
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Fall 12-17-2016

On Frequency Variation of Dynamic Resting-state
Functional Brain Network Activation and
Connectivity with Applications to both Healthy
and Clinical Populations
Maziar Yaesoubi

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Yaesoubi, Maziar. "On Frequency Variation of Dynamic Resting-state Functional Brain Network Activation and Connectivity with
Applications to both Healthy and Clinical Populations." (2016). https://digitalrepository.unm.edu/ece_etds/305

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalrepository.unm.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/305?utm_source=digitalrepository.unm.edu%2Fece_etds%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

           
       Candidate  
      
           

     Department 
      
 
     This dissertation is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Dissertation Committee: 
 
               
                   , Chairperson 
  
 
           
 
 
           
 
 
           
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  

Maziar Yaesoubi

Electrical and computer engineering

Vince D. Calhoun

Robyn L. Miller

Erik B. Erhardt

Manel Martinez-Ramon



On Frequency Variation of Dynamic
Resting-state Functional Brain Network

Activation and Connectivity with
Applications to both Healthy and Clinical

Populations

by

Maziar Yaesoubi

B.Sc., Sharif University of Technology, 2006
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Abstract

One of the earliest and fundamental observation in scientific study of the brain was

discovering the relation between activities in different local regions of brain and some

core functions of the brain. This was later followed by observing that not only lo-

cal activities of regions but also synchronous activities between distributed brain

regions play a key role in high-level brain functions. Synchronous activity related to

the functions of the brain is commonly referred to as functional connectivity (FC)

and is studied in the form of connectivity states of the brain which measure de-

gree of interactions between distributed parts of the brain. Functional connectivity

has been studied with different imaging modalities such as electroencephalogram

(EEG), magnetoencephalography (MEG) and functional magnetic resonance imag-

ing (fMRI). The latter has the advantage of having relatively higher spatial resolution
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of the underlying functional regions and is our choice for the source of the data in

this work. Functional connectivity analysis of the human brain in fMRI researches

focuses on identifying meaningful brain networks that have coherent activity either

during a task or in the resting state. These networks are generally identified either

as collections of voxels whose time series correlate strongly with a pre-selected region

or voxel, or using data-driven methodologies such as independent component anal-

ysis (ICA) that compute sets of maximally spatially independent voxel weightings

(component spatial maps (SMs)), each associated with a single time course (TC).

Recent studies of functional connectivity have shed light on new aspects of functional

connectivity. For example, connectivity during a resting state (RS) of the brain had

long been know to constitute a single state of connectivity and just recently it is

argued that RS-connectivity, varies in time and has a dynamic nature. In this work,

we investigate new aspects of RS-connectivity jointly with its dynamic aspect. As

part of the new observations, we discuss that RS-connectivity is in fact frequency

dependent in addition to be temporally dynamic. This discovery allows to capture

RS-coonectivity at a given time as the superposition of multiple connectivity states

along frequency dimension. Later, we also show that interaction between fMRI net-

works is not only frequency dependent and temporally dynamic but also may occur

cross different frequency spectra which is the first evidennce of cross-frequency depe-

nence between fMRI functional networks. We also discuss that all of these observa-

tions would enable us to design novel measures to explain RS-connectivity variation

among different group of subjects such as healthy and diseased or males and females

which would have clinical diagnosis applications and could possibly serve as new

bio-markers to study underlying functions of the brain.
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Chapter 1

Introduction

1.1 Overview

One of the very first and fundamental observation of human brain was that its func-

tion is the result of integration of activities of local regions which are distributed

over the brain. Each of these distributed regions has been associated to specific

functions of the brain which have been refined over time [2]. For example in early

19th century, through experim1ental brain ablations, scientists could distinct func-

tions of cerebrum ad cerebellum and now with advancements of non-invasive imaging

techniques we have access to a finer distinction of brain regions [3]. The association

between local and distributed regions of the brain and specific brain functions is

known as functional segregation aspect of the brain [4] (Figure 1.1 A).

Moreover, integration aspect of the brain has been investigated by studying co-

herent regional activities wildly referred to as brain connectivity . In fact it has

been observed that not only local activation of brain regions but also synchronous

activities between set of regions contribute to execution of higher level functions of

the brain. Coherent activity of distributed brain regions is widely referred to as
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• Involved in 
purposeful 
acts like 
judgment, 
creativity, 
problem 
solving, and 
planning. 

• Processes higher 
sensory and 
language functions.

• Primarily responsible 
for hearing, memory, 
meaning, and language. 

• Some overlap in 
functions of the lobes.

• Primarily 
responsible 
for vision.

• Responsible for 
balance and 
coordination.

A B
Functional segregation Functional integration

Figure 1.1: (A) Functional segregation versus (B) functional integration.

functional integration aspect of the brain [5] (Figure 1.1 B).

Evidences of functional integration initially evolved from functional segregation

as well as the structural morphology of brain when co-activity of anatomically dis-

tant regions was observed. Knowledge on anatomical and morphological connectiv-

ity, which are usually referred to as structural connectivity, has been improved by

introduction of tracing techniques such as ”Anterograde” (forward) and Retrograde

(backward) [6] tracing as well as diffusion tensor imaging (DTI) [7]. These tech-

niques, however, capture connectivity independent of the current functional state of

the brain. In fact, connectivity as the interactions of brain regions due to the function

of the brain, which is known as functional connectivity, although is partly derived

from structural connectivity, is also adapted to the current function of the brain.

Neuroimaging techniques which capture functionally related activities of the brain

have been used to estimate functional connectivity as a venue to study functional

integration aspect of the brain. These techniques, although, measure a correlate of
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the actual neuronal activity, differ based on the type of the actual signal they cap-

ture. As an example, electroencephalogram (EEG) measures voltage differences on

the scalp as the result of simultaneous activity of large number of neurons. Even

with state of the art EEG devices, a large number of neurons is need to sum up their

activity to produce a strong signal to be picked by EEG electrodes. Moreover since

EEG picks the signal on the scalp, an inverse problem needs to be solved to localized

actual sources of activity inside brain. All of this results in having poor knowledge

on and low resolution of the spatial sources of activities. On the other hand, EEG

electrodes are able to capture brain activities with high temporal resolution (with

sampling rate of ∼ milliseconds). This enables EEG to capture activities in a wide

range of frequencies covering known rhythmic activities of the brain including theta

(4-7 Hz), alpha (7-14 Hz), beta (14-25 Hz) and gamma (low: 30-60 Hz, high: 60-100

Hz). Similar to EEG, magnetoencephalography (MEG) has advantage of having high

temporal resolution but instead, it measures changes in magnetic field accompanied

by the electrical activities of the brain. Similarly to EEG, MEG also suffers from

having low spatial resolution although compared to EEG, its signal is attenuated

less by the scalp and skull and has a slightly higher spatial resolution. However both

techniques, measures brain activities with limited depth of the brain (∼ 4 cm).

On the contrary, magnetic resonance imaging (MRI), has been enabled to cap-

ture volumetric images of soft tissues in different parts of the body. Particularly,

MRI images captures relative population of hydrogen atoms as part of the water

molecules in different parts of the body which provides a contrast between body

tissues such as water and fat. This imaging technique has also been used to capture

both structural and functional images of the brain. Structural MRI (sMRI) provides

contrast between white matter, grey matter and cerebrospinal fluid (CSF) of the

brain. In contrary to other techniques to measure of brain activity such as EEG and

MEG, current MRI technology is unable to directly capture neuronal brain activi-

ties. However it was observed that, in fact, MRI can made to be sensitive to level
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of deoxyhemoglobin in the veins. This observation, lead to the design of functional

MRI which captures blood-oxygen-level dependent (BOLD) contrast which its local

changes in the brain is known to correlate underlying neuronal activities of the brain.

1.2 Principles of BOLD signal and fMRI technol-

ogy

From late 19th and early 20th century, it has been hypothesized that neuronal ac-

tivity is correlated to changes in blood flow [8]. This hypothesis was later accom-

panied by first evidences of magnetic properties of blood [9] which is shown to be

relate to whether hemoglobin carries an oxygen molecule. Oxygenated hemoglobin

(Hb) is known to be diamagnetic (having zero magnetic moment) and deoxygenated

hemoglobin (dHb) is known to be paramagnetic. Consequently, differences between

local concentration of dHb and Hb leads to difference in homogeneity of local mag-

netic field of the brain. This contrast of magnetic field homogeneity is the source

of the BOLD signal. Local neuronal activities increase blood flow near the pool of

corresponding neurons leading to the increase of concentration of Hb [10]. Now if hy-

drogen nuclei of the body initially align to a strong static magnetic field ( 1.5−3T in

current commonly used fMRI scanners), when their orientation of the spins changes

with radio waves (RF pulse) at the appropriate frequency (Larmor frequency) and

when the pulse stops, the magnetization at the new spin orientation decays and de-

phases as it realigns to the initial orientation. Rate of dephasing depends on the

degree of homogeneity of local magnetic fields (stronger local homogeneity of mag-

netic field leads to slower dephasing) which is directly related to ratio of Hb and

dHB and correlates to the local and instantaneous neuronal activities. fMRI data as

used here is in fact measure of the dephasing as the T ∗2 images.
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1.3 fMRI experiment design to map neuronal ac-

tivities to the brain function and behavior

Experimental designs of fMRI are mostly based on the subtraction principle. It

usually consists of two types of conditions. One is the experimental condition rep-

resenting a state of the brain when focused on a task of interest. Another condition

is control condition representing a baseline state of the brain. Having the design,

there are approaches which makes it possible relate the condition of the brain to the

observed brain activation. One used approach is general linear model (GLM) which

correlates task design to the activities in a given seed or region of interests (ROI)

which requires a prior knowledge on the anatomically meaningful selection of the

seed or ROI location (Figure 1.2 Left). There are also data-driven approaches that

do not require a prior selection of the regions but are still able to decompose the

capture brain data into a set of regions among which exist anatomically meaningful

brain regions. Also , attached to each regions is a time-series which represent activ-

ities associated to that region. One of the most commonly method to achieve such

decomposition is independent component analysis (ICA) (Figure 1.2 Right).

1.3.1 Group spatial independent component analysis

ICA decomposition as has been used in here is a group spatial ICA (gsICA). It is

used to find functional networks of the input data of voxel-level time-series. Functi-

nal networks as computer by gsICA are in fact a set of maximally spatially inde-

pendent voxel weightings (component spatial maps (SMs)), each associated with a

single timecourse (TC). gsICA as implemented in GIFT toolbox which has been used

throughout this study has several stages: First, a subject-level principal component

analysis (PCA) reduces the subject data temporal dimension by selecting subset of
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Task Baseline

Task Rest

Task Baseline

rest task rest task rest
Task Rest

General linear model 
(GLM) and 

seed-based/regions of 
interests (ROI)

Independent component 
analysis (ICA)

Based on “subtraction paradigm”

Figure 1.2: Semantic representation of a task-based experimental design. Left:
GLM-based approaches to identify activities due to the task design in a selected
ROIS. Right: Data-driven approaches (here based on ICA decomposition) to iden-
tify functional networks whose activities correlate to the task-design.

the principle components (PCs) explaining most of the variation of the data. This is

followed by a group-level PCA on concatenated subject principal components, from

which, again, a subject of PCs are retained. A set of maximally spatially indepen-

dent group-level spatial maps (SMs) are obtained from this reduced group-level data

using an Infomax-based algorithm. To find the most stable SMs, Infomax is repeated

ten times and clustered via ICASSO [11]. The aggregate spatial maps that emerge

from this process are the modes of component clusters. Note that these SMs are

define at the group-level. Subject specific spatial maps and time courses can be es-

timated using the GICA1 [12, 13] algorithm which essentially, project subject-wise

time-courses estimated from group-level analysis on the input voxel-level data for

each subject to find subject-specific spatial map.
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Mathematically speaking given input voxel-level data as the matrix Vvoxel×time =

[V subject1
voxel×time, ..., V

subject s
voxel×time] where each of the V subject i

voxel×time in this implementation are

pca reduced in time. ICA decompose V as follows here and visualized in Figure 1.4:

Vvoxel×time = Svoxel×c × Tc×time (1.1)

where Svoxel×c are the maximally independent spatial maps (ICA componnets/ brain

functional networks) . The backprojection is in fact projection of Tc×time = [T subject1
c×time ,

..., T subject s
c×time ] on to the original input data to estmate subject-specific spatial maps as

follows:

Ssubject i
voxel×c = V subject i

voxel×time × T
subject i
c×time

−1
(1.2)

Time

V
o

xe
ls

ICA Time-coursesgsICA components/spatial mapsVoxel-wise time-series

Subject 1 Subject s Subject 1 Subject s

Time

Group-level ICA 

Figure 1.3: Semantic representation of ICA decomposition.

Not all estimated SMs map to actual anatomical regions of the brain by either

overlapping with white-matter, known vascular or ventricular as well as components

whose spatial maps overlaps the edge of the brain which is hypothesized to be suscep-

tible to the motion. Consequently, gsICA as explained above, is usually accompanied

by post-processing to remove SMs related to physiological, motion and imaging arti-

facts. Also additional post-processing of timecourses is usually performed, including

detrending, multiple regression of the size realignment parameters and their temporal

derivatives and outlier removal.
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1.3.2 Resting-state experiment

Experiments solely based on resting-state of the brain has been relatively more recent

compared to task-based designs. In task-based experiments, resting-state, has been

mostly used as a baseline condition. However later studies showed that, in fact,

brain activity, in the absence of an explicit input, is known to be spontaneous but

can be correlated between functionally or structurally related regions. Variety of

brain functions have been associated to the resting brain including memory and social

cognition known to be related to ”default mode (DM) network” of the brain (Raichle

and fox 2001 a default mode of brain function pnas) which have also been identified

in resting-state fMRI analysis. Other networks including somatosensory (motor and

sensory), visual, auditory and language have also been identified using resting-state

data along with attentional and cognitive control networks [14]. Engagement of

such a variety of networks during a state of a brain which is relatively simple to

perform and capture has make it appealing to a wide variety of research topics

including clinical and diseased brain studies. Also since it captures a state of brain

in constraint-free context, it has been shown that more variation among groups of

subjects can be, consequently, observed. and lastly, it also makes it easy to study

impaired subjects such as Alzheimer’s patient and also to study brain in a context

where there are no explicit experiment design such as hallucinations.

1.4 Objectives and contributions

Main objective of this work is to design new frameworks to study functional inte-

gration aspect of the resting-state brain in form of functional connectivity defined

in a joint time and frequency domain. This enables to explore novel aspects of

resting-state connectivity that have not been studied before. We also implement

our proposed framework in a clinical diagnosis setting to study schizophrenia disease
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Figure 1.4: Resting state experiments with no design. In this case, data driven
approaches such as ICA (right) have advantage, since by design, they do not need
a prior knowledge on the design. However GLM and ROI approaches (left) can still
be adapted to overcome this lack of knowledge.

and its similarities and differences from healthy control condition which are only

identifiable in this augmented domain. As we will explain, resting state functional

connectivity had already been studies in temporal and frequency domain but, here,

for the first time, we investigate these aspect jointly in a whole brain. connectivity

analysis.

1.4.1 Materials

There are two sets of the data we use in this study. First set consists of resting-state

scans of 405 healthy subjects (200 females and mean age of 21.0 yeas ranging from 12

to 35 years). fMRI data was captured using the same scanner for all subjects, a 3-T

Siemens Trio scanner with 12-channel radio frequency coil. T ∗2 -weighted functional
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images were acquired using a gradient-echo EPI sequence with TE = 29 ms, TR =

2 s, flip angle = 75◦, slice thickness = 3.5 mm and gap = 1.05 mm, FOV = 240 mm,

matrix size = 64x64, voxel size = 3.75 mm x 3.75 mm x 4.55 mm and informed consent

was obtained according to institutional guidelines at University of New Mexico. Pre-

processing steps included discarding first 4 image volumes to avoid T1 equilibration

effect, realignment, slice-timing correction, spatial normalization, reslicing to 3 x 3 x

3 mm3 voxels and Gaussian smoothing. And finally voxel time-series were z-scored

to remove bias from further variance-dependent processes.

The second set of the data includes 163 healthy controls with average age of 36.9

and 151 patients diagnosed with schizophrenia with average age of 37.8. 46 of the

healthy controls and 37 of patients were female. In accordance with the internal

review boards of corresponding institutes, informed consent was obtained from all

the subjects. fMRI scans of the subjects during a resting-state with eyes closed, were

acquired across 7 different sites. Scans for each subjects constitute 162 volumes of

T ∗2 -weighted functional images with EPI sequence. Same scanners a 3T Siemens Tim

Trio System were used in 6 sites and a 3T General Electric Discovery MR750 scanner

was used in only one of the sites. All of the scans had FOV = 11x220 mm, matrix

size = 64 x 64, TR = 2 s, TE = 30 ms and FA = 770. Pre-processing included head

motion, slice-timing correction and spatial normalization to the Montreal Neurologi-

cal Institute (MNI) template was applied to the data using SPM toolbox followed by

despiking using AFNI3 to remove outliers. The BlurToFWHM algorithm as imple-

mented in AFNI3s was used for spatial smoothing of the data and lastly all voxel-wise

time series were z-scored to normalize the variance before performing group spatial

independence component analysis (gsICA).
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Chapter 2

Functional network connectivity of

resting-state brain

Functional connectivity (FC) analysis of the brain has been the dominant approach

to study temporal dependence between brain regions as a quantification of functional

integration. As explained earlier, such regions are either determined from regions-

of-interest (ROIs) using prior anatomical knowledge [15, 16] or through data-driven

approaches, such as ICA, which looks for maximally spatially independent compo-

nents [17, 18, 19]. However, regardless of the way such regions or components have

been derived, both FC and its close relative functional network connectivity (FNC)

-referring to FC between component timecourses estimated by ICA- have been shown

to be extremely informative about the brain function [20, 21, 22].

A key feature of most connectivity analyses (FC or FNC) of resting-state brain

is that the temporal dependence is evaluated globally, as a property characterizing

network pairs dependence over the entire duration of a scan. Such analysis is in fact

in line with previously common assumption on resting-state with being considered as

a baseline and singleton reflection of function of the brain. More recent works have
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indicated however that patterns of connectivity between resting-state networks are in

fact highly dynamic [23] with key features obscured by averaging over whole period

of time questioning common assumption of stationary RS-connectivity. Capturing

dynamic aspect of connectivity, requires new methods to be developed. Proposed

methods to capture dynamic connectivity, all have been limited by their underlying

assumption and in the absence of a ground truth, performance of the methods can

not be directly compared and consequently the choice of the method for a given

study depends on the objective of the study.

As an example, there are methods based on the estimation of ”phase synchro-

nization” between given time-courses. These methods disregard correlation between

amplitudes and focus on the difference between instantaneous phases of the signals.

A commonly used formulation for this methods is first projection of input signal into

its analytic signal representation with a Hilbert transform as follows:

ψ(t) = s(t) + js̃ = A(t)eφ(t) (2.1)

where s̃ is Hilbert transform of input signal s as follows:

s̃(t) =
1

π
P.V.

∫ ∞
−∞

s(γ))

t− γ
dγ (2.2)

and ψ(t) is analytic signal. The instantaneous phase can be estimated easily as

follows:

φ(t) = arctan(
˜s(t)

s(t)
) (2.3)

and simply a difference between instantaneous phases of two signal would serve as a

dynamic measure of dependence [24].

A limiting assumption of this approach is that the given signal has instantaneous

narrow frequency-band and not a spectrum.

Another example is referred to as spontaneous co-activation patterns (CAPs)

analysis. It looks for patterns of significant simultaneous activation (as a measure
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of positive dependence) or significant difference in activation (a measure of nega-

tive dependence) between sets of networks or regions [25]. Among these methods,

investigations of dynamic connectivity based on computing correlations over sliding

windows through the original timecourses [26, 27, 28] has been among the most com-

monly used approach. The popularity is partly due to its ease of implementation

and interpretation of the result and also it has just one major assumption of spatial

locality. It means that at a given point in time, the samples of the time-series that

fall into the window defined around that point are used for estimation of instanta-

neous measure of dependence. One possible implementation of this pipeline which

has also been commonly used for study of resting-state dynamic connectivity has

been proposed by Allen et al. In their implementation, the selected window size is

fixed and weighted derived from a convolution of a Gaussian and rectangular function

of the size of the window. For estimation of the correlation from weighted samples

in a given window, they force a sparsity on the inverse of the covariance matrix

to reduce aliasing in the estimation of correlation as the result of under-sampling.

Lastly, to dynamic estimation of connectivities are summarized into finite number

of prototype connectivity patterns usually referred to as ”connectivity states”. It is

based on the assumption that connectivity of the brain follows has recurring nature

and consequently reducible into finite connectivity patterns. In k-means clustering

has been used in their implementation of this summarization step although other re-

duction methods have been proposed [29, 30]. Figure 2.1 summarizes sliding-window

implementation by [31].

2.1 Frequency variation of connectivity

Temporal domain has not been the only domain to study brain connectivity. Specif-

ically, based on the common assumption that different sources of brain activities
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ICA components Time-courses

Figure 2.1: Schematic depicting the common procedure for sliding window analysis.
A set of dFNCs is computed for each subject on successive sliding windows. FNC in
a given window is estimated by calculating correlation matrix. Then dFNC matrices
are concatenated along the time dimension for all subjects and clustering is used on
the concatenated structure for find recurring patterns of connectivity in the form of
connectivity states.

may have distinct frequency profile, frequency-dependent connectivity has also been

explored to study how such frequency variation in sources of activities is projected

into the synchronicity of the activities.

Spectral analysis of BOLD signal has been proved to help separate noise from neu-

rophysiological sources of signals as well as to identify interesting differences within

components of interest. As an example, all used the ratio of low-frequency power

to high frequency power of ICA time courses to separate components contaminated

by noise from meaningful resting state networks (RSNs). It is also shown that fre-

quency contribution to BOLD signal power spectra varies based on spatial anatomical
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structures[32], consistent with other studies [33, 34, 35]. Frequency differences be-

tween disease groups in components like the default mode network and others have

also been identified [36, 37]. Some other studies have analyzed spectral properties

of correlation by estimating coherence which estimates correlation as a function of

frequency. For example, in [38] it was suggested that by identifying frequencies con-

tributing to observed correlation we can identify correlation due to respiratory and

cardiac activity (which occurs around 0.1-0.5 Hz and 0.6-1.2 Hz, respectively) to pro-

vide a better estimate of correlation between auditory/visual/sensorimotor regions

which tends to have a lower frequency (< 0.1 Hz) in coherence.

Given dynamic nature of Resting-state connectivity, coherence can be extended to

study of temporal dynamics using time-frequency analysis such as short time Fourier

transform (STFT), continuous wavelet transform or Empirical Mode Decomposi-

tion (EMD). These methods have been applied on many EEG and MEG datasets

[39, 40, 41] and to a smaller extent on fMRI datasets [42]. In [43] time-frequency

analysis of coherence of EEG rest data is used to find the 7 most stable connectivity

networks in time-frequency domain using PCA. [44] used wavelet transform of sur-

face electromyogram (EMG) signal to study dynamic change in power of EMG for

their task-based study and [45] used time-frequency coherence between motor cortex

and spinal cord to study how it is affected by their designed reaction-time task. For

fMRI data, in a relevant study, [1] used wavelet transform coherence (WTC) to show

that coherence between default mode (DM) and task positive regions is considerably

modulated in the time-frequency domain (frequency-wise the result is consistent with

[38]). All these studies suggest that brain regions activations and correlations among

them are in fact heterogeneous regarding the frequency spectrum while also being

temporally dynamic. However there are limitations to each of these studies. For

example although EEG/MEG data have the advantage of higher temporal resolu-

tion comparing to fMRI, their low spatial resolution limits the applicability of these

analysis to study time-frequency coherence of whole brain regions. For example due
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to volume conduction artefact, [43] had to remove the real part of the coherence,

an issue that is not present with fMRI. On the other hand [1] as a time-frequency

analysis of fMRI resting state data, focused on a few selected brain regions using

an ROI method and mainly studied differences in the dynamic nature of positive

(in-phase) and negative (out-of-phase) coherence.

In this work we are interested in a whole brain analysis of the above properties.

We chose ICA to identify all functional networks of brain in the form of ICA compo-

nents reflecting the within network connectivity with strong correlation. Our work

is built on top of the general framework of studying dynamics of brain connectivity

during rest proposed by [26] which has also been used to study patient groups such

as bipolar and schizophrenia patients [46, 47]. In [31], similar to ours, is based on

spatial ICA decomposition of resting state data followed by sliding-window analysis

but here we replace sliding-window analysis with a complex wavelet transform to be

able to study FNCs in both time and frequency domain. The wavelet transform is

a popular method for time-frequency analysis. The kernel of the transform, referred

to as wavelet, is adapted to each frequency so that time-frequency representation

has higher temporal resolution in relatively higher frequencies. In complex wavelet

transform this kernel is complex and is used to estimate both amplitude and phase

of signal at each time-frequency point. Similar to [26], k-means clustering was used

as a way of summarizing observed FNCs into recurring patterns of connectivity, here

in both the time and frequency domain, which has the direct advantage of studying

temporal dynamics and frequency and phase profile of each recurring FNCs indepen-

dently. We observed that some FNCs patterns seem to have a similar connectivity

patterns over a broader range of frequencies while others had a narrow frequency pro-

file. Additionally, we observe that separation of states in the time-frequency plane

enables us to find significant and interesting gender differences with respect to the

occupancy rates of those identified states, which could not be separated using an

approach that did not capture both time and frequency.
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2.1.1 Materials

The data in this chapter is the first set of the data mentioned in section 1.4.1, con-

stituting 405 all healthy fMRI scans. GIFT implementation of Group-level Spatial

ICA was used to estimate 100 functional networks as ICA components from the data.

First 120 subject-specific principal components were retained using PCA and con-

catenated and then 100 group PCs were estimated via second PCA. Infomax ICA

was used to make these 100 PCs maximally spatially independent with 10 repetitions

in ICASSO. Finally aggregate spatial maps (SMs) were estimated as the modes of

components clusters. GICA1 was used to back-reconstruct subject-specific SMs and

time courses (TCs). 50 SMs related to physiological, motion and imaging artifacts

were identified and removed from estimated set of SMs. The remaining subset of

components are identified as intrinsic connectivity networks (ICNs) and have been

used throughout the study. These are the components that have peak activations

in grey matter and minimum spatial overlap with vascular, ventricular, motion and

susceptibility artifacts. Also time courses are dominated by low-frequency fluctua-

tions. Appendix A represents aggregate SMs of identified ICNs. Time courses of

remaining SMs underwent post-processing to further reduce effects of noise which

include detrending, motion regression and outlier removal.

2.1.2 Frequency analysis of functional network connectivity

over time

We start our analysis by first looking at the frequency spectrum of FNC independent

of time (temporally-static). This will help us better understand information we gain

by analyzing both temporal dynamic and frequency variability of ICA time-courses

connectivity through the proposed time-frequency approach. A well-known approach

to studying power spectral density of a signal is Welchs method [48], which is based
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on averaging of short Fourier transform of weighted segments of the input signal.

Coherence between a pair of signals can be easily estimated as follows:

Cxy(f) =
Pxy(f)√

Pxx(f))×
√
Pyy(f)

(2.4)

Where Pxx(f) and Pyy(f) are power spectral densities of input signals x and

y estimated using Welchs method and Pxy(f) is the cross spectral densities of x

and y estimated by element-wise Complex Conjugate Multiplication of signals spec-

tral densities. Coherence between ICA time courses was calculated using the above

Equation over 5 equally spaced frequency bands in the interval [0.01,0.25]. To en-

sure valid comparisons of coherence across bands we z-scored coherence values based

on the mean and standard deviation derived from a null distribution. Separate null-

distribution was created from each components pair and frequency band by estimated

the coherence between time courses from different subjects.

2.1.3 Joint time and frequency analysis of functional net-

work connectivity

To adapt Equation 2.4 to capture temporal dynamics of coherence we need to modify

Welchs method to include temporal dimension in estimation of coherence. First,

inherent averaging over all periodogram (Fourier Transform of weighted segments

of signal) should be replaced by a local weighting function. Also ideally the size

of these periodogram should be dependent on local frequency content of the signal.

To estimate low frequency content we need a relatively larger window size than the

one to use to estimate higher frequency content. And at the end when estimating

time-frequency coherence between pair of signals, smoothing function over time and

frequency dimensions should be introduced to avoid bias toward unity coherence. In

our framework, we circumvent these issues by using an adaptive window size and
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by employing complex Morlet wavelets that have a Gaussian shape in the frequency

domain. The complex Morlet wavelet function is defined as 1√
2πσ

e2πifcte−
t2

2σ2 , where t

is the time, fc is the center frequency of the Morlet, and σ is the standard deviation of

the Gaussian in the frequency domain. We set the standard deviation (σ) to be equal

to 4.3 Hz and the Gaussian centers were equally spaced in the range of 0.01−0.25 Hz

(0.01, 0.07, 0.13, 0.19, and 0.25 Hz1 . To accurately study frequency content of input

time series a given frequency of f, we must convolve the Morlet function centered at

that frequency over time segments that have at least 0.5× l
f×T timepoints, where T

is the duration of the segment. For parts of convolution that do not span this length

of input signal some padding is typically used which would result into contaminating

the transformed result with invalid information. To avoid this problem we define

a cone of influence which would only include estimations for which padding is not

necessary. Figure 2.2 provides a visual summary of this convolution.

In the following we explain steps of our proposed time-frequency analysis in more

detail.

2.1.4 ”Dynamic coherence” as a measure of dependence in

time-frequency domain

One measure of time series dependency in the time-frequency domain is the Cross

Wavelet Transform (XWT) [49]. It is element-wise conjugate multiplication between

coefficients of each time series in the transformed domain (Equation 2.5).

1Note that our choice of wavelet kernels here is different from what is common in wavelet
analysis. In typical wavelet analyses, all wavelets are driven from a mother wavelet but
at a different scale and time as follows: Ψs,τ (t) = 1√

s
Ψ( t−τs ) which defines a wavelet Ψ at

scale s and time τ from mother wavelet Ψ. Consequently the output would be a Scale ×
Time wavelet coefficients. However there is no uniform mapping from scaling to frequency.
In fact, in our case, we use Morlet wavelet but instead of changing the scale we change its
frequency center which has an explicit interpretation in frequency domain.
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Figure 2.2: Complex Morlet wavelets are used to transform input time courses into
the time-frequency domain.

W xy = W x.×W y (2.5)

WhereW x andW y are wavelet transform of input signal x and y and .× represents

element wise conjugate multiplication. The above measure should be normalized by

signal spectral power so that coherence estimation is not biased toward parts of the

signal with more power. Additionally smoothing function should be introduced on

this normalized measure to avoid bias toward unity. This smoothed and normalized

measure is called a wavelet coherence transform (WTC) which is defined as follows:

R =
S(W xy))√

S ′(|W x|2)
√
S ′(|W y|2)

(2.6)

Smoothing occurs in both time and frequency and is a function of frequency. This
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Figure 2.3: Dynamic coherence in the joint time and frequency domain is calculated
using Wavelet Transform Coherence between each pair of time-sources, separately
for each subject

means that at different frequencies (or scales in the wavelet framework) we have dif-

ferent smoothing radii. Also in a more general form of WTC, the smoothing functions

of the numerator and the denominator can be different [50]. We chose the general

form of the WTC for our dependency measure and also selected uniform smoothing

functions for both numerator and denominator, although weighted smoothing func-

tions can be used as well. We have also adapted smoothing kernel size to the signal

properties to maximize true time-frequency coherence estimation which from now on

is referred to as ”dynamic coherence”. In our implementation we looped through sets

of possible smoothing parameters on simulated data modeled on the original input

data and selected a set of parameters that best capture variation of coherence in

time and frequency. More detail is provided in appendix C. Now if we compute the

dynamic coherence between all pairs of components of a specific subject at a specific

point in a time-frequency domain, we have an estimation of FNC of that subject at

that point (Figure 2.3).
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2.1.5 Cluster analysis to capture recurring patterns of FNCs

in the joint domain

Based on the assumption that some connectivity patterns reoccur in time, here we

extend the assumption to the frequency domain and search for FNC patterns that

reoccur both time and frequency. To achieve this, we concatenated estimated FNCs

along subject-time-frequency (Figure 2.4) and ran a k-means clustering algorithm to

find a finite set of k recurring FNCs. For clustering analysis we set desired number

of clusters equal to 5. Since our data is large and initial random assignment of the

point to random selected clusters may bias the final clusters, we ran k-means 500

times on the same data with random initial guess of clusters assignment and we

picked the clustering result which had the minimum sum of distances of each point

to its corresponding cluster centroid. Although number of clusters is fixed here, in

an additional analysis, we ran k-means clustering with different number of clusters

in the range of 2-9 and we observed that cluster centroids in lower model order is

reasonably consistent with the ones in higher model order. Also estimation of the F-

ratio with different number of clusters confirm our choice of k=5 (more details shown

in appendix D). In a separate analysis, we ran k-means separately at each frequency

bands using same number of clusters. By using Sammons non-linear mapping and

projecting all the captured cluster centroids into a 2-d plane we observed that our

original all-band k-means reasonably covers space which is spanned by clusters from

each band (more details in appendix E).

2.2 Results

Our results include time-averaged multiband FNCs estimated by Welchs method

(Figure 2.5) and repetitive FNCs estimated as cluster centroids in time-frequency
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Figure 2.4: K-means clustering is used to find clusters of FNCs along time and
frequency dimension for all subjects.

plane (Figure 3). Both types of FNCs are complex values having time lagged co-

herence encoded in phase. Phase information is encoded with our selected circular

colormap and amplitude is encoded as the lightness of the colors (lighter indicates

smaller amplitude, Figure 2.3 B). In Figure 2.5 we represent the average of band

specific FNCs estimated using Welchs method over all subjects. For each frequency

band, we show the average phase of coherence (indicated by color hue) and average

strength of coherence (indicated by color saturation) between each pair of compo-

nents. We also display a polar histogram, indicating distribution of the average

phases for all pairs in the matrix.

By close inspection of band specific FNCs we conclude that some component

pair time courses have narrow band coherence. Specifically coherence between some

Somatomotor and Visual components in second FNC of Figure 2.5 tend to appear

in frequencies around 0.07 Hz and attenuate in relatively lower and higher frequen-

cies. The same situation is also true between cerebellar component time courses and

many other component time courses. Also we can observe that the coherence phase

of those component time courses is a function of frequency. For example, the cere-

bellar component time courses tend to be either positively or negatively correlated
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Figure 2.5: Connectivity patterns between components associated with each selected
frequency bands integrated over time. As clearly visible, less connectivity structure
can be observed in relatively higher frequencies. However due to the integration over
time the source of this lack of structure is not obvious in this analysis. Please refer
to appendix A for a full display of each component.

to some other components in frequency range of (∼0.01 Hz) and (∼0.15 Hz) but

would get lagged (having phase ∼ +π
2
) and more uniform in middle range (∼0.07

Hz). It can also be observed that connectivity patterns of Figure 2 tend to have less

visible structure in relatively higher range frequencies (∼0.15 Hz). As mentioned in

the methods section, because of the averaging in time in Welchs method, it is unclear

if this lack of structure in that frequency range is due to low SNR or because of tem-

poral dynamics nature of connectivity. The proposed time-frequency analysis allows

us to investigate both frequency content and temporal behavior of the clusters. In

Figure 2.6 we represent cluster centroids as the estimated recurring functional con-

nectivity states. States are sorted based on associated rates of recurrence 2. For each

2Since at each frequency band we a different size of cone of interest, we must correct
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Figure 2.6: Repetitive patterns of connectivity estimated as the cluster centroids
formed in time-frequency domain. These patterns (States) are sorted based on their
occurrence rates and for each pattern, frequency and phase histogram is presented.

state we have a frequency histogram which shows at which range of frequencies a

given state tends to occur. We also include a polar histogram indicating the distribu-

tion of dynamic coherence phases across all component pairs and frequencies. This

plot represents the degree of time-lagged dynamic coherence between components of

each state. State 1 accounts for more than half of the observed FNCs which tend to

appear in frequency range of (∼0.15 Hz) and have less phase variation. Relatively

strong positive dynamic coherence (phase 0) can be seen among somatomotors as

well as visual networks. States 3 and 5 are the centroids of the clusters comprising

narrow-band FNCs in the range of ( 0.01 Hz) with visible variation in phase and

with total occurrence of about 20%. Strong positive (in-phase) dynamic coherence

for these lengths to accurately count number of recurrence of each state. To do so, we
unwarping clustering results for each subject to have a square shape by replicating the
initial and terminal elements, as shown in appendix F.
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among visual and part of cognitive control networks can be observed in state 3 and in

state 5 this modulation expands to cover strong in-phase dynamic coherence between

components in visual, motor and auditory areas (sensor-motor systems). In state 5

sensor-motor systems has strong negative/out-of-phase (phase ±π) dynamic coher-

ence with subcortical system which is clearly different from the same connectivity

observed in state 3.

States 2 and 4, on the other hand, have wider frequency band though centering

on mid-range frequency of 0.07 Hz and consequently having higher total occurrence

rates than states 3 and 5. Moreover, we can see that although states 2 and 3 are

visually similar to one another but since we use both magnitude and phase of dynamic

coherence in our distance measure in k-means clustering and since the two states have

different phase and amplitude histogram, the two became centroids of two distinct

clusters. Second we have been able to recognize distinct cluster centroids even by

having similar frequency ranges (State 2 and 4 both belong to frequency range of

( 0.07 Hz) and State 3 and 5 both belong to relatively lower range frequencies( 0.01

Hz)). This is in fact the direct result of having temporal dynamics as a separate

dimension in our analysis. State 4 which has a mid-range frequency histogram is

extending our observation in the temporal-static and band specific FNC at 0.07 Hz

in Figure 2. In state 4 we also recognize mid-range frequency band ( 0.07 Hz), phase

lagged and synchronous dynamic coherence which was observed in second FNC in

Figure 2 but also extending the coherence with same properties to other components

pairs such as Sub Cortical-Somatomotor and Sub Cortical-Visual along with few

other component pairs.

In Figure 2.7 we represent dynamic coherence pattern specific to state 4 between

DM (Figure 2.7 A, Right) and CB (Figure 2.7 B, Right) to other selected networks

and emphasizing patterns differences regarding the phase and amplitude to same

network pairs in State 2 (Figure 2.7 A, Left) and CB (Figure 2.7 B, Left) which
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Figure 2.7: In this Figure we emphasize the difference in the nature of coherence
based on its phase and amplitude observed in state 3 [Left] (with relatively lower
range frequency profile ( 0.01 Hz)) comparing to state 4 [Right] (with frequency
range 0.07 Hz) between (A) Default Mode networks and other selected networks
and (B) Cerebellar networks and the rest of the networks

spans relatively lower range of frequencies ( 0.01 Hz). This unique patterns would

have been identified only when we study coherence in time and frequency dimension.

Additionally, we investigated gender differences regarding the occupancy of different

states. For each subject and for each state we calculated occupancy rate of that state

during complete course of the scan. The occupancy measure of a given state is just

percentage of time-frequency points that had been labeled with the cluster which is

represented by the given state.

After regressing out age and motion parameters in the form of average transla-

tion and rotation from estimated occupancy rate, we performed a non-parametric

Wilcoxon rank-sum test to compare occupancy rates between males and females.

Uncorrected two-tailed p-values were 0.0004, 0.0129 , 0.6672, 0.2895 and 0.3444 for

states 1 to 5, respectively, providing strong evidence that males spent significantly

more time in state 1 than females (mean ± SD: 49.5 ± 5.9% vs 47.4 ± 7.2%). There

is also some weak evidence that females spent more time in state 2 (23.2 ± 9.6% vs

21.1 ± 8.0% in males).
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2.3 Discussions

In this work we investigated time-frequency sub-spaces spanned by the dynamic co-

herence among brain regions by first projecting the a measure of dependence into the

time and frequency domain using WTC and then, by identifying clusters that dy-

namic coherence forms in the time-frequency domain using k-means clustering. [1],

showed that the nature of the dependence between default mode network (DMN)

and the task positive network (TPN) is in fact temporally dynamic yet frequency

specific. Consequently we expected to observe similar properties in statistical sum-

maries (cluster centroids) of time-frequency varying measurements of whole brain

connectivity. For example states 2 and 3 in Figure 2.6 have similar connectivity

patterns and span frequency ranges of ( 0.01 Hz) and ( 0.15 Hz) respectively while

state 4 and 5 have a narrower frequency profile and unique connectivity patterns.

In another aspect of this work, we observed significant difference between males and

females in occupancy rates of the two most heavily occupied states. Interestingly,

this was only possible because the states were separated along both time and fre-

quency domain. Otherwise the overlap along either dimension would have obscured

such an observation. Moreover the complex nature of the chosen kernels enabled us

to observe lagged coherence between input signals over the full range, from complete

in-phase (0) coherence to complete out-of-phase (±π). Thus, clusters not only differ

in the network coherence patterns they present and in underlying frequency content,

but phase profiles also play an important roles in cluster formation. Common mea-

sure of correlation such as Pearson correlation and mutual information are unable

to provide this level of resolution on phase-lagged coherence, although a sliding cor-

relation windows lags (by shifting one time series relative to the other) [51] have

been suggested as a correlation-based approach to improving this resolution. Our

results encompass a comprehensive set of functional components, obtained from the

data using group spatial ICA. With our general framework it is still possible identify
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regions among ICA components corresponding to ROIs selected by [1] but we have

to keep in mind that [1] chose the wavelet scale as the representation of frequency

in their time-frequency analysis of coherence. Scale is one of the parameters that is

commonly used in wavelet analysis, which as with short-time or windowed Fourier

analysis captures the rate of change of an input signal at a given time (or at a given

translation of the wavelet kernel) window. However, the frequency bands of wavelets

at each scale do not necessarily have same properties (e.g. usually they have different

band widths) which makes it non-trivial to map scale to frequency. Another differ-

ence of our time-frequency analysis from the one used by [1] is that in our work the

null-distribution has been derived from input data in contrast to the null-distribution

estimated through Monte Carlo simulation employed by [1]. Finally we utilized a

more general formulation of dynamic coherence as in Equation 3 and discovered

through simulation that all of these choices resulted in a better performance that

the one used by Chang with respect to sensitivity and specificity measures. More

details on the simulation and performance comparison can be found in appendix C.

This work can also be seen as an extension of [31] in which repetitive patterns of

connectivity were identified along the time dimension. However [31] are unable to

capture either the frequency profiles or lagged correlations associated to their re-

curring FNCs, while here we capture both properties. Comparing the accuracy of

estimation of true dynamic coherence in each of these works warrants a bit more ex-

planation. In one scenario, if true dynamic coherence encompasses a broad range of

frequencies, then the reliability of dynamic coherence estimates could be diminished

by band-limiting the input signal. In this situation, a method more like the one used

in [31] would produce a better estimate of true dynamic coherence. However if the

true dynamic coherence occurs in a narrower range of the observable frequencies,

then band-limiting the input signal before estimating dynamic coherence, as we do

in this work, would generally improve estimation accuracy. Additional studies how-

ever are needed to more thoroughly understand existing and possible formulations of
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dynamic coherence with respect for example, to the kernel and smoothing functions,

and to improve the reliability of estimated dynamic coherence.
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Chapter 3

Dynamic coherence to reveal novel

patterns of RS-connectivity in

schizophrenia patients and healthy

controls

Functional connectivity of the resting-state brain has been an appealing approach

for studying diseases with known brain dysconnectivity aspects such as schizophrenia

and bipolar disorders.

Schizophrenia as a complex psychiatric illness has been subject of intensive study.

Recent estimates([52]) shows the occurrence rate of 1% of the global population. The

main objective of many early studies of this disorder had been the definition of the

disorder and diagnosis via symptoms and later moving toward nosology based on evi-

dence rather than nosology merely based on evaluation of the external symptoms [53].

Although there is additional complexity emerging regarding the validity of current

state of nosology of disorders [54, 55] we cannot ignore the power of neurobiological
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markers such as genetic markers and brain functional and structural maps to help re-

fine the diagnosis. Functional magnetic resonance imaging (fMRI) as a non-invasive

method to capture hemodynamic mediated activity of brain regions due to the func-

tion of the brain at the given time, is an appealing tool for studying schizophrenia

which is thought to be a brain disorder including disturbances of thought, cognition

and emotion [56, 57]. Functional connectivity with fMRI has been widely used to

study schizophrenia [37, 36] and its popularity comes from the fact that the disease

is recognized as a dysconnectivity disorder [58, 59, 60] Evidence of anomalies in brain

connectivity of patients goes back at least to early studies [61] in which psychosis was

associated with disruption of association fiber tracts in the brain. Since then, exten-

sive work in identifying changes in structural and functional connectivity has been

performed. However, structural analysis is unable to capture current functional state

of the brain and consequently does not reflect the underlying function of the brain

at the time. On the other hand, analysis of fMRI data and observing the activation

level of different regions of the brain as well as synchronization of these activations,

enables us to study the state of the brain during the performance of an explicit task

or during rest. Moreover a degree of consistency has been observed between func-

tional and anatomical abnormal connectivity of the brain[62] which has made the

study of both structural and functional appealing to study the disease. Functional

connectivity during the resting-state has become a popular and widely used setting

in clinical brain studies. Compared to task-based designs, it has been shown that

neurophysiological activation during rest spans a broader range of frequencies [15]

as well as engaging more functional networks during the course of the scan which

potentially provides a more thorough evaluation of functional connectivity compar-

ing to task-based studies [46, 63]. Multiple networks have been identified including

the default mode (DM) network which has been associated with self-reflection and

self-monitoring [64]. Other networks also have been related to auditory hallucina-

tion and paranoid ideation [65]. Resting-state studies of schizophenia include region

32



of interest (ROI) studies and whole-brain connectivity analysis [66, 67, 68]. Gen-

eral trends is observed dysconnectivity between various resting-state networks. This

include observation of hypo-connectivity between wide range of ROIs and also hyper-

connectivity among specific regions such as in-between default mode networks and

also both inceased and decreased anti-correlation between task-positive and default

mode networks [69] using resting-state fMRI)

More recently, dynamic connectivity analysis has been extended to the study

of schizophrenia in the context of transient states of connectivity [46] which has

extended the observation of static hypo-connectivity in schizophrenia to spending

more time in a hypo-connected state. Such analysis has also been shown to be useful

in classification process of diseased and healthy subjects [47]. In another group of

recent studies, it was shown that evaluation of frequency specific activation enables

us to capture significant differences between groups of patients and healthy controls

[36, 70, 71, 72]. For example, the default mode network has been shown to exhibit

significantly more high frequency fluctuations in patients and significantly less low

frequency fluctuations in controls, perhaps related to decreased cognitive efficiency

[37]. All of this motivated us to study healthy versus diseased connectivity based

on dynamic coherence as it enables us to simultaneously capture temporal behavior

as well as frequency and phase profiles associated with each state. In this work we

investigated joint characterization of the temporal dynamic behavior of connectiv-

ity as well as its frequency and phase (representing lagged dependence) specificity

in healthy controls and schizophrenia patients. We show that such decomposition

enables us to observe significantly different characterization of connectivity between

the two groups. We also observe that when transient connectivity states are defined

at the group level and shared among both groups, patients have significantly different

tendency toward specific states during the course of the scan than healthy controls

as reflected in the dwell time and occupancy rate of each subject.
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3.1 Materials and method

We used second set of the data as noted in section 1.4.1. It constitutes of 163 healthy

controls with average age of 36.9 and 151 patients diagnosed with schizophrenia with

average age of 37.8.

We study connectivity between anatomically and functionally meaningful regions

in the brain. Similar to chapter 2, we choose gsICA as the data-driven approach to

define these regions with no need for prior knowledge of the regions or a task-design.

We used same implementation of gsICA as in section 2.1.1 from which 47 components

were selected as the intrinsic functional networks (ICN) subsequently referred to as

brain networks. This is followed by a spatio-temporal back-reconstruction step [12]

to estimate subject-level spatial maps and time-courses.

Following procedure to estimate connectivity states in joint time and frequency

domains (chapter 2), estimations of dynamic coherence for all pairs of networks are

concatenated along time, frequency and subjects followed by a clustering analysis

which summarizes estimation of dynamic coherence at each point in time and fre-

quency and along each subject into finite number of states represented by centroids

of the clusters. Clustering is performed once separately for patients and healthy con-

trols and another time all the subjects regardless of the diagnosis each gives unique

perspective on the underlying nature of connectivity states of diseased and healthy

subjects.

3.2 Results

The results in the chapter are organized into two sets. In the first set, we estimate

connectivity states in the time-frequency domain separately for healthy controls and

patients. This allows us to visually inspect differences in connectivity states between
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Figure 3.1: Connectivity states of healthy controls defined in time-frequency domain.

patients and controls with respect to their connectivity patterns and their frequency

and phase profiles. In the second set of the results we estimate group-level connec-

tivity states, shared among all subjects. This allows us to investigate differences

between the two groups with respect to their occupancy rates (amount of time sub-

jects live at a specific state during the course of the scan) at each state as well as their

tendency to stay in each state and as we explain, we observed significant differences

between healthy controls and schizophrenia patients based on such measures. In Fig-

ures 3.1 and 3.2 we show connectivity states as the repetitive patterns of connectivity

in time-frequency domain for healthy controls and schizophrenia patient respectively.

As explained earlier, phase and frequency profiles of connectivity patterns are also

attached to each state along the spatial pattern.

The states for each group of subjects are sorted based on their occurrence rates

during the course of the scan. By looking at the correlation between connectivity

35



patterns of each pair of states belonging to a different group of subjects, as well as

visual inspection of connectivity patterns, we can clearly observe that the most com-

monly occurring state (state 1) is shared among the two groups of subjects and has

a high frequency range (frequency profiles are right skewed to the maximum possible

frequency of 0.25 Hz). State 3 in HCs has maximum correlation (r = 0.8856) with

state 2 in SZs with similarity in both connectivity patterns and frequency profiles.

Similarly, connectivity patterns of state 4 in SZs maps to both states 2 and 4 (r =

0.7971, 0.9038 respectively) in HCs however frequency profile of state 4 in SZs only

matches frequency profile of state 4 in HCs (Figure 3.2 B). Furthermore, State 3 of

SZ and state 5 of HC, although have similar frequency profiles, both have unique

connectivity patterns which are minimally any other states of each group . Note that

many of these states are only identifiable in the join time-frequency domain. If tem-

porally dynamic states were estimate over all the frequencies [46, 31], any states with

overlapping frequency profiles would have been merged and the patterns would have

been blurred across states. For example, states 1 and 3 of SZs each has a unique con-

nectivity patterns, specifically a pronounced anti-correlation between somatomotor

and visual/auditory/sub-cortical networks in state 3. However given a large over-

lap between frequency profiles of these two states, dynamic connectivity analyses as

have been studied before, would have been unable to capture such unique connec-

tivity pattern as the two states would have been merged across frequency. Next, we

identify pairs of components whose dependence is represented by connectivity states

that are maximally correlated between HCs and SZs, but exhibit significantly dif-

ference in either amplitude or phase of the dynamic coherence due to the diagnosis.

Note that since here, connectivity states are estimated from two different group of

subjects, we expect observing significant differences in dynamic coherence of between

majority of component pairs of each state, but with this analysis we are more in-

terested in directionality of such differences between the groups. As we will explain

later, this analysis enables to observe hyper and hypo connectivity differences in
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Figure 3.2: (A) Connectivity states of schizophrenia patients defined in time-
frequency domain. (B) Maximally correlated connectivity states between SZs and
HCs.

maximally correlated states between the groups. For this analysis, for each pair of

components and each pair of corresponding states we first derive the distributions of

both phase and amplitude of dynamic coherence from subjects in each group. Sec-

ond, we separately test the null hypothesis that median of these distributions are the

same between the both groups of the subjects. The estimated p-values are corrected

for multiple comparisons by Bonferroni correction method and the significance level

is set to 0.01. To remove susceptibility of the dynamic coherence to the motion as

well as gender and age of the subjects prior to the above analysis, we regress out

variation of amplitude and phase dynamic coherence due to the above explanatory

variables by first, finding the best model which describes subject-wise representation

of each state by using MANCOVA analysis and backward model selection [46, 13].

The explanatory variables were diagnosis (0: healthy, 1: schizophrenia), age, gender
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(0: male, 1: female), site information and average frame-wise displacement of each

subject. The response variable was subject-wise mean of each state as multivariate

variable. This analysis was performed separately for phase and amplitude of the

response variable. The comparisons between the phase and amplitude of the states

at component-level were performed only if the diagnosis variable was among the final

reduced model proposed by the MANCOVA analysis and only after regressing out

effect of other variables in the reduced model. Figure 3.3 summarizes the analysis

of group differences with regard to the dynamic coherence measures of individual

component pairs between maximally correlated states as had been shown in Figure

3.2 B. The second column represents difference of the amplitude of the dynamic

coherence for the component pairs with significant group differences and the third

column, similarly, represents difference in the phase of the dynamic coherence for the

same pairs of components. We clearly see that both phase and amplitude contribute

in the difference between HCs and SZs for given component pairs. The identification

of group differences based on the differences in phase (lagged correlation) is a direct

advantage of investigation of connectivity jointly in both the frequency temporal

domains. Gray entries are the pairs that could not reject the null hypothesis of no

significant difference.

In second set of the results, we further investigate differences between groups by

studying the occupancy rates and mean dwell times for patients and controls. As

explained above, data displayed in Figures 2 and 3, enabled us to investigate differ-

ences in connectivity states between patient and control groups. In this set of results

however, we use population-level states to analyze how different groups differentially

occupy a common set of states. We perform k-means clustering on all the subjects

(regardless of the diagnosis) and identify 5 connectivity states that best describe the

data. Figure 3.4 shows the 5 group connectivity states, with corresponding phase

and frequency profiles. There are evident similarities between these states and the

connectivity patterns in Figures 3.1-3.2, but here these states are shared among all
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1. Column 3 shows difference in amplitude of component-pair dynamic coherence
between HC and SZ which reject the null hypothesis. Gray entries show the ones
which did not reject the null. Column 4 shows difference in phase with similar
analysis.

the subjects regardless of the diagnosis.

Next, we measure occupancy rates of each subject in each state by counting

the number of time-frequency points which were assigned to a given state during

the course of the scan. This is followed by group difference analysis on the distri-

bution of dynamic coherence between HCs and SZs subjects and interestingly, in

all states except state 4 we observed significant differences between the two groups

(Kolmogorov-Smirnov test for difference in medians). Schizophrenia patients were

more likely to occupy state 1 (low global coherence, higher frequency profile) and

state 2 (negative DMN-to-other coherence, otherwise high global coherence with rel-
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Figure 3.4: Connectivity states defined in time-frequency domain over all subjects
regardless of the diagnosis.

atively lower frequency profile). On the other hand, healthy controls had greater

tendency to occupy states 3 (high coherence between sensory networks and negative

coherence between subcortical and sensory networks and also diminished DMN-to-

other coherence with low frequency profile) and 5 (extremely modularized coherence

structure, very high intra-domain coherence for all domains plus high subcortical-to-

DMN, cognitive control and cerebellum, and very low frequency profile). Group-wise

distribution of occupancy rates is represented in column 5 of Figure 3.5.

We also assessed the tendency of subjects toward staying in a given state by count-

ing number of consecutive occurrences of a given state in time which is separately

measured for each frequency band. We, then, take the median of these measurements

for each subject as our measure of state-specific dwell time. As with the occupancy

rate, we find patients have significantly higher dwell-times in states 1 and 2 as rep-
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in the phase of the dynamic coherence. Moreover, column 5, separately, represents
histogram of occupancy measure of HCs and SZs subjects and column 6, similarly,
represents histogram of dwell times.

resented in column 6 of Figure 3.5. Same as before we regressed out variation due

to the other subject-variables (age, gender, site and motion parameters) from both

occupancy rate and dwell time measures before conducting these tests. Similar to

the results in Figure 3.3 we also identify pairs of components in each state with

significantly different dynamic coherence between HCs and SZs. The significance

analysis is the same as in Figure 3.3 and the result of the analysis is represented in

column 3 (differences in amplitude) and column 4 (difference in phase) of Figure 3.5.
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3.3 Discussion

In this study, we investigated time-varying whole-brain resting-state connectivity

differences between schizophrenia patients and healthy controls in a framework that

smoothly integrates frequency domain characteristics with temporal dynamics of

connectivity; phenomena which have been previously explored separately, but not

yet combined to allow us to exploit the joint characteristics of dynamic connectivity

assessed through the time-frequency domain, providing more informative markers of

complex brain disorders When we separately estimated connectivity states of HCs

and SZs, we could both identify connectivity states that are shared across the groups

as well as connectivity states unique to each group. An interesting observation based

on this result is that the most similarity in connectivity between groups is between

states with either very high frequency profiles (state 1 of both HCs and SZs) or

low frequency profiles (states 2 and 4 of HCs and state 4 of SZs). Consequently,

most of the group differences occur in connectivity states with relatively middle

range frequencies. It consists of state 5 of HCs with a frequency profile peeking

around 0.17 Hz which is minimally correlated to any SZ states and also SZ states

3 and 5 which together cover a range of middle frequencies between 0.07 Hz to 0.17

Hz. There is recognizable modularity in these states which, in fact, makes them

unique with respect to the connectivity patterns. For example, in SZ state 2 we

clearly observe relatively strong and positive correlation between all the subcortical

(SC), auditory (AUD), and visual (VIS) networks. At the same time, somatomotor

(SM) networks, different from any other states of both SZs and HCz, are negatively

correlated to SC, AUD and VIS networks. To the best of our knowledge, this is the

first evidence of existence of such modularity in schizophrenia patients. By taking

a closer look at the frequency profile of the state with this modularity, we recognize

that, first, this state occurs only in the range of relatively higher frequencies. The

most similar modularity among HC states is found in state 5 but with apparent

42



difference in correlation between SC and AUD/VIS networks which here are anti-

correlated rather than being positively correlated as observed in SZ state 2 as well

as SM and AUD/VIS with positive correlation compared to the observed negative-

correlation in SZs. In previous studies [73, 74] there are reports of hyper-connectivity

between thalamus and sensory networks in schizophrenia patients which here appears

as a positive connectivity between all subcortical and sensory networks compared to

negative connectivity in HCs between same networks. Again we need to emphasize

that such observation is only possible when connectivity is studied jointly in the

temporal and frequency domains since, first, this modularity occurs in states with a

unique frequency profiles (having a mid to high frequency range) and could not be

captured when states were estimated over all frequencies, and second, it is different

from some other states with which it has an overlapping frequency profile. In fact,

if we had studied connectivity only along frequency dimension, states 1 and 2 of

SZ would have blurred along temporal domain and we were unable to observe such

pronounced modularity unique to SZ. Another observation with this set of results is

that the HC states tend to have more dispersion with regard to the phase of dynamic

coherence representing lagged dependence rather than positive or negative (anti)

correlation. This can be observed from the phase/amplitude histograms of states

2, 4 and 5 of HCs in compare to only states 4 and 5 of SZs with similar dispersion

in the corresponding histograms (remember that states are sorted based on their

occurrence rates). Based on the observed increased dispersion of phase/amplitude

profiles of the HC connectivity states we would expect overall stronger connectivity

in HCs compared to SZs. To test this hypothesis, we first, estimate the amplitude

distribution of each state as well as the subject-wise occupancy rates of the states

and then from these two, we estimate subject-wise amplitude distribution uniformly

quantized in 20 bins covering a range of 0 to the maximum amplitude of all states.

Figure 3.6 shows log of the median of these distributions at each bin which is

calculated separately for HCs and SZs and we can clearly observe that as amplitude
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Figure 3.6: Plot showing overall stronger connectivity in HCs compared to SZs.

increases, although log of median of both groups decreases, for SZs, the decreasing

rate is much faster. This observation is in line with studies reporting decreased

connectivity of SZs between wider range of networks or ROIs [66, 75, 76].

In addition, although HCs showed an overall stronger connectivity than SZs, the

dynamic nature of connectivity does not necessarily follow this overall observation.

By revisiting rows 2 and 4 of Figure 3, we observe although SZ state 4 has maximum

correlation to both states 2 and 4 of HCs, the directionality of the difference in ampli-

tudes changes when SZ state 4 and HC state 2 are compared versus when SZ state 4

and HC state 4 are compared (SZ > HC is color coded as red while HC > SZ is color

coded as yellow). This shows that HCs experience both higher and lower amplitude

of dynamic coherence in similar connectivity patterns but in different states (2 and

4) in comparison to SZs which have less variation in the amplitude in a similar state

and also less frequently (only in state 4). In the second set of the results, similar

to study by [46], we investigated group differences in dynamic connectivity in the
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form of shared connectivity states between all subjects of both groups. Such analysis

allows us to explicitly compare differences in the dynamic behavior of the subjects

with respect to occupancy rates of each state by each group as well as tendency to

stay in a given state for a period of time (which we refer as the dwell time of subjects

in each state). Our analysis shows significant differences between the groups based

on both measures which show promise as a foundation for identifying bio-markers to

discriminate healthy and diseased individuals. A pronounced observation in this set

of result is that, first, SZs have higher occupancy rate and more tendency to stay in

state 1 which belongs to high frequency domain. Second, as there is visible contrast

between connectivity patterns of states 2 and 3, there are also significant differences

between dynamic behaviors of the two groups in the two states. State 2 compared

to state 3 has sparser connectivity between sensory networks and also diminished

connectivity between subcortical and sensory networks. and also has stronger con-

nectivity (i.e., positive coherence) in-between DM networks as well as pronounced

negative coherence between DM and majority of other networks excluding subcor-

tical when compared to state 3. These pronounced differences in the connectivity

patterns of the two states are also accompanied by significant difference between

dynamic behavior of SZs and HCs as SZs have significantly higher occupancy rate of

state 2 than Hs while for state 3 the reverse is true. Moreover, SZ have also signifi-

cantly higher dwell time in state 2 than HCs. We can interpret this differences as an

extension of observed dysconnectivity between similar sets of networks in previous

studies [46, 68, 75] to the time-frequency expansion of functional connectivity. Fur-

thermore, similar to the result of the contrast analysis of phase and amplitude of the

connectivity states of the first set of the results (Figure 3.3), we observe differences

in the amplitude and phase of the connectivities of SZs and HCs which belongs to

same state.
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Chapter 4

Time-varying spectral powers of

resting-state fMRI networks to

reveal cross-frequency dependence

in dynamic connectivity

So far we have studied dynamic synchronicity among brain regions in the form of

connectivity as a function of frequency. This frequency variation of connectivity has

sources in frequency variation of activities of the individual brain regions. An aspect

which is not explicitly addressed in the proposed approach. Also brain oscillations

observed with high temporal resolution modalities, such as magnetoencephalography

(MEG) and electroencephalography (EEG), contain spectral power over a wide range

of frequencies including theta (4-7 Hz), alpha (7-14 Hz), beta (14-25 Hz) and gamma

(low: 30-60 Hz, high: 60-100 Hz).

Moreover, up to now, frequency variation of connectivity had only been stud-

ied between same frequency bands and we were unable to capture interaction cross
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frequency bands and it is all in spite of the fact that interactions between different

frequency bands have been related to higher level functions of the brain such as mem-

ory management and cognition [77, 78, 79]. This, in addition to the heterogeneity of

brain oscillations across frequencies, has led to the investigation of dependence mea-

sures such as coherence [80, 81, 82] and cross-frequency dependence (or, alternatively,

cross-frequency coupling (CFC)).

Variations of CFC have been investigated in the form of phase-amplitude cou-

pling, referred as cross-frequency modulation (cfM) [83], phase-phase coupling, re-

ferred as phase synchronization [84], and amplitude-amplitude coupling [85]. Par-

ticularly, phase-synchronization demonstrated better identification of the underlying

cortical connectivity for visual working memory in a combined EEG/MEG study

[86]. Further non-linear dependence methods and their applications to EEG/MEG

analysis were reviewed in [87] and [88].

Compared to EEG/MEG, the range of detectable frequencies in typical blood

oxygenation level dependent (BOLD) fMRI is fairly limited. Recent studies found

evidence of frequency variation of BOLD signal interactions however as discussed

above, these intersections had only been observed between same frequency bands and

there is still no evidence of cross-frequency interactions, though we might suspect

the existence of such interactions since the BOLD signal is a correlate of actual brain

oscillations as well as underlying brain function.

Here we design a study which enables to observe that: first, frequency content of

rs-fMRI networks activity is dynamic in time, and second, that this variation occurs

with respect to multiple patterns of spectral powers rather than being specialized

to specific sub-bands. These observations led us to the design of a novel metric

for measuring CFC in rs-fMRI data. Brain networks, along with their associated

time-courses, are captured by independent component analysis (ICA) of fMRI voxel

time-series. Estimation of the instantaneous power spectra of network time-courses is
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achieved by a time-frequency decomposition. The collection of instantaneous network

timecourse spectra are then summarized into a small set of recurring spectral states

by applying k-means clustering to time-varying network spectra from all subjects.

The cluster centroids define canonical patterns of spectral distributions, which we

call Frequency modes. Without making any prior assumption on the properties of

these modes, we observe different spectral density shapes emerging naturally from

the data while simple band-pass filtering is unable to capture such information.

Taking a step further, we analyze the occurrence rate of each mode in the original

network time-courses, as well as the co-occurrence of pairs of modes, which we use

to define novel measures of cross-frequency dependence.

Significant gender and age effects are observed with both the occurrence and

co-occurrence measures for some specific networks and network pairs, respectively.

We conclude this study by pointing out that although fMRI data suffers from low

sampling rate and, being a hemodynamically mediated signal which includes only a

narrow range of detectable frequencies, there are detectable dynamics and cross-

frequency dependencies in the data which have not been explored before. Significant

age and gender associations illustrate the richness in this kind of information.

4.1 Material and method

We used exact same data set as described in section1.4.1 with same pre and post

processing as in section 2.1.1 which similarly resulted in decomposition of data into

50 maximally independent components as the representation of brain functional net-

works and the corresponding subject-wise time-courses (appendix A)
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4.1.1 Estimation of Instantaneous Power Spectra of network

Time-courses

To capture recurring frequency modes of network time-courses, we use same time-

frequency decomposition of network time-courses as in section 2.1.3. The only dif-

ference is that here we center each wavelet in 20 uniformly selected frequencies of

the interval of 0-0.25 Hz compared to 5 centers as described in section 2.1.3. This

would only let us having a better frequency resolution.
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Figure 4.1: Outline of our framework for capturing instantaneous spectra of ICA
time-courses in time in the form of frequency modes. (A)Complex morlet wavelet is
used to map the time-courses to the time-frequency domain. (B) canonical patterns
of power spectra are estimated by k-means clustering which we refer to as frequency
modes.
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To make our estimation less susceptible to random variation of signal due to

noise artefacts, we z-score our estimation of time-frequency decomposition of a given

time-course from our estimation of null-distribution. The null-distribution is derived

from bootstrap resampling of the same time-course when its time-points are ran-

domly reshuffled to remove any periodic behavior of the signal. This is repeated

for 200 times and wavelet decomposition of each of these shuffled time-courses is

estimated. By concatenating these decomposition along time, we estimate the null-

distribution at each frequency. Concatenation of amplitudes of these z-scored time-

frequency decompositions of all network time-courses of all subjects forms a 2-d

matrix whose one dimension is frequency power spectral and the other dimension is

time×network×subjects. Given that, clustering of frequency-amplitude dimension

along the time dimension would capture dynamic and recurring frequency modes. In

this work we used k-means clustering with k = 4. Figure 4.1 summarizes all these

steps along with the captured frequency modes as the result of the proposed method.

4.2 Results

Frequency modes are, in fact, centroids of clusters that are formed by instantaneous

spectral powers of all ICA time-courses. The modes represent short-lived and pe-

riodic activities of time-courses. The occurrence rate of these activities forms the

corresponding spectral densities as is presented in Figure 4.2 .

Frequency modes, by design, are shared among subjects and networks and F -

ratio analysis suggests that 4 of these shared modes explain most of the variations of

spectral powers. However, there are different aspects of the modes which may vary

between subjects and networks. First, frequency modes vary with respect to the

range of frequencies they span. For example, while mode 4 spans a relatively narrow

range of frequencies comparing to other modes and its spectral density has positive
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Figure 4.2: ”Frequency modes” as the representatives of the variation in spectral
powers of networks time-courses, Each mode is formed by similar instantaneous fre-
quency content of time-courses which have been clustered together.

skewness (left-modal), mode 2, on the other hand, spans middle-range of frequencies

with the peek around 0.1 Hz and mode 3 has more uniform spectral density along all

range of frequencies and with a slight negative skewness (right-modal) and a peek at

0.20 Hz.

Next, we investigate two other aspects of the modes which vary among subjects

and networks.

The first aspect is the occurrence rate of individual modes in each of the networks

which is measured by counting number of time-points of a given network time-course

which has been assigned to a certain mode as the result of clustering (Figure 4.3).

The second aspect of the frequency modes is conditional co-occurrence (cco-

occurrence) of these modes. As mentioned earlier, since each mode has

a unique spectral density, by investigating co-occurrence between each

pair of modes, we are in fact exploring a measure of cross-frequency

dependence of ICA time courses. Conditional co-occurrence is defined

51



here as a conditional probability of occurrence of a specific mode (as-

sume mode i) in a given network (network m) given that another mode

(let it be mode j) has occurred at the same time-point in another net-

work (network n). Mathematically speaking we measure:

Cco− occurrence (modes : i, j in networks m,n) =

Pr (mode i in network m | mode j in network n)
(4.1)

The above measure, alone, does not estimate the degree of depen-

dence and we need to compare it against the observed cco-occurrence

given that modes i and j occur independently from one another in

networks m and n respectively. Based on independence assumption

Pr (mode i in network m | mode j in network n) needs to be equal to

Pr (mode i in network m) which is simply, the occurrence rate of mode

i in network m.

Consequently, our reported estimation of cco-occurrence is z-scored

estimation of above cco-occurrence measure from estimated distribu-

tion of Pr { mode i in network m } which would serve as our null

distribution. Values around zero imply an independence of occurrence

of mode i from mode j in the given the networks. Values greater than

zero implies positive dependence of mode i on mode j and negative

dependence when the value is less than zero. Figure 4.4 represent cco-

occurrence of each pair of modes for all networks as a C × C matrix

where C is number of ICA-networks (50 in this study). We call these
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Figure 4.3: Boxplots of occurrence rates of each individual frequency mode in ICA
networks. Networks with significantly higher (filled boxplots) or lower (dashed box-
plots) occurrence of the given mode than majority (85%) of all networks are identified.

matrices cco-occurrence maps. In the last part of the results, we fo-

cus on studying variation of individual occurrence of modes as well as

cco-occurrences of pair of modes between networks due to the age and

gender of subjects.

Variation in occurrence rate of modes between networks can be in-

vestigated by boxplot representation of the rates from all subjects for

each network. For each mode we identify networks which have signif-
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Figure 4.4: Cco-occurrence maps of frequency mode pairs. An entry (column m, row
n)(1...50, 1...50) of a matrix at column i (1...4) and row j (1...4) of the Figure shows
cco-occurrence of frequency mode i in network m, given that frequency mode j is
occurred at the same time-point in network n. Positive cc-occurrence (color coded
as red) corresponds to reinforcement effect and negative cc-occurrence (color coded
as blue) is corresponding to suppression effect. (SC: Sub-cortical, AUD: Auditory,
SM: Somatomotor, VIS: Visual, CC: Cognitive Control, DM: Default-mode, CB:
Cerebellar)

icantly higher or lower average occurrence rates than majority of all

networks. For this analysis, first, we performed pairwise 2-sample t-

test between all network pairs. The estimated p-values were adjusted
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to account for the multiple comparisons using the false discovery rate

(FDR) approach. Second, we identified networks which had signif-

icantly (FDR adjusted p-value < 0.01) higher (solid filled box-plot

in Figure 4.3) or lower (dashed box-plot in the same Figure) aver-

age occupancy rates than 80% of all networks. We also study the

effect of age and gender of subjects on the estimated occurrence rate

of modes through a multivariate analysis of covariance by setting the

occurrence rate of each mode in all the networks (a 50-d vector for

each mode) as the response variable. The design matrix includes age,

gender and two motion parameters (average translation and rotation

of each subject) as well as pair-wise interactions of these predictors.

This followed by a backward selection of the subset of significant pre-

dictors. Backward selection implementation of MANCOVAN toolbox

was used to perform this procedure. For more details on the multivari-

ate analysis please refer to [13]. The multivariate analysis determines

the subset of predictors which significantly affect occurrence rate of

each mode over all networks. If the reduced model included either

age or gender as significant predictor we can identify individual net-

works in which given modes occurrence rate is significantly affected

by either of those predictors. Univariate analysis for each individual

network is used for this part. First, predictor of interest is picked

(which is either age or gender if included in the reduced model). Then

the effect of other predictors in the model is regressed out from oc-
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Figure 4.5: Analysis of age and gender effect on (A) occurrence rate of individual
frequency modes and (B) cco-occurrence rate of pair of modes. In (A) specific
networks and in (B) pairs of networks are highlighted (bold) in which occurrence
rate of given mode and cco-occurrence of pair of modes are significantly effected by
age or gender
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currence rate of the given mode in individual networks through a

linear regression. Finally, a linear regression is applied between the

selected predictor and the residual of the previous regression as the

response variable. After running this for all networks, the estimated

p-values are FDR adjusted for the multiple comparisons and the ones

which survived the significance level of 0.01 are reported. Figure 4.5

A shows − log (FDR-Adj p-value× sign(regression coefficient) for net-

works with significant age and gender effect on mode occurrence rate.

The sign of the regression coefficient shows direction of influence. For

age effect it shows if the measure is increased or decreased by age and

for gender, positive coefficient means the measure of interest is higher

in females since female is encoded as ’1’ and male as ’0’. A similar

analysis can be used to study variation of cco-occurrence of frequency

modes between networks and subjects. Each cco-occurrence map, by

itself, shows variation among networks. For example, from the maps

along diagonal which represent dependence between same modes, we

are observing that although there is relatively higher dependence be-

tween all networks comparing to the observed dependence in the other

maps, dependence within somatomor and visual networks is stronger.

To study subject related variation of co-occurrence maps due to age

and gender of subjects, we follow similar analysis to the one we used

for the occurrence rate of individual modes. The design matrix would

stay the same and the response variable would be the cco-occurrence
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maps of each pair of modes. Same as before, Figure 4.5 B shows

− log (FDR-Adj p-value× sign(regression coefficient) for pairs of net-

works in which co-occurrence of given pairs of modes is significantly

affected by age and gender. Interpretation on the directionality of the

influence and the color maps for p-values stays the same as in Figure

4.5 A.

4.3 Discussion

This study adds to the growing evidence that, although fMRI data

has typically been assumed to be frequency invariant (mostly due to

its low acquisition sampling rate and consequently narrow range of

detectable frequencies), even within that narrow range of frequencies,

connectivity varies both within and across frequencies. In this work, by

employing frequency modes that capture characteristic spectral power

distributions, frequency variation is observed in individual network

time-courses. Conditional co-occurrence of these modes is our measure

of cross-frequency dependence between brain networks.

There are interesting observations that can be made based on cco-

occurrence maps in Figure 4.4. First, positive cco-occurrences ob-

served in diagonal maps which correspond to cco-occurrence of same

frequency modes, resembles familiar modularity in resting state func-
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tional connectivity including connectivity between Default Mode(DM),

Visual (VIS) and Somatomotor (SM) networks. In fact, occurrence of

a given mode in each of these networks reinforce occurrence of the

same mode in those other networks. We call this effect a reinforce-

ment effect. Continuing with this observation, if there did not exist

any dependence across frequency modes we should not have observed

any positive (reinforcement) or negative (which we call suppression)

cco-occurrence in off-diagonal maps which is obviously not the case.

For example, column one represents an interesting suppression effect

on Mode 1 by other modes. Mode 1 has lower power at every fre-

quency than any of the other modes, representing very weak signals

with spectral power that decays in frequency. Between network-pairs

that tend to show high correlation in conventional FNC analyses, the

two modes with highest aggregate power (i.e. modes 2 and 4) seem to

self-reinforce, while both separately suppress the probability of seeing

mode 1 with low-magnitude spectrum with decaying frequency. This

leads us to conclude that networks with strong signals selectively rein-

force networks with similar frequency regime while also suppressing the

odds that such a network presents relatively weak signal with decay-

ing frequency. Strong, but spectrally dissimilar (i.e. mode 2 and mode

4), signals in characteristically connected network-pairs are relatively

indifferent to each other, neither reinforcing nor suppressing the co-

occurrence of one and another that would occur under an assumption
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of independence.

Note that, by looking at the maps in the row corresponding to a

given mode, we can identify modes that are more likely to be either

reinforced or suppressed by the mode associated with that row. For

example, maps on the second row, represent the effects of conditioning

on mode 2 , which has significant overall power focused in the middle

range of frequencies. Observing maps along this row we see that well-

powered network signals focused in middle-range frequencies reinforce

similar regimes in certain other networks, suppress weakly powered

signals from these networks and have limited effects on the probability

of observing the modestly-powered higher-frequency mode 3 or the

strongly-powered lower frequency mode 4.

Additionally, although it is observed that mode 1 is more prone to

suppression effect by the other modes, we also observe same effect by

mode 3 on mode 4 and this constitutes one of the key observations of

the work we are reporting here. By taking a closer look at the power

spectrum of the third mode we can easily observe that this mode is

middle-powered and represents a wide range of frequencies, peaking

slightly at the relatively high frequency (0.20 Hz including frequen-

cies which have been usually associated with non-physiological sources

of variations such as motion artefacts that are commonly filtered in

BOLD analyses). On the other hand, mode 4 has a spectrum very
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similar to that of the BOLD signal, and the map at row 3 and column

4 illustrates an interesting suppression effect on this mode on a subset

of networks in VIS, cognitive controls (CC) (including IPL) and DM

(including R/L AG and ACC) by thigh mid-powered, higher-frequency

mode 3. Commonly held beliefs about the nature of fMRI data would

not suggest any dependency between these modes since these two are

supposed to belong to very different sources of variation in captured

signal [89, 38].

Furthermore, through a regression analysis, we observed that cross-

frequency dependence may vary between different group of subjects.

Specifically, we observed an age-correlated increase in the suppressive

effect of networks in mode 1 on putamen and IPL when in mode 2 and,

simultaneously, an age-correlated increase in the reinforcement effect

of networks in mode 1 on putamen when in mode 4. This observa-

tion is interesting since the putamen is part of the sub-cortical domain

of networks which is understood to be broadly connected to cortical

networks [90] and these connections are believed to be involved in cog-

nitive functions [91]. Although study of aging brain is out of scope

of this work(and the range of subject ages in this study is limited)

such an observation highlights the potential benefits of incorporat-

ing cross-frequency dependence measures in connectivity-based aging

brain studies. We also found that subject gender was associated with
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cross-frequency dependence, an interesting observation whose neuro-

physiological interpretation is also beyond the scope of this work.

Before concluding this section, we need to further clarify the actual

nature of the instantaneous activities that each frequency mode is rep-

resenting. The most important consideration in interpreting frequency

modes is that each occurrence of a given mode is in fact represent-

ing instantaneous but ”periodic” activities which consist of instan-

taneous activations and de-activations of the signal. The frequency

spectrum of each mode represents the occurrence rate of these ac-

tivations and de-activations. Consequently, a co-occurrence between

two modes could be representing either positive or negative correlation

since instantaneous activation of one signal could be aligned to either

instantaneous activation (i.e. positive correlation) or de-activation (i.e.

anti-correlation) of the other signal. In conclusion, reinforcement and

suppression effects should not be associated with the commonly used

correlation or anti-correlation measures.
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Chapter 5

Conclusion and future works

In chapter 2 we have proposed a novel framework to study time-

frequency dynamics of functional connectivity of resting-state fMRI

data through a data-driven approach. Spatially independent compo-

nents have been identified using spatial ICA, then the dynamic as-

pect of corresponding subject-specific functional network connectivity

is studied in both time and frequency domains using wavelet trans-

form coherence. Dynamic coherence of time courses is summarized

by a finite number of recurring patterns of connectivity estimated by

k-means clustering of the complex-valued FNCs. In this framework

each FNC is in fact a snap shot of coherence between all pairs of ICA

components at a time-frequency point

An important advantage of this approach is that derived connec-

tivity states are separated along both the time and frequency dimen-

63



sions meaning connectivity state of the brain at given time-point can

be studied as a superposition of multiple frequency-specific connectiv-

ity states while still retaining temporal dynamic nature of the states.

Additionally, the phase information encoded in the connectivity state

frequency information enables us to capture a delayed and temporal

dynamic correlation.

Limitations of this work include interpretability of the results and

the methodological choice. Regarding the interpretability, this work

is predominantly methodological and has been applied here for gen-

eral illustrative purposes to resting state data. The nature of resting

state data make it difficult to determine the true source of whole-brain

connectivity patterns arising from different frequency profiles or distri-

butions; it may have roots in physiological properties of spatial maps

and differences in their activation, or could even be due to system-

atic noise during the scan. In terms of interpretability, this work can

be easily applied to task-based imaging studies, including those that

capture cognitive states or to studies involving prior information on

subject cognitive states [92]. It can also be extended to multi-modal

frameworks and applied in studies such as [93] , which could result in

better neurophysiological interpretations of observed connectivity pat-

terns. Also such work can help identify the relevance of the functional

networks contributing to the observed FNCs under various conditions
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in order to better understand and interpret identified networks coher-

ence behavior.

As always we are limited by our assumptions, and also method-

ological choices based on those assumptions. For example, here we

have assumeds that FNCs form clusters in the time-frequency domain

that can be captured by k-means clustering, a method that looks for

clusters with convex boundaries, although more complicated clustering

approaches such as spectral clustering have been proposed to capture

more general shapes of clusters. Recent studies have also taken ad-

vantage of linear decomposition to break down observed FNCs into a

finite number of connectivity patterns. For example [29] used PCA

to linearly decomposed observed FNCs into finite set of connectivity

patterns which are mutually spatially orthogonal and [30] looked for

finite set of connectivity patterns that are mutually temporally inde-

pendent and have linear contribution to the observed FNCs. CAP

analysis as one of the more recent techniques to study dynamic con-

nectivity has drawn the community’s attention. CAP however, like

many other approaches to dynamic connectivity,oapproaches is unable

to capture frequency heterogeneity within the temporal dynamics. Fu-

ture work studies could investigate ways of integrating these decom-

positions in a broader approach to time-frequency analysis. Lastly,

there are many other approaches to studying time-frequency proper-
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ties. empirical mode decomposition [94], for example, estimates the

instantaneous frequency of a given signal. Based on [95], with correct

settings, many time-frequency analyses can be made equivalent, so fu-

ture studies might investigate the consistency of results across different

approaches. Our framework does not limit us in the choice of time-

frequency analysis method, so any advances in this area would only

strengthen the approach we propose as currently implemented.

In chapter 3, resting-state connectivity of two healthy and diseased

populations is studied in a joint domain of time and frequency. The

result showed strong evidences on the simultaneous variation of con-

nectivity in both domains and revealed novel differences and similari-

ties between diseased and healthy, unique to the study of connectivity

in the join domain and consequently obscured in previous studies of

resting-state connectivity of schizophrenia.

In chapter 4 we looked at the dynamic variation of frequency at the

activation level and argued that not only the synchronous activity of

functional networks varies in time and frequency but also activation

of individual networks experience varying frequency profiles referred

here as ”frequency modes”. We further discussed that such analysis

enabled us to provide first evidence of cross-frequency dependence in

fMRI networks.

As mentioned earlier, one of the major limitations of the proposed

66



measure of cross-frequency dependence is its inability to estimate di-

rectionality of dependence in the way that correlation could measure in

the form of positive and negative correlation. However, we believe that

by investigating possible approaches to incorporate phase information

in a possibly new measure of cross-mode dependence we would be able

to measure the directionality as well.

Also this work is introduces a method of capturing richer infor-

mation about inter-network frequency-dependencies but cannot itself

contribute toward interpreting the observed cross-frequency dependen-

cies and their variations among different types of subjects. Our main

goal here has been to introduce a novel way to measure dependence

and connectivity among fMRI networks, and their transient spectral

properties, which resulted in making new observations on the actual

nature of the fMRI data. Also subject-wise variation of the measure

establishes its advantage in designing new neurophysiological biomark-

ers in study of human brain. However, more complex designs such as

multi-modal or task-based studies is needed to be able to make the ob-

servation more interpretable with respect to actual underlying neuro-

physiological brain activities. For example, there is a possible relation

between cross-frequency connectivity observed in this study and the

cross-frequency coupling observed in EEG or MEG studies. An inter-

esting question would be if we could trace modulation of well-known
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frequency bands of neuronal oscillations in the frequency modes we

showed here, A multi-modal study can be performed to shed light on

this valid question as a future work.

Finally we need to emphasize that we are not suggesting this method

as replacement for existing methods. In fact, we believe there are

rich complementarities between cross-frequency and full-spectrum ap-

proaches to network connectivity that promise the kind of augmented

effectiveness in clinical diagnostic settings.
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Appendix A

ICA Networks of first set of data

In following we are showing spatial maps of all 50 ICA components

identified as intrinsic connectivity networks as explained in section

1.4.1. Sagittal, coronal and axial slices for each SM is shown. More

detailed information on these ICNs can be find in supplementary ma-

terial of [26].
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Figure A.1: Sagittal, coronal and axial slices of SMs of ICA components that have
been identified as ICNs and have been used in this study. The order that these SMs
appear here the same to the order they appear FNCs.
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Appendix B

ICA Networks of second set of

data

In following we are showing spatial maps of all 47 ICA components

identified as intrinsic connectivity networks as explained in section

1.4.1.
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Figure B.1: Identified ICNs as the subset of ICA components from ICA decomposi-
tion of the second set of the data.
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Appendix C

Parameter search and performance

analysis of WTC

To study performance of our method in compare to wavelet coher-

ence transform implementation of [96] as well as to find the optimal

setting in general formulation of wavelet coherence in Equation 3 we

simulated pair of time series with dynamic coherence both in time and

frequency. 360s long simulated time series are sampled with TR=2s

same as fMRI time courses. The pair of time series is correlated at

frequency 0.07 Hz during the first third of the duration and at 0.19 Hz

during the last third of the duration of the signals. We used sensitivity

and specificity as two quantitative measures to study performance of

the general wavelet coherence formulation under different settings. As

in [50] sensitivity is defined as the ratio of correctly recognized sig-

nificant coherence to the all truly significant coherence. Specificity is
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defined similarly but as the ratio of correctly recognize insignificant co-

herence to the all truly insignificant coherence. We desire to maximize

both at the same time. The significance level was selected as the 90th

percentile of null distribution. The null distribution was estimated by

surrogating 500 pairs of time series with above properties. Also sen-

sitivity and specificity have been averaged over 500 runs of wavelet

coherence analysis. The parameters of Equation 2.6 than we looped

through are radius of S and S
′

along time and frequency dimensions

while size of S is always smaller than S
′

in both dimensions.

Furthermore, in Figure C.2 we show robustness of our optimal pa-

rameter search of WTC measure given estimation of SNR of the under-

lying signal. Looking at the plot, we conclude for the range of displayed

SNR (including SNR of conventional fMRI signal) if we find the search

for the optimal parameter as above, WTC would be relatively robust

to the change in SNR.
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Figure C.1: Performance optimization of chosen Wavelet Transform Coherence for-
mula and its comparison to the one used in [1]. (A) Simulated input signals. (B)
An instance of estimated coherence using the optimal setting along with the ground
truth coherence. (C) Comparison to WTC used by [1] with regard to sensitivity and
Specifity measures
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Figure C.2: Accuracy of WTC versus SNR of the simulated pair of signals when for
the given SNR, the optimal parameter of WTC is searched for as explained in the
text.
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Appendix D

Selecting ’K’ for k-means

clustering

We ran k-means clustering with different number of clusters and ob-

served that by running clustering with enough number of iterations for

each choice of ’k’, the result cluster centroids are reasonably consistent

from low to high model order. Figure D.1 shows k-means centroids for

k ranging from 2 to 9. Our choice of ’k’ in this study was based on the

inspection of f-ratio for each ’k’ in the above range. F-ration here is

defined as the average ratio of sum of squared distance between each

cluster points and the corresponding cluster centroids (inside cluster

dispersion) to the sum of square distance of the points outside of the

cluster to the same estimated centroids (outside cluster dispersion).

We want to minimize this measure with minimum possible number of

clusters so we look for ’k’s on the elbow of the f-ratio curve which here
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is k=5 (Figure D.1 B).
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Figure D.1: Analysis for selecting number of cluster for the rest of the study. (A)
Result of clustering with different number of clusters for K= 2 through 9 (B) Elbow
curve of F-ratio as the measure to choose cluster number (k=5) for the rest of the
study.
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Appendix E

Cluster visualization in

2-dimensional space

Since we are running k-means on a large number of data point and

looking for few centroids, there is a high probability to reach a local

minimum solution based on the initial guess and that is the main reason

we ran k-means 500 times each with a different initial guess of the

solution. In addition to this we also decided to run k-means separately

on parts of the data that correspond to different frequency bands. Since

we have 5 frequency bands, we would have 25 k-means centroids (5 for

each band). By using Sammon non-linear mapping [97] we mapped

all 25 centroids into a 2-d plane to get a sense of the space they have

spanned. Figure E.1 has summarized this analysis. The bottom side

of this hexagon represents centroids of the main k-means clustering.

Other sides, each corresponds to single band k-means centroids sorted
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by their recurrence rate (1 is the highest recurring centroid and 5 is the

lowest one). Inside of the hexagon is the result of Sammon mapping

of centroids into a 2-d plane. We can clearly see that main k-means

centroids (blue circle) fairly cover the space spanned by other centroids
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Figure E.1: Nearest neighbor interpolation on cluster labels is used to expand COI
of each frequency to span complete duration of scan.
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Appendix F

Cone of interest expansion

To accurately account for the occurrence rate of states across frequency

band the cone of interests for each band should be expanded (un-

warped) to span the whole duration of the scan. The unwarping uses

nearest neighbor interpolation on the cluster labels to fit the warped

time-frequency plane to a square as follows:
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Figure F.1: Nearest neighbor interpolation on cluster labels is used to expand COI
of each frequency to span complete duration of scan.

83



References

[1] C. Chang and G. H. Glover, “Time-frequency dynamics of resting-
state brain connectivity measured with fmri,” Neuroimage, vol. 50,
no. 1, pp. 81–98, 2010.

[2] B. Kolb and I. Q. Whishaw, Fundamentals of human neuropsy-
chology. Macmillan, 2009.

[3] S. D. Shorvon, “A history of neuroimaging in epilepsy 1909–2009,”
Epilepsia, vol. 50, no. s3, pp. 39–49, 2009.

[4] K. J. Friston, “Functional and effective connectivity in neuroimag-
ing: a synthesis,” Human brain mapping, vol. 2, no. 1-2, pp. 56–78,
1994.

[5] G. Tononi, O. Sporns, and G. M. Edelman, “A measure for brain
complexity: relating functional segregation and integration in the
nervous system,” Proceedings of the National Academy of Sci-
ences, vol. 91, no. 11, pp. 5033–5037, 1994.

[6] E. Oztas, “Neuronal tracing,” Neuroanatomy, vol. 2, no. 2, 2003.

[7] D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata,
N. Molko, and H. Chabriat, “Diffusion tensor imaging: concepts
and applications,” Journal of magnetic resonance imaging, vol. 13,
no. 4, pp. 534–546, 2001.

84



[8] C. S. Roy and C. S. Sherrington, “On the regulation of the blood-
supply of the brain,” The Journal of physiology, vol. 11, no. 1-2,
p. 85, 1890.

[9] L. Pauling and C. D. Coryell, “The magnetic properties and
structure of hemoglobin, oxyhemoglobin and carbonmonoxyhe-
moglobin,” Proceedings of the National Academy of Sciences,
vol. 22, no. 4, pp. 210–216, 1936.

[10] S. A. Huettel, A. W. Song, and G. McCarthy, Functional magnetic
resonance imaging, vol. 1. Sinauer Associates Sunderland, 2004.

[11] J. Himberg and A. Hyvarinen, “Icasso: Software for investigating
the reliability of ica estimates by clustering and visualization,”
2003 Ieee Xiii Workshop on Neural Networks for Signal Processing
- Nnsp’03, pp. 259–268, 2003.

[12] E. B. Erhardt, S. Rachakonda, E. J. Bedrick, E. A. Allen, T. Adali,
and V. D. Calhoun, “Comparison of multi-subject ica methods
for analysis of fmri data,” Human Brain Mapping, vol. 32, no. 12,
pp. 2075–2095, 2011.

[13] E. A. Allen, E. B. Erhardt, E. Damaraju, W. Gruner, J. M.
Segall, R. F. Silva, M. Havlicek, S. Rachakonda, J. Fries,
R. Kalyanam, A. M. Michael, A. Caprihan, J. A. Turner,
T. Eichele, S. Adelsheim, A. D. Bryan, J. Bustillo, V. P. Clark,
S. W. Feldstein Ewing, F. Filbey, C. C. Ford, K. Hutchison,
R. E. Jung, K. A. Kiehl, P. Kodituwakku, Y. M. Komesu, A. R.
Mayer, G. D. Pearlson, J. P. Phillips, J. R. Sadek, M. Stevens,
U. Teuscher, R. J. Thoma, and V. D. Calhoun, “A baseline for
the multivariate comparison of resting-state networks,” Front Syst
Neurosci, vol. 5, p. 2, 2011.

[14] M. H. Lee, C. D. Smyser, and J. S. Shimony, “Resting-state fmri:
a review of methods and clinical applications,” American Journal
of Neuroradiology, vol. 34, no. 10, pp. 1866–1872, 2013.

85



[15] B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Func-
tional connectivity in the motor cortex of resting human brain
using echo-planar mri,” Magnetic Resonance in Medicine, vol. 34,
no. 4, pp. 537–541, 1995.

[16] M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Func-
tional connectivity in the resting brain: a network analysis of the
default mode hypothesis,” Proc Natl Acad Sci U S A, vol. 100,
no. 1, pp. 253–8, 2003.

[17] C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith,
“Investigations into resting-state connectivity using independent
component analysis,” Philosophical Transactions of the Royal So-
ciety B-Biological Sciences, vol. 360, no. 1457, pp. 1001–1013,
2005.

[18] M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and
S. M. Smith, “fmri resting state networks define distinct modes
of long-distance interactions in the human brain,” Neuroimage,
vol. 29, no. 4, pp. 1359–1367, 2006.

[19] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “Spatial
and temporal independent component analysis of functional mri
data containing a pair of task-related waveforms,” Hum Brain
Mapp, vol. 13, no. 1, pp. 43–53, 2001.

[20] M. Greicius, “Resting-state functional connectivity in neuropsy-
chiatric disorders,” Curr Opin Neurol, vol. 21, no. 4, pp. 424–30,
2008.

[21] H. Koshino, P. A. Carpenter, N. J. Minshew, V. L. Cherkassky,
T. A. Keller, and M. A. Just, “Functional connectivity in an fmri
working memory task in high-functioning autism,” Neuroimage,
vol. 24, no. 3, pp. 810–21, 2005.

[22] Q. Yu, J. Sui, S. Rachakonda, H. He, W. Gruner, G. Pearlson,
K. A. Kiehl, and V. D. Calhoun, “Altered topological properties

86



of functional network connectivity in schizophrenia during resting
state: a small-world brain network study,” PLoS One, vol. 6, no. 9,
p. e25423, 2011.

[23] R. M. Hutchison, T. Womelsdorf, J. S. Gati, S. Everling, and
R. S. Menon, “Resting-state networks show dynamic functional
connectivity in awake humans and anesthetized macaques,” Hu-
man Brain Mapping, vol. 34, no. 9, pp. 2154–2177, 2013.

[24] M. Rosenblum, A. Pikovsky, and J. Kurths, “Synchronized firing
in coupled inhomogeneous excitable neurons,” Phys. Rev. Lett,
vol. 76, pp. 1804–1807, 1996.

[25] X. Liu and J. H. Duyn, “Time-varying functional network informa-
tion extracted from brief instances of spontaneous brain activity,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 110, no. 11, pp. 4392–4397, 2013.

[26] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele,
and V. D. Calhoun, “Tracking whole-brain connectivity dynamics
in the resting state,” Cereb Cortex, 2012.

[27] V. Kiviniemi, T. Vire, J. Remes, A. A. Elseoud, T. Starck, O. Ter-
vonen, and J. Nikkinen, “A sliding time-window ica reveals spatial
variability of the default mode network in time,” Brain Connect,
vol. 1, no. 4, pp. 339–47, 2011.

[28] G. D. P. K. A. K. Y. M. W. A. M. M. Sakolu, nal and V. D.
Calhoun, “A method for evaluating dynamic functional network
connectivity and task-modulation: application to schizophrenia,”
Magnetic Resonance Materials in Physics, Biology and Medicine,
vol. 23, no. 5-6, pp. 351–366, 2010.

[29] N. Leonardi, J. Richiardi, M. Gschwind, S. Simioni, J. M. An-
noni, M. Schluep, P. Vuilleumier, and D. Van De Ville, “Principal
components of functional connectivity: a new approach to study

87



dynamic brain connectivity during rest,” Neuroimage, vol. 83,
pp. 937–50, 2013.

[30] M. Yaesoubi, R. L. Miller, and V. D. Calhoun, “Mutually tem-
porally independent connectivity patterns: A new framework to
study the dynamics of brain connectivity at rest with applica-
tion to explain group difference based on gender,” NeuroImage,
vol. 107, no. 0, pp. 85–94, 2015.

[31] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele,
and V. D. Calhoun, “Tracking whole-brain connectivity dynamics
in the resting state,” Cerebral Cortex, vol. 24, no. 3, pp. 663–676,
2014.

[32] A. T. Baria, M. N. Baliki, T. Parrish, and A. V. Apkarian,
“Anatomical and functional assemblies of brain bold oscillations,”
Journal of Neuroscience, vol. 31, no. 21, pp. 7910–7919, 2011.

[33] B. Y. J. He, J. M. Zempel, A. Z. Snyder, and M. E. Raichle, “The
temporal structures and functional significance of scale-free brain
activity,” Neuron, vol. 66, no. 3, pp. 353–369, 2010.

[34] R. Salvador, A. Martinez, E. Pomarol-Clotet, J. Gomar, F. Vila,
S. Sarro, A. Capdevila, and E. T. Bullmore, “A simple view of the
brain through a frequency-specific functional connectivity mea-
sure,” Neuroimage, vol. 39, no. 1, pp. 279–289, 2008.

[35] X. N. Zuo, A. Di Martino, C. Kelly, Z. E. Shehzad, D. G. Gee,
D. F. Klein, F. X. Castellanos, B. B. Biswal, and M. P. Mil-
ham, “The oscillating brain: Complex and reliable,” Neuroimage,
vol. 49, no. 2, pp. 1432–1445, 2010.

[36] V. D. Calhoun, J. Sui, K. Kiehl, J. Turner, E. Allen, and G. Pearl-
son, “Exploring the psychosis functional connectome: aberrant
intrinsic networks in schizophrenia and bipolar disorder,” Front
Psychiatry, vol. 2, p. 75, 2011.

88



[37] Garrity, “Aberrant ’default mode’ functional connectivity in
schizophrenia (vol 164, pg 450, 2007),” American Journal of Psy-
chiatry, vol. 164, no. 7, pp. 1123–1123, 2007.

[38] D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A.
Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Fre-
quencies contributing to functional connectivity in the cerebral
cortex in ”resting-state” data,” American Journal of Neuroradi-
ology, vol. 22, no. 7, pp. 1326–1333, 2001.

[39] E. Duzel, R. Habib, B. Schott, A. Schoenfeld, N. Lobaugh, A. R.
McIntosh, M. Scholz, and H. J. Heinze, “A multivariate, spa-
tiotemporal analysis of electromagnetic time-frequency data of
recognition memory,” Neuroimage, vol. 18, no. 2, pp. 185–197,
2003.

[40] T. Koenig, F. Marti-Lopez, and P. Valdes-Sosa, “Topographic
time-frequency decomposition of the eeg,” Neuroimage, vol. 14,
no. 2, pp. 383–90, 2001.

[41] F. Miwakeichi, E. Martinez-Montes, P. A. Valdes-Sosa,
N. Nishiyama, H. Mizuhara, and Y. Yamaguchia, “Decomposing
eeg data into space-time-frequency components using parallel fac-
tor analysis,” Neuroimage, vol. 22, no. 3, pp. 1035–1045, 2004.

[42] X. P. Song, Y. Zhang, and Y. J. Liu, “Frequency specificity of
regional homogeneity in the resting-state human brain,” Plos One,
vol. 9, no. 1, 2014.

[43] S. Mehrkanoon, M. Breakspear, and T. W. Boonstra, “Low-
dimensional dynamics of resting-state cortical activity,” Brain To-
pography, vol. 27, no. 3, pp. 338–352, 2014.

[44] T. W. Boonstra, A. Daffertshofer, M. Breakspear, and P. J. Beek,
“Multivariate time-frequency analysis of electromagnetic brain ac-
tivity during bimanual. motor learning,” Neuroimage, vol. 36,
no. 2, pp. 370–377, 2007.

89



[45] J. M. Schoffelen, R. Oostenveld, and P. Fries, “Neuronal coherence
as a mechanism of effective corticospinal interaction,” Science,
vol. 308, no. 5718, pp. 111–3, 2005.

[46] E. Damaraju, E. A. Allen, A. Belger, J. M. Ford, S. McEwen,
D. H. Mathalon, B. A. Mueller, G. D. Pearlson, S. G. Potkin,
A. Preda, J. A. Turner, J. G. Vaidya, T. G. van Erp, and V. D.
Calhoun, “Dynamic functional connectivity analysis reveals tran-
sient states of dysconnectivity in schizophrenia,” Neuroimage Clin,
vol. 5, pp. 298–308, 2014.

[47] B. Rashid, E. Damaraju, G. D. Pearlson, and V. D. Calhoun,
“Dynamic connectivity states estimated from resting fmri iden-
tify differences among schizophrenia, bipolar disorder, and healthy
control subjects,” Frontiers in Human Neuroscience, vol. 8, 2014.

[48] P. D. Welch, “The use of fast fourier transform for the estima-
tion of power spectra: A method based on time averaging over
short, modified periodograms,” Audio and Electroacoustics, IEEE
Transactions on, vol. 15, no. 2, pp. 70–73, 1967.

[49] C. Torrence and G. P. Compo, “A practical guide to wavelet anal-
ysis,” Bulletin of the American Meteorological Society, vol. 79,
no. 1, pp. 61–78, 1998.

[50] S. Mehrkanoon, M. Breakspear, A. Daffertshofer, and T. Boon-
stra, “Generalized time-frequency coherency for assessing neural
interactions in electrophysiological recordings,” in Nature Preced-
ings, 2011.

[51] M. J. Jafri, G. D. Pearlson, M. Stevens, and V. D. Calhoun, “A
method for functional network connectivity among spatially inde-
pendent resting-state components in schizophrenia,” Neuroimage,
vol. 39, no. 4, pp. 1666–1681, 2008.

90



[52] D. Bhugra, “The global prevalence of schizophrenia,” PLoS Med,
vol. 2, no. 5, p. e151; quiz e175, 2005. Bhugra, Dinesh eng Com-
ment 2005/05/27 09:00 PLoS Med. 2005 May;2(5):e151; quiz e175.
Epub 2005 May 31.

[53] M. S. Keshavan, B. A. Clementz, G. D. Pearlson, J. A. Sweeney,
and C. A. Tamminga, “Reimagining psychoses: An agnostic ap-
proach to diagnosis,” Schizophrenia Research, vol. 146, no. 1-3,
pp. 10–16, 2013.

[54] E. Cheniaux, J. Landeira-Femandez, L. L. Telles, J. L. M. Lessa,
A. Dias, T. Duncan, and M. Versiani, “Does schizoaffective dis-
order really exist? a systematic review of the studies that com-
pared schizoaffective disorder with schizophrenia or mood disor-
ders,” Journal of Affective Disorders, vol. 106, no. 3, pp. 209–217,
2008.

[55] R. Kotov, S. H. Leong, R. Mojtabai, A. C. E. Erlanger, L. J.
Fochtmann, E. Constantino, G. A. Carlson, and E. J. Bromet,
“Boundaries of schizoaffective disorder revisiting kraepelin,” Jama
Psychiatry, vol. 70, no. 12, pp. 1276–1286, 2013.

[56] S. K. Schultz and N. C. Andreasen, “Schizophrenia,” Lancet,
vol. 353, no. 9162, pp. 1425–30, 1999. Schultz, S K Andreasen, N
C eng Review ENGLAND London, England 1999/05/05 Lancet.
1999 Apr 24;353(9162):1425-30.

[57] N. C. Andreasen and M. Flaum, “Schizophrenia: the characteristic
symptoms,” Schizophr Bull, vol. 17, no. 1, pp. 27–49, 1991.

[58] A. Fornito, A. Zalesky, C. Pantelis, and E. T. Bullmore,
“Schizophrenia, neuroimaging and connectomics,” Neuroimage,
vol. 62, no. 4, pp. 2296–2314, 2012.

[59] K. J. Friston, “The disconnection hypothesis,” Schizophr Res,
vol. 30, no. 2, pp. 115–25, 1998.

91



[60] W. Pettersson-Yeo, P. Allen, S. Benetti, P. McGuire, and
A. Mechelli, “Dysconnectivity in schizophrenia: Where are we
now?,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 5,
pp. 1110–1124, 2011.

[61] C. Wernicke, Grundriss der Psychiatrie in klinischen Vorlesungen.
1906.

[62] J. S. Damoiseaux and M. D. Greicius, “Greater than the sum
of its parts: a review of studies combining structural connectiv-
ity and resting-state functional connectivity,” Brain Struct Funct,
vol. 213, no. 6, pp. 525–33, 2009.

[63] J. H. Xiong, L. M. Parsons, J. H. Gao, and P. T. Fox, “Interre-
gional connectivity to primary motor cortex revealed using mri
resting state images,” Human Brain Mapping, vol. 8, no. 2-3,
pp. 151–156, 1999.

[64] D. A. Gusnard, E. Akbudak, G. L. Shulman, and M. E. Raichle,
“Medial prefrontal cortex and self-referential mental activity: re-
lation to a default mode of brain function,” Proc Natl Acad Sci U
S A, vol. 98, no. 7, pp. 4259–64, 2001.

[65] L. A. Flashman, Disorders of insight, self-awareness, and attribu-
tion in schizophrenia. New York: W.W. Norton & Co, 2004.

[66] R. L. Bluhm, J. Miller, R. A. Lanius, E. A. Osuch, K. Boks-
man, R. W. Neufeld, J. Theberge, B. Schaefer, and P. Williamson,
“Spontaneous low-frequency fluctuations in the bold signal in
schizophrenic patients: anomalies in the default network,”
Schizophr Bull, vol. 33, no. 4, pp. 1004–12, 2007.

[67] K. J. Friston and C. D. Frith, “Schizophrenia: a disconnection
syndrome?,” Clin Neurosci, vol. 3, no. 2, pp. 89–97, 1995.

[68] S. Whitfield-Gabrieli, H. W. Thermenos, S. Milanovic, M. T.
Tsuang, S. V. Faraone, R. W. McCarley, M. E. Shenton, A. I.

92



Green, A. Nieto-Castanon, P. LaViolette, J. Wojcik, J. D.
Gabrieli, and L. J. Seidman, “Hyperactivity and hyperconnec-
tivity of the default network in schizophrenia and in first-degree
relatives of persons with schizophrenia,” Proc Natl Acad Sci U S
A, vol. 106, no. 4, pp. 1279–84, 2009.

[69] Y. Zhou, M. Liang, L. X. Tian, K. Wang, Y. H. Hao, H. H. Liu,
Z. N. Liu, and T. Z. Jiang, “Functional disintegration in paranoid
schizophrenia using resting-state fmri,” Schizophrenia Research,
vol. 97, no. 1-3, pp. 194–205, 2007.

[70] R. Yu, Y. L. Chien, H. L. Wang, C. M. Liu, C. C. Liu, T. J.
Hwang, M. H. Hsieh, H. G. Hwu, and W. Y. Tseng, “Frequency-
specific alternations in the amplitude of low-frequency fluctuations
in schizophrenia,” Hum Brain Mapp, vol. 35, no. 2, pp. 627–37,
2014.

[71] S. A. Meda, Z. Wang, E. I. Ivleva, G. Poudyal, M. S. Kesha-
van, C. A. Tamminga, J. A. Sweeney, B. A. Clementz, D. J.
Schretlen, V. D. Calhoun, S. Lui, E. Damaraju, and G. D.
Pearlson, “Frequency-specific neural signatures of spontaneous
low-frequency resting state fluctuations in psychosis: Evidence
from bipolar-schizophrenia network on intermediate phenotypes
(b-snip) consortium,” Schizophr Bull, 2015.

[72] M. J. Hoptman, X. N. Zuo, P. D. Butler, D. C. Javitt,
D. D’Angelo, C. J. Mauro, and M. P. Milham, “Amplitude of
low-frequency oscillations in schizophrenia: a resting state fmri
study,” Schizophr Res, vol. 117, no. 1, pp. 13–20, 2010.

[73] N. D. Woodward, H. Karbasforoushan, and S. Heckers, “Thala-
mocortical dysconnectivity in schizophrenia,” Am J Psychiatry,
vol. 169, no. 10, pp. 1092–9, 2012.

[74] A. Anticevic, M. W. Cole, G. Repovs, J. D. Murray, M. S. Brum-
baugh, A. M. Winkler, A. Savic, J. H. Krystal, G. D. Pearlson,

93



and D. C. Glahn, “Characterizing thalamo-cortical disturbances
in schizophrenia and bipolar illness,” Cereb Cortex, vol. 24, no. 12,
pp. 3116–30, 2014.

[75] M. Liang, Y. Zhou, T. Jiang, Z. Liu, L. Tian, H. Liu, and
Y. Hao, “Widespread functional disconnectivity in schizophrenia
with resting-state functional magnetic resonance imaging,” Neu-
roreport, vol. 17, no. 2, pp. 209–13, 2006.

[76] S. A. Meda, A. Gill, M. C. Stevens, R. P. Lorenzoni, D. C. Glahn,
V. D. Calhoun, J. A. Sweeney, C. A. Tamminga, M. S. Kesha-
van, G. Thaker, and G. D. Pearlson, “Differences in resting-state
functional magnetic resonance imaging functional network connec-
tivity between schizophrenia and psychotic bipolar probands and
their unaffected first-degree relatives,” Biol Psychiatry, vol. 71,
no. 10, pp. 881–9, 2012.

[77] J. Lisman, “The theta/gamma discrete phase code occuring during
the hippocampal phase precession may be a more general brain
coding scheme,” Hippocampus, vol. 15, no. 7, pp. 913–922, 2005.

[78] M. X. Cohen, N. Axmacher, D. Lenartz, C. E. Elger, V. Sturm,
and T. E. Schlaepfer, “Good vibrations: cross-frequency coupling
in the human nucleus accumbens during reward processing,” Jour-
nal of Cognitive Neuroscience, vol. 21, no. 5, pp. 875–889, 2009.

[79] J. Lisman and M. Idiart, “Storage of 7 +/- 2 short-term memories
in oscillatory subcycles,” Science, vol. 267, no. 5203, pp. 1512–
1515, 1995.

[80] H. Berendse, J. Verbunt, P. Scheltens, B. van Dijk, and
E. Jonkman, “Magnetoencephalographic analysis of cortical activ-
ity in alzheimer’s disease: a pilot study,” Clinical Neurophysiology,
vol. 111, no. 4, pp. 604 – 612, 2000.

94



[81] P. L. Nunez, R. B. Silberstein, Z. Shi, M. R. Carpenter, R. Srini-
vasan, D. M. Tucker, S. M. Doran, P. J. Cadusch, and R. S. Wi-
jesinghe, “Eeg coherency ii: experimental comparisons of multiple
measures,” Clinical Neurophysiology, vol. 110, no. 3, pp. 469 – 486,
1999.

[82] C. Besthorn, H. Frstl, C. Geiger-Kabisch, H. Sattel, T. Gasser,
and U. Schreiter-Gasser, “Eeg coherence in alzheimer disease,”
Electroencephalography and Clinical Neurophysiology, vol. 90,
no. 3, pp. 242 – 245, 1994.

[83] C. E. Schroeder and P. Lakatos, “Low-frequency neuronal os-
cillations as instruments of sensory selection,” Trends in neuro-
sciences, vol. 32, no. 1, pp. 9–18, 2009.

[84] J. M. Palva, S. Palva, and K. Kaila, “Phase synchrony among
neuronal oscillations in the human cortex,” The Journal of Neu-
roscience, vol. 25, no. 15, pp. 3962–3972, 2005.

[85] P. R. Shirvalkar, P. R. Rapp, and M. L. Shapiro, “Bidirec-
tional changes to hippocampal theta–gamma comodulation pre-
dict memory for recent spatial episodes,” Proceedings of the Na-
tional Academy of Sciences, vol. 107, no. 15, pp. 7054–7059, 2010.

[86] J. M. Palva, S. Monto, S. Kulashekhar, and S. Palva, “Neuronal
synchrony reveals working memory networks and predicts indi-
vidual memory capacity,” Proceedings of the National Academy of
Sciences, vol. 107, no. 16, pp. 7580–7585, 2010.

[87] C. Stam, “Nonlinear dynamical analysis of {EEG} and meg: Re-
view of an emerging field,” Clinical Neurophysiology, vol. 116,
no. 10, pp. 2266 – 2301, 2005.

[88] R. T. Canolty and R. T. Knight, “The functional role of cross-
frequency coupling,” Trends Cogn Sci, vol. 14, no. 11, pp. 506–15,
2010.

95



[89] M. Lowe, B. Mock, and J. Sorenson, “Functional connectivity in
single and multislice echoplanar imaging using resting-state fluc-
tuations,” NeuroImage, vol. 7, no. 2, pp. 119 – 132, 1998.

[90] M. W. Cole, S. Pathak, and W. Schneider, “Identifying the brain’s
most globally connected regions,” Neuroimage, vol. 49, no. 4,
pp. 3132–3148, 2010.

[91] M. Ystad, E. Hodneland, S. Adolfsdottir, J. Haasz, A. J. Lunder-
vold, T. Eichele, and A. Lundervold, “Cortico-striatal connectivity
and cognition in normal aging: A combined dti and resting state
fmri study,” Neuroimage, vol. 55, no. 1, pp. 24–31, 2011.

[92] W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. D.
Greicius, “Decoding subject-driven cognitive states with whole-
brain connectivity patterns,” Cereb Cortex, vol. 22, no. 1, pp. 158–
65, 2012.

[93] E. Tagliazucchi, F. von Wegner, A. Morzelewski, V. Brodbeck, and
H. Laufs, “Dynamic bold functional connectivity in humans and
its electrophysiological correlates,” Front Hum Neurosci, vol. 6,
p. 339, 2012.

[94] N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N.
Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical
mode decomposition and the hilbert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal So-
ciety a-Mathematical Physical and Engineering Sciences, vol. 454,
no. 1971, pp. 903–995, 1998.

[95] A. Bruns, “Fourier-, hilbert- and wavelet-based signal analysis:
are they really different approaches?,” Journal of Neuroscience
Methods, vol. 137, no. 2, pp. 321–332, 2004. 845KZ Times
Cited:127 Cited References Count:20.

[96] A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the
cross wavelet transform and wavelet coherence to geophysical

96



time series,” Nonlinear Processes in Geophysics, vol. 11, no. 5-
6, pp. 561–566, 2004.

[97] J. W. Sammon, “A nonlinear mapping for data structure analy-
sis,” Ieee Transactions on Computers, vol. C 18, no. 5, pp. 401–&,
1969.

97


