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Abstract 

In this thesis, the construction and implementation of an in situ plasma discharge 

designed to remove surface contaminants from electrodes in an ion trapping experimental 

system is presented with results. In recent years, many advances have been made in using 

ion traps for quantum information processing. All of the criteria defined by DiVincenzo 

for using ion traps for implementing a quantum computer have been individually 

demonstrated, and in particular surface traps provide a scalable platform for ions. In order 

to be used for quantum algorithms, trapped ions need to be cooled to their motional 

(quantum mechanical) ground state. One of the hurdles in integrating surface ion traps for 

a quantum computer is minimizing electric field noise, which causes the ion to heat out of 

its motional ground state and which increases with smaller ion-to-electrode distances 

realized with surface traps. Surface contamination of trap electrodes is speculated to be 

the primary source of electric field noise. 
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The main goal achieved by this work was to implement an in situ surface cleaning 

solution for surface electrode ion traps, which would not modify the ion trap electrode 

surface metal. Care was taken in applying the RF power in order to localize a plasma near 

the trap electrodes. A method for characterizing the energy of the plasma ions arriving at 

the ion trap surface is presented and results for plasma ion energies are shown. Finally, a 

method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the 

surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount 

and kind of surface contaminants, is described. A significant advantage of the trap 

electrode surface cleaning method presented here is the minimal changes necessary for 

implementation on a working ion trap experimental system.  
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Chapter 1 

Introduction 

  

 Trapped ions are studied and manipulated in many areas of physics, including in 

research to develop a quantum information processor. With precise control of trapped 

ions, collective motion multi-qubit logic gates can be formed for this purpose. One of the 

principal difficulties in performing quantum operations using ions is the rate at which the 

ions heat from their motional ground state causing errors in the qubits.  There are diverse 

sources of ion heating; the source explored here is surface contaminants. In this work an 

in situ plasma system designed to remove surface contaminants in an ion trap system is 

presented with results. 

Overview of Ion Trapping 

An ion is an electrically charged atom or molecule created by adding or removing 

an electron. Ions can be trapped in an electromagnetic field and used for a number of 

scientific applications including mass spectrometry, atomic clocks, basic atomic physics 

research, and controlling quantum states. For the work described in this paper, atomic 

calcium is the ion, which is trapped and controlled.  

The end goal of trapping, cooling, and controlling ions in this context is to create 

a system of qubits or quantum gates that can execute quantum algorithms. There are 

some algorithms, like Shor’s algorithm, which have been proven to factor numbers faster 

than any known method on a classical computer[1]. An in-depth review of quantum 

computation can be found in the book by Nielsen and Chuang [2]. 
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A quantum processor is attractive because, in theory, it would be able to perform 

complex operations that modern classical computers cannot. These complex operations 

are made possible because of the principle of quantum superposition which allows large 

numbers of computations to be performed simultaneously [3].  

The Paul trap and the Penning trap are the two most common types of ion traps. 

In a Paul trap, the ion is confined solely with oscillating electric fields. In contrast, the 

Penning trap uses a strong homogeneous magnetic field and a weak quadrupolar 

electrostatic potential. The work presented here is performed using Paul traps. The three-

dimensional Paul trap consists of four rods and two end caps (Figure 1-1). An RF 

electrical signal is applied to two of the rods opposite each other and the other two rods 

are held at ground. A DC potential is applied to the end caps. The time-averaged potential 

of this configuration creates a pseudo-potential null, a time averaged potential of which is 

where the ion is confined. Trapping results from a restoring force that confines the ion. 

This can be envisioned as a marble placed on a saddle. If the saddle is left static, the 

marble will simply roll from any point down until it falls. But if the saddle is rotated at 

the correct frequency, the marble is not allowed to fall down the sides, because it is 

continuously pushed back to the center by the high points as they rotate past the marble. 

Similarly, the frequency and voltage of the RF fields in an ion trap are defined to trap the 

ion in the time averaged null. 

For quantum information processing to be realized, multiple ions and many 

trapping wells are needed. The wells are connected with shuttling regions and junction 

regions for transporting ions. A three dimensional (3D) realization would be challenging, 

if not impossible, to build with enough trapping regions for quantum information 
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processing. Therefore, to realize a quantum processor with enough shuttle and junction 

regions, the 3D trap has been flattened, and is now fabricated using a combination of 

semiconductor manufacturing processes of integrated circuits (IC’s) and micro-

electromechanical systems (MEMS). This surface trap arrangement is described by 

Chiaverini, et al. and is pictured below (Figure 1-1) [4].  The most promising 

arrangement of quantum charge-coupled device was first proposed by Kielpinski, et al. 

which allows for different regions for shuttling, computation and storage [5] as shown in 

Figure 1-2. 

 

 

Figure 1-1: (a) Linear Paul trap; (b) Surface trap, electrodes flattened in a plane [4] 

 

 

Figure 1-2: Diagram of quantum charge-coupled device (QCCD) first proposed by Kielpinski et al. [5] 
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Among the most advanced surface traps that have been constructed are those 

described by Moehring [6]. A trap with many shuttle and junction regions can be 

fabricated by using a multilevel metal process to route electrical leads in a buried metal 

layer shielded from the RF electrode. In addition, because of the unique fabrication 

technology of traps constructed at Sandia National Laboratories, there are no exposed 

dielectrics in line-of-sight of the trapped ion. This is an important feature that prevents 

shorting of electrodes when they are exposed to sputtered or evaporated metals. Some of 

these surface trap realizations are shown in Figure 1-3. 

 

 

Figure 1-3: Realizations of surface electrode ion traps at Sandia National Laboratories 

 

Heating Sources 

 For quantum information processing, a system needs to bring together trapped 

ions to form qubits. Ions need to be cooled down to the motional ground state in order to 

be useful. Qubits are then used to perform computational operations. If decoherence 

occurs before the computational operation, then an error in the system occurs. One of the 

hurdles in building a quantum processor is overcoming electric field noise in the system, 

which can cause decoherence errors. Heating of the trapped ion from its motional ground 
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state is one of the consequences of electric field noise and one cause of decoherence in 

the system, that limits the fidelity of gate operations. Heating is an increase in the ions’ 

number of motional quanta, and if the ion heats up enough, it can escape the trap. For an 

extensive summary of heating rate measurements in ion traps see the review by 

Brownnutt et al. [7]. 

The sources of heating are not well understood. According to Turchette, et al. [8] 

some of the possible mechanisms are Johnson noise, fluctuating patch potentials, ambient 

electric fields, fields generated by fluctuating currents, and collisions with background 

atoms. Turchette proposed a model of fluctuating patch-potential noise and proposed that 

a cleaning method should be used to solve this problem. 

Daniilidis, et al. [9] performed heating rate experiments showing surface 

contaminants contribute to the heating rate. They followed the analysis of Volokitin and 

Persson [10] and showed that surface adsorbates could be one source of anomalous 

heating. In their experiments, they measured heating rates in a surface electrode ion trap. 

They observed that over time the heating rate increased more in the ion loading zone than 

in other regions of the trap. This result suggests that surface contamination associated 

with ion loading is an important source of anomalous heating and may require less than a 

monolayer of contamination. Daniilidis, et al. proposed that specific care would need to 

be taken to target and remove adsorbates from metal surfaces [9]. 

Surface adsorbates are not the only form of contamination on trap electrodes. It is 

known that carbon species readily adsorb on metal surfaces [11]. In the work presented 

here carbon and oxygen on gold and aluminum trap electrode surfaces are quantitatively 

measured using XPS surface analysis and removed using in situ plasma.  



6 
 

 

Heating Rate Reduction Techniques  

 Surface properties impact the heating rate of an ion in a trap [12]. Several 

methods have been explored for lowering the effect of the surrounding environment on 

the heating rate of trapped ions including cryogenic cooling [13], laser cleaning [14], and 

argon ion beam sputtering of trap electrode surfaces [15].  

Cryogenic cooling of trap electrodes is one method for reducing heating rates. 

This method reduces both Johnson noise and the effects of anomalous heating. Adding 

cryogenic cooling greatly increases the complexity of the ion trapping experimental 

chamber and does not remove the adsorbates from the surface but suppresses their 

effects. Antohi, et al. [13] showed heating rate reduction of seven to eight orders of 

magnitude by cooling the ion trap electrodes to 6K. Because of the complexities added by 

cryogenic cooling, a method of reducing ion heating rates when operating traps at room 

temperature is still desirable. Cleaning the adsorbates from the surface may accomplish 

this. 

Laser cleaning of the surface performed at Oxford was the first attempt at 

removing the source of anomalous heating due to surface adsorbates. Although laser 

ablation caused some damage to the electrodes of the ion trap, room temperature 

reduction of electric field noise by about 50% was observed [14]. The laser beam has a 

small spot size and therefore would require a raster pattern across the device which may 

prove to be a prohibitive factor in effective surface cleaning. 

Hite, et al. [15] at NIST used a beam of argon ions to remove surface adsorbates 

and reported a reduction of two orders of magnitude in the heating rate at room 
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temperature. Ion energies of 2 keV and 500 eV were tried with varying results. These 

energies are well above the sputter threshold for gold and are certainly modifying the 

metal surface [16]. Furthermore this method is also localized and like laser cleaning 

requires a raster pattern across the device which may not provide the desired result. If the 

sputter beam comes from only one angle, the sputtered electrode material can re-deposit 

behind features on the trap surface, this is known as shadowing. Although surface 

modifications appear to be important in reducing heating rates, sputtering the electrode 

surface needs to be done with great care to avoid shorting electrodes with the re-

deposited metal. 

The work presented here focusses on argon plasma cleaning as a method of 

removing surface contaminants from ion trap electrodes without modification of the 

underlying electrode material. The emphasis is on the design, implementation, and 

investigation of an argon plasma that is generated in situ and localized above the trap 

surface and on measuring the effectiveness of removing surface contaminants. As it is 

important to uniformly clean the surface of the trap and eliminate the need to raster 

across the surface, it is suggested that plasma may be the preferred method for 

accomplishing this. It is important that the plasma is not formed in other locations of the 

trapping experimental chamber which could allow trap surface contamination from other 

components. The ion energies from the plasma impinging on the surface of the chip are 

demonstrated to be above desorption energies of the surface contaminant and below the 

(appreciable) sputter threshold for the gold-gold or other metal surface bonds. This 

method removes surface adsorbates while not appreciably changing the metal electrode 

surface. By minimizing or eliminating gold atoms sputtered from the surface during 
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plasma cleaning the danger of shorting adjacent control electrodes with re-deposited gold 

is minimized. The plasma system designed here is used to clean ion traps in situ. 
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Chapter 2 

Experimental Setup 

  

In this chapter, the approach for implementing plasma cleaning in a surface ion 

trap experimental chamber is explained. There are many different varieties of ion traps 

from hand-assembled macroscopic traps [17] to monolithically integrated micro-

fabricated traps. Ion traps operate at ultra-high vacuum (UHV) pressures of 10
-11 

Torr to 

minimize collisions between background gasses and trapped ions. For in situ plasma 

cleaning of an ion trap, the pressure in the vacuum chamber must be increased to the 10
-3

 

to 1 Torr range. Additionally, for plasma cleaning, care is taken in applying the RF power 

in order to localize plasma near the trap electrodes. A method for characterizing the 

energy of the plasma ions arriving at the ion trap surface is presented and results for 

plasma ion energies are shown. Finally, as a method of quantifying the effectiveness of 

plasma cleaning of trap electrodes, the surface analysis technique of X-ray photoelectron 

spectroscopy (XPS) for measuring the amount and kind of surface contaminants is 

described. 

Two vacuum chambers were used to perform experiments. One chamber was 

dedicated primarily to plasma characterization. The second chamber was dedicated to ion 

trapping for measuring heating rates and exposing a working ion trap to in situ plasma 

cleaning processes. 

Trap Fabrication 

Surface ion trap fabrication is, by nature, a clean and well controlled process that 

uses complimentary metal-oxide-semiconductor (CMOS) and/or microelectromechanical 
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systems (MEMS) fabrication techniques. The surface ion traps used here consist of 

electrodes defined in Al-0.5%Cu metal and SiO2 inter-metal dielectric to separate the 

electrode level (top metal) from the underlying routing layers as described in [6] [18]. 

Chemical mechanical planarization (CMP) is used to render a planar surface electrode 

trap. After electrode fabrication and release (removal of dielectric materials between 

electrodes), arbitrarily chosen metals can be evaporated onto the surface of the traps, as 

the removal of adjacent dielectric materials prevents shorting by the subsequently 

evaporated metal. The ion trap chip is mounted in a ceramic pin grid array package 

(CPGA) (Figure 2-1). 

 

 

Figure 2-1: Ion trap chip packaged in a ceramic pin grid array (CPGA) package. 

 

The electrode metal overhangs the underlying oxide supports as seen in Figure 2-

2. Examples of various metals that have been used as ion trap electrodes are aluminum, 

gold, silver, and niobium. Aluminum is commonly used in CMOS processing and 

therefore an obvious choice for surface electrode ion traps. One downside to aluminum is 

the native oxide, Al2O3, which is formed on its surface. Since oxide is a poor electrical 
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conductor it can support unpinned charges thereby affecting the electrical field at the 

position of the ion in an ion trapping experiment. As these fields are undefined and can 

fluctuate in time they can serve as a source of electric field noise and lead to higher ion 

heating rates. Gold is a noble metal, and because it does not form a native oxide, it is 

commonly used for surface traps. However carbon species can contaminate the gold and 

support charge, which also represents an unpinned potential. Niobium is desirable 

because at temperatures below 9.2 K it is a super conductor [19]. The interaction of 

unpinned potentials with the ion needs to be eliminated and/or minimized. To this end, 

plasma cleaning is used to remove surface adsorbates. 

 

 

Figure 2-2: Cross-sectional SEM of the trap, showing the four metal levels, interconnects, and insulators. 

 

Vacuum Chamber Description 

 A representative ion trap chamber, such as that used at Sandia National 

Laboratories (SNL), is built using a Kimball Physics spherical octagon with ConFlat (CF) 

flanges (Figure 2-3). The trapping chamber is equipped with viewports for laser access 
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and imaging of the ion and a feed-through for radio frequency (RF) power delivery to the 

trap. One port of the octagon is connected to a pumping manifold that conducts gas 

molecules to an ion gauge, an ion pump, a titanium sublimation pump and a bakeable 

valve that temporarily connects a turbomolecular pump (TMP) for preparing the ultra-

high vacuum (UHV) environment.  

 

 

Figure 2-3: Ion trapping chamber with pumping manifold. 

 

The bottom flange is equipped with an electrical feedthrough for the control 

electrodes on the ion trap that are used for transporting the ion and a feedthrough for the 

atomic source (Figure 2-4). The atomic source, an oven which is filled with calcium, for 

example, is heated until neutral atoms evaporate and pass through the trapping region 
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where they are photo-ionized and trapped. The top flange is a re-entrant view port where 

a lens and camera are mounted to collect photons emitted by the trapped ion. 

 

 

Figure 2-4: Bottom flange with ion trap in the socket. 

 

 Inside the chamber, there is a socket for delivering RF and DC control signals to 

the ion trap. A grounded screen between the re-entrant viewport window and the ion trap 

shields the ion trap from stray/unpinned potentials on the quartz window.  

 

Vacuum Quality and Gas Introduction 

It is important for an ion trapping system to work at the lowest pressure possible. 

If the pressure in the system is too high, the background atoms in the chamber will have a 

higher frequency of colliding with the trapped ion and knocking it out of the trap. 

Trapped ion lifetimes need to be long enough to perform quantum operations.  



14 
 

Ion trapping chambers in the lab at SNL are prepared and maintained at a pressure 

in the range of 10
-11 

Torr. All chamber components are carefully chosen to be ultra-high 

vacuum (UHV) compatible. The chamber and all of its components are thoroughly 

cleaned and assembled in a cleanrooom environment. To reach UHV, it is necessary to 

bake the vacuum chamber for about one week at 200 ºC while a TMP and an ion pump 

are evacuating the system. One purpose of the increased temperature is to desorb water 

from internal surfaces. This bake is also a possible source for surface adsorbates on the 

ion trap chip, which is an undesirable consequence. When the chamber is returned to 

room temperature, a titanium sublimation pump is used to further reduce the vacuum 

pressure. 

In order to perform plasma cleaning, argon gas is introduced into the chamber. A 

major preliminary consideration for the work here is that the chamber base pressure 

returns back to the 10
-11

 Torr range after the chamber has been raised to the millitorr 

range necessary for plasma ignition and cleaning. Ultra-high purity (99.9999%) argon is 

used and a clean gas manifold is attached to the vacuum chamber. It was shown in a test 

chamber that the chamber could be returned to UHV conditions without baking. 

 

Plasma and Plasma Discharge Configurations 

Plasma is considered the fourth state of matter [20]. Plasma is formed in a gas 

when electrons are liberated from atoms or molecules by an energy source which can be 

electrical, thermal, or optical. If there is insufficient power, the electrons and ions will 

recombine. Langmuir was the first to apply the word “plasma” to ionized gas in 1929 
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[21]. Due to the approximately equal number of ions and electrons in the plasma, it is 

typically defined as quasineutral. 

The plasma is charged positively with respect to any large electrode or wall 

surface. The region between the wall and the plasma is called the sheath; it is a visibly 

dark, positive space charge region. Plasma electrons have small mass and high 

temperature compared with plasma ions and, therefore, quickly move to any close 

surface. This process creates the plasma sheath as well as sets up a positive plasma 

potential with respect to the nearby surfaces.  

There are many configuration options available for initiating a plasma discharge. 

The configurations explored in this work were capacitively coupled plasma and 

inductively coupled plasma both driven by a radio frequency (RF). The RF power was 

supplied using a signal generator which feeds an amplifier connected to a tunable 

impedance matching network Figure 2-5.  

 

 

Figure 2-5: Schematic of plasma power supply 

 

The ion trap experimental chamber needs only slight modifications to implement 

a plasma discharge capability. An additional bakeable valve is added to the bottom flange 

for introduction of the ultra-high purity gas. Other minor changes detailed below are 

specific to the type of discharge being implemented. A test chamber was specifically built 
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for the purpose of plasma testing and characterization. The main difference between the 

trapping chamber and the test chamber is that, for the test chamber, the pumping 

manifold, containing the ion pump, the ion gauge, and the titanium sublimation pump, 

was omitted. 

 

Capacitively Coupled Plasma 

To implement a capacitively coupled plasma (CCP), an RF electrode as well as a 

ground is necessary. When the electric field is large enough, the gas breaks down and a 

plasma is formed. Plasma potentials in capacitive discharges can be high, resulting in ion 

acceleration energies across the sheath greater than 200 eV [22]. Capacitive plasmas are 

low density plasmas. One of the consequences of the plasma being low density is the low 

ion flux across the sheath.  The ion energy and flux in a CCP cannot be varied 

independently, and depend on discharge power, pressure and the ratio of RF to ground 

electrode areas [22]. 

One of the design concepts in this work is to minimize changes to the existing 

setup used in ion trapping vacuum chambers. The concept as shown in Figure 2-6 is to 

generate a localized plasma directly above the ion trap surface. With the plasma confined 

between the screen and the trap chip, ion bombardment of the re-entrant window is 

minimized and, therefore, potential damage would be minimized as well. In this setup, 

RF power can be delivered to either the screen (Figure 2-7) or the metal ring on the 

ceramic package called the seal ring (Figure 2-8). Both options were explored.  
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Figure 2-6: Concept for capacitively coupled plasma 

 

 (a)  (b)   

Figure 2-7: (a)Screen and ion trap chip (b) Actual screen and ion trap chip  

 

(c)  (d)  

Figure 2-8: (a) Ceramic PGA package (b) Picture of package with seal ring labeled 
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For both implementations described an additional RF feedthrough was added to 

the vacuum chamber to deliver RF power for the plasma. In the first application, RF 

power was applied to the screen as shown in Figure 2-7(b) via a bare copper wire. The 

second configuration applied RF power to the seal ring of the package. To achieve this, 

an SMA connector was soldered to the package (Figure 2-9). An additional ring of gold 

was deposited for the grounding contacts of the connector (Figure 2-10). Because of 

limitations discovered while implementing capacitive discharges, inductive discharges 

were explored. 

 

Figure 2-9: Prepared trap chip with SMA attached 

 

 

Figure 2-10: From left to right a virgin CPGA package, shadow mask for gold coating,  gold ground ring 

evaporated onto CPGA 
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Inductively Coupled Plasma 

Inductively coupled plasmas (ICP) use an RF inductive element to couple energy 

from an RF power source to an ionized gas (Figure 2-11). There are several ways to 

configure the system to generate inductively coupled plasma [23]. A key feature for the 

work here is that the inductive element can be separated from the gas by a dielectric 

window or chamber wall. Inductively coupled plasmas are used on a large scale in 

semiconductor manufacturing where large wafers are processed in the plasma [24]. 

 

 

Figure 2-11: Diagram of induced E-field in the plasma [23] 

 

 ICP’s generate higher density plasmas relative to capacitive discharges at the 

same RF power. One of the consequences of inductive discharges being high density is a 

higher ion flux across the sheath.  The ion energy and flux in the ICP can be varied 

independently of each other. The ion flux can be varied by changing the source power 
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and the ion energy can be varied by changing the substrate electrode voltage. Unlike 

capacitive discharges, ion energies are only weakly dependent on discharge power and 

pressure, and are independent of electrode areas [22]. In this case, the electrode of main 

interest is the ion trap chip. The plasma ions’ acceleration energies across the sheath are 

typically in the 20V to 500V range depending on the electrode bias, and are lower than 

their capacitively coupled counterparts (Table 2-1). 

 

 

Table 2-1: Inductive plasma parameters vs capacitive, from [22] 

 

The ICP for this work is a small-scale plasma source and, therefore, of a slightly 

different configuration than those used for large-scale manufacturing ICP sources. It 

consists of a small stove top shaped inductor used to deliver the RF power to the plasma. 

To achieve a smaller plasma in the application here, the coil was scaled down [25]. The 

inductive coil was formed using 10 gauge copper wire that was wound into a two loop 

spiral with a coil diameter of 27 mm. This diameter was chosen to be just smaller than the 

diameter of the top of the slot in the shielding plate (Figure 2-12). The ends of the coil are 

directly connected to the impedance match network. The coil has a copper can covering it 
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to shield the ambient environment from RF radiation. The shielding plate replaced the 

metal screen commonly used in surface ion trap experiments. The replacement of the 

screen with a slotted plate is an advantage in ion trapping experiments as it removes the 

screen from the line-of-site of the camera that is used to collect photons for ion imaging. 

This plate can be held at ground potential or (in principal) biased to modulate the ion 

energies from the plasma to the surface of the trap. For plasma cleaning, in the ion 

trapping experimental chamber, the photon collection optic (lens) is removed from the re-

entrant viewport and the inductor is placed directly above the window in the re-entrant 

port (Figure 2-13). When the RF power is applied to the coil a magnetic field extends 

through the window and induces an electric field in the ionized gas to initiate and 

maintain the plasma (Figure 2-11). 

 

 

Figure 2-12: Configuration for inductively coupled plasma 
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Figure 2-13: Ion trapping chamber shown with RF plasma coil on re-entrant viewport. 

 

Retarding Field Ion Energy Analysis 

 The energy of the ions arriving at the surface determines the ability of plasma ions 

to clean and/or modify the surface. For the objectives of this work, it is critical to know if 

the surface contaminants are being removed by the treatment process. It is also important 

to know if the metal is being sputtered by the plasma. There are two concerns with 

removing the metal. First, the metal could redeposit between the device electrodes 

causing electrical shorts and rendering the trap useless. Second, if the sputtered metal 

coated the viewport it would obstruct the light collection from the trapped ion. 

Furthermore, it could be detrimental to the trapping experiment if the glass viewport is 

clouded or etched by the plasma ions. 
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Figure 2-14: Packaged retarding field energy analyzer. 

 

 A retarding field energy analyzer (RFA) was used here to determine the ion 

energies arriving at the surface of the ion trap (Figure 2-14). The RFA was designed and 

fabricated for characterizing ICP’s in semiconductor plasma processing chambers [26]. 

The analyzer has three plates as seen in Figure 2-15 and Figure 2-16. There are holes in 

the top plate that allow plasma ions and electrons to pass through. The top plate acts as a 

shield to the other two plates by screening the plasma potential from the potentials of the 

lower two plates. The shield can be grounded or left floating. Since it is the ion energies 

that are of interest, the middle plate (the repeller), is biased negative to reject all 

incoming electrons. The third plate is the collector and receives the ions from the plasma. 

Holes in the shield and repeller are self-aligned to minimize error in the measurement. 

Furthermore the diameter of the hole is smaller than the sheath distance, so differential 

pumping is not necessary and the plasma does not enter the analyzer. 



24 
 

 

Figure 2-15: Cross-sectional images of retarding field energy analyzer. 

 

 

Figure 2-16: Process flow for retarding field energy analyzer. 

 

 To determine the appropriate bias voltages of the analyzer and extract the ion 

energy distribution, a range of voltages first is swept across the repeller and the collector 

in the presence of a plasma in order to determine the potential to be fixed at the repeller. 
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First, the collector is held at zero volts and the current is measured using a Keithley 6487 

picoammeter voltage source as the repeller voltage is swept starting from zero volts going 

negative until the current measured on the collector saturates (Figure 2-17). The 

saturation of the current means all plasma electrons are being rejected and only plasma 

ions are contributing to the current on the collector. After the repeller voltage is set, the 

voltage on the collector is scanned in the positive direction. As the voltage on the 

collector becomes higher than the ion energies entering the analyzer, the current on the 

collector drops to a minimum (Figure 2-18). This current vs voltage curve is then 

differentiated to give the ion energy distribution (Figure 2-18). 

 

 

Figure 2-17: Repeller scan. 
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Figure 2-18: Collector scan and ion energy distribution. 

 

 In the plasma test chamber, the RFA was inserted in the place of the trap chip. 

The screen and the shielding plate were removed to allow ample space for the plasma to 

be generated.  

 

X-ray Photoelectron Spectroscopy 

 A critical measure of the efficacy of plasma removal of surface contaminants is 

their nature and amount. There are many analysis techniques for determining chemical 

composition on surfaces. A few of these surface analysis techniques are Auger electron 

spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and secondary ion mass 

spectroscopy (SIMS). In AES, electrons are accelerated at the surface of the sample and 

Auger electrons are detected revealing the chemical composition of the surface. If care is 

not taken in limiting current density of the electron beam while using AES, it can induce 

surface modifications through Electron Stimulated Desorption (ESD) [27]. In XPS, an X-

ray source is directed at the sample, electrons are collected on a detector and the amount 

of surface damage is reduced [28]. AES and XPS are both surface analysis techniques 
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that probe the top few nanometers of a sample. SIMS is a technique that sputters the top 

1-2 nm of the surface and analyzes the ejected secondary electrons. SIMS is the most 

sensitive surface analysis technique with detection limits ranging from parts per million 

to parts per billion.    

In this work, a Kratos Axis Ultra DLD XPS is used to determine the surface 

composition. A key reason for using XPS in this work is that it has less potential for 

modifying the surface during the analysis and it gives quantitative results (in atomic %) 

for surface contaminants. The XPS tool is equipped with a vacuum load lock where 

samples are introduced into the system. The load lock is isolated from the analysis 

chamber by a gate valve allowing samples to be inserted without venting the analysis 

chamber to atmosphere. A transport arm is used to move the sample from the load lock to 

the analysis chamber. Once the sample is aligned and the area on the device under test is 

identified, an X-ray source is turned on. The X-rays cause photoemission of electrons 

which escape from the top 0-10 nm of the surface. An electron energy analyzer separates 

the electrons by their kinetic energy and they are counted by the detector. Due to photo-

electric effect the energy of the electrons emitted from the surface is directly related to 

the chemical species on the surface of the sample. 

The ion trap plasma test chamber was slightly modified to interface to the XPS 

chamber via the load lock. One of the viewports on the chamber was removed and a 

magnetic transfer arm was attached in its place allowing a sample to be transferred from 

the plasma chamber to the load lock of the XPS. The socket that receives the ion trap chip 

package was also removed and the sample (trap chip) was placed directly on the magnetic 

transfer arm. 
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The XPS experiments were conducted as follows. A sample was loaded into the 

XPS tool and a pre-plasma exposure XPS scan of the sample was saved. The sample was 

then transported via the transfer arms into the plasma chamber where it was treated with 

plasma. Without returning to atmosphere the sample was transported back to the XPS 

chamber and post-plasma XPS measurements were made. The pre- and post-plasma scans 

were compared to determine the effect of the plasma exposure on the sample surface. 

 In this chapter, the experimental setup was presented explaining the devices and 

instruments used to perform the necessary experiments. Different plasma approaches 

were presented and plasma diagnostic techniques were explained. 
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Chapter 3 

Results and Discussion 

  

The first experimental objective in integrating a plasma discharge capability with 

an ion trapping experimental chamber was to determine if a UHP gas could be introduced 

into the trapping chamber and then pumped out to achieve UHV. Then, proof of concept 

experiments were conducted showing that plasma can be generated in the ion trapping 

chamber. CCP and ICP configurations were explored and results presented. The main 

goal of this work was to implement an in situ surface cleaning solution which did not 

modify the ion trap electrode surface metal. This goal was achieved. An advantage of the 

solution presented here is the minimal changes necessary to an ion trapping chamber for 

implementation on a working ion trap experimental chamber. 

 

Vacuum Pressure Test 

Tests were performed to establish that the chamber could be returned to UHV 

conditions after introducing UHP gas for plasma cleaning. For an in-situ cleaning 

solution to be a viable option in this application, it is important that a UHV pressure can 

be recovered post treatment without the need to re-bake the chamber. For ion trapping 

experiments, pressures in the range of 10
-10

 Torr and below are necessary. Furthermore, it 

is undesirable to fire the titanium sublimation pump, as the pressure rises dramatically 

during firing, and contaminants burned off the titanium elements could reach the ion trap 

surface. 
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A simplified vacuum chamber (Figure 3-1) was constructed using only the 

necessary components for the test. The leak valve, MKS (vacuum gauge), ion pump, ion 

gauge, titanium sublimation pump and the bakeable valve were assembled to a 2.75” 

cross using the same rigor as an actual ion trapping chamber. After cleaning and 

assembling these components, this test chamber was baked at 200 ºC for five days while 

pumping with a turbo molecular pump (TMP), after which the bakeable valve was closed. 

The final base pressure of 1×10
-12

 Torr was achieved using the ion pump and the titanium 

sublimation pump. 

 

 

Figure 3-1: Drawing of simplified chamber for UHP gas introduction test 

 

A bottle of UHP gas (10% oxygen semi 4N5 / argon ULSI 6N) was attached to 

the chamber using a clean manifold. This manifold had also been baked and evacuated 

using a TMP. The base pressure of the manifold was 1.7×10
-8 

Torr. The bakeable valve 

on the chamber was opened and the UHP gas was leaked into the chamber to a pressure 

of 1 Torr, which was estimated to be at the higher end of the pressure range that would be 
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used for running the plasma discharge in an ion trapping chamber. The gas was then 

pumped out using the TMP. When the MKS gauge read 9.7×10
-9 

Torr, the bakeable valve 

was closed and the ion pump was turned on. After 16 hours, the pressure on the ion gauge 

inside the chamber read 6×10
-12 

Torr, well within the pressure range for trapping ions. 

A similar test on an experiment-ready ion trapping chamber using UHP 

(99.9999%) argon did not yield similar results. The base pressure of the chamber was 

5.5×10
-11 

Torr. Argon was introduced up to 250 mTorr and allowed to flow through the 

chamber for 10 minutes after which the chamber was evacuated. The vacuum pressure 

after the test was 1×10
-10 

Torr. This higher pressure is attributed to the much larger 

surface area inside the experiment-ready chamber.  Ion heating rate measurements can be 

performed at this pressure; therefore work to reduce the pressure further was not pursued. 

 

Capacitively Coupled Plasma 

For in situ plasma cleaning to have the greatest utility, the implementation must 

not interfere with other aspects of the ion trapping experiments. CCP was initially 

investigated to see if plasma localized above the trap surface could be quickly 

implemented by simply adding a feedthrough for plasma RF and an additional bakeable 

valve for gas flow.  

The proof of concept CCP was implemented by applying RF to the screen in the 

trapping chamber. Argon gas was introduced into the chamber to reach a pressure of 

1.4×10
-2

 Torr and RF power of 5 W at 13.56 MHz was applied.  The resulting plasma 

discharge was diffuse, filling the whole chamber (Figure 3-2) and, therefore, did not meet 
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the requirement for localized plasma. However, it was established that plasma could be 

easily implemented in the ion trapping chamber. 

 

 

Figure 3-2: Diffuse plasma in test chamber, low millitorr pressure about 20 W 

 

To localize the plasma, the seal ring of the packaged ion trap was used as the RF 

driven electrode. Ideally, the plasma is to be over the electrode area of the trap chip, and 

not at the edges of the chip or anywhere else in the chamber. Initially in the plasma test 

chamber other grounded surfaces near the unshielded RF wire and near the trap were 

present, allowing stray RF fields and plasma formation in other locations of the chamber. 

Stray RF fields were mitigated by using a shielded coaxial cable with SMA connectors on 

both ends helping to localize the plasma around the ion trapping chip as shown in Figure 

3-3.   
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Figure 3-3: Localized capacitive plasma appears to not cover the center of the ion trap. 

 

An ion trap was prepared with an SMA connector, as previously described, and 

installed in the ion trapping experiment chamber. UHP oxygen-argon gas was introduced 

into the chamber to a pressure of 1 Torr. RF power of 4 W at 17.9 MHz was applied and 

plasma was observed in many parts of the chamber suggesting the presence of stray RF 

fields that were not observed in the test chamber. The post-plasma pressure was 1.7×10
-10 

Torr, high but acceptable for ion trapping experiments. 

CCP exhibited some undesirable characteristics, principal among them being that 

the plasma was not confined in the ion trapping chamber as it was in the test chamber. 

Additionally, in the test chamber after many multiple plasma treatments, a 1 kΩ short 

developed between the plasma RF and the ground electrode due to sputtered gold (Figure 

3-4). This was visually confirmed by observation of re-deposited gold on the ceramic 

chip carrier. This shows that the ion energies were high enough to sputter the trap surface 

which is consistent with CCP theory, in that ion energies are dependent upon plasma 
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power, pressure, and area ratio of electrodes and can be in excess of 1 keV. These 

phenomena are not acceptable for the subsequent trapping experiments. 

 

 

Figure 3-4: Sputtered gold from high ion energies 

 

Other CCP configurations were discussed for successfully confining the plasma 

and controlling the ion energies at the device surface (Figure 3-5). One such 

configuration would be to confine the plasma between two screens and bias the device 

surface to control ion energies.  
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Figure 3-5: Capacitively coupled plasma discharge configurations. 

 

While the capacitive discharge proved the concept of generating plasma in an ion 

trapping chamber, it proved challenging to localize. Therefore, inductive plasma 

generation was investigated. 

 

Inductively Coupled Plasma 

ICPs are driven by the induced electric field from the resonator. The size, location 

and applied power of the resonator greatly affect the plasma volume, so tuning these 

parameters can lead to a localized plasma. Additionally, ion energies are generally much 

less than 100eV and are decoupled from the plasma power, pressure, and area ratio of 

electrodes. As mentioned previously, inductive plasmas are used in CMOS processing 

and larger ion energies are achieved and controlled by (RF) biasing the sample substrate. 
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For this work, another attractive attribute of ICP is that the RF power can be delivered 

external to the chamber, thereby minimizing internal chamber modifications. 

The industry standard for exciting RF plasma is 13.56 MHz and these systems 

generally operate at hundreds to thousands of watts for establishing plasmas in relatively 

large process chambers. For this application, it was necessary to generate a localized 

small-volume plasma and it was found that the frequency needed to be increased and the 

power decreased. Work done by Yin et al. [25] on miniature ICP sources gave great 

insight into this process. The plasma density and volume are related to the power applied. 

The induction electric field decays exponentially within the plasma[29]; with a low 

enough field the plasma is localized. For the work here, it was found that 72 MHz is the 

(nominal) frequency at which the best impedance match was achieved with the lowest 

initiation power. The configuration shown in Figure 3-6 achieves the desired result of 

localized plasma (Figure 3-7). 

 

 

Figure 3-6: Inductively coupled plasma setup. 
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Figure 3-7: Image of localized plasma directly above the ion trap surface in the ion trapping experimental 

chamber. 

 

The initiation power vs pressure curve (Figure 3-8) was used to find the optimal 

operating conditions for plasma treatment in the ion trapping experimental chamber. 

 

 

Figure 3-8: Initiation power vs. pressure curve. 

 

Ion Energy Measurements 

There are many methods to characterize plasma conditions including UV-visible 

spectroscopy, electric (Langmuir) probes, and retarding field energy analyzers (RFAs). 
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Since the ion energy is the primary parameter of interest in this work, an RFA as 

described in [26] was used to characterize the plasma.  

Plasma was initiated at 72 MHz with a forward power of 1 Watt. The ion energy 

distribution was obtained by applying -30 volts to the repeller, sweeping the collector 

voltage positive, and then taking the derivative of the current vs voltage measured from 

the collector (Figure 3-9). The maximum measured ion energies were around 20eV at 

pressures from 10 to 50 mTorr, which is consistent with literature (Figure 3-10) [26]. The 

slight shift of the peak distribution to lower energies as the pressure is increased is 

attributed to the sheath becoming more collisional at higher pressures. The broadening of 

the ion energy peak at 40 and 50 mTorr is also attributed to a more collisional sheath. 

 

 

Figure 3-9: Ion energy distribution, Prf = 1W, Ωrf = 72 MHz, Retarding Field Analyzer Repeller = -30V 
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Figure 3-10: Ion energies for various pressures [26]. 

 

From the literature, it is found that surface adsorbate bond energies are less than a 

few electronvolts and, therefore, low energy ion bombardment should, in principle, 

remove these contaminants without appreciably modifying the underlying surface [30]. 

The surface contaminants are primarily adventitious carbonaceous species [11] from 

exposure to atmosphere. It was found in [31] that the desorption energy of CO on gold 

ranges from about 0.2 eV to 0.57 eV as the surface coverage gets thinner, because the 

surface potential goes up as more carbon is liberated from the surface. 

Whenever energetic particles impinge on a surface with a high enough energy 

there is erosion of the surface; this process is called sputtering. Sputtering of materials is 

widely used in semiconductor manufacturing. One such sputtering method is plasma 

processing described in [32]. Sputter yields by noble gas ions have been extensively 

investigated. The sputter yields of gold by low-energy argon ions can be seen in Figure 3-

11. From [16], an empirically derived sputter yield function is given by  

𝑌 = 𝑎(1 − √𝐸0/𝐸)
5

2[1 + 𝑏(√𝐸/𝐸0 −  1 )]   (1) 
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where Y is the sputter yield, E is the energy of the ion and a, b and E0 are constants. It 

can be seen in Figure 3-11 that the sputter yield is much less than 0.1 for the ion energies 

in the plasma generated for this work. 

 

 

Figure 3-11: Sputter yields for low energy argon ions [16] 

 

The ion energies measured here along with the results from the literature indicate 

that it should be possible to establish an ICP that has ion energies that are high enough to 

remove surface adsorbates yet below the sputter threshold of the surface material.  

To prove this hypothesis, the surfaces of prepared samples were characterized 

using XPS before and after exposure to plasma treatment. The samples were surface 

electrode ring trap chips [18] with half the surface gold coated (Figure 3-12), and the 

other half aluminum coated. Pre-plasma XPS data measurement on the gold side of the 

trap chip showed XPS peaks of gold, carbon and oxygen. The pre-plasma XPS scans can 

be seen in Figure 3-13 and Figure 3-14.  The results show the atomic concentration of 
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carbon on the gold side of the sample to be around 30 % for all samples (Table 3-1). The 

outliers are samples #2 and #3. Sample #2 came from a different wafer and it was stored 

in a different waffle pack from the rest. Sample #3 had been exposed to a capacitively 

coupled argon discharge routinely used for sample preparation prior to wire bonding (the 

other samples were not). The ion energies in this (packaging related) capacitive discharge 

are high enough to sputter the surface metals which can re-deposit across the trap. 

Although gold does not form a native oxide, the presence of oxygen on the samples is not 

un-expected since some of the carbon contamination from the atmosphere is in the form 

of CO2 [31].  

 

 

Figure 3-12: SEM image of ring-shaped ion trap with gold on half of the trap surface and aluminum on the 

other half. 
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Figure 3-13: Pre-plasma XPS scan on the gold side of samples 1 through 6 

 

Figure 3-14: Pre-plasma XPS scans on the aluminum side of sampes 1 through 6 
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Pre-plasma treatment Gold Side Atomic Concentration (%) 

Sample# Al Au C O other 

1 0 62 33 5 0 

2 0 55 32 13 0 

3 4 32 37 26 0 

4 0 69 26 5 0 

5 0 66 28 6 0 

6 0 63 31 6 0 
Table 3-1: Pre-plasma treatment concentrations by atomic percent taken from XPS scans on the Gold side 

of each sample. 

 

The first set of samples, #1, #3, #4, and #6, were exposed to various plasma 

conditions and then returned to a waffle pack for (atmospheric) storage as seen in Table 

3-2. Post-plasma XPS scans of these samples showed a reduction in carbon from 26 to 

37% pre-plasma (Table 3-1) to 15 to 23% post-plasma see Table 3-3. The data suggests 

that the plasma removes some, if not all, of the carbon from the surface, with new carbon 

possibly re-adsorbing during the long exposure to atmosphere prior to XPS analysis. The 

effect of different plasma parameters was inconclusive. 

 

Plasma Treatment Conditions 

Vplate Vchip 30 sec 300 sec 1000 sec 

0 0 #6 #3 - 

40 -40 #1 #4 - 

floating floating - - #5 

floating ground - - #2 
Table 3-2: Plasma treatment conditions, for all conditions the frequency was 72MHz the forward power 

was 4 W and the pressure was 250 mTorr 
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Post-plasma treatment Gold Side Atomic Concentration (%) 

Sample# Al Au C O other 

1 0 75 23 2 0 

2 0 79 16 5 0 

3 6 43 17 27 7 

4 0 73 21 6 0 

5 0 82 16 1 0 

6 0 75 22 3 0 
Table 3-3: Post-plasma treatment concentrations by atomic percent taken from XPS scans on the Gold side 

of each sample. 

 

For the next plasma treatment trial, it was attempted to minimize the time after 

plasma treatment that the sample was exposed to the atmosphere. Samples #2 and #5 

were plasma treated and analyzed in the XPS chamber within 30 minutes. The percent 

carbon on each of these two sample surfaces pre-plasma was 32% and 28% respectively 

(Table 3-1) and 16% for both samples post-plasma see Table 3-3. While this result does 

not confirm that carbon was completely removed during the plasma treatment, it strongly 

suggests that duration of atmospheric exposure of treated samples is a major factor in the 

atomic concentration of carbon and oxygen post-plasma. 

Since adventitious carbon accumulates rapidly at atmosphere during the transfer 

from the plasma test chamber to the XPS tool, a method eliminating exposure of the 

sample to the atmosphere was needed for evaluating the effectiveness of the plasma in 

removing carbon. The time between plasma treatment and XPS analysis also needed to be 

minimized. Although the XPS tool is in a different lab than the ion trapping chamber, it 

was possible to move the plasma test chamber to the XPS lab. The XPS system has an 

extra transfer station just after the load lock and therefore the plasma test chamber, could 

be attached directly to the transfer station to facilitate in vacuum transfer of samples 
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using a magnetic transporter (Figure 3-15). This allowed samples to be plasma treated 

and then transferred to the XPS chamber without being exposed to air. 

 

 

Figure 3-15: Representation of plasma test chamber attached to XPS analysis system. 

 

New trap chip samples were prepared with half the surface electrode ring trap 

coated with gold (Figure 3-16). For the initial attempts at vacuum transfer of plasma 

treated samples to the XPS chamber, a sample was attached onto a holder with a small 

amount of carbon tape which was completely covered by the chip. XPS measurements of 

sample surface contaminants were taken pre- and post-plasma treatment. Plasma 

treatment was performed at 72MHz, 4 W power for 5 minutes. Results for these trials 

showed carbon concentration to be reduced to 9% but not completely removed (Figure 3-

17). Although the tape was completely hidden from plasma exposure by the sample, it 

was speculated to still contribute to the carbon peak post-plasma, as was demonstrated by 

the subsequent test.  
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Figure 3-16: Half of the surface electrode ring trap coated with gold. 

 

 

Figure 3-17: XPS results in test chamber, trap chip attached with carbon tape, 5 minutes argon plasma 

exposure, 4 W, 72 MHz, 250 mTorr. 

 

To completely remove carbon tape, a mechanical sample holder was designed and 

built to hold the sample. Plasma treatment was performed on a new sample, and the XPS 

scans pre- and post-plasma were recorded (Figure 3-18). After the plasma exposure, no 

carbon or oxygen peaks on the gold side of the sample were present. On the aluminum 
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the carbon percentage was reduced, however, the percent oxygen increased. The increase 

in oxygen is due to the cleaner Al203 surface. 

 

  

 

 

Figure 3-18: XPS spectrum of carbon and oxygen peaks on gold and aluminum surfaces pre- and post-

plasma exposure, 72 MHz, 4 W, 300 s. 
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These data prove the first half of the hypothesis, that the ion energies from the 

ICP are high enough to remove the carbonaceous species adsorbed on the surface. The 

second part of the hypothesis is that the plasma ion energies used here are below the 

appreciable sputter yields of gold by low-energy argon ions. In the XPS scans no gold 

was observed on the aluminum side and no aluminum observed on the gold side. This 

validates the hypothesis that the ion energies are below the sputter threshold of the metal 

on the surface. If a detectable amount of surface metal was sputtered, some re-deposition 

of the sputtered metal would be expected due to collisions of the metal atoms with 

incoming argon ions. 

It has been shown that localized inductive plasma can effectively remove carbon 

contamination without sputtering the trap electrodes. The results are summarized in Table 

3-4. 

 

 

Table 3-4: Summary of plasma results by XPS atomic percent carbon. 
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The next experiment shows that carbon adsorbs on the metal surfaces even at 

UHV pressures. After plasma exposure of 120 seconds at 250 mTorr, the sample was left 

in the XPS chamber at a base pressure of 7×10
-9 

Torr overnight with periodic scans. It can 

be seen in Figure 3-19 that the carbon peak grows over time. These data suggest that the 

plasma was in fact removing all of the carbon and any small carbon peak observed was 

adsorbed on the surface during the transfer of the sample back to the XPS chamber, 

which takes times approaching 5 minutes in duration. During the transfer from the plasma 

chamber to the XPS chamber the sample was not exposed to atmosphere, but there was 

some residual carbon in each of the chamber components. These results are also 

consistent with the post argon ion beam treatment results from the Berkeley experiment 

[33], where it was shown that over time the carbon peak returns even at UHV pressures. 

 

   

Figure 3-19: XPS spectrum on gold and aluminum pre-plasma and post-plasma showing an increasing 

carbon peak even while in XPS vacuum chamber including +1.5hrs, +8hrs, +14hrs. 
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Testing the plasma discharge parameter space revealed that removal of carbon 

from the surface occurs over a large range of plasma conditions. In these plasma 

treatment trials three pressures were tried with various times. 

Sample exposure to plasma at 250 mTorr was tried for 120 seconds and complete 

carbon removal was observed. After a 30 second exposure of a new sample, a small 

carbon peak was still observed, so the same sample was treated for an additional 30 

seconds which further reduced the amount of carbon contamination. The resulting XPS 

scans are presented in Figure 3-20. Analysis at 500 mTorr and 75 mTorr yielded similar 

results as seen in Figure 3-21 and Figure 3-22. 

 

 

Figure 3-20: Timed plamsa exposure at 250 mTorr, 72 MHz, 4 W 
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Figure 3-21: Timed plamsa exposure at 500 mTorr, 72 MHz, 4 W 

 

 

Figure 3-22: Timed plamsa exposure at 75 mTorr, 72 MHz, 4 W 

 

Heating Rate Measurements 

The end goal for an ion trapping experiment is to achieve a low enough ion 

heating rate that coherent quantum operations can be performed. In situ plasma cleaning 

was performed on a surface ion trap in an ion trapping experimental chamber in order to 
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determine whether removal of surface contaminants on trap electrodes without 

modification of the electrode metal via sputter would affect the heating rate. 

The ion trap used was a second generation high optical access trap (HOA) 

designed and fabricated at SNL. It has a narrow isthmus in the center that minimizes laser 

clipping at the edges of the device (Figure 3-23). The through-chip slot along the center 

of the device allows for optical access through the chip. An ion can be loaded in this trap 

either in the center or at one of the four loading hole regions. The loading hole regions 

are located on each of the arms after the junction region at either end of the slot region. 

 

   
Figure 3-23: HOA2 ion trap chip 
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Figure 3-24: Ion heating rate measurements pre- and post-plasma (showing no measureable change). Blue 

are pre-plasma. Red are post-plasma cleaning trial #2. Black are post-plasma cleaning trial #2. 

 

Heating Rate measurements on the HOA2 device are presented in Figure 3-24. 

There is a 1/f dependence that is consistent with other traps where f is the ion axial 

secular frequency [7]. For an in-depth discussion of ion heating, see the recent 

comprehensive review by Brownnutt, et al. [7]. The first test in implementing plasma 

cleaning of this trap was to verify that pre-plasma UHV pressures could again be reached 

after introduction of argon. The argon gas was introduced into the chamber and allowed 

to flow through the chamber at a pressure of 500 mTorr for 10 minutes. The chamber 

returned down to 1×10
-10 

Torr in less than 24 hrs, not reaching the starting base pressure 

of 5.5×10
-11

 Torr, this pressure is acceptable for trapping experimental work. 

A first plasma exposure of the trap was performed at a pressure of 250 mTorr 

with a plasma RF frequency of 72 MHz and a power of 4 W for 5 minutes, after which 

the base pressure was 3.8×10
-10 

Torr. Measurements of ion heating rates after this plasma 
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treatment showed no measurable change in the ion heating rate (see the red symbols in 

Figure 3-24). A second plasma exposure of the sample was performed at 500 mTorr for 

60 seconds. After this plasma exposure, argon was flowed through the chamber for 10 

minutes in an attempt to more quickly and comprehensively approach the pre-gas-

introduction base pressure in the chamber. This post-plasma argon flow decreased the 

pump down time and the resulting base pressure after the second plasma treatment was 

2.5×10
-10 

Torr.  Heating rate measurements taken after this second plasma exposure were 

again found to be within the error bars of the pre-plasma cleaning (see the black symbols 

in Figure 3-24) showing no measurable change in the ion heating rate. 

After the plasma cleaning and heating rate measurements described above, it was 

noted that the trap chip employed for these tests used epoxy in assembly of the trap chip, 

interposer chip (which houses RF shunt capacitors and provides redistribution of control 

line voltages), and the ceramic package. While the bulk of this epoxy is covered by these 

parts, some was exposed very near the trapping region and was visible to the plasma. 

Epoxy die attach is a usual method used for assembly of ion traps and has not been 

shown to adversely affect the chamber pressure. However, carbon liberated by plasma 

exposure of the epoxy could be deposited onto the trap surface, resulting in little or no 

change in the concentration of carbon on the trap surface. This source of carbon (epoxy) 

may have played a similar role as the carbon tape previously mentioned in the XPS 

plasma experiments.  

Future experiments are planned in which no epoxy is present during plasma 

cleaning. It is suggested that this experiment is required before any concrete conclusions 
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can be made about the efficacy of plasma cleaning of surface contaminants for reducing 

ion heating.  
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Chapter 4 

Summary & Conclusions 

  

In this thesis the construction and implementation of an in situ plasma discharge 

to remove surface contaminants from electrodes in an ion trapping experimental system 

was presented with results. Using X-ray photoelectron spectroscopy (XPS) and in vacuo 

transfer of samples between the plasma discharge test chamber and the XPS chamber, it 

was shown that carbon and oxygen contaminants on the surface of an ion trap can be 

removed without sputtering the underlying trap electrode. It was also shown that minimal 

chamber modifications were necessary making this a tractable method for in situ 

cleaning.  

Ion heating rates in and ion trapping experiment were measured before and after 

plasma treatment of electrode surfaces and the observation of no change in heating rates 

after plasma exposure is attributed to the simultaneous removal and deposition of carbon 

contamination arising from the (inadvertent) presence of epoxy near the trap. 

Nonetheless, it was demonstrated that in situ plasma treatment of trap electrodes can 

efficiently remove electrode surface contamination under the right conditions. The results 

obtained here show that plasma cleaning is a viable way to remove surface contaminants.  

While more work needs to be done to show unequivocally that removal of carbon is 

necessary and/or sufficient for reduced heating rates, the results here serve as a basis for 

further work to understand the role of surface contamination in anomalous heating. This 

work suggests a plasma cleaning of trap electrodes with no other sources of carbon 

present (e.g. from exposed epoxy) may prove that carbon removal is necessary but not 
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sufficient for significant reductions in heating rates. Carbon sources near the trap need to 

be eliminated and different surface preparations, such as ex situ sputter treatment of 

electrodes, needs to be explored. 

For implementing a plasma discharge in a working ion trapping chamber, it was 

successfully demonstrated that ultra-high purity (UHP) gas can be introduced into a ultra-

high vacuum (UHV) system and that the pressure necessary for ion trapping experiments 

(≤ ~10
-10

 Torr) can be recovered without the need to re-bake the chamber. It was also 

demonstrated that plasma could be localized to just above the trap chip to reduce negative 

effects of sputtering materials off walls, mounts and cables in the trapping chamber. 

Importantly the ion energies of inductively coupled plasmas (ICPs) were shown to be 

below the sputter threshold of the ion trap’s gold and aluminum metal electrode surfaces. 

XPS data showed that the carbon and oxygen can be removed from both gold and 

aluminum surfaces for a wide range of ICP conditions, and in some instances completely 

for gold. 

It is interesting to note that in the NIST experiments [34], a two order-of-

magnitude improvement with argon ion sputtering in situ was observed compared to only 

one order-of-magnitude improvement with argon ion sputtering ex situ. This suggests that 

cleaning the trap surface of contaminants is necessary but not sufficient to attain the 

lowest ion heating rates.  

The first step for future experiments to unequivocally understand the effects of 

plasma cleaning on heating rate is to remove the epoxy, used for attaching the ion trap 

chip to the ceramic chip carrier, given that this is a potential carbon source that can 

contaminate the trap surface. This will be done by using an all-metal solder die attach 
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method for trap, interposer, spacer, and package assembly. Pre- and post- plasma heating 

rate measurements for this “carbon free” trap assembly will then be performed. 

Subsequent experiments should also explore how surface modifications interact 

with heating rates, principally argon ion beam sputtering experiments. Heating rates for 

samples prepared and exposed to an argon ion beam ex situ and followed by in situ 

plasma treatment just prior to heating rate measurements using the methods described 

should clarify the results to date.  

In addition to the investigations described above, the cleaning of traps having 

electrode surfaces with distinct regions consisting of different metals should be 

enlightening. A shadow mask can be used to mask off different sections of the SNL trap 

surface to allow for two or three different metals on the same trap. It is expected that this 

and the above proposed studies will produce the optimal combination of surface 

preparation and trap electrode metal for mitigating anomalous heating. The 

implementation of a plasma source that can be built into a compact system that is easily 

integrated into existing ion trapping experiments, as demonstrated here, may be a key  

feature for realizing this. 
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