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ABSTRACT 
 

In the face of increasing population, development pressures, and climate change, many 

regions around the world face freshwater shortages. Planned potable water reuse can improve 

sustainability and reliability of water supplies by providing drinking water from wastewater. 

Most potable reuse research has focused on large coastal communities with relatively high mean 

household incomes. However, the US Department of Interior predicts that “hot spots” of conflict 

over water in the arid West are “highly likely” in numerous small-to-medium-sized inland 

communities with low-to-moderate household income levels. Potable reuse options may be 

different for larger, wealthier coastal communities as compared to small-to-medium-sized inland 

ones, not only in terms of the technologies used, but also in the communities’ knowledge of, 

attitudes toward, and ability to pay for the required technologies. Significant knowledge gaps 

exist regarding these issues for the arid, inland context, making it difficult for inland water 

managers to understand the feasibility of potable reuse for their communities. This research aims 

to inform decision-making about planned potable reuse in small-to-medium-sized, arid inland 
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communities by estimating the total present worth of several indirect and direct potable reuse 

treatment scenarios that are appropriate for the inland context.  The Albuquerque Bernalillo 

County Water Utility Authority in Albuquerque, NM, was used as a case study. Each of the 

indirect and direct potable reuse scenarios was examined with two different options for advanced 

treatment: reverse osmosis and ozone/biological activated carbon, both of which were preceded 

by microfiltration and followed by ultraviolet disinfection. The results showed that the present 

worth for indirect potable reuse was substantially higher than that for direct potable reuse 

primarily because of additional pumping and piping requirements. The type of advanced 

treatment included in an indirect or direct potable reuse scenario had a significant impact the 

scenario’s overall present worth, with options including reverse osmosis being more expensive 

than those including ozone/biological activated carbon. Costs aside, any scenario must also be 

acceptable to regulators and the public and approvable from a water rights perspective.   
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1.0 INTRODUCTION  
 

Sustainable communities must balance current development and resource use with 

the needs and quality of life of future generations. Critical among both current and future 

needs is access to adequate water supplies of acceptable quality. Communities can choose 

between numerous supply- and demand-side options to improve the sustainability and 

reliability of potable water supplies (Grant et al., 2012; Hering et al., 2013; Hurlimann et 

al., 2009). Indirect and direct potable water reuse (IPR and DPR, respectively) are two 

supply-side options that hold particular promise for significantly increasing “water 

productivity” by recovering drinking water from purified wastewater (Grant et al., 2012). 

With planned IPR, highly treated wastewater treatment plant (WWTP) effluent is held for 

a specified amount of time in an environmental buffer, such as a reservoir or aquifer, 

prior to being directed to a drinking water treatment plant (DWTP) (United States 

Environmental Protection Agency, 2012). With DPR, no environmental buffer is 

included, and treatment can take place either in separate WWTP and DWTP systems, or 

in a single advanced treatment system (United States Environmental Protection Agency, 

2012; Law, 2008; Tchobanoglous et al., 2011; Leverenz et al., 2011).  

 

With increasing population and development pressures, it is not surprising that 

IPR and DPR are of increasing interest to communities with exceptional water scarcity. 

Numerous IPR systems exist around the world, and while IPR may reduce water 

contamination risk by providing dilution and additional biological and physical treatment 

(Rodriguez et al., 2009), it is inefficient in that highly treated water may be degraded 

when directed to an environmental buffer, and therefore wastes energy and resources by 
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treating the same water twice (Leverenz et al., 2011; Khan, 2013). IPR has been shown to 

be more expensive than DPR (Law, 2008; Tchobanoglous et al. 2011; Leverenz et al., 

2011; Khan, 2013; Venkatesan et al., 2011) and have a greater carbon footprint (Gutzler, 

2012; Law, 2008; Khan, 2013) because of the additional piping, pumping, and treatment; 

however, IPR’s costs are context specific since they depend on the characteristics and 

location of the environmental buffer. Far fewer DPR systems exist worldwide; while a 

facility in Windhoek, Namibia has been operating successfully in various configurations 

since 1968 (Crook, 2010), municipal-scale DPR is relatively new to the US. Facilities in 

operation or design in Texas and New Mexico (e.g., those in Big Spring, TX, and 

Cloudcroft, NM) have paved the way for increased awareness and discussion of DPR as a 

potential reliable and economical option and have led to development of guidance and 

regulations for implementing DPR.  

 

Though many of the communities that may be interested in the possibility of 

planned potable reuse are small-to-medium-sized and scattered throughout the inland 

Southwestern US (United States Bureau of Reclamation, 2005), most of the research on 

potable reuse has focused on large coastal communities with relatively high mean 

household incomes (United States Census Bureau, 2012), such as Orange County, Los 

Angeles, and San Diego, CA. Potable reuse options may be different for larger, wealthier 

coastal communities as compared to smaller, less affluent inland ones – not only in terms 

of the technologies and process configurations that are appropriate, but also in the ability 

and/or willingness-to-pay for the required technologies. Costs are a significant concern 

because reuse water may be expensive relative to the artificially low water prices to 
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which the public has grown accustomed (Leverenz et al., 2011). Also, potable reuse 

implementation, especially DPR, involves operation and maintenance of a high-tech 

treatment system, which requires technical expertise that some smaller communities may 

lack. 

 
2.0 PROJECT OBJECTIVES AND OVERVIEW  
 
2.1 Project Objectives  

This paper aims to contribute to the scant literature on potable reuse in small-to-

medium-sized arid inland communities by developing an estimate of the costs of suitable 

potable reuse options and identifying constraints that must be addressed when 

considering implementation of future reuse projects. Experts have suggested that 

numerous communities and local contexts must be studied for a broader understanding of 

water management alternatives (National Research Council, 2012), and there is little 

research on planned potable reuse in New Mexico, despite the DoI’s prediction that water 

conflict in the state’s urban centers will be “highly likely” by 2025 (United States Bureau 

of Reclamation, 2005). Bernalillo County, NM, was selected as a case study for this 

research because it possesses a set of characteristics that is different from previous case 

studies found in the literature: (1) it is a medium-sized inland community with significant 

potential for water conflict (United States Bureau of Reclamation, 2005); (2) the 

population is highly diverse with a relatively low mean household income (United States 

Census Bureau, 2012); and (3) the location presents technical challenges not found in 

coastal areas. The focus was on the Albuquerque-Bernalillo County Water Utility 

Authority (ABCWUA), which is the biggest water utility in NM and provides water 

supply and wastewater collection and treatment for over 500,000 people (Thacher, 2014). 
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Managers at the ABCWUA expect that IPR and/or DPR may become parts of the potable 

water portfolio within approximately a decade.  

 

Since most IPR and DPR research has focused on large coastal communities, 

knowledge gaps exist regarding the costs associated with planned potable reuse 

technologies and treatment process configurations that are appropriate for an arid, inland 

context. As a result, some public utilities in arid, inland communities are struggling with 

long-term planning and selection of appropriate strategies to mitigate shrinking water 

supplies while minimizing constraints to sustainable community planning. Research is 

needed to better understand which potable reuse options are optimal for arid, inland 

communities, including an examination of how these options’ costs compare. The results 

of this study will be useful to Bernalillo County and the ABCWUA as well as other mid-

sized inland communities throughout the arid Southwest. Our intent is that water 

managers and decision makers in arid inland communities can use the study results to 

help them consider the costs and constraints of various potable reuse options. 

 
2.2 Project Overview and Scenarios Considered 

Advanced treatment process configurations for potable reuse facilities usually 

include reverse osmosis (RO), though the technology has three major drawbacks: (1) high 

energy requirements, (2) the environmental challenge of concentrate disposal (Lee et al., 

2009), and (3) recovery of only a fraction of the feed water, an important limitation in 

communities facing serious water shortages. Coastal communities can dispose of 

concentrate into the sea (Leverenz et al., 2011), but inland communities must find 

alternative disposal options. It is reasonable for inland communities to consider advanced 
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treatment options that do not include RO (Tchobanoglous et al., 2011) in order to avoid 

the technologies’ drawbacks (Leverenz et al., 2011), in part because it is possible that 

these drawbacks may result in higher costs that are unaffordable to smaller communities, 

as will be discussed later in this paper. A promising alternative to RO is ozone plus 

biofiltration or biological activated carbon (O3/BAC), which provides treatment to levels 

comparable to RO, including removal of contaminants of emerging concern (CECs), 

while using less energy and without creation of a brine stream (Lee et al., 2012)1. The 

O3/BAC option is less expensive than the RO option because of reduced energy 

requirements, elimination of concentrate and waste management costs, and nearly 100% 

feed water recovery, though the actual present worth cost difference has yet to be 

reported in the peer-reviewed or grey literature. 

 

Several scenarios to increase the potable water supply were considered in this 

study; these scenarios complement those considered by Raucher and Tchobanoglous 

(2014). The scenarios considered were inland IPR and DPR, as discussed by 

Tchobanoglous et al. (2011), and the purchase of water rights, as shown in Figure 1. 

Scenario 1 represents the municipal purchase of water rights in the Middle Rio Grande 

Basin, Scenario 2 represents IPR, and Scenarios 3 and 4 represent DPR (see Figure 1 for 

more detail). Two options for advanced treatment were included for each of Scenarios 2-

4, both of which included microfiltration (MF) as a pretreatment step: Option A consisted 

of RO plus ultraviolet (UV) disinfection, and Option B consisted of O3/BAC followed by 

                                                           
1 Whatever technology is used, reliability and monitoring are critical to identifying off-spec water 
before it reaches the distribution system in order to protect public health; however, these topics 
are outside the scope of this paper. 
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UV, as discussed in Lee et al. (2012) and Tchobanoglous et al. (2011)2.  For each reuse 

scenario and treatment option, capital costs (including construction, engineering, and 

equipment) and operations and maintenance (O&M) costs (including electrical, chemical, 

labor, and other ongoing expenditures) were considered; cost estimates are discussed in 

detail in the Methods section. With this information, the 20-year Present Worth values 

were estimated for each scenario and treatment option in order to compare the overall 

costs. 

 
2.3 Additional Infrastructure Details for the Scenarios 

This section describes the infrastructure that would be needed for each scenario in 

addition to the full advanced treatment facilities mentioned above (i.e., RO or O3/BAC 

plus MF and UV). In Scenarios 2-4, the influent flow rate to the advanced treatment 

facilities was assumed to be half of the current daily average WWTP effluent flow rate at 

ABCWUA’s Southside Wastewater Reclamation Plant, which is 25 million gallons per 

day (MGD)3. The site selected for both the advanced treatment facilities and Scenario 2’s 

environmental buffer was a large open tract of land half way between ABCWUA’s 

existing San Juan Chama DWTP and the downstream Southside Wastewater Reclamation 

Plant. The distances between these three sites (i.e., the DWTP, WWTP, and the selected 

site) were used to calculate piping and pumping requirements and costs for Scenarios 2-4. 

 
 

                                                           
2 Other advanced treatment options, including advanced oxidation processes, were considered for 
inclusion as well, but these two were ultimately selected for comparison since their performance 
was tested and compared by Lee et al. (2012) and found to be nearly equivalent. 
3 During consultations with ACBWUA, staff indicated that the design flow rate for any potential 
future reuse facilities would likely be equal to no more than half of the daily average WWTP 
effluent flow, or 25 MGD.  
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Figure 1. Treatment scenarios considered in this study. Scenario 1 is the municipal purchase of 
water rights. Scenario 2 includes conventional plus advanced wastewater treatment (2A includes RO and 
2B includes O3/BAC), followed by discharge to an environmental buffer, withdrawal, and drinking water 
treatment. Scenarios 3A and 3B are the same as 2A and 2B, respectively, except the environmental buffer is 
omitted. Scenarios 4A and 4B are the same as 3A and 3B, respectively, except that the water skips the 
drinking water plant and goes straight to distribution. Note that each treatment scenario is marked with a 
numbered shape (triangle, circle, square, or diamond).  
 
Figure 2 shows the piping and pumping needed for each reuse scenario4; each stretch of 

piping with associated pumping is shown by a-c below. Some of the piping and pumping 

needs were similar between certain scenarios, so the piping and pumping requirements 

were determined between several sets of points for easy addition in later determining the 

piping and pumping costs for each scenario. Scenario 1 is described in subsection 2.3.1, 

and the details of the Scenario 2-4 piping and pumping needs, along with additional 

infrastructure requirements, are discussed in subsections 2.3.2 through 2.3.4.   

 

                                                           
4 For purposes of this cost estimate, following Woods et al. (2013), concrete piping was used to 
transport secondary effluent and concentrate, and ductile iron piping was used to transport 
advanced treated water. 
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Following the recommendations of Tchobanoglous et al. (2011), an engineered 

storage buffer (ESB) – for this study, an aboveground covered storage basin5 – was 

included for stabilization, flow retention, and quality assurance after advanced treatment 

(Scenarios 2-4).  All scenarios with treatment option A (RO) included deep well injection 

into a brackish aquifer for brine disposal; a specific, appropriate brackish aquifer was not 

selected, but for purposes of this study the hypothetical deep well injection site was 20 

miles from the advanced treatment site. Also, for the scenarios including RO, the Dow 

Water and Process Solutions Reverse Osmosis System Analysis (ROSA) software was 

used to estimate a daily discharge brine flow of 3.045 MGD. Input to ROSA and the 

output details are shown in Appendices A and B.  

 

 
Figure 2. Pumping and piping flow paths considered with the hypothetical reuse scenarios 
in this paper. Flow path a  takes the WWTP effluent to the site where both the advanced treatment and 
the environmental buffer will be located; path b moves the effluent from advanced treatment or the 
environmental buffer to the DWTP influent or the distribution system, which are practically in the same 
location; and path c takes the RO concentrate to disposal wells. 

                                                           
5 As discussed in Tchobanoglous et al. (2011), consistent guidelines do not yet exist for 
ESB design and sizing, which will depend in part on innovations and improvements in 
on-line monitoring equipment and methods; these are all areas of ongoing DPR research. 
See subsection 3.1.3 for details on how storage basin costs were estimated from available 
size and cost data for purposes of this paper. 
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2.3.1 Scenario 1 (purchase of water rights).  

Scenario 1 represents the purchase and transfer of additional water rights within 

the basin.  For purposes of this paper, this scenario does not include additional 

infrastructure, only the capital required for the purchase.         

 
2.3.2 Scenario 2 (IPR with advanced treatment, environmental buffer, and DWTP). 

Scenario 2 includes an environmental buffer in the form of aquifer storage and 

recovery (ASR) wells, which were assumed to be located on the same site as the 

advanced treatment facilities. This scenario uses pumping and piping flow paths a and b. 

Path a consists of a 3.0 mile (4.9 km) 42 inch (106.7 cm) diameter concrete pipe, which 

delivers WWTP effluent to advanced treatment and then to the co-located ASR wells.  

Path b delivers water from the ASR wells to the existing DWTP through a 5.7 mile (9.1 

km) 42 inch (106.7 cm) diameter ductile iron pipe.  Pumping and piping flow path c is 

also used with Scenario 2’s advanced treatment option A (RO) for delivery of RO brine 

to disposal wells. Flow path c takes the estimated 3.045 MGD of RO brine to a 

hypothetical brackish aquifer injection point 20 miles (32.2 km) away using a 16 inch 

(40.6 cm) concrete pipe.  

 
2.3.3 Scenario 3 (DPR with advanced treatment and DWTP). 

The pumping and piping flow paths used for this scenario are identical to those 

used in Scenario 2 above, except that water is not directed to ASR wells since Scenario 3 

does not include an environmental buffer.  

 

2.3.4 Scenario 4 (DPR with advanced treatment and without DWTP). 



10 
 

 

The pumping and piping flow paths used for this scenario are identical to those 

used in Scenario 3 above, except that flow path b goes to the drinking water distribution 

system instead of the influent to the DWTP. The influent to the distribution system and 

the influent to the DWTP were assumed to be close enough to each other that flow path b 

could be used to estimate water transport costs in each case. 

 
3.0 RESEARCH METHODS 
 
3.1 Data Collection and Cost Conversions 

Capital and O&M cost data for full advanced treatment facilities, individual treatment 

components, piping, pumping, and storage facilities were collected from multiple sources 

including costing manuals, research reports, municipal reports, and journal articles. Cost 

data for existing water reuse plants were also obtained through personal communication 

with personnel at several facilities. The following costing tools were important to the 

study as well:  

• The WateReuse Research Foundation’s (WRRF) Integrated Treatment Train 

Toolbox for Potable Reuse (IT3PR) (Trussell et al., 2015) was used to determine 

sizes of treatment components and estimate capital costs for each of the treatment 

scenarios; 

• Dow Water and Process Solutions’ ROSA software was used to determine the 

quantity of brine being discharged for scenarios that included RO; 

• The Engineering News-Record (ENR) Construction Index for 2014 was used to 

convert collected cost data from various years into 2014 dollars; and  
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• The RSMeans 2014 database was used to convert all costs collected from other 

US cities into Albuquerque area values. Data points without specified locations 

were assumed to represent the national average and were converted from the 

national average to Albuquerque area values. 

 

More detailed information regarding the data collection and cost estimates for the 

various scenarios and treatment options is described in the subsections that follow: 

 
3.1.1. Cost data for water rights purchase. 

Cost data for water rights purchases within the Middle Rio Grande basin are 

scarce; 39 transactions were reported as occurring upstream of Isleta Dam between 2002 

and 2010 (Payne et al., 2011).  Individual water transfers of this type are not generally 

made public, though annual average prices have been reported (Payne et al., 2011).  This 

limited data was used to estimate the cost of purchase and transfer of 25 MGD, or 28,004 

acre feet per year, of water rights.   

 
3.1.2. Capital and O&M cost data for full advanced treatment facilities. 

Costs were collected for complete advanced treatment reuse facilities in 

California, Virginia, Washington, Texas, New Mexico, and Arizona as well as 

desalination facilities in Texas.6 Costs for facilities described in the literature were 

                                                           
6 Initially, cost data for the complete advanced treatment plants and individual 
components were collected and compiled.  However, it became apparent that the 
individual component data exhibited wide variability for capital and O&M costs, likely 
because of variability in what was included as part of each component’s costs (e.g., 
chemical addition influent to the component, energy costs for associated equipment, 
inclusion of unit processes that were in series with the component, etc.). Since the 
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included as well; this was an especially important source of data for the O3/BAC facilities 

because representative capital and O&M costs were difficult to obtain. All facilities that 

were included in the cost data set were comparable to those included in the study’s 

hypothetical reuse scenarios. Complete facility O&M costs included power, chemicals, 

offsite residuals disposal, materials maintenance and repairs, SCADA and 

instrumentation, laboratory and monitoring work, labor, and miscellaneous service 

contracts, consultant fees, and office supplies. (Costs related to primary and secondary 

treatment at the WWTP were not included.) Complete facility capital costs included 

microfiltration, ozone, BAC, and UV for the O3/BAC option, and microfiltration, RO, 

and UV for the RO option7. Facilities with a capacity of less than 5 MGD were removed 

from the data set since they lacked economies of scale that a 25 MGD plant would likely 

exhibit. Each cost was converted to 2014 dollars using the ENR index and then converted 

to Albuquerque area values using the 2014 RSMeans index of construction cost 

multipliers. The resulting capital and O&M cost data for complete advanced treatment 

facilities are shown in Appendix C and Appendix D, respectively. 

 

The relationship between plant capacity and capital and O&M costs was 

determined by regression analysis of cost data from the full-scale plants, which ranged in 

capacity from 6 to 120 MGD (see Appendices C and D). Linear regression analysis of the 

data resulted in reasonably good fits with R2 values ranging from 0.83 to 0.92, as shown 

                                                                                                                                                                             
complete plant data exhibited far less variability, as will be shown in Figure 3, it was 
used as the primary source of data for the study calculations. 
7 In a few instances, specific details were not provided about what comprised the total 
cost provided for O&M or capital. 
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in Figure 3. These relationships were used to estimate capital and O&M costs for a 25 

MGD plant.  

 
3.1.3. Capital and O&M cost data for additional infrastructure. 

The costs of additional required infrastructure (i.e., piping; pumping; ASR wells 

and pumps; treated water storage basins; brine disposal wells; and replacement 

equipment for ozone, UV, and membranes) were included for each scenario.  The 

infrastructure capital and O&M cost data were adjusted to 2014 Albuquerque dollars. A 

complete list of the equations and data used to determine capital costs can be found in 

Appendix E. For most infrastructure items, there were several data points or multiple 

means of estimating their costs. In these cases, capital costs were estimated by averaging 

the multiple cost data points.   

 

O&M costs for piping and pumping in each of flow paths a-c were determined 

using a per mile per year cost provided by Woods et al. (2013). Similar to the capital 

costs, O&M costs for other infrastructure was estimated by averaging data from multiple 

sources.  O&M costs for treatment through the DWTP were included for all scenarios 

except Scenario 4.  A summary of the O&M cost calculation methods can be found in 

Appendix F. 

 
3.1.4. Capital cost data for replacement treatment components. 

The components comprising the reuse scenarios had different useful service life 

estimates.  The useful service life estimates of the categories of equipment included in the 

reuse scenarios are shown in Appendix G. The equipment related to RO, O3/BAC, and 
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ASR is broken out separately in order to show the details of replacement requirements 

within each system. 

 

Any equipment with a service life of less than 20 years needed to be replaced as 

appropriate during the 20-year project life. As shown in Appendix G, the equipment 

requiring replacement during the 20-year project life is related to UV, ozone, RO, and 

pumps. The present worth of all equipment requiring replacement in each scenario is 

shown in Appendix H. The capital costs for replacing UV and ozone equipment were 

estimated using WRRF’s IT3PR; this tool was ideal because it calculated costs for UV 

and ozone equipment that were tailored to a BAC treatment train and for UV equipment 

tailored to an RO treatment train. The capital costs of membranes came from 

WaterAnywhere.com and those for pumping were the same as the costs originally used in 

the various flow paths. 

 
3.2 Present Worth Calculations 

The 20-year present worth, also known as the net present value (Blank and 

Tarquin, 2008; Carmichael et al., 2011), for each flow and treatment scenario was 

calculated by inputting the capital and O&M costs into the following equations (Woods 

et al., 2013): 

 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 − (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑏𝑏𝑏𝑏𝑙𝑙𝑠𝑠𝑏𝑏))

𝑡𝑡𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙
∙

1
(1 + 𝑖𝑖)(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏) 

  

𝐶𝐶𝑐𝑐𝑝𝑝𝑙𝑙𝑠𝑠 = 𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐
1

(1 + 𝑖𝑖)𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏
+ 𝐶𝐶𝑂𝑂𝑂𝑂

(1 + 𝑖𝑖)(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏) − 1
𝑖𝑖(1 + 𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

− 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 + 𝑖𝑖)−𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏 

 
where: Cpres  = the 2014 present worth cost in USD; 
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  Ccap = capital costs in USD; 

  COM = annual operations and maintenance costs in USD; 

Vsalv = salvage value in USD; 

tbuild = project initiation time, 0 years (i.e., immediate initiation); 

ttotal = project lifetime, 20 years;  

tlife = variable number of years depending on equipment life expectancy; 

i = discount rate, range of 3 to 8% examined, as discussed in Section 4. 

 
In cases where a piece of equipment’s useful life was less than 20 years, the 

present worth of the replacement equipment was determined using the present worth 

equation and added to the total present worth cost. In these cases, tbuild was the year the 

equipment needed to be replaced. A range of discount rates was examined as 

recommended by the US Office of Management and Budget (United States Office of 

Management and Budget, 1992) and the US Department of Agriculture’s guidance 

specific to non-watershed based water projects (United States Department of Agriculture, 

2014).
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Figure 3. Relationship between Plant Capacity and Capital and O&M Costs for Full-scale RO and O3/BAC Facilities. 
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3.3 Limitations and Assumptions  

In estimating the costs for the various reuse scenarios, a number of assumptions were 

made and some costs were excluded. Land acquisition costs for siting new reuse and related 

facilities were not considered in the present worth calculations; it was assumed that ABCWUA 

would already have any needed land. It was also assumed that wastewater effluent would be 

available in the quantities specified herein and that the effluent could be diverted from the 

WWTP without any added cost or impact to the ABCWUA.  Any potential water rights 

implications and the value of water lost to RO concentrate disposal were not considered (except 

for the hypothetical purchase of water rights described in Scenario 1). Regulatory and permitting 

costs, such as for ASR well permits or for operating a potable reuse facility, were not taken into 

account either. Multiple assumptions were made regarding the piping and conveyance of the 

wastewater effluent, treated reuse water, and brine stream: distances were calculated using 

straight lines from site to site, and elevation changes between sites were not considered when 

calculating pumping requirements. Other limitations to the cost estimates included limited 

availability of O&M data for O3/BAC systems, and occasional lack of specificity about exactly 

what elements were included in capital and O&M costs for systems described in the literature 

and other sources. In addition, quality assurance/quality control strategies for potable reuse are 

currently an active area of research; while these costs tend to be high now, they may decrease 

over time. In this study, these costs were included in O&M cost data obtained for many of the 

complete advanced treatment facilities, though a few data sets did not specify whether or not 

they were included. 

 
4.0 RESULTS AND DISCUSSION 
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The 20-year present worth values for the scenarios examined in this paper are shown in 

Table 1 below, along with the initial capital, recurring capital for replacement equipment, and 

O&M costs. The recurring capital costs are shown as 20-year present worth values. The initial 

capital, recurring capital, and O&M costs are broken out separately in order to show which 

scenarios are more expensive up front and which have higher costs throughout the project life. 

Discount rates ranging from 3 to 8 percent were examined; Table 1 displays the results for the 

3% rate and Figure 4 displays this information graphically. A sensitivity analysis was performed 

for the 3 to 8 percent range of discount rates and is presented in Appendix I; the total present 

worth values shown for Scenarios 2-4 in Table 1 follow the same pattern for all discount rates 

examined. 

 
Table 1. Costs of Reuse Scenarios, i=3%. 
Cost Type Water Supply Scenarios and Advanced Treatment Options 

1 
2 3 4 

A B A B A B 

Initial Capital Costs, 
USDx106 494.1 

 

243.6 

 

181.6 178.3 116.3 178.3 116.3 

20-year Present 
Worth of 
Replacement 
Equipment Costs, 
USDx106 0 40.5 68.0 37.1 64.5 37.1 64.5 

O&M Costs, 
USDx106/year 3.7 13.0 8.1 12.9 8.0 9.2 4.3 

20-year Total 
Present Worth, 
USDx106 

548.8 

 

 

453.5 

 

 

347.7 388.7 282.9 334.0 228.2 
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Figure 4. Cost of Reuse Scenarios, i=3%. 
 

All four categories of costs shown above are important in understanding the economic 

impact of each scenario. For example, looking at O&M or replacement costs in isolation could 

give a false impression of the economic feasibility of a scenario for a given community.    

 

Scenario 1, the purchase of water rights, was the most costly of the scenarios considered. 

The only costs included in this scenario were the initial capital associated with the acquisition of 

28,004 acre-feet/year of water rights and the O&M associated with treating that water at the 

DWTP. Possible impediments to this scenario include the availability of the water rights and 

institutional constraints surrounding rights transfers. Purchasing rights in this quantity could 

prove problematic considering that transfers within the basin between 2000 and 2009 totaled 
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only 3,758 acre-feet. Regarding institutional constraints, the administrative process timeframe 

for water rights transfers can be up to 2 years (Payne et al., 2011).    

 

For Scenarios 2-4, as expected, the O3/BAC options had significantly lower total present 

worth costs relative to the RO options since initial capital and O&M costs for O3/BAC plants are 

generally less than for RO plants, in part due to RO’s brine disposal requirement and high energy 

consumption. Findings presented here follow the expected pattern for initial capital and O&M 

costs. However, the equipment replacement costs for the O3/BAC options were higher than for 

the RO options in all scenarios for two reasons.  First is that a higher intensity and more costly 

UV system is needed for the O3/BAC options due to the quality difference in feed water influent 

to the equipment. Second is the cost associated with replacing the O3 equipment, which is not 

included in the RO options. It should also be noted that while membrane replacement costs for 

the RO options are included, they are relatively small.    

 

Certain limitations in the data available for estimating the recurring equipment 

replacement costs should be noted. First, a limited amount of data was available for estimating 

the ozone and UV equipment replacement costs associated with the O3/BAC options. Of the 

seven data points available, only one was from an actual operational plant, making the cost 

estimates almost entirely theoretical.  Also, there were large ranges in capacity (and intensity for 

UV) across the data set for ozone and UV equipment installations; rather than taking averages of 

this data to estimate ozone and UV equipment replacement costs, the aforementioned IT3PR tool 

was used to provide a more consistent estimate of the costs for inclusion in the present worth 

calculations.  
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In addition, the disposal of brine in the RO options was handled fairly simplistically.  A 

radius of 20 miles was assumed to be the outer limit in which the ABCWUA would likely find a 

suitable deep brackish or saline aquifer for brine disposal. If a suitable aquifer is not available 

within a reasonable radius, an alternate means of brine disposal, such as evaporation ponds or 

brine concentration, could be considered, though the costs may be higher (Raucher and 

Tchobanoglous, 2014).  

 

Scenario 2, IPR with advanced treatment, had higher costs in all categories as compared 

to Scenarios 3 and 4 for DPR due to inclusion of ASR as the environmental buffer. It should be 

noted that Scenario 2’s cost estimates are likely on the low end because the advanced treatment 

and ASR facilities were assumed to be co-located, eliminating the need for conveyance costs 

between advanced treatment and the environmental buffer. Also, degradation of water quality 

through ASR could occur if the aquifer is not of high quality, which may increase capital and 

O&M costs if additional equipment and treatment (in addition to what already exists at the 

DWTP) is needed to bring the water up to standards. Scenario 2 was included because past 

research has found higher public support for IPR than DPR (e.g., Millan et al., 2015). 

 

Scenarios 3 and 4 – DPR with advanced treatment – were found to have the lowest 

present worth costs; Scenario 4 has the lowest cost since finished water goes to the distribution 

system rather than to the DWTP as it does in Scenario 3. While lowest in cost, it is possible that 

these two scenarios could face the greatest amount of resistance from community members 

and/or regulators; a community survey would need to be performed to understand attitudes 
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toward and acceptance of DPR for a given local context, and regulators would need to accept the 

treatment schemes. It is not likely that Scenario 4 (as described here) would actually be 

implemented for reasons of aesthetics (i.e., the water sent to the distribution system would likely 

be warmer than water coming out of the DWTP and may have taste and/or odor characteristics to 

which consumers are not accustomed).  

  
5.0 CONCLUSIONS AND FUTURE RESEARCH 
 

Most planned potable water reuse research to date has focused on large coastal 

communities. Significant knowledge gaps exist regarding potable reuse in the arid, inland 

context, making it difficult for inland water managers to understand the feasibility of potable 

reuse for their communities. This research aims to inform decision-making about planned 

potable reuse in small-to-medium-sized, arid inland communities by estimating the present worth 

of several water supply scenarios, including IPR and DPR, that are appropriate for the inland 

context. The results showed that the present worth of IPR was higher than for DPR and that the 

type of advanced treatment included in an IPR or DPR scenario had a significant impact the 

scenario’s overall present worth (i.e., options including RO were more expensive than those 

including O3/BAC). Of course, cost is not the only consideration: any of these scenarios must be 

acceptable to regulators and the public and approvable from a water rights perspective. Purchase 

of water rights as an alternative means of increasing the local water supply is likely more 

expensive and may involve institutional challenges and availability issues. 

 

More work is needed to better understand the feasibility of potable reuse in arid, inland 

communities. Recommendations for future research include studies related to public acceptance 

and perceptions of potable reuse and willingness to pay for implementation of various reuse 
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options. The present worth estimates in this paper can serve as the starting point for community 

focus group or survey research to understand water customers’ willingness to pay for rate 

increases to maintain their current level of service in drought periods. Also needed are large 

surveys in arid, inland communities to better understand public perception of different water 

reuse technologies and scenarios, how different educational materials affect public perception of 

water scarcity and attitudes toward potable reuse, and how demographics and local context affect 

these sentiments. Beginning to fill some of these knowledge gaps will assist water utilities and 

managers in small-to-medium sized arid, inland communities to make informed decisions for 

long-range sustainable water planning.  
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APPENDIX A: ROSA Detailed System and Flow Report for RO (A Scenarios). 
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APPENDIX B: ROSA System Design Overview Report for RO (A Scenarios). 
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APPENDIX C: Capital Costs for Full Advanced Treatment Facilities and Water Rights Purchase. 

Facility Name Capacity, 
MGD 

2014 
Albuquerque 
Dollars, US$ 

Source 

RO Facilities 
Horizon Regional MUD (TX) 6 12,045,815 (Shirazi and Arroyo, 2010) 
Kay Bailey Hutchison Brackish Groundwater Desalination 
Plant (TX) 27.5 128,171,186 (Arroyo and Shirazi, 2012) 

Lake Granbury Surface Water Advanced Treatment System 
(TX) 12.5 56,508,647 (Shirazi and Arroyo, 2010) 

Southmost Regional Water Authority (TX) 7.5 36,269,132 (Arroyo and Shirazi, 2012) 
City of Fort Stockton 6.5 11,981,274 (Shirazi and Arroyo, 2010) 
WateReuse IT3PR RO Output 25 139,069,525 (Trussell et al., 2014) 

Treatment Scheme 2 (25 MGD capacity) 25 107,360,440 (Texas Water Development Board, 
2015) 

Orange County Groundwater Replenishment System (CA) 120 392,656,592 (Raucher and Tchobanoglous, 2014) 
Cost Estimation Manual-RO Capital Costs Equation 25 126,773,869 (McGivney and Kawamura, 2008) 
B: (MF-RO-UVAOP) 20 111,302,400 (Schimmoller, Kealy and Foster, 2015) 
Scenario 1C (MF/RO/CL) 20 MGD 20 93,327,062 (Water Reuse Research Foundation, 

2014) 

Scenario 1C (MF/RO/CL) 70 MGD 70 289,543,918 (Water Reuse Research Foundation, 
2014) 

Scenario 2B (MF/RO/UV) 20 MGD 20 111,061,245 (Water Reuse Research Foundation, 
2014) 

Scenario 2B (MF/RO/UV) 70 MGD 70 331,903,757 (Water Reuse Research Foundation, 
2014) 

Alternative A-27 (NM) 8.9 95,731,158 
(New Mexico Office of the State 

Engineer and the Interstate Stream 
Commission, 2004) 

Alternative A-39 (NM) 20 130,356,075 
(New Mexico Office of the State 

Engineer and the Interstate Stream 
Commission, 2004) 
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O3/BAC Facilities 
WateReuse IT3PR O3/BAC Output 25 89,828,154 (Trussell et al., 2014) 

Treatment Scheme 6 (25 MGD capacity) 25 32,926,960 (Texas Water Development Board, 
2015) 

Cost Estimation Manual BAC Capital Equation 25 65,850,433 (McGivney and Kawamura, 2008) 
Pre-design Cost Estimate for a Conventional Treatment Plant 
with Ozone GAC Filters 100 227,220,602 (McGivney and Kawamura, 2008) 

A: (Coag-Sed-03-BAC-GAC-UV) 20 84,404,320 (Schimmoller, Kealy and Foster, 2015) 
Scenario 2A (O3/GAC) 20 MGD 20 83,643,754 (Water Reuse Research Foundation, 

2014) 
Scenario 2A (O3/GAC) 70 MGD 70 193,944,432 (Water Reuse Research Foundation, 

2014) 
Water Rights Costs 

Description Cost per 
Acre Foot 

Total 
Estimated Cost Source 

Estimated cost of purchasing 2,762 acre feet of water rights in 
the Middle Rio Grande basin above Isleta Dam $16,321 48,729,969 (Payne and Smith, 2011) 
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APPENDIX D: O&M Costs for Full Advanced Treatment Facilities. 

Facility Name Capacity, 
MGD 

2014 
Albuquerque 
Dollars, US$ 

Source 

RO Facilities 
Kay Bailey Hutchison Desalination Plant (TX) 15 4,402,706 (Shirazi and Arroyo, 2010) 
Southmost Regional Water Authority (TX) 6 3,142,855 (Shirazi and Arroyo, 2010) 
West Basin (CA) 12.5 10,189,778 (National Research Council, 2012) 
Treatment Scheme 2 (25 MGD capacity) 25 13,975,731 (Texas Water Development Board, 2015) 
Orange County Groundwater Replenishment System With 
Expansion (CA) 120 34,495,512 (Raucher and Tchobanoglous, 2014) 

Orange County Groundwater Replenishment System Original (CA) 68 23,210,513 (Water Reuse Research Foundation, 2014) 
B: (MF-RO-UVAOP) 20 5,192,000 (Schimmoller, Kealy and Foster, 2015) 
Scenario 1C (MF/RO/CL) 20 MGD 20 5,061,857 (Water Reuse Research Foundation, 2014) 
Scenario 1C (MF/RO/CL) 70 MGD 70 16,715,252 (Water Reuse Research Foundation, 2014) 
Scenario 2B (MF/RO/UV) 20 MGD 20 5,472,553 (Water Reuse Research Foundation, 2014) 
Scenario 2B (MF/RO/UV) 70 MGD 70 18,096,602 (Water Reuse Research Foundation, 2014) 

O3/BAC Facilities 
Treatment Scheme 6 (25 MGD capacity) 25 2,387,231 (Texas Water Development Board, 2015) 
Cost Estimation Manual BAC O&M Equation 25 2,050,408 (McGivney and Kawamura, 2008) 
Millard H. Robbins, Jr. Regional Water Reclamation Facility (VA) 31.5 6,463,841 (Water Reuse Research Foundation, 2014) 
A: (Coag-Sed-03-BAC-GAC-UV) 20 3,696,000 (Schimmoller, Kealy and Foster, 2015) 
Scenario 2A (O3/GAC) 20 MGD 20 3,381,988 (Water Reuse Research Foundation, 2014) 
Scenario 2A (O3/GAC) 70 MGD 70 10,405,546 (Water Reuse Research Foundation, 2014) 
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APPENDIX E: Calculation Methods for Determining Additional Infrastructure Capital Costs.  
Piece of infrastructure Equations and Calculation Methods Source 

Concrete pipe of 42 inch 
diameter (Flow path a) 
 

L=Length of installation 
D=Diameter of pipe 
dexc=Depth of excavation 
 

 
 

Base installed price for concrete pipe: 
𝑃𝑃𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙 = (11.7 + 0.51𝐷𝐷1.38)𝐿𝐿 

Trenching and excavation cost: 
𝑝𝑝𝑡𝑡𝑝𝑝𝑙𝑙𝑡𝑡𝑐𝑐ℎ = �2.9 +  0.0018𝐷𝐷1.9 + 0.13𝑑𝑑𝑙𝑙𝑒𝑒𝑐𝑐

1.77�𝐿𝐿 

Embedment cost: 
𝑝𝑝𝑙𝑙𝑒𝑒𝑏𝑏𝑙𝑙𝑏𝑏 = (1.6 +  0.0062 𝐷𝐷1.83)𝐿𝐿 

Backfill and compaction cost: 
𝑝𝑝𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �−0.094 −  0.062𝐷𝐷0.73 + 0.18𝑑𝑑𝑙𝑙𝑒𝑒𝑐𝑐

2.03 + 0.02𝐷𝐷𝑑𝑑𝑙𝑙𝑒𝑒𝑐𝑐�𝐿𝐿 

Valves, fittings and hydrants cost: 
𝑝𝑝𝑙𝑙𝑙𝑙𝑡𝑡 = (9.8 +  0.02 𝐷𝐷1.8)𝐿𝐿 

Total piping cost: 
𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 = �𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙 + 𝑝𝑝𝑡𝑡𝑝𝑝𝑙𝑙𝑡𝑡𝑐𝑐ℎ + 𝑝𝑝𝑙𝑙𝑒𝑒𝑏𝑏𝑙𝑙𝑏𝑏 + 𝑝𝑝𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑙𝑙𝑙𝑙𝑡𝑡� 

(Woods et al., 2013) 

$405 per foot (CDM, 2004) 
$630 per foot (Davis, 2009) 

$1,437,500 per mile 
(New Mexico Office of the State Engineer 

and the Interstate Stream Commission, 
2004) 

Ductile iron pipe of 42 
inch diameter (Flow path 
b) 

Base installed price for ductile iron pipe: 
𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙 = (−44 +  0.33𝐷𝐷1.72 + 2.87 ∗ 500.74)𝐿𝐿 

 
*See “Concrete pipe of 42 inch diameter” above for the remainder of 

equations. 

 
 

(Woods et al., 2013) 
 

$405 per foot (CDM, 2004) 
$630 per foot (Davis, 2009) 

$1,437,500 per mile 
(New Mexico Office of the State Engineer 

and the Interstate Stream Commission, 
2004) 

Concrete pipe of 16 inch 
diameter (Flow path c) 

Based installed price for concrete pipe: 
𝑃𝑃𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙 = (11.7 + 0.51𝐷𝐷1.38)𝐿𝐿 

 
(Woods et al., 2013) 
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*See “Concrete pipe of 42 inch diameter” above for the remainder of 
equations. 

Concrete pipe of 16 inch 
diameter (Flow path c) 

$130 per foot (CDM, 2004) 
$240 per foot (Davis, 2009) 

$140,070 per mile 
(New Mexico Office of the State Engineer 

and the Interstate Stream Commission, 
2004) 

Pumping for path a $0.15 per gallon per day (25 MGD) (Woods et al., 2013) 
188,888(25MGD)+140,743 (McGivney and Kawamura, 2008) 

Pumping for path b $0.15 per gallon per day (25 MGD) (Woods et al., 2013) 
188,888(25MGD)+140,743 (McGivney and Kawamura, 2008) 

Pumping for path c $0.15 per gallon per day (3.045 MGD) (Woods et al., 2013) 
188,888(4.035MGD)+140,743 (McGivney and Kawamura, 2008) 

ASR wells and pumps 
29 wells (610 gpm each) at $2,324,655 each (Daniel B. Stephenson and Associates, Inc., 

2010) 

12 wells (1400 gpm each) at $5,197,879 each (Daniel B. Stephenson and Associates, Inc., 
2010) 

Brine disposal (wells 
only for 3.045 MGD) 

6 wells (385 gpm each) at $2,050,000 each (Daniel B. Stephenson and Associates, Inc., 
2014) 

4 wells (610 gpm each) at $2,050,000 each (Daniel B. Stephenson and Associates, Inc., 
2014) 

5 wells (435 gpm each) at $2,625,000 each (Universal Asset Management, 2011) 
3 wells (870 gpm each) at $2,625,000 each (Universal Asset Management, 2011) 

Engineered Storage 

170% of average daily reclaimed water production   (Woods et al., 2013)  
50% of average daily delivered water  (Arroyo and Shirazi, 2012)  

$0.20 per gallon (Boyer et al., 2010)  
$0.50 per gallon (Arroyo and Shirazi, 2012) 
$0.80 per gallon (Woods et al., 2013; Davis et al., 2008)  

UV for O3/BAC  25MGD output from IT3PR toolkit (Trussell et al., 2014)  
UV for RO 25MGD output from IT3PR toolkit (Trussell et al., 2014)  
Ozone 25MGD output from IT3PR toolkit (Trussell et al., 2014)  
RO membranes 20% of 4248 membranes (850) replaced annually (Dow Water and Process Solutions, 2016)  
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APPENDIX F: Calculation Methods for Additional Infrastructure O&M Costs. 
Piece of additional 

infrastructure 
Calculation Method Source 

Piping for path a $3,200 per mile per year (Woods et al., 2013) 
Piping for path b $3,200 per mile per year (Woods et al., 2013) 
Piping for path c $3,200 per mile per year (Woods et al., 2013) 
Pumping for path a Table B-2. Headworks 20MGD + 5MGD (Davis, 2009) 
Pumping for path b Table B-2. Headworks 20MGD + 5MGD (Davis, 2009) 
Pumping for path c Table B-2. Headworks 3MGD (Davis, 2009) 

ASR wells and pumps 
46 wells (385 gpm each) $3,000 per year each (V. Pedregon, personal communication, 

September 15, 2015) 

29 wells (610 gpm each) $3,000 per year each (V. Pedregon, personal communication, 
September 15, 2015) 

Brine disposal (wells only) 
6 wells (385 gpm each) $3,000 per year each (V. Pedregon, personal communication, 

September 15, 2015) 

4 wells (610 gpm each) $3,000 per year each (V. Pedregon, personal communication, 
September 15, 2015) 

Engineered Storage 

1% of capital costs for 12.5MG of storage at $0.50 per 
gallon 

(Arroyo and Shirazi, 2012) 

1% of capital costs for 42 MG of storage at $0.80 per 
gallon 

(Woods et al., 2013) 

Drinking Water Treatment Plant $403 per million gallons treated per year (Albuquerque Bernalillo County Water 
Utility Authority, 2014) 
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APPENDIX G: Useful Service Life Estimates. 
Equipment Useful Service Life 

Estimate (years) 
Source of Information 

Elements Common to Reuse Scenarios with Advanced Treatment 
Elevated Storage Tanks 50 (Texas Commission on Environmental Quality, 2007) 
Treatment and Disposal Equipment 25 (Texas Commission on Environmental Quality, 2007) 
UV Disinfection Equipment 5 (Texas Commission on Environmental Quality, 2007) 
Distribution System 50 (Texas Commission on Environmental Quality, 2007) 
Pumping and Equipment 18 (Florida Department of State, 2008) 
Water Treatment Equipment 22 (Florida Department of State, 2008) 
Pipes 37 (Florida Department of State, 2008) 
Cast Iron or Ductile Iron 40 (Florida Department of State, 2008) 
RO-related Equipment 
Booster Pumps > 5hp 30 (Texas Commission on Environmental Quality, 2007) 
Membrane Elements 5 (Florida Department of State, 2008) 
Treatment Process Pumps > 5hp 10 (Texas Commission on Environmental Quality, 2007) 
O3/BAC-related Equipment 
Ozone Disinfection Equipment 5 (Texas Commission on Environmental Quality, 2007) 
ASR-related Equipment 
Well Pumps > 5 hp 10 (Texas Commission on Environmental Quality, 2007) 
Wells 30 (Texas Commission on Environmental Quality, 2007) 
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APPENDIX H: Present Worth Replacement Cost Breakdown by Scenario at 3% and  8% 
discount rates.  
 

Present Worth Replacement Cost Breakdown, 3% Discount Rate 
Piece of Replaced Infrastructure  Present Worth of 

Recurring Capital 
Cost 

Project Year 
Replaced 

Scenario 1 
None None N/A 

Replacement Present Worth Total None  
Scenario 2A 

Pumping flow path a  $817,992 Year 18 
Membranes $2,740,943 Year 5 
Membranes $2,364,361 Year 10 
Membranes $2,039,519 Year 15 
Membranes $0 Year 20 
UV (RO) $10,111,155 Year 5 
UV (RO) $8,712,971 Year 10 
UV (RO) $7,523,649 Year 15 
UV (RO) $0 Year 20 
Pumping flow path b $1,369,684 Year 18 
Pumping flow path c $1,383,199 Year 18 
Pumping flow path b (ASR) $3,475,527 Year 10 
Pumping flow path b (ASR) $0 Year 18 

Replacement Present Worth Total $40,548,001  
Scenario 2B 

Pumping flow path a $817,992 Year 18 
Ozone $9,868,244 Year 5 
Ozone $8,512,434 Year 10 
Ozone $7,342,901 Year 15 
Ozone $0 Year 20 
UV(BAC) 

$14,043,271 
Year 5 

UV(BAC) 
$12,113,849 

Year 10 

UV(BAC) 
$10,449,513 

Year 15 

UV(BAC) $0 Year 20 
Pumping flow path b $1,369,684 Year 18 
Pumping flow path b (ASR) $3,475,527 Year 10 
Pumping flow path b (ASR) $0 Year 20 

Replacement Present Worth Total 
$67,993,415 

 

Scenario 3A 
Pumping flow path a $817,992 Year 18 
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Membranes $2,740,943 Year 5 
Membranes 

$2,364,361 
Year 10 

Membranes $2,039,519 Year 15 
Membranes $0 Year 20 
UV (RO) $10,111,155 Year 5 
UV (RO) $8,721,971 Year 10 
UV (RO) $7,523,649 Year 15 
UV (RO) $0 Year 20 
Pumping flow path b  $1,369,684 Year 18 
Pumping flow path c $1,383,199 Year 18 

Replacement Present Worth Total 
$37,072,473 

 

  Scenario 3B 
Pumping flow path a $817,992 Year 18 
Ozone $9,868,244 Year 5 
Ozone $8,512,434 Year 10 
Ozone $7,342,901 Year 15 
Ozone $0 Year 20 
UV(BAC) 

$14,043,271 
Year 5 

UV(BAC) 
$12,113,849 

Year 10 

UV(BAC) 
$10,449,513 

Year 15 

UV(BAC) 
$0 

Year 20 

Pumping flow path b 
$1,369,684 

Year 18 

Replacement Present Worth Total 
$64,517,888 

 

Scenario 4A 
Pumping flow path a $817,992 Year 18 
Membranes $2,740,943 Year 5 
Membranes $2,364,361 Year 10 
Membranes $2,039,519 Year 15 
Membranes $0 Year 20 
UV (RO) $10,111,155 Year 5 
UV (RO) $8,721,971 Year 10 
UV (RO) $7,523,649 Year 15 
UV (RO) $0 Year 20 
Pumping flow path b  $1,369,684 Year 18 
Pumping flow path c $1,383,199 Year 18 

Replacement Present Worth Total 
$37,072,473 

 

Scenario 4B 
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Pumping flow path a $817,992 Year 18 
Ozone $9,868,244 Year 5 
Ozone $8,512,434 Year 10 
Ozone $7,342,901 Year 15 
Ozone $0 Year 20 
UV(BAC) 

$14,043,271 
Year 5 

UV(BAC) 
$12,113,849 

Year 10 

UV(BAC) 
$10,449,513 

Year 15 

UV(BAC) 
$0 

Year 20 

Pumping flow path b  
$1,369,684 

Year 18 

Replacement Present Worth Total 
$64,517,888 

 

Present Worth Replacement Cost Breakdown, 8% Discount Rate 
Piece of Replaced Infrastructure  Present Worth of 

Recurring Capital 
Cost 

Project Year 
Replaced 

Scenario 1 
None None N/A 

Replacement Present Worth Total None  
Scenario 2A 

Pumping flow path a  $511,378 Year 18 
Membranes $2,162,556 Year 5 
Membranes $1,471,799 Year 10 
Membranes $1,001,682 Year 15 
Membranes $0 Year 20 
UV (RO) $7,977,524 Year 5 
UV (RO) $5,429,369 Year 10 
UV (RO) $3,695,137 Year 15 
UV (RO) $0 Year 20 
Pumping flow path b $856,276 Year 18 
Pumping flow path c $864,725 Year 18 
Pumping flow path b (ASR) $2,163,493 Year 10 
Pumping flow path b (ASR) $0 Year 18 

Replacement Present Worth Total $26,133,938  
Scenario 2B 

Pumping flow path a $511,378 Year 18 
Ozone $7,785,872 Year 5 
Ozone $5,298,934 Year 10 
Ozone $3,606,365 Year 15 
Ozone $0 Year 20 
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UV(BAC) 
$11,079,894 

Year 5 

UV(BAC) 
$7,540,790 

Year 10 

UV(BAC) 
$5,132,135 

Year 15 

UV(BAC) $0 Year 20 
Pumping flow path b $856,276 Year 18 
Pumping flow path b (ASR) $2,163,493 Year 10 
Pumping flow path b (ASR) $0 Year 20 

Replacement Present Worth Total $43,975,136  
Scenario 3A 

Pumping flow path a $511,378 Year 18 
Membranes $2,162,556 Year 5 
Membranes $1,471,799 Year 10 
Membranes $1,001,682 Year 15 
Membranes $0 Year 20 
UV (RO) $7,977,524 Year 5 
UV (RO) $5,429,369 Year 10 
UV (RO) $3,695,137 Year 15 
UV (RO) $0 Year 20 
Pumping flow path b  $856,276 Year 18 
Pumping flow path c $864,725 Year 18 

Replacement Present Worth Total $23,970,446  
  Sce   
Pumping flow path a $511,378 Year 18 
Ozone $7,785,872 Year 5 
Ozone $5,298,934 Year 10 
Ozone $3,606,365 Year 15 
Ozone $0 Year 20 
UV(BAC) 

$11,079,894 
Year 5 

UV(BAC) 
$7,540,790 

Year 10 

UV(BAC) 
$5,132,135 

Year 15 

UV(BAC) 
$0 

Year 20 

Pumping flow path b 
$856,276 

Year 18 

Replacement Present Worth Total 
$41,811,644 

 

Scenario 4A 
Pumping flow path a $511,378 Year 18 
Membranes $2,162,556 Year 5 
Membranes $1,471,799 Year 10 
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Membranes $1,001,682 Year 15 
Membranes $0 Year 20 
UV (RO) $7,977,524 Year 5 
UV (RO) $5,429,369 Year 10 
UV (RO) $3,695,137 Year 15 
UV (RO) $0 Year 20 
Pumping flow path b  $856,276 Year 18 
Pumping flow path c $864,725 Year 18 

Replacement Present Worth Total $23,970,446  
Scenario 4B 

Pumping flow path a $511,378 Year 18 
Ozone $7,785,872 Year 5 
Ozone $5,298,934 Year 10 
Ozone $3,606,365 Year 15 
Ozone $0 Year 20 
UV(BAC) 

$11,079,894 
Year 5 

UV(BAC) 
$7,540,790 

Year 10 

UV(BAC) 
$5,132,135 

Year 15 

UV(BAC) 
$0 

Year 20 

Pumping flow path b  
$856,276 

Year 18 

Replacement Present Worth Total 
$41,811,644 
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APPENDIX I: Sensitivity Analysis on Discount Rate Ranging from 3 to 8%. 
 

Discount rates ranging from 3 to 8 percent were examined. This appendix shows results 

of a sensitivity analysis performed for the 3 to 8 percent range of discount rates. As can be seen 

in Figure I1, the total present worth values for Scenarios 2-4 follow the same pattern at all 

discount rates examined. Figures I2 through I4 illustrate how the total present worth changes 

with discount rate. 

 

 
Figure I1. Total Present Worth of Scenarios 2-4 over a Range of Discount Rates. 
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Figure I2. Scenario 2: Total Present Worth Sensitivity to Discount Rate. 
 

 
Figure I3. Scenario 3: Total Present Worth Sensitivity to Discount Rate. 
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Figure I4. Scenario 4: Total Present Worth Sensitivity to Discount Rate. 
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