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Abstract

Smart grid is no longer a novel idea discussed only in research articles, but rather

it has spawned a great amount of practical investments and applications in commer-

cial and industrial area. One of these is a Smart Grid demonstration project imple-

mented within Public Service Company of New Mexico (PNM) distribution network.

This project combines both residential and commercial loads on a dedicated feeder,

with high PV penetration ratio, equipped with a substation-sited photovoltaic (PV)

system and utility-scale Battery Energy Storage System (BESS). Often renewable

energy such as PV has multiple benefits, but raise reliability concerns due to their

inherent intermittency. This project shows BESS could play a vital role in assisting

high penetration PV connections to the power grid. Its overall goal of this project

includes peak-load reduction and PV output smoothing at a specific feeder through

BESS.
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ough analysis of smoothing algorithm and determined some key findings, including

calculation of the power used for maintaining State of Charge (SoC), optimal size of

smoothing BESS, and finally we design a new algorithm with high energy efficiency.

This work addresses the primary problems for smoothing from planning to BESS

operation. The results will be of value in practical implementations.

This work also covers shifting algorithm in detail. The shifting optimization is

constructed with three main functions: peak shaving, firming and arbitrage. It is

the first time for a utility scale project that all of these three shifting functions

are implemented into one platform. Islanding refers to the condition in which a

location can operate autonomously with Distributed Energy Resources (DER) when

power from the electric utility is absent. Both islanding mode and Grid-tied mode

are discussed. The extensive field experiences and results from site operations are

also demonstrated. Besides these three main functions, we also introduce several

other principal shifting functions which are involved in the ongoing storage system

demonstration. The control strategy and current results of modelling for this Smart

Grid project are given.
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Introduction

1.1 Overview

The electricity grid has already served human society for more than 100 years. From

the invention of DC generator to today’s far more complex network, reliability is

viewed as the first priority of this industry.

However, the exiting aged power grids are reaching its power delivery limits.

Much of the grid is outdated and overloaded. It is becoming increasingly difficult to

place more new conventional overhead transmission lines, especially for urban area.

According to [2], “the supreme engineering achievement of the 20th century,” is

ageing, inefficient, and congested, and incapable of meeting the future energy needs

of the Information Economy without operational changes and substantial capital

investment over the next several decades. A pressure is placed on this very old

industry to initiate revolutionary changes.

At the same time, fossil fuel consumption leads to global warming and climate

change. According to statistic, the majority of greenhouse gases come from burning

1
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fossil fuels to produce energy [3]. Between 1990 and 2012, the increase in CO2 emis-

sions corresponded with an overall growth in emissions from electricity generation.

The traditional electricity generation becomes a huge concern for environment along

with more and more serious global warming and other environmental issues. The

need for electricity generation to be clean and safe has never been more evident.

Due to all of these reasons, a great challenge exists for the power industry to

provide electricity continually, while also increasing energy efficiency in a variety of

ways and using more environmentally friendly energy resources.

The U.S. Department of Energy set a national vision for electricity’s second 100

years, which is called “GRID 2030” [2]. Modernizing America’s electric system be-

comes a significant task.

1.2 Smart grid

The concept of smart grid has developed quickly owing to this trend. The term

“smart grid” has been used since 2005, which means a new era of power system. The

“smart grid” is a developing network of new technologies, equipment, and controls

working together to respond quickly to the demand for electricity [4]. Smart grid also

means the deployment and integration of new high technologies such as communi-

cations, control and information technology into current power grids infrastructure.

In smart grid the load and supply is dynamically balanced. Demand response and

customer participation will change the profile of power consumption [5].

Table 1.1 shows brief comparison between the smart gird and existing grid. In this

table the existing grid differs with smart grid in 9 aspects. In smart grid, two-way

digital communication device is designed to replace the traditional electromechanical

meter. Customer is empowered to interact with the energy system to adjust their

2
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Table 1.1: A brief comparison between the smart grid and the existing grid [1].
Existing grid Smart grid

Electromechanical Digital
One-way communication Two-way communication
Centralized generation Distributed generation

Few sensors Sensors throughout
Manual monitoring Self-monitoring
Manual restoration Self-healing

Failures and blackouts Adaptive and islanding
Limited control Pervasive control

Few customer choices Many customer choices

energy use and reduce their energy costs. The two-way communication also helps

utility to optimize the investment of generators, and takes corrective action to avoid

or mitigate system problems by predicting possible failure [1]. Since nearly 90% of

power outages and disturbances are rooted in the distribution network, smart grid

starts to change from distribution system.

In smart grid, different systems will be able to exchange information and have

interaction. Therefore, the smart grid will be a system of interoperable systems. In

order to achieve interoperability of smart grid devices and systems, National Insti-

tute of Standards and Technology (NIST) is responsible to coordinate development

of a framework that includes protocols and model standards for information manage-

ment [6]. These standard will help the transformation to smart grid infrastructure.

From the end of 2004, worldwide renewable energy capacity grew at rates of 10

∼ 60% annually for many technologies [7]. A large amount of renewable energy will

be installed in more and more households as well as at centralized locations (PV and

wind farms). In past several decades, electricity only flows in one direction , which is

from power plant to customer. Increasingly, power start to flow in two directions due

to development of DERs. The power flowing bidirectionally in smart grid, means

that power customers (nodes) could also be the power providers when the energy

3
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from installed PV or wind turbine exceeds their needs, and the excess energy can

be sold back to power grid. If the regulatory structure allows, they also could use

power which is generated by their neighbourhood. All nodes could interact in parallel

in real time [8]. Thus, the nodes in the network are able to exchange energy with

each other based on the real-time needs just like the internet exchange data through

network nodes on the web. As a consequence of the smart grid, power will flow more

efficiently in the power grid more than ever.

In contrast to other energy sources which are concentrated, renewable energy

resources exist over wide geographical areas. The growth of the renewable energy

resources capacity makes the power grids change greatly not only in the perspective

of expanding geographically, but especially in the perspective of the interaction of

network nodes.

In this process, additional new concepts such as Distributed energy resource,

Microgrids, smart meters, smart houses, and demand response are put forward and

are gradually accepted by customers. All of these concepts assume that every node

(customer) plays an active role in the whole system instead of traditional power plant

domination in the past. In the following section, DER and Microgrid are introduced

separately.

1.3 DER

Distributed Energy Resources(DER) is generated or stored by a variety of small,

grid-connected devices [9]. DER comprise several technologies, such as diesel engines,

micro turbines, fuel cells, photovoltaic, small wind turbines and etc. DER include,

but are not limited to renewable energy resources.

Conventional power generation is centralized like coal-fired power plant or large

4
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scale PV plant, but DER is decentralized, and usually located near customers. En-

ergy production of DER could be from any sources, for instance, it could be from

traditional generators or renewable energy sources. The quantity of DER would

be larger than the quantity of large centralized power plant since capacity of DER

is usually smaller. It is possible that a small power networks consist of thousands

of small DER. In addition, DER units have different owners, and decisions should

be taken locally. Hence it’s very impractical to have centralized control over large

quantity of DERs [10]. In smart grid, the trend of energy generation is to change

from large centralized facilities into distributed energy generation. Therefore power

system control will gradually change from centralized control into distributed control.

1.4 MG

Microgrid(MG) is an electrical system that includes localized multiple loads and

distributed energy resources that can be operated in parallel with the broader utility

grid or as an electrical island [4]. Department of Energy (DOE) gives a similar

definition: a group of interconnected loads and distributed energy resources (DER)

with clearly defined electrical boundaries that acts as a single controllable entity with

respect to the grid (and can) connect and disconnect from the grid to enable it to

operate in both grid-connected or islanding mode.

Microgrids are an important component of smart grid. They can increase grid

resilience and can operate autonomously to keep one electrical system from the dis-

turbance of power grid.

Microgrids have many merits, including reducing transmission power loss due to

the short distance between load and power supply; relieving the investment of trans-

mission and distribution system; reducing the transmission constrains, and improving

energy efficiency and power quality [11].

5
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Research on the topic of Microgrids is focused on two broad areas: planning and

design; operational optimization. The first defines the Microgrids internal service,

the interface, and modelling and design the Microgrid integration. After a Microgrid

is built, the next part focuses on control optimization, which would consider three

different time frames: day-ahead to hour-ahead optimization, steady state control

optimization, and transient state control optimization [12]. All of these topics are

applied to two cases: single MicroGrid (MG) and multiple MicroGrids.

MG typically is composed of three important parts: micro sources, inverter con-

troller and ESS (Energy Storage System) [10]. These resources are put near the load.

Micro Sources include the small scale DERs, including micro turbines, PV arrays,

fuel cells, gas engine. Part of the energy generated by DERs is not capable to connect

with power grid or load directly. That is why we need inverter controller to regulate

voltage, and convert DC to AC, or AC to DC. This interface is a very important in

MG due to different type of micro sources.

ESS(Energy Storage System) is found to be a central element for MG since it

could provide power when MG goes into islanding mode or the system load has

sudden significant changes [13]. When demand varies greatly, the power devices

should respond to the fluctuations immediately in order to maintain load balance.

The response time of common micro sources is 10 ∼ 200 seconds. ESS has a short

response time to help keep load balance.

Renewable energy resources like PV or wind are weather-based. ESS can shift

energy from one time period to another. For instance, ESS can shift energy from

the time when generation exceeds demand to a time when demand is high. Usually

power plants supply should be equal to power consumption in the time dimension

continually. ESS works like a bridge, and it could move energy from one period to

another period to mitigate the difference between supply and consumption. ESS have

the potential to revolutionize the way in which electrical power grids are designed

6
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and operated [14].

Currently there are many types of ESS running in the power grid, such as fly-

wheels, batteries, compressed air energy storage, thermal storage and so on. Among

all of these ESS, Lead-acid battery is considered a suitable and competitive energy

storage system for MG since it can provide relatively large power for a short interval

of time, and have comparative low cost.

1.5 BESS

BESS has two main functions: smoothing and shifting. Smoothing is to smooth out

the PV fluctuation by using BESS. Shifting is to shift energy from one period to

another.

1.5.1 Smoothing

PV production can be split into a relatively smooth signal, and a high-frequency

intermittent component, due to variable cloud cover, that has characteristic times

on the order of seconds. PV production fluctuation can bring serious reliability

issue since it may lead to frequency fluctuations. BESS have the potential to fill

an important role coupled with the implementation of renewable energy systems by

smoothing out the fluctuation.

1.5.2 Shifting

Electricity demand can be divided into base load, intermediate load, and peak load.

Base load is large and constant. Base load plants are used to produce electricity for

base load. This type of plants are often nuclear or coal-fired plants, and generally
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are run at full output. Base load plants have high capital costs, but low variable

costs. Base load plants continuously operate to meet the minimum load. This type

of plants can’t have rapid changes in output, so they can’t follow load changes.

Peaking load plants are used to meet peak load. Peaking load plants such as diesel

generators and natural gas plants have high variable cost. Generally they only run

several hundred hours a year. The intermediate load plants are used to provide the

rest of load demand. Intermediate load plants operate less frequently than base load

plants [15].

Peak-to-average electricity demand ratio is used to measure the ratio of the peak

load to the time-averaged load level. It is a serious issue that the peak-to-average

electricity demand ratio rising in many U.S. regions. The data published in EIA(U.S.

Energy Information Adiministration: http://www.eia.gov), show that in 2012 peak-

to-average electricity demand ratio is rising to 1.78 in New England area [16]. High

ratio indicates decreasing average utilization levels for generators. A large amount of

peaking plants are invested, but only run less than 20% of time. The cost of whole

power system increases due to large assets investment.
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Table 1.2: Comparison among traditional power plants and renewable energy power
plants
Power plants
type

Examples Purpose Controllability

Base load
plant

Nuclear
plants; Coal-
fired plants;

Meet daily mini-
mum level of de-
mand.

Cannot be started and
stopped quickly. Out-
put is constant most of
time;

Intermediate
load plants

Combined
cycle natural
gas plants;

Meet most of the
day-to-day variable
demand;

Output can be
changed within hours.

Peaking
plants

Diesel genera-
tors ; Simple
cycle natural
gas plants;

Meet daily peak
load;

Output can be
changed within a few
minutes.

Renewable
energy power
plants

PV; Wind
turbine;

Output is dependent
on weather.

At the same time, the rapid development of renewable energy technologies lead

to continued increase of renewable energy penetration to power grids. However, the

weather-dependent renewable energy generation won’t follow power consumption in

the time dimension like the traditional power plant generations are controlled to

do. Lack of concurrence of energy generation and energy consumption could be a

substantial difficulty to overcome for power grids. Renewable energy doesn’t seem

like traditional power generation which is controllable in time and in the amount

of power to be delivered. Since the power of most of renewable energy are weather

dependent, it can’t operate on schedule strictly. Table 1.2 shows the comparison

among traditional power plants and renewable energy power plants.

BESS appears to be a suitable approach for these two problems since it could

be an alternative to peaking plants to save assets investment, and shift renewable

energy to the time of peak load. BESS could shift the energy from one time period

into another, and charge or discharge power as system demands. It could effectively
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absorb the excess energy or supply energy as needed.

Variability and unpredictability of renewable resources could be mitigated by

BESS. It is an essential element in smart grid to help keep load balance for the

feeder with high renewable energy penetration and shave the peak load. The study

in [17] shows that reliability is increased after BESS is introduced to power system.

Hence key benefits from storage systems are the ability to smooth out the PV

output spikes, and perform peak load shaving by charging from grid or renewable

energy. Price arbitrage and energy firming are two other benefits, which will be

introduced in Chapter 4 in detail.

1.6 MPC

MPC (Model Predictive Control) is a good technique to apply process control in

smart grid situation. The industrial application of MPC occurred earlier than the

method’s reliability was proven and developed. Prior to 1980, chemical plants and oil

refineries begin to use MPC for process control. Soon it becomes the most popular

advanced control method in industry.

There are a large amount of renewable energy resources in smart grid, and the

renewable power generation has uncertainty. MPC involves the prediction of state,

and it is well-suited for a system with many uncertainties. Future control inputs

and future plant responses are predicted using a system model and optimized at

regular intervals. It seeks an optimized solution for next short period to reach the

optimization for a long term finally. But it never actually operates optimally over

any period of time [18].

MPC is composed of three components: prediction, optimization and receding

horizon implements. In the prediction, a variety of methods could be incorporated
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in a predictive control strategy, such as deterministic, stochastic, or fuzzy. The great

merit of MPC is to linearise the plant in a small interval when the plant might not

be linear function at all for a long time. Based on linearisation at each specified

operating point, linear optimization method could be used for the interval.

Uncertainties existing in the renewable energy output is a big issue for the main-

tain of power balance. Hence, the forecast becomes a very important means to help

maintain the system in a reliable state. MPC is a suitable optimization method

for renewable energy management in two ways: MPC involves the predictions, and

output will be adjusted based on the ongoing states constantly.

In this project MPC is operated in a Microgrid which includes a PV plant, battery

energy storage system, and a gas engine. The prediction consists of load, solar power,

and electricity price.

1.7 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:

• Machine learning is introduced into load prediction.

• Exploiting the available primary parameters of smoothing algorithm including

the required battery charge and discharge rate, window size of moving aver-

age(MA) algorithm, power reference input for MA, required battery capacity

and so on. The main work includes 1) proposing a way to calculate the restoring

power to help maintain State of Charge (SoC) in a certain range; 2) propos-

ing a self-adjusted smoothing algorithm; 3) proposing a rule-based smoothing

algorithm with low-complexity resulting in better control over ramping rate

of smoothed signal; It is showed that our proposed smoothing algorithm out-

performs the existing moving average algorithm; 4)A method is proposed to
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estimate the optimal battery size for a given area according to historic weather

data. The estimation method is to extract the frequency characteristic of his-

toric PV ramping rate, and then to find optimal battery size. That will avoid

unnecessary investment due to improper battery size.

• The proposed shifting algorithm includes three main functions in one platform.

Based on observation of a long term site operation, several other functions are

designed to involve in shifting. The main work includes: 1) recognizing three

main shifting goals from all major concerns; 2) first put three main shifting

functions in one platform in utility scale; 3)proposing a way to unify various

benefits, and it could be compared and find the overall best operation plan

from the three functions. 4) develop day-ahead schedule and hour-ahead opti-

mization. These two schedules are combined together to dismiss the deviation

of day-ahead schedule when running in real time.

1.8 Structure of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 gives a short

introduction about two smart grid projects. Chapter 3 introduces several methods

in load prediction. PV prediction is presented also. In Chapter 4, we propose the

shifting algorithm, which include making day-ahead schedule for grid-tied mode, and

implementing MPC for islanding mode. In Chapter 5, the proposed smoothing algo-

rithm is presented. Several important aspects for smoothing algorithm are analysed,

especially the optimal battery size calculation method is put forward. Finally, we

conclude the dissertation in Chapter 6.
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Project introduction

2.1 PNM/DOE Solar and Battery Storage project

In order to explore how to use the storage system to benefit PV and Microgrid,

PNM, in collaboration with other partners (Department of Energy (DOE), EPRI,

and University of NewMexico (UNM), East Penn Manufacturing Inc. (EPM), Sandia

National Laboratories, and Northern New Mexico College (NNMC)) has Launched a

Smart Grid Demonstration project that couples an advanced lead acid battery with

the output of a 500kW PV installation [19] [20]. The project was commissioned in

September, 2011. The goal of this project was to demonstrate how a utility-scale (1

MWhr) storage system application would help provide a stable PV output from an

adjacent PV array.

An aerial view of BESS is shown in figure 2.1. The schematic representation is

shown in figure 2.3, which displays a power system one-line diagram of the BESS

combination with the 500kW Solar PV power plant. Two feeder configurations,

beginning and end of feeder are connected to the PV and BESS by reconfiguring

switches: at the end of the Sewer Plant 14 feeder and at the beginning of the Studio
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The two main applications of BESS are smoothing and shifting. In figure 2.2,

smoothed PV production doesn’t have spikes like original PV power. When shifting

battery outputs power based on PV output, the sum of PV and shifting battery

power is rectangle in shape which is showed in the right side of figure 2.2. This

example shows that smoothing and shifting help PV to become into a controllable

and reliable energy resource.

Smoothing is power based and relates to removing the short time PV output

intermittency. Shifting is energy based and relates to energy shift. It functions in

three ways: firming, price arbitrage and peak shaving. Firming is to make PV output

into a firm value for a certain hours with the aid of shifting battery. Arbitrage means

to buy electricity when price is low, and sell it when price is high. Peak shaving means

to shave the load during peak load time through a day.

Based on the needs from smoothing and shifting, BESS system combines two tech-

nologies: UltraBattery and Advanced Carbon Synergy Battery. Both of technologies

are invented by Australias Commonwealth Scientific and Industrial Research Organi-

sation (CSIRO). The UltraBattery which provides 0.5MW smoothing capacity. This

technology enables long-life VRLA batteries (valve-regulated lead-acid battery) to

be deployed with Solar PV power plants to smooth highly variable fluctuation of PV

power generation. This storage technology can respond fast enough to compensate

the rapid changes. The rating of smoothing battery is 0.5MW, which is same as the

rating of PV plant. Hence the smoothing battery can smooth out any amount of

variations generated from PV.

Advanced Carbon Energy Battery with 1MWh storage capacity is dedicated to

shifting energy comprises the other technology of enabling large energy capacity.

The unique aspect of this demonstration project is that the Battery Energy Stor-

age System (BESS) is composed of these two types of advanced lead acid battery:
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one is dedicated to shifting the energy; the other is dedicated to smoothing the

power. The inclusive goal is to provide a firm, dispatchable, distributed renewable

generation that simultaneously smooth intermittent PV output. The combination

of these two technologies enables long-life VRLA batteries to be deployed with PV

power plants to both smooth power generation, and shift power delivery to times of

high power demand [4].
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2.2 Mesa del Sol Micro-Grid Demonstration

“Mesa del Sol Micro-Grid Demonstration” project, is a collaboration between New

energy and Industrial Technology Development Organization (NEDO) and UNM.

The Aperture Center in Mesa del Sol, Albuquerque, New Mexico is the test site

for the microgrid. This Microgrid is a small-scale version of the larger electrical

grid, and is installed at the aperture center at Mesa del Sol where UNM, PNM,

Mesa del Sol and Sandia National Labs are involved in a collaboration aimed at

making renewable energy a workable reality that can be incorporated into the nation’s

electrical grid.The left corner in figure 2.4 shows this project.

This Microgrid comprises a 50 kW solar PV system, a 80 kW fuel cell, a 240 kW

natural gas-powered generator, a lead-acid storage battery power system, and hot

and cold thermal storage. All of these generating resources together supply as much

as 50% of the aperture centre’s required energy. These resources are interconnected
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through a control room and building management system in the Aperture Center.

The project is commissioned since spring of 2012 [21].

The goal of the project is to research how to integrate large amounts of intermit-

tent renewable energy to the existing electrical power grid. The project enables the

Aperture Center to respond to demand/supply signals from the power grid, and also

can operate independently.

This Micro-Grid Demonstration project examines behaviour of individual compo-

nents (such as individual houses, EVs, appliances, storage (fuel cell or other type)) in

detail, both spatially and temporally. The Microgrid can be connected to the smart

grid demonstration project, but can also operate independently as a stand-alone

system.
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Prediction

3.1 PV prediction

This section is accomplished by Wesley Greenwood. An important aspect of fore-

casting solar irradiance, is to explore the applicability of using percent cloud cover

predictions, which are typically used to determine visibility for aviation, for irradiance

prediction. Using known equations which define solar trigonometry and position, a

theoretical clear-day irradiance profile was calculated specifically for the array ori-

entation at Mesa del Sol in Albuquerque, New Mexico. From this, percent cloud

cover predictions posted by the National Oceanic and Atmospheric Administration

(NOAA) were applied to the theoretical clear-day data such that:

Ipredicted = Itheoretical(1− k ∗%C) (3.1)

Where,Itheoretical means the theoretical clear-day irradiance for PV array located

at Mesa del Sol in Albuquerque. k is a constant which is chosen to best correlate to

historical data. The constant was initially given a value to weight the percent cloud

cover’s effect. %C means percent cloud cover [22].
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Figure 3.1 shows an example of PV prediction on a sunny day. Even the percent

cloud cover can’t not be predicted in very short period, PV production prediction

still follow main trend.

After developing this prediction method, it became apparent that there is room

for improvement over using percent cloud cover predictions, but, depending on need,

the method could be used to estimate energy. It becomes a very important input for

optimization theory.

The prediction discussed above is based on site-specific ground data. Since the

ground data is not available anywhere, satellite derived weather inputs start to be

used to predict PV output. According to [23], PV performance models run with

site-specific ground data provide the most accurate energy prediction. However, the

satellite derived weather inputs with same model can bring very good estimates for

longer time periods of energy.
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More PV performance models are introduced in [24]. In order to test the ability

of various PV performance models for different system designs and technologies in

varied climates, [25] provide a common approach for a standard model validation

procedure.

3.2 Load prediction

3.2.1 Short Term Load Prediction

Autoregressive model

Linear regression is based on a time series analysis. An autoregressive model is a

common type of linear regression. Consider a series y1, y2, · · · , yn, ; an autoregressive

model of order p (denoted AR(p)) states that yi is the linear function of the previous

p values of the series plus error term.

yi = φ0 + φ1 ∗ yi−1 + φ2 ∗ yi−2 + · · ·+ φp ∗ yi−p; (3.2)

The order p of linear regression could be decided by using the partial autocorrelation

function (PACF). PACF can find out the correlation of data with a certain lag by

removing all of the low order of autocorrelation. After finding out the order of

autoregressive model, the Levinson-Durbin algorithm can be used to calculate the

AR coefficients φ1, φ2, · · · , φp [26]. Then yi could be obtained by equation 3.2.

Slope-Predictor Functions

yi = yi−1 +

(

fi−1 − fi−h

h

)

(3.3)

The slope prediction is to use the average slope of h previous values as the pre-

dicted slope used for next value. The slope will be calculated for every new point.
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Here, the mean squared error (MSE) is used to evaluate the prediction methods.

It is the average of the squares of difference between the estimator and what is

estimated. In figure 3.2,the MSE of the two predictors are 347 and 135. The slope-

predictor function has less MSE than quadratic regression.

b-16*% |epf �'03#*-$'($ '. 3*%&-c,-'( *%$6h,$ 5-,/ ,5' 0%,/'&$

Support vector machine (SVM)

SVM is a broadly used tool for classification and prediction. As for prediction, the

empirical data is used to train a model, and further the model is used for prediction.

SVM are also called maximum margin classifiers, because it minimizes the empirical

classification error and maximize the geometric margin [27].

Comparing with other machine learning methods, SVM converges quickly, isn’t

liable to get trapped in a local minimum and is able to reach the global optimization.
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The input data are mapped into a high dimensional space. Though the data are non-

linearly mapped, SVM attempts to find the linear relationship between the mapped

data and labels [28]. The optimization problem is given as follows:

Min:
1

2
∗ ‖w‖2 + C

l
∑

i=1

(ξi + ξ⋆i ) (3.4)

Subject to:






yi − w ∗ φ(xi)− b ≤ ǫ+ ξi

w ∗ φ(xi) + b− yi ≤ ǫ+ ξ∗i

(3.5)

The first term in the optimization problem represents regularization of control

system. The second term means error. The ǫ − insensitive loss function is used to

control the loss. The RBF(Radial Basis Function) kernel is used in this work since

a linear model is a special case of RBF, and a sigmoid kernel behaves like RBF for

certain parameters [29]. The RBF kernel is as follows:

K(xi, xj) = exp(−γ‖xi − xj‖
2), γ > 0 (3.6)

For RBF kernel, the penalty parameter C and kernel parameter γ together need

to be chosen.

LIBSVM is an integrated software for support vector classification, regression and

distribution estimation. In this project, we use LIBSVM as a tool to run SVM [30].

Usage interface svmtrain

model = svmtrain(trainlable, traindata, parameter)

This interface is from LIBSVM. It is used to train SVM regression model. The

input arguments are the available data measured in the past:

• l[n-N], Measured load.
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• t[n-N], Temperature

• c[n-N], Cloud coverage.

• wd[n-N], Day of the week

l[n-N] means the measured load, which is N time steps before present time. The

load shape for the consecutive days usually share very similar pattern. The previous

days’ load shape will be a good reference for the next day’s load shape. t[n-N] means

measured temperature. Temperature is found to have strong correlation with every

day’s load. In some papers, temperature is the only parameter which is used for

load prediction. c[n-N] means the historical cloud cover. wd[n-N] means what day

the day is since the load on weekday is different with load on weekend. Even for

weekday, everyday load will have a slight change.

The load consumption largely depends on if the day to be predicted is a working

day, a weekend or a holiday. The historical measured load data together with weather
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are the input data for load prediction. Each column of trainData includes the four

types of data as follows:

trainData = [l[n], t[n], c[n], wd[n]]

As [29] suggests, the data would be first scaled into same range in order that the

value with large magnitude will not dominate in the calculation. Since SVM would

put data in a predefined format, the train date should follow the format, and put

the data into a matrix named trainData. The column of trainData means different

features of input data. The row means the data collected at different time.

Each column holds the content of all sliding windows at instants Nl, Nl+1 etc.,

assuming that all windows of data have the same length:Nl. This matrix has then

4*Nl rows which means that we have a total of 4 training vectors, and the number of

each vector is Nl. In this case, we use 4 different data concatenated, and a window

of 75 time instants, and then the matrix has 4*75=300 rows. For each instance, the

previous measured 75 data are used to predict the load for next instance.

A certain days’ data is used, n=7*96 in the test; 7 means the window size is 7

days; 96 means 96 samples per day, and one sample is obtained every 15 minutes.

The size of trainData is 4*(7*96). This method works appropriately. The last 96

samples are utilized to predict the value for next 15 minutes.

Cross-validation and grid-search together are run to find the best parameter C

and γ. By using the best parameters, the model is obtained using training data and

svmtrain interface, and later the model is utilized to predict with a test data sample.

User interface svmpredict [31]
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[Prediction, Accuracy, Probability] = svmpredict(testLabel, testData,model)

This interface is used to predict with the model calculated from svmtrain.

testLabel is a n × 1 vector. It is true value of prediction data. n is the total num-

ber of samples, and also means the number of predicted data. testData is supposed

to be a n × 1 test data input matrix, where n also is the number of features. For this

project, d is equal to 4 since we have 4 types of information related to load. Since

we use sliding window algorithm, testData will adopt the same format as trainData.

The format is as follows:

trainData =













































l[1] l[2] · · · l[N −Nl]

l[2] l[3] · · · l[N −Nl + 1]
...

...
...

...

l[Nl] l[Nl + 1] . . . l[N ]

t[1] t[2] · · · t[N −Nl]

t[2] t[3] · · · t[N −Nl + 1]
...

...
...

...

t[Nl] t[Nl + 1] . . . t[N ]
...

...
...

...













































The measured data up to the current moment are used for 15 minutes-ahead

prediction. The result is shown in figure 3.4.

Figure 3.4 shows load prediction is very close to actual load. In this figure, the

96 load value are predicted. For every point, the measured data up to the moment is

used. That means the prediction at any instant uses the actual load data as inputs.
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Hence there is no accumulated errors. The prediction result in the earlier time won’t

influence the following prediction.

How many measured points should involve in the prediction will decide how well

the prediction can track the load variation. PACF is a good tool to find out the lag.

Within the certain lag, the correlation of data by removing all of the low order of

autocorrelation is the maximum value comparing with other lags. That means the

data within the certain lag is the best date entry used for prediction.

3.2.2 Day-ahead prediction

Short term load forecasting handles the prediction of the system load over an interval

ranging from an hour to one week [32]. Day-ahead load forecasting still belongs to

short term load forecasting. Monthly or yearly load demand is easier to be modelled

since variations are smoothed out in long term. In fact short term load vary greatly

with the temperature, holiday, humidity, human behaviour and so on. Usually the
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prediction made in the city level or large substation is better than the prediction

in the distribution feeder level since loads change more greatly in the feeder level.

For this project, the prediction is made for a 4 megawatt distribution feeder. Many

factors can lead it to have large variations due to small number of residents. We

choose SVM to do day-ahead load prediction. 15 minutes-ahead prediction is more

accurate comparing with day-ahead prediction.

Data analysis and approach

The data used for day-ahead load prediction is the stored data from previous days

and forecast temperature and cloud coverage for the day to be predicted.

The data used for the day-ahead prediction are same with the data for 15-minutes

ahead prediction.

• l[n-N], Measured power load.

• t[n-N], Temperature

• c[n-N], Cloud coverage.

• wd[n-N], day of the week

The past measured data together with forecasted weather data construct the

input data for load prediction.

t[n] = {t[n−N ], · · · , t[n+Nf ]}
T , Temperature

c[n] = {c[n−N ], · · · , c[n+Nf ]}
T , Cloud coverage

wd[n] = {wd[n−N ], · · · , wd[n+Nf ]}
T , Day of the week
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Prediction models

testData =













































l[1− 1d] l[2− 1d] · · · l[N −Nl]

l[2− 1d] l[2− 1d] · · · l[N −Nl + 1]
...

...
...

...

l[Nl − 1d] l[Nl + 1− 1d] . . . l[N ]

t[1− 1d] t[2− 1d] · · · t[N −Nl]

t[2− 1d] t[2− 1d] · · · t[N −Nl + 1]
...

...
...

...

t[Nl − 1d] t[Nl + 1− 1d] . . . t[N ]
...

...
...

...













































Here load and weather data up to the current moment is used to predict load.

Every column is composed of previous load and weather. In the first column of

testData, we can see the load data, which is from same time on yesterday. The

following vector t is the temperature forecast. We assume the next day’s load will

largely follow the load pattern from yesterday, but will have corresponding change

according to weather. For instance, the higher temperature will increase the load.

Figure 3.5 is an example of prediction result. SVM using sliding window algorithm

is compared with SVM without using sliding window algorithm. The result of SVM

with sliding window is more close to actual load.
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The Shifting Algorithm

4.1 Introduction

Along with the rapid development of the renewable energy technologies, the energy

storage system is a key component to enable the intermittent and weather-based

renewable energy to be a reliable energy resource [33]. BESS can not only provide

power to simultaneously smooth the renewable generation variation, but also provide

large energy by storing renewable energy and delivering it to the period of highly

needed. Commonly there are three typical shifting functions: peak shaving, firming

and arbitrage. In this work, it is the first time for a utility scale system that all three

shifting functions are incorporated into a single platform. The optimization formulas

are constructed for these three functions with the data of predications, such as PV

prediction, load prediction and price forecast. Both islanding mode and grid-tied

mode are discussed.

In islanding mode, the day-ahead schedule and hour-ahead schedule are combined

together. Comparing with hour-ahead schedule, the day-ahead schedule could better

dispatch energy based on day-ahead load and weather prediction. Hour-ahead sched-
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ule could help to correct the day-ahead schedule with actual data and short-term

prediction.

The extensive field experience and result from filed site are also shown. Besides

the three main functions, seven important shifting functions are introduced, which

are involved in an ongoing storage system demonstration property.

b-16*% }edf res tu vwt v*'$3%*-,2 vx 3h#(, 5-,/ Bz{{

When BESS cooperates with PV to dispatch power, multiple issues need to be

considered carefully, including the setting of objectives, objective priorities, and the

control strategy. How to maximize the benefit of energy storage system is a problem

to consider since BESS could do a multiple of jobs. This work needs to cooperate

with the utility to get inputs from field sites. During three-year DOE demonstration
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project ongoing in New Mexico, University of New Mexico (UNM) partnered with

PNM and other institutions to set the shifting goals based on the real needs from the

utility, and also basing the solution on the advanced optimization theory. Normally

shifting is conducted in three aspects: peak shaving, firming, and arbitrage. These

three aspects are described separately in what follows.

Peak shaving means to shave the peak load to a point that fewer or no peaking

generators will be needed. Usually utility maintains relatively expensive peaking

generators to provide power for on-peak load, which are only used during on-peak

load time. Such an investment increases the electricity cost since a peaking generator

is only used for several hundred hours a year. Peak shaving could be realized by

using storage system or other DERs to provide energy during peak load time to

avoid investment in peaking generators.

Firming means BESS produces power to make the output of PV and BESS to

become a desired shape and last for a certain time. WSM (Whole Sale Market) is the

utility unit which is responsible for trading electricity in the market, and generate

energy supply plan for the following hours or next day. If a fixed value of power

could be provided for four consecutive hours, then it is considered as a firmed power

resource, and could participate in the energy supply plan. Under a perfect sunny

day, the power profile of PV is close to a sine wave form. With the additional energy

from BESS, the final output which includes PV generation and battery output could

be firmed into a square wave.

Arbitrage means BESS could exploit the price difference to make profit. BESS

cost needs to be considered into arbitrage calculation.

Normally single purpose operation optimization is discussed and reached by most

of papers [34] [35] [36] [37]. In the real world, all of the conditions comprising weather,

price and load are changing. For a day with great price variation, arbitrage might be
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a good way to have BESS to operate. However, if price variation is too small, BESS

might stay idle until the price margin gets large enough. To guarantee a certain

profit, BESS can’t be used everyday. Same thing applies to other two functions. If

peak load is not high enough, BESS is not necessary to function considering high

operation expenses of BESS. Hence any single purpose function can’t bring maximum

benefit to power system. Every day’s BESS schedule should be based on the weather,

electricity price and load of the specific day. For example, during summer season,

peak load is very high comparing with other seasons. Most of time, peak shaving is

the one to bring most benefit to system.

In this project, these three functions are combined together into one platform.

Weather, electricity price and other key factors collectively determine the function

to be operated for a particular day. Benefit is maximized for utility by considering

more than one single function.

By performing these functions in the BESS, the operation results are accumu-

lated, and help us to design a practical and comprehensive algorithm. Several other

functions which are involved in BESS operation are introduced.

The major contributions of this work related to shifting include:

• Differentiate three main shifting goals from all major concerns. Further the

calculation method is described in detail. These three main shifting goals are

peak shaving, arbitrage and firming.

• Develop a way to transfer the benefits from different units, for example, energy

and power into same unit: monetary value. Therefore the various benefits

could be compared, and the overall best operation plan is found out from the

three functions.

• Develop the optimization method to calculate the maximum benefit from those
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three . Day-ahead schedule and hour-ahead optimization is combined together

to correct the deviation of day-ahead schedule when running in real time.

This chapter is organized as follows: in section 2, the demonstration system will be

presented. In section 3, additional seven shifting functions are proposed from various

perspectives. These functions are introduced including its importance and how they

will operate together. The logic flow chart is presented to show the relationship of

these functions. In section 4, a detailed description on optimization is presented.

The key aspects related with MPC are discussed. The simulation result and the real

data from filed site are both given. Future work is discussed. All of these control

strategies assume the availability of PV output prediction, price forecast and load

prediction, introduced and partly described in chapter 2.

4.2 System setup description

b-16*% }epf {c/%0#,-c *%3*%$%(,#,-'( '. -(,%1*#,%& Bz{{ #(& vx $2$,%0
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The schematic representation of the battery storage system under analysis is

shown in figure 2.3. BESS combines two technologies. One is the UltraBattery which

provides 0.5MW smoothing capacity. The UltraBattery technology enables long-life

VRLA batteries to be deployed with Solar PV power plant to smooth variable power

generation caused by clouds disruption. Advanced lead acid batteries dedicated to

shifting energy are the advanced Carbon Synergy Battery. It provides 1MWh storage

capacity. The combination of these two battery technologies enables long-life VRLA

batteries to be deployed with PV power plants to both smooth power generation

that is disrupted by clouds, and shift power to satisfy operational objectives. The

requirement for the shifting battery is to have enough capacity to store energy for a

specified duration of time. The BESS used in the present project has the capability

to do just that.

Two controllers are implemented in the BESS. One is the application controller

which is dedicated to derive the active and reactive power references for BESS.

The other is the BESS Master Controller, which is used to collect battery system

information, and sends the control signal to the PCS (power Conditioning System).

The PCS will be responsible for converting DC power into the AC power as Master

controller commands.

4.3 Prediction

The predictions are necessary for conducting a successful control of renewable energy.

Three predictions are involved including electricity price prediction, load prediction

and PV generation prediction.
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Load shape prediction

Since the optimization is made for the next whole day, day-ahead prediction is very

important. The more accurate the prediction is, the more optimal the solution would

be. SVM (support vector machine ) is used for load shape prediction by learning

the load shape from the past. SVM learns the correlation among the load shape,

temperature, and cloud coverage. A model found based on the historical data is used

for next day’s load prediction.

Price prediction

Some electric utility operators publish price forecasts online. CAISO is one of them.

CAISO publishes the day-ahead electricity price forecast online. In this project, the

day ahead price forecast is extracted directly from this website.

PV forecast

According to the cloud coverage published by NOAA, PV production is predicted for

the next day. The prediction in sunny day is more accurate since the change of local

cloud cover is less. The prediction is used to help making BESS operation schedule,

and the degree of accuracy can basically satisfy the needs.

Among of these three predictions, accurate load prediction is the most difficult

one to get since it is influenced by many factors like weather, human behaviours,

season and etc. Comparatively, other two predictions are simpler.
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4.4 Control strategy

4.4.1 Flow chart

Figure 4.3 is the flow chart for the shifting algorithm. It shows the functions operation

sequence. First, if it’s weekend, weekend mode will be selected. In this mode, BESS
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will only keep SoC within rated range. During weekday, the emergency peak shaving

and high value arbitrage are used to provide immediate power supply to shave the

load, or sell electricity at high price by monitoring the real time load or price.

By comparing the benefits of shifting functions, the optimal main function is

chosen among peak shaving, arbitrage and firming. After that, if peak shaving or

firming is chosen, the system is going to decide the charging mode based on PV

generation and price prediction. BESS prioritizes charging from PV since it’s co-

located, and saving distribution power loss. If next day’s predicted PV generation

is not enough to fully charge BESS, system will charge from the power grid during

the early morning. This case rarely happens since cloud cover need to exceed 50%

for such case. In Albuquerque, such weather is rare. Most of time, BESS is charged

from PV to avoid transmission and distribution loss. It is reported that transmission

and distribution losses amount to about 7 percent of whole electricity generation in

US. As a consequence, in this project corrected electricity cost generated from PV

is actual cost multiplied with 0.93. However, if electricity price in the early morning

during 1am to 6am is lower than corrected electricity cost from PV, BESS would

charge from power grid. This is how BESS choose the charging power when the

function to run is peak shaving or firming.

When arbitrage is chosen, when to charge and discharge BESS becomes an im-

portant aspect. The charging time will not be limited to one period. Usually BESS

will switch among charging and discharging according to electricity price variation.

It just seems like stock trading in the market. Charging seems like to buy electricity

from market, and discharging seems like to sell it back to grid. Shifting algorithm will

automatically calculate when to charge, and the charging amount for any function.

According to load prediction and shifting algorithm flow chart, the system will

make day-ahead schedule, which includes when to start discharging, when to start

charging, the charging and discharging rate setting, and when to stop.
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The prioritization of the following three main functions by default are: peak

shaving, arbitrage and firming. There are seven other specific functions which are

derived from these three functions and serve different purposes. Ranked by priority,

these ten functions are:

• Emergency peak shaving

Peak load on the feeder is greater than a certain threshold, the battery will

stop any other ongoing functions, and provide full power to system in order to

reduce the exceptional high peak.

• High value arbitrage

When the real time electricity price is greater than a certain value, the battery

will stop any other ongoing functions, and sell all of the energy back to system

in order to have benefit from arbitrage.

• Peak shaving

The peak load of next day will be predicted one day ahead based on the weather

prediction. The start and stop time of peak shaving is calculated also based

on the weather prediction.

• Arbitrage

According to the PV production prediction and price forecast, the battery will

schedule when to store power, and will provide power when the price per unit

falls into the scheduled range.

• Firming

Providing a firm resource has a lot of value for the utility operations responsible

for determining generation resource allocation. Based on the need for a defined

magnitude and duration, a rectangle was defined for that dispatch. In this
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function, the smoothing battery should also compensate for fluctuation of the

PV production to improve the firmed PV dispatch during firming periods.

• Weekday daytime charging(Charge due to SoC)

Once the SoC (state of charge) falls below a defined value, the function of week-

day daytime charging will override other functions and start to keep battery

charge within its defined limits.

• Weekday night charging due to weather

This function attempts to predict PV production. If PV is not likely to be

able to produce enough power the next day to charge the battery fully due to

projected cloud cover, the battery will be charged during the night from grid

electricity.

• Weekday night charging due to price

This function monitors the electricity prices. If the price is lower than a given

value, the battery will begin charging immediately instead of charging from

PV.

• Weekday charging from PV

This function monitors the PV generation, and then charge battery in the

morning with PV generation.

• Weekend mode

During the weekend, the battery will only maintain SoC in the safe range, and

will not perform other functions except during emergency condition.

Besides three main functions (peak shaving, arbitrage and firming ), the other

six functions could be classified into two groups: exception case and charging case.

The first two functions (emergency peak shaving and high value arbitrage) are in the
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first group. They operate when peak load or electricity price are exceptional high.

These two functions could override any other ongoing functions once the condition

is satisfied. In the second group, there are five types of charging functions. Weekday

daytime charging is used to charge battery to maintain SoC above the low threshold

during weekday. The three functions(weekday night charging due to weather; week-

day night charging due to price; weekday charging from PV) are responsible to fully

charge battery before any one of three main functions starts to operate. Basically

battery could be charged from two power sources: PV or power grid. We prefers to

charge BESS from PV. However, if PV output couldn’t fully charge battery, battery

will charge during night. This is called weekday night charging due to weather. If the

electricity price during night is very low, BESS will charge during night instead of

charging from PV. This function is called weekday night charging due to price. The

charging method is selected each day by running pre-calculation. Only one method

will be selected among the three methods. Day-ahead schedule will include choosing

the right charging function. The last function is weekend mode. This mode is used

for weekend.

4.4.2 Unify units

The unit of each function is different, for instance, the unit of peak shaving is MW;

the unit of arbitrage is dollar value; the unit of firming is kWh. It is fundamental to

transfer entire units into uniform unit in order to compare one benefit with another.

In same unit, finally the optimal solution from those three functions can be chosen.

For the simplicity of calculation, monetary value(for example, dollar) is chosen as the

final unit for all of the functions. All non-dollar units will be converted into dollar

value. Our method is to first convert unit of peak shaving from MW into MWh,

which means to consider how much energy the peaking generator provide instead

of how much MW of load is shaved during time of peak load. Then the energy is
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converted into dollars by using gas price. For the function of firming, the unit is

kWh. We also convert the energy into dollar value according to gas price.

The general idea is to calculate how much energy is provided for each function,

and convert the energy into dollar value. Finally the dollar value is easy to be

compared.

This method is very easy to implement. The drawback is that the benefit of peak

shaving and firming is not completely considered. For peak shaving, same amount of

the shaved energy doesn’t mean to have same effect to power system. When shaved

energy is same, shaving more peak load will be better since it mitigates the needs for

peaking generator. How to better convert peak shaving and firming into same unit

will become our future work.

Transfer the unit of peak shaving into dollar

During peak load period, peaking generators are used to support the rapid increase of

power consumption. The peaking generator cost of providing same output as BESS,

will be accounted as the benefit of peak shaving. The cost of electricity generated

from such generators includes two parts: the investment of peaking generators and

operation cost. The investment is split into the cost for every day. The operation

cost usually indicates gas cost of running generators. The overall gas consumption

is integrated based on the day-ahead BESS output schedule. The seasonal average

gas price is used to calculate operation cost.

Transfer the unit of firming into dollars value

Unlike peak shaving, firming is not related to peaking generators or gas price, but

related to whole sale market electricity price. First, the integration of energy during
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firming is calculated. Secondly, the average whole sale market electricity price is

used to calculate energy monetary value.

4.5 Optimization for Grid-tied mode

After transferring all of units into dollar, the three functions are as represented as F1;

F2; F3; F1 = Peakshaving;F2 = Arbitrage;F3 = Firming; Our goal is to calculate

which function has highest value on a specific day.

By setting the value of αi, operators can manually make one function to have

higher priority than others. How to set the value of αi is a topic worthy of careful

consideration. Currently α1 is assumed to be higher than others, and other αi is

equal since peak shaving is the main goal of BESS. The optimization function is as

follows:

Fi = αicifi(x) (4.1)

α1 = 1.2;α2 = 1;α3 = 1;

where, αi is the weight factor which determines which of the function has high

priority. αi is the weight factor for each function. ci is the coefficient which is used

to transfer the unit of each function into dollar value. This optimization is to be

performed daily or even hourly and it could be used as battery output reference value

by the utility.

Once the F1, F2, F3 are calculated, only the function with highest benefit value

will be chosen to perform on that day. Other two main functions won’t perform for

any time of that day. For instance, if peak shaving is chosen, firming and arbitrage
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won’t be performed. The reason is that any one of those three functions can consume

the whole capacity of BESS.

4.5.1 Peak shaving

According to day-ahead load prediction, peak load is found for the next day. The

peak shaving threshold would be tentatively set as predicted peak load minus 250kW

since BESS can supply 250kW at most. By integrating energy above the threshold

from the day-ahead load prediction, the energy needed during peak load time is

calculated. BESS has 1 MWh as its rated energy limit. If the energy required

is beyond this value, the threshold needs to have corresponding adjustment. The

optimization function is as follows.

F1 = α1c1f1(x) = α1c1A1X

−1000 ≤ A1X ≤ 1000 (4.2)

−250 ≤ X ≤ 250 (4.3)

A1=
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(4.4)
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A1 is a vector in R1440. 1440 means there are 1440 minutes on each day. c1A1X

represents integration of monetary value of peak shaving for every minute. In order

to get the accurate result, the resolution of optimization solution is one minute.

The optimization is constrained by the two conditions: the power boundary and

the capacity boundary. The two constrained conditions are represented as equation

4.2 and equation 4.3. A1X stands for the accumulated energy consumption. In

equation 4.3, the maximum discharge rate and charge rate of battery are +/-250kW.

Because this optimization is used for day ahead planning, the ramping rate of each

resource is not taken into account. The ramping rate will be considered in hour-ahead

MPC. The benefit of peak shaving will be monetized into dollar value as described

in previous subsection .

4.5.2 Firming

Usually BESS is used as a separate storage device to provide power during peak load

by using a load forecast and price forecast [38] [39] [40]. However, firming focuses on

how to dispatch PV power combined with the BESS. This implies that the sum of

power provided by BESS and PV output will be optimized. Firming is the ability to

guarantee constant power output to the electricity market during a certain period of

time [19]. In the summer, the peak load time is from 2pm to 6pm. PV also produces

a large amount of power during this time. By using the PV and BESS together,

multiple benefits can be quantified for the feeder and substation transformer during

the peak load times. In the winter, peak load time is from 5pm to 9pm. BESS will

store energy before 5pm, and deliver power from 5pm to 9pm.
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4.5.3 Arbitrage

Arbitrage is to take advantage of price difference to make profit. Electricity price

will vary every day when flexible pricing policy takes effect. Flexible pricing allows

electricity customers to choose to pay different rates for electricity during different

times of the day. Most of the time price variation coincides with the load changes.

For arbitrage the most important thing is to find the highest and lowest price for the

day, then according to the difference to decide whether or not the arbitrage will be

beneficial for the day.

Arbitrage is to use the energy storage to move the energy from low-price periods

to high-price period in order to gain the margin. The price differential between

on-peak and off-peak operation is the factor on which the battery controller plans

charging or discharging. Besides earning the price difference, using the battery has

the following additional benefits:

• Defer the investment of utility;
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If the maximum load rarely appears for some distribution load, or the peak

load only stay for a short time of a whole day, the installation of battery would

defer the transmission and distribution upgrade cost. The benefits range from

15,000$ ∼ 1,000,000$/MW. Benefits from deferral of system upgrades may be

important in the decision to deploy energy storage system [41].

• Charging is also useful for the system;

When electricity price is very low, it could mean that a large amount of wind

power is coming into the system. This usually happens around midnight till

early morning. Charging battery during this period is more valuable than

getting lower-priced energy, which also helps to regulate the system, and to

absorb the excess renewable energy. When the sun rises, the power supplied

by PV increases till solar noon. During this period, the price could be low if

abundant PV power flows into the power grid, the battery could regulate the

extra power from PV by charging during the morning.

Estimate of BESS cost

Currently the investment of BESS is still very expensive. For this project the cost

of each MWh provided by BESS (the whole BESS cost is divided by the energy

that BESS could provide in its lifetime.)is above 100$. Since most of time the price

difference is in the range of under 100$ through a day. That means BESS couldn’t

make any profit. However, if considering the other benefits of arbitrage, the cost

could be lower than 100$. For the purpose of the experiment in this work, the cost

of each MWh is marked down to 10$. It’s a rough approximation for future BESS

cost. Determining an accurate cost based on the additional benefits from BESS

should be a topic worthy to discover.
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Arbitrage strategy

Thus, this section focuses on the cost effectiveness of using energy storage as an

arbitrage instrument to mitigate congestion-induced high electricity prices and/or to

reduce potential low load conditions in cases where there is insufficient load (com-

monly at night) coincident with large electricity production attributable to growing

RE generation capacity.

A common way to find the price difference is to acquire the time when highest

price and lowest price happens. Then the time span near these two prices will be

considered as the time span for charging and discharging if the price difference is big

enough to make profit. The battery could sustain 4 hours charge. The time when the

highest price happens will be center of these four hours time span for discharging.

The same thing goes for the time span for charging.

This method is simple, but not reliable. Firstly, the time span where the lowest

price falls is not necessary the right charging span. The price may be high in the time

span except the lowest price. Secondly, the predicted price doesn’t align with the

real time price. The scheduled charging span maybe is totally off the true charging

time span.

Due to these two reasons, a method is proposed to do arbitrage. First, according

to linear programming, the possible charging span and discharging span is calculated.

The time span isn’t four hours since the price changes more often than hourly. The

minimum charging or discharging time is 15 minutes instead of hours which guar-

antees the price trend could be caught. After the optimal charging and discharging

schedule is determined, another problem would arise. In reality, the real price could

deviate from the day ahead predicted price greatly. In order to solve this problem,

the relation between price and optimal battery behaviour is obtained to make a

schedule based on price instead of on time. Hence the scheduled battery behaviour
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will rely on the price threshold, not a time schedule.

By setting the optimization function and constraints properly, the two price

boundaries are determined. The lower price boundary is for charging the battery.

The higher price boundary is for discharging battery. The gaps of these two bound-

aries are the battery cost. In this paper, $10 is used as the battery cost for the energy

of per MWh. The following diagram shows the day-ahead charging and discharging

schedule. In real time, the two price boundaries will be used to determine when to

charge or discharge, which are $35 and $45 for this case.

In order to catch the descendent trend of the price, the discharging rate will

decrease along with decline of price. To keep battery from tracking small ripples, the

battery will only respond to the price drops greater than $5. Similar to the charging

process, the battery will respond to any price increase greater than $5.

4.5.4 Day ahead planning

Day-ahead planning is a multi-objective optimization problem. By means of all

of predictions, the day-ahead planning tries to find the optimal solution for power

dispatch of BESS and other distributed energy generators for the next day.

The shifting battery of BESS normally operates at a SoC less than 100% of

charge, and is operated within upper and lower limits set by the BESS Controller.

The difference between these two SoC limits is the “Useable Energy”. Only the

useable energy can be used for shifting applications.

The goal of day-ahead planning is to identify the thresholds for main functions

(peak shaving, firming, arbitrage), then BESS will have a combination of start/stop

times for both charging and discharging of the shifting battery, along with the optimal

charge/discharge rates for a given feeder configuration.
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Generally the threshold needs to be calculated for each main function. In some

papers the day ahead schedule is created for each timeslot of next whole day according

to prediction. However, the prediction can’t be prefect as the real data. The error will

substantially influence the calculated optimal output especially when the prediction

deviates from actual data by a high percentage. The effectiveness of optimal result

could be weakened for the case. In order to reduce the dependence on weather or

load predictions, a new method is proposed. Instead of making a schedule minute by

minute, the threshold will be calculated to open or stop a function. For example, for

arbitrage, when price rises to the discharging threshold, BESS will start to discharge.

On the contrary, when price decreases below the discharge threshold, the function

will stop discharging.

For each main function, the threshold to be calculated is different. For the func-

tion of peak shaving, the threshold is a load value. When the load is beyond this

threshold, BESS will start to discharge to shave the peak load. The charging value is

equal to the difference between real time load and load threshold. On the contrary,

when load is below the threshold, BESS will stop charging to power grids. The load
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% CC % Correction factor
0-20 90
20-40 85
40-60 75
60-80 75
80-100 80

Table 4.1: Correction factor for days experiencing stated percent of cloud cover

may cross the threshold several times a day. BESS will switch between charging and

discharging back and forth. The purpose is to shave all of load above the threshold.

If firming is chosen, the threshold for the final output is calculated. This output

is the sum of PV generation and BESS output. During the time of firming, BESS

will output with PV to make total output equal to the threshold. When to charge

or discharge, and charging or discharging rate are decided by the threshold and real

time PV generation. WSM would be informed of the threshold every morning before

6am. Hence the firmed power could be made into energy dispatch schedule.

PV generation forecast is used for threshold computation. The prediction couldn’t

exactly follow actual value. According to Greenwood’s work [22], RMSE (root-mean-

square error) will increase along with the increase of cloudy cover. For example, the

monthly RMSE for 80-100% of clear day insolation is 0.6449 kWh/mm, which is

around 8.6% of daily PV production. the monthly RMSE for 0-20% of clear day

insolation is 1.3224 kWh/mm, which is around 16.5% of daily PV production. Due

to RMSE, predicted PV generation may be lower than the actual generation. The

firming threshold is calculated based on the predicted PV generation, not actual one.

Therefore, in order to guarantee there is enough power to provide during firming,

90% of calculated firming threshold will be used as the final threshold for the 80-100%

clear sunny day. If it is cloudy day, the prediction error is comparatively larger. 75%-

85% of calculated threshold will be used. The correction factor is based on percentage

52



8[V\;<O �^ �[< �[HI;H:K �UK9OH;[�

of cloud cover. In table 4.1, the correct factor is given for days experiencing stated

percent of cloud cover.

As for the function of arbitrage, there are two price thresholds to control BESS

charge or discharge. One is higher, and another is lower. The higher threshold

controls when BESS sells energy to grid. The lower one determines when BESS

starts to buy energy from grid. Both of charging rate and discharging rate are

250kW, which is the rating of shifting battery.

There are two factors which influence how BESS responds to real time price

change. The first factor is the limit of ramping rate. Theoretically BESS can increase

to 250kW from 0kW, or decrease to 0kW from 250kW in one second. However, fast

charging or discharging will shorten battery’s lifetime. 15kW/minute is set as the

limit for ramping rate. It protects battery charging or discharging rate from severe

changes. For every minute, the rate can only increase 15kW, or decrease 15kW. On

the one hand, this method protects battery from potential damage; on the other

hand, it may cause shifting battery to miss the moment when price goes very high.

4.5.5 A special day-ahead planning for firming

In the previous section, the firming time is four hours long, and the output is constant

for the whole period. In this case, it is assumed that the firmed output could be

constant for each hour. Hence the output value can be different for each hour.

Then it becomes a multi-objective optimization problem. Reliability, economics and

environment are taken into consideration. Specifically, the objectives include peak

load reduction, avoided generation, arbitrage and CO2 emission.

The peak load reduction is the most important factor. PV power production

displacing peaking plant operation can have a very short attractive ROI (Return On

Investment). The second factor, avoided generation, is all of the energy displaced
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by PV (not only during the peak load periods). Production of CO2 also need to be

minimized. The resulting avoidance of production of CO2 is related to avoided power

generation. The third factor, arbitrage means to use the battery and distributed

energy generators in an economic way. Considering the high cost of the battery

storage system and distributed energy generators, these resources are tend to provide

power at the time when there is profit. The last factor is production of CO2. As for

firming, the system output needs to be constant within the hour. The constant value

is convenient and necessary for operation personnel to dispatch electricity. However

PV output in sunny day is close to a sine wave, and can’t be constant during an

hour. The battery will firm the PV output to make it a square shape for each hour.

These merit functions are referred as f1, f2, f3 and f4 correspondingly. f1= feeder

peak reduction; f2=avoided generation; f3=arbitrage; f4=production of CO2; X is

the only variable, and it represents the power output including the battery system

and other distributed energy generators, where X ∈ R240. Our goal is to optimize

the overall merit function:

F (x) =
4

∑

i=1

αicifi(x) (4.5)

where, αi is the weight factor which determines which of the merit functions

among f1, f2, f3, f4 has high priority. This optimization is to be performed daily, and

could be used by the utility. Among of these four functions, the peak shaving has

high priority. From 2pm to 6 pm is the time when peak load happens for summer.

Usually the system output would provide most power for these 4 hours. By adjusting

the value of αi, operators can make the final output to reduce more peak load on a

specific hour, or provide more energy during whole four hours.

A1X stands for the feeder peak shaving. A2X stands for the avoided generation.

A3X ∗price is the monetary value of the energy from battery based on the electricity
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price. A2X ∗ 1.341 indicates the pounds of CO2 which are prevented from emitting

to environment due to renewable resources. A1, A2, A3 are vectors in R240. 240

means 240 minutes since firming time is 4 hours long. This optimization problem is

constrained by two conditions: power capacity and energy capacity.

F (x) =

∫ t2

t1

4
∑

i=1

cixidt (4.6)

ci means the cost for each resource. xi is the scheduled output for each resource.

Equation 4.6 represents the function to be optimized. X is the optimal solution

which makes F(x) to have maximum value. X would satisfy two constraints. One is

capacity constraint, another one is power constraint. The power constraint is based

on the characteristic of each resource.

−1000 ≤ AX ≤ 1000

−250 ≤ X ≤ 250

AeqX = Beq

(4.7)

Vector AX represents the accumulated battery energy consumption. The energy

capacity of battery system is 1000 kWh. The higher boundary for battery energy is

1000 kWh, and the lower boundary is -1000 kWh. The number is from battery’s own

capacity rating. The maximum discharge or charge rate of battery are +/-250 kW.

Because this optimization is used for day ahead planning, the ramping rate of each

resource isn’t taken into account. The energy capacity is 1 kWh, thus the battery

system can output 250 kW for four hours if the battery is fully charged. In order

to have a constant output value within each hour, the system power reference is the

sum of minimum PV output in that hour and BESS output.

This optimization problem is the constrained linear programming problem. There
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is one linear inequality constraint, one lower bound and one upper bound, and one

linear equality constraints for X. The interior point method is used to solve this

problem. In order to get the accurate result, the optimization precision is one minute.

The three inputs are the PV generation prediction, electricity price and load

prediction. The PV generation is decided by the weather conditions, accounting for

cloud cover, irradiance, temperature, and wind. The four weight factors will affect

the optimization result greatly. The factors will alter according to the different

situations. Figure 4.6 is the firming result. It shows two firmed PV outputs when

BESS gets fully charged and not get fully charged before 2pm.

b-16*% }e�f b-*0-(1 *%$6h,
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Name Capacity(kW) Power Output(kW) Maximum Ramp
Rate(kW/sec)

Gas Engine N/A 180+(-60∼60) 0.45
Fuel Cell N/A 60+(-30∼20) 0.064
Battery 1000 -500∼500 500
PV N/A 0∼250 ≤ 250

Table 4.2: Characteristics of distributed resources in Microgrid project

4.6 Optimization for islanding mode

Mesa del Sol Microgrid demonstration consists of an array of generating resources

including PV, a fuel cell, and a natural gas engine. It cooperates with BESS to test

the islanding mode of this Microgrid. Each distributed energy resource in Microgrid

demonstration has its own characteristic. The table 4.2 lists such constraints.

In islanding mode, there is no need to consider arbitrage, peak shaving or firming

since all of energy resources need to meet the demand. The goal is not to shave the

peak or firm the PV. Since there is no electricity trading between the power grid and

energy resources, arbitrage is not applicable. The object function will become min-

imizing the energy cost while maintaining power balance. For a Microgrid, various

resources cooperate together. The different operation characteristic of each resource

is fully considered in optimization.

Since it’s important to know when to store energy in BESS in order to provide

power later during peak load time, day-ahead schedule is needed.

The function to calculate the day-ahead schedule is:

F (x) =

∫ t2

t1

3
∑

i=1

cixidt (4.8)

ci means the cost for each resource. xi is the scheduled output for each resource.

The function is the whole energy cost of Microgrid. X would satisfy two constraints.
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One is capacity constraint, another one is power constraint. The day ahead schedule

designates power contribution from each resource to make the whole day’s output

optimal.

In islanding mode, one difference from grid-tied mode is no need of considering

electricity price information. All of resources need to track the day ahead schedule,

and minimize the energy cost of the deviation at the same time.

Model Predictive Control(MPC) The information from prediction can be used

for optimization. MPC makes calculated decision every small step based on predic-

tion. For this optimization problem, load prediction and PV generation prediction

are required.

Renewable energy is used broadly currently. A major concern coming along with

it is the integration of the renewable energy into power grid. A lot of research has

been done is about how to integrate a single type of renewable energy into power grid.

However co-optimization of different types of renewable energy to work effectively

and reliably is also very important. It is highly possible that several different renew-

able resources exist in a same area with different operation characteristic. Even for

the same type of renewable resources, the different capacity size, the output power

and other parameters could be a problem to be addressed. At the same time opti-

mization usually run under a lot of uncertainties. Under these requirements, model

predictive controller (MPC) is chosen to optimize the dispatch of the renewable en-

ergy resources.

MPC is a very good optimization method for the renewable energy management

in two ways: MPC involves the predictions, and adjusts the output based on the

ongoing states. In this project MPC run in a Microgrid which includes a PV plant,

battery energy storage system, and a gas engine. The prediction consists of load,

and PV generation.
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The following cost function to be minimized is proposed for this MPC optimiza-

tion problem [42]:

Renewable energy have high penetration ratio in Microgrid. Hence Microgrid has

ability to sustain while the accidents happen and the power is not available from the

grid. The energy storage system is an essential component for Microgrid. It can be

used to remove the time gap between the load and power supply. Also it can be used

for emergency power usage.

Figure 4.8 shows the system diagram. The MPC first obtains the data of PV
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production and load forecast, and then calculates the optimal output of battery

storage system, fuel engine and gas generator. Meanwhile, the state of charge (SoC)

of BESS would be kept in a safe range. In this section, how to optimize different

energy resources such as gas generator and fuel cell with BESS is studied.

b-16*% }e�f tv� $2$,%0 $,*6c,6*% &-#1*#0

The characteristic of BESS is high power rating, short response time, and rela-

tively low energy rating. The gas generator and fuel cell have the almost opposite

characteristic with battery. It can provide energy continually as long as the fuel is

enough, but has comparative low power rating and the longer response time. These

are two typical energy resources considering the differences. The goal is to make

use of advantages of these resources and make them work together efficiently. Using

less energy from BESS will be an important standard to determine the efficiency of

control algorithm. In this project one of the main power supplies comes from PV.

The PV production varies along with the weather. PV generation forecast is covered

in chapter 2.
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J(tk) =

∫ tk+N

tk

NDER
∑

i=1

ci(Pi)
√

(Pi(tk|t)− PDA)2dt (4.9)

where NDER is the number of controllable DERs (e.g. fuel cell, battery). N

is the prediction horizon of MPC, PDA is the calculated output from day-ahead

optimization. Pi(t = tk)(i = 1; 2; 3) is power output of battery, gas generator and

fuel cell which are variables of this optimization problem.

The objective of this control system is to make the total amount of these three

variables always near the day ahead schedule while minimizing the whole cost of three

resources. ci is the energy cost for each type of resource. The term which multiplied

with ci is the square root of the squared power deviation from its day-ahead optimized

value. ci multiplying with it means the monetary value of energy deviation from the

day-ahead schedule. Note that the value of each ci is not necessarily a constant, as

it may vary based on power level.

The purpose is to minimize the energy cost of deviation, and keep the energy out-

put always track the day-ahead schedule. In Grid-tied module, the battery system

tries to gain highest monetary value by doing peak shaving, firming and arbitrage.

But in islanding module, since there is no connection with the grid, the battery sys-

tem tries to keep the cost lowest and at same time provide enough power for the

residential area.

The MPC problem at time tk can be formulated as minJ(tk).

Pm
BESSin ≤ PBESS(t | tk) ≤ Pmax

BESS;

Pmin
GE ≤ PGE(t | tk) ≤ Pmax

GE ;

Pmin
FC ≤ PFC(t | tk) ≤ Pmax

FC ;

(4.10)
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SoCmin
BESS ≤ SoCBESS(t | tk) ≤ SoCmax

BESS; (4.11)

Rmin
BESS ≤ RBESS(t | tk) ≤ Rmax

BESS;

Rmin
GE ≤ RGE(t | tk) ≤ Rmax

GE ;

Rmin
FC ≤ RFC(t | tk) ≤ Rmax

FC ;

(4.12)

x(k + 1 | k) = A ∗ x(k) + B ∗ u(k | k), (4.13)

where A = I,

B =











1
1000∗60

0 0

0 0 0

0 0 0











,

u = (PBESS, PGE, PFC) ,

x(k + 1 | k) =











SoCBESS(k + 1 | k) 0 0

0 0 0

0 0 0











.

In the above optimization problem, equation 4.10-4.13 impose constraints on the

trajectories of the variables.

Equation (4.10) shows the power range in which power could be provided by three

energy resources separately. Equation (4.11) is about the State of Charge (SoC) of
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battery which should be regulated into a certain range in order to maintain a long

lifetime of battery. Equation (4.12) is used to make the ramp rate of each energy

resource less than the specified value. Equation (4.13) define how SoC changes with

the battery output. x means SoC, and u means BESS output.

The following procedure shows how to convert a constrained MPC controller to a

constrained LQR problem that provides performance equivalent to a MPC controller.

The predicted state trajectory could be expressed as follows:

x(k + 1 | k) = A ∗ x(k) + B ∗ u(k | k)

Here C is the (convolution) matrix with rows Ci defined by

C =

















B 0 · · · 0

AB B · · · 0
...

...
. . . 0

AN−1B AB−2 · · · B

















Ci=ith block row of C

With the trajectory of x prediction, the cost function evolves into the following

form.

N−1
∑

i=0

[xT (k + i | k)Qx(k + i | k)] + [−I − I] ∗ x(k + i | k)

= uT (k)Hu(k) + 2xT (k)F Tu(k) + xT (k)Gx(k) + [−I − I] ∗ [Cu(k)+

(1 + · · ·+ AN−1)x(k)]
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where

H = CT Q̃C + R̃;F = CT Q̃M ;G = MT Q̃M +Q;

with :

Q̃ =

















Q 0 . . . 0

0
. . . . . .

...
... 0 Q 0

0 · · · 0 Q

















R̃ =

















R 0 . . . 0

0
. . . . . .

...
... 0 R 0

0 · · · 0 R

















The matrices H, Q and R can be computed offline. Secondly, the constraints are

converted. Equations (4.10) can be converted into the following.





I

−I



 u(k) =















Pmax
b

Pmax
g

−pmin
b

−Pmin
b















(4.14)

Equations 4.11 can be converted into the following format





Ci

−Ci



 u(k) ≤















SoCmax
b

SoCmax
g

−SoCmin
b

−SoCmin
b















(4.15)
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Equations (4.12) can be expressed as follows.















1 1 1 1

1 1 1 1

−1 −1 −1 −1

−1 −1 −1 −1















u(k) ≤















P for
s − P

for
d

P for
s − P

for
d

P
for
d − P for

s

P
for
d − P for

s















(4.16)

The combination of (4.10), (4.11),and (4.12) can be expressed as constraints on

u(k) of the form

Acu(k) ≤ b0 +Bxx(k) (4.17)

So far, the problem is converted into quadratic programming, which is a special

type of mathematical optimization problem. It optimizes a quadratic function of

several variables which are subject to linear constraints [43].

Quadprog is a Matlab function used to solve quadratic programming. Quadprog

function is operated to calculate the optimal power output for next hour from the

current time. Since the electricity price will change along the time, the whole day

schedule is updated regularly. Quadprog will use most updated price information

and updated whole day output schedule as inputs in order to get the output for the

current time.

4.7 Simulation and result

Figure 4.9 shows that PV plant and BESS work together to provide peaking energy

for the feeder. The peak load is reduced evidently. Peak shaving is successfully

implemented.
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Figure 4.10 shows an example of firming. The firming starts from 2pm. The

combination of PV production and BESS is square shaped. The power output value

is 150kW. Before firming, BESS also performs charging due to price, emergency peak

b-16*% }edrf {/-.,-(1 #h1'*-,/0 *%$6h, c'03'$-(1 06h,-3h% .6(c,-'($
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shaving, and charging due to SoC. Multiple functions are implemented on one day

according to the specific situation of that day. The maximum benefits are obtained

by performing the combination of multiple functions comparing with single function.

4.8 Discussion

Utility sized BESS will play an important role for power system with high renewable

energy penetration in supporting energy during peak load time, firming the PV

output and doing arbitrage. The following conclusions are learned from experiments.

• The threshold for each function is calculated day ahead, and the future pre-

dictions are considered in the calculation. The prediction needed includes:

electricity price, average gas price, and load forecast. Besides these predic-

tions, the PV cost is evaluated also. The accuracy of prediction determines the

quality of control strategy in a high degree.

• The function threshold should be calculated regularly to compensate changes

in circumstances.

• Battery use one cycle each day in order to maintain the lifetime of battery.

4.9 Future work

Support Vector Machine (SVM) aided MPC

MPC could be affected by time-horizon and timeslot. The first term means the period

over which optimization is made. MPC calculates the optimal result for a finite time-

horizon, but the system is only implementing the current timeslot. Timeslot is the
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second term which matters for MPC.

PV generation is an important input for MPC, but it is variable. PV generation

doesn’t change too often for a sunny day. The ramp rate per minute could be less

than 1% of the PV generation rating. However, as clouds pass by PV plant, a 2

kW system can exhibit 50% drop in just 3 seconds. 1.6 MW system still fluctuates

rapidly with an observed worse case drop out of 50% in 9 seconds. During cloudy

day, PV generation as one input of MPC varies greatly. Since the rapid changes

can’t be fully considered in MPC, the optimal result might not be optimal for a long

timeslot. It would be good to implement MPC result only for a short timeslot.

Since the load and PV prediction are implemented into MPC, the accuracy level

determines whether MPC result is optimal in reality.

The time-horizon should be adjusted based on the accuracy of both predictions.

Usually the prediction result would be more accurate for a relatively short time

horizon. For instance, the prediction accuracy of next fifteen minutes would be more

accurate than the prediction accuracy of next 5 hours.

Since long time-horizon will bring more optimal result, longer time-horizon is

better. Because prediction will become inaccurate along with time, shorter time-

horizon is preferred. There is a trade off between accuracy and optimal result when

choosing length of time-horizon. Hence, longest time horizon which satisfies a certain

accuracy rate would be searched. Based on learning the pattern of the weather

and load trend, the longest time-horizon which assures a certain accuracy could be

recognized.

In future, SVM could be used to help MPC to find the best time-horizon and

timeslots of MPC based on load and PV prediction.
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Smoothing algorithm

Shifting is connected to the energy efficiency, while smoothing is a reliability issue.

This chapter will discuss the simultaneous smoothing by fast-response counter-action

from the battery.

Due to PV output variability, it is desirable to select a smoothing algorithm that

would filter out the high frequency transitions, but would still be fast enough to avoid

significant lag with respect to current power production. One of the algorithms that

can be used for this application is a moving average algorithm, which is commonly

used with time series data to smooth out short-term fluctuations and reflect longer-

term trends.

The smoothing algorithm implementation of the utility-scale smoothing battery

are described including the charge and discharge rate needed to perform the smooth-

ing, the input of the smoothing algorithm, restoration of the battery SoC, and the

choice of the right window size used for the smoothing algorithm. An method is

proposed to calculate the window size of smoothing algorithm according to the re-

quirement of smoothness. SoC must be kept in a certain range for the purpose of a

normal lifetime. A key issue is to provide power to smooth PV generation and at
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the same time leave the SoC in a desirable range. Usually the power which is used

to restore the SoC will produce spikes in the smoothing output. A new method is

proposed to resolve this issue. The smoothing output won’t be influenced with this

method.

A new smoothing algorithm has put forward as a comparison to moving average

algorithm. It’s called rule-based smoothing algorithm. This method greatly reduces

the BESS energy usage without compromising the smoothing effect. These two

algorithms are introduced in detail in the following sections.

Along with the simulation results, the real data from the installed battery energy

storage system and PV system is showed. The output shows the smoothing algorithm

successfully improves the smoothness of PV output. The intermittency of PV output

is essentially removed, making the PV power more desirable for loading into power

grids.

5.1 PV Variability

The total PV production can be split into a relatively smooth signal, which changes

on the time scales of minutes to hours, and a high-frequency intermittent component,

due to variable cloud cover, that has characteristic times on the order of seconds.

Such high frequency changes may be difficult (or impossible) to compensate for by

using current utility control devices, such as Load Tap Changers (LTCs), moreover

it is beneficial to absorb such high frequency as close to the source as possible.

The power change event is called a ramp event. The rate of a ramp event is the

ramp rate, which indicates the power difference of one time interval [44]. It equals to

time derivative of PV generation. According to the observation of a 0.5 MegaWatt

PV plant, the ramp rate per second is less than 1kW on a typical sunny day for the
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500kW plant considered above, corresponding to 0.2% of PV plant rating. However

for a severe cloudy day the ramp rate could be 20 % of the PV plant rating.

When ramp rate is high, BESS needs to provide large power to compensate the

great changes in PV generation. On the contrary, BESS only provides less power

when ramp rate is low. It is natural that BESS will supply more energy for an

area with continued high ramp rate comparing with an area with low ramp rate.

Therefore, the ramp rate is a very important factor to determine the parameters of

smoothing algorithm and smoothing cost. Figure 5.1 shows the maximum ramp rate

of PV output on each day in March 2012.

The solar variability is related to cloud type. Cloud categories can be used directly

to model the expected statistical variability of ground irradiance. The results in [45]

are presented that ramp rates can be grouped according to the cloud category. Since

cloud classification is correlated with solar variability, it could be used to model

the solar variability for a given location and time [45]. Studies show the effects of

solar variability must consider the effects of aggregation over the geographical area,

otherwise the result will tend to overestimate the variability [46]. Site diversity may

reduce the solar variability, but may not reduce it sufficiently. According to [47],

site diversity over a 280 km range does not dampen PV intermittency sufficiently to

eliminate the need for smoothing. However, the costs of mitigating PV variability

are dramatically reduced by geographic diversity [48].
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in March 2012

5.2 Moving average algorithm

5.2.1 Control strategy of the smoothing battery system

Due to PV output variability, it is desirable to select a smoothing algorithm that

would filter out the high frequency transitions, but would still be fast enough to avoid

significant lag with respect to current power production. One of the algorithms that

can be used for this application is moving average algorithm, which is commonly

used with time series data to smooth out short-term fluctuations and reflect longer-

term trends [26]. A new method is proposed as a comparison to moving average.

It’s rule-based smoothing algorithm. This method increases the smoothing efficiency

greatly by reducing the BESS energy usage. These two algorithms considered here
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will be described in detail in the following.

The most important and also the only parameter for the moving average algo-

rithm is the time interval over which the average is calculated, i.e. the window

size. Independently of the weather pattern, a larger window size leads to a smoother

battery output because more averaging data points involved will result in smoother

output. A larger window size can ensure a smoother output, but produces a larger

lag in the output. Therefore the window size shouldn’t be too large, and it would be

chosen based on the requirement of the smoothness. When moving average algorithm

is used, the following aspects need to be addressed: the needed battery charge and

discharge rate, the reference SoC domain, and the restoring power to maintain the

SoC .

Maximum battery charge and discharge rate

The PV output ramp rate depends greatly on cloud type. For a significantly cloudy

day, the PV system output could fluctuate significantly and rapidly. An important

concern with the control of the BESS is the charge/discharge power, which need to

be kept to meet the need of smoothing out the ramp of PV output. Applying the

moving average algorithm, charge or discharge rates required from the battery are

smaller than the maximum PV output. 500kW is the power rating of the smoothing

battery. It is just the right size for smoothing out PV production variation from the

co-located 500kW PV array.

State of charge (SoC)

SoC is another important parameter which needs to be controlled precisely within

the battery manufacturers recommended settings.
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In this project, the battery performance is based upon maintaining SoC within

a range while maintaining an average SoC over an hour equal to 50%. According

to this constraint, SoC needs to be maintained between established lower and upper

limits of the rating 250 kWh. Figure 5.2 shows that SoC varies with the window size

proportionally without setting the limit to the SoC. The SoC is even lower than 0%

in the figure. To keep SoC from exceeding the limit, a restoring power is needed for

smoothing algorithm.

Restoring power

Restoring power is the additional power which is used to restore SoC to the nominal

SoC. In the beginning, it is chosen to be proportional to the difference between SoC

at the moment and 50 % (the nominal SoC) [49]. Since the battery switches between

charge state and discharge state very fast in order to smooth the spikes, SoC also

changes accordingly. The required restoring power changes dynamically along with

the change of SoC. Consequentially there are a lot of smaller spikes within restoring

74



8[V\;<O �^ ��99;[H:K VUK9OH;[�

power. The value of smoothing power and the value of restoring power are added

together directly as an command value of the battery output. The smoothing power

will smooth the PV, but the spikes of restoring power will reduce the smoothness of

output which of course is undesirable. In this work, a method is developed to resolve

this issue. Through this method, the restoring power won’t affect the smoothness of

final output. The detail is as follows.

First, the desired restoring power is calculated based on the SoC difference. For

instance, if the current SoC is 40% and the reference SoC is 50 %, the SoC difference

is calculated as 40%− 50% = −10%. After calculating the SoC difference, next step

is to set restoring power based on the difference.

Powerrestoring = a ∗ 250 ∗∆SoC; (5.1)

In equation (5.1), 250 represent 250kWh, which is the capacity of the smoothing

battery. ∆SoC is the SoC difference. 250 ∗∆SoC is the required energy which can

restore SoC to 50%. The restoring power would be a certain multiple of the required

energy. The bigger the factor is, the faster the SoC goes back to the nominal value.

Here, this factor is denoted as a. It represents the ratio of the restoring power to

required energy. When a is set to 1, it means the restoring power can restore SoC in

one hour if the battery won’t have any other charge or discharge activities. However

the SoC of battery changes dynamically since the battery performs its smoothing

function at the same time. In order to make the average of SoC close to 50% in one

hour, a number larger than 1 needs to be chosen. Different values of a are tried ,

and a = 5 is best for this case. If a is too high, it may lead to oscillation of the SoC.

If a is too low, it may not offset the difference in a timely fashion. How this factor

is set for different weather conditions is an important topic.

Secondly, the moving average algorithm is used to smooth the spikes of restoring

power. Adding smoothed restoring power to the calculated smoothing power won’t
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affect the smoothness of the output. The results are even smoother than without

restoring power, and the SoC of battery using restoring power is much closer to the

nominal value. In figure 5.3 and figure 5.4, SoC change around the nominal value

and the PV output has fewer fluctuations. In summary, the restoring power can

help restore SoC of battery, and increase the smoothness of PV output at the same

time. Figure 5.4 also shows the decreased variation range of SoC of the smoothed

PV output.

Power reference input for the smoothing algorithm

There are 5 irradiance sensors located at the four corners and one center of the PV

array. The variability of irradiance observed by a point generally does not directly

correspond to the variability of PV output, since the irradiance measured with sensors
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fluctuates much more than that of the entire PV array. Figure 5.5 compares the

measured PV output with the calculated PV output based on the irradiance from

one sensor. Here, it is assumed there is a linear relationship between irradiance and

PV output.

In [50], the author finds that large 1-s, 10-s, and 1-min ramps in the multi-

megawatt PV plant are approximately 60%, 40%, and ≥ 10% less severe, respec-

tively, than those observed at a point. Hence PV plant output is smoother than the

irradiance in every single point for a cloudy day.

In addition, PV output is influenced by the temperature, wind, inverter rating,

maximum power point tracking and other factors. It’s not a linear relationship

between PV output and irradiance. It’s difficult to get the accurate PV output from

the irradiance. The PV plant output will be the optimal input for the smoothing
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algorithm.

Choosing the window size

There is a trade off between the smoothness of smoothed PV output and battery

lifetime. From the simulation, the lag between the original PV and smoothed PV is

close to half of the window size. A larger window size leads to smoother result, but

also means a larger lag. A larger lag indicates battery should provide more energy

to mitigate the gap between the original PV and smoothing goal. Hence, a large

lag will cause greater change of SoC. Consequently, it causes larger battery energy

consumption. The battery lifetime is determined by the cumulative energy used.

As a consequence, a larger window leads to the shorter lifetime. Therefore, choos-

ing an appropriate window size is critical for implementing a successful smoothing

algorithm.
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In order to get the minimal lag, window size needs to be selected depending

on weather conditions. If a day is sunny, without any cloud cover, it may not be

necessary to use the battery smoothing system at all. However, for a cloudy day,

the window size would be chosen based on the requirements of smoothness and the

severity of the cloud cover, which can be represented by the amount of ramp rate.

Ramp rate is the difference between two consecutive values for a certain sampling

rate. According to the definition of moving average, the following equations can be

derived:

Ot =
Pt−1+Pt−2+···+Pt−N

N

Ot−1 =
Pt−2+Pt−2+···+Pt−N−1

N

(5.2)

Here Ot is current power reference output. It is equal to the mean of N previous

data. N is the window size, also represents the seconds over which the PV data

point is summed. Here, the sampling rate is assumed to be one sample obtained in

one second. As the time moves forward, a new value comes into the sum and an old

value drops out. The following formula is used to calculate the ramp rate.

Ot −Ot−1 =
Pt−1

N
− Pt−N

N

R = Ot −Ot−1 =
Pt−1−Pt−N

N

since Pt−1 − Pt−N < PR,

R < PR

N
kW

(5.3)

where, PR means PV power rating; R means ramp rate of smoothed PV. For

this project, 500kW is the PV plant rating. So under any weather conditions, the

ramp rate is smaller than 1kW/sec when N is above 500. According to 1kW/sec,

the ramp rate per minute will be less than 60kW/min. For any weather condition,

if the ramp rate of PV output is already lower than the required value, the moving
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average algorithm needn’t to be applied since it will cause the unnecessary lag. A

dead band could be set before implementing the algorithm, and the algorithm would

turn on or off dynamically according to the PV output.

Battery capacity needed

b-16*% se�f {2$,%0 ,*#($.%* .6(c,-'(

This section shows that how SoC variation range is derived from PV output.

Later the SoC variation range is used to estimate optimal battery capacity. Due

to implementation of the restoring power, the SoC range of the battery can be

controlled. Hence the smoothing battery capacity needed can be relatively small.

Using moving average, smoothing power are calculated based on PV output. By

comparing current SoC and SoC reference, restoring power is calculated. Smoothing

power and restoring power are added together as battery output, which affects SoC

variation. This whole process can be viewed as a system function. PV output is

the input for the system function, and SoC is output. According to PV output and

system function, daily SoC variation could be calculated. The maximum variation

could be chosen as the battery capacity. The calculation of capacity is carried out

in frequency domain. The PV output spectrum for a given area is used.

SoC variation comes from cloud cover variation in a certain degree. Restoring

power is related to SoC variation. Hence, the restoring reflects the cloud variation

in a certain degree. In order to best compensate the SoC change due to cloud cover
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variation, a PID controller is designed here to calculate the proper value of the

restoring power.

According to the criteria of ISTES (Integral of Squared Time Multiplied by

Squared Error), the parameters are presented in [51]:

GPID = Kp(1 +
1

Tis
+ Tds) (5.4)

The optimal parameters of PID controller are set as: kp=1.34/KL; Ti=1.83L;

Td=0.49L [51]. The SoC could be viewed as an integrator of battery output Pbatt.

SoC =
1

250 ∗ 3600

∫ T

0

Pbattdt+ 50% (5.5)

In the equation above, PBatt is the battery power output value. When it is divided

by 3600, the result should represent the change of SoC every second. The energy

rating of the battery is 250 kWh, so the integration of battery output divided by 250

reflects the SoC changes in the format of percent. 50% represents the initial value of

SoC.

The SoC mathematical description after Laplace transform is:

GSoC(s) =
Ke−Ls

s
;

K = 1
3600∗1000

;
(5.6)

Equation (5.6) refers to a integrator plus dead time model.

The whole PID control diagram is showed in figure 5.7. GPI is Laplace transform

of PI controller. GSoC is integrator which is used to calculate the battery SoC. H
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is the feedback control, and it is 1 in this project. Refer(s) is the reference value

of SoC, and the value is 0.5. R(s) is final SoC. The difference between SoC and

its reference value (R(s) and Refer(s)) is PI controller input. The output of GPI is

restoring power. It’s added together with PBatt (smoothing power) to influence the

final battery SoC.

As mentioned before, the moving average is chosen to filter the PV output. Based

on the raw data of PV production, the moving average will calculate a smoothed

baseline which is close to the PV production, but without high frequency spikes.

The battery will provide the difference between these two values.

PBatt = Powerrefer − PV = MA(PV )− PV (5.7)

The whole PID system response relationship is as follows:
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R(s)
Refer(s)

= GPIDGSoC

1+GPIDGSoC

;

R(s)
PBatts

= GSoC

1+GPIDGSoC

;

So R(s) = GPIDGSoC

1+GPIDGSoC

Refer(s) + GSoC

1+GPIDGSoC

PBatt(s)

(5.8)

where, Refer(s) can be represented with a step function with the output of 50 %.

Refer(s) = 0.5

PBatt(s) = (MA− 1) ∗ PV = GMA ∗ PV ;

R(s) = GPIDGSoC

1+GPIDGSoC

Refer(s) +GSGMAPBatt(s);

where, GS = GSoC

1+GPIDGSoC

;GMA = MA− 1;

(5.9)

Figure5.8-figure5.10 show the Fourier transform of three transfer functions: GMA,

GPID, and GMAGPID.

Figure 5.11 shows the spectrum of PV output for February. The data precision is

1Hz. The highest frequency in this plot is 1Hz. It’s easily observed that the energy

of PV is mainly concentrated in the frequency of range from 10−3 to 10−5. For this

frequency range, the energy is relatively constant, and the energy variation range is

less than the variation range for the frequency higher than 10−3. This means the

energy variation usually happens in the frequency range of seconds to around 20

minutes.

Figure 5.12 is the spectrum of PV output for a whole month. Similar to the

previous plot, the spectrum reflects fluctuations for the high frequency part. For the

low frequency part, the spectrum of this range for 28 days is very close to each other.

The black line in the plot is the PV spectrum boundary. The spectrum of PV output

should be bounded in a certain area considering the limited PV output capacity and

limited solar irradiance. The boundary may vary along the different months, but it
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is a limited value. These boundaries could represent PV output characteristic of a

given area. The long term statistic data will be more representative.

Once SoC variation is calculated using monthly PV spectrum and system transfer

function , the variation range could be viewed as the minimal capacity value for the

given area. The yearlong PV output spectrums will be used in future to estimate

SoC variation.
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5.2.2 Self-adjusted smoothing algorithm

Based on existing weather conditions, the smoothing algorithm may turn on and off,

and the window size can be adjusted. For stable PV output (sunny day, no severe

cloud intermittency), if the ramp rate of the PV system is already lower that required

safe value, smoothing is not needed, and could be turned off. On the other hand,

for cloudy weather, the smoothing window needs to be selected depending on the

requirements for smoothness and PV output ramp rates. Equation (5.11) is used

to calculate the minimum window size when PV rating and real time ramp rate are

known. It is developed according to equation (5.3). In the equation (5.11), N is the
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minimal window size. The window size could be continuously adjusted according to

the minimal window size.

N <
PR

R
(5.10)

The smoothing system will be used less in the area with most of sunny day. Ac-

cording to the statistic data of PV output in a given area, the approximate smoothing

cost for a PV farm can be calculated for each year.
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5.2.3 Result

The goal of the smoothing experiment presented here is to counteract the power

intermittency from PV by controlled discharging and charging of the energy from

the fast Utrabattery. Figure (5.13) illustrates actual field demonstration data of fast

charging and discharging of the Ultrabattery. The data shows smoothing battery is

sufficient to meet the smoothing control strategy for the given feeder load. This data

set verifies that both the smoothing battery and the smoothing algorithm utilized

are adequate for counteracting PV intermittency.
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5.2.4 Summary

A description of moving average smoothing algorithm is presented, along with the

detailed analysis in several aspects. Modelling results and real field results are pre-

sented showing successful smoothing with the PV power output. The calculation

method of restoring power solves the first important problem usually faced when the

smoothing storage system is deployed.
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5.3 Rule-based smoothing algorithm

The defect of moving average smoothing algorithm is the lag. The lag is a built-in

characteristic of the moving average algorithm. A PV forecast could help to reduce or

remove the lag. Here, a new smoothing algorithm is proposed, which can remove the

lag. This algorithm is rule-based smoothing algorithm, which is easy to implement.

The rule-based smoothing algorithm tries to get the underline baseline by limiting

the ramp rate in every second. The ramp rate can set equal to or smaller than the

ramp rate boundary. There are no other parameters needed in this algorithm. In

every second, the algorithm checks the real time ramp rate. If it’s above 5kW/second,

or below than -5kW/second, the battery will provide power to make sure the power

increase or decrease is less than 5. The battery will only provide power when the

ramp rate is higher than the requirement. It’s very energy efficient. In the table 5.1

the energy usage of rule-based smoothing is compared with MA. In each row, the two

algorithms could have the ramp rate of the smoothed PV within same range, but the

energy usage of rule-based algorithm would be greatly smaller than MA algorithm.
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Figure 5.15 shows both algorithms reduce the ramp rate below 5kW/sec. The

original ramp rate is also showed in the diagram. The original ramp rate is high as

150kW/sec. Figure 5.16 shows the smoothed PV is very close to the original PV. It

can track the PV without time latency.

Table 5.1: Energy usage comparison of rule-based moving algorithm and MA
Ramping rate of rule-
based algorithm

Window size of mov-
ing average algorithm

Energy usage ratio of
rule-based algorithm
to moving average

3.2 300 0.5309
4 240 0.5008
4.5 200 0.4618
5 180 0.4529
8 120 0.4277
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5.3.1 Optimal battery size

Capacity =

∫ T

0

(R−Rref )dt (5.11)

where, R means real time ramp rate. Rref is ramp rate reference.

Smoothing battery will absorb all of the ramp rate which is above ramp rate

reference. By integrating the difference between ramp rate and ramp rate reference

over a day, the minimum capacity for that day could be estimated. Figure 5.17

shows the minimum battery size for everyday in February, 2013. In this figure, the

minimum battery size is around 10kWh, which is very small comparing with existing

smoothing battery size. It turns out that rule-based algorithm could reduce the

needed battery size greatly.
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Summary of the Dissertation and

Research Directions

In this dissertation, smoothing algorithm and shifting algorithm have been developed

for the operation of BESS. The target is to to create a firm, dispatchable, distributed

renewable generation resource with the aid of BESS. Although load prediction is not

a major research topic in this dissertation, machine learning technique is introduced.

In the followings, the main aspects and contributions of this dissertation are sum-

marized. The possible research directions are proposed that can be addressed in the

near future.

6.1 Summary of the Dissertation

In Chapter 2, PNM/DOE Solar and Battery Storage project and Mesa del Sol Micro-

Grid Demonstration are introduced including the project goal, system set up and

system parameters. These two projects are the platform used to test battery energy

storage operation algorithm.

93



8[V\;<O �^ �N��VOW 9I ;[< �H==<O;V;H9: V:` �<=<VOa[ �HO<a;H9:=

In Chapter 3, PV prediction and load prediction are introduced, which are used

together as the BESS optimization function inputs. Machine learning technique helps

day-ahead load prediction to achieve high level of quality in prediction.

In Chapter 4, shifting algorithm is developed when BESS works with variable

renewable energy. It is multi-parametric optimization problem. Multi-functional

battery energy storage operation is designed to optimize the comprehensive control

strategy. Both grid-tied mode and islanding mode are taken into consideration. For

grid-tied mode, the shifting algorithm is able to choose the best function among peak

shaving, arbitrage and firming according to specific weather and load situation.

In Chapter 5, smoothing algorithm is introduced. A series of analysis around al-

gorithm is given. How to set window size for MA is presented. Rule-based algorithm

is proposed. It consumes less energy comparing with MA.

6.2 Future Research Directions

What is next needed to consider is how to extend the smoothing and shifting results

presented above to a large area. For example, multiple BESS, PV plant in a same

area. How they cooperate with each other is a problem worthy of discovering.

• how to negotiate objectives for different BESS will be explored. Then a opti-

mization function will be developed among multiple BESS [12].

• SVM will be explored more in order to increase the current accuracy of predic-

tion.

• To complete the shifting algorithm in three time-scales for islanding mode:

day-ahead optimization, hourly MPC, near real time optimization.

• To calculate the real time control by using non-linear power flow theory.
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• To find optimal shifting battery size for a given area by considering benefit of

three main functions.
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Day-ahead load prediction results
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