposed prototype tries to fill that gap, providing numeri-

cal data in the form of acceleration and angular displacement that can be further

analyzed.

Clinical trials were conducted in collaboration with the Christus Muguerza del

Parque Hospital located in Chihuahua, Mexico with the goal of validating the proto-

type and gathering patient samples . Data produced in patient trials was reviewed

and analyzed with the goal of determining typical values out of the healthy and in-

jured groups. Statistical metrics were computed to compare results among groups.

Later on, some of these metrics were implemented as classification parameters. Over-

all error rate was calculated for each of the different tries. Restricting the use of only

X and Z axis data, backed up in the idea that X reports the internal tibial rotation,

and Z takes care of the anterior-posterior tibial translation with respect of the fe-

mur, became the approach leading to the minimum error rate. Optimal results out

of these classifiers had an average error rate of 30% approximately for both left and

right legs.

After performing these tests and with the intention of implementing a non para-

metric classification method, pattern recognition k nearest neighbors algorithm was

used as classification rule. Reported results coming from this approach proved to be

106

Chapter 6. Conclusion and Future Work

more effective reaching 25% and 15% error rates for left and right legs respectively.

Data is a precious resource, and in a time period little over than a year data results

from over 150 patients were collected. Getting data of injured patients proved to be

challenging but still possible. Nevertheless, given the results and the fact that those

were purely based on acceleration readings from the very first prototype, grows the

curiosity of seeing how the addition of rotational data (from the gyroscopes) can or

cannot add more significant features towards improving the classification results of

future patient trials.

107

Appendix A

Arduino and Processing Code

Code repository:

https://maespinozas@bitbucket.org/maespinozas/pivotshift.git

108

References

[1] V. Duthon, C. Barea, S. Abrassart, J. Fasel, D. Fritschy, and J. Ménétrey,
“Anatomy of the anterior cruciate ligament,” Knee surgery, sports
traumatology, arthroscopy, vol. 14, no. 3, pp. 204–213, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00167-005-0679-9

[2] J. H. Mink, T. Levy, and J. Crues 3rd, “Tears of the anterior
cruciate ligament and menisci of the knee: MR imaging evaluation.”
Radiology, vol. 167, no. 3, pp. 769–774, 1988. [Online]. Available:
http://pubs.rsna.org/doi/abs/10.1148/radiology.167.3.3363138

[3] W. H. A. Ng, J. F. Griffith, E. H. Y. Hung, B. Paunipagar, B. K. Y.
Law, and P. S. H. Yung, “Imaging of the anterior cruciate ligament,”
World journal of orthopedics, vol. 2, no. 8, p. 75, 2011. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302044/

[4] S. Arneja and J. Leith, “Review article: Validity of the KT-1000 knee ligament
arthrometer,” Journal of Orthopaedic Surgery, vol. 17, no. 1, 2009. [Online].
Available: http://www.josonline.org/index.php/JOS/article/view/432;http://
www.josonline.org/index.php/JOS/article/view/432/375

[5] S. Wiertsema, H. Van Hooff, L. Migchelsen, and M. Steultjens, “Reliability
of the KT1000 arthrometer and the Lachman test in patients with an ACL
rupture,” The Knee, vol. 15, no. 2, pp. 107–110, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968016008000082

[6] M.-H. Lam, D. T. Fong, P. S. Yung, E. P. Ho, W.-Y. Chan, and
K.-M. Chan, “Knee stability assessment on anterior cruciate ligament
injury: Clinical and biomechanical approaches,” BMC Sports Science,
Medicine and Rehabilitation, vol. 1, no. 1, p. 20, 2009. [Online]. Available:
http://www.biomedcentral.com/1758-2555/1/20/

109

References

[7] P. H. Araujo, M. Ahlden, Y. Hoshino, B. Muller, G. Moloney, F. H.
Fu, and V. Musahl, “Comparison of three non-invasive quantitative
measurement systems for the pivot shift test,” Knee Surgery, Sports
Traumatology, Arthroscopy, vol. 20, no. 4, pp. 692–697, 2012. [Online].
Available: http://link.springer.com/article/10.1007/s00167-011-1862-9;http:
//link.springer.com/article/10.1007/s00167-011-1862-9/fulltext.html

[8] F. R. Noyes, E. S. Grood, J. F. Cummings, and R. R. Wroble,
“An analysis of the pivot shift phenomenon The knee motions and
subluxations induced by different examiners,” The American journal of
sports medicine, vol. 19, no. 2, pp. 148–155, 1991. [Online]. Available:
http://ajs.sagepub.com/content/19/2/148.short

[9] V. Musahl, A. D. Pearle, and R. F. Warren, “Measurement Validation
of Navigation During the Pivot-Shift Test,” Operative Techniques in
Orthopaedics, vol. 18, no. 3, pp. 181–184, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1048666609000044

[10] C. Reas and B. Fry, Getting Started with Processing. ” O’Reilly Media, Inc.”,
2010.

[11] Official I2C Specification, NXP Semiconductors. [Online]. Available: http:
//www.nxp.com/documents/user\ manual/UM10204.pdf

[12] M. Banzi, Getting Started with arduino. ” O’Reilly Media, Inc.”, 2009.

[13] Wiring: an open-source programming framework for microcontrollers , Hernando
Barragan. [Online]. Available: http://wiring.org.co/

[14] ATmega48A/PA/88A/PA/168A/PA/328/P Summary, Atmel. [Online]. Avail-
able: www.atmel.com/images/doc8161.pdf

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantitative
Approach (5. ed.). Morgan Kaufmann, 2012.

[16] A. J. Wixted, D. V. Thiel, A. G. Hahn, C. J. Gore, D. B.
Pyne, and D. A. James, “Measurement of energy expenditure in elite
athletes using MEMS-based triaxial accelerometers,” Sensors Journal,
IEEE, vol. 7, no. 4, pp. 481–488, 2007. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=4105926

[17] T.-R. Hsu, MEMS & microsystems: design, manufacture, and nanoscale engi-
neering. John Wiley & Sons, 2008.

110

References

[18] B. Evans, Beginning Arduino Programming. Apress, 2011.

[19] D. Ibrahim, Advanced PIC microcontroller projects in C: from USB to RTOS
with the PIC 18F series. Newnes, 2011.

[20] Adafruit LSM9DS0 Library , Adafruit. [Online]. Available: https://github.
com/adafruit/Adafruit LSM9DS0 Library

[21] GNU Lesser General Public License , The Free Software Foundation. [Online].
Available: https://www.gnu.org/licenses/lgpl.html

[22] C. Reas and B. Fry, Processing: a programming handbook for visual designers
and artists. Mit Press, 2007.

[23] controlP5: A GUI (graphical user interface) library for processing , Andreas
Schlegel. [Online]. Available: http://www.sojamo.de/libraries/controlP5/

[24] M. Summerfield, Rapid GUI Programming with Python and Qt : the Definitive
Guide to PyQt Programming, 2007.

[25] matplotlib: python plotting library , John Hunter. [Online]. Available:
http://matplotlib.org/

[26] NumPy library , Scipy.org. [Online]. Available: http://www.numpy.org/

[27] psych: Procedures for Psychological, Psychometric, and Personality Research ,
William Revelle. [Online]. Available: http://cran.r-project.org/web/packages/
psych/index.html

[28] L. A. Kelly, D. G. McMillan, A. Anderson, M. Fippinger, G. Fillerup, and
J. Rider, “Validity of actigraphs uniaxial and triaxial accelerometers for as-
sessment of physical activity in adults in laboratory conditions,” BMC medical
physics, vol. 13, no. 1, p. 5, 2013.

[29] L. Engebretsen, C. A. Wijdicks, C. J. Anderson, B. Wester-
haus, and R. F. LaPrade, “Evaluation of a simulated pivot shift
test: a biomechanical study,” Knee Surgery, Sports Traumatol-
ogy, Arthroscopy, vol. 20, no. 4, pp. 698–702, 2012. [Online].
Available: http://link.springer.com/article/10.1007/s00167-011-1744-1;http:
//link.springer.com/article/10.1007/s00167-011-1744-1/fulltext.html

[30] R. O. Duda, D. G. Stork, and P. E. Hart, Pattern classification. New York;
Chichester: Wiley, 2000.

111

References

[31] R. Faludi, Building wireless sensor networks: with ZigBee, XBee, arduino, and
processing. ” O’Reilly Media, Inc.”, 2010.

[32] N. Lopomo, S. Zaffagnini, S. Bignozzi, A. Visani, and M. Marcacci, “Pivot-shift
test: Analysis and quantification of knee laxity parameters using a navigation
system,” Journal of Orthopaedic Research, no. 2, pp. 164–169, 2010.

112

