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ABSTRACT 

 

Spatial transferability of travel forecasting models, or the ability to transfer 

models from one geographical region to another, can potentially help in significant cost 

and time savings for regions that cannot invest in extensive data-collection and model-

development procedures. This issue is particularly important in the context of tour-

based/activity-based models whose development typically involves significant data 

inputs, skilled staff, and long production times. However, most literature on model 

transferability has been in the context of traditionally used trip-based models, particularly 

for linear regression-based trip generation and logit-based mode choice models, with little 

evidence on the transferability of activity-based models and that of emerging model 

structures. 

The overarching goal of this dissertation is to assess the spatial transferability of 

activity-based travel demand models. To this end, the specific objectives are to:  

1. Survey the literature to synthesize: (a) the approaches used to transfer models, 

(b) the metrics used to assess model transferability, (c) the available evidence on spatial 

transferability of travel models, and (d) notable gaps in literature;  

2. Lay out a framework for assessing the spatial transferability of activity-based 

travel forecasting model systems, and evaluate alternative methods/metrics used for 

assessing the transferability of specific model components and their parameters;  



ix 
 

3. Conduct empirical assessments of spatial transferability of the following two 

model components used in today’s activity-based model systems: (a) daily activity 

participation and time-use models, and (b) tour-based time-of-day choice models. Data 

from the 2009 National Household Travel Survey (NHTS) and the 2000 San Francisco 

Bay Area Travel Survey (BATS) were used for these empirical assessments; 

4. Conduct empirical assessments of model transferability using emerging model 

structures that have begun to be used in activity-based model systems – specifically the 

multiple discrete-continuous extreme value (MDCEV) model;  

5. Investigate alternate ways of enhancing model transferability; specifically: (a) 

pooling data from different geographical regions, and (b) improvements to the model 

structure.  

The dissertation provides a framework for assessing the transferability of activity-

based models systems, along with empirical evidence on the pros and cons of alternative 

methods and metrics of transferability assessment. The results suggest the need to 

consider model sensitivity to changes in explanatory variables as opposed to relying 

solely on the ability to predict aggregate distributions. Updating the constants of a 

transferred model using local data (a widely used method to transfer models) was found 

to help in increasing the model’s ability to predict aggregate patterns but not necessarily 

in enhancing its sensitivity to changes in explanatory variables. Also, transferability 

assessments ought to consider sampling variance in parameter estimates as opposed to 

only the point estimates.  

Empirical analysis with the daily activity participation and time-use model shed 

new light on the prediction properties of the MDCEV model structure that have 
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implications for model transferability. This led to the development of a new model 

structure called the multiple discrete continuous heteroscedastic extreme value 

(MDCHEV) model that incorporates heteroscedasticity in the model’s stochastic 

distributions and helps in enhancing model transferability. Transferability assessment of 

the time-of-day choice models show encouraging evidence of transferability of a large 

proportion of the model coefficients, albeit except important parameters such as the travel 

time coefficients. Collectively, there is evidence that pooling data from multiple regions 

may help in building better transferable models than those transferred from a single 

region.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Travel Forecasting Models 

Travel forecasting models are used to predict future travel characteristics under 

alternative scenarios of population socio-demographics, land-use patterns, and 

transportation system characteristics. Transportation planners and policy makers use 

these models to analyze the effectiveness of various transportation alternative strategies 

with the intent of arriving at appropriate transportation infrastructure planning decisions. 

The appropriateness of planning decisions is therefore dependent on the quality of the 

travel forecasting models used to analyze the effectiveness of various alternative 

strategies. The quality of these models, in turn, depends on whether or not the individual 

and household activity and travel behaviors are appropriately incorporated in the models 

(Bhat and Lawton, 2000). It is now well recognized that the traditionally used “trip-

based” four step models do not incorporate realistic representations of activity and travel 

behavior, and thus fall short in their ability to inform emerging transportation planning 

and policy questions. These limitations have led to the emergence of the “activity-based” 

approach to travel demand modeling.  

The activity-based approach differs from the trip-based approach in at least three 

ways. First, the activity-based approach recognizes that travel is a “derived demand” in 
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that it is derived from the need to participate in activities that are dispersed in time and 

space (Bhat and Koppelman, 1999). Thus, this approach places emphasis on analyzing 

individuals’ activity participation prior to analyzing travel. Second, the trip-based 

approach represents travel as a mere collection of independent trips, while the activity-

based approach attempts to represent travel in a more realistic fashion by recognizing the 

spatial, temporal, and modal linkages between different trips via trip chains and/or tours 

(Davidson et al., 2007). Third, the activity-based approach is less fraught with 

aggregation biases (than that in the trip-based approach) due to analyzing activity 

participation and travel at a disaggregate, individual and household level as opposed to 

simply using demographically, spatially, and temporally aggregate measures of travel 

behavior as a forecasting model.  

Given the greater theoretical foundation and behavioral appeal, models built 

based on the activity-based approach are likely to provide better (than trip based models) 

information on individual-level responses and aggregate-level changes in travel behavior 

to transport planning/policy measures. Therefore, several planning agencies in the United 

States and Europe have already developed (and some others are in the process of 

developing) activity-based models (ABMs) to serve the emerging planning needs and 

policy questions.   

1.2 Spatial Transferability of Travel Forecasting Models 

Spatial transferability of travel forecasting models refers to the appropriateness of 

using models developed with data and information from one geographical region for 

travel forecasting purposes in another region. This topic is of considerable interest from 

both theoretical and practical standpoints. Theoretically, assessment of a model’s 
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performance in different contexts provides insights into its ability to provide credible 

forecasts under different scenarios. From a practical standpoint, ability to transfer models 

from one region to another can help in significant cost and time savings for regions that 

cannot afford to invest in extensive data-collection procedures. The data required for 

developing (or updating) travel demand models are generally collected through different 

surveys. Oftentimes, the cost of collecting data through these surveys is so high that it 

could easily exceed the annual budget of a planning organization responsible for this task 

(Wilmot and Stopher, 2001). Therefore, only large metropolitan regions with sizeable 

budgets are able to manage such extensive data collection procedures. In such situations, 

the ability to transfer models developed for other regions can save significant resources 

for many regions. Besides, many small-sized and mid-sized regions do not have an option 

but transfer models from elsewhere. In addition to potentially saving the data collection 

costs, transferability of a model can also help reduce the efforts and time required for 

model development and estimation procedures. This issue is particularly important in the 

context of activity-based models whose development typically involves significant data 

inputs, skilled staff, and long production times. Hence, this dissertation research focuses 

on the spatial transferability of activity-based models (ABMs).  

As mentioned earlier, compared to the conventional trip based models, the 

activity-based models provide a much more behaviorally-oriented approach to modeling 

travel behavior. From the transferability point of view, a natural question is whether the 

behavioral realism helps make activity-based travel forecasting models more 

transferable than the conventional trip-based models. At this point, there is no easy 

answer to this question because of a lack of sufficient empirical evidence on the 
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transferability of tour/activity-based models. The increasing need for behaviorally 

oriented models to address different policy measures has motivated the 

researchers/practitioners to develop and refine these models instead of focusing on their 

transferability assessments. Only a handful of studies in literature (see chapter 2 for a 

detailed review) document the transferability assessment of activity-based model systems 

to varying degrees (e.g., Arentze, 2002; PB Consult Inc. 2007; Le-Vine, 2010) while 

some recent efforts are underway (e.g., the SHRP-2 C10 studies, Bowman et al., 2013) 

and a few studies focus on the transferability of specific components of activity-based 

model systems (e.g., Nowrouzian and Srinivasan, 2012).  

An activity-based model system consists of several model components, each 

focused on modeling a specific aspect of individuals’ daily activity and travel schedule. 

For example, daily activity pattern models focus on generating the activities an individual 

participates in a day, along with the number of tours he/she undertakes in a day. Once the 

activity/travel needs are generated using the daily activity pattern models in the form of 

activities to be participated and/or tours to be undertaken, the tour level models are used 

to predict the mode choice, destination choice, and time-of-day choice for each tour. 

Subsequently, trip-level models are used to predict the mode, destination, and timing of 

each trip in each tour. It is possible that the transferability of each of these model 

components may differ from that of the other. Little evidence exists in the literature on 

which model components in an activity-based model system are more transferable and 

which are less transferable.  

As reviewed in Chapter 2, most literature on travel model transferability has 

focused on the transferability of specific model components (e.g., mode choice model 
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component, trip generation model component) of trip-based travel model systems. A 

plausible reason is that the structure and design features of the traditionally used trip-

based model systems are very similar across different regions. Thus, transferability of a 

trip-based model system generally boils down to the transferability of its model 

components. With activity-based model systems, however, there is no universally 

accepted model structure with a unique set of design features. In fact, there is probably no 

need for a universally accepted modeling framework. The overall model structure, the 

design features, and the level of disaggregation considered (e.g., in time and space) can 

very well vary based on the policy and planning needs for which the models are intended 

to be used, the size of the regions for which the models are developed, and the 

availability of data and other resources to build, maintain, and use the models. In 

summary, the transferability of an activity-based model system comprises much more 

than the transferability of the individual model components. Thus, assessing the 

transferability of individual model components of an activity-based model system is not 

necessarily the same as assessing the transferability of an entire activity-based model 

system. This warrants the need for a framework that can guide researchers and 

practitioners in assessing the transferability of activity-based model system across 

geographical contexts. 

1.3 Enhancing Spatial Transferability of Travel Forecasting Models 

A variety of methods have been used in literature to transfer models across 

geographical contexts (see chapter 2 for a detailed discussion on these methods). Among 

these, the simplest approach is the naïve transfer in which the model estimated in one 

context is transferred to another context without any modifications. The empirical results 
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suggest that the performance of a naively transferred model is far from a locally 

estimated model both in terms of data fit as well as aggregate prediction. Thus using 

available information and data from the application context, the base context model is 

usually “updated” to better capture behavior in the application context (i.e., to make it 

more transferable). Despite using different updating techniques, the available evidence on 

model transferability is still mixed and inconclusive, with much of the empirical research 

suggesting the difficulty of transferring models. This warrants the need for exploring 

alternate ways to enhance model transferability.  

One possible way to enhance model transferability is to estimate the model using 

data pooled from different geographic regions. In general, different context-specific 

characteristics such as social, cultural, and spatial structures, urban form, and transport 

system and network features have a significant influence on travel behavior, but they are 

not usually represented in the travel models built for a specific region due to limited 

variation in these characteristics within a region (Brand and Cheslow, 1981). The 

presence of such context specific characteristics in a model may improve its 

transferability especially in the situations where these characteristics differ from one 

region to another. The inclusion of these characteristics, however, depends on the data 

used for model estimation.  Specifically, data with a high degree of variability can ensure 

the presence of such characteristics in the model, and make the model more transferable. 

The potential advantages of using such a dataset have been indicated in previous studies 

as well. For instance, Richards and Ben-Akiva (1975) argued that if a disaggregate model 

is truly a behavioral model, and if it has been estimated with data which has a high 

degree of variability, then it can be expected that the model can be used in different 
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geographic locations and for populations with different economic structures without 

amendment to the coefficients (Galbraith and Hensher, 1982). Brand & Cheslow (1981) 

also highlighted the importance of such data variability in model transfer.  Despite 

recognizing such potential advantages of using data with a high degree of variability, it 

has not been discussed with special attention in literature; neither the impact of data 

variability on model transfer, nor how to bring this variability in the data has been 

discussed. 

Another possible way to enhance transferability is by improving the mathematical 

structure of the models being transferred. On one hand, it is likely that improvements to 

the mathematical structure of a model may enhance its ability to better represent travel 

behavior, and therefore result in an enhanced transferability. On the other hand, there is 

also a notion in the field that improvements to the model structure may not lead to 

considerable improvements in the way the travel behavior is modeled. Perhaps both 

views hold merit in that some improvements in the model structure may indeed help 

enhance the transferability of models while other improvements may not. But there is 

little empirical evidence on what types of model improvements may enhance the spatial 

transferability of models. 

1.4 Research Objectives and Contributions 

The broad objectives of this research are five-fold: 

1. Conduct an extensive review of literature on spatial transferability of travel 

forecasting models to summarize and synthesize: (a) the empirical evidence in the 

literature on spatial transferability, (b) the methods used to transfer models, and (c) the 
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methods and metrics used to assess model transferability. Based on the findings from this 

review, lay out an agenda for future research on this topic. 

2. Lay out a framework for assessing the transferability of activity-based travel 

forecasting model system, and evaluate alternative methods/metrics used to assess the 

transferability of specific model components and their parameters. 

3. Conduct empirical assessments of spatial transferability of the following two 

model components used in today’s activity-based model systems: (a) daily activity 

participation and time-use models, and (b) tour-based time-of-day choice models. 

4. Conduct empirical assessments of model transferability using emerging model 

structures that have begun to be used in activity-based model systems – specifically the 

multiple discrete-continuous extreme value (MDCEV) model. 

5. Investigate alternate ways of enhancing model transferability; specifically: (a) 

pooling data from different geographical regions, and (b) improvements to the model 

structure.   

The above objectives are pursued in six different chapters in the dissertation, as 

outlined below. The outline provides the organization along with identifying the 

contributions of each chapter in the dissertation.   

Chapter 2 provides an extensive review and synthesis of the extant literature on 

spatial transferability of travel forecasting models. Specifically, different theoretical and 

practical issues related to model transferability, methods used in the literature to transfer 

models, and metrics used to assess the effectiveness of these transfer methods are 

discussed in different sections of this chapter. In addition to providing the most up-to-

date review and synthesis of the literature on spatial transferability of travel models, the 
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chapter identifies several important avenues of future research addressing which should 

be of value to the travel modeling community. Of the various gaps in literature identified 

in this chapter, the notable ones that will be addressed in this dissertation research are 

summarized at the end of this chapter. 

Chapter 3 presents a broad discussion and a guiding framework for assessing the 

transferability of activity-based model systems that goes beyond the transferability of 

specific model components.  

Chapter 4 investigates the spatial transferability of person-level daily activity 

generation and time-use models, an important component of activity-based model 

systems being tested in several regions in the United States (e.g., Los Angeles and Dallas 

Fort-Worth). A recently emerging model structure known as the Multiple Discrete 

Continuous Extreme Value (MDCEV) model is used to develop this model component. 

Since this is the first empirical assessment of the transferability of an MDCEV-based 

model, prediction properties of this model structure are investigated first, and then 

transferability is assessed.  This investigation helped shed light on some properties and 

limitations of this model structure that might have implications to model transferability.  

 On an empirical front, the chapter compares the transferability of activity 

generation and time-use models between different states (Florida and California) and 

across different regions within the state of Florida (Tampa, Miami, Orlando, urban 

regions in District-1, and all rural regions of Florida). Doing so helps in assessing if these 

models are more transferable within a state than across states. Further, the chapter 

compares the transferability of the models between different urban regions and between 

urban and rural regions. This helps in assessing if models developed in large urban 
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regions (for which data and resources are typically available) can be transferred to rural 

regions (for which data and resources are scarce). 

 In addition to the above, this chapter compares the different techniques used in the 

literature to assess the transferability of travel models and provides recommendations for 

the same. The influence of updating constants of a transferred model using locally 

available data (a widely used technique for transferring models) on model transferability 

is also assessed. Further, the chapter sheds light on the influence of sampling variance of 

the parameter estimates on the transferability assessment results. Finally, this chapter 

provides empirical evidence to answer whether (and to what extent) pooling data from 

multiple regions helps in enhancing the spatial transferability of activity-participation and 

time-use models. 

Chapter 5 addresses the limitations associated with the prediction properties of the 

MDCEV model, this chapter incorporates heteroscedasticity in the multiple discrete 

continuous (MDC) model structure, and formulates a new econometric model named the 

Multiple Discrete Continuous Heteroscedastic Extreme Value (MDCHEV) model. Next, 

the prediction ability and transferability of this model structure are examined and 

compared with those of the MDCEV structure. This comparison sheds light on the 

influence of this improvement in model structure on its prediction properties and 

transferability across geographical contexts.   

Chapter 6 investigates the spatial transferability of tour-based time-of-day choice 

models among four counties (Alameda, Santa Clara, San Francisco, and San Mateo) in 

the San Francisco Bay Area of California. This assessment sheds light on what aspects of 

tour-based time-of-day choice models are transferable and what are not transferable. 
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Specifically, the chapter addresses the question of what types of parameters in these 

models are transferable and what types of parameters are not transferable. In addition, the 

chapter compares different methods of transferability assessment. Furthermore, the 

chapter examines if models built using data pooled from multiple counties are more 

transferable than models built using data from a single county.  

Chapter 7 concludes the dissertation by summarizing the findings and conclusions 

from each of the above chapters and providing directions for future research.     
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Spatial transferability of models has been a subject of much interest since the 

eighties and nineties. Thus the literature abounds with studies on this topic. These studies 

lay out theoretical and practical aspects of model transferability, use different methods to 

transfer models, and assess the effectiveness of these transfers by using different metrics. 

This chapter aims to provide a synthesis of the extant literature on spatial transferability 

of travel forecasting models, and positions our research within the overall context of the 

literature. The specific objectives are to review: (1) the theoretical and practical 

considerations related to model transferability, (2) the methods used to transfer models, 

(3) the approaches and metrics used to assess model transferability, (4) the empirical 

evidence on model transferability, and to identify the notable gaps in literature.  

The above review and synthesis is based on an extensive review of the theoretical 

and empirical literature on the issue of model transferability. Table 2.1(a) and Table 

2.1(b) together provide a summary of the empirical studies in literature. Specifically, 

Table 2.1(a) provides a summary of the model structures, geographical contexts, transfer 

methods and transferability assessment metrics used in the literature while Table 2.1 (b) 

summarizes the findings in literature.  The first 14 studies in these tables are in the  
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Table 2.1(a) A Summary of the Empirical Literature on Spatial Transferability of Travel Forecasting Models (model 

structures, geographical contexts, transfer methods, and transferability assessment metrics) 

 

Paper Model Structure Transferred   between… Method of Transfer Assessment Metrics 

1. Watson &  

Westin (1975) 

 
  

Mode choice BL model (train & 

auto) with only LOS variables 

 
(BL: Binary Logit) 

6 intercity region pairs of  

Glasgow & Edinburgh divided 

into central, suburb &  periphery 
regions  

Naïve transfer 

Transferability test statistic (TTS),  

Statistical test of equality between the predicted 

probability distributions of transferred and local 
models 

2. Atherton   &     

Ben-Akiva 

(1976) 

Work trip mode choice MNL 

model (drive alone, shared ride, 

transit) with LOS, demographic, 
and land-use variables 

 

(MNL: Multinomial Logit Model)  

Washington D.C. to  New 

Bedford, Massachusetts and Los 

Angeles 

Naive transfer,  

Updating constants,    

Transfer scaling,  

Bayesian updating,   
Full re-estimation 

TTS,  

t-tests of parameter equality,  

Transferred  ρ2,   

predicted mode shares compared with observed 

shares,  
forecasting ability  (changes in mode shares due to 

policy changes) 

3. Talvitie & 
Kirshner (1978) 

Work trip mode choice MNL 

model (drive alone, shared ride, 
transit)  with LOS, demographic, 

& land-use variables 

Washington DC, Minneapolis-St 

Paul, San Francisco bay area 

(pre-BART and post-BART) 

Naïve transfer Model equality test statistic (METS) 

4. Stopher et al. 
(1979) 

 

Work trip mode choice MNL 

model (car-driver, car-passenger, 
bicycle, motorcycle ,walk,  walk & 

bus, drive & bus, lift club) with 

only LOS variables 

South Africa and different areas  

of the  U.S. 

Coefficients of the model in the 

estimation context  were compared 

with those of the models  in the 
application context 

No tests were performed. (coefficients were 

directly compared) 

5. Galbraith & 

Hensher (1982) 

 

Work trip mode choice MNL 

model (car, rail) with only LOS 
variables 

 

Intra-urban transferability 

between two regions of Sydney 
(Northwest Sydney, Southwest 

Sydney) 

Naïve transfer,  

Transfer scaling,  

Bayesian updating    

TTS,  
t-tests of parameter equality,  

transferred ρ2,  

predicted mode shares  compared with the 
observed  shares 

6. Koppelman & 
Wilmot ( 1982)  

Work trip mode choice model 
(drive alone, shared ride, transit) 

Intra-urban (within different 
sectors of Washington DC) 

Updating constants 

TTS, 
Model equality test statistic,  

Transfer index (TI),  

RMSE between predicted and observed shares,  
aggregate prediction statistic(APS) 

7. Koppelman & 
Wilmot (1985) 

Work trip mode choice MNL 

model (drive alone, shared ride, 
transit) with LOS and demographic 

variables 

within different sectors of 

Washington DC (intra-urban 
transfer) 

Updating  constants for different 

specifications: (1) los variables 
only, (2) los & demographic 

variables 

Transferred  ρ2,  
Transfer Index (TI) 

 
8. Koppelman et 

al. (1985) 

Work trip mode choice MNL 

model (drive alone, shared ride, 

transit)  with LOS and 
demographic variables 

within different sectors of 
Washington DC (intra-urban), & 

between Washington DC, 

Minneapolis, & Baltimore (inter-
urban) 

Naïve transfer 
Transfer scaling (i.e., updating 

constants and scale of parameters) 

Transferred  ρ2,  

transfer index (TI),  

RMSE between predicted and observed shares,  
relative aggregate transfer error (RATE) 
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Table 2.1(a) (Contd.) 

 

Paper Model Structure Transferred between… Method of Transfer Assessment Metrics 

9. Gunn et al. 

(1985) 
 

Joint mode-destination model 

(MNL) for business and shopping 
purposes, and trip generation model 

(linear regression) with LOS, 

demographic, and land-use 
variables  

Two adjacent regions  in 

Netherlands  

Naïve transfer, 
Transfer scaling, 

Transfer scaling with two scale 

parameters (one for demographic 
variables, other for LOS variables), 

Complete re-estimation of all 

parameters 

TTS,   
Transfer  ρ2 ,    

Predicted mode shares  compared with the 

observed  shares 

10. Koppelman & 

Pass (1986) 

 

Commute mode choice (drive 

alone, shared ride, transit) and auto 
ownership. (MNL & NL)  with los 

& demographic variables 

within three different sectors of 
Washington DC (intra-urban) 

Updating constants 
Transfer index (TI),   
Transferred  ρ2 

11. Abdelwahab 
(1991) 

Intercity mode choice MNL model 

Eastern and western CMAs of 
Canada  (eastern region: all 

CMAs east of thunder bay, 

western region: all CMAs west 
of winnipeg)   

Updating constants,  
Bayesian updating 

TTS,   

Transfer  ρ2,  

Transfer index (TI),   
RMSE between predicted and observed shares, 

Relative aggregate transfer error (RATE),   

aggregate prediction statistic (APS) 

12. Santoso and 

Tsunokawa  
(2005) 

Work trip mode choice MNL 

model (walking, bicycles and 
motorcycles) 

From urban to  suburban areas 

of Ho Chi Minh City, Vietnam 

Naïve transfer, Updating constants, 
Updating both constants and scale 

parameter, Bayesian updating, 

Combined transfer estimator 

TTS, 

t-tests of parameter equality, 
Transferred  ρ2, 

Transfer Index, 

 

13.Karasmaa 
(2007) 

Home based other trip mode and 

destination choice NL model  

(walking, bicycle, car,  and public 
transportation)  

 

(NL: Nested Logit model) 

Two areas (Helsinki 

Metropolitan Area and Turku 

region) in Finland   

Transfer scaling,  Bayesian 

updating, Combined transfer 

estimation,  
Joint context estimation with 

different sets of common and data-

specific variables 

TTS ,   

Transfer index (TI),  

Value of time comparisons,  
Elasticity comparison (changes in mode shares 

due to changes in  car cost, public transportation 

travel time), Value of time comparison 

14. Santoso & 

Tsunokawa  

(2010) 

Work trip mode choice MNL  

model  
(walking, bicycles and 

motorcycles) 

Ho Chi Minh city of Vietnam 

and Phnom Penh city of  

Cambodia  

Naïve transfer,  
Updating constants, Updating both  

constants and scale parameter, 

Bayesian updating, Combined 
transfer estimator 

Transferred  ρ2, 

Transfer index (TI), 

Relative error  measure (REM) 

15. Mahmassani 

  et al. (1979) 

Area-wide trip rates, and 
household-level trip rates (cross-

classification) 

 

7 urban areas of population 

between 50-250K in Indiana 
Naive transfer 

2 test to compare aggregate trip rates,  

pair-wise samples t-test to compare predicted & 
observed household  trip rates 

16. Caldwell &   

Demetsky (1980) 

Household-level trip rates 

(regression and cross-classification)  

Three cities in Virginia (of 
population ranging from 14k 

to155k) 

Naïve transfer 
2 test to compare predictions (at the aggregate 

level) from transferred and local models   
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Table 2.1(a) (Contd.) 
 

Paper Model Structure Transferred between… Method of Transfer Assessment Metrics 

17. Rose & 

Koppelman (1984)  
 

Household-level Tour generation & 
intermediate stop generation 

models (linear regression) with 

only demographic variables 

Intra-regional  

(within two sectors of Baltimore 

and Minneapolis)  and inter-
regional (Baltimore to 

Minneapolis) 

Naïve transfer,  
Updating model constants using 

aggregate data from application 

context w/ disaggregate data)  

Transfer R2,  
Transfer Index for Regression model (TIR),  

Root Mean Square Error (RMSE), 

Relative aggregate transfer error (RATE) 

18. Wilmot (1995) 

 

 Trip generation models (linear 

regression)  with only demographic 

variables 

 Different cities of South Africa  

 

 

Naïve transfer, 

Updating constant,  

Transfers were conducted only 
within areas with data from the 

same survey 

Transfer R2,   

Transfer Index for Regression model (TIR),  

Transferability test statistics (TTS) for linear 

regression model 

19. Agyemang-

Duah and Hall 
(1997) 

Household-level home based 

shopping trip generation on  

weekdays (ordered response model 
with  demographic and land use 

variables) 

Different regions within Toronto 

Naïve transfer,  

Transfer scaling ( 2 scale 

parameters - one for demographic 
variables, another for an 

accessibility variable) 

t-test to compare coefficient pairs between two 

models, Transfer R2 , Measures of aggregate 
predictive ability (weighted RMSE, APS). 

 20. Kawamoto 

(2003) 
  

Person-level home based trip 
generation model (Liinear 

regression model) 

 

Two urban areas in Brazil:  Sao 

Paulo and Bauru  
Transfer scaling 

Wald Test Statistics, Predicted number of trips 

compared with the observed  number of trips,  
Root Mean Square Error (RMSE) 

 21. Cotrus et al. 

(2005) 

Person-level trip generation model 

(Linear regression and Tobit 

models) 

Tel Aviv and Haifa Metropolitan 

area in Israel 
Naïve transfer 

Z-test,  

Chow test,  

Chi square test,  

Predicted trip rates were compared with the 

observed trip rates 

 22. Everett, 

(2009)  

 
 

Person-level trip generation  model 
(cross-classification) 

11 Metropolitan  areas in Ohio 
and Tennessee 

Naïve  transfer Q-statistic 

23. Gunn & Pol 

(1986) 

A model system of (1) tour-level 

joint mode-destination choice 

models for different tour purposes, 
(2) tour generation, (3) household-

level  driving license status, and (4) 

household car ownership models 
(all logit models)  with LOS and  

demographic variables 

Disaggregate 

Naïve transfer, 
Transfer scaling, Transfer scaling 

with two scale parameters (one for 

demographic variables, other for 
LOS variables),  

Complete re-estimation of all 

parameters 

TTS,   

t-statistics of the scale factors,   
Transferred  ρ2,  

Predicted mode shares  compared with the 

observed  shares 
 

 24. Arentze et al. 

(2002) 

Albatross Model System (Rule 

based activity based model system) 

3 different regions in 

Netherlands 
 Model  structure  

Prediction ability of the transferred model at the 

aggregate (such  frequency distribution of  
activity type and mode choice) and disaggregate 

level (number of activities, average duration of 

activities)  
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Table 2.1(a) (Contd.) 

 

 

Paper Model Structure Transferred between… Method of Transfer Assessment Metrics 

 25. PB Consult 

Inc. (2007) 

MORPC tour-based model system 

 
Columbus OH to Lake Tahoe 

Updating alternative  constants and 

adding some special terms (such as 

dummy for external zones ) for 

location choice models  

Predicted  shares  (e.g., mode shares and  
distribution of maintenance tours) were compared 

with the observed data  

 26. Picado,  

(2013) 
 CT-RAMP ABM system 

 SANDAG (San Diego) region to 

Southeast Florida/SEF (Miami) 
region 

 Same overall Structure and 
submodels. Updated certain model 

parameters to reflect SEF 
conditions. 

 Aggregate level predictions compared with 

available observed patterns/validation targets 

 27. Le Vine et al. 

(2010) 

TASHA Model System 

(Rule based activity based model 
system) 

From Toronto , Canada to 

London, UK 

Empirical activity scheduling rules 
and algorithm (based on the 

empirical data from Toronto) were 

transferred 

Predicted temporal distribution of different 

activities and trips per day were compared with the 
observed data.  

 28. Nowrouzian 

& Srinivasan 

(2012) 

Tour  generation models (MNL) for 

different tour purposes 

Tampa bay, Jacksonville, and 

Miami regions in Florida 
Naïve transfer 

RMSE  between predicted and observed shares, 

Elasticity comparisons 

 29. Vovsha et al. 

(2010) 
Work location choice model 4 different cities in the US No transfer was performed 

Simple comparison of parameter estimates between 

different contexts 

 30. Bowman et al. 
(2013) 

 All 15 model components of the    
DaySim ABM system 

4 regions in California (San 
Diego, Sacramento, Fresno, San 

Joaquin valley) and 2 regions in 

Florida (Jacksonville and 
Tampa) 

Joint context estimation (by pooling 
data from different regions) 

TTS,  

t-statistics of difference variables capturing 

parameter differences between different counties 
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Table 2.1(b) A Summary of the Empirical Literature on Spatial Transferability of Travel Forecasting Models (findings) 

 

  

Paper Findings 

1. Watson &  Westin (1975) 
 

  

 TTS test of parameter equality suggests that most models (between different inter-city regional pairs) showed significantly different parameters 

from each other.  

 Predicted probability distributions of naïvely transferred models matched well with estimated distributions only if the parameter estimates were 
equivalent between the estimation and application contexts. 

2. Atherton & Ben-Akiva (1976) 

 TTS test of parameter equality suggests that the model parameter estimates for the Washington D.C. region were statistically similar to those in the 

New Bedford and Los Angeles areas. t-tests of individual parameter differences suggested that level-of-service (los) coefficients were not 
significantly different across the three regions. This result supports naïve transfer. The authors attribute the result to good specification and 

performance of the base context model in the base context. 

 Bayesian parameter updating method was concluded to have performed best (among other updating procedures). But there was no significant 
difference between a naively transferred model and the Bayesian updated model. The naively transferred model was itself as good as a locally 

estimated model (i.e., there was no transfer bias).  

3. Talvitie & Kirshner (1978) 

 Most model comparisons suggested parameter inequality (or inequality of models) across different regions. The authors argued that differences in 
how data are collected (including how network travel times and costs are coded) may potentially confound transferability analysis results. 

 It was pointed that most explanatory power is in mode-specific constants (unobserved factors) making it difficult to transfer models. Better 
transferability can be achieved by improving the mode choice theory and model specification. 

4. Stopher et al. (1979) 

 

 A mode choice model was developed in South Africa and the coefficients of this model were compared with those of the models developed in 10 
different areas of the United States. Comparison results suggest that coefficients of in-vehicle travel time and total travel time variables are similar 

in value to the range of the coefficients of the models developed in the United States. However, as the authors recognize, such direct comparisons of 

coefficient values does not consider the differences in model specification, variable definitions and measurement, and model scale parameters.     

5. Galbraith & Hensher (1982) 
 

 Statistical tests (TTS, and t-tests) rejected the hypothesis of the equality of naively transferred and locally estimated parameters. This may be 

because the rail modes in the two regions were very different in terms of unmeasured service attributes.  

 From an aggregate predictive ability standpoint, transferred models were unable to closely predict the observed rail mode shares, perhaps due to the 

absence of socio-demographics and unmeasured level of service attributes in the specification.  

 Model specifications with higher rho-square did not transfer well if they were not theoretically sound specifications (e.g., models with mode-

specific LOS parameters showed better fit to base context data but poorer transferability).  

 Bayesian updating using a subset of local data better improved the model performance (based on transferred ρ2) compared to a naïvely transferred 

model or a scale-updated model. 

6. Koppelman & Wilmot ( 1982)  

 Statistical tests (at both disaggregate and aggregate levels) suggest that updating constants did not result in models that were statistically equivalent 

to a local model.  

 Non-statistical tests of transfer errors (e.g., RMSE and TI) suggest that updating constants of the base specification results reasonably transferable 

models with tolerable errors relative to locally estimated models (80% TI and 20% aggregate prediction error). 

 Goodness of fit may not be the best measure to select the base context (if there are identically specified models from different base context regions) 

from which to transfer a model. 

 Transferability is asymmetric, with significant dependence on the direction of transfer. 

7. Koppelman & Wilmot (1985) 

 Investigated the effect of omitted demographic  variables on spatial transferability. 

 A minimum adequate specification was necessary to enable reasonable model transfer (i.e., at least 75% TI).  Specification with only los variables 
did not satisfy this minimum requirement.  

 Each successive improvement of the model specification (with additional variables) lead to improvement in absolute transfer effectiveness 
(goodness of fit to observed data) although the transfer effectiveness relative to locally estimated model remained unaffected beyond a minimum 

adequate specification. 
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Table 2.1(b) (Contd.) 

Paper Findings 

8. Koppelman et al. (1985) 

 Naively transferred model was substantially deficient compared to a model estimated with local data (with an average transfer index of only 53% 
for interurban transfer).  

 Updating constants and scale using a subset of local data (i.e., 20% of the local data available for full re-estimation) helped significantly improve 
the performance of the transferred model (resulting in an average transfer index of 81% for interurban transfer).  

 Updating constants lead to significant improvement of the transferred model (TI = 76%) while updating the parameter scale lead to strong but less 
significant improvement (TI = 81%). 

 The transfer index for intra-urban transfer was better than that for inter-urban transfer. 

9. Gunn et al. (1985) 

 

 The base case model specification was taken and several transfer models were estimated with updated constants and different scale parameters 

(such as one per variable (transfer scaling), one per group of variables (partial transfer), one for all variables (complete re-estimation), using data 

from application context.  

 None of the transfer methods resulted in models that were statistically equivalent to that from a completely re-estimated model (in terms of log-
likelihood).  

 From an aggregate predictive ability standpoint, transfer scaling provided the most significant improvement over the naively transferred model and 
sufficient approximation to the results from a completely re-estimated model.  

 Partial transfer models did not provide practically discernible improvements over the transfer scale models. 

10. Koppelman & Pass (1986) 

 Compared the spatial transferability of two different multidimensional model structures (multinomial logit (MNL) and nested logit (NL)) for 
modeling mode choice and auto ownership.  

  Both model structures were almost equally transferable (with a transfer index of 0.85). This may be because the model estimation results and the 

model fit were almost similar between the two models. Specifically, the nesting parameter in the nested logit model was not statistically different 
from 1, suggesting the two models are equivalent in the current empirical context.   

11. Abdelwahab (1991) 

 Disaggregate transferability measures (TTS, TI) suggest that the models cannot be naively transferred from one region to another. Statistical 
measures of predictive accuracy (APS) suggest that the transferred models are capable of reproducing the observed model share in the application 

context at an aggregate spatial level but not at a finer, Census Metropolitan Area level.  

 The poor transferability in this empirical context was attributed to the poor performance of the models in their local areas (i.e., in the base 
contexts). 

 Updating only the constants of the transferred models lead to 18-23% less accuracy in predicting mode shares (when compared to locally estimated 
model). Bayesian updating of all parameters lead to transferred models that were 8-13% less accurate. 

  Transferability depended on the direction of transfer between two regions. 

12. Santoso and Tsunokawa   
     (2005) 

 TTS and t-tests of individual parameter differences suggest that the urban mode choice model cannot be naively transferred to suburban areas.  

 Transferred ρ2 and TI values suggested poor performance of the Bayesian updating technique in improving the model transferability. The other 
three updating techniques (updating only constants, updating both the constants and scale, and combined transfer estimator) improved model 

transferability as long as the sample size used for updating was 400 or more. For the cases with sample size less than 400, only two techniques 
(updating both the constants and scale, and combined transfer estimator) were recommended. 

13. Karasmaa (2007) 

 Transferred models did not perform better than a locally estimated model with a large sample, but updating the transferred model using a smaller 

sample of the application context significantly improved the transferred model performance. 

 Transferred models updated with a small sample performed much better than locally estimated models with a small sample, indicating the 

usefulness of transferred model updating methods when there is no sufficient data to estimate models in application context.  

 Value of time and elasticity comparisons suggested that the performances of different updating techniques improve (relative to the local model) 
with the increase of sample size. Among the different updating methods, joint context estimation was found to have the best prediction 

performance. Bayesian updating was found to be very risky due to potential transfer bias. 

 No concrete recommendation was made on the sample size. This is because the sample size depends on the method of transfer and also on the 

model structure and specification used in the analysis.   A major problem, however, is the difficulty of small data samples from application context 
to accurately reflect true market shares. 
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Table 2.1(b) (Contd.) 

Paper Findings 

14. Santoso & Tsunokawa  (2010) 

 Naïve transfer and Bayesian updating techniques were substantially deficient compared to a locally estimated model in predicting observed 
behavior (based on rho square, TI and REM).  

 ρ2 and TI values suggest that either updating constants and scale or applying the combined transfer technique using a reasonable sample (of at 
least 200) provide the maximum improvement toward a locally estimated model with full sample. But combined transfer estimator does not 

perform well when the transfer bias exceeds a critical value, say, due to large variability in application data.  

 Depending on the updating procedure used, a minimum sample size of 200 is recommended for updating the transferred model. Sample sizes 
smaller than 100 or lower were not recommended due to large variance issues. 

15. Mahmassani et al. (1979) 

 Aggregate level (area wide) trip rates are not transferable across different regions.  

 Household level trip rates computed for an urban area of population in the 50,000 – 250,000 could be transferred to another urban area of 
similar size (based on the t-test).   

16. Caldwell & Demetsky (1980) 

 Household-level trip generation models applied at the household level are more transferable (for predicting aggregate trip rates) than the 

same model applied at an aggregate, zonal level.  

 Transferability of cross-classification model is better between areas with similar cities.  

17. Rose & Koppelman (1984)  

 

  For both inter and intra-regional transfer, the transfer index metric suggested that a significant level of accuracy (a minimum transfer index 
of 85 %) could be obtained from the naïve transfer. Updating the constant (using aggregate data from application context) further improved 

the transfer index.  

 Non-statistical tests (RMSE, RATE) indicated better transferability for models with updated constants than naively transferred models. 

 Transfer effectiveness is better for intra-regional transfer than for inter-regional transfer, suggesting that context similarity may be an 
important determinant of model transferability. 

18. Wilmot (1995) 

 Poor transferability was observed between areas with poor data quality, highlighting the importance of good data quality for transferability. 
Errors in data collection/measurement can lead to masking of transferability. 

 The average transfer index value (TIR) improved from 57% for naively transferred models to 87% for models with updated constants. 

 After controlling for confounding effects (i.e., updating constants with local data and working with good quality data), models with better 
specification (as measured by R2) transferred better than those with low values. The influence of model specification obscured without 

updating constants and with poor data. 

 Models transferred better between areas of similar income levels. Including income as explanatory variable would’ve helped improve 

transferability between areas with different income levels. 

19. Agyemang-Duah and Hall (1997) 

 Asymptotic t-test suggests that in almost all cases the coefficients of the models estimated for different regions of Toronto are statistically 

similar.  

 Measures of aggregate predictive accuracy suggest that naïvely transferred models performed acceptably in predicting aggregate shares of 

trip frequency (although with some over-prediction of the share of zero trips), except when the models are transferred between dissimilar 

areas (CBD to urban fringe).  

 Updating constants and parameters (using one scale parameter for all socio-demographic variables, and another for an accessibility variable) 

improved the aggregate prediction ability when at least 10% (1000 samples) of the application data was used for updating. 

 Scale parameter for demographic variables was not significantly different from 1. 

20. Kawamoto (2003) 

 Compared the spatial transferability of two types of regression models: conventional and standardized. Wald test statistics suggest that the 
standardized regression models are transferable between these two urban areas in Brazil, but not the conventional regression models.   

 RMSE values support the results from the wald test statistics. For all transfers, the transferred standardized regression models were found to 

perform almost equivalent to the locally estimated standardized regression models. 

21. Cotrus et al. (2005) 
 Z-test and Chow test rejected the hypothesis of the equality of transferred and locally estimated parameters. 

 But the transferred models were found to perform well in predicting the observed trip rates in the application context. 
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Table 2.1(b) (Contd.) 

 

Paper Findings 

22. Everett, (2009)  

 Results from the Q statistic indicated that the transferability of a trip generation model can be improved significantly (80% of the initially 

rejected models became acceptable) only by including a context specific variable ‘area type’ (developed by using a slightly modified 

procedure of that followed by the Claritas for area classification in the NPTS data).  Transfer effectiveness can be further improved by using 
a more disaggregate area type classification but careful attention is required on the sample size. 

23. Gunn & Pol (1986) 

 Mode-destination choice:  Each successive improvement over the naively transferred model offered statistically significant improvement 
(log-likelihood improvement). However, from an aggregate prediction ability standpoint, transfer scaling (updating constants and a single 

scale for all other parameters) offered the most significant improvement over naïve transfer. Updating two scale parameters for two sets of 

variables offered only marginal improvement. While none of the transfer method is statistically equivalent to complete re-estimation of all 
parameters, updating constants and scale of coefficients may suffice from an aggregate predictive ability stand point. 

 Tour generation models: Transfer scaling significantly improved the model fit to the application data (over the naïve transfer) and aggregate 

prediction ability, but complete re-estimation did not improve the model fit in a significant way.  

 Household driving license status and Car ownership models: Fully re-estimated models were statistically superior, but transferred scaling 

models (with updated constant and a scale parameter) would suffice to capture the practical differences. 

 Overall: Transfer scaling provided the most improvement per additional parameter to be estimated, while partial transfer and complete re-

estimation provide quickly diminishing (although statistically superior) returns per additional parameter.    

24. Arentze et al. (2002) 
 The prediction ability of the transferred model at both the aggregate and disaggregate levels support spatial transferability of the “Albatross” 

model system (except for mode choice model). 

25. PB Consult Inc. (2007) 
 Predicted shares (obtained from the transferred models) were reported to have match closely with the observed survey data for certain model 

components.  

26. Picado, (2013) 

 For most models, calibration via updating constants helped in getting reasonable aggregate predictions. 

 Largest differences observed between transferred model predictions and observed patterns for non-mandatory tour destinations and daily 
activity travel patterns and frequencies for college students, part-time workers and pre-school children. 

 Did not observe transferability at high levels of disaggregation, probably because updating constants helped in getting reasonable aggregate 
predictions but not necessarily in adequately capturing local behavior. 

27. Le Vine et al. (2010)  Predicted temporal distribution of activity start time and trips per day were found to be different from that in the local survey data.  

28  Nowrouzian & Srinivasan (2012) 
 Aggregate prediction supports the concept of transferability while elasticity measures do not.  

  Transferability depends on tour purpose and the direction of transfer. 

29. Vovsha et al. (2010) 
 Parameter estimates of location choice models were found to be quite different between different cities. Specifically, the parameter estimates 

of distance functions, an important determinant of the resulting home-work trip length distribution, were found to be considerably different 
among the 4 cities. This suggests the difficulty of transferring location choice models. 

30. Bowman et al. (2013) 

 While TTS rejected the transferability of any model (as a whole), a large proportion of individual coefficients are not significantly different 

from one region to the next. 

 It is better to transfer models built using larger estimation samples from a comparable region than to estimate new models using small sample 

sizes from the local region.  

 Coefficients of variables that are for specific population segments (that attempt to capture demographic heterogeneity) are more transferable 

than coefficients generic/common for the entire population. 

 Models for activity generation and scheduling are more transferable than those of mode choice and location choice.  

 Greater transferability was found between different regions in a state than across different states, with the exception that Jacksonville was 
more transferable to regions in California than to Tampa. Tampa was found to be most different from all other regions. 
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context of mode and/or destination choice model components, studies numbered 15-22 

are in the context of travel generation model components, and studies numbered 23-30 

are in the context of tour-based/activity-based model systems or model components. The 

discussion in this chapter draws from these tables and other theoretical studies.  

The next section provides an overview of theoretical and practical issues related 

to model transferability. Discussions on different transferability assessment metrics and 

transfer methods used in the literature are provided in sections 2.3 and 2.4 respectively. 

Section 2.5 discusses the transferability of tour/activity based models (and, model 

system). Along with the discussion, the related gaps in the literature are identified in each 

of these sections. Of these gaps, the notable ones that will be addressed in this 

dissertation research are summarized in Section 2.6. Section 2.7 concludes the chapter.   

2.2 Defining Transferability: Theoretical and Practical Considerations 

Most empirical research takes a restricted view of model transferability – as 

equivalence of the model parameters between different contexts. However, it is useful to 

begin with a broader understanding of the concept transferability, in terms of both 

theoretical and practical aspects. 

2.2.1 Theoretical Considerations  

Theoretical issues related to travel model transferability are best laid out in three 

resource papers by Ben-Akiva (1981), Hansen (1981), and Louviere (1981) for a 

conference workshop on Spatial, Temporal and Cultural Transferability of Travel-Choice 

Models. Thus, this section draws from (and builds on) these three papers. 

As described by Ben-Akiva (1981), travel forecasting models for a population are 

usually developed based on conceptual theories of travel behavior operationalized into 
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empirical relationships between endogenous measures of travel (or, dependent variables) 

and exogenous factors that influence travel (or, independent variables). The empirical 

relationships are expressed as mathematical models with unknown parameters relating 

the dependent and independent variables. Estimates of the unknown parameters are 

obtained using a sample of the data representing the population. Alternative empirical 

specifications are compared to arrive at a final empirical model to be used for policy 

analysis and forecasting. Based on this process of travel model development, Ben-Akiva 

(1981) and Hansen (1981) suggested the following hierarchy of different levels at which 

transferability needs to be considered: 

1. Underlying theory of travel behavior 

2. Mathematical model structure 

3. Empirical specification 

4. Model parameter estimates  

The above hierarchy transitions from a general and abstract level to a more 

specific level that involves numerical estimates of the parameters. The first level involves 

the transferability of: (1) broad behavioral postulates (Hansen, 1981) of travel behavior 

such as utility maximizing or satisficing decision paradigms, and (2) theories of travel 

behavior (e.g., trip based vs. activity-based), including representation of travel (e.g., trips 

vs. tours). The second level involves the transferability of model structure, which 

includes the mathematical model structure (e.g., logit vs. nested logit to model mode 

choice). The third level involves the transferability of empirical model specification, 

including the explanatory variables in the model, the specification of heterogeneity in 

behavior across demographic segments and the way in which variables enter the model 



 

23 

 

(e.g., linear vs. non-linear specifications). The fourth level considers the transferability of 

coefficients of explanatory variables and other parameters such as elasticities and value 

of time measures. In theory, an empirical model can be considered “perfectly 

transferable” from one context to another if its underlying behavioral theory, 

mathematical structure, variable specification and the parameter estimates are all 

transferable between the two contexts. However, several factors contribute to the 

potential failure of transferability at various levels of the hierarchy, as discussed below.  

At the theoretical level, there is an increasing recognition that the widely held 

assumption of a rational, utility-maximizing behavior assumed to model travel choices 

may not be valid in several contexts. For example, it is possible that individuals make 

several travel-related choices based on decision-making heuristics such as satisficing 

(Simon, 1955), and lexicographic (Tversky, 1969) rules, as opposed to the utility-

maximizing rule. Similarly, the classical expected utility theory may not necessarily be 

the most appropriate theory to explain several travel choices (see Kahneman and 

Tversky, 1979; and Li and Hensher, 2011). To the extent that the appropriate theories 

decision-making heuristics needed to model travel behavior are different across different 

contexts, it becomes difficult to transfer models. Although the utility theory can be used 

to accommodate a range of behaviors outside the purview of rationality, operationalizing 

the concept may need simplifying assumptions that may not hold across a wide range of 

contexts (Ben-Akiva, 1981). At this point, no empirical evidence exists on the influence 

of assumptions on a choice theory and decision-making rules on model transferability.  

At the second level, the choice of a specific model class from a variety of 

plausible model structures (e.g., porbit vs. logit vs. nested logit vs. mixed-logit) and the 
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functional form can introduce additional approximations (Ben-Akiva 1981). For instance, 

using linear regression to model trip generation introduces errors due to ignoring the 

discrete and integer nature of the outcome variable. To the extent that these errors vary 

across different contexts, model transferability gets affected. Similarly, ignoring 

unobserved heterogeneity in response to level-of-service variables in mode choice models 

can introduce errors that vary across spatial contexts and reduce model transferability. 

Like-wise the choice between additive and non-additive utility forms can influence 

transferability. The choice of the model structure is generally guided by the underlying 

theory of the travel behavior being modeled and considerations of simplicity. While 

significant research exists on advancing the model structures used to model travel 

choices, little evidence exists on what advances/improvements to the model structure 

made the models more transferable. Further research is needed to examine the effect of 

model structure on transferability. 

At the third level, different aspects related to model specification can influence 

transferability. Such errors include: (1) the omission of influential explanatory variables 

(Koppelman and Wilmot 1985), (2) neglect of socio-demographic heterogeneity and 

unobserved variation in travel behavior, and (3) the use of inappropriate transformation 

of variables (Ben-Akiva 1981). Inadequate model specification is perhaps one of the most 

important reasons behind the difficulty of transferring models. Koppelman and Wilmot 

(1985) provide a theoretical discussion to describe how omitting influential explanatory 

variables influences model transferability. Omitted explanatory variables in travel 

demand models cause the econometric problem of endogeneity when they are correlated 

to the variables included in the model (Koppelman and Wilmot, 1985). To the extent that 
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the errors introduced by omitted variables vary across contexts, model transferability 

becomes difficult. Empirical specifications of travel demand omit several variables that 

explain the variation in travel behavior across different regions. In this context, Louviere 

(1981) argued strongly that several issues related to variable specification need to be 

addressed before even considering transferability. He highlighted that several context-

specific characteristics – social, cultural, physical environment and spatial structures and 

urban form and transport system and network features – have a significant influence on 

travel behavior but are usually not represented in travel models built for a specific region 

due to limited variation in these characteristics within a region. Thus, it would be difficult 

to successfully transfer a model where these characteristics differ from one region to 

another.  

At the fourth level, there can be several reasons why the parameter estimates may 

not be transferable, including the sampling errors in estimating the parameters and 

differences in the way variables are measured (and in the measurement errors) between 

different contexts (Louviere 1981). Simple issues such as differences in the way variables 

are defined and created (e.g., network coding procedures for creating level of service 

variables) can lead to differences in the estimated coefficients of the variables between 

the two contexts (Louviere 1981). He argued that lack of commensuration of variables 

across different contexts makes it difficult to even test transferability of the estimated 

coefficients of those variables. Further, differences in the survey methods, instruments, 

and administration procedures can influence transferability. 

Intuition suggests that the potential for transferability decreases from the general, 

theoretical level to the specific level of parameter estimates. Further, failure of 
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transferability at any level reduces the potential for transferability at the lower level. Thus 

it is difficult to achieve perfect transferability while transferring models across different 

geographical contexts.  

2.2.2 Practical Considerations  

Models are only abstractions of reality. Thus, no model can ever be perfectly 

specified. Even for a single region (let alone transferability to another region), models 

can be developed only up to a satisfactory level of performance according to certain 

statistical and pragmatic criteria (Ben-Akiva, 1981). Further, such criteria are not clearly 

defined in the profession and vary from one region to another. Besides, the gap between a 

models’ representation of human travel behavior and reality is likely to be different from 

one region to another. Thus, it is unrealistic to expect models to be perfectly transferable 

with same specification and equivalent parameters between different regions. Several 

regions may have no option but to borrow models or information from other regions due 

to data and resource constraints. Thus, it might be more constructive to understand if 

models can be transferred up to certain acceptable practical criteria, rather than expecting 

perfect transferability. Taking these issues into consideration, Koppelman and Wilmot 

(1982) define transferability as the usefulness of the transferred model, information or 

theory in the new context. To the extent that a “borrowed” model could be used to make 

appropriate planning and policy decisions, the model could be considered transferable. 

The tricky part, however, is to determine whether (and to what extent) a transferred 

model helps in making appropriate decisions.  Thus, a more operational definition of 

transferability could be as follows: if a transferred model performs better than (or as 

good as) a model that can be built using locally available data and resources, then the 
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model could be considered transferable for practical purposes. This definition uses a 

locally built model as a yardstick against which a transferred model is assessed. 

However, it is useful to note that a transferred model that performs better than a locally 

built model may not necessarily be theoretically transferable in that it may not capture 

behavioral relationships that are invariant across geographical contexts; especially in 

situations with a poorly performing locally built model. 

2.3 Assessment of Transferability 

Since theoretically perfect spatial transferability is difficult to achieve, empirical 

assessment of transferability is essential to assess the extent to which models can be 

transferred. In this section, we first discuss the approaches and metrics used in the 

literature to assess model transferability. Subsequently, we identify several issues that 

need to be considered while assessing the transferability of travel forecasting models.  

2.3.1 Transferability Assessment Metrics  

Empirical assessment of model transferability requires data and/or information 

from at least two different spatial contexts. The context from which an empirical model is 

transferred is called the base context or the estimation context, and the context to which 

the model is transferred is called the application context or the local context. As 

discussed earlier, no empirical evidence exists on the influence of assumptions on choice 

theory and model structure on transferability. The empirical assessment of transferability 

has largely focused on transferring empirical specification with a corresponding set of 

parameters, implicitly assuming that the underlying theory and mathematical model 

structure are transferable.  



 

28 

 

Table 2.2 presents a summary of the metrics used in the literature for model 

transferability assessment. These metrics can be classified into three categories: (1) 

Statistical tests of equivalence of parameters, (2) Measures of predictive ability (at 

disaggregate and aggregate levels), and (3) Policy sensitivity/elasticity comparisons. 

Within these categories, one can categorize the metrics into absolute and relative 

measures of transferability. Absolute measures are used to assess how well a transferred 

model represents observed behavior (or behavioral changes) in the application context, 

while relative measures are used to assess the performance of a transferred model relative 

to a model estimated in the application context. These different categories are briefly 

discussed next. 

2.3.1.1 Statistical Tests of Equivalence of Parameters  

Statistical tests can be used to formally test the null hypothesis of model 

transferability (e.g., equality of parameters between estimation and application contexts), 

and make a determination of whether a model is transferable or not. The commonly used 

statistical tests in the literature are model equality tests statistic (METS), transferability 

tests statistics (TTS), and t-tests. Among these, METS and TTS are log-likelihood based 

measures that are used to test the statistical equivalence of models (i.e., the entire set of 

parameters) in the base and application contexts, while t-tests are used to compare the 

parameter estimates of specific variables between two contexts. However, before jumping 

into conclusions based on these tests, it is worth remembering at least a couple of caveats. 

First, in the context of discrete choice models, the parameters estimates are confounded  
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Table 2.2 A Summary of the Metrics Used in the Literature to Assess Model Transferability 
 

    Notation: L  stands for log-likelihood and  for a vector of parameters, while ,j i  are subscripts for transferred and locally estimated models, respectively. ( )i jL   = log-likelihood of the  

                        transferred model applied to application context data, ( )i iL  = log-likelihood of the local model applied to application context data, ( )ij ijL  = log-likelihood of the model estimated on a                 

                        combined dataset i and  j , ( )i iL C = log-likelihood of a constants only model for application context data,
kPS and 

kOS = Predicted shares and observed shares, respectively for alternative k.  

Name of the Test Type of the Test Expression Description 

Model Equality Test 

Statistic (METS) 

Statistical tests of 
equivalence of 

parameters 

-2[ ( ) - ( ) - ( )]ij ij i i j jL L L  

 

 2 distributed. Used to test if the model parameters (or a subset of parameters) in the base and 

application contexts are equal (i.e., the hypothesis that the behavioral process in the two contexts can be 

described by a common model). 

 Can be used to test the transferability of a subset of parameters while allowing for other parameters to 
be different. 

 Requires estimation data from both contexts so a model with a combined dataset can be estimated.  

Transferability Test 

Statistic (TTS) 

Atherton & Ben-Akiva 

(1976)  

Statistical tests of 

equivalence of 
parameters 

-2[ ( ) - ( )]i j i iL L   

 2 distributed. Used to test if the transferred model parameters are equal to the parameters in the 

application context. 

 Does not require estimation data from the base context. 

 Recognizes the possibility of asymmetric transferability between the two contexts. TTS value for 
transferring a model from one context to another is not necessarily equal to the TTS for transfer in the 

other direction. 

t-tests of individual 

parameter equivalence 

Statistical test of 
individual parameter  

equivalence 

Ratio of the difference in 
parameters to standard 

error of the difference 

 Used to compare the parameter estimates of specific variables (e.g., coefficients on travel time variable) 

between two contexts using standard t-tests (based on parameter estimates and their standard errors). 

Transfer rho-square ( 2

T ) 

Koppelman & Wilmot 
(1985) 

Measure of  

disaggregate-level 
predictive ability 

2
( )

 1-
( )

i j

T

i i

L

L C


   

 Analogous to the rho-square metric commonly used to measure goodness of fit in model estimation. 

 Describes how well a transferred model fits the data observed in the application context, relative to a 
reference model such as a market shares model (i.e., a constants only model). 

Transfer Index (TI) 

Koppelman & Wilmot 
(1982) 

Measure of  

disaggregate-level 

predictive ability 

 

( ) - ( )

( ) - ( )

i j i i

i i i i

L L C

L L C




 

 Measures goodness-of-fit of a transferred model relative to an identical specification estimated in the 

application context.   

 Ratio of a transferred model’s rho-square ( 2

T ) to the locally estimated model’s rho-square ( 2 ). 

 The closer the value of TI is to 1, the closer is the transferred models’ performance to a locally 
estimated model. 

 Can be used to compare transferability of different models to a region with a same locally estimated 
model as reference.  

Relative Error Measure 

(REM) 

Measure of  

aggregate-level 
predictive ability 

( - ) /k k kPS OS OS   An error measure of the aggregate-level prediction for a choice alternative. 

Root-Mean-Square Error 

(RMSE) 

Measure of  
aggregate-level 

predictive ability 

1/2
2

k k

k

k

k

PS REM

PS

 
 
 
 
 




 

 Measures the aggregate-level predictive ability of the model, when compared to aggregate observed 
shares in the data. 

Relative Aggregate 

Transfer error (RATE) 

Measure of  

aggregate-level 
predictive ability 

( )
 

( )

i j

i i

RMSE

RMSE




 

 Ratio of the RMSE value of a transferred model with that of a locally estimated model. 

 Used to assess the aggregate-level prediction performance of a transferred model relative to a locally 
estimated model. 

Aggregate Prediction 

Statistic (APS) 

Measure of  
aggregate-level 

predictive ability 

2( - )k k

k
k

PS OS

PS
   2 distributed. Used to test the hypothesis that the alternative shares predicted by the transferred model 

are equal to the observed shares in the application context . 



 

30 

 

with the scale (i.e., variance) of the unobserved components of utility functions. Thus, 

parameter equivalence implies equality of the ratio of true (but unknown) coefficients to 

the scale of the unobserved factors; not necessarily the equality of true coefficients. 

Second, one should be cognizant of the weakness of statistical hypothesis testing. Results 

of statistical tests (e.g., test of equal parameters hypothesis) depend, in part, on the size of 

the data samples used (Ben-Akiva, 1981). With small data samples, precision in the 

estimates may not be sufficient to reject the null hypothesis. However, lack of sufficient 

evidence to reject the hypothesis does not necessarily imply the analyst can safely 

conclude that parameters are transferable. Numerical differences in the estimates may be 

sufficient to result in practically different predictions (Talvite and Krishner, 1983). On 

the other hand, with large enough data samples, the null hypothesis of parameter equality 

is highly likely to be rejected (Gunn et al., 1985), but that doesn’t imply that the 

differences are practically important. As can be observed from column 5 of Table 2.1(a), 

several studies (e.g., Watson & Westin, 1975 and Atherton & Ben-Akiva, 1976) in the 

literature used statistical tests to assess model transferability. Results from these tests 

have rejected the hypothesis of transferability in almost all the cases (see Table 2.1 (b) for 

details). Thus, statistical tests of model (in)equality should be considered in light of 

practical differences between the models (Koppelman and Wilmot, 1982). The tricky 

part, however, is in determining whether the statistical differences are practically 

important. 

2.3.1.2 Measures of Predictive Ability  

Although a model is not “statistically” transferable, it could closely approximate 

behavior in the application context for all practical purposes. Measures of predictive 
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ability have been used to make such practical assessments. These metrics measure the 

predictive accuracy of transferred models in the application context and can be classified 

into two categories: (1) aggregate prediction based transferability metrics (such as 

relative error measure and root-mean-square error), and (2) log-likelihood based 

transferability metrics (such as transfer rho-square and transfer index).  

Aggregate-level prediction based transferability metrics such as the Root Mean 

Square Error (RMSE) provide a measure of error in the aggregate predictions (e.g., 

predicted mode shares) of the transferred model. The analyst needs to make assumptions 

on the level of acceptable error in predictive accuracy to determine whether a model is 

transferable. A cautionary note is in order here regarding the use of aggregate-level 

prediction metrics for transferability assessments. These metrics measure how well a 

transferred model reproduces aggregate-level behavior (e.g., mode shares) in the 

application context, but not necessarily the ability to adequately forecast changes in travel 

demand under different demographic, land-use and transportation system change 

scenarios. Thus, models deemed transferable based on aggregate prediction metrics may 

not necessarily be transferable in terms of policy predictions. 

Among the log-likelihood based transferability metrics, transfer rho-square ( 2

T ) 

describes how well a transferred model fits the data observed in the application context, 

relative to a reference model (e.g., a constants only model). The transfer index (TI) is a 

derived measure from transfer rho-square in that it is the ratio of a transferred model’s 

rho-square to the locally estimated model’s rho square. Thus, TI measures the goodness 

of fit of a transferred model relative to a locally estimated model (the closer the TI value 

is to 1, the more transferable is the model considered to be). Introduced by Koppelman 
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and Wilmot (1982), TI is a widely used measure to assess transferability, partly because 

of its simplicity and primarily because it provides valuable information on the extent of 

transferability even if a model is deemed not transferable by statistically rigorous tests. TI 

is also a valuable measure to assess the influence of model improvements (e.g., 

specification improvements) on model transferability. Further, the TI can be used to 

compare the transferability of different models to a region with a same locally estimated 

model as the reference. For example, one can compare models transferred from different 

regions to see which model predicts observed behavior closest to the locally estimated 

model. However, no consensus exists in the literature on the minimum threshold value of 

TI needed for a model to be transferable. 

Log-likelihood based metrics in the table are generally viewed to measure how 

well a transferred model predicts the disaggregate-level behavior in the application 

context. In a stricter sense, however, they measure the aggregate-level goodness of fit of 

the transferred model in the application context. It is not clear, if this necessarily provides 

an assessment of the ability to adequately forecast changes in travel demand under 

different demographic, land-use and transportation system change scenarios. For 

example, the transferability test statistic (TTS) measure, as discussed in Table 2.2, 

assesses if the transferred model has a similar likelihood of predicting the observed 

choices as a locally estimated model. It is possible that two models have similar 

likelihood of predicting the observed choices but different sets of coefficients (see 

Atherton and Ben-Akiva, 1976 for such a result)
1
. Similarly, it is not clear what should be 

                                                           
1 Atherton and Ben-Akiva (1976) report that TTS supports transferability of a mode choice model, while 

comparing the parameter estimates suggest that the coefficients of only the level of service variables are equivalent 

between the base and application contexts. Consequently, the two models may differ in the way they respond to 

changes in demographic makeup of the regions. 
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the minimum TI value threshold for which the analyst can confidently declare a model to 

be transferable (in terms of its ability to respond to changes in explanatory variables).  

2.3.1.3 Policy Sensitivity/Elasticity Comparisons  

Assessment of model transferability has traditionally been on the basis of how 

well transferred models reproduce existing behavior rather than on their ability to 

adequately forecast changes in travel demand (Karasmaa 2007). This is in part due to the 

obsession in the field toward expecting travel models to accurately predict the observed 

patterns. Even when models developed for a single region are validated for that same 

region (let alone transferring to another region), the typical yardstick for model 

assessment is prediction of observed travel patterns rather than appropriate policy 

sensitivity. This same tendency appears in the way transferability is assessed as well.  

It is important to note that the ability of a model to reproduce observed behavior 

does not guarantee the ability to adequately forecast changes in travel demand under 

different demographic, land-use and transportation system change scenarios. Since a 

predominant use of travel models is for forecasting and policy analysis, a more robust 

way to assess model transferability is to see if a transferred model provides similar 

responses to policies as a locally estimated model. For example, one can compare 

elasticity values of the transferred and local models with respect to different explanatory 

variables both at the aggregate and disaggregate levels. An advantage of comparing 

elasticities or policy sensitivities is that, unlike the parameter estimates in discrete choice 

models, such measures are not confounded with the scale of the unobserved factors. 

Surprisingly, however, only a handful of empirical studies (e.g., Atherton and Ben-Akiva 
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1976, Karasmaa 2007, Nowrouzian and Srinivasan 2012) use policy sensitivity tests to 

assess model transferability.  

2.3.2 What are Acceptable Levels of Errors?  

As discussed earlier, perfect transferability is very difficult to achieve. Thus, the 

yardsticks used to measure transferability also ought to allow for errors. That is, the 

analysts need to make assumptions on the level of acceptable error (or differences in the 

transferred and local models; either in predictive accuracy or in policy sensitivity) to 

determine whether a model is transferable. For example, Karasmaa (2007) uses “25% 

error” in the prediction accuracy of a transferred model as a maximum acceptable 

threshold. Nowrouzian & Srinivasan (2012) report that 20 out of the 24 models they 

considered become “transferable” if no more than 10% error in the predictive likelihood 

on a validation sample is considered acceptable. No guidelines exist on what are 

acceptable levels of errors. Thus, further empirical research on transferability should 

focus on arriving at robust thresholds (Nowrouzian and Srinivasan, 2012) for errors in 

predictive measures and policy sensitivity measures. For example, what is the minimum 

threshold value of transfer index (TI) needed for a model to be considered transferable? 

2.3.3 Relationships among Different Metrics of Transferability  

As can be observed from column 5 of Table 2.1(a), a variety of metrics have been 

used to assess model transferability. A closer look at the findings in last column of this 

table suggests that the transferability results and findings are mixed and vary based on the 

metrics used to assess transferability. This makes it difficult to make conclusions on the 

conditions under which (and the procedures using which) models can be transferred. 



 

35 

 

As discussed earlier, similarity of log-likelihood based predictive measures 

between the transferred and locally estimated models does not necessarily imply equality 

of parameter estimates between the models. Similarly, different models which provide 

similar aggregate predictions do not necessarily provide similar policy responses (e.g., 

elasticity values). Empirical research toward understanding the relationship between the 

outcomes from different metrics of transferability will be useful. A few questions to be 

addressed are listed below: 

1. Are similarity of log-likelihood based measures and aggregate predictions 

necessary but not sufficient conditions for model transferability?  

2. Does similarity of log-likelihood based measures imply the similarity of 

aggregate predictions from a transferred model to that of a locally estimated model?  

3. What is the minimum value for transfer index (TI) which the analyst can 

confidently declare that the transferred model can provide policy predictions as good as a 

locally estimated model? 

2.3.4 Factors Influencing Transferability Assessment 

 Although model transferability is viewed as the transferability of the travel 

behavior relationships reflected in model equations, as discussed earlier several factors 

other than differences in travel behavior influence the transferability of models. They are 

discussed here, along with relevant directions for further research.  

2.3.4.1 Sampling Errors in Parameter Estimates 

Most of the above approaches/metrics to assess transferability use point estimates 

of the parameters (hence, point estimates of the model predictions and elasticity values). 

However, numerical differences in the point estimates may be sufficient to result in 
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significantly different probability values, aggregate predictions (e.g., mode shares), and 

elasticity estimates (Talvite and Krishner, 1978). To avoid such situations, it is useful to 

account for the sampling variance in the parameter estimates. One way to do so is to 

bootstrap. That is, instead of relying on point estimates of predictions and elasticities, one 

can arrive at a range of predictions and elasticity values using both the parameter 

estimates and their standard errors. Another way is to construct sampling distributions (of 

parameter estimates and implied predictions and elasticities) by repeatedly drawing 

different samples from the population (see Karasmaa, 2007). Comparing ranges or 

confidence intervals (of predictions and elasticities) implied by the transferred model 

with those of the application context model can potentially pave way for a more useful 

assessment of transferability. For example, one can examine the extent to which the two 

confidence intervals overlap. Such information allows the analyst to measure the extent 

of model transferability (say, there is an 85% overlap between the two confidence 

intervals), which is an attractive alternative to searching for a “crisp” yes/no answer on 

transferability.  

It is our conjecture that ignoring sampling variance is a reason for rejecting model 

transferability in many situations, simply because numerical differences in point 

estimates lead to seemingly practically different predictions.
2
 It is possible that the 

models that provide seemingly different forecasts based on the point estimates might 

actually provide closely overlapping confidence intervals for those same forecasts. 

Empirical evidence is needed to either confirm or contest this hypothesis. 

                                                           
2 Of course, if the sizes of the samples used for estimating either the estimation context model or the 

application context model are small, the imprecision (or standard error) in the resulting parameter estimates can 

potentially be too small to make reliable assessments. Thus, first and foremost, it is important to work with sufficient 

sample sizes in both the estimation and applications contexts to be able to make credible inferences on model 

transferability. 
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2.3.4.2 Differences in the Definitions and Measurement of Variables  

Contextual differences in the measurement of variables can make it difficult to 

assess transferability across different contexts. Simple issues such as differences in the 

way variables are defined and created can potentially lead to differences in the estimated 

coefficients of the variables between the two contexts (Louviere 1981). Since it is 

difficult to quantify and disentangle such measurement errors, it becomes difficult to test 

the transferability of the true influence of the corresponding variables. As Louviere 

(1981) argued, it will be useful to implement common measurement schemes for 

important explanatory variables to facilitate model transferability. In addition to 

measurement errors in explanatory variables, reporting errors (by the survey respondents) 

in the dependent variables of interest can influence transferability. For instance, 

rounding-off errors in continuous variables such as activity durations and departure times 

can influence the transferability of models estimated for such variables. Efforts to 

disentangle errors in variables from the parameter estimates can help in better 

assessments of model transferability. Further, as Talvite and Krishner (1978) indicated, 

data cleaning mechanisms and treatment of outliners can also influence the transferability 

of estimated parameters. 

 Differences in survey methods, instruments and administration can also get 

confounded with the differences in the parameter estimates between two regions. 

Differences in the wording of questions can also cause differences in the elicited 

responses. Although little empirical evidence exists on the influence of using different 

survey data sets on transferability results, conducting transferability assessments using 

data from a same survey/source helps in avoiding potential confounding effects due to 
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differences in survey methods. In this context, it would be useful to understand the extent 

to which survey differences can influence model transferability assessments. 

2.4 Enhancement of Model Transferability (Transfer Methods) 

The simplest method to transfer a model is called naïve transfer, where the model 

specification and parameter estimates from one context are transferred directly (i.e., 

without any modifications) to another context. When making a naïve transfer, it is 

assumed that the model is perfectly transferable in that it captures behavioral 

relationships that do not vary across contexts and that the variability in travel behavior is 

solely due to the differences in the values of the explanatory variables in the model. As 

can be observed from column 4 of Table 2.1(a), naïve transfer was used in several studies 

in the literature. Except in a few cases (e.g., Atherton and Ben-Akiva, 1976), most of 

these studies suggest that the performance of a naively transferred model was far from a 

locally estimated model both in terms of data fit as well as aggregate prediction (see 

Table 2.2 for details).  Thus using available information and data from the application 

context, the base context model is usually “updated” to render it better capture behavior 

in the application context (i.e., to make it better transferable). The various model 

updating methods are discussed next (these generally reflect increasing levels of data 

needs from the application context). Consider the following notation to describe different 

updating methods used to enhance model transferability.  

Let i  and j  be the subscripts for the base and application contexts. 

tU  = utility specification in context t  ( t  = i and j )  

tC vector of alternative-specific constants in context t  ( t  = i and j ) 

t  true parameter vector (excluding alternative constants) in context t  ( t = i and j )  
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ˆ
t  = estimated parameter vector (excluding alternative constants) in context t  ( t  = i and

j ) 

t = vector of unobserved factors in context t  ( t  = i and j ) 

t  scale of the unobserved factors in context t  ( t = i and j )  

X = vector of explanatory variables 

 r = vector of context-specific variables in the combined data set (from the base and 

application contexts) 

s = vector of common variables in the combined data set 

 = vector of scales to update the base context parameters 

ˆ
updated  = updated parameter vector in the application context 

t = covariance matrices of estimated parameters in context t  ( t  = i and j ) 

updated = covariance matrices of the updated parameters in the application context 

i j     = transfer bias (i.e., difference in the true parameters between the two 

contexts), which is usually estimated as ˆ ˆˆ
i j    .  

2.4.1 Updating Constants  

In this approach, it is assumed that the parameters other than the constants in a 

model are transferable across areas; only the constants need to be updated. The constants 

can be either an intercept in a linear regression model, intercept of the propensity 

function in an ordered response models, or alternative-specific constants of the utility 

functions in a discrete choice model. For discrete choice models, the constants can be 

updated using either aggregate level information on the market shares from the 

application context or a disaggregate sample from the application context. 
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In general, the constants in a model capture the average effects of unobserved 

factors on the travel choices being modeled as well as the influence of measurement 

errors in the explanatory variables. To the extent that the above influences (of unobserved 

factors and measurement errors) vary across different contexts, the constants can be 

expected to be different across the contexts. It is not uncommon that constants explain a 

large share of the variation in the choices being modeled (due to the presence of 

influential unobservable and un-measurable factors). Thus, updating the constants of a 

transferred model using information from the application context can help in capturing 

the differences in the average effects of the unobserved factors between the two contexts.  

As can be observed from Column 4 of Table 2.1(a), updating constants is a widely 

used method in practice to transfer models from one region to another. Empirical 

evidence in the literature (see column 6 of Table 2.1(a)) suggests that updating the 

constants in the model can significantly improve the performance of a transferred model 

in terms of improved log-likelihood based measures (e.g., transfer index) and improved 

aggregate-level predictions (Koppelman and Wilmot 1982; Koppelman et al., 1985; 

Abdelwahab, 1991). For example, Koppelman and Wilmot (1982) report that updating 

the constants of a transferred mode choice model helped in achieving as much as 80% 

transfer index and containing the aggregate prediction errors (RMSE) to less than 20%. 

Abdelwahab (1991) reports an 80% accuracy of aggregate predictions after updating the 

constants of a transferred mode choice model using local data. The important question, 

however, is to what extent does updating constants help in capturing the behavior in the 

application context? In other words, does the improvement (due to updating constants) in 

the log-likelihood based measures (e.g., TI) and aggregate predictions translate to 
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improvements in the ability of the transferred model to predict appropriate responses to 

policies? For instance, it is possible that a naively transferred model that performs rather 

poorly can be improved significantly (in terms of both transfer index and aggregate 

predictions) simply by updating its constants using local data. This improvement can be 

attributed largely to the property of discrete choice models (especially multinomial logit) 

that updating constants can do the trick in getting the aggregate predictions right rather 

than to the improvement in the model’s capture of behavior in the application context. In 

other words, there is no guarantee that a transferred model with updated constants can 

provide credible policy responses in the application context. However, empirical 

evidence is required to support/contrast this hypothesis. 

2.4.2 Transfer Scaling  

Updating the constants of a model helps in capturing the differences in the 

average influence of the unobserved factors between the base and application contexts. 

But it does not recognize the possible differences in the magnitude of variation in the 

influence of unobserved factors. The transfer scaling method overcomes this 

shortcoming. In this method, it is assumed that the utility function parameters computed 

in the base context (excluding the alternative constants) are transferrable to the 

application context up to a certain scale ( ). To understand this, consider the utility 

specification in the application context ( jU ) as: 

                                           
/

j i i i iU C X                                                             (2.1) 

The scale factor ( ) in the above equation represents the ratio between the magnitudes of 

the variation in unobserved factors influencing the choice in the two contexts i  and j   

(i.e., /i j   ). Since the parameter estimates in compensatory discrete choice models 
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are confounded by the scale of the unobserved factors, updating the scale helps in 

reconciling the differences in the variation of the unobserved factors between the two 

contexts. The closer the value of   is to 1, the smaller are the differences in the scales of 

the unobserved factors between the two contexts. Of course, the constants can also be 

updated (along with the scale) to capture the differences in the average influence of 

unobserved factors between the two contexts. In essence, it is assumed that the transfer 

bias is simply due to the differences in the average effects of unobserved factors (i.e., 

alternative specific constants) and the magnitude of variation in the unobserved factors 

(i.e., scales) and therefore, can be eliminated by simply updating the constants and the 

scale of the estimation context model using a sample of data from the application context. 

There is a potential pitfall of this approach, as discussed below and elsewhere (Ben-

Akiva and Bolduc, 1987). 

 To update the base context parameters ( i ) according to equation (2.1), the 

approach uses estimated parameters ( ˆ
i ) in place of the true parameters ( i ) from the 

base context. Thus, any estimation errors (say, sampling errors) in the base context 

ˆ( )i i   are carried over to the application context, as below: 

                                       
ˆ ˆ( )

ˆ ˆ     = ( ) ( )

j i i i i

i i i

     

    

   

 
                                             (2.2) 

To the extent that the estimation bias in the base context ˆ( )i i 
 
is non-negligible, the 

updated parameters will be biased by ˆ( )i i   .   

 While there is empirical evidence that much of the transfer bias can indeed be 

eliminated by adjusting model constants and scales (Algers et al., 1994; Badoe and Miller 
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1995), this approach doesn’t really recognize the possibility of true behavioral differences 

between the two contexts. Controlling for the effects of unobserved factors does not help 

in eliminating the transfer bias due to the true differences in the true parameters; it only 

eliminates the confounding effects due to unobserved factors.    

  Transfer scaling is sometimes performed to estimate separate scaling factors for 

different groups of variables in the base context model. This approach is called partial 

transfer (see Gunn et al. (1985)). For example, the level of service variables in a mode 

choice variable can be associated with one scaling factor and the socio-demographic 

variables can be associated with another scaling factor. If a separate scale parameter is 

estimated for each variable, it is equivalent to complete re-estimation. Unless it is 

necessary to re-estimate the coefficients of all variables, a cleaner approach is to retain 

the same scaling factor for all the variables (which accounts for the differences in the 

variation in the influence of unobserved factors across the two contexts) while allowing 

for differences in the influence of groups of explanatory variables. This approach allows 

in recognizing behavioral differences between the two contexts. 

While some studies (Algers et al., 1994; Badoe and Miller 1995) found improved 

performance (in terms of improved aggregate-level predictions and log-likelihood 

measures), other studies (Koppelman et al., 1985) suggested considerable but less 

improvement when compared to updating the model constants. Besides, it is not clear if 

the improvement in the model in terms of aggregate predictions and log-likelihood based 

measures translates into improvement in the model’s sensitivity to changes in explanatory 

variables. 
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2.4.3 Bayesian Updating  

Proposed by Atherton and Ben-Akiva (1979), this approach involves a Bayesian 

updating of the base context parameter estimates using estimates obtained from a small 

sample in the application context. The prior distribution (distribution of the base context 

parameters) is combined with the sample distribution (distribution of the parameters 

estimated from a small sample in the application context) to obtain the posterior (i.e., 

updated) distribution of the parameters.  

Updated parameter estimates, ˆ
updated  = 

1 1 1 11 ˆ ˆ( ) ( )i ji j i j
 

                     (2.3) 

Updated covariance matrix, 
updated =  

1 1 1( )
i j

                                             (2.4) 

The updated parameter estimates ˆ
updated

 
are a weighted average of the base 

context parameter estimates ˆ( )i  and the parameter estimates ˆ
j  

from the application 

context, the weights being the inverse of their respective variances. The use of the 

covariance matrices helps in accounting for the sampling error in the base context and the 

application context. The estimates with lower variance (or greater certainty) contribute 

more to the updated parameters than those with greater variance.  

Though this approach provides an advantage of combining prior information with 

a small sample from the application context, the quality of the posterior/updated 

parameter distribution depends on the distributional assumption (normal distribution in 

most of the cases) used in the updating process. Another criticism of this approach is that 

it assumes transfer bias (  ) as zero, i.e. there are no differences between the true 

parameters in the estimation and application contexts. If the size of the sample used to 

estimate the application context parameters is too small, then the Bayesian updating 
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places a greater emphasis on the estimation context parameters assuming no transfer bias 

from the estimation context to the application context. But in practice, significant transfer 

biases can potentially exist for at least some of the parameters in the model, especially for 

transfers between significantly different contexts. As argued by Karasmaa (2007), unless 

we know if the transfer bias is small (which is difficult to know in real transfer 

situations), it can be risky to use Bayesian updating (also see Badoe and Miller, 1995 

who warn against using the Bayesian approach).  

2.4.4 Combined Transfer Estimator  

This approach, proposed by Ben-Akiva and Bolduc (1987), is an extension of the 

Bayesian updating method to take into account the transfer bias between the estimation 

and application contexts. The combined transfer estimator follows a mean squared error 

(MSE) criterion to combine both transfer bias and the variance of the estimates in the 

base and application contexts results. To do so, the estimator is expressed as a linear 

combination of the unbiased parameter estimates from the estimation and application 

contexts, as shown below:  

                     
1

1 11 1ˆ ˆ ˆ( ) ( )updated i ji j i j
  


          

       3
                (2.5) 

                                             
updated =  

1
2

2

0

0

i

j



 
 
 
 




                                           (2.6) 

Note that if transfer bias   = 0, equation (2.5) reduces to the Bayesian updating equation 

                                                           
3 Since the transfer bias   used in this equation is unknown, its estimate ( ˆ ˆˆ

i j    ) is used. 
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 (2.6). On the other hand, if the transfer bias ( )  is large, the term
1

1
( )  in 

equation (2.5) becomes negligible and therefore, ˆ
updated = ˆ

j  
the parameter estimates 

from the application context. That is, for large transfer bias, the combined transfer 

estimator results in estimates equivalent to the parameter estimates from the application 

context. Specifically, the benefit of combining the two estimators is lost when the transfer 

bias becomes large enough to result in a mean square error greater than the variance of 

the parameter estimates in the application context.  

 Several studies that have used this approach suggest its superior performance 

compared to Bayesian updating (Badoe and Miller, 1995; Santoso and Tsunokova, 2010). 

As suggested by Karasmaa (2007), and for the reasons discussed above, this approach 

works the best when the transfer bias is small between the estimation and application 

contexts. Since the transfer bias is typically estimated as a difference between the 

estimated parameters in the estimation and application contexts, in situations with small 

sample sizes in the application context, the estimated transfer bias is likely to be large 

leading to an increased emphasis on the application context (with small data). 

2.4.5 Joint Context Estimation  

This approach (proposed by Bradley and Daly, 1997; Ben-Akiva and Morikawa, 

1990) combines data (not parameter estimates) from the base and application contexts to 

estimate a joint, base-application context model. Depending on the data availability in 

two contexts, common parameters can be estimated for a subset of variables while 

allowing context-specific parameters for other variables. Let tU
 
and tX denote the utility  

components and the vector of all explanatory variables in the joint context model 

respectively (t = i  and j ).  
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                                                  / /( ) ( )i i i i iU r s                                                   (2.7)                                                                                      

                                                   
/ /( ) ( )j j j j jU r s                                                 (2.8) 

                                                    

/

/

0

0

i i i

j j j

X r s

X r s

   

   

                                                     (2.9)                                                         

where,   is the vector of common parameters and i  and j  are the context-specific 

parameter vectors. To recognize the differences in the variance of the influence of 

unobserved factors in the two contexts, the scale of the distributions of i  and j  are 

allowed to be different. During estimation, a ratio ( ) of the two scale parameters can be 

estimated, where 
2 var( ) / var( )i j   .

4
 To do so, the application context utility can be 

scaled by   as: 

                                   
/ / /( ) ( ) ( )j j j j j j j jU r s X                                      (2.10) 

This approach has similarities with the transfer scaling approach in that it allows 

the scale of the unobserved factors to be different. But since this approach uses data (not 

parameter estimates) from the two contexts, errors in the estimation process (e.g., 

sampling errors) of the base context parameters do not shift automatically to the updated 

parameter estimation. Of course, in situations where data is not available (but only 

parameter estimates are available) from the base context, the approach cannot be used. 

                                                           
4 Two different scales – one for each dataset – cannot be estimated due to identification issues. Only the ratio 

of the scales can be estimated only in situations when at least one of the variable coefficients is the same between the 

two contexts. One cannot even estimate the ratio of the scales when all parameters are different between the two 

contexts. Thus, the underlying hypothesis behind joint context estimation is that the travel behavior (reflected in 

variable coefficients) is similar between the two contexts for at least one explanatory variable in the model. If all the 

parameters are different between the two contexts, one cannot estimate a joint model with a scale ratio (there is no need 

to do so because the models are not transferable anyway). See Bradley and Daly (1997), Ben-Akiva and Morikawa 

(1990), and Louviere et al., (1981) for the basics of choice model estimation using data from multiple contexts. 
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But if the data is available, the analyst can explore different specifications allowing 

different coefficients for a sub-set of variables and estimating common coefficients for 

other variables (for whom data from any one single context is too small to estimate 

context-specific parameters). This helps in getting improved (and efficient) parameter 

estimates for variables whose data availability in either of the contexts is small, which is 

not an uncommon occurrence in practice. Specifically, in situations where the variation in 

important socio-demographic, land-use, and level-of-service variables is insufficient in 

either contexts, pooling data can potentially help in achieving sufficient variation for 

parameter estimability. Further, when sufficient data is available from the two contexts, 

the approach allows the analyst to test the possibility of contextual differences in the 

parameter estimates while controlling for the differences in error scales and not getting 

bogged down with sampling error issues.  

In summary, the above discussed methods to transfer models differ from each 

other in assumptions, and also in the ways they are applied. The updating constants 

approach assumes no transfer bias in parameters other than constants. The transfer 

scaling approach does not consider the sampling error in the estimation context; it 

attempts to accounts for only the transfer bias by using a small sample data from the 

application context. On the other hand, Bayesian approach considers sampling error in 

both contexts, but assumes that transfer bias is zero. Thus, unless we know that the 

transfer bias is small (which is difficult to know in real transfer situations), it can be risky 

to use Bayesian updating (Karasmaa, 2007); careful attention is required in selecting 

updating methods. The combined transfer estimator extends the Bayesian approach by 

taking into account the transfer bias as well as sampling error. The joint context 
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estimation method also considers both the transfer bias and the sampling error of the 

model parameters.
5
 While several empirical studies assessed the relative performance of 

different model updating methods (see Tables 2.1(a) & 2.1(b)), to our knowledge, 

Karasmaa (2007) is the only study that compared all the four methods discussed above in 

the context of spatial transferability. The timing of most other comparisons (Atherton and 

Ben-Akiva, 2010; Galbraith and Hensher, 1982) was before the joint context estimation 

was proposed, thus eliminating joint context estimation as a potential alternative method 

in the comparison. Karasmaa (2007) concludes that joint context estimation as the best 

transfer method if data is available from both estimation and application contexts. Badoe 

and Miller (1998) also suggest the joint context estimation approach, albeit in the context 

of developing temporally transferable models (by pooling data from different temporal 

contexts). More recently, an ongoing project on developing activity-based models for the 

Jacksonville and Tampa regions in Florida employs joint context estimation of the model 

parameters by combining data from both the regions. In situations where data is not 

available from the estimation context, one has to choose from other methods. 

Nevertheless, more empirical evidence is needed to make conclusive statements on which 

model updating method works best under which conditions.    

2.4.6 Improvements to Model Specification  

While the model updating methods discussed above can potentially help in 

improving model transferability, first and foremost, it is paramount to consider 

improvements in model specification as a way to enhance model transferability. Without 

                                                           
5  While Bayesian updating and combined transfer estimation requires the parameter estimates and 

corresponding covariance matrices from both contexts, updating constants and transfer scaling requires only the 

parameter estimates from the base context and a sample of data from the application context. Joint context estimation 

requires model estimation data from both contexts. 



 

50 

 

adequate model specification, it would be difficult to transfer models to other spatial 

contexts. As Koppleman and Wilmot (1985) suggest, a certain minimum adequate 

specification is necessary for achieving reasonable transferability, even with the model 

updating methods discussed above. In the context of mode choice models, for example, 

models with only LOS variables have been found to fall short of this minimum adequate 

specification criterion (Koppelman and Wilmot 1985).
6
 Thus, to the extent possible, 

model specifications should accommodate different sources of heterogeneity in behaviors 

– demographic heterogeneity in preference to different alternatives, demographic 

heterogeneity in response to alternative attributes (e.g., differences in sensitivity to travel 

times and travel costs), and  other sources of heterogeneity such as non-linearity in 

response to level of service attributes and variations due to unobserved factors (that can 

be captured using methods such as mixed logit). Incorporating these different sources of 

heterogeneity is better possible with disaggregate-level (individual/household-level) 

models as opposed to aggregate-level models.  

In addition to the heterogeneity due to demographic and level-of-service 

characteristics, as argued by Louviere (1981), a large portion of the variation in observed 

travel behavior is due to the activity-travel environment attributes, including spatial land-

use and urban form attributes, network structure, and cultural characteristics that show 

                                                           
6 The natural next question is: what should be the criteria to choose which model specification is better (for 

the purpose of transferring to a region).In choosing between different model specifications to transfer from, model 

goodness of fit should not be used as the sole criterion. Evidence exists that models with greater fit to the base context 

(e.g., as measured by greater rho-square value) do not necessarily transfer better if the specifications were not 

theoretically sound. For instance, Galbraith and Hensher (1982) found that models with mode-specific LOS coefficients 

exhibited significantly greater fit to the base context data but poorer transferability (when compared to models with 

generic LOS coefficients). Koppelman and Wilmot (1982) found that, if identically specified models were available to 

transfer from different regions, goodness of fit to the base context was not necessarily the most appropriate measure to 

select the base context from which to transfer. These findings suggest that statistical fit as well as theoretical and 

intuitive considerations should have bearing on the model specification to choose for the purpose of transferring to a 

region.  
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little variation within a single context. To address this issue, the joint context estimation 

method discussed in the previous section offers the ability to pool data from multiple 

contexts to explore the possibility of enhancing model transferability. Since the approach 

involves pooling data from different contexts, it offers opportunities to include context-

level spatial land-use, network structure and cultural variables that do not vary within a 

context but vary across contexts and have an influence on the choice outcome being 

modeled. Without pooling data from multiple contexts, it is not possible to include 

variables that do not exhibit sufficient variation within a single context. Most empirical 

use of this approach involves pooling of data from only two contexts (base and 

application contexts), but it is possible to pool data from more than two contexts to better 

capture context-level variables in the model specification and enhance the potential for 

model transferability. To the extent that such variables have an influence on travel 

behavior and vary across the different contexts, it becomes important to include such 

variables in the model specification for enhanced model transferability. Besides, the 

method can potentially help improve model specification (hence improve transferability) 

not only through the enhancement of the utility specification using context-level variables 

but also through the specification of the scale parameters (of the utility functions) 

themselves as a function of context-level variables. Capturing the heterogeneity in the 

influence of unobserved factors (i.e., the scale of the error terms) through contextual 

variables can also help improve model transferability.  

To be sure, the possibility of enhancing model transferability by pooling data 

from multiple contexts has been discussed several times in the literature, although only a 

few empirical studies have explored this approach in the context of spatial transferability. 
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For instance, Karasmaa (2007) and Ou and Yu (1983) allude to the possibility of 

“universal” models that are more transferable. More recently, Hood (2012) gainfully 

explored this option in the context of linear regression models of transit ridership, 

specifically by using a multi-level modeling approach. Multi-level models help in 

controlling for local unobserved heterogeneity (from different spatial contexts), which 

can potentially lead to the estimation of relationships that are more global (i.e., 

transferable) in nature. This approach of pooling data is seeing increasing use in the 

context of developing temporally transferable models. For instance, Badoe and Miller 

(1998) and Habib et al. (2012) pool data from different years. However, further 

exploration of the above discussed ideas using joint context estimation with data from 

multiple regions is a potentially fruitful avenue for developing spatially transferable 

models.  

2.5 Transferability of Activity-Based Models (and Model Systems) 

As can be observed from column 2 of Table 2.1(a), most work to date has been 

devoted to the transferability of linear regression-based travel generation models and 

logit-based mode-choice models. Only a few studies in the table (23-30) are in the 

context of tour-based/activity-based models. As several planning agencies are moving 

toward (or considering the move to) the activity-based approach to modeling travel, and 

at the same time, building and maintaining activity-based models takes significantly more 

amount of data and resources, the issue of model transferability is more critical for the 

activity-based models.  Further, there is hope that the greater theoretical basis and the 

behavioral realism with which the travel patterns are represented and modeled in activity-

based models makes them more transferable (than trip-based models) to other contexts.  
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But the available evidence on the transferability of tour-based/activity-based models is 

not sufficient to provide any conclusive statements on the transferability of these models.  

Empirical literature in Table 2.1 (studies 24-27) suggests that in addition to 

specific individual model components, activity-based model systems (or parts of the 

model systems) have also been transferred from one region to another. It is worth noting 

here that though several attempts have been undertaken to transfer entire activity-based 

model system across geographical contexts, there is no framework yet for assessing the 

transferability of activity-based model system.   

2.6 Notable Gaps in the Literature 

Below are some of the notable gaps in the literature that are addressed in this 

dissertation research:  

1. Several activity-based model systems (or parts of the model systems) have 

been transferred across regions. But there is no framework yet for assessing the 

transferability of activity-based model systems. The next chapter of this dissertation 

attempts to provide a framework that can guide analysts assessing the transferability of 

activity-based model systems as opposed to specific model components.  

2. Existing empirical evidence on model transferability is predominantly geared 

toward trip-based mode choice and travel generation model components, with only a 

handful of empirical studies on the transferability of tour-based /activity-based model 

components. This dissertation research investigates the transferability of two model 

components used in activity-based model systems: activity participation and time-use 

models, and tour-based time-of-day choice models. 
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3. The model structures used in most previous transferability assessments are 

limited to linear regression and multinomial logit (MNL). Little or no evidence exists on 

the transferability of advanced model structures such as nested logit (NL) and multiple 

discrete continuous extreme value (MDCEV). This dissertation research uses the 

MDCEV structure in the transferability assessment of activity participation and time-use 

models.  

4. There are only a few studies in literature that assess transferability based on the 

policy response measures. Since the main objective of developing a travel demand model 

is to use for forecasting and policy analysis, it is essential for the transferred model to be 

able to provide appropriate predictions of the responses to changes in explanatory 

variables (i.e., demographic characteristics and policy variables). This research uses 

policy response measures in the transferability assessment of activity participation and 

time-use models. 

5. Most studies in literature ignore sampling variance in the parameter estimates 

and use only point estimates in the transferability assessment metrics. Instead of relying 

only on the point estimates, it is important to consider sampling variance in the parameter 

estimates while assessing transferability. The sampling variance issue is taken into 

account in this dissertation research by using bootstrap method. 

6. Different updating techniques were used in the literature. Despite using these 

techniques, the available evidence on model transferability is still mixed and 

inconclusive, with much of the empirical research suggesting the difficulty of transferring 

models. This warrants the need for exploring alternate ways of enhancing model 

transferability e.g., pooling data from different geographical contexts, or improving the 
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model structure. This dissertation research investigates the performance of these two 

alternate ways of enhancing model transferability. 

 2.7 Summary 

This chapter provides a synthesis of the extant literature on spatial transferability 

of travel forecasting models. Specifically, different theoretical and practical issues related 

to model transferability, methods used in the literature to transfer models, and metrics 

used to assess the effectiveness of these transfer methods are discussed in this chapter. 

The discussion is based on available empirical evidence on spatial transferability of travel 

forecasting models. The available evidence is mixed and inconclusive, makes it difficult 

to draw solid conclusions on the conditions under which models are transferable (or not).  

Based on the discussion, this chapter identifies several important gaps in the 

literature. Among them, some of the notable ones are addressed in the following chapters 

of this dissertation. Specifically, a framework for assessing the transferability of an entire 

activity-based model system is presented in the next chapter. Chapter 4 investigates the 

transferability of an important component of activity-based model system: activity 

participation and time-use model. The effects of sampling variance and data pooling 

(from different geographic regions) on the transferability results are also examined in this 

chapter. Chapter 5 investigates the influence of a model structure on its transferability 

across areas. Specifically, first a new model structure named as the Multiple Discrete 

Continuous Heteroscedastic Extreme Value (MDCHEV) Model is formulated, and then it 

is used to assess the influence of a model structure on its transferability across areas.  

Transferability of another important component of activity-based model system, time-of-

day choice model, is assessed in Chapter 6.  
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CHAPTER 3 

A FRAMEWORK FOR ASSESSING THE TRANSFERABILITY OF ACTIVITY-

BASED MODEL SYSTEMS 

 

3.1 Introduction 

As discussed in Chapter 1, assessing the transferability of the individual model 

components of an activity-based model system is not necessarily the same as assessing 

the transferability of an entire activity-based model system.  The transferability of an 

activity-based model system comprises much more than the transferability of the 

individual model component. This warrants the need for a framework can guide the 

researchers and practitioners in assessing the transferability of activity-based model 

systems. This chapter attempts to provide a guiding framework for assessing the 

transferability of activity-based model systems.  

3.2 Empirical Evidence on the Transferability of Activity-based Travel Model 

Systems 

 

Several activity-based model systems (or parts of the model systems) were 

transferred from one region to another. Within the U.S., for example, the CT-RAMP 

activity-based model developed for the MORPC region (PB Consult, 2007) was 

transferred to Lake Tahoe, the Daysim model system developed for Sacramento (Bradley 

and Bowman, 2008) was transferred to four regions in California (Fresno, Northern San 

Joaquin Valley, Sacramento and San Diego) and two regions in Florida (Jacksonville and 
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Tampa) (Bowman et al., 2013), the CEMDAP model system developed for Dallas Fort-

worth (DFW) region (Bhat et al., 2004; Pinjari et al., 2006) was transferred to the South 

California region (Goulias et al., 2012).
7
 Outside the U.S., the TASHA model system 

developed for Toronto was transferred to London (Le vine et al., 2010) and the Albatross 

model system was transferred across different regions in Netherlands. Given the 

increasing attempts to transfer activity-based model systems or parts of model systems 

across geographical contexts, it would be useful to have a high-level framework for 

assessing the transferability of model systems.  

3.3 Transferability Framework for Activity-based Model Systems 

We propose the following hierarchy, with two broad levels, as a guiding 

framework for assessing the transferability of activity-based model systems: 

1. Transferability of the Design Features of the Model System 

a. The traveler markets to be modeled 

b. Structure of the overall model system  

i. Presence or absence of specific model components,  

ii. Sequence of different model components, 

iii. Linkages among model components (top-down and bottom-up     

     linkages) 

c. Spatial and temporal resolution 

2. Transferability of Individual model components 

a. Hierarchy of model components 

                                                           
7 Most of these transfers, however, were only initial steps toward developing a model system more suitable 

for the planning needs of the application context and with the local data. For example, the activity-based model 

developed in the South California region is quite different from the CEMDAP system initially transferred from DFW. 
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i. Population synthesizer, 

ii. Long-term choice components, 

iii. Activity and travel generation,  

iv. Tour scheduling models (time of day, destination, and mode),  

v. Trip-level models  

b. Transferability hierarchy for an individual model component (as discussed 

in section 2.2.1 of Chapter 2) 

i. Underlying theory of travel behavior, 

ii. Mathematical model structure, 

iii. Empirical specification, 

iv. Model parameter estimates 

3.3.1 Transferability of the Design Features of the Model System  

Several activity-based model systems are being used and developed both within 

the US and elsewhere. While the underlying concepts of these model systems are similar, 

the overall modeling framework and the design features vary substantially. While some 

of the differences are due to lack of consensus on how to model individuals’ activity-

travel patterns (there is still scope for innovation in this area), several differences can be 

attributed to the variety in the makeup of the traveler markets, the activity-travel 

environments, planning and policy needs for which the models are used, and practical 

issues such as the availability of resources to build, maintain, and use the models.  

3.3.1.1 Traveler Markets  

Almost all ABMs focus on the travel by residents of the study area, relegating 

other traveler markets (e.g., tourists) to simpler “auxiliary” modules. Within the residents, 
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the traveler markers generally modeled are workers, non-workers, students, and children. 

However, some regions (e.g., Florida) may need to separately model the travel patterns of 

seasonal residents, in addition to permanent residents. Some regions may need to pay 

explicit attention to tourist travel. Clearly, the modeling frameworks used for typical 

residents cannot be used to model seasonal residents and tourists. 

3.3.1.2 Structure of the Model System  

With the populations of the metropolitan regions ranging from about 50,000 to 

several millions, metropolitan planning priorities and needs can vary considerably across 

these regions (not to mention the range of available data, resources and constraints across 

these regions). Therefore, a single ABM modeling framework may not necessarily be the 

most appropriate framework for all regions. It is likely that large urban regions may need 

a sophisticated modeling framework with a variety of model components to address a 

wide range of policy questions while a simpler framework might suffice for smaller 

regions. For example, regions with high occupancy vehicle/toll (HOV/HOT) lanes may 

need to model individuals’ choice of travel by HOV/HOT lanes, whereas other regions 

need not do so. Therefore, transferability of an entire activity-based modeling framework 

depends on what choices ought to be modeled (hence the presence or absence of specific 

model components) and the sequence in which choices are modeled. For example, a 

region interested in understanding the implications of tax incentives on alternative fueled 

vehicles might need to model households’ vehicle type choice while other regions might 

simply model the number of cars owned by a household without regard to the vehicle 

type mix. In another example, the sequence in which destination and mode choices are 
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modeled might be different between large urban regions and smaller regions (Newman 

and Bernardin, 2010). 

3.3.1.3 Spatial and Temporal Resolution  

Other design features such as spatial resolution at which destinations are modeled 

(e.g., parcels vs. zones) and the temporal resolution at which the level of service inputs 

are considered also influence the transferability of ABM systems. While it sounds easy to 

impose a uniformly finer spatial and temporal resolution across different regions (for the 

sake of model transferability), the costs and effort associated with a fine spatial and 

temporal resolution could be avoided if the corresponding benefits (e.g., better 

representation of transit access, and walk/bike trips) are not necessary (or not a priority) 

for a region.  

Due to the reasons discussed above, a transferred ABM framework may have to 

be “tweaked” to include additional model components, different design considerations, 

and/or reduce the model components. The extent and nature of the tweaks determine 

whether the elements lower in the hierarchy (individual model components, parameter 

estimates, etc.) can be transferred. For example, if the spatial representation is different 

between the two regions (e.g., parcels vs. zones), it is likely that several model 

components need to be re-estimated. It may be difficult to directly transfer the parameter 

estimates of several variables in a parcel-level model (e.g., spatial descriptors, 

accessibility variables) to a more aggregate, zonal-level model or vice versa. 

3.3.2 Transferability of Individual Model Components  

Once the transferability of the overall modeling framework and its design features 

are determined, the natural next step is to determine whether the individual model 
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components of the framework (to the extent that the framework is transferable) can be 

transferred. In the context of the model components of a typical activity-based model, it 

is useful to identify the hierarchy in which the different model components are usually 

put together. 

1. Population synthesizer (to generate disaggregate demographic inputs required   

    for ABMs) 

2. Long-term choice model components (e.g., car ownership, work/school  

    locations) 

3. Activity and tour generation model components 

4. Tour scheduling model components (tour-level timing, destination, & mode  

    choices) 

5. Trip-level scheduling model components (trip-level timing, destination, &  

    mode choices). 

The first and foremost component of an ABM is a population synthesizer which 

generates disaggregate demographic characteristics needed as inputs for all other 

subsequent models. It is rarely considered that the differences in the way the population 

is synthesized can influence the transferability of ABMs. Even if the rest of the ABM, 

including its parameters, is fully transferable, differences in the distributions of the 

explanatory variables (that are generated using different population synthesizers) can 

result in different distributions of the predicted travel patterns. Fortunately though, the 

procedures used in population synthesizers can usually be transferred between two 

regions; unless the differences in the socio-demographic composition of the two 

populations are large enough to warrant the consideration of: (1) different control 
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variables in the population synthesizer or (2) different travel markets altogether. While 

the former issue does not necessarily pose a significant transferability problem (the same 

population synthesizer can be used, albeit with different or additional control variables), 

the latter issue might warrant the consideration of modifications or additions to the 

population synthesizer. For example, a population synthesizer designed for generating the 

disaggregate population of permanent residents cannot be used as it is to generate the 

disaggregate characteristics of either seasonal residents or tourists. 

 Long-term choices such as household car ownership, individuals’ work location, 

and work type (part-time/full-time) are typically not generated during the population 

generation stage. That is, such variables are not used as control variables in the 

population synthesis procedure. They are generated post population synthesis either using 

a series of econometric models or by directly drawing the variables from the disaggregate 

inputs (e.g., the public use micro samples) used to synthesize the population. Not much 

attention has been given to the transferability of these model components (except a few 

studies, Yamamoto et al. (2012) on auto ownership, Vovsha et al. (2012) on work 

location choice). Since considerable effort goes into building these models and since 

outputs from these models enter as inputs into almost all model components lower in the 

hierarchy, understanding the conditions under which these models become transferable 

will be very useful. 

  The next three modules, activity and tour generation, tour scheduling, and trip-

level model components form the core of an ABM. Within each module, there can be 

several model components. Since it is difficult to model all the choices in a unified 

modeling framework, a sequence is usually assumed on the order in which choices are 
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made. The model components higher in the hierarchy automatically influence the choices 

lower in the hierarchy (top-down integrity). Different techniques, such as log-sum 

variables, are employed to integrate the model components for enabling the influence of 

lower-level choice on higher-level choices (bottom-up integrity). Due to the tight 

integration of the different model components, any differences in the modeling 

framework (i.e., the presence/absence and the sequence of model components) can 

potentially influence the transferability of an individual model component as it is. This is 

because some of the explanatory variables in a particular model component may depend 

on the position of the model component in the overall modeling sequence. Thus, 

adjustments may be needed to account for such differences before transferring an 

individual model component.  

 The hierarchy of transferability discussed in Section 2.2.1 (underlying theory, 

model structure, specification, and parameter estimates) is applicable to each individual 

model component. It is worth noting here that there is a dearth of empirical evidence on 

the transferability of different model components of an activity-based system. While 

much of the literature has focused on the transferability of trip-based model components, 

there is significant scope for research on the transferability of activity and travel 

generation components (see Nowrouzian and Srinivasan, 2012 for recent studies), tour-

based time-of-day choice, destination choice, and mode choice components, and trip-

based models conditional on tour-level choices. Further, most efforts have been in the 

context of the transferability of mode choice models, with a few efforts in the context of 

trip-based travel generation models and even fewer in the context of activity-based time-

use and tour generation and time-of-day models. Based on the evidence reviewed in 
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Table 2.1, it appears that trip-based travel generation models were found to be more 

transferable than mode choice models. This is potentially because mode choices (as well 

as destination choices) are more likely to be closely tied to the local spatial and network 

features and unobserved modal characteristics (such as comfort and reliability) that are 

different across the different contexts. Besides, differences in the availability of modes 

may make it difficult to transfer mode choice models. For example, it may be difficult to 

transfer a mode choice model from a region without a light-rail mode to a region with 

significant presence of light rail. In other words, the models that focus on spatial 

organization may be difficult to transfer from one region to another. Compared to these 

models, as discussed by Bowman et al. (2013), the models that focus on social 

organization (e.g., activity-based time use and travel generation) may be easier to transfer 

across areas (see Bowman et al., 2013 for details). For instance, Gangrade et al. (2000) 

reported considerable similarities in the aggregate activity participation and time-use 

patterns in California and Florida suggesting that activity-based time-use and travel 

generation models could potentially be transferred across different contexts. But such 

hypotheses need to be empirically tested in a variety of contexts before arriving at any 

conclusions. Further, if mode and destination models are not transferable between two 

contexts, then what are the implications of using the log-sum variable built from the 

mode and destination choice model as an explanatory variable in the tour generation and 

time-of-day   choice models? 

3.4 Assessment of the Transferability of Activity-based Travel Model Systems 

As discussed in section 3.2, several attempts have been undertaken in literature to 

transfer entire model systems across areas. However, there is need for a more thorough 
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investigation (i.e., more controlled experiments) of the transferability of such large-scale 

activity-based model systems. Anecdotally (and as reviewed in Table 2.1), some of the 

transfers seem to have worked reasonably well, in terms of predicting the aggregate-level 

activity-travel patterns (e.g., mode shares) after updating the constants of the model 

components with local data. However, interpretation of these results must be cognizant of 

the property of discrete-choice models (which are typically used to build activity-based 

models) that models with updated constants are bound to predict the aggregate shares 

right. Thus, as discussed in the previous chapter, prediction of aggregate patterns does not 

necessarily imply an appropriate prediction of policy sensitivity. Nevertheless, the 

available evidence is not sufficient to make any conclusive inferences yet. Further, a 

more thorough documentation of the findings from such transfers is essential.  

A relatively air-tight way to assess the transferability of activity-based travel 

model systems is to perform a variety of “real-life” policy assessments and compare the 

predicted results of a transferred model system to the results from a locally built model 

system, or to the observed changes in activity-travel patterns. Further, comparison of 

results (of transferred and local models) from forecasting exercises such as future-year 

forecasts or past-year forecasts will be helpful. Of course, to begin with, one has to assess 

and understand the transferability of each and every individual component transferred. 

However, comparing the policy predictions of an entire model system to that of a local 

model system can provide additional insights into the transferability of integrated model 

systems. 

Further, when comparing the different model sensitivities, the bootstrapping 

procedure discussed in Chapter 3 (to incorporate sampling variance) should be 
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incorporated into the transferability assessment of activity-based travel forecasting model 

systems. Since the tour-based/activity-based travel models use micro-simulation as the 

mechanism for prediction, the incorporation of the influence of variance due to the 

uncertainty in the parameter estimates (i.e., sampling variance) on activity-travel 

predictions should be rather straightforward. Most activity-based travel forecasting 

systems in use today (or in development) attempt to account for the simulation variance. 

But little to no attention is given to the issue of estimation variance. Depending on the 

sample sizes used to estimate the parameters, estimation variance can potentially be much 

more important than simulation variance. Neglecting estimation variance can potentially 

bias the results of transferability assessments toward “less” transferable. 

To reduce the issues related to sampling variance, one can use “estimation-based” 

approach (recently used by Bowman et al., 2013) in the transferability assessment. This 

approach of assessing transferability is slightly different from the application-based 

approach in a way that this investigates the transferability of model coefficients on 

specific variables while the latter approach assesses transferability of the model as a 

whole. If the data samples are available in both the contexts and the sample sizes are 

reasonable, “estimation-based” approach (joint context estimation) can be used to 

examine which coefficients are more transferable  and which are not (i.e., coefficients on 

level-of-service variables vs. coefficients on socio-demographic variables). This approach 

is simple, easy and also less influenced by sampling variance issues. 

3.5 Summary 

This chapter presents a two-level framework for assessing the transferability of an 

activity-based model system. Of these two levels, the first level is associated with the 
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transferability of the design features of model system while the second level is associated 

with the transferability of individual model components. The discussion in this chapter 

suggests that an activity-based model system cannot be naively transferred from one 

region to another. Depending on the planning needs and priorities of the application 

region, a transferred ABM framework may have to be “tweaked” to include additional 

model components, different design considerations, and/or reduce the model components. 

Because of the different design feature requirements and tight integration among different 

model components of an activity-based model system, it may also be difficult to transfer 

an individual model component as it is. That means adjustments may be required before 

transferring even an individual model component to a region. To assess the effectiveness 

of different transfers, for both activity based model system and individual model 

components, policy response measures and sampling variance should be considered with 

special attention. Further, in addition to assessing the transferability of a model as whole, 

one should use joint context estimation (i.e., estimation-based approach) to assess the 

transferability of model coefficients on specific variables.  
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CHAPTER 4 

AN EMPIRICAL ASSESSMENT OF THE SPATIAL TRANSFERABILITY OF 

PERSON-LEVEL DAILY ACTIVITY GENERATION AND TIME-USE MODELS 

 

4.1 Introduction and Motivation 

Chapter 2 presented a detailed review of the literature on spatial transferability of 

travel forecasting models. The review suggests that most work to date has been devoted 

to the transferability of linear regression-based travel generation models and logit-based 

mode-choice models. Few studies focus on travel choices other than trip generation or 

mode-choice and on econometric model structures other than linear regression, ordered 

response, or multinomial logit. Transferability assessments in the context of tour-

based/activity-based model systems are much fewer (although there has been a recently 

increasing literature on this topic). Only a handful of studies (e.g., Arentze et al., 2002, 

Le vine et al., 2010; PB Consult, 2007) document the transferability assessment of 

activity-based model systems to varying degrees, while some recent efforts are underway 

(e.g., the SHRP-2 C10 studies) and a few studies focus on the transferability of specific 

components of ABMs (e.g., Nowrouzian and Srinivasan, 2012).  

Among the different model components of an ABM system, the transferability of 

activity/travel generation components is of particular interest. Since activity/travel 

generation is modeled at either person-level or household-level, the amount of data 
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typically available for such models can, sometimes, be smaller compared to the data 

available for tour-level and trip-level models. At the same time, activity/travel generation 

model components might be more transferable than those for other travel choices (e.g., 

mode choice, destination choice). This is perhaps due to a comparatively lower 

dependency of individuals’ daily activity and travel generation on the spatial structures 

and transport system characteristics of their regions. Further, empirical studies (e.g., 

Gangrade et al., 2000) suggest notable similarities in activity participation and time-use 

patterns across a variety of geographical contexts within the United States. However, 

there is a dearth of empirical evidence on the transferability of activity/travel generation 

model components used in ABMs. 

Among the different approaches to model activity/travel generation, time-use 

based approaches are of particular interest. This is because a fundamental tenet of the 

activity-based approach is to view individuals’ activity-travel patterns as a result of their 

time-use decisions. With a given amount of time (e.g., 24 hours in a day), individuals 

decide how to allocate the time to different activities subject to their socio-demographic, 

spatio-temporal, and other constraints and opportunities. Motivated by the theoretical 

strength of the time-use based approaches, significant methodological developments have 

occurred in the recent past on modeling individuals’ activity participation and time-use 

patterns. Notable among those is the development of the multiple discrete-continuous 

extreme value (MDCEV) model (Bhat, 2008), which has now been used in a large 

number of activity participation and time-use studies (e.g., Habib and Miller, 2008). The 

MDCEV structure is now at the heart of a household-level activity generation model 
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component of an activity-based model system being developed in the South California 

region (Bhat et al., 2012).  

Most of the empirical researches reviewed in Chapter 2 suggest the difficulty of 

transferring models and thus, warrants the need for exploring ways of enhancing model 

transferability. One such possible way is to estimate the model using data pooled from 

different geographic regions. Pooling data from different regions, on the one hand, 

increases the sample size for model estimation, and on the other hand brings variation in 

the data which can make a model more transferable. The benefit of using such pooled 

data set in model estimation has been discussed in some earlier studies as well (e.g. 

Richards and Ben-Akiva, 1975; Galbraith and Hensher, 1982). Despite recognizing such 

potential advantage of using data with a high degree of variability, it has not been 

discussed with special attention in the literature; neither the impact of data variability on 

model transfer nor how to bring this variability in the data have been investigated. 

4.2 Contribution and Organization of the Chapter 

In view of the above discussion, this chapter aims to provide an empirical 

assessment of the spatial transferability of person-level daily out-of-home activity 

generation and time-use models. The geographical contexts of interest in this research are 

different regions in the State of Florida. Since Florida is considering different options 

(e.g., develop new models vs. transfer models) to develop ABMs in the state, the results 

from this chapter will be of potential use. In addition, this chapter investigates model 

transferability between two different states – California (CA) and Florida (FL). This 

provides an opportunity to compare the extent of transferability between different states 

(inter-state transferability) to that across different regions of a state (intra-state 
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transferability). The demographic segment of focus in the chapter is unemployed adults 

(age >18).  

The econometric model structure used to model activity participation and time-

use is the MDCEV model. Since this is the first empirical assessment of the 

transferability of an MDCEV-based model, some effort was devoted to understanding the 

prediction properties of the MDCEV model. This helped shed new light on the prediction 

properties of the MDCEV model that will have implications to model transferability. 

As discussed in chapter 2, the simplest approach to transfer a model is called the 

naïve transfer, where the specification and parameter estimates of a model developed in 

one context (estimation context) are directly used in another context (application context) 

without any modifications. Most empirical evidence suggests the difficulty of transferring 

models as it is. Thus, a variety of different approaches have been used in the literature to 

update a transferred model using available information from the application context. 

These include, updating constants, transfer scaling, Bayesian updating, combined transfer 

estimation, and joint context estimation. In the empirical assessment of this chapter, we 

mainly focus on naïve transfer and updating constants.  

Different metrics have been used in the literature to assess model transferability 

(see chapter 2 for details). These can be broadly categorized as: (1) Statistical tests of 

equivalence of parameters, (2) Aggregate-level predictive accuracy metrics, and (3) 

Policy prediction performance. The empirical assessment in this chapter uses at least one 

metric from each category. Further, recently introduced metrics are used to assess the 

predictive accuracy and transferability of the MDCEV model. 
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This chapter also investigates the performance of an alternate way of enhancing 

model transferability. This involves pooling data from different geographical contexts for 

model estimation and then transferring the model across areas. Recently, this approach of 

transferring models is getting quite a bit of attention in the field. For example, Bowman 

et al. (2013) and Hood (2012) used pooled data set in their transferability analysis. 

Among them, Hood (2012) suggests pooling data from at least three geographical 

contexts (including the region the model is transferred to i.e., the application context) for 

the better performance of the transferred model. The approach investigated in this 

chapter, on the other hand, pools data from different contexts except the application 

context. The reasons behind not including the application context data are: (1) to assess 

the performance of data pooling technique more precisely by avoiding the bias in the 

transferability results (toward indicating better performance) that may occur due to the 

presence of application context data in the model estimation data, (2) to investigate the 

performance of data pooling technique in a more practical situation where no data is 

available in the application context. Besides, while Hood (2012) examines the 

performance of the technique by pooling data from three different states, we investigate 

the same using data from different regions (but not limited to only three regions) within a 

state. This investigation, on the one hand, will explore the performance of data pooling 

technique in intra-state model transfer, and on the other hand, it will shed light on 

whether or not data from at least three geographical regions are always required to be 

pooled.  

The next section provides an overview of the data used in the chapter. Section 4.4 

briefly discusses the MDCEV model structure and its prediction properties. Section 4.5 
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summarizes the empirical model estimation results. Section 4.6 presents and discusses the 

transferability assessment results. Section 4.7 discusses the results of data pooling 

technique assessment. Section 4.8 provides a summary of the chapter.  

4.3 Data 

4.3.1 Data Source  

The primary data source used for the analysis is the 2009 National Household 

Travel Survey (NHTS) for the states of California and Florida. The survey collected 

detailed information on all out-of-home travel undertaken by the respondents. The 

information includes trip purpose, mode of travel, and travel start and end time, and dwell 

time (time spent) at the trip destination. For intra-state transferability assessment, in 

addition to the NHTS data, several secondary data sources were used to derive activity-

travel environment measures of the neighborhoods in which the sampled households are 

located
8
. The secondary sources are: (1) 2009 property appraiser data for all 67 counties 

in Florida, (2) 2007 infoUSA business directory, (3) 2010 NAVTEQ data, and (4) GIS 

layers of: (a) all parcels in Florida from the property appraiser data, (b) employment from 

the 2007 infoUSA business directory, and (c) intersections from the NAVTEQ data. 

4.3.2 Sample Formation  

Several steps were undertaken to prepare the data for the current analysis: 

1. Only the adult non-workers (aged 18 years or over) who were surveyed on a 

weekday that was not a holiday were selected. It is useful to note that the employed adults 

who didn’t go to work on the survey day were not included in the non-working groups 

                                                           
8
 Since the exact locations (i.e., latitude and longitude) of households in California data were not 

available to us, we couldn’t bring activity-travel environment measures from other secondary sources to the 

NHTS data for California. Thus, the activity-travel environment measures available only in the NHTS data 

were used in inter-state transferability assessment. 
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because the activity participation and time-use patterns of such workers are likely to be 

different from that of the non-workers.  

2. All out-of-home activities in the NHTS data were aggregated into eight broad 

activity categories: (a) Shopping (Shop), (b) Other maintenance (buying goods/services 

and attend meeting), (c) Social/Recreational (visiting friends/relatives, go out/hang out, 

visit historical sites, museums and parks), (d) Active recreation (working out in gym, 

exercise, and playing sports), (e) Medical, (f) Eat out (such as meal, coffee, and ice 

cream) (g) Pick up/drop, and (h) Other activities. 

3. The amount of time spent in each of these activity categories was calculated by 

using the “dwell time” variable in the NHTS data. The time spent in in-home activities 

was computed as total time in a day (24 hours) minus the time allocated to the above 

mentioned out-home activities, sleep, and travel activities.  Though sleep activity is a part 

of in-home activities, time spent in this activity was not included in the time spent in in-

home activities for the model estimation purpose. In general, it is difficult to estimate 

utility functions of a model with non-linear utility structure (e.g., MDCEV) when one 

alternative consistently takes a very large amount of time compared to other alternatives 

in the model. Therefore, the average amount of time allocated to sleep activities (8.7 

hours, 2010 American Time Use Survey) was removed from the total time (24 hours in a 

day) while calculating the time spent in in-home activities. 

4. To develop the activity-travel environment measures from secondary data 

sources, various GIS layers (from property appraiser, infoUSA and NAVTEQ data) were 

overlaid onto circular buffers centered on the NHTS household locations. The buffer 

sizes used for this purpose are: ¼ mile, ½ mile and 1 mile. The activity-travel 



 

                                                                                    75 
 

environment measures obtained from these sources were then merged with the NHTS 

data.  

5. Next records with missing or inconsistent data were removed from the final 

data set. 

4.3.3 Geographical Regions Considered for Transferability Assessment  

For intra-state transferability assessment, the state of Florida was divided into 

seven geographical regions based on existing travel demand modeling regions in the 

state. These are: (1) Southeast Florida (SEF), (2) Central Florida (CF), (3) Tampa Bay 

(TB), (4) Northeast Florida (NEF), (5) Urban areas in district 1 (D1U), (6) Urban areas in 

district 3 (D3U), and (7) Rural Florida. Figure 4.1 shows these seven geographic regions 

in the Florida map. Two of the seven regions (D3U and NEF) were not included in the 

initial transferability analysis because of small sample sizes. Of the remaining 5 regions, 

SEF, CF, and TB include some of the major urban regions in Florida (Miami, Orlando, 

and Tampa), while D1U comprises counties that are less urbanized compared to the 

major urban regions and Rural Florida includes all rural counties in Florida with low 

population and employment densities. Models were transferred only from three regions 

(SEF, CF, and TB) to all other 5 regions (SEF, CF, TB, DIU, and R). Lower sample sizes 

of DIU and Rural regions played a role in the decision to not transfer from these regions. 

At the same time, the state of Florida is considering options for transferring models to, 

D1U and Rural locations, while the major urban regions are moving ahead with the 

development of their own activity-based models. For inter-state transferability 

assessment, the entire data in the state of Florida was used to construct the Florida (FL)  
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Figure 4.1: Study Areas in Florida 

 

 

 



 

                                                                                    77 
 

model and likewise for the California (CA) model. For the data pooling technique 

assessment, all of the 7 geographical regions in Florida were considered. Specifically, the 

major urban regions (i.e., SEF, CF, TB and NE) were kept separate, and all other regions 

were pooled together and named as “other region” in this assessment.    

4.3.4 Sample Description  

Tables 4.1- 4.3 present descriptive information about the data used in the analysis. 

Of these, Table 4.1 presents the descriptive statistics of the socio-demographic 

characteristics with the first row presenting the sample sizes for different geographies 

considered in the chapter while Table 4.2 and Table 4.3 present the descriptive statistics 

of activity participation and time allocation to different activities respectively.  It can be 

observed from Table 4.1 that the aggregate-level differences in the demographic 

characteristics are greater across the two states (CA and FL) than those across different 

regions within Florida. For example, the proportion of unemployed elderly (age > 65) in 

Florida (65%) is considerably higher than that in California (53.0%). Greater proportions 

of whites, less educated individuals, and lower income levels are also observed in Florida 

than in California. The different regions within Florida are more similar in the 

demographic makeup, except a few exceptions (noted in bold font) such as greater 

proportion of non-whites in the Southeast (Miami) region, greater proportion of elderly in 

D1U region, and greater proportions of lower education and income levels in rural 

Florida. 

In the context of activity participation rates (percentage of individuals 

participating in each activity) and average daily time allocation (Table 4.2 and Table 4.3),   
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Table 4.1 Descriptive Statistics of Socio-demographics in the Datasets 

  California(CA) Florida(FL) SEF CF TB D1U R 

Sample Size 10, 821 8,396 2,088 1,458 1,334 995 757 

Male 40.0% 41.8% 41.4% 42.2% 42.6% 42.9% 43.9% 

Age: 18 - 29 years 7.8% 3.1% 3.4% 2.5% 2.5% 3.1% 3.2% 

Age: 30 - 64 years 39.2% 31.9% 29.0% 33.3% 32.8% 26.5% 34.1% 

Age: ≥65 years 53.0% 65.0% 67.7% 64.1% 64.6% 70.4% 62.7% 

Race: White 78.6% 89.8% 84.1% 92.0% 93.0% 94.9% 91.0% 

Race: Black 3.7% 5.6% 7.9% 3.9% 3.7% 2.3% 5.0% 

Race: Other 17.7% 4.6% 8.0% 4.1% 3.4% 2.8% 4.0% 

Driver 85.5% 87.1% 82.7% 90.1% 86.5% 90.4% 87.6% 

Edu.: H.school/low 35.6% 44.0% 39.8% 42.2% 45.2% 43.2% 57.2% 

Edu.:Some College 31.7% 27.5% 26.7% 29.1% 27.6% 27.9% 25.6% 

Edu.:Bach./higher 32.7% 28.4% 33.5% 28.7% 27.2% 28.8% 17.2% 

Income: <25 K 23.4% 29.3% 29.9% 29.0% 31.7% 23.2% 37.6% 

Income: 25-75K 46.1% 49.4% 46.3% 51.1% 49.9% 52.9% 51.0% 

Income: > 75 K 30.5% 21.4% 23.7% 20.0% 18.4% 23.9% 11.4% 

Avg. HH Size 2.5 2.2 2.1 2.1 2.0 2.1 2.1 

Avg. No. of  Drivers 1.8 1.8 1.7 1.7 1.6 1.7 1.7 

         * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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Table 4.2 Descriptive Statistics of Activity Participation (% who participated) in the Datasets 
 

  California (CA) Florida (FL) SEF CF TB D1U R 

Activity Types % Part. % Part. % Part. % Part. % Part. % Part. % Part. 

In-home activities 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

OH-Shopping 42.9 48.4 51.0 49.9 48.5 51.0 48.1 

OH-Other Main. 24.2 29.6 30.6 30.4 31.6 30.7 30.`1 

OH-Soc./Rec. 23.1 29.2 30.5 30.0 27.1 31.3 28.9 

OH-Active Rec. 14.1 20.2 20.6 21.9 21.2 24.6 14.7 

OH-Medical 12.7 22.5 24.8 24.3 23.4 24.8 19.8 

OH-Eat out 19.4 24.9 24.3 27.2 24.4 28.0 23.8 

OH-Pick/Drop 13.3 15.2 17.0 16.2 15.5 16.0 12.8 

OH-Other activities 7.8 6.1 5.7 5.7 7.0 5.0 7.5 

Avg. No. OH activities 1.6 2.0 2.0 2.1 2.0 2.1 1.9 

          * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 

 

Table 4.3 Descriptive Statistics of Time Allocation (average duration among those who participated) in the Datasets 

  California (CA) Florida (FL) SEF CF TB D1U R 

Activity Types Duration Duration Duration Duration Duration Duration Duration 

In-home activities 743.4 740.3 729.2 741.1 744.2 729.7 748.4 

OH-Shopping 59.7 55.1 56.0 56.5 51.5 54.6 50.3 

OH-Other Main. 56.7 50.3 56.54 44.4 45.2 47.0 46.6 

OH-Soc./Rec. 157.3 126.9 129.1 117.5 131.4 119.8 130.3 

OH-Active Rec. 83.9 52.9 49.9 52.9 52.0 61.9 29.3 

OH-Medical 80.9 60.4 67.4 50.7 57.5 58.6 65.9 

OH-Eat out 61.6 48.5 47.6 48.7 45.5 50.3 48.2 

OH-Pick/Drop 17.9 15.9 16.8 13.6 16.3 12.5 16.5 

OH-Other activities 34.7 22.2 28.3 14.8 18.1 20.5 16.2 

         * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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one can observe considerable differences between the non-workers in California and 

Florida. Specifically, individuals in Florida exhibit higher participation rates in different  

activities but lower time allocations (than those in CA). This is probably because those in 

Florida participate in greater number of OH activities per day than those in California (as 

shown in the last row of Table 4.2). Within different regions of Florida, the differences in 

the aggregate activity participation rates and time allocations are not as much different 

(as those across the two states). Of course, a few exceptions (noted in bold font) are 

notable - the activity participation and time allocation to active recreation is significantly 

lower in rural Florida. 

In summary, unemployed adults in California appear to be significantly different 

from those in Florida in terms of socio-demographic characteristics, activity participation 

and time-use patterns. The differences across different regions within Florida appear to 

be smaller, although rural locations display some notable differences than other locations. 

Though the descriptive statistics cannot shed full light on the transferability of a time-use 

model from region to another, the noted differences may, in part, have a bearing. 

4.4 The MDCEV Model 

4.4.1 Model Structure  

  Numerous consumer choices are characterized by “multiple discreteness” where 

consumers can potentially choose multiple alternatives from a set of discrete alternatives 

available to them. Along with such discrete-choice decisions of which alternative(s) to 

choose, consumers typically make continuous-quantity decisions on how much of each 

chosen alternative to consume. To model such multiple discrete-continuous (MDC) 

choices, a variety of approaches have been used in the literature. Among these, a 



 

                                                                                    81 
 

particularly attractive approach is based on the classical microeconomic consumer theory 

of constrained utility maximization. Specifically, consumers are assumed to optimize a 

quasi-concave, increasing, continuously differentiable, direct utility function ( )U x  over a 

set of non-negative consumption quantities 1( ,..., ,..., )k Kx x xx  subject to a linear budget 

constraint, as: 

                  Max ( )U x such that . yx p  and 0 1,2,...,kx k K                      (4.1) 

In the above Equation,  is a quasi-concave, increasing and continuously 

differentiable utility function with respect to the consumption quantity vector x ,  is the 

vector of unit prices for all goods, and y is a budget for total expenditure. An increasingly 

popular approach for deriving the demand functions from the utility maximization 

problem in Equation (4.1), due to Hanemann (1978) and Wales and Woodland (1983), is 

based on the application of familiar Karush-Kuhn-Tucker (KKT) conditions of optimality 

with respect to the consumption quantities.  

Over the past decade, the above-discussed KKT approach has received significant 

attention for the analysis of MDC choices in a variety of scientific fields including 

environmental economics, marketing research and transportation. In the transportation 

field, the multiple discrete-continuous extreme value (MDCEV) model formulated by 

Bhat (2005) and enlightened further by Bhat (2008) lead to an increased use of the KKT 

approach for analyzing a variety of choices, including daily time-use (Bhat 2005; Habib 

and Miller, 2008; Pinjari et al., 2009; You et al., 2013), household vehicle ownership and 

usage (Ahn et al., 2008; Bhat et al., 2009; Jaggi et al., 2011), long-distance leisure 

destination choices (Van Nostrand et al., 2013), energy consumption choices (Pinjari and 

( )U x

p
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Bhat, 2011; Yu et al., 2011; Frontuto, 2011) and builders’ land-development choices 

(Farooq et al., 2013).  

The MDCEV model estimated in this chapter is based on the following utility 

form (Bhat, 2008):  

                               1 1

2

( ) ln( ) ln ( / ) 1
K

k k k k

k

U t t   


  t                   (4.2) 

In the above function,
 

( )U t  is the total utility derived by an individual from his/her daily 

time-use. It is the sum of sub-utilities derived from allocating time ( kt ) to each of the 

activity types k (k =1,2,…,K). k
 
, labelled the baseline utility for alternative k, is the 

marginal utility of time allocation to activity k at the point of zero time allocation. 

Between two alternative activities, the activity with greater baseline marginal utility is 

more likely to be participated (or chosen). k  
accommodates corner solutions (i.e., 

possibility of not choosing an alternative) and differential satiation (diminishing marginal 

utility with increasing consumption) effects for different activity types. The 1
st
 

alternative, designated as in-home activity, doesn’t have a k  
parameter since all 

individuals in the data participate in the in-home activity. This alternative is called the 

outside good, while all other activities (out-of-home activities) that have a likelihood of 

not being chosen are called inside goods.  

The influence of observed and unobserved individual characteristics and activity-

travel environment (ATE) measures are accommodated as 

1 1exp( ); exp( ' );k k kz       and exp( );k kw  where,  kz  and kw  are observed 

socio-demographic and ATE measures influencing the choice of and time allocation to 

activity k,   and   are corresponding parameter vectors, and k  (k=1,2,…,K) is the 
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random error term in the sub-utility of activity type k. The model is derived based on the 

assumptions that: (1) individuals choose their daily time-use patterns to maximize the 

total utility subject to a time budget constraint 
1 to 

k

t K

T t


   (T is a known amount of time 

budget available to the individual), and (2) the random error terms k  (k=1,2,…,K)  

follow the independent and identically distributed (iid) standard Gumbel distribution with 

unit scale parameter.  

4.4.2 Prediction Properties of the MDCEV Model  

  Table 4.4 presents the prediction results of the models estimated for the 5 regions 

in Florida. For each region, the prediction was performed on its own estimation sample. 

All the predictions in this chapter were performed using the MDCEV forecasting 

algorithm proposed by Pinjari and Bhat (2011), using 100 sets of random draws to cover 

the error term distributions for each individual in the data.  

The first set of rows present the predicted (and observed) aggregate shares of 

individuals participating in each activity type (i.e., the discrete choice component) and 

the average daily time allocation (or duration) to each activity. The predicted aggregate 

shares for each activity were computed as the proportion of the instances the activity was 

predicted with a positive time allocation across all 100 sets of random draws for all 

individuals. The predicted average duration for an activity was computed as the average 

of the predicted duration (or time allocation) across all random draws for all individuals. 

It can be observed that the MDCEV models for all 5 regions perform well in predicting 

the aggregate shares of participation in each type of activity (i.e., the discrete choice of 

each alternative). In fact, we noticed that a constants only model resulted in the predicted 

discrete choice shares same as the observed shares. These results suggest the existence of 
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a fundamental property of the MDCEV model similar to that of the multinomial logit 

(MNL) model that a constants only model, when applied to the estimation data, would 

yield the same discrete choice shares as observed in the data. This property has 

implications to the transferability of models with MDCEV structure. Specifically, an 

MDCEV model transferred from elsewhere can simply be adjusted by updating the 

constants using data from the application context to help improve its prediction of the 

aggregate discrete choice share.  

In the context of aggregate time allocation (or duration) to each activity type (i.e., 

the continuous choice component), the model is under-predicting the aggregate duration 

of in-home activities (outside good) and over-predicting the aggregate duration of all out-

of-home activities (inside goods) except the active recreation activity. The second set of 

rows show the predicted and observed shares of a few combinations of chosen out-of-

home activities (e.g., shopping and social/recreational). The model seems to consistently 

under-predict the choice of combinations of activities. Further, note from the last column 

that the model is under-predicting the average number of out-of-home activities chosen as 

well.  

The third set of rows in Table 4.4 is based on disaggregate-level metrics proposed 

for the MDCEV model by Jaggi et al. (2011). The first measure is an average of the hit 

ratio across all individuals for all sets of error draws, where hit ratio is the number of 

chosen alternatives correctly predicted divided by the observed number of alternatives 

chosen. The hit ratio for the different models in Florida range from 63.4% to 66.7%. The 

second measure is an average of relative residual (Jaggi et al., 2011) across all 

individuals in the data. Relative residual is:              
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Table 4.4 Predicted and Observed Activity Participation (% participation) and Duration
1 

Predicted and Observed Activity Participation & Duration in individual activities 

    In-home Shopping 
Other 

Maintenance 

Social/ 

Recreational 

Active 

Recreation 
Medical Eat Out 

Pick Up/     

Drop Off 

Other 

Activities 

SEF 
% Part. 100.0 (100.0) 49.2 (51.0) 29.9 (30.6) 29.0 (30.5) 19.1 (20.6) 23.1 (24.8) 22.8 (24.3) 16.0 (17.0) 5.3 (5.7) 

Avg. Dur 688.0 (729.2) 45.4 (28.5) 24.9 (17.1) 48.9 (39.4) 6.7 (10.3) 20.3 (16.7) 17.3 (11.6) 3.7 (2.9) 2.1 (1.6) 

CF 
% Part. 100.0 (100.0) 49.3 (49.9) 30.9 (30.4) 29.1 (30.0) 20.4 (21.9) 23.0 (24.3) 26.2 (27.2) 15.5 (16.2) 5.3 (5.7) 

Avg. Dur 697.0 (741.1) 45.6 (28.2) 22.1(13.5) 43.9 (35.2) 6.8 (11.6) 17.1 (12.3) 20.6 (13.2) 3.5 (2.2) 1.5 (0.8) 

TB 
% Part. 100.0 (100.0) 47.9 (48.5) 31.9 (31.6) 26.3 (27.1) 19.6 (21.2) 22.4 (23.4) 23.6 (24.4) 14.4 (15.5) 6.6 (7.0) 

Avg. Dur 701.4 (744.2) 42.4 (25.0) 22.6 (14.3) 44.2 (35.6) 6.8 (11.0) 17.3 (13.4) 18.1 (11.1) 3.6 (2.5) 2.1 (1.3) 

D1U 
% Part. 100.0 (100.0) 48.3 (51.0) 30.5 (30.7) 30.1 (31.3) 22.7 (24.6) 22.9 (24.8) 26.6 (28.0) 15.1 (16.0) 4.6 (5.0) 

Avg. Dur 688.4 (729.7) 44.3 (27.8) 22.5 (14.4) 46.9 (37.4) 10.1 (15.2) 17.9 (14.5) 21.5 (14.1) 3.0 (2.0) 1.6 (1.0) 

R 
% Part. 100.0 (100.0) 47.9 (48.1) 30.7 (30.1) 29.0 (28.9) 14.1 (14.7) 19.1 (19.8) 23.0 (23.8) 12.1 (12.8) 7.2 (7.5) 

Avg. Dur 706.0 (748.4) 40.4 (24.2) 20.0 (14.0) 48.0 (37.7) 2.7 (4.3) 15.3 (13.1) 18.6 (11.5) 2.9 (2.1) 2.5 (1.2) 

Predicted and Observed Participation in Selected Activity Combinations 

    
            Shopping &  

Other Maintenance 

Shopping &  

Social/Recreational 

Shopping &  

Medical 

         

         Shopping & 

Eat out 

Avg. no. of out-of-

home activities 

predicted (observed) 
 

SEF % Part.  2.9 (5.2) 2.9 (3.4) 2.0 (2.6) 1.8 (2.2) 1.9 (2.0) 

CF % Part.   2.8 (4.0) 2.6 (3.4) 1.9 (2.3) 2.2 (2.4) 2.0 (2.1) 

TB % Part.  3.2 (4.9) 2.4 (3.1) 1.9 (2.9) 2.0 (2.1) 1.9 (2.0) 

D1U % Part.  2.7 (4.3) 2.7 (4.4) 1.7 (2.5) 2.1 (2.0) 2.0 (2.1) 

R % Part.  3.5 (4.2) 3.2 (3.0) 1.8 (2.5) 2.2 (2.1) 1.8 (1.9) 

Disaggregate Prediction Measures 

Hit Ratio  SEF (65.2%) CF (65.3%) TB (64.3%) D1U (63.4%) R (66.7%) 

Relative Residuals SEF (0.19) CF (0.18) TB (0.18) D1U (0.19) R (0.18) 

1 
Observed shares and durations are in the parentheses 

  Average durations are only among those who were predicted (or observed) with positive time allocations to different activities 

  SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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where, kt  is the observed duration of participation in activity type k , and k̂t   is the 

corresponding predicted duration (averaged over all error draws for the individual), K is 

the total no. of alternatives, and T is the total time budget available to the individual. This 

formula aggregates the errors in predicted time allocation for all alternatives into a 

composite measure. The relative errors for the 5 different models in Florida range from 

18% to 19%. That is, on average, about 18%-19% of the time budget is wrongly 

allocated. 

  In summary, the MDCEV model provides reasonable predictions of activity 

participation and time-use when applied to the estimation data. Specifically, the 

aggregate-level activity participation rates in individual activities are predicted very 

accurately, while the participation in specific combinations of alternatives and the 

average durations of time allocation to out-of-home activities are under-estimated.    

4.5 Empirical Model Estimates 

  Appendix A presents the MDCEV time-use model estimation results for the 

geographies considered in the analysis. For presentation ease, model estimation results 

from these seven tables are summarized in Table 4.5. In this table, the parameter 

estimates and t-statistics are not reported. Only short acronyms of the regions in which 

the variables are present in the models for different geographies are indicated. The 

acronyms are: CA-California, FL-Florida, S-Southeast Florida, C-Central Florida, T-

Tampa Bay, D-D1U region, and R-Rural Florida. An acronym with an underline 

indicates that the sign of the corresponding parameter is negative in the model estimated 
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for that geography. For example, females are less likely than males (because of the 

negative coefficient, as depicted by underlined acronyms) to participate in active 

recreation in CA, FL, SEF and D1U regions. 

  Overall, the parameter estimates have intuitive interpretations and identical signs 

in all the models. The same factors are often found to influence the time-use choices 

across all geographies. The alternative specific constants are not reported either for 

baseline utility parameters or for satiation parameters. But it is worth noting that the 

baseline utility constants for the out-of-home activities in the CA model are larger in 

magnitude (with –ve signs) than those in the Florida models, reflecting that the out-of-

home activity participation rates in California are lower than that in Florida. Further, the 

constants in the satiation parameters of the California model are larger (with +ve sign) 

than those in the Florida models, since the average time allocation to out-of-home 

activities by Californians (if they participate in the activity) is greater than that by 

Floridians. The differences in the model constants as well as other parameter estimates 

within the different regions of Florida were not as high as compared to those across the 

two states. To the extent that the scale of unobserved factors influencing choices across 

the different regions are similar, the differences in the model coefficients suggest that 

models may be better transferable within a state than across states that are as different as 

California and Florida. 

4.6 Transferability Assessment   

  To assess inter-state transferability, the model estimated for California was 

transferred to Florida and vice-versa. For intra-state transferability assessment, the model 

estimated for each of the three major urban regions (SEF, CF, and TB) was transferred
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Table 4.5 Empirical Model Results
 

Explanatory 

Variables 
         Shop  Maintenance Soc/Rec Active Rec Medical Eat Out Pickup /Drop Other 

Baseline Utility Parameters 

Female 

 (Male is base) CA,FL,S, C,T, D, R - - CA , FL, S, D - - CA, FL, T, D, R - 

Age <30 years  

 (30-54 is base) 
- - CA, FL, S CA - - - - 

Age 55-64 years 

 (30-54 is base) 
- - - - CA, FL, C, T C, D CA, FL, S, C, R - 

Age 65-74 years  

 (30-54 is base) 
- - - - CA, FL, S, C, T,R C, D  CA, FL, S, C,D, R - 

Age >= 75 years 

 (30-54 is base) 
- - CA, FL,T CA, FL,T CA, FL,S,C,T, D,R C, D  CA,FL,S,C,T,D,R - 

White  
 (Non-white is base) 

- - - - - CA, FL, S, C, T, R - - 

Driver  
 (Non-driver is base) 

CA,D, R CA, S, D, R CA,T T, R - C,T CA, FL, R - 

College  
(H. Sch./low is base) 

- CA, FL, S,T, R - CA, FL, D - - - - 

Bachelor/Higher  

(H. Sch/low is base) 
- CA,FL,S, C,T, R -  CA, FL, S, C,T,D, R - - - - 

Born in US  

 (others is base) 
- - FL* S D - CA, FL, S, C - - 

Children 0-5 years FL, C,T, R CA,FL, S, C,D - CA - - CA,FL,S,C,T,D, R - 

Children 6-15 years - CA - - - -  CA,FL,S,C,T,D, R - 

No. of Workers CA, FL, S, C - - - - - CA, FL, C, T, D - 

Income <25 k - - - R - R - - 

Income 25- 50 K CA CA, FL, C CA, FL, C CA, FL, C - CA, FL, S, C, D - - 

Income 51-75 K CA CA, FL, C CA, FL, C CA, FL, S, C,T, D - CA, FL, S, C, T,D - - 

Income >75 K CA CA, FL, C CA, FL, C CA, FL, S, C,T, D - CA, FL, S, C, T,D - - 

Urban  
 (Rural is base) 

CA, FL 
- 

CA, FL CA, FL CA, FL CA FL - 

# Rec. Sites  
 (1 mile buffer) - - 

S, C, T, D 
- - 

- - - 

# Employments  

 (1mile buffer)                 - - 
T, D 

- - 
- - - 
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Table 4.5 (Contd.)
 

Explanatory 

Variables 
         Shop  Maintenance Soc/Rec Active Rec Medical Eat Out Pickup /Drop Other 

Baseline Utility Parameters 

# Cul-de-sacs  
 (0.25 mile buffer)                             

- - - S - - - - 

# Intersections  
 (0.25 mile buffer)          

- - - C, T, R - - - - 

Monday  
 (Tue.-Thurs.is base) 

- - CA, FL, D - - CA, FL, S, C, D,R - - 

Friday  

 (Tue.-Thurs.is base) 
- - CA, FL, C, T - - CA , FL,C, T - - 

Satiation Function Parameters 

Female  

 (Male is base) 
CA, FL, S CA, FL, T, R - FL, S - - - - 

18 - 29 years  
 (≥ 55 years  is base) 

30 - 54 years 

 (≥ 55 years  is base) 

- 

 

- 

- 

 

- 

CA 

 

FL, S 

CA 

 

CA, D 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

S. College  

 (H. Sch./low is base) 

Bac./Higher   
 (H. Sch./low - base) 

- 

 

- 

- 

 

- 

- 

 

- 

CA, FL, S, C, D 

 

CA, FL, S, C, D 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

Monday  

 (Tue.-Thurs. - base) 

Friday 

 (Tue.-Thurs. - base) 

- 

 

- 

- 

 

- 

- 

 

FL, S 

- 

 

- 

- 

 

- 

FL 

 

FL, S, T 

- 

 

- 

- 

 

- 

                  a CA – California,  FL – Florida, S – Southeast Florida, C – Central Florida, T – Tampa Bay, D – Urban area in Florida District1, R – Rural Florida 
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to the other four regions in Florida (including D1urban and rural regions). Thus, 14 

different transfers were performed (2 inter-state transfers and 12 intra-state transfers) for 

each of the two transfer methods - naïve transfer and updating constants (28 transfers in 

all).  

4.6.1 Transferability Test Statistic (TTS)  

Transferability test statistic (TTS) is used to test the hypothesis that the 

transferred model is statistically equivalent to a model estimated in the application 

context (Atherton & Ben-Akiva, 1976).  

                 
  - 2[ ( ) - ( )]j i j jTTS L L                                                    (4.4) 

where, ( )j iL  = log-likelihood of the transferred model applied to the application context 

data, and ( )j jL  = log-likelihood of the locally estimated model using data from the 

application context.  

The TTS values for all transfers are reported in Table 4.6. As can be observed 

from this table, for no single transfer is the TTS value lower than the critical chi square 

value even at 90% confidence level. These results echo the well-established finding that 

statistically rigorous tests usually reject model transferability (e.g., Gunn et al., 1985).  

However, rejection by a statistical test does not necessarily mean the poor prediction or 

forecasting ability of a model. Since the end-objective of a model is for use in prediction 

and policy analysis, several other measures are used for transferability assessment, as 

discussed next. 

4.6.2 Log-likelihood-based Measure: Transfer Index (TI)  

Transfer index (TI), first used by Koppelman and Wilmot (1982), measures the 

degree to which the log-likelihood of a transferred model exceeds that of a reference 
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model (e.g., a constants only model) relative to a model estimated in the application 

context.  

                                          
,

,

( ) - ( )
( )

( ) - ( )

j i j reference j

j i

j j j reference j

L L
TI

L L

 


 
                                          (4.5) 

where, ( )j iL   and ( )j jL  are the same as defined earlier and ,( )j reference jL   is the log-

likelihood of a reference model in the application context. The closer the value of TI is to 

1, the closer is the transferred models’ performance to a locally estimated model (in terms 

of the information captured). The upper bound of this index is 1 unless the transferred 

model performs better than the locally estimated model.  

From Table 4.7, one can observe that the TI values for inter-state naïve transfers 

are rather poor with negative values (-0.67 and -1.67), suggesting that the transferred 

models perform worse than locally estimated constants only models. For intra-state naïve 

transfers within Florida, the TI values range from -0.11 to 0.59 with greater values for 

transfers between major urban regions (SEF, CF, and TB) and lower values for transfers 

from these three urban regions to D1U and rural region. The highest TI values can be 

noted for the models transferred between the SEF and CF regions. Of course, the TI 

values for transfers from one region to another are not the same as those for transfers in 

the other direction, suggesting that transferability is asymmetric. 

After updating the model constants with the application context data, the TI 

values improved in all cases. Most previous studies (e.g., Koppelman et al., 1985) found 

this result in the context of the MNL model. These results suggest that the MDCEV 

model structure also lends itself to improved TI values (hence improved performance) 

after updating constants using data from the application context. This is probably due to 
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Table 4.6 Transferability Test Statistic (TTS) 

Inter-state Transfer 

       Transferred 

          To   

Transferred  

  From 

California Florida 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

California - - 3768.1 288.8 

Florida 4324.1 370.1 - - 

Intra-state Transfer 

           Transferred  

                   To 

Transferred  

From 

SEF CF TB D1U R 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

SEF - - 123.9 84.6 130.5 72.6 129.5 99.5 107.6 41.5 

CF 232.2 172.9 - - 95.8 64.6 134.1 121.2 82.7 38.4 

TB 403.4 334.9 189.5 157.2 - - 170.7 134.7 136.1 85.2 

 

Table 4.7 Transferability Assessment Results: Transfer Index (TI) 

Inter-state Transfer 

       Transferred 

          To   

Transferred  

  From 

California Florida 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

California 1.00 1.00 -1.67 0.80 

Florida -0.67 0.86 1.00 1.00 

Intra-state Transfer 

           Transferred  

                   To 

Transferred  

From 

SEF CF TB D1U R 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constan

ts 

SEF 1.00 1.00 0.53 0.68 0.26 0.59 0.20 0.38 0.12 0.66 

CF 0.59 0.70 1.00 1.00 0.46 0.64 0.17 0.25 0.15 0.76 

TB 0.29 0.41 0.28 0.41 1.00 1.00 -0.06 0.17 -0.11 0.30 

 

* SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida  
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the property discussed in Section 4.4. There was a significant improvement in the TI 

value for the inter-state transfers and considerable improvement for intra-state transfers. 

Even among intra-state transfers, the percentage improvement in TI value after updating 

constants is greater for those transfers with low initial TI value. In fact, the models with 

rather poor TI values (-ve values) for naïve transfer were the ones with the most 

improved TI values after updating constants.  

4.6.3 Aggregate-level Predictive Accuracy  

To assess the aggregate-level predictions of a transferred model, two metrics were 

used: (1) Root mean square error (RMSE) and (2) Relative aggregate transfer error 

(RATE). RMSE measures the aggregate-level predictive ability of a model against 

aggregate observed patterns in the data. Two types of RMSE values were computed for 

the MDCEV models estimated in this chapter: (1) RMSE for discrete choice component 

(activity participation), and (2) RMSE for continuous component (time allocation).   

            

1/2
2

k k

k

k

k

P REM

RMSE
P

 
 


 
 
 




                                                     (4.6) 

where, kP  and kO  are the aggregate predicted and observed shares (or durations averaged 

over all individuals), respectively for alternative k , and 
k k

k

k

P O
REM

O


   is the 

percentage error in the prediction of alternative k. The RMSE aggregates the REM 

measure across all alternatives into a composite error measure. RATE is a relative 

measure; it measures the aggregate predictive ability of the transferred model relative to 

that of a locally estimated model.  
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( )

  
( )

j i

j j

RMSE
RATE

RMSE




 .                                                          (4.7)

 

Table 4.8 reports the RMSE and RATE values for all the transfers conducted in 

the analysis. The values inside are RATEs. As expected, the aggregate errors of the 

locally estimated models (in bold) are lower than those of transferred models. For naïve 

transfers, the RATEs for inter-state transfers are higher than those for intra-state transfers, 

suggesting that model transfers across the states can result in poorer aggregate predictions 

than transfers within the state. This is consistent with the findings in the context of TI. 

Among intra-state naïve transfers, the RATEs are higher for the rural locations (ranging 

from 1.48 to 4.00) than those for urban-urban transfers (ranging from 1.00 to 2.33), 

suggesting greater transferability from urban regions to urban regions than to a rural 

region. The lowest aggregate relative errors can be observed for these transfers: 

SEFCF, CFTB, and CFSEF.  

After updating the constants of the transferred models, there is significant 

improvement in the RMSE values. In most cases, regardless of how poor the naïve 

transfer performance was, the aggregate prediction errors from transferred models drop to 

the level of the errors from the corresponding locally estimated model (bringing down the 

RATE value close to or equal to 1). These results suggest that, similar to previous 

findings in the context of MNL model (Koppelman et al., 1985), updating the constants 

of a transferred MDCEV model can help in improving its aggregate prediction 

performance to that of a locally estimated model. Recall that similar results were found in 

the context of transfer index as well; with significant improvements in the TI values after 

updating the constants of poorly performing naïve transfers. But intuition suggests that if  
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Table 4.8 Transferability Assessment Results: Root Mean Square Error (RMSE) & Relative Aggregate Transfer Error 

(RATE) 

 

 

Inter-state Transfer 

 

      Transferred  

               To 

Transferred  

From  

California Florida 

 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

  
 D

is
cr

et
e 

C
o

m
p

o
n

en
t 

California 0.07 (1.00) 0.07 (1.00) 0.23(5.75) 0.04 (1.00) 

Florida 0.25 (3.35) 0.07 (1.00) 0.04 (1.00) 0.04 (1.00) 

C
o

n
ti

n
u
o

u
s 

C
o

m
p

o
n

en
t 

California 0.17 (1.00) 0.17 (1.00) 0.33 (1.57) 0.21 (1.00) 

Florida 0.24 (1.41) 0.17 (1.00) 0.21 (1.00) 0.21 (1.00) 

 

Intra-state Transfer 

 

   Transferred  

           To  

Transferred  

From  

SEF CF TB D1U R 

 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

D
is

cr
et

e 

C
o

m
p

o
n

en
t 

 SEF 0.03(1.00) 0.03(1.00) 0.04(1.00) 0.04(1.00) 0.07(2.33) 0.03(1.00) 0.06(1.50) 0.04(1.00) 0.08(4.00) 
0.03 

(1.50) 

CF 0.04(1.33) 0.04(1.33) 0.04(1.00) 0.04(1.00) 0.04(1.33) 0.04(1.33) 0.04(1.00) 0.04(1.00) 0.06(3.00) 0.02(1.00) 

TB 0.05(1.67) 0.03(1.00) 0.06(1.50) 0.04(1.00) 0.03(1.00) 0.03(1.00) 0.08(2.00) 0.04(1.00) 0.06(3.00) 0.02(1.00) 

C
o

n
ti

n
u
o

u
s 

C
o

m
p

o
n

en
t SEF 0.11(1.00) 0.11(1.00) 0.31(1.94) 0.16(1.00) 0.31(1.80) 0.18(1.05) 0.28(2.13) 0.15(1.15) 0.22(2.00) 

0.10 

(0.90) 

CF 0.16(1.41) 0.14(1.20) 0.16(1.00) 0.16(1.00) 0.18(1.05) 0.17(1.00) 0.15(1.15) 0.15(1.15) 0.18(1.66) 0.16(1.48) 

TB 0.17(1.48) 0.15(1.31) 0.16(1.00) 0.14(0.87) 0.17(1.00) 0.17(1.00) 0.13(1.00) 0.15(1.15) 0.16(1.48) 0.15(1.39) 

 

       * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
       The values outside the parentheses indicate absolute RMSE while the values within the parentheses indicate relative RMSE with respect to a locally estimated model (RATE)  
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the naïvely transferred model performs rather poorly, simply updating the model 

constants doesn’t do the magic of getting things right. As discussed in Section 4.4, it is 

the property of the MDCEV model structure that updating its constants helps improve the 

aggregate-level predictions, rather than an improvement in the way the model captures 

behavior in the application context. To examine this, the next subsection presents 

transferability assessment based on the ability of the transferred models to forecast 

changes in activity time-use patterns in response to changes in explanatory variables.   

4.6.4 Policy Response Measures  

To assess model transferability based on how the models respond to changes in 

explanatory variables, we used a policy scenario where the age of individuals older than 

29 years was increased by 10 years (to reflect aging of the population).  Next, each 

estimated model was applied to its estimation sample and all the application context 

datasets (to which the model was transferred) for both base and policy scenarios. The 

changes in the time-use patterns (due to the policy) were computed at two levels – 

disaggregate and aggregate.  

At the disaggregate-level, first, for each set of error term draws for each 

individual, the overall change in activity participation and time-use patterns was 

measured as below.  

                  
1

ˆ ˆ| |1

2

p bK
k k

c

k

t t
T

T 

 
  

 
                                                            (4.8) 

 where, ˆ p

kt  is the predicted duration for alternative k  in the policy case, and ˆb

kt   = 

predicted duration for alternative k  in the base case. This measure is similar to the 

relative error measure  proposed by Jaggi et al. (2011) in that it is a composite measure of 
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changes in time allocation for all alternatives. Next, the above metric was averaged over 

all sets of error term draws for all individuals. We label this metric as disaggregate-level 

policy response.  

 The aggregate-level policy assessment metric is defined as the total absolute 

change in predicted shares for all choice alternatives: 
1

ˆ ˆ
K

p b

k k

k

p p


 , where ˆ p

kp  and ˆ b

kp  are 

the predicted aggregate shares for alternative k in the policy and base case scenarios, 

respectively. This metric focuses on the discrete (activity participation) component of 

choice. 

  Table 4.9 presents the above-discussed metrics, with the values outside the 

parentheses indicating the predicted policy response by the transferred model, and the 

values inside the parentheses indicating the ratio of the same metric with respect to that 

of a locally estimated model. The closer (farther) the values in the parenthesis are to 1 

(from 1), the closer (farther) is the transferred model’s policy response prediction to the 

corresponding locally estimated model, and therefore, better (poorer) transferability. 

These results suggest that for both inter-state and intra-state transfers, updating constants 

does not help much in improving the performance of the transferred model (i.e., in 

predicting the policy changes closely to that from a locally estimated model). In some 

cases, it rather seems to deteriorate the performance of the transferred model. These 

results are quite in contrast to the findings from the log-likelihood based (TI) and 

aggregate prediction-based (RMSE and RATE) metrics. While updating constants has 

been found to provide significant improvement in the TI values and aggregate-level 

prediction (as in many studies), the results here suggest that such improvements do not 

necessarily translate to improvement in the policy responses of the transferred model. 
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To gain better perspective from these findings, the above discussed policy 

measures were computed for 50 sets of bootstrapped values drawn from the sampling 

distributions implied by the parameter estimates and their covariance matrix (only for 

intra-state transfers). Table 4.10 presents the policy response measures for all transferred 

and locally estimated models in the form of average policy response values (averaged 

over all bootstrapped parameter estimates). Similar to the previous table, the values 

outside the parentheses indicate the predicted policy response by the transferred model 

while the values inside the parentheses indicate the ratio of the same metric with respect 

to that of a locally estimated model. One notable difference between the results from 

point and bootstrapped estimates that warrants attention here is that the values inside the 

parenthesis in Table 4.10 are much closer to 1 than those in Table 4.9, suggesting better 

transferability (in terms of policy response prediction) in almost all the cases. This 

indicates that neglecting sampling variance can potentially bias the results of 

transferability assessments toward “less” transferable. But interestingly, the overall 

findings from the bootstrapped parameter estimates are almost same as that obtained from 

the point estimates discussed in the previous paragraph.  

It is useful to note here that, to update the constants of transferred models, we 

used all the data available in the application context to update the model constants while 

retaining the other parameters from the estimation context. In reality, only a small sample 

(if any) is typically available from the application context. Updating the model constants 

with such small data samples may not lead to as significant improvements in the 

aggregate predictions as observed here. But the takeaway point is that the updated models 
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  Table 4.9 Transferability Assessment Results: Disaggregate and Aggregate Policy Response Measures (point estimates) 

 

Inter-state Transfer 

 

     Transferred                                   

                 To 

Transferred 

 From 

California Florida 

 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

P
o

li
cy

 R
es

p
o
n

se
 

D
is

ag
g

re
g

at
e 

California 4.88(1.00) 4.88(1.00) 4.86(1.64) 5.54(1.87) 

Florida 2.46(0.50) 2.57(0.53) 2.96(1.00) 2.96(1.00) 

A
g

g
re

g
at

e 

California 4.72(1.00) 4.72(1.00) 4.68(1.31) 6.74(1.88) 

Florida 3.70(0.78) 2.68(0.57) 3.58(1.00) 3.58(1.00) 

 

Intra-state Transfer 

 

     Transferred  

      To 

Transferred  

From  

SEF CF TB D1U R 

 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

 

P
o

li
cy

 R
es

p
o
n

se
 

D
is

ag
g

re
g

at
e SEF 2.25(1.00) 2.25(1.00) 2.57(1.58) 2.20(1.36) 2.50(0.51) 2.20(0.45) 2.21(0.55) 1.90(0.47) 2.71(2.22) 2.14(1.74) 

CF 1.42(0.63) 1.48(0.66) 1.62(1.00) 1.62(1.00) 1.50(0.31) 1.33(0.27) 1.37(0.34) 1.37(0.34) 1.65(1.35) 1.51(1.23) 

TB 4.90(2.18) 5.18(2.30) 5.36(3.31) 5.36(3.31) 4.88(1.00) 4.88(1.00) 5.52(1.36) 5.75(1.42) 5.32(4.35) 5.31(4.34) 

A
g

g
re

g
at

e 

SEF 3.15(1.00) 3.15(1.00) 3.42(1.36) 3.24(1.31) 3.33(0.65) 3.15(0.61) 3.24(2.49) 3.06(2.35) 3.69(2.54) 2.88(1.96) 

CF 2.43(0.77) 2.52(0.79) 2.52(1.00) 2.52(1.00) 2.43(0.47) 1.35(0.26) 2.07(1.60)   2.07(1.60) 2.70(1.84) 2.25(1.52) 

TB 5.31(1.69) 5.49(1.74) 5.94(2.38) 6.12(2.46) 5.13(1.00) 5.13(1.00) 6.12(4.78)  6.3(4.92) 5.67(3.88) 5.31(3.63) 

 

   * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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Table 4.10 Transferability Assessment Results: Disaggregate and Aggregate Policy Response Measures (using bootstrap) 

 

 

 * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
                        

 

 

 

Intra-state Transfer 

 

Transferred 

To 

Transferred 

From 

SEF CF TB D1U R 

 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

 

P
o

li
cy

 R
es

p
o
n

se
 

D
is

ag
g

re
g

at
e SEF 2.76(1.00) 2.76(1.00) 3.19(0.94) 2.73(0.80) 3.07(0.56) 2.70 (0.49) 2.82 (0.63) 2.43 (0.54) 3.38 (1.56) 2.65 (1.23) 

CF 2.92(1.06) 3.22(1.17) 3.40(1.00) 3.40(1.00) 3.16(0.58) 3.22 (0.59) 3.09 (0.69) 3.26 (0.73) 3.53 (1.63) 3.36 (1.56) 

TB 5.42(1.96) 5.64(2.04) 6.01(1.77) 5.83(1.71) 5.46(1.00) 5.46 (1.00) 6.16 (1.38) 6.21 (1.39) 6.00 (2.78) 5.73 (2.65) 

A
g

g
re

g
at

e 

SEF 3.18(1.00) 3.18(1.00) 3.77(1.24) 3.49(1.14) 3.46(0.64) 3.21(0.59) 3.37 (1.29) 3.22 (1.23) 3.89 (1.74) 3.05 (1.37) 

CF 2.66(0.84) 2.75(0.86) 3.05(1.00) 3.05(1.00) 2.69(0.50) 2.71 (0.50) 2.84 (1.09) 2.80 (1.07) 3.02 (1.35) 2.65 (1.19) 

TB 5.56(1.75) 5.63(1.77) 6.25(2.05) 6.31(2.07) 5.41(1.00) 5.41 (1.00) 6.43 (2.46) 6.58 (2.52) 6.00 (2.69) 5.50 (2.47) 
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have not shown any improvement in policy sensitivity even after using all the data 

available in the application context. 

4.6.5 Overall Assessment  

Table 4.11 presents a summary of the results (for transfers within Florida) from 

all the transferability assessment metrics used in this chapter except TTS (the TTS 

anyway rejects the hypothesis of transferability in all cases). To gain a better perspective 

from the results, we define four levels of transferability based on the error in the 

performance of a transferred model in the application context (for details, see the notes 

below Table 4.11). Specifically, the transferability of a model is categorized as level 1 if 

the error is less than 25%, level 2 for errors in the 25%-50% range, level 3 for errors in 

the 50%-100% range, and level 4 for errors greater than 100%. For each model 

transferred, the level of transferability (1, 2, 3, or 4) is denoted as the superscript for the 

region where the model was transferred from. Also, following Nowrouzian and 

Srinivasan (2012), for each application context, the various transferred models are 

arranged in the descending order of transferability defined by the above scheme of 

categorization in to 4 different levels. For example, based on transfer index for naïve 

transfers, the transferability to rural region of the SEF model is similar to that of the CF 

model (similarity denoted by “~”) but better than (“>”) that of the TB model. Of course, 

the levels are defined based on arbitrarily defined thresholds, but the analyst has to 

determine the acceptable error thresholds to draw broad conclusions on transferability. 

The RATEs suggest that, regardless of the level of transferability of a naively 

transferred model, any transferred model can be improved (to transferability level 1) by 

simply updating its constants. However, as discussed earlier and can be observed from
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                 Table 4.11 Overall Transferability Assessment Results 
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  * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 

  * Superscripts 

         Level 1: less than 25% error - Transfer Index (0.75 –1.00), RATE (1.00 –1.25), Policy Response Ratio (0.75 –1.00 ~1.00 –1.25) 

         Level 2: 25% - 50% error - Transfer Index (0.50 – 0.74), RATE (1.26 –1.50), Policy Response Ratio (0.50 – 0.74 ~ 1.26 –1.50) 

         Level 3: 50% - 100% error - Transfer Index (0.00 – 0.49), RATE (1.51 –2.00), Policy Response Ratio (0.00 – 0.49 ~ 1.51 –2.00)                    

         Level 4: >100% error - Transfer Index (< 0.00), RATE (>2 .00), Policy Response Ratio (>2.00)  

  * Signs  

         “~” - Transferability of one model is similar to that of the other model 

         “>”-Transferability of one model is better than that of the other model 

        “>>”-Transferability of one model is far better than that of the other model 

  * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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the last two sets of rows, this improvement doesn’t translate to improvement in the level 

of transferability in terms of the ability to provide appropriate policy predictions. Recall 

that the TI values also improved after updating constants, but the improvement for intra-

state transfers was not sufficient enough to enable jumps in the level of transferability 

unless the naïve transfer had a rather low TI value. The takeaway point here is that 

updating model constants can help with predicting the observed aggregate activity 

participation and time-use patterns closely, but not necessarily in predicting appropriate 

policy responses. Since updating model constants is a widely used practice to transfer 

models, it is important for modelers and model-users to be cognizant of this issue. 

For any application context, the order of transferability of different transferred 

models does not change (or it doesn’t get reversed) after updating constants. However, 

the order seems to vary by the metric used to assess transferability – specifically between 

the aggregate prediction metrics (RATE) and the disaggregate metrics such as TI and 

policy responses.  

There is greater correlation between the inferences from TI and policy response-

based assessment (based on both point and bootstrapped estimates), whereas inferences 

from the aggregate prediction-based metrics tally less with those from other metrics. For 

instance, both TI and policy assessments imply almost similar order of transferability of 

different models (for any application context). Similarly, although TI values improved 

after updating constants, neither TI nor policy assessments suggested significant 

improvement in transferability after updating model constants (except that TI showed 

significant improvement if the naïve transfer has a poor TI value). These findings suggest 

that greater TI value of a naively transferred model is likely to imply better policy 
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response of that model, but better neither aggregate prediction of observed patterns nor 

improvements in the TI after updating constants necessarily imply better policy 

prediction. Thus, future policy response assessments should place greater emphasis on 

log-likelihood based metrics (before updating constants) and even greater emphasis on 

policy response measures.  

The transferability from urban region models to D1U and Rural regions seems to 

be much lower than transferability among the three major urban region models (SEF, CF, 

TB). Further, the SEF and CF models are more transferable to other regions in Florida 

than the TB model. Nevertheless, in most cases, the level of transferability is at most 2 

(suggesting 25-50% errors in the transferred model compared to the local model) even 

after updating model constants (when the aggregate prediction-based metrics are 

ignored). Thus, future research should investigate if other model updating methods used 

in the literature can enhance transferability. Further, improving the empirical 

specification with additional urban form measures and transport system performance 

measures (e.g., accessibility) will likely have a considerable positive influence on model 

transferability. 

4.7 Data Pooling Technique Assessment  

Table 4.12 presents the data pooling technique assessment results. As can be 

observed from this table, only two metrics were used in this assessment: (a) transfer 

index, and (b) policy response measure. The first column of Table 4.12 presents the 

combination of the regions the data pooled from for model estimation, while the other 

columns present the transferability results (of those pooled models) obtained from the 

assessment metrics mentioned to the left of the first column.        
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It is important to note that while pooling the data, data from all the regions were 

not pooled at a time; it was done sequentially. For a given metric and a transfer to a 

particular region, we started with data of the model that provided the best performance 

(in the application region) in the previous transferability assessments, and then added 

data from other regions sequentially. As one can imagine, for a total of four regions, there 

will be three combinations in this sequential procedure. The transferability results of the 

models developed based on all of these combined regions data are provided in the table. 

Among these, the combinations that performed the best in application context are 

indicated in bold.      

To understand the procedure better, let us consider an example. In the previous 

transferability analysis, the CF model was found to perform better than the TB model (in 

terms of transfer index values) when both of them were naively transferred to SEF (0.59 

vs. 0.29). Hence, for transfer index metric and for the transfer to SEF region, data from 

different regions were pooled with the CF data one by one (e.g., first from the TB region, 

and then from the NE region), and then models were estimated using those pooled 

datasets. Next, transferability of the pooled model was assessed by using transfer index 

metric. The TI values suggest the better performance of the first naively transferred 

pooled model (i.e., estimated on pooled CF and TB data) than the CF model (0.66 

vs.0.59). The performance appears to improve further after pooling data from the NE 

region. But after that, pooling data from other regions does not appear to improve the 

performance of the naively transferred model (i.e., the TI value remains the same). 

Similarly the policy response measure was used to assess the performance of the data 

pooling technique. 
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Table 4.12 Data Pooling Technique Assessment Results 
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CF 0.592 0.702 - - - - 

CF+TB 0.662 0.761 - - - - 

CF +TB +NE 0.702 0.811 - - - - 

CF+TB+NE+OTHER 0.702 0.801 - - - - 

SEF - - 0.532 0.682 - - 

SEF+TB - - 0.702 0.781 - - 

SEF+TB+OTHER - - 0.751 0.811 - - 

SEF+TB+OTHER+NE - - 0.742 0.811 - - 

CF - - - - 0.463 0.642 

CF+SEF - - - - 0.562 0.751 

CF+SEF+NE - - - - 0.612 0.771 

CF+SEF+NE+OTHER - - - - 0.672 0.811 
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CF 1.42 (0.632) 1.48 (0.662) - - - - 

CF+TB 3.04(1.352) 3.30 (1.472) - - - - 

CF+TB+NE 2.54 (1.131) 2.82 (1.251) - - - - 

CF+TB+NE+OTHER 3.06 (1.362) 3.40  (1.513) - - - - 

SEF - - 2.57 (1.583) 2.20 (1.362) - - 

SEF+NE - - 3.20 (1.973) 3.08 (1.903) - - 

SEF+NE+OTHER - - 3.22 (1.993) 3.13(1.933) - - 

SEF+NE+OTHER+TB - - 3.47 (2.144) 3.39 (2.094) - - 

SEF - - - - 2.50(0.512) 2.20 (0.453) 

SEF+CF - - - - 2.93 (0.602) 2.81 (0.572) 

SEF+CF+NE - - - - 2.42 (0.502) 2.42(0.502) 

SEF+CF+NE+OTHER - - - - 2.60 (0.532) 2.60 (0.532) 
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CF 0.27(0.761) 0.28(0.791) - - - - 

CF+TB 0.42(1.201) 0.45 (1.292) - - - - 

CF+TB+NE 0.40 (1.151) 0.43 (1.231) - - - - 

CF+TB+NE+OTHER 0.23 (0.662) 0.25(0.702) - - - - 

SEF - - 0.38 (1.362) 0.36 (1.312) - - 

SEF+OTHER - - 0.41(1.502) 0.43 (1.543) - - 

SEF+OTHER+NE - - 0.42 (1.513) 0.43 (1.533) - - 

SEF+OTHER+NE+TB - - 0.47(1.703) 0.49 (1.783) - - 

SEF - - - - 0.37 (0.652) 0.35 (0.612) 

SEF+CF - - - - 0.40 (0.692) 0.39(0.672) 

SEF+CF+NE - - - - 0.38 (0.662) 0.37 (0.642) 

SEF+CF+NE+OTHER - - - - 0.36 (0.622)  0.35(0.612) 

* SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District 1, and R: Rural Florida 

* Superscripts 

         Level 1: less than 25% error - Transfer Index (0.75 –1.00), Policy Response Ratio (0.75 –1.00 ~1.00 –1.25) 

         Level 2: 25% - 50% error - Transfer Index (0.50 – 0.74), Policy Response Ratio (0.50 – 0.74 ~ 1.26 –1.50) 

         Level 3: 50% - 100% error - Transfer Index (0.00 – 0.49), Policy Response Ratio (0.00 – 0.49 ~ 1.51 –2.00)                    

         Level 4: >100% error - Transfer Index (< 0.00), Policy Response Ratio (>2.00)  
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Several important observations may be made from the table. First, the results 

indicate that pooling data from different regions helps in improving the performance of a 

naively transferred model, but up to a certain extent. After that, pooling data does not 

appear to improve the performance of the transferred model; in some cases, it rather 

seems to deteriorate the performance of the transferred model. Second, to obtain the best 

performance, the number of the regions required to pool the data from appears to vary 

with the transferability assessment metric and the application region. However, in most 

cases, pooling data from just one or two regions appears to be sufficient i.e., don’t need to 

pool data from all the regions possible. Third, as expected, the performance of the data 

pooling technique seems to depend on the data characteristics more than the sample size 

of the data pooled from other regions. For instance, although the NE region has a small 

sample size (688) compared to other regions such as TB (1334) and others (2430), it 

appears to play an important role in the transferability of a model. Fourth, the data 

pooling technique suggest the following combinations of the regions (to pool the data 

from) for transferring the activity participation and time-use model to three major urban 

regions in Florida: (a) CF +TB +NE  SEF, (b) SEF   CF, and (c) SEF +CF   TB. 

These combinations suggest that the data from other urban areas need to be pooled to 

improve the transferability of a model to another urban region. It is important to note that 

the scale differences across the areas were not considered in this data pooling technique 

assessment. Allowing for scale differences across different regions can potentially shed 

further light on the performance of the data pooling technique.  
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4.8 Summary 

  This chapter presents an empirical assessment of the spatial transferability of 

person-level activity generation and time-use models among different regions in Florida 

(intra-state transferability) and between Florida and California (inter-state transferability). 

The empirical models are for unemployed adults based on the multiple discrete-

continuous extreme (MDCEV) structure. An examination of the prediction properties of 

the MDCEV model is provided first, followed by an assessment of transferability for two 

approaches to transferring models – (1) Naïve transfer, and (2) Updating model constants. 

Transferability is evaluated using different measures such as log-likelihood based 

measures, aggregate predictive ability, and model sensitivity to changes in demographic 

characteristics. In addition, the performance of new approach of enhancing model 

transferability is investigated in this chapter. 

The results shed new light on the prediction properties of the MDCEV model that 

has implications to transferability. The most important of these is that, similar to the 

multinomial logit model, the MDCEV model estimated with only constants, when 

applied to the estimation data, provides accurate aggregate shares of the choice of 

discrete alternatives. This property has implications to model transferability. Specifically, 

updating the constants of a transferred MDCEV model using data from the application 

context can help improve its aggregate-level discrete choice predictions.  

The MDCEV model appears to perform very well in predicting the aggregate-

level activity participation rates in individual activities. But the model appears to under-

predict the aggregate activity durations for the outside good (in-home activity) and over-

predict the aggregate durations for most of the inside goods (out-of-home activities).  
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 The transferability assessment revealed several findings. First, the ability to 

predict aggregate observed patterns is not an adequate measure of transferability. Greater 

emphasis should be placed on disaggregate-level prediction metrics and more importantly 

policy prediction ability. Similar findings were reported in Karasmaa (2007) and 

Nowrouzian and Srinivasan (2012). Second, updating the constants of a transferred 

MDCEV model can significantly improve its ability to predict aggregate shares in the 

context to which it is transferred. But this does not necessarily translate into an 

improvement in the transferred model’s ability to provide appropriate sensitivities to 

changes in demographic characteristics and other variables. While these results do not 

argue against updating the model constants, it is important that the transferred model 

must exhibit a minimum level of performance without any updates. Only then does it 

make sense to update its constants. Thus, empirical research should be more focused on 

the development of more transferable models by better capturing the behavior than 

directly utilizing updating methods that simply rely on the mechanics (or properties) of 

the model to match aggregate predictions. Third, the extent of transferability between 

different regions within a state is greater than that across different states. Thus, whenever 

possible, attempts should be made to transfer models within a state. Within the state of 

Florida, the transferability between urban regions is greater than that from urban to rural 

region. Specifically, there appears to be greater transferability of time-use models 

between the Southeast Florida and the Central Florida regions.  

 The results also suggest that pooling data helps in improving the spatial 

transferability of a model but up to a certain extent. After that, pooling data does not 

appear to result significant improvement in model transferability. Besides, data from all 
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the regions do not appear to result in similar improvements. For instance, data pooled 

from major urban regions (as compared to that from other regions) was found to result in 

greater improvement in the transferability of a model to another major urban region. 
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CHAPTER 5 

ENHANCING SPATIAL TRANSFERABILITY BY IMPROVING MODEL 

STRUCTURE: FORMULATION AND APPLICATION OF THE MULTIPLE 

DISCRETE-CONTINUOUS HETEROSCEDASTIC EXTREME VALUE 

(MDCHEV) MODEL 

 

5.1 Introduction and Motivation 

The previous chapters uses the Karush-Kuhn-Tucker (KKT) based Multiple 

Discrete Continuous Extreme Value (MDCEV) model to investigate the spatial 

transferability of person-level daily activity participation and time-use models. The 

investigation of the prediction properties of the MDCEV model in that chapter suggest 

that the MDCEV model performs well in predicting the aggregate-level discrete choices 

observed in the estimation data (i.e., the market shares for each choice alternative) but not 

the aggregate activity durations. Specifically, the model is found to under-predict the 

aggregate activity durations for the outside good (in-home activity) and over-predict the 

aggregate durations for most of the inside goods (out-of-home activities). It is possible 

that this problem in prediction is due to the fat right tail of the extreme value distributions 

assumed in the MDCEV model, and can be rectified to a considerable extent by using 

alternative distributions in the model structure. In addition to improving the prediction 
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ability of the model, this improvement to the structure can also enhance its transferability 

across areas.   

5.2 Contribution and Organization of the Chapter 

In view of the above discussion, this chapter aims to formulate a KKT-based 

MDC model that allows heteroscedastically distributed random components across 

different choice alternatives available to a decision-maker. More specifically, the 

Multiple Discrete-Continuous Heteroscedastic Extreme Value (MDCHEV) structure that 

employs heteroscedastic extreme value (HEV) distributed random utility components in 

KKT-based MDC models is proposed in this chapter. The HEV distribution was 

originally used by Bhat (1995) for modeling single discrete choice situations (also see 

Hensher, 1999, who used the HEV specification as a search mechanism for appropriate 

nesting structures in nested logit models). 

To be sure, the concept of incorporating heteroscedastically distributed random 

utility components is not new in KKT-based MDC modeling. Bhat and Sen (2006) and 

Spissu et al. (2009) do so using a mixed-MDCEV mechanism where heteroscedastically 

distributed normal error components are mixed over an IID extreme value kernel. 

However, the likelihood function of the mixed-MDCEV formulation is a 

multidimensional integral of as many dimensions as the number of heteroscedastic choice 

alternatives. Evaluation of this integral requires computationally intensive simulation 

techniques as the choice alternatives increase beyond a modest number. The other 

alternative is to use the MDCP structure (Kim et al., 2002; Farooq et al., 2013; and Bhat 

et al., 2012) whose MVN distribution automatically allows heteroscedasticity across 

choice alternatives. However, the estimation of MDCP models has not been straight 
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forward because of the difficulty of evaluating the resulting multidimensional integrals in 

the likelihood function (although see Bhat et al., 2012 for a new method to address this 

problem). One advantage of the proposed MDCHEV approach over the other two 

approaches (i.e., mixed-MDCEV and MDCP) is that the resulting likelihood function is a 

uni-dimensional integral that can be easily (and accurately) evaluated using quadrature 

methods; a reason why Bhat (1995) used it in his paper. 

Regardless of the method used, the primary reason behind accommodating 

heteroscedastically distributed random utility components is to recognize the differences 

in the variation of unobserved influences on the preferences for different choice 

alternatives. As often cited in the literature, doing so helps in improving the model fit to 

the data as well as accommodates the influence of heteroscedastic random variance on 

the elasticity effects of alternative attributes. For instance, the self-price elasticity 

estimate of a choice alternative is dampened by the variance in its random utility 

component. However, what has been unknown (and unexplored) so far is the potential 

influence of heteroscedasticity on the distributions of the consumptions implied by a 

KKT demand system such as the MDCEV model. This chapter demonstrates empirically 

that neglecting heteroscedasticity in KKT models leads to not only inferior model fit, but 

also poor predictions of the consumption patterns, especially the continuous quantity 

decisions, both in the estimation and validation samples. Specifically, the distributions of 

the predicted continuous quantity decisions for certain choice alternatives can potentially 

have longer right tails than the observed distributions; implying overestimation of the 

continuous quantity predictions for those choice alternatives. This chapter discusses how 

this problem is related to the fat right tail of the IID extreme value distributions assumed 
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in the MDCEV model. It is also demonstrated empirically that allowing for 

heteroscedasticity (through the MDCHEV model) helps in addressing this problem to a 

considerable extent. This is because the MDCHEV model results in smaller variances 

(hence tighter distributions) of the random utility components for the choice alternatives 

for which the MDCEV model over-predicts the continuous quantity choices. Such tightly 

distributed random utility components, as will be demonstrated later in this chapter, 

reduce the probability of unreasonably large continuous quantity predictions. 

For the empirical demonstration, both the MDCEV and MDCHEV models are 

estimated on a daily time-use dataset derived from the National Household Travel Survey 

(NHTS) data in Florida. In addition to comparing the goodness of statistical fit and 

goodness of predictions on the estimation data, the transferability of these two models 

among different regions in Florida are compared.  It has long been discussed in the model 

transferability literature (see chapter 2 for a detailed review) that empirical models that 

transfer better to other geographical and/or temporal contexts reflect a better underlying 

theory, econometric structure, and empirical specification. However, there is little 

empirical evidence in the field on whether (and what) improvements in econometric 

structure contribute to improvements in model transferability. Thus, in addition to 

proposing a methodological extension to modeling MDC choices (i.e., the MDCHEV 

model), this chapter investigates whether the proposed methodological extension helps in 

enhancing the spatial transferability of time-use models. 

The remainder of this chapter is organized as follows. The next section presents 

the structure of the MDCHEV model and outlines the estimation procedure. Section 5.4 

briefly overviews the empirical data and geographical contexts considered for the 
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empirical analysis. Section 5.5 presents the empirical results and Section 5.6 summarizes 

the chapter. 

5.3 The MDCHEV Model 

This section formulates the MDCHEV model for analyzing individuals’ time-use 

(i.e., activity participation and time allocation) and outlines the procedure used to 

estimate the model parameters.  

5.3.1 Model Formulation  

Consider the following random utility function proposed by Bhat (2008) for 

modeling multiple discrete-continuous choice situations:  

                                    1 1

2

( ) ln ln / 1
K

k k k k

k

U t t   


  t                                     (5.1) 

In the above function,
 

( )U t  is the total utility derived by an individual from his/her daily 

time-use. It is the sum of sub-utilities derived from allocating time ( kt ) to each of the 

activity types k (k =1,2,…,K). Individuals are assumed to make their activity participation 

and time-use decisions such that they maximize ( )U t  subject to a linear budget 

constraint
kk

t T , where T is the total available time budget. Note that the subscript 

for the individual is suppressed for simplicity in notation. 

Within the utility function in Equation (5.1), k , called the baseline marginal 

utility for alternative k, is the marginal utility of time allocation to activity k at the point 

of zero time allocation. k
 
governs the discrete choice decisions in that an activity type 

with greater baseline marginal utility is more likely to be chosen than other activities. k  

accommodates corner solutions (i.e., the possibility of not choosing an alternative). Both 
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k
 
and k  

accommodate differential satiation effects (diminishing marginal utility with 

increasing consumption) for different activity types. Thus, both these parameters 

influence the time allocation decisions. Specifically, a greater value of either k
 
or k  

implies a larger allocation of time to the corresponding activity. Note that the 1
st
 

alternative, designated as in-home activity, does not have a k  
parameter since all 

individuals in the data allocate some time to the in-home activity (i.e., there is no need of 

corner solutions for this activity). From now on, this alternative will be called the outside 

good, while all other activities (out-of-home activities) are called inside goods.
9
 

  The influence of observed and unobserved individual characteristics and activity-

travel environment (ATE) measures are accommodated into the utility function as 

1 1exp( );   exp( ' );k k kz     and exp( );k kw   where,  kz  and kw  are observed 

socio-demographic and ATE measures influencing the choice of and time allocation to 

activity k,   and   are corresponding parameter vectors, and k  (k=1,2,…,K) is the 

random error term capturing unobserved and unmeasured influences on the utility 

contribution of time allocation in activity type k. Note that 1  does not include any 

observed explanatory variables as the coefficients of all explanatory variables for this 

alternative are normalized to zero for identification purposes. This is because the budget  

 

                                                           
9
 The outside good is a composite good that represents all goods other than the K-1 inside goods of 

interest to the analyst. The presence of the outside good helps in ensuring that the budget constraint is 

binding. Besides, the outside good helps in endogenously determining the total resource allocation for (or 

total consumption of) inside goods. It is not uncommon to treat the outside good as a numeraire with unit 

price, assuming that the prices and characteristics of the goods grouped into the outside category do not 

influence the choice and resource allocation among the inside goods (see Deaton and Muelbauer 1980). 

While the current empirical context is such that the outside good is an essential good (where all individuals 

consume some amount of it), it is not always necessary for the outside good to be specified as an essential 

good. 
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constraint implies that the time investments of only K-1 of the K alternatives are the 

decision variables in the utility maximization problem (Bhat, 2008). 

To obtain the optimal time allocations ( * * *

1 2, ,..., Kt t t ), one can form the Lagrangian 

and derive the following Karush-Kuhn-Tucker (KKT) conditions of optimality (Bhat 

2008): 

                                  1 1k kV V     if * 0,( 2,3,...., )kt k K   

                                  1 1k kV V    if * 0,( 2,3,...., )kt k K                                       (5.2) 

where,  *

1 1ln ,V t  and   *ln / 1 ,( 2,3......, ).k k k kV z t k K       

The above stochastic KKT conditions form the basis for the derivation of 

likelihood expressions. In the general case, if the joint probability density function of the 

k  terms is 1 2( , ,..., )kg    , and if M alternatives are chosen out of the available K  

alternatives, and if the consumptions of these M  alternatives are * * * *

1 2 3( , , ,..., )Mt t t t , as given 

in Bhat (2008), the joint probability expression for this consumption patterns is as 

follows:  

                   

1 1 1 1 11 1 1 1 2 1

1 1 2 1

* * * *

1 2 3

1 1 2 1 1 3 1 1 1 1 2 1

1 2 1 1

( , , ,..., 0,0,0...,0) ...

( , , ,..., , , ,..., , )

...

k kM M

M M k k

V V V VV V V V

M

M M M K K

k k M M

P t t t t J

g V V V V V V

d d d d d

  

    

       

    

 

  

      

    

  

  



     

    

         (5.3)

 

 where J  is the determinant of a Jacobian whose elements are given by (see Bhat, 2005)  

                              
   

* *

1 1 1 1 1

1 1

; , 1,2,..., 1.
i i

ih

h h

V V V V
J i h M

t t

 

 

    
   

 
                   (5.4)

 

For the MDCHEV model, it is assumed that the random components in the 

baseline marginal utilities of different choice alternatives are independent but 
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heteroscedastically extreme value (HEV) distributed. Specifically, the random error term 

k  of each alternative k  ( 1,2,3,...., )k K  is assumed to have a type-1 extreme value 

distribution with a location parameter equal to zero and a scale parameter equal to k . 

With the HEV distribution, the probability expression in Equation (5.3) becomes:  

1

1

1 1* * * 1 1 1
1 2 1

2 1 1 1

1 1
( , ,..., ,0,...,0)

M K
j s

M

j s Mj j s

V V V V
P t t t J g G g d





  


    



  

              
                      

  (5.5) 

where g(.) and G(.) are the probability density function and cumulative distribution 

function, respectively, of the standard type I extreme value distribution. If the scale 

parameters k  across all alternatives are assumed to be equal, then the above expression 

simplifies to the closed-from MDCEV model derived by Bhat (2005). 

5.3.2 Model Estimation  

The parameters of the MDCHEV model can be estimated using the familiar 

maximum likelihood procedure. However, there is no analytical form for the integral 

appearing in the probability expression of Equation (5.5), which enters the likelihood 

function. In this chapter, the Laguerre Gaussian Quadrature (Press et al., 1986) is 

employed to compute the integral. To employ this technique, first the probability 

expression in Equation (5.3) is expressed in a particular form. To do so, following (Bhat, 

1995), define 1

1

w



  and wu e . Then, ( ) ug w dw e du   and 1 1 lnu   . 

Substituting these in Equation (5.5), the probability expression can be re-written as 

follows:   

                                        * * * *

1 2 3

0

( , , ,..., 0,0,...,0) ( ) u

M

u

P t t t t J f u e du







                   (5.6) 
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 where  
1 1 1 1

2 1

ln ln1
( )

M K
j s

j s Mj j s

V V u V V u
f u g G

 

    

            
                   

   

According to the Laguerre Gaussian Quadrature technique, the integral in Equation (5.6) 

can be computed as follows:  

                              * * * *

1 2 3( , , ,..., ,0,0,0...,0) ( )M i i

i

P t t t t J w f u                    (5.7) 

where, i  is the support point at which the function ( )if u  is evaluated and iw  is the 

weight associated with support point i . We used 15 support points to evaluate the 

integral. Since the integral being evaluated is uni-dimensional, the quadrature method is 

computationally efficient and accurate. The likelihood function was coded in the 

maximum likelihood estimation module of the GAUSS matrix programming language.  

Note that, since there is no variation in the prices of unit consumption of the 

different activity alternatives in the current empirical context, one cannot estimate the 

scale parameters for all K alternatives. For identification purposes, at least one of the 

scale parameters must be fixed to an arbitrary value (Bhat, 2008). In the current context, 

it is convenient to fix the scale parameter of the essential outside good (in-home activity) 

to 1. Therefore, the interpretation of all other scale parameters would be in reference to 

that of the outside good. Specifically, a k
 
value less (greater) than 1 implies that the 

unobserved variation in utility derived from time investment in activity type k is smaller 

(larger) than that in the in-home activity. 

5.4 Data 

 This chapter uses the same activity participation and time-use data used in chapter 

4. While chapter 4 uses this dataset to assess the spatial transferability of a time-use 

model with an MDCEV structure, this chapter uses the dataset to assess the extent to 
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which the MDCHEV helps resolve the prediction-related issues associated with the 

MDCEV model. Another important reason of using the same data set is to compare the 

spatial transferability of these two model structures (i.e., MDCEV vs. MDCHEV) among 

different regions in Florida. Since a detailed discussion on data cleaning and sample 

formation procedures is provided in chapter 4, these are not repeated here; only a brief 

discussion is provided in this section. 

   As mentioned in chapter 4, the activity participation and time use data were 

prepared for unemployed adults (age >18 years) in Florida using their weekday 

information from the 2009 National Household Travel Survey (NHTS). The eight out-of-

home activity categories considered are: (1) Shopping, (2) Other maintenance (buying 

goods/services and attend meeting), (3) Social/Recreational (visiting friends/relatives, go 

out/hang out, visit historical sites, museums and parks), (4) Active recreation (working 

out in gym, exercise, and playing sports), (5) Medical, (6) Eat out (such as meal, coffee, 

and ice cream) (7) Pickup/drop-off, and (8) Other activities. For each individual, the daily 

time-allocation to each of these activity categories was derived by aggregating the dwell 

time of each trip made for that activity purpose. The time spent in in-home (IH) activities 

was computed as total time in a day (24 hours) minus the time allocated to the above out-

of-home activities, sleep, and travel. Based on the information from the 2010 American 

Time Use Survey (ATUS) for Florida, an average amount of 8.7 hours was assumed for 

sleep. For each individual in the data, the time spent in in-home activities and in all out-

of-home activities together forms the available time budget (T) for subsequent analysis. 

The empirical analysis in this chapter focuses only on three geographical regions in 

Florida: (1) Southeast Florida (SEF), (2) Central Florida (CF), and (3) Tampa Bay (TB). 
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For the sample characteristics, the reader is referred to chapter 4. Without presenting the 

descriptive statistics of the sample once again in this section, the patterns of relevance is 

quickly summarized here.  

The activity participation and time allocation patterns observed in the data were 

found to be reasonable for the most part. For example, time allocation to 

social/recreational activities was observed to be larger than that to other activities while 

that to pickup/drop-off activities was smaller. However, it is worth noting one anomaly 

that was observed in the context of daily time allocation to active recreational activities. 

According to the data, a large proportion (more than 30%) of those who participated in 

active recreation appear to have done so for only 2 minutes or less in a day. Given the 

activities considered in this category (e.g., working out in gym, or playing sports), there 

is a high chance that such unreasonably small activity durations for a large proportion of 

the sample is a result of measurement error; presumably due to misreporting by the 

respondents or errors in coding of the data. It is important to note that the possibility of 

activities of very short duration such as walking around the house is also considered here; 

such a trip would begin and end at the same location. But the NHTS collected 

information on only those trips that were made to a different address. Also, the auto 

travel mode was used to arrive at many of these activities suggesting that these activities 

are not likely to be short strolls.  Such measurement errors can potentially have bearing 

on the estimated variance of the random error term for the active recreation activity. 

5.5 Empirical Results 

          This section is divided into three sub-sections. Section 5.5.1 presents and compares 

the estimation results of the MDCEV and MDCHEV models. Section 5.5.2 compares the 
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prediction performance of the two models on the estimation sample. Section 5.5.3 

examines the influence of incorporating heteroscedasticity on the transferability of these 

two model structures among different geographical regions in Florida. Similar to chapter 

4, all prediction exercises in this chapter are performed using the forecasting algorithm 

proposed by Pinjari and Bhat (2011), using 100 sets of random draws to cover the 

random error term distributions for each individual in the data. 

5.5.1 Model Estimation Results  

To assess the accuracy of the Laguerre Gaussian Quadrature technique, first the 

MDCEV model was estimated (for all 3 regions) using the MDCHEV likelihood 

expression in Equation (5.7) but fixing all scale parameters to 1. The resulting parameter 

estimates, standard errors, and log-likelihood values were all very close to those from the 

MDCEV model estimated using Bhat’s closed-form likelihood expression. This 

demonstrates the accuracy of the Laguerre Gaussian Quadrature technique used for 

estimating the MDCHEV model. Next, the activity generation and time-use models were 

estimated for each of the three geographic regions by using the MDCHEV structure 

(using the quadrature-based likelihood expression in Equation 5.7), and compared with 

that of the results obtained from the MDCEV structure (using Bhat’s closed-from 

probability expression) in chapter 4. These results are presented in Table 5.1.  

5.5.1.1 Scale Parameters 

The scale parameter estimates are reported first in the table. As discussed earlier, 

the MDCEV model restricts all the scale parameters for all activities as equal to 1. On the 

other hand, the MDCHEV model allows the scale parameters to be different across  
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Table 5.1 Model Estimation Results 

  South East Florida (SEF) Central Florida (CF)  Tampa Bay (TB) 

 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

Coef. (t-stat) Coef.(t-stat) Coef. (t-stat) Coef. (t-stat) Coef.(tstat) Coef.(t-stat) 

Scale Parameters  

(t-stats against 1) 
            

  Shopping 1.00(fixed) 0.73(11.1) 1.00(fixed) 0.68(12.1) 1.00(fixed) 0.68(11.1) 

  Other Maintenance  1.00(fixed) 0.52(22.1) 1.00(fixed) 0.42(27.9) 1.00(fixed) 0.47(25.8) 

  Social/Rec. 1.00(fixed) 0.60(16.9) 1.00(fixed) 0.58(16.2) 1.00(fixed) 0.55(17.3) 

  Active Recreation 1.00(fixed) 1.14(1.8) 1.00(fixed) 1.18(1.9) 1.00(fixed) 1.40(3.5) 

  Medical 1.00(fixed) 0.73(11.1) 1.00(fixed) 0.68(12.1) 1.00(fixed) 0.68(11.1) 

  Eat out 1.00(fixed) 0.60(16.9) 1.00(fixed) 0.58(16.2) 1.00(fixed) 0.55(17.3) 

  Pick-Up/Drop-Off 1.00(fixed) 0.52(22.1) 1.00(fixed) 0.42(27.9) 1.00(fixed) 0.47(25.8) 

  Other Activities 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 

Baseline Utility Parameters 

Constants             

  Shopping -7.45(-74.8) -7.26(-90.1) -7.55(-53.3) -7.30(-65.6) -6.69(-89.8) -6.7(-122.2) 

  Other Maintenance -8.90(-49.1) -7.98(-71.4) -8.54(-53.1) -7.74(-68.5) -7.41(-83.9) -7.0(-131.9) 

  Social/Rec. -8.48(-77.2) -7.94(-92.9) -8.68(-53.1) -7.98(-64.7) -8.18(-34.5) -7.52(-53.7) 

  Active Recreation. -8.99(-67.1) -8.98(-48.4) -9.33(-44.3) -9.33(-33.6) -8.69(-30.1) -9.63(-19.9) 

  Medical  -8.75(-75.6) -8.25(-85.2) -8.78(-45.5) -8.13(-55.3) -7.99(-45.3) -7.62(-60.9) 

  Eat out -9.48(-51.5) -8.56(-65.6) -9.65(-29.2) -8.50(-39.6) -8.07(-31.3) -7.50(-49.9) 

  Pick-Up/Drop-Off -8.46(-56.7) -7.91(-77.5) -9.85(-18.3) -8.26(-33.5) -8.99(-26.5) -7.94(-39.8) 

  Other Activities -10.20(-84.6) -9.97(-87.9) -10.3(-61.8) -9.52(-31.7) -9.04(-84.5) -9.04(-84.8) 

Gender (Male Base)  
      

  Female - Shopping 0.06(0.79) 0.02(0.4) 0.13(1.6) 0.10(1.7) 0.16(1.8) 0.11(1.8) 

  Female -Active Rec. -0.20(-1.97) -0.26(-2.2) - - - - 

  Female - Pick / Drop - - - - 0.27(1.7) 0.13(1.5) 

Age (30- 54 yrs base)          
 

  

  18-29 yrs- Soc./Rec. 0.75(3.57) 0.50(3.8) - - - - 

  55-64 yrs - Medical - - 0.15(0.8) 0.07(0.54) 0.39(1.8) 0.28(1.9) 

  55-64 yrs - Eat out - - 0.39(2.0) 0.20(1.8) - - 

  55-64 yrs Pick/Drop -0.48(-2.64) -0.24(-2.3) -0.38(-1.7) -0.23(-2.2) - - 

  65-74 yrs.- Medical  0.28(2.33) 0.21(2.5) 0.16(0.9) 0.08(0.7) 0.30(1.5) 0.21(1.5) 

  65-74 yrs - Eat out - - 0.43(2.4) 0.21(1.9) - - 

  65-74 yrs Pick/Drop -0.62(-3.78) -0.29(-3.1) -0.43(-1.9) -0.26(-2.6) - - 

  ≥75 yrs -Soc./ Rec. - - - - -0.31(-2.5) -0.18(-2.5) 

  ≥75 yrs –Act. Rec. - - - - -0.16(-1.2) -0.21(-1.1) 

  ≥ 75 yrs - Medical 0.24(2.11) 0.20(2.4) 0.20(1.1) 0.11(0.9) 0.36(1.8) 0.26(1.9) 

  ≥ 75 yrs - Eat out - - 0.39(2.2) 0.19(1.8) - - 

  ≥ 75 yrs -Pick/Drop -1.00(-5.9) -0.49(-5.1) -0.65(-2.8) -0.34(-3.3) -0.59(-3.2) -0.33(-3.1) 

White race - Eat out 0.27(1.7) 0.17(1.8) 0.44(1.7) 0.24(1.6) 0.28(1.1) 0.15(1.0) 

Driver(Non-driver)         
 

  

  Driver – Other Main 0.44(2.4) 0.14(1.4) - - - - 

  Driver -Soc./ Rec. - - - - 0.68(2.9) 0.32(2.4) 

  Driver - Active Rec. - - - - 0.60(2.3) 0.90(2.4) 

  Driver - Pick/Drop - - 1.06(2.1) 0.37(1.7) 0.72(2.3) 0.33(1.8) 
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Table 5.1 (Contd.)
 

  South East Florida (SEF) Central Florida (CF)  Tampa Bay (TB) 

 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

Coef. (t-stat) Coef.(t-stat) Coef.(t-stat) Par. (t-stat) Coef. (t-stat) Coef. (t-stat) 

   Education 

(H. Sch/low base)   
      

 
  

  College-Oth Maint. 0.35(3.1) 0.17(2.76) - - 0.33(2.64) 0.15(2.3) 

  Bac./High-Oth Maint. 0.50(4.7) 0.27(4.52) 0.22(1.9) 0.07(1.3) 0.32(2.52) 0.13(1.9) 

  Bac./High-Active Rec. 0.20(1.8) 0.24(1.91) 0.39(2.9) 0.49(3.1) 0.21(1.51) 0.31(1.6) 

Born in US         
 

  

 Social/Recreational  0.17(1.7) 0.10(1.74) - - - - 

  Eat out 0.49(4.1) 0.30(4.19) 0.14(0.6) 0.08(0.7) - - 

Number of Children         
 

  

  0-5 years - Shopping  - - -0.50(-2.5) -0.33(-2.4) -0.14(-0.85) -0.12(-1.0) 

  0-5 years - Oth Maint. -0.29(-1.6) -0.17(-1.64) -0.26(-1.3) -0.10(-1.1) - - 

  0-5 years - Pick/Drop 0.26(1.8) 0.16(1.44) 0.58(3.9)  0.30( 3.8) 0.23(1.30) 0.11(1.0) 

  6-18 years - Pick/Drop 0.48(5.0) 0.28(4.88) 0.46(2.9) 0.20(2.6) 0.58(3.95) 0.34(3.8) 

Income (<25K is base)             

  25 -55 K - Oth Maint. - - 0.34(2.4) 0.15(2.2) - - 

  25 -55 K – Soc./Rec.  - - 0.29(2.1) 0.16(1.8) - - 

  25 -55 K - Active Rec. - - 0.39(2.3) 0.44(2.2) - - 

  25 -55 K - Eat out 0.29(2.0) 0.17(1.94) 0.31(2.1) 0.16(1.8) - - 

  55 - 75k - Oth Maint. - - 0.28(1.6) 0.12(1.4) - - 

  55 - 75k - Soc./Rec. - - 0.27(1.6) 0.13(1.3) - - 

  55 - 75k - Active Rec. 0.28(2.0) 0.33(2.10) 0.43(2.1) 0.49(2.1) 0.19(1.02) 0.20(0.7) 

  55 - 75k - Eat out 0.30(1.8) 0.17(1.75) 0.33(1.9) 0.17(1.6) 0.31(1.87) 0.20(2.0) 

  >75 K - Oth Maint. - - 0.37(2.2) 0.15(1.8) - - 

  >75 K - Soc./Rec. - - 0.38(2.4) 0.18(1.9) - - 

  >75 K - Active Rec. 0.55(4.5) 0.63(4.41) 0.51(2.6) 0.54(2.4) 0.67(4.36) 0.88(4.0) 

  >75 K - Eat out 0.82(5.9) 0.46(5.42) 0.47(2.8) 0.23(2.2) 0.51(3.63) 0.29(3.5) 

No. of Workers            

  Shopping -0.14(-2.2) -0.09(-2.12) -0.10(-1.2) -0.06 (-1.0) - - 

  Pick-up/ Drop-off - - 0.14(1.2) 0.09(1.5) 0.38(3.24 ) 0.21(3.0) 

# Recreation sites in a 

mile from HH.      

  Social/Recreational 

0.005(3.5) 0.003(3.81) 0.07(2.0) 0.04(1.9) 0.004(2.42) 0.002(2.1) 

# Intersections in 0.25 

miles from HH.  

  Active Recreation - - 0.006(1.2) 0.005(1.0) 0.01(1.59) 0.01(1.7) 
 

No. of Cul-de-sacs in 

0.25 miles from HH.     

  Active Recreation 

0.009(0.9) 0.01(1.08) - - - - 

 

Day of the Week              

  Monday - Eat out -0.28(-2.0) -0.16(-1.87) -0.16(-1.1) -0.11(-1.2) - - 

  Friday - Soc./Rec. - - 0.22(1.8) 0.11(1.5) 0.19(1.38) 0.13(1.6) 

  Friday - Eat out - - 0.30(2.2) 0.16(2.0) 0.18(1.23) 0.12(1.4) 

Satiation Parameters 

Constants              

  Shopping 2.82(33.9) 3.25(38.3) 3.04(46.9) 3.55(48.7) 3.01(44.7) 3.51(45.4) 

  Other Maintenance 3.17(46.6) 3.96(54.8) 2.94(37.0) 3.89(50.0) 2.72(21.7) 3.66(29.6) 

  Social/ Recreational 4.31(49.4) 4.99(52.2) 4.19(49.0) 4.90(50.8) 4.44(46.9) 5.21(49.1) 

  Active Recreation 1.64(8.5) 1.46(6.6) 1.57(9.0) 1.37(6.5) 2.04(16.8) 1.48 (8.1) 

  Medical 3.38(42.4) 3.86(43.6) 3.11(32.6) 3.70(36.0) 3.19(31.7) 3.76(34.1) 

  Eat out 3.02(34.7) 3.71(40.2) 3.15(36.1) 3.86(41.1) 3.05(28.6) 3.80(34.8) 
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Table 5.1 (Contd.)
 

  South East Florida (SEF) Central Florida (CF) Tampa Bay (TB) 

 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

Coef. (t-stat) Par. (t-stat) Coef. (t-stat) Par. (t-stat) Coef. (t-stat) Coef.(t-stat) 

Satiation Parameters (continued) 

Constants 
  Pick-up/Drop-off 

 

1.44(15.9) 

 

2.32(23.5) 

 

1.41(12.9) 

 

2.49(22.5) 

 

1.59(13.5) 

 

2.37(19.4) 

  Other Activities 2.41(16.4) 2.41(16.4) 1.97(11.7) 2.20(10.0) 2.09(12.8) 2.09(12.8) 

Gender  (Male is Base)       

  Female -Shopping 0.34(3.1) 0.34(3.5) - - 0.34(2.1) 0.26(2.0) 

  Female - Active Rec. -0.25(-1.3) -0.22(-1.1) - - - - 

Age (<35 and >45 base)  

  35-45 years-Soc./Rec. 
-0.32(-1.8) -0.37(-2.2) - - - - 

Education (< Col. base)             

  S. College-Active Rec. 0.36(1.5) 0.34(1.3) 0.31(1.1) 0.27(0.9) - - 

  Bac.to Hi.-Active Rec. 0.94(4.28) 0.86(3.8) 0.76(2.9) 0.65(2.4) - - 

Day of the Week              

  Friday - Soc./Rec. 0.31(1.8) 0.34(2.1) - - - - 

  Friday - Eat out 0.26(1.4) 0.27(1.6) - - 0.39(1.6) 0.40(1.9) 

Log-likelihood at 

constants 
-29681.3 -29454.6 -20518.7 -20297.6 -18390.8 -18234.3 

Log-likelihood at 

convergence 
-29397.2 -29204.4 -20386.6 -20180.0 -18302.1 -18148.3 

* SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District 1, and R: Rural Florida 

different activities while normalizing the scale of in-home activity to 1. In the current 

empirical context, the MDCHEV estimates of scale for all out-of-home activities except 

active recreation and “other” activities are significantly smaller than 1, while that for 

active recreation is greater than 1 and that for “other” activity is not different from 

(therefore fixed to) 1. Similar patterns can be observed from the parameter estimates for 

all three geographical regions. Plausible reasons for these patterns in the scale parameter 

estimates are discussed next. As discussed in many references on choice modelling (e.g., 

Ben-Akiva and Lerman, 1985; Koppelman and Bhat, 2006), the random error terms k  

represent a sum of errors (made by the analyst) in characterizing the consumers’ utility 

functions. Commonly cited sources of errors include omitted alternative attributes and 

decision-maker characteristics, measurement errors in the explanatory variables included 

in the utility functions, and errors in the functional form of the utility function. In the 
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current context, we attribute the specific patterns observed in the scale parameter 

estimates to the following three major sources of unobserved variation. First, recall from 

Section 5.4 that each activity category (i.e., choice alternatives) used in the model 

specification is an aggregation of many finely categorized activity types. The influence of 

explanatory variables included in the utility function of an aggregate activity category can 

potentially vary by each disaggregate activity type in that category. Such variation 

resulting from aggregation of choice alternatives is unobservable and manifests in the 

form of additional variance of random error terms (Daly, 1982). Among the nine activity 

categories considered in the current empirical context, the in-home activity is an 

aggregation of a wider variety of finer activities when compared to out-of-home 

activities. Recall that the in-home activity category combines all activities other than out-

of-home activities into a composite outside good. This is one reason why the stochastic 

component of in-home activity has greater variance compared to most out-of-home 

activity categories. Second, note from Table 5.1 that the utility specifications for all 

activities except the in-home and “other” activity categories include explanatory 

variables. While the in-home activity category was treated as a reference alternative in 

the specification for identification purposes, no explanatory variable turned out to be 

significant in the utility function for the “other” activity category; presumably due to the 

arbitrary nature of the “other” activity category. Besides, similar to the in-home activity 

category, the “other” activity category combines all out-of-home activities other than 

those of interest into a single composite category. Thus, the final empirical specification 

of the deterministic utility components views in-home and “other” activities as similar 

(except the alternative-specific constant for “other” activity). This is perhaps a reason 
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why the scale parameter for the “other” activity is not different from the in-home activity. 

Third, in the context of discrete-continuous choice modelling, measurement errors in the 

continuous dependent variables can potentially be significant. This is unlike traditional 

discrete choice models, where there might not be significant errors in dependent variables 

(because it is easier to elicit information on the discrete choice decisions made by the 

consumers than to measure the continuous quantity decisions). In the current empirical 

application, recall from Section 5.4 that time allocation to the active recreational activity 

might be associated with substantial measurement errors leading to greater unobservable 

variation. This may be a reason why the estimated scale parameter for the active 

recreational activity is greater than 1. 

In summary, The MDCHEV model estimates reveal the presence of substantial 

heteroscedasticity in the random utility components of choice alternatives and point to 

different sources of unobservable variation. 

5.5.1.2 Baseline Utility and Satiation Parameters 

All the parameter estimates in baseline utility and satiation functions have 

intuitive interpretations and identical signs in both the MDCEV and MDCHEV models 

for all three regions. The substantive interpretations are not a focus of this chapter. 

Therefore only the influence of incorporating heteroscedasticity on parameter estimates is 

discussed. Specifically, for all out-of-home activities, except active recreation, the 

magnitude of baseline utility parameter estimates in the MDCHEV model is slightly 

smaller than that in the MDCEV model. For active recreation, however, the baseline 

utility parameter estimates from the MDCHEV model are of greater magnitude than those 

from MDCEV. This pattern can be attributed to the differences in scale parameters 



 

128 

 

between the MDCEV and MDCHEV models. Specifically, the baseline parameter 

estimates in the MDCEV model are confounded with the unknown scale parameters 

(which are simply assumed to be equal to 1). But the MDCHEV model helps in 

disentangling the baseline parameter estimates from the scale difference between the out-

of-home and in-home activities. As a result, all activities with smaller (greater) scale 

parameters in the MDCHEV than in MDCEV model have smaller (larger) magnitudes for 

baseline parameter estimates from the former model. 

 In the context of satiation functions, the parameter estimates of MDCHEV model 

are greater (in magnitude) for all out-of-home activities that have a tighter distribution of 

the random utility component (i.e., smaller scale parameter) than that in the MDCEV 

model. For active recreation activity, the satiation function parameter estimates of the 

MDCHEV model are smaller in magnitude than those from the MDCEV model. 

Since the true parameter values are unknown, it is difficult to assert which model 

provides better/less-biased parameter estimates. However, note from the log-likelihood 

measures for all three geographical regions (last two rows of the table) that the 

MDCHEV model yields a significantly better fit to the estimation data than the MDCEV 

model. For example, the likelihood ratio test statistic between the two models for the 

South East Florida region is 385.12, which is larger than the chi-squared statistic with 

four degrees of freedom at any reasonable level of significance. This suggests that 

ignoring heteroscedasticity (i.e., estimating an MDCEV model) can potentially lead to 

biased parameter estimates in both baseline marginal utility and satiation functions and 

inferior model-fit. 
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5.5.2 In-sample Prediction Performance  

Table 5.2 presents the predicted aggregate shares of individuals participating in 

each activity type (i.e., the discrete choice component) for both MDCEV and MDCHEV 

models for all three geographical regions. The predicted aggregate shares for each 

activity were computed as the proportion of instances the activity was predicted with a 

positive time allocation across all 100 sets of random draws for all individuals. For each 

prediction result presented, the corresponding observed values in the estimation sample 

are presented in the parentheses. As can be observed from the table, both the MDCEV 

and MDCHEV models perform well in predicting the aggregate shares of participation in 

each activity type. 

Table 5.2: Predicted and Observed Activity Participation (% participation) Rates 

    In-home Shop. 
Other 

 Maint. 
Soc./Rec. 

Active 

Rec. 
Medical 

Eat 

Out 

Pick /      

Drop  
Other 

SEF 

% Part. 

(MDCEV) 

100.0 

(100.0) 

49.2 

(51.0) 

29.9 

(30.6) 

29.0 

(30.5) 

19.1 

(20.6) 

23.1 

(24.8) 

22.8 

(24.3) 

16.0 

(17.0) 

5.3 

(5.7) 

% Part. 

(MDCHEV) 

100.0 

(100.0) 

47.6 

(51.0) 

29.3 

(30.6) 

29.0 

(30.5) 

19.8 

(20.6) 

22.9 

(24.8) 

22.2 

(24.3) 

16.0 

(17.0) 

5.5 

(5.7) 

CF 

% Part. 

(MDCEV) 

100.0 

(100.0) 

49.3 

(49.9) 

30.9 

(30.4) 

29.1 

(30.0) 

20.4 

(21.9) 

23.0 

(24.3) 

26.2 

(27.2) 

15.5 

(16.2) 

5.3 

(5.7) 

% Part. 

(MDCHEV) 

100.0 

(100.0) 

47.1 

(49.9) 

30.3 

(30.4) 

28.5 

(30.0) 

21.0 

(21.9) 

22.8 

(24.3) 

25.3 

(27.2) 

15.3 

(16.2) 

5.5 

(5.7) 

TB 

% Part 

(MDCEV) 

100.0 

(100.0) 

47.9 

(48.5) 

31.9 

(31.6) 

26.3 

(27.1) 

19.6 

(21.2) 

22.4 

(23.4) 

23.6 

(24.4) 

14.4 

(15.5) 

6.6 

(7.0) 

% Part 

(MDCHEV) 

100.0 

(100.0) 

45.9 

(48.5) 

31.1 

(31.6) 

25.8 

(27.1) 

20.3 

(21.2) 

21.9 

(23.4) 

22.9 

(24.4) 

14.3 

(15.5) 

6.8 

(7.0) 

* SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District 1, and R: Rural Florida 

To evaluate the model predictions of time allocations to each activity (i.e., the 

continuous choice component), the distributions of the predicted time allocations (for 

only those predicted with positive time allocation) were compared with the distributions 

of observed time allocations. (again, for only those observed with positive time 

allocation). The distributions are presented in the form of box-plots in Figure 5.1 (for 
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South East Florida region only). There are total of 9 sub-figures in Figure 5.1, one for 

each activity type. In each sub-figure, the distributions of predicted activity durations 

from both MDCEV and MDCHEV models are presented as box-plots along with the 

distributions of observed activity durations. Interesting observations can be made from 

these box-plots. First, in the context of in-home activities, the predicted distributions 

from both the MDCEV and MDCHEV models show larger left tails than the observed 

distribution. However, the discrepancy between predicted and observed distributions is 

much greater for the MDCEV model than for the MDCHEV model. This suggests a 

greater chance of under-prediction of in-home activity durations by the MDCEV model. 

Second, for all out-of-home activities other than active recreation, the distributions of 

activity durations predicted with the MDCEV model show a significant chance of over-

prediction. For active-recreation, the MDCEV model shows under-prediction of activity 

durations when compared to the observed data. Third, the MDCHEV model rectifies all 

these issues to a considerable extent. As can be observed, the predicted distributions of 

the MDCHEV model are much closer to the observed distributions than those of the 

MDCEV model for almost all activities.  

The differences in the distributional assumptions between the MDCEV and 

MDCHEV models explain the above differences in performance between the two models. 

The MDCEV model assumes unit scale parameter for all activity categories. For all 

activities for which the “true” scale parameter is smaller than the assumed value, the 

MDCEV model shows significant over-prediction of activity durations. These include all 

out-of-home activities other than active recreation. This is due to the the asymmetry and 

the fat right tail of the standard Gumbel distribution used in its structure. For instance, 
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* The range of the duration in vertical axis is different for in-home activities 

* The statistics are only for those predicted (or,  orbserved ) with positive time allocations to different activities 
 

Figure 5.1: Observed and Predicted Distributions of Activity Durations (for the Southeast Florida Region)
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the probability of drawing any less than -2 from a standard Gumbel distribution  is very 

low (0.06%), while that of drawing greater than 2 is high (12.65%). Since the Gumbel 

terms enter the model in an exponentiated multiplicative fashion (i.e.,

exp( ) exp( )k k kz    ), there is a non-negligible chance that the k  values become 

quite large and therefore lead to unrealistically large time allocations for several out-of- 

home activities (e.g., 700 minutes for out-of-home eating activity!). Whenever an out-of-

home activity hogs up a large amount of available time budget, it leaves a very small 

amount of time for the in-home activity (hence the under-prediction of time allocation for 

the in-home activity). Therefore, employing a larger value (than what it is) for the scale 

parameter of an activity implies a fatter right tail for the random utility component, which 

in turn implies a fatter right tail (than what it should be) for the distribution of the 

predicted consumptions/durations. Similarly, a smaller value of the scale parameter 

assumed in the MDCEV model for active recreation (than what is revealed in the 

MDCHEV model) leads to under-estimation of the time allocated to active recreational 

activities.
10

 

The MDCHEV model overcomes the above-discussed problems by allowing the 

scale parameters to be different from each other. Recall that the MDCHEV scale 

parameter estimates are smaller than 1 for all out-of-home activities except active 

recreation and “other” categories. This implies tighter distributions of the k  values and 

therefore a smaller chance of over-prediction of time allocation for those activities. For 

active recreation, the estimated scale parameter in the MDCHEV model is greater than 1.  

 

                                                           
10

 The under-estimation is with respect to the observed values, assuming that the observed values 

are free of errors. 
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This implies a more spread-out distribution of the corresponding k  value than that in 

the MDCEV model, and hence a smaller chance of under-estimation. 

In summary, the in-sample prediction exercises suggest that both the MDCEV and 

MDCHEV models perform similarly in predicting the aggregate discrete-choice shares 

for each activity type. However, the MDCHEV model performs far better than the 

MDCEV model in predicting the time allocation to different activities. Note, however, 

that the MDCHEV-predicted durations are still not very close to the observed durations. 

In this context, exploring the influence of alternative distributional assumptions to 

extreme value distributions – including right-truncated extreme value distributions, 

multivariate normal distributions, and multivariate skew-normal distributions – on the 

prediction properties of MDC models is a useful avenue for further research. 

5.5.3 Transferability Assessments  

This subsection examines the influence of incorporating heteroscedasticity on the 

transferability of MDCEV and MDCHEV models among different geographical regions 

in Florida. Specifically, both the models estimated for each of the three geographical 

regions (SEF, CF, and TB) were transferred to the other two regions. Thus, 12 transfers 

were performed in total – 6 for the MDCEV model and 6 for the MDCHEV model. 

Subsequently, three different types of transferability metrics were used to assess model 

transferability: (1) log-likelihood based measures, (2) measures of aggregate-level 

predictive ability, and (3) model sensitivity to changes in explanatory variables. The 

results obtained from these metrics are discussed next.  

Note that, in all transferability assessments, the geographical context from which 

a model is transferred is called the estimation context and the geography to which a 
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model is transferred is called the application context. For the application context, a model 

estimated using data from the same geography is called the locally estimated model and a 

model transferred from a different geography is called the transferred model. 

5.5.3.1 Log-likelihood Based Measures of Transferability  

Table 5.3 presents the log-likelihood values of the transferred and locally 

estimated MDCEV and MDCHEV models for each of the 12 model transfers conducted 

in this chapter. One can observe that, for model transfers between any two regions (i.e., in 

any row of the table), the predictive log-likelihood of the transferred MDCHEV model 

(column 5) is better than that of the transferred MDCEV model (column 3), suggesting 

that an MDCHEV model transfers better than an MDCEV model. What is more 

interesting is that the log-likelihood of all transferred MDCHEV models (column 5) are 

better than that of the corresponding locally estimated MDCEV models (column 4). This 

highlights the importance of incorporating heteroscedasticity in improving the spatial 

transferability of MDC models. 

Table 5.3 Transferability Assessment Results: Log-likelihood of Transferred and  

 Locally Estimated Models 
 

Transferred 

Form 

Transferred 

To 

Log-likelihood Values 

Transferred 

MDCEV 
Local MDCEV Transferred 

MDCHEV 

Local 

MDCHEV 

SEF 
CF -20448.60 -20386.63 -20257.74 -20180.03 

TB -18367.31 -18302.08 -18223.37 -18148.27 

CF 
SEF -29513.25 -29397.16 -29348.51 -29204.44 

TB -18349.97 -18302.08 -18217.24 -18148.27 

TB 
SEF -29598.86 -29397.16 -29393.82 -29204.44 

CF -20481.40 -20386.63 -20274.07 -20180.03 

* SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District 1, and R: Rural Florida 

To quantify how much better the transferability of an MDCHEV model is over 

that of an MDCEV model, Transferability Index (TI) value (as suggested in Koppelman 
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and Wilmot, 1982) was computed. TI measures the degree to which the log-likelihood of 

a transferred model exceeds that of a reference model relative to a locally estimated 

model in the application context (Koppelman and Wilmot, 1982).  

                                             
,

,

( ) - ( )
( )

( ) - ( )

j i j reference j

j i

j j j reference j

L L
TI

L L

 


 
                                          (5.8) 

where, ( )j iL  = log-likelihood of the transferred model applied to the application context 

data, ( )j jL 
 
= log-likelihood of the locally estimated model, and ,( )j reference jL   is the 

log-likelihood of a locally estimated reference model (e.g., a constants only model). In 

this chapter, the constants only specification of the MDCEV structure is taken as the 

reference model. The closer the value of TI is to 1, the closer is the transferred model’s 

performance to a locally estimated model (in terms of the information captured in the 

application context relative to the reference model). The TI values for all transfers 

conducted in the chapter are presented in Table 5.4. The diagonal elements in the table 

that have a TI value of 1 (in bold) are not of interest, because they are not for model 

transfers from one region to another. It can be observed from the non-diagonal elements 

that incorporating heteroscedasticity lead to a considerable improvement in the TI value. 

For example, for models transferred from South East Florida and Central Florida, 

allowing for heteroscedasticity resulted in an improvement of the TI value from 0.53 to  

Table 5.4 Transferability Assessment Results: Transfer Index (TI) 
 

                  Transferred To 

 

Transferred  From 

SEF CF TB 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

SEF 1.00 1.00 0.53 0.77 0.26 0.69 

CF 0.59 0.70 1.00 1.00 0.46 0.72 

TB 0.29 0.60 0.28 0.72 1.00 1.00 
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0.77 (or 53% to 77%). Similar improvements in TI values can be observed for all other 

transfer as well. 

5.5.3.2 Aggregate-level Predictive Accuracy  

To assess the aggregate-level predictive accuracy of the transferred models, two 

types of root mean square error (RMSE) metrics were used in this chapter: (1) RMSE for 

the discrete (activity participation) choice component, and (2) RMSE for the continuous 

(time allocation) component.  
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       (5.9) 

where, kP  and kO  are the aggregate predicted and observed shares for activity type k, 

respectively (or durations averaged over all individuals who participated in activity type 

k), and  ( ) /k k k kREM P O O    is the percentage error in the prediction of alternative k. 

 Table 5.5 reports the RMSEs for all transfers conducted in the chapter. As 

expected, in any row of the table, the aggregate errors of the locally estimated models (in 

bold) are lower than those of transferred models of the same model structure. For any  

           Table 5.5 Transferability Assessment Results: Root Mean Square Error (RMSE) 
 

 

   Transferred  

           To  

Transferred  

From  

SEF CF TB 

 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

D
is

cr
et

e 

C
o

m
p

o
n

en
t 

 

SEF 0.03 0.05 0.04 0.04 0.07 0.06 

CF 0.04 0.08 0.04 0.04 0.04 0.06 

TB 0.05 0.08 0.06 0.09 0.03 0.04 

C
o

n
ti

n
u
o

u
s 

C
o

m
p

o
n

en
t1

 SEF 0.11 0.07 0.31 0.16 0.31 0.16 

CF 0.16 0.07 0.16 0.07 0.18 0.10 

TB 0.17 0.08 0.16 0.10 0.17 0.08 
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transfer, the RMSEs for the discrete components of the two model structures (MDCEV 

and MDCHEV) are very similar. However, considerable differences can be observed in 

the RMSEs for the continuous components of the two model structures. Specifically, the 

RMSEs for the continuous component of the MDCHEV models (both transferred and 

locally estimated models) are considerably smaller than the corresponding values for the 

MDCEV models. A closer examination suggests that the RMSEs for the continuous 

component of even transferred MDCHEV models are smaller than those of locally 

estimated MDCEV models, suggesting that the transferred MDCHEV models are 

providing better prediction performance than locally estimated MDCEV models. Recall 

that predictive log-likelihood values of the transferred MDCHEV models were better 

than the log-likelihood values of locally estimated MDCEV models. These results 

reiterate the benefit of incorporating heteroscedasticity in improving the spatial 

transferability of MDC models. 

5.4.3.3 Response to Changes in Explanatory Variables 

To compare the transferability of MDCEV and MDCHEV models based on their 

responses to changes in explanatory variables, we simulated the influence of a scenario 

where the age of individuals older than 29 years was increased by 10 years (to reflect 

aging of the population).  Each estimated model was applied to its own estimation sample 

as well as the other two geographical context datasets for both base and policy scenarios. 

To measure the resulting changes in the time-use patterns, a policy response measure was 

computed. To do so, first, for each set of error term draws for each individual, the overall 

change in activity participation and time-use patterns was measured as below (see Jaggi 

et al., 2011):  
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where, ˆ p

kt  is the predicted duration for alternative k  in the policy case, and ˆb

kt   = 

predicted duration for alternative k  in the base case. Next, the above metric was 

averaged over all sets of error term draws for all individuals.  

The policy response measure was computed for 50 sets of bootstrapped values 

drawn from the sampling distributions implied by the parameter estimates and their 

covariance matrix.  Table 5.6 presents the policy response measures for all transferred 

and locally estimated models in the form of average policy response values (averaged 

over all bootstrapped estimates). The corresponding standard errors are provided in the 

parentheses next to each average policy response measure. Since the true policy response 

is unknown, the policy response obtained from the model with the best data fit (i.e., the 

locally estimated MDCHEV model) in each region is taken as the reference for that 

region. The corresponding cells in the table are shaded in gray. The transferability 

performance of transferred MDCEV and MDCHEV models are assessed by comparing 

their policy response measures to that from the corresponding reference model (i.e., the 

policy response measure from the locally estimated MDCHEV model).  

Table 5.6 Transferability Assessment Results: Policy Response Measures
 

              Transferred  

                          To 

Transferred  

             From  

SEF CF TB 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

SEF 2.76 (0.71) 2.30 (0.57) 3.19 (0.84) 2.68 (0.68) 2.39 (0.80) 2.59 (0.65) 

CF 2.92 (0.72) 1.96 (0.49) 3.40 (0.85) 2.30 (0.59) 2.17 (0.78) 2.13 (0.54) 

TB 5.42 (1.43) 4.31 (1.10) 6.01 (1.61) 4.80 (1.24) 5.46 (1.44) 4.33 (1.11) 
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It can be observed that, for each of the three regions, the policy response measures 

of transferred MDCHEV models are better than (i.e., closer to the policy response 

implied by the locally estimated MDCHEV model) those of the transferred MDCEV 

models. Further, except for transfers to and from the Tampa bay region, the policy 

response of a transferred MDCHEV model appears to be better even than that of a locally 

estimated MDCEV model. These results suggest that improvement in model structure 

(i.e., incorporation of heteroscedasticity) has not only resulted in a better data-fit but also 

a better ability to predict responses to changes in explanatory variables. 

In summary, all the transferability assessments conducted in this chapter suggest 

that the proposed methodological extension (of incorporating heteroscedasticity) helps in 

enhancing the spatial transferability of time-use models. That is, empirical models based 

on the MDCHEV structure are more transferable than those based on the MDCEV 

structure. 

5.6 Summary 

  This chapter presents a Multiple Discrete Continuous Heteroscedastic Extreme 

Value (MDCHEV) model that allows heteroscedastically (i.e., independent but non-

identically) distributed type-1 extreme value random utility components in multiple 

discrete continuous (MDC) models. Heteroscedasticity is accommodated by allowing the 

scale parameters of the random utility components to be different across the different 

choice alternatives. Therefore, the MDCHEV model collapses to the MDCEV model 

when all the scale parameters are constrained to be equal. The likelihood of the 

MDCHEV model is a uni-dimensional integral that can be easily evaluated using familiar 

quadrature techniques. 
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  In addition to formulating the MDCHEV model, this chapter investigates the 

influence of improved model structure (i.e., incorporation of heteroscedasticity in the 

MDC model) on the transferability of daily activity participation and time use model 

among different geographical regions in Florida. To do so, the MDCHEV and the 

MDCEV models are compared in terms of their empirical parameter estimates, in-sample 

prediction performance, and transferability to different geographical regions. The 

National Household Travel Survey (NHTS) data for three major urban regions in Florida 

– South East Florida, Central Florida, and Tampa Bay – was used for the empirical 

analysis. For spatial transferability assessments, the models estimated for each of the 

three regions were transferred to the other two regions. 

  The parameter estimates of the MDCHEV model reveal the presence of 

substantial differences in the scale parameters (i.e., heteroscedasticity) of the random 

utility components across different activity type choice alternatives. Plausible reasons for 

heteroscedasticity include aggregation of choice alternatives into broader activity 

categories and measurement errors in the continuous dependent variables. These findings 

suggest that data collection efforts and model specifications for discrete-continuous 

choice models need to be cognizant of potential aggregation and measurement errors.  

  Neglecting heteroscedasticity (when present) in MDC models can have several 

ramifications. As revealed from the empirical application in this chapter, ignoring 

heteroscedasticity can potentially lead to biased parameter estimation and inferior 

statistical fit to the estimation sample. Furthermore, the predicted distributions of the 

continuous quantity decisions (time allocations, in the current empirical context) can be 

distorted when compared to the distributions observed in the estimation sample. 
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Specifically, the MDCEV-predicted distributions of continuous quantities exhibit thicker 

right tails (i.e., greater chance of over-prediction) for some alternatives and thinner right 

tails (i.e., greater chance of under-prediction) for other alternatives when compared to the 

distributions observed in the estimation sample. In the current empirical context, the time 

allocations for many out-of-home activities were over-estimated and those for in-home 

and active recreation activities were under-estimated. The MDCHEV model overcomes 

these issues to a considerable extent by allowing the scale parameters to be different from 

each other. This results in tighter (wider) distributions of random utility components for 

the alternatives for which the MDCEV over-predicts (under-predicts) the time allocations 

and therefore reduces the chances of over-prediction (under-prediction).  

  Spatial transferability assessments using a variety of different assessment metrics 

suggest better predictive ability for MDCHEV models transferred from other regions than 

MDCEV models transferred from those same regions. In most cases, the transferred 

MDCHEV models appear to perform not only better than transferred MDCEV models 

but also better than locally estimated MDCEV models. These results not only reiterate the 

importance of incorporating heteroscedasticty in MDC choice models, but also suggest 

that the proposed enhancement to the model structure lead to an enhanced spatial 

transferability of time-use models. A caveat is in order here regarding the transferability 

results. All the transferability results in this chapter are based on relative transferability 

assessments. Specifically, the transferability of a model is assessed by comparing the 

performance of a transferred model with that of a locally estimated model assuming that 

the locally estimated model is perfect in the context it is estimated for. Finally, additional 

empirical assessments are warranted to corroborate the conclusions from this chapter.  
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CHAPTER 6 

AN EMPIRICAL ASSESSMENT OF THE SPATIAL TRANSFERABILITY OF  

TOUR-BASED TIME-OF-DAY CHOICE MODELS 

 

6.1 Introduction and Motivation 

As discussed in the previous chapters, spatial transferability of the tour-

based/activity-based models has become extremely relevant, due to the potential it offers 

for cost and time-savings. However, the available empirical evidence on the 

transferability of tour-based models is limited at best, with only a handful of recent 

studies (e.g., Nowrouzian and Srinivasan, 2012) documenting transferability of tour-

based model components. Within the limited available literature on this topic, we are not 

aware of any documented transferability assessments of tour-based time-of-day (TOD) 

choice models that are used to forecast the timing of travel of residents (and the resulting 

temporal variations in travel patterns) in a study area.  

A sound time-of-day choice model is paramount to an activity-based model 

system (ABM). This is because evaluations of travel demand management strategies 

(such as time-of-day based congestion pricing) rely on accurate predictions of the 

temporal variation of travel volumes in the study region. Besides, accurate estimation of 

vehicular emissions and resulting air quality impacts depends on the accuracy of the 

predicted temporal variations in travel, which in turn depends on the quality of 
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underlying time-of-day (TOD) choice models. Considering the importance of the TOD 

model, several studies in literature (e.g., Abou Zeid et al., 2006; Komma and Srinivasan, 

2008; Popuri et al., 2008; Lemp, 2010) developed this model component of activity-

based model systems. But none of them assessed the spatial transferability of this model 

component. Thus, as Abou Zeid et al. (2006) mentioned, transferability assessment of 

time-of-day (TOD) choice models is a potentially fruitful avenue for research. 

6.2 Contribution and Organization of the Chapter 

In view of the above discussion, this chapter aims to provide an empirical 

assessment of the spatial transferability of tour-based time-of-day choice models. The 

specific time-of-day choice model of interest in this chapter is the work tour start- and 

end-time choice model for employed adults over the age of 18.  

The geographical regions considered in this chapter are the nine counties in the 

San Francisco Bay Area of California – Alameda, Contra Costa, Marin, Napa, Santa 

Clara, San Francisco, San Mateo, Solano and Sonoma. For transferability assessments, 

we focus on the following four counties: Alameda (AL), San Francisco (SF), Santa Clara 

(SC), and San Mateo (SM). Specifically, we test the transferability from each of these 

four counties to the other. In addition, for each county, we assess if a model built using 

data pooled from all other eight counties is better transferable than a model from only one 

of the counties.    

The model structure used in this chapter is the multinomial logit (MNL) model. 

To model the time-of-day choices at a fine temporal resolution, individuals work tour 

start-and end-times were categorized in terms of discrete, half hour timing intervals in a 

day (see next section for a detailed discussion on this categorization procedure). Each 
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feasible combination of work tour start-time interval and end-time interval was treated as 

a discrete choice alternative in the MNL model. To get time-varying transportation 

system characteristics (i.e., travel time) for each of these alternatives, an auxiliary 

regression model was developed.   

So far in the dissertation, the primary approach used to assess transferability was 

the “application-based” approach, in which the base context model was “applied” in the 

application context to assess its transferability. In this chapter, in addition to using the 

“application-based” approach, another approach called the “estimation-based” approach 

(recently used by Bowman et al. 2013) is used to investigate model transferability. The 

basic idea behind the estimation approach is to estimate a joint model by combining data 

from both the base context and the application context (this approach is called joint 

context estimation) and assess if the parameter estimates are different between the two 

contexts for each parameter in the model. To do so, one can estimate “difference” 

parameters that capture the differences in the parameters between the base and estimation 

contexts. Simple t-tests or log-likelihood ratio tests on these “difference” parameters shed 

light on whether the parameter estimates are different between the two contexts. A 

particular advantage of this approach is that one can test if each (and every) parameter in 

a model is transferable or not (as opposed to the entire model) and understand which 

parameters are more transferable and which parameters are not. Once statistically 

different parameters are identified, further tests can be conducted to see if these 

differences are practically important. On the other hand, the “application-based” 

approaches generally test the transferability of models as a whole, and do not allow an 

examination of which parameters are transferable and which are not (unless the 
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sensitivity of each parameter is compared through elasticity values, marginal effects, 

etc.). 

Two important caveats related to the “estimation-based” approach are in order 

here. First, the relative scale between the two contexts needs to be estimated, lest the 

scale differences between the two contexts can confound the results. In this chapter, we 

assumed that there are no scale differences between the different counties in the San 

Francisco Bay area for the time-of-day choice model. This assumption can potentially be 

contested. Second, issues due to small sample sizes can confound transferability 

assessments. Some of the counties have smaller data samples for which the transferability 

assessments ought to be made with extreme caution. Of course, this caution applies 

equally to the application-based approach as well. 

The remainder of this chapter is organized as follows. The next section provides 

an overview of the data used in the analysis. Section 6.4 discusses the model structures 

and transferability assessment approaches used in this chapter. Section 6.5 summarizes 

the regression and TOD model estimation results. Section 6.6 discusses the transferability 

assessment results. Section 6.7 provides a summary of the chapter.  

6.3 Data 

6.3.1 Data Source  

The primary data source used for the analysis is the 2000 San Francisco Bay Area 

Household Travel Survey (BATS) designed and administered by MORPACE 

International Inc. for the Bay Area Metropolitan Transportation Commission.  This 

survey collected detailed information on the daily activity and travel episodes for 34,680 

individuals in the San Francisco Area for a two-day period.  In addition to the data from 
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this travel survey, data on zonal-level land use (e.g., area types) and transportation level-

of-service measures (e.g., travel time and travel cost) were obtained from the 

Metropolitan Transportation Commission (MTC).   

6.3.2 Sample Formation  

Two sets of data were formed for the analysis:  (1) for travel duration regression 

model, and (2) for time-of-day (TOD) choice model. The next subsections describe the 

procedures of the final sample formation using the above mentioned primary and 

secondary sources of data. 

6.3.2.1 Sample Formation for Travel Duration Regression Model  

This subsection describes the procedure used to form the sample for travel 

duration regression model. The following steps were undertaken in this procedure: 

1. First, only the weekday auto trips were selected from the data set. Then for 

each trip, travel duration was calculated from trip start- and end-times.     

2. Next, a trip was removed from the data set if the reported travel duration was 

greater than 2 hours or the trip distance was greater than 50 miles (these conditions were 

developed based on the empirical considerations for the BATS data, see Komma and 

Srinivasan, 2008 for details).  

3. For the remaining trips, the necessary inter-zonal level of service (such as free 

flow travel time, peak and off-peak travel time, and travel cost) and land-use variables 

were appended based on trip origin and destination zone information. 

4. The 24 hr day was categorized into 48 half hour timing intervals (3:00 -3:30 

AM, 3:30 - 4:00 AM, and so on). Next, travel duration of the trips occurring between the 

same origin-destination zones and at the same time period were averaged across trips.  
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5. Finally, the ratio of the average travel duration and free flow time was used as 

dependent variable in the regression model.      

6.3.2.2 Sample Formation for Time-of-Day Choice Model  

This subsection describes the procedure used to prepare the sample for the tour-

based time-of-day choice models.  In activity-based model systems, a tour is usually 

defined as a journey that starts and ends at the same location and consists of more than 

one trip. In this research, we focus only on the home-based work tour, meaning the tour 

that starts and ends at home and the primary purpose is work. The following steps were 

undertaken to prepare the home-based work tour data set. 

1. Only the employed adults (aged 18 years or over) surveyed on a weekday with 

at least one out-of-home work activity on any of the survey days were selected.  

2. Next, a home-based work tour data set was created from the activity 

information available for each individual in the data set.  

3. Finally, records with missing information were removed. For example, the 

tours for which the zone information (i.e., either home or work zone) is missing were 

removed from the data set. This is because several land-use and transportation level-of-

service variables were added in the data set based on zone information. The resulting 

sample comprises 19,785 records. Each of these records represents a tour that starts and 

ends at home. Note that this number includes the work tours undertaken in both days of 

the survey period. To avoid correlations across tours made by a single individual, only 

one tour per person was selected for the final model estimation, resulting in a sample of 

10,063 tours. 
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4. To create the alternatives for the TOD model, first the entire day was divided 

into 48 half-hour time slots. Next, based on the observed tour start- and end-times in the 

data set and common perceptions, some of the consecutive half-hour time intervals were 

aggregated into larger time intervals. As a result, a total of 25 different time-slots were 

used for the tour start time choice (i.e., the 48 half-hour intervals in a day were 

aggregated into 25 intervals) and 21 time-slots were used for the tour end time periods 

(i.e., the 48 half-hour intervals in a day were aggregated into 21 intervals). Since the 

model will be developed for predicting the joint choice of tour start-and end-times, the 

tour start time slots were combined with those of tour end time slots, resulting in a total 

386 alternatives, each representing a combination of tour start and tour end time slots. As 

a result, the MNL model has a total of 386 start and end time combination alternatives. 

6.3.3 Geographical Regions Considered for Transferability Assessment  

As mentioned earlier, the geographical regions considered in this chapter are the 

nine counties in the San Francisco Bay Area of California – Alameda, Contra Costa, 

Marin, Napa, Santa Clara, San Francisco, San Mateo, Solano and Sonoma. For 

transferability assessments, we focus on the following four counties: Alameda (AL), San 

Francisco (SF), Santa Clara (SC), and San Mateo (SM). Specifically, we test the 

transferability from each of these four counties to the other using the application-based 

approach (specifically, by computing the transfer index value). In addition, for each 

county, we assess if a model built using data pooled from all other eight counties is better 

transferable than a model from only one of the counties. This is done using the joint 

context estimation-based approach where a model was estimated by combining data from 

all 9 counties, but with county-specific “difference” variables. As explained before, this 
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helps in comparing the parameter estimates for each (and every) variable in the model 

and shed light on which are transferable to each county from the rest the Bay area. In 

addition to examining the “difference” variables, from the jointly-estimated models for 

each of the four Counties, the county-specific model and the model for the rest of the Bay 

area were extracted. The latter models are labeled the base-c models
11

. Subsequently, the 

base-c model was transferred to the data from each County to compute the transfer index 

value.             

6.3.4 Sample Description  

Table 6.1 presents the descriptive information about the data with the first row 

presenting information on the sample sizes for different geographies considered in the 

analysis. It can be observed from the table that the employed adults in Santa Clara are 

different from those in other counties – at least in some socio-demographic 

characteristics. For example, there appear to be greater proportions of full time workers, 

flexibility in work schedules, and higher income levels in Santa Clara than in other three 

counties. Greater proportions of females and Caucasian individuals are observed in San 

Mateo (than in other counties). In the contexts of land use characteristics and household 

structures, San Francisco County appears to be different than the other counties in the 

Bay Area. Specifically, greater proportions of single person households, employed adults 

living in urban areas are observed in San Francisco County. It is important to note that 

the sample size for San Francisco County is small (538), which can make it difficult to 

interpret the model transferability results with high confidence. Though the descriptive 

                                                           
11

  From now on and throughout the chapter, the model for nine counties (as a whole) will be 

indicated by the term “base” model and the model for eight counties (i.e., the pooled model without a 

specific county) will be indicated by the term “base-c” model, where c denotes Al (Alameda), SC (Santa 

Clara), SF (San Francisco), or SM (San Mateo). For example, “base-AL” indicates the model that includes 

all counties in the Bay Area except Alameda.  
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statistics cannot shed full light on the transferability of a time-of-day choice model, the 

noted differences may, in part, have a bearing. 

Figure 6.1 presents the tour start-and end-time profiles (i.e., the percentage of the 

work tours starting and ending during 24 discrete time-choice periods) of the employed 

adults in the Bay Area. As can be observed from the figure, the morning and evening 

peaks occur in the periods 7:30 - 8:00 AM and 5:30 - 6:00 PM respectively.     

6.4 Methodology 

In this section, we discuss the approaches used for: (1) The ordinary least squares 

(OLS) regression model developed for estimating the time-varying travel time variables 

needed as explanatory variables for the time of day choice model, and (2) The 

multinomial logit (MNL) model used in the time-of-day choice modeling, and the 

transferability assessment approaches used in this chapter. 

6.4.1 Travel Duration Regression Model  

As discussed earlier, the main reason for estimating OLS regression models in 

this chapter is to predict travel durations at the categorized discrete timing intervals in a 

day for any origin-destination pair. Such regression models were developed in several 

studies in the literature (see, e. g., Abou -Zeid et al. 2006, Komma and Srinivasan 2008, 

Popuri et al. 2008). Among these, Komma and Srinivasan (2008) used the ratio of 

reported travel times to free flow times as dependent variable and several zonal land-use 

characteristics (e.g., area types), trip distance and travel time as independent variables in 

the regression model. A similar approach is used here to model the inter-zonal travel  
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Table 6.1 Sample Characteristics 

  Alameda Santa Clara San Francisco San Mateo All Counties 

Sample Size 1940 3001 538 1209 10063 

Gender   

  
    

Male 53.6(%) 56.2(%) 56.9(%) 50.04(%) 53.18(%) 

Female 46.4(%) 43.8(%) 43.1(%) 49.96(%) 46.82(%) 

Age 
 

  
  

19-25 (young adult) 7.1(%) 6.1(%) 4.5(%) 6.0(%) 5.9(%) 

26-65 (middle-aged)      90.0(%)       91.7(%) 93.7(%) 91.0(%) 91.5(%) 

 65+ (elderly) 2.9(%) 2.1(%) 1.9(%) 2.9(%)   2.5(%) 

Ethnicity 
 

  
  

Caucasian     73.4(%)       72.8(%) 72.3(%) 77.9(%) 77.5(%) 

African American 4.6(%)  1.6(%)   2.8(%)   1.5(%)   2.4(%) 

Asian/Pacific Islander      11.9(%) 15.8(%) 13.8(%) 10.3(%)  10.3(%) 

Other 10.1(%)   9.8(%) 11.1(%) 10.3(%)    9.8(%) 

Occupation 
 

  
  

Govt. Employee 18.2(%) 10.1(%) 17.3(%) 14.0(%) 15.2(%) 

Others 81.8(%) 89.9(%) 82.7(%) 86.0(%) 84.8(%) 

Employment Status 
 

  
  

Full-Time 87.8(%) 90.0(%) 93.7(%) 89.3(%) 88.9(%) 

Part-Time 12.2(%) 10.0(%) 6.3(%) 10.7(%) 11.1(%) 

Flexibility 
 

  
  

Yes 63.8(%) 74.4(%) 70.4(%) 68.7(%) 66.4(%) 

No 

Household Size 

36.2(%) 25.6(%) 

 

29.6(%) 

  

31.3(%) 33.6(%) 

 

1 16.0(%) 15.1(%) 28.6(%) 17.0(%) 15.8(%) 

2 36.9(%) 40.9(%) 43.7(%) 40.7(%) 40.2(%) 

3+ 47.1(%) 44.0(%) 27.7(%) 42.3(%) 44.0(%) 

Number of Children      

 
  

0 63.4(%) 64.3(%) 78.6(%) 66.8(%) 64.3(%) 

1 16.4(%) 15.7(%) 8.7(%) 14.1(%) 15.2(%) 

2 15.5(%) 15.1(%) 10.6(%) 15.1(%) 15.5(%) 

3+ 

Household Income 

4.7(%) 4.9(%) 

 

2.1(%) 

  

4.0(%) 5.0(%) 

 

Low(<=25K) 2.7(%) 1.5(%) 2.8(%) 2.2(%) 2.6(%) 

Medium(25K-75K) 40.1(%) 28(%) 39.6(%) 32.8(%) 36.7(%) 

High(>75K) 57.3(%) 70.4(%) 57.6(%) 65.1(%) 60.6(%) 

Number of Vehicles      

 
  

1 81.1(%) 83.1(%) 81.8(%) 84.2(%) 82.9(%) 

2 13.9(%) 12.5(%) 13.0(%) 12.3(%) 12.4(%) 

3+ 5.0(%) 4.3(%) 5.2(%) 3.4(%) 4.6(%) 

Area Types       

 
  

Home zone       

 
  

CBD  0.3(%) 0.2(%) 14.7(%) 0.0(%) 0.9(%) 

Urban 22.2(%) 18.1(%) 85.3(%) 24.7(%) 18.8(%) 

Suburban 74.4(%) 79.7(%) 0.0(%) 71.2(%) 75.2(%) 

Rural  3.1(%) 2.0(%) 0.0(%) 4.1(%) 5.0(%) 

Work zone 

 
  

 
 

CBD 10.6(%) 5.5(%) 35.9(%) 9.4(%) 8.8(%) 

Urban 39.8(%) 54.4(%) 44.1(%) 52.4(%) 40.0(%) 

Suburban 47.3(%) 38.4(%) 18.2(%) 35.7(%) 47.9(%) 

Rural  2.3(%) 1.7(%) 1.9(%) 2.4(%) 3.3(%) 

Commute Travel 

18.0(10.5) 16.1(9.0) 19.2(12.2) 19.4(11.3) 18.6(11.5) 

Free Flow 

Time(minutes) 

Distance(miles) 12.9(10.3) 10.9(8.8) 11.9(11.9) 13.5(10.3) 12.7(11.0) 

        Tour Duration (hours) 9.8(2.8) 9.8(2.6) 9.8(2.9) 9.9(2.60) 9.7(2.8) 

*The values mentioned in the parentheses are standard deviations of the corresponding variables   
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Figure 6.1 Distribution of Work Tour Start- and End-times in 9 Counties of San Francisco Bay Area (BATS 2000 Data)  
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duration. The model is formulated as follows: 

[Travel Duration]
 intercept exp[sin ( )] exp[cos ( )]

[Free Flow Time] 12 12

ijt n n

k k n n

kij

t t
x

 
               (6.1) 

In the above equation, [Travel Duration]ijt  is the reported travel duration between zone i 

and zone j at time t, and [Free Flow Time]ij  is the free flow travel time between zone i 

and zone j. The time “t” is usually measured as hours elapsed from an arbitrary time, such 

as midnight or starting time of the survey day. In this research, we measured “t” from 

3:00AM, the starting time of the survey day. In this equation, kx  represents the variables 

used in the model. The coefficients n  and n  on the cyclic functions represent the 

effects of the time-of-day choice on travel duration. The number of n and n  coefficients 

to be estimated is determined based on the statistical fit and the intuitive considerations. 

In our case, we used n = 3 i.e. we estimated 3 parameters for each of them (i.e., 1 2 3, ,    

and 1 2 3, ,   ). The reason behind using cyclic functions for specifying the effect of time-

of-day is to ensure that the function value (and hence the predicted travel time) at a time 

period “t” is the same the function value at a time period “t+24” (i.e., the same time 

period next day). 

6.4.2 Time-of-Day Choice MNL Model  

 Following Ben-Akiva and Abou-Zeid (2012), the utility function of the MNL 

model used in this chapter consists of three functions as below:   

                                      ( , ) ( ) ( ) ( -  )s e dur

s e e sU s e U t U t U t t                                     (6.2) 

In the above equation, ( , )U s e is the joint utility of starting the tour in time slot s and 

ending in time slot e, ( )s

sU t is start-time function, ( )e

eU t is end-time function, and         
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( -  )dur

e sU t t  is duration function. These functions are defined as below:   

start time function, ( ) ( ) (Travel Time) (Travel Cost) 1.ln(# half-hour periods in slot s)s s

s r s thw hw chw hw

r

U t x f t       

end time function, ( ) ( ) (Travel Time) (Travel Cost) 1.ln(# half-hour periods in slot e)e e

e r e twh wh cwh wh

r

U t x f t       

duration function, 2 3

1 2 3( -  ) ( -  ) ( -  ) ( -  ) .......... ( -  )dur dur dur dur dur D

e s e s e s e s d e sU t t t t t t t t t t         (6.3) 

In the above equations, r is the number of demographic explanatory variables rx  used in 

the model, including constants and other demographic variables, and  

     1 2 3

2 2.2 3.2 .2
( ) sin sin sin ........... sin

24 24 24 24

s s s s ss s s s
s n

t t t n t
f t

   
   

       
          

       
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The values of n and d are determined based on the statistical tests and the reasonableness 

of resulting utility profiles. Note that the coefficients on the number of half-hour periods 

in slots s and e were fixed to 1 to take into account for the unequal period lengths in these 

slots (see Ben-Akiva and Abou-Zeid, 2012 for details). 

 As discussed earlier, the demographic variable specifications are specified as 

cyclic functions to recognize that a person’s preference for a specific time-of-day remains 

the same the next day as well. It is important to note here the individual coefficients in 

the above cyclic functions cannot be interpreted. For interpreting the effect of a variable 

(say female with kids), all the corresponding coefficients in the cyclic function should be 

used to plot the utility profiles as a function of time of day. For example, the tour start 
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time-of-day preference of females with kids can be interpreted by using all the 

coefficients of the female with kid variable in the start time cyclic function (i.e.,

1 2, ,...,s s s

n   ) to plot the utility profile as a function of start time. Similarly, the tour end 

time-of-day preference of females with kids can be interpreted by using all the 

coefficients of the female with kid variable in the end time cyclic function (i.e.,

1 2, ,...,e e e

n   ) to plot the utility profile as a function of end time. 

6.4.3 Transferability Assessment  

 As mentioned earlier, to assess the transferability of the TOD models, two 

approaches (estimation-based and application-based) are used in this chapter. Since the 

estimation-based approach is used for the first time in this dissertation research, it is 

briefly discussed in this subsection.  

 According to this approach, first a model was estimated using data from all 9 

counties in the San Francisco Bay area (i.e., base model). Next, for a selected county, the 

dummy variable for that county was interacted with each of the variables in the base 

model. Groups of such interaction variables were included one by one in the model 

specification. For example, to test if females with kids in Santa Clara County had 

different time-of-day preferences from those in all other counties, the dummy variable for 

Santa Clara was interacted with all the variables in the cyclic functions for the female 

with kids demographic segment. All these interactions were introduced at a time over the 

base model. The resulting model would recognize any potential differences in the time of 

day preferences of females with kids between Santa Clara and other Counties. The 

decision of whether or not the preferences of females with kids were actually different 

between Santa Clara and other Counties was made based on a log-likelihood ratio test 
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(for the entire set of Santa Clara specific variables just added) along with a visual 

examination of the statistical significance of the coefficients of the interaction variables. 

If the interaction variables (or “difference” variables) are statistically different from zero, 

that indicates that statistically significant differences in the time-of-day preferences 

between females with Kids in Santa Clara and those in other Counties (hence the 

corresponding coefficients in the base model are NOT transferable). In addition to such 

statistical tests, the utility profiles were plotted as a function of time-of-day for females 

with kids in Santa Clara and for those in all other 8 counties to visually examine if the 

profiles appeared different (see Figure 6.2 for examples of such utility profiles). This 

approach was repeated for all demographic variables and level of service variables in the 

model specification until a final specification is arrived at. The final specification 

contains the specification for the base-SC model (that is the model for all 8 counties 

except Santa Clara) as well as the “difference” variables that were deemed to be 

statistically different from the base specification (the “difference” variables that were 

deemed insignificant were dropped from the model). Using this same approach, joint 

context specifications were developed for each of the four counties -- Alameda, Santa 

Clara, San Francisco, and San Mateo. 

6.5 Empirical Model Results 

This section discusses the travel duration regression model and time-of-day 

choice model results.   

6.5.1 Travel Duration Regression Model Results  

 Using equation 6.1, regression models were developed for: (1) home to work 

journey, and (2) work to home journey. The model estimates are reported in Table 6.2. 
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As can be observed from the table, almost all the parameters in the model have expected 

signs, and are significant at the 95% confidence interval. For example, the negative 

coefficient on the distance variable indicates that the times required to travel a fixed 

distance in longer trips are lower than that in shorter trips. That is, travel speeds are 

higher for longer distance trips than the speeds for shorter-distance trips. The area type 

variables (i.e., CBD, urban and suburban) were introduced with the rural area type as the 

base category. As expected, the coefficients on all of these area type variables are 

positive, indicating that the travel times required for the journeys between any origin- 

Table 6.2 Travel Duration Ratio Regression Model Results 

  Home to Work Journey Work to Home Journey 

Variables Coeff. (t-stat) Coeff. (t-stat) 

Intercept 2.44(30.84) 1.42(20.10) 

Distance -0.02(-51.70) -0.02(-51.76) 

Area types 

 

  

       CDB origin 0.44(23.71) 0.43(23.51) 

       Urban origin 0.27(19.04) 0.26(18.86) 

       Suburban origin 0.23(16.96) 0.23(16.95) 

       CDB destination 0.28(14.21) 0.28(14.56) 

       Urban destination 0.22(15.81) 0.23(16.05) 

       Suburban destination 0.22(16.65) 0.22(16.64) 

Cyclic Functions 

 

  

       Exp (sin (π t/12)) -0.25(-22.12)  0.28(22.27) 

       Exp(sin
2
 (π t/12)) -0.31(-14.54) 0.03(1.62) 

       Exp(sin
3
 (π t/12)) 0.32(22.28)  -0.40(-22.24) 

       Exp (cos (π t/12)) 0.18(12.10)  0.14(10.71) 

       Exp(cos
2
 (π t/12)) -0.30(-13.46) -0.01(-0.40) 

       Exp(cos
3
 (π t/12))               -0.27(-9.76) -0.02(-8.53) 

Adjusted R
2 0.059 0.061 

Total observations 69,623  69,623   
 

destination pair of these area types are higher than that a journey between two rural areas.  

This is mainly because of the congestion effects associated with these area types. The 

next set of variables comprises the cyclic functions with respect to time, which capture  
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the temporal nature of the congestion effects in the bay area. The reason for using cyclic 

functions is that the congestion effect at a time interval “t” can be ensured to be the same 

at “t+24” (i.e., next day).  

6.5.2 Time-of-Day Choice Model Results  

 The base model results (that includes data from all 9 counties) are presented in 

Table 6.3. As discussed before, the interpretation of the parameter estimates of this model 

is not as straightforward as in other typical MNL models. Table 6.3 shows that there are 

2k parameter estimates for each variable, making it difficult to interpret the influence of a 

variable on the time-of-day choices. Hence, instead of trying to interpret these parameter 

estimates separately, it is better to interpret their effects as a whole. One possible way to 

do so is to examine their time-varying utility profiles. Figure 6.2 shows such utility 

profiles for some of the variables used in the model.  Note that the utility values 

presented in the figures are relative utilities, normalized with respect to the utility values 

at 8:00 AM (tour-start time profiles) and 5:00 PM (tour-end time profiles) respectively.   

 Overall the profiles have intuitive interpretations. For example, the tour start-time 

profiles (Figure 6.2 (a)) show that the full time workers are likely to start their work tours 

earlier than the part time workers (because the utility curve for full-time workers is 

toward the left compared to the base curve).  This is mainly because of the difference in 

their work schedules. As expected, the female workers with kids in households show a 

higher propensity to start their work tours later in the day as compared to their 

counterparts (i.e., males or females without kids in households). This may be because of 

their responsibilities to take care of the kids at home, or drop them off at schools. Further, 
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Table 6.3 Multinomial Logit (MNL) Model Results (base model) 

Variables Coeff. (t-stat) 

Start Time Function 
 

Sin(2πTs/24) 3.58(1.66) 

Sin(4πTs/24) 2.66(3.70) 

Sin(6πTs/24) -0.32(-0.82) 

Sin(8πTs/24) -0.88(-7.38) 

Cos(2πTs/24) -2.19(-0.82) 

Cos(4πTs/24) 0.71(0.63) 

Cos(6πTs/24) 1.05(2.78) 

Cos(8πTs/24) 0.20(1.77) 

End Time Function 
 

Sin(2πTe/24) -0.89(-0.28) 

Sin(4πTe/24) -0.12(-0.12) 

Sin(6πTe/24) 0.02(0.08) 

Sin(8πTe/24) 0.12(1.42) 

Cos(2πTe/24) -0.90(-0.67) 

Cos(4πTe/24) 0.23(0.24) 

Cos(6πTe/24) -0.31(-0.70) 

Cos(8πTe/24) -0.45(-3.66) 

Duration Function 

 Duration 6.41(0.78) 

Duration
2 

-6.48(-1.81) 

Duration
3 

-1.44(-0.57) 

Level-of-Service 

 Home to Work travel time -0.17(-10.05) 

Work to Home travel time -0.03(-1.76) 

Travel Cost -0.15(-3.05) 

Size of intervals 

 Ln(# of half hour in tour start time period) 1.00(fixed) 

Ln(# of half hour in tour end time period) 1.00(fixed) 

Female with Kids 
 

Start Time 
 

Sin(2πTs/24)*Female with kids 0.39(1.64) 

Sin(4πTs/24)*Female with kids 0.74(5.38) 

Cos(2πTs/24)*Female with kids -1.04(-5.80) 

Cos(4πTs/24)*Female with kids -0.15(-1.48) 

End Time 
 

Sin(2πTe/24)*Female with kids -0.07(-0.39) 

Sin(4πTe/24)*Female with kids -0.08(-0.70) 
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Table 6.3 (Contd.) 

Variables Coeff. (t-stat) 

Cos(2πTe/24)*Female with kids 

Cos(4πTe/24)*Female with kids 

-0.43(-2.32) 

0.21(2.75) 

Full-Time Workers 

 Start Time 

 Sin(2πTs/24)*Full-time workers 0.16(0.12) 

Sin(4πTs/24)*Full-time workers 0.31(0.72) 

Sin(6πTs/24)*Full-time workers 0.45(2.38) 

Cos(2πTs/24)*Full-time workers 0.58(0.34) 

Cos(4πTs/24)*Full-time workers -0.18(-0.28) 

Cos(6πTs/24)*Full-time workers -0.17(-0.93) 

End Time 
 

Sin(2πTe/24)*Full-time workers -0.77(-0.39) 

Sin(4πTe/24)*Full-time workers -0.14(-0.25) 

Sin(6πTe/24)*Full-time workers -0.19(-1.32) 

Cos(2πTe/24)*Full-time workers -0.15(-0.15) 

Cos(4πTe/24)*Full-time workers 0.19(0.31) 

Cos(6πTe/24)*Full-time workers 0.42(1.88) 

Flexibility 

 Start Time 

 Sin(2πTs/24)*Flexibility 0.76(0.73) 

Sin(4πTs/24)*Flexibility 0.68(0.75) 

Sin(6πTs/24)*Flexibility 0.35(1.47) 

Sin(8πTs/24)*Flexibility 0.15(0.95) 

Cos(2πTs/24)*Flexibility -1.10(-1.45) 

Cos(4πTs/24)*Flexibility -0.27(-0.74) 

Cos(6πTs/24)*Flexibility 0.53(1.04) 

Cos(8πTs/24)*Flexibility 0.33(2.13) 

End Time 
 

Sin(2πTe/24)*Flexibility 0.68(2.28) 

Sin(4πTe/24)*Flexibility 0.56(1.37) 

Sin(6πTe/24)*Flexibility 0.46(1.39) 

Sin(8πTe/24)*Flexibility 0.04(0.30) 

Cos(2πTe/24)*Flexibility 0.20(0.38) 

Cos(4πTe/24)*Flexibility -0.11(-0.34) 

Cos(6πTe/24)*Flexibility 0.07(0.44) 

Cos(8πTe/24)*Flexibility 0.003(0.03) 
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Table 6.3 (Contd.) 

Variables Coeff. (t-stat) 

High Income (> 75k) 

Start Time 

Sin(2πTs/24)*High income 

Sin(4πTs/24)*High income 

Cos(2πTs/24)*High income 

Cos(4πTs/24)*High income 

 

0.31(1.91) 

0.09(0.99) 

-0.06(0.56) 

0.02(0.27) 

End Time 
 

Sin(2πTe/24)*High income -0.08(-0.60) 

Sin(4πTe/24)*High income 0.04(0.46) 

Cos(2πTe/24)*High income -0.14(-1.10) 

Cos(4πTe/24)*High income -0.35(-6.33) 

Government Employees 
 

Start Time 
 

Sin(2πTs/24)*Govt. employees -2.49(-1.76) 

Sin(4πTs/24)*Govt. employees -2.36(-1.95) 

Sin(6πTs/24)*Govt. employees -0.65(-1.98) 

Sin(8πTs/24)*Govt. employees 0.01(0.05) 

Cos(2πTs/24)*Govt. employees 2.00(1.98) 

Cos(4πTs/24)*Govt. employees -0.49(-0.98) 

Cos(6πTs/24)*Govt. employees -1.31(-1.86) 

Cos(8πTs/24)*Govt. employees -0.82(-3.78) 

End Time 
 

Sin(2πTe/24)*Govt. employees 0.01(0.05) 

Sin(4πTe/24)*Govt. employees -0.11(-0.92) 

Cos(2πTe/24)*Govt. employees -0.22(-1.21) 

Cos(4πTe/24)*Govt. employees 0.29(3.68) 

Interaction Variables 

 Full-time workers*Duration -10.77(-1.98) 

Full-time workers*Duration
2
 27.96(7.06) 

Full-time workers*Duration
3
 -16.91(-6.15) 

Home to Work travel time*Flexibility 0.05(1.77) 

Observations 10,063 

Log-likelihood at constants -52,607 

Log-likelihood at convergence -50,806 
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flexibility appears to affect the tour start-times of the employed adults. As can be 

observed from the figure, the full time workers with flexible schedules are likely to start 

their tours later in the day as compared to the full time workers without flexible 

schedules. Similarly the tour end-time profiles of the employed adults (Figure.6.2 (b)) 

show the influences of employment status (full time vs. part time), presence of kids at 

home, and flexibility in the work schedule on their work tour end-time choices. For 

instance, the full time workers show a higher propensity to end their work tours after 5:00 

PM as compared to their counterparts (i.e., part time workers). The female workers with 

kids in households are found to end their work tours earlier (especially just before 5 PM) 

than their counterparts (i.e., male, or female without kids in households). This may be 

again because of their responsibilities to pick up the kids from schools/day cares, or take 

care of the kids at home. 

 In addition to the profiles of different socio-demographic variables, the utility 

profiles obtained from the parameters on the tour duration function are also examined in 

this chapter. Figure 6.2 (c) shows that the maximum utility of the full time and part time 

workers occurs at durations of 11 hours and 7 hours respectively, which are very close to 

the average values (10 and 7.27 hours respectively) in their observed duration profiles. 

6.6 Transferability Assessment Results 

 In this section, the transferability assessment results obtained from the two-

approaches (estimation-based and application-based) used in this chapter are discussed. 

6.6.1 Results from Estimation-based Approach  

 As discussed earlier, county-specific “difference” variables were added to the 

base specification discussed in the previous section to explore any potential differences in 
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the parameter estimates for the county and the remaining eight counties. Four such 

models were developed, one for each of the four counties – Alameda, Santa Clara, San 

Francisco, and San Mateo. The model specifications are presented in Appendix B. Based 

on the statistical tests and intuitive considerations, the coefficients that were found to be 

different in a specific county (as compared to those in the base-c model) are presented at 

the end of the table (after the row labeled “interactions with counties”), while the 

common coefficients are presented in the beginning of the table. Several important 

observations may be made from the model results. First, the constants in the TOD models 

of 3 counties (Santa Clara, San Francisco, and San Mateo) are not significantly different 

from those in the base-c models, indicating the potential transferability of the TOD model 

constants between a pooled and a specific county model. Second, among the level-of-

service variables, while the travel time co-efficient for the home to work journey appears 

to be statistically different (i.e., not transferable) between counties and the base-c model, 

the travel time co-efficient for the work to home journey and the travel cost co-efficient 

appears to be transferable. One possible reason of not observing significant differences in 

the travel cost coefficients of different counties is the less variation of travel cost variable 

across the alternatives considered in the model. The travel cost information was available 

only for two broad time period categories: peak and off-peak. Third, in the context of 

other variables, (e.g., socio-demographic variables), almost 95% of the coefficients (or 

more) in a county TOD model are not significantly different from the corresponding 

base-c model. This provides an evidence of the potential transferability of these 

coefficients between a pooled and a specific county model in the Bay Area.  Overall, it 

appears that less than 5% of the coefficients (especially the level-of-service variables)  
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Figure 6.2 Profiles of (a) Tour Start-time Functions, (b) Tour End-time Functions, and (c) Tour Duration Functions

(c) Tour Duration Functions 

(a) Tour Start-time Functions (b) Tour End-time Functions 
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need to be estimated for the 4 counties considered in this transferability assessment. The 

remaining coefficients can be transferred from the corresponding base-c models (if 

available) in the Bay Area, providing strong empirical evidence of the transferability of 

TOD model coefficients from a pooled model. 

 In addition to comparing the coefficients of a county model with those of the 

corresponding “base-c” model, time-varying utility profiles of the variables that were 

found to have significantly different coefficients in these two models were also 

compared. These are presented in Figures 6.3 and 6.4. As can be observed from Figure 

6.3 (a), the tour start-and end-time profiles of the full time employed adults in Santa 

Clara are different than those of the employed adults in other eight counties (as a whole). 

Such differences in the time-of-day choice profiles are observed for household income 

variable as well (see Figure 6.3 (b)). These differences can be partially attributed to the 

differences observed in socio-demographic characteristics (especially in full time 

employee and household income variables) between Santa Clara and other counties in the 

Bay Area. Figure 6.4 shows the variations in the tour start-and end-time profiles of the 

female with kids in households in San Mateo and other eight counties (as a whole) in the 

Bay Area. The differences in the utility profiles indicate that the corresponding 

coefficients can not be transferred from a pooled model to a specific county; these need 

to be estimated separately for that county. Another important observation from all of 

these profiles is that for a specific variable, the difference in the tour end-time profiles is 

greater than the corresponding difference in the tour-start time profiles. This indicates 

that the coefficients related to home to work journeys may be more transferable than that 

related to work to home journeys.    
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Figure 6.3 (b) 

Figure 6.3 Differences in the Profiles of (a) Employment Status and (b) Household Income Variables between Santa 

Clara and Other Counties  
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Figure 6.4 Differences in the Profiles of “Female with Kids” Variable between San Mateo and Other Counties 
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6.6.2 Results from Application-based Approach  

The following table shows the TI values for all transfers with the first four rows 

presenting the TI values for inter-county transfers and the last row presenting the TI 

values for base-c model transfers. As indicated earlier, the base-c models are basically 

pooled models developed using data from eight counties. Also, the models were 

transferred using the naïve transfer approach i.e., the models were not updated using any 

information from the county they were transferred to. As can be observed from the table, 

the models transferred from and to San Francisco provide lower TI values compared to 

the corresponding models of all other counties. Because of the small sample size of the  

Table 6.4 Transferability Assessment Results: Transfer Index (TI) 

 

San Francisco County (only 538), it is not clear whether these lower TI values are due to 

the differences in the travel behavior between San Francisco and other counties in the bay 

area or if these are simply artifacts of small sample size. Among all the counties, the TI 

values appear to be higher for the models transferred from and to Santa Clara. One 

important observation from the table is that for a transfer to a particular county, the TI 

value improves significantly after pooling data from all other eight counties, indicating 

the potential benefits of pooling data in model transfer. It appears that it is better to 

           Transferred  

                   To 

Transferred  

       From 

Alameda Santa Clara San Francisco San Mateo 

Alameda 1.00 0.66 0.42 0.56 

Santa Clara 0.68 1.00 0.44 0.74 

San Francisco 0.23 0.42 1.00 0.40 

San Mateo 0.37 0.56 0.39 1.00 

Base – c 0.85 0.82 0.62 0.79 
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transfer a model based on pooled data from several counties than to transfer a model of a 

single county. 

6.7 Summary  

This chapter presents an empirical assessment of the spatial transferability of tour-

based time-of-day choice models among different counties in the San Francisco Bay Area 

of California. The empirical models are based on the work tour start- and end-time 

choices of the employed adults in the Bay Area. The model structure used to model the 

time-of-day choices is the Multinomial Logit (MNL) Structure, for which an OLS 

regression model was developed to obtain time varying travel time variables for the 

home-work and work-home journeys. 

  In this chapter, the performance of data pooling technique is assessed by using 

two approaches: (1) estimation-based approach and (2) application-based approach. 

Results from both the approaches suggest the potential benefits of pooling data in TOD 

model transfer. Specifically, results from the estimation-based approach suggest that a 

majority of the alternative-specific constants and the coefficients on socio-demographic 

variables in a pooled model can be transferred to a county; but the level of service 

variable coefficients need to be estimated separately for the county. Further, the results 

from the “application-based” approach (based on the transfer index values) suggest that 

the transferability of a model can be improved significantly by pooling data from 

different geographic contexts. These results support the findings in Chapter 4 that pooling 

data can potentially improve the spatial transferability of a model.  

 In addition to assessing the performance of data pooling technique, this chapter 

investigates the inter-county transferability of TOD models. In this assessment, only 
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application-based approach was used. Results from this assessment suggest different 

levels of transferability of the TOD models developed for four counties in the Bay Area. 

For example, while the models transferred from and to Santa Clara appear to show higher 

transferability across the counties, the models transferred from and to San Francisco 

show lower transferability compared to the corresponding models of other counties. It is 

important to note these results are based on only transfer index values; policy responses 

of the transferred TOD models were not considered in this transferability assessment. 

Considering the importance of the policy response measures, it should be included in the 

future TOD model transferability assessment. Another important caveat is in order here 

regarding the transferability results. All of these results are based on the assumption that 

the scale of the random utility components is similar across different models.  Allowing 

for scale differences across different counties can potentially shed further light on model 

transferability. 
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CHAPTER 7 

CONCLUSION 

7.1 Introduction 

This dissertation research seeks to contribute to the area of travel demand 

modeling by investigating the spatial transferability of activity-based models. 

Specifically, we attempt to develop a framework for assessing the transferability of 

activity-based model systems, and assess the transferability of two important model 

components used in activity-based model systems: (1) activity participation and time-use 

models, and (2) tour-based time-of-day choice models. In addition, the performance of 

two alternate ways (data pooling and improving the model structure) of enhancing model 

transferability is assessed in this dissertation.                                 

The rest of this chapter is organized as follows. The next section summarizes the 

main findings of this dissertation research. Section 7.3 highlights the contributions of this 

research, and Section 7.4 suggests the directions for future research.   

7.2 Summary  

This dissertation research started with an extensive review of literature on the 

spatial transferability of travel forecasting models. The review identified several gaps in 

literature. Some of these gaps, especially the notable ones, are addressed in this research. 

Results from these research efforts are summarized below. 
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The research first attempted to develop a conceptual framework that can guide the 

analysts assessing the transferability of activity-based model (ABM) systems. At the 

higher level of this framework are the various design features of the model system, 

including the traveler markets to be modeled, the temporal and spatial resolution at which 

travel is modeled, and the structure of the model system (i.e., the presence or absence of 

specific model components and sequence of the model components). At the lower level 

of this  framework comes the transferability of the specific model components of the 

ABM system, including long-term choice models, activity and tour generation models, 

tour-level models (for mode, time-of-day, and destination choices), and trip level models.  

Next, the research investigated the spatial transferability of an important 

component of activity-based model systems being tested in different metropolitan regions 

in the U.S. - a person-level daily activity generation and time-use model. Data from 2009 

National Household Travel Survey (NHTS) was used for this investigation. The model 

structure used for this is the Multiple Discrete Continuous Extreme Value (MDCEV) 

model. Since this is the first application of the MDCEV structure in spatial transferability 

assessment, some efforts were given to investigate the prediction properties of this model 

structure before assessing its transferability. Results from this investigation suggest that 

the MDCEV model performs well in predicting the aggregate-level activity participation 

rates in individual activities but not the aggregate activity durations. Specifically, the 

model is found to under-predict the aggregate activity durations for the outside good (in-

home activity) and over-predict the aggregate durations for most of the inside goods (out-

of-home activities). Another important property of the MDCEV model explored in this 

research is related to its constants-only specification. It was found that similar to the 
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Multinomial Logit (MNL) model, constants-only specification of an MDCEV model can 

reproduce the observed shares in the estimation data. This property has implications to 

the transferability of models with MDCEV structure in that an MDCEV model 

transferred from elsewhere can simply be adjusted by updating the constants. 

In the transferability assessment of the person-level daily activity generation and 

time-use model, both the inter-state and intra-state transferability were considered. For 

inter-state transferability assessment, the model was transferred between Florida and 

California where as for the intra-state transferability assessment the model was 

transferred among different regions in Florida.  Results from the inter-state and intra-state 

transferability assessments suggest that the model component (i.e., the activity 

participation and time-use model) is more transferable among different regions within a 

state than that between two states. This is mainly because of the greater similarity in 

socio-demographic characteristics, activity participation and time-use patterns of 

individuals in different regions within a state than that of the individuals in two different 

states.  Thus, whenever possible, attempts should be made to transfer models within a 

state. Further, within the state of Florida, the transferability between urban regions is 

found to be greater than that from urban to rural region. Specifically, there appears to be 

greater transferability of this model component between the Southeast Florida and the 

Central Florida regions than the Tampa Bay region.  

To transfer the model across geographical contexts, two methods were used in 

this analysis: (a) naïve transfer, and (b) updating constants. The effectiveness of these 

transfers was assessed by using different metrics. Among these, a statistically rigorous 

test rejected the hypothesis of transferability in all the cases. Since rejection by a 



 

174 

 

statistical test doesn’t necessarily mean the poor transferability of a model, other metrics 

such as log-likelihood based measures, aggregate level prediction ability and policy 

response measures were used in this transferability assessment.  Results from log-

likelihood based measures and aggregate predictions suggest that the performance of a 

transferred MDCEV model can be improved significantly by updating the constants. But 

this improvement doesn’t translate to improvement in the policy responses of the 

transferred model, indicating the transferability results obtained from the the log-

likelihood based measures and aggregate predictions are not always same as the results 

obtained from policy prediction measures. Since the main objective of developing a 

forecasting model is to use for forecasting and policy analysis, it is important for the 

model to be able to provide appropriate predictions of the responses to changes in 

explanatory variables (i.e., demographic characteristics and policy variables). Hence, the 

log-likelihood based measures and aggregate predictions are necessary but not sufficient 

metrics for model transferability assessment. 

 To investigate the influence of sampling variance in parameter estimates on the 

model transferability assessment results, the policy response measures were computed for 

50 sets of bootstrapped values drawn from the sampling distributions implied by the 

parameter estimates and their covariance matrix. Next, the transferability results obtained 

from the bootstrapped parameter estimates were compared with that from the point 

estimates. This comparison shows that neglecting sampling variance can potentially bias 

the results of transferability assessments toward “less” transferable (assuming that 

sufficient data is used to estimate the transferred and local models). 
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 Using the same data set and model structure, this research also investigated if 

pooling data from multiple regions helps in developing models that are more transferable 

than those developed using data from a single region. Results from this investigation 

suggest that pooling data from different regions helps in enhancing model transferability, 

but up to a certain extent. After that, pooling data does not appear to result in significant 

improvement of model transferability. Further, data from all the regions do not appear to 

result in similar improvements. For instance, data pooled from major urban regions (as 

compared to that from other regions) was found to result in greater improvement in the 

transferability of a model to another major urban region.   

  As discussed earlier, the MDCEV model structure used in the aforementioned 

transferability analysis has some limitations in predicting the aggregate durations which 

might have influence on its transferability across areas. It is possible that improvements 

to the MDCEV structure may enhance its prediction ability, and thus improve 

transferability across areas. To test this hypothesis, the independent and identically 

distributed (IID) assumption of the random utility components in MDCEV model was 

relaxed by incorporating heteroscedastically distributed random utility components in the 

structure. Specifically, it was assumed that the random utility components are 

independent but non-identically distributed across the choice alternatives. Using this 

assumption, a new econometric model named the Multiple Discrete Continuous 

Heteroscedastic Extreme Value (MDCHEV) Model was formulated. Next, the prediction 

properties and transferability of this MDCHEV model were investigated using the same 

geographical and empirical contexts used for MDCEV model in the aforementioned 

analysis. Results obtained for these two model structures were then compared to 
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investigate the benefits of incorporating heteroscedasticity in the multiple discrete 

continuous (MDC) choice model. It was found that the incorporation of 

heteroscedasticity among random utility components not only improves the prediction 

ability of the MDC choice model but also enhance its transferability across areas. 

Specifically, spatial transferability assessments using a variety of different transferability 

metrics suggest that the MDCHEV model clearly outperforms the MDCEV model. More 

interestingly, in most cases, the transferred MDCHEV models appear to perform not only 

better than transferred MDCEV models but also better than locally estimated MDCEV 

models. These results indicate that improvements to a travel forecasting model structure 

may help in enhancing its transferability across areas.  

  Next, the research investigated the spatial transferability of tour-based time-of-

day choice models among four counties in the San Francisco Bay Area of California. 

Data from the 2000 San Francisco Bay Area Household Travel Survey (BATS) was used 

in this investigation. The model structure used for this is the Multinomial Logit (MNL) 

structure, for which an OLS regression model was developed to obtain time varying 

travel time variables for the home-work and work-home journeys. In the transferability 

assessment, first the performance of data pooling technique was investigated (using 

“estimation-based” and “application-based” approaches), and then inter-county 

transferability of the models was assessed.  

  Results from the data pooling technique assessment suggest that a majority of the 

alternative-specific constants and the coefficients on socio-demographic variables in a 

pooled model can be transferred to a county; but the level of service variable coefficients 

may need to be estimated separately for the county. Further, it was found that the 
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transferability of a model can be improved significantly by pooling data from different 

geographic contexts. The inter-county transferability assessment results suggest different 

levels of transferability of the TOD models developed for four counties in the Bay Area. 

Among the four counties, models transferred from and to Santa Clara appear to show 

higher transferability while the models transferred from and to San Francisco show lower 

transferability compared to the corresponding models of other counties. The comparison 

of the transferability results from a pooled and a single county model suggest that it is 

better to transfer a model based on pooled data from several counties than to transfer a 

model of a single county. 

7.3 Contributions 

The overarching goal of this dissertation research is to contribute to the field of 

travel demand modeling by investigating the spatial transferability of activity-based 

models. The specific major contributions of this research are summarized below: 

  First, the extensive literature review conducted in this research identifies several 

important gaps in spatial transferability literature, and provides possible directions for 

future research. A brief summary of these directions is provided in the next subsection.  

Second, the framework laid out in this research provides guidance for assessing 

the transferability of activity-based model systems. The framework can help agencies and 

analysts assessing the transferability of activity-based model systems.  

Third, to our knowledge, this is the first attempt to assessing the spatial 

transferability of two important model components used in activity-based model systems: 

(1) activity participation and time-use models, and (2) tour-based time-of-day choice 

models. The results obtained from these assessments will be of potential use for the 
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geographical contexts like Florida which are considering different options (e.g., develop 

new models vs. transfer models) to develop ABMs in the state. 

Fourth, the research demonstrates the importance of incorporating policy 

prediction measures and sampling variance in the transferability assessment. Though 

important, to our knowledge, there are only a few studies in literature that considers these 

two with special attention.  

Fifth, this dissertation research formulates a new econometric model named the 

Multiple Discrete Continuous Heteroscedastic Extreme Value (MDCHEV) model. The 

important features of this model structure are: (a) it allows heteroscedastically (i.e. 

independent but non-identically) distributed type-1 extreme value random components in 

multiple discrete continuous (MDC) models, and (b) the resulting likelihood is uni-

dimensional integral that can be easily evaluated using quadrature method. The 

incorporation of heteroscedasticity in the MDC models allows the scale parameters of the 

random utility components to be different across different choice alternatives. In other 

words, the differences in the unobserved influences on the preferences for different 

choice alternatives (a common phenomena in many choice making processes) are 

recognized by accommodating heteroscedasticity in this model structure.  

 Sixth, this research investigates the performance of two alternate ways of 

enhancing model transferability- (a) pooling data, and (b) improving the model structure.  

While investigating the performance of the data pooling technique, in addition to using 

the “application-based” approach, another approach called the “estimation-based” 

(recently used by Bowman et al. 2013) is used.  
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Seventh, to our knowledge, this is the first research that addresses notable gaps in 

spatial transferability literature by using latest model structures such as the MDCEV 

(Multiple Discrete Continuous Heteroscedastic Extreme Value) and MDCHEV (Multiple 

Discrete Continuous Heteroscedastic Extreme Value). These shed new light on the 

transferability of multiple discrete continuous (MDC) choice models.   

In addition to these, several other small-scale contributions are made that are 

discussed in the previous chapters of this dissertation. 

7.4 Directions for Future Research 

The previous sections summarize the overall findings of this dissertation research 

and highlight the contributions to the field of travel demand modeling. In this section, we 

discuss the limitations and the possible directions for future research.  

7.4.1 Limitations 

Empirical specification of the daily activity generation and time-use models 

estimated in this research could be improved significantly by including additional urban 

form measures and transport system performance measures (e.g. accessibility) in the 

model. Because of lack of appropriate data, it was not possible to include these variables 

in the model. Improving the empirical specification with these variables may enhance the 

spatial transferability of this model component. Further, the scale of the random utility 

components was assumed to be similar across different models. Allowing for scale 

differences across different regions can potentially shed further light on model 

transferability. 

The data used for activity participation and time-use models shows that a large 

proportion (more than 30%) of those who participated in active recreation appear to have 
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done so for only 2 minutes or less in a day. Given the activities considered in this 

category (exercising, working out in gym, or playing sports), there is a high chance that 

such unreasonably small activity durations for a large proportion of the sample is a result 

of measurement error; presumably due to misreporting by the respondents of errors in 

coding of the data.  Though such measurement error can potentially have bearing on 

transferability, it was not possible to address this issue in this research.   

All the transferability results in this dissertation research are based on relative 

transferability assessments. Specifically, the transferability of a model is assessed by 

comparing the performance of a transferred model with that of a locally estimated model 

assuming that the locally estimated model is perfect in the context it is estimated for. 

In the transferability assessment of the tour-based time-of-day choice models, the 

scale of the random utility components was assumed to be similar across different 

counties which can potentially be contested. Besides, in the “application-based” approach 

of transferability assessment, only transfer index metric was used; policy responses of the 

transferred TOD models were not considered. Further, the samples sizes for some of the 

counties were very small which may have an influence on the transferability results.  

7.4.2 Future Research Directions 

Some directions in which the research can be extended are presented below. 

As discussed in Chapter 2, it is useful to view transferability of an empirical 

model at different levels of a hierarchy, beginning with the underlying theory of travel 

behavior, the model structure, the empirical specification, and then the parameters of the 

empirical model. A model ought to be transferable at all these different levels of 

hierarchy for it to be perfectly transferable. There is consensus that theoretically perfect 
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transferability is difficult to achieve. Therefore, it is more constructive to assess if models 

can be transferred up to certain practical criteria. But these practical criteria are not well 

defined yet in the profession, and thus warrant attention in the future research. Further, 

little empirical evidence exists on the transferability of a model at the first three levels of 

the above mentioned hierarchy. There is a scope for future research on which travel 

behavior theories (e.g., expected utility maximization vs. other theories) and which model 

structures are more transferable under what contexts.  

In addition, though the literature recognizes that the yardsticks used to measure 

transferability ought to allow for errors (since perfect transferability is difficult to 

achieve), no guidance exists on the level of acceptable error thresholds. Thus, it will be 

useful to accumulate empirical evidence toward arriving at robust error thresholds for 

transferability assessments. In this context, it will be helpful to establish relationships 

among the different metrics used to assess model transferability in the literature.   

The outcome of a model transferability assessment exercise can be influenced by 

a variety of confounding factors, including measurement errors in the variables used in 

model specification, and differences in the data collection procedures between different 

geographical contexts. Not controlling for these influences can potentially bias the 

assessment results toward less transferable. Thus, an important avenue for future research 

is to investigate the extent of the influence of these factors on model transferability 

results.   

The review in Chapter 2 suggests that there is no evidence on which model 

components of ABM systems are more transferable than the others. This dissertation 

research investigates the spatial transferability of two model components used in ABM 
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systems: (1) person-level daily activity generation and time use models, and (2) tour-

based time-of-day choice models. A fruitful avenue for future research is thus to assess 

the spatial transferability of other model components used in ABM systems (e.g., location 

choice and mode choice models), and compare their transferability across areas.  

  This dissertation research raises a more general issue of the importance of 

distributional assumptions in MDC Models. In this context, exploration of the influence 

of alternative distributional assumptions – such as multivariate heteroscedastic extreme 

value and multivariate normal and skew normal distributions – on the prediction 

performance of MDC models is a potentially fruitful avenue for further research. Equally 

important is the need for investigating the suitability of different distributional 

assumptions for different empirical contexts involving MDC choices. 

Finally, given the revival of interest in the issue of spatial transferability of 

models and the recent moves of several planning agencies to tour-based/activity based 

model systems, we look forward to seeing more empirical studies (and documentation of 

the findings from these studies) focusing on when and how best to transfer activity-based 

models. Equally important is the need to investigate the temporal stability of travel 

forecasting models. 
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 Appendix A: Additional Tables 

Table A1 MDCEV Model Results for California 
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Baseline Utility Parameters 

Constants 
-8.03 

(-91.62) 

-9.09 

(-94.00) 

-8.95 

(-78.73) 

-9.78 

(-72.32) 

-9.43 

(-78.98) 

-9.36 

(-76.91) 

-9.57 

(-69.94) 

-9.60 

(-154.61) 

Gender (Male is base) 
        

Female 
0.18 

(4.87) 
- - 

-0.20 

(-3.74) 
- - 

0.32 

(5.02) 
- 

Age (30 – 54 years is base) 
 

- 

       
 

<30 years - 
0.52 

(6.68) 

0.12 

(1.06) 
- - - - 

 

55-64 years - - - - 
0.14 

(1.61) 
- 

-0.54 

(-6.30) 
- 

65-74 years - - - - 
0.05 

(0.68) 
- 

-0.75 

(-8.59) 
- 

>= 75 years - - 
-0.18 

(-3.51) 

-0.30 

(-4.44) 

0.26 

(3.48) 
- 

-1.27 

(-12.17) 
- 

Race (Black and others are base)                 

White - - - - - 0.04 

(0.66) 
- - 

Driver  (Non-Driver is  base) 
 

Driver 

 

0.25 

(3.38) 

 

0.53 

 (5.24) 

 

0.24 

(2.57) 

 

- 

 

- 

 

0.55 

(4.50) 

 

- 

 

- 

Education(H. school/ lower is base)                 

Some college 
 

Bachelor to higher 

- 
 

 

- 

 

0.18 

(3.24) 
 

0.25 

(4.51) 

- 
 

 

- 

0.20 

(2.60) 
 

0.60 

(8.12) 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

Born in US (others are base) - - - - - 
0.49 

(6.59) 
- - 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

- 
-0.33 

(-5.41) 
- 

-0.11 

(-1.63) 
- - 

0.36  

(7.88) 
- 

- 
-0.10 

(-2.35) 
- - - - 

 

0.61 (17.80) - 
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Table A1 (Contd.) 
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Total Number of Workers 

 

-0.09 

(-3.52) 
- - 

 

- 

 

- - 
0.14 

(3.35) 
- 

Income (< 25 K is base) 
 

25 – 50K 
 

51-75K 

 

>75K 

 

0.11 

(2.29) 
 

0.12  

(2.13) 
 

0.16  

(3.17) 

 

0.19 

( 2.93) 
 

0.21  

(2.85) 
 

0.25  

(3.71) 

 

0.23 

(3.49) 
 

0.25 

(3.54) 
 

0.22 

(3.47) 

 

0.35 

(3.89) 
 

0.26 

(2.60) 
 

0.61 

(6.86) 

 

- 

 

 

- 

 

 

- 

 

0.20 

(2.79) 
 

0.32  

(4.11) 
 

0.42  

(6.02) 

 

         - 

 

 

         - 

 

 

         - 

 

- 

 

 
- 

 

 

- 

Land –Use Variables ( Rural is Base) 

        
Urban  

0.12  

(2.03) 
- 

0.14 

 (1.99) 

0.37  

(3.74) 

0.24  

(2.47) 

0.10 

 (1.31) 
- - 

Survey Day (Tue. –Thur. is base) 

- 

              
 

Monday - 
-0.18 

(-3.14) 
- - 

 -0.22 

 (-3.55) 
- - 

Friday - - 

 

0.11 

(2.11) 
- - 

 0.07  

(1.12) 
- - 

Satiation Parameters  

 

Constants  
3.15 

(79.64) 

2.88 

(54.48) 

4.76 

(123.54) 

3.48 

(33.09) 

4.09 

(91.23) 

3.69 

(102.50) 

2.47 

(54.02) 

2.53 

(44.63) 

Gender (Male is base) 
 

Female 

 

0.25 

(4.83) 

 

0.22 

(3.15) 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

Age (≥ 55 years is base) 
 

18-29 years 
 

30-54 years 

 

- 
 

 

- 

 

- 

 
- 

 

0.56 

(3.98) 
 
 

- 

 

0.65 

( 3.12) 
 

0.17 

(1.58) 

 

- 

 
- 

 

- 
 

 

- 

 

- 

 
- 

 

- 
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Table A1 (Contd.) 
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Education(H. school/ lower is 

base) 
 

Some college 
 

Bachelor to higher 

 

 

- 
 

 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 

0.23 

(1.75) 
 

0.27 

(2.28) 

 
 

- 
 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

Number of Cases 10821 

Log likelihood value at constants -129773.01 

Log likelihood value at convergence 
 
 

-128476.50 
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Table A2 MDCEV Model Results for Florida 
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Baseline Utility Parameters 

Constants 
-7.55 

(-116.92) 

-8.42 

(-132.70) 

-8.54 

(-88.46) 

-9.17 

(-93.66) 

-8.90 

(-96.70) 

-9.32 

(-80.09) 

-9.53 

(-54.07) 

-10.06 

(-160.44) 

Gender (Male is base) 

        
Female 

0.07 

(1.78) 
- - 

-0.07 

(-1.42) 
- - 

0.13 

(2.15) 
- 

Age (30 – 54 years is base) 
 

- 

       
 

<30 years - 
0.55 

(4.69) 
- - - - - 

 

55-64 years - - - - 
0.11 

(1.30) 
- 

-0.25 

(-2.68) 
- 

65-74 years - - - - 
0.14 

(1.81) 
- 

-0.39 

(-4.27) 
- 

>= 75 years - - 
-0.12 

(-2.47) 

-0.08 

(-1.48) 

0.23 

(3.04) 
- 

-0.66 

(-6.86) 
- 

Race (Black and others are base)                 

White - - - - - 
0.37 

(3.97) 
- - 

Driver  (Non-Driver is  base) 
 

Driver 
 

-  

 
 

- - 

 

- 

 

- 

 

0.47 

(3.25) 

 

- 

 

- 

Education(H. school/ lower is base)                 

Some college 
 

Bachelor to higher 

- 
 

 

- 

 

0.20 

(3.77) 
 

0.26 

(4.71) 

- 
 

 

- 

0.08 

(1.22) 
 

0.37 

(5.67) 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

Born in US (others are base) - - 
0.08 

(1.19) 
- - 

0.27 

(3.53) 
- - 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

-0.12 

(-1.93) 

-0.19 

(-2.30) 
- - - - 

0.38 

(5.53) 
- 

- - - - - - 

 

0.48  

(9.80) 
- 
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Table A2 (Contd.) 
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Total Number of Workers 

 

-0.05 

(-1.60) 
- - 

 

- 

 

- - 
0.14 

(2.95) 
- 

Income (< 25 K is base) 
 

25 – 50K 
 

51-75K 

 

>75K 

 
          -  

 
 

-  

 
-  

 

0.14 

( 2.44) 
 

0.18  

(2.48) 
 

0.19  

(2.81) 

 

0.12 

(2.10) 
 

0.17 

(2.46) 
 

0.15 

(2.35) 

 

0.12 

(1.62) 
 

0.30 

(3.53) 
 

0.51 

(6.46) 

 

- 

 

 

- 

 

 

- 

 

0.32 

(4.96) 
 

0.40  

(5.19) 
 

0.58  

(8.49) 

 

- 

 

 

         - 

 

 

         - 

 

- 

 

 
- 

 

 

- 

Land –Use Variables ( Rural is Base) 

        
Urban  

0.07  

(1.62) 
- 

0.17 

 (3.01) 

0.19 

(2.91) 

0.17  

(2.85) 
- 

0.25 

(3.38) 
- 

Survey Day (Tue. –Thur. is base) 

- 

              

 Monday - 
-0.17 

(-2.93) 
- - 

 -0.24 

 (-3.76) 
- - 

 Friday - - 

 

0.08 

(1.49) 
- - 

 0.07  

(1.09) 
- - 

Satiation Parameters  

 

Constants  
2.90 

(69.50) 

2.95 

(57.95) 

4.34 

(100.17) 

1.76 

(17.84) 

3.27 

(79.36) 

3.16 

(65.22) 

1.50 

(31.63) 

2.23 

(32.20) 

Gender (Male is base) 
 

Female 

 

0.26 

(4.83) 

 

0.14 

(2.05) 

 

- 

 

-0.17 

(-1.72) 

 

- 

 

- 

 

- 

 

- 

Age (18-29 years & ≥ 55 years 

base) 
 

 

30-54 years 

 
 

- 

 
 

- 

 
 

0.24 

(-2.37) 

 
 
 

- 

 
 

- 

 
 
 

- 

 
 

- 

 
 

- 
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Table A2 (Contd.) 
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Education(H. school/ lower is 

base) 
 

Some college 
 

Bachelor to higher 

 

 

- 
 

 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 

0.37 

(3.03) 
 

0.69 

(6.10) 

 
 

- 
 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 

Survey Day (Tue.-Thur. is base) 
 

Monday 

 

Friday 

 

 

- 
 

 

- 

 
 

- 

 
- 

 
 

- 
 

0.12 

(1.40) 

 

 
 

- 
 

 

- 

 
 

- 
 

- 

 
 

-0.14  

(-1.36) 
 

0.20 

(2.10) 

 

 

- 
 

 

 

- 

 
 

- 
 

 

- 

Number of Cases 8396 

Log likelihood value at constants -115046.19 

Log likelihood value at convergence 
 

 

-114340.93 
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Table A3 MDCEV Model Results for Southeast Florida Region 
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Baseline Utility Parameters 

Constants 
-7.45 

(-74.79) 

-8.89 

(-49.01) 

-8.48 

(-77.19) 

-8.99 

(-67.10) 

-8.75 

(-75.57) 

-9.48 

(-51.48) 

-8.46 

(-56.68) 

-10.20 

(-84.54) 

Gender (Male is base) 
        

Female 0.09 

(1.15) 
- - -0.20 

(-1.97) 
- - - - 

Age (30 – 54 years is base) 
 

- 

       
 

<30 years - 
0.75 

(3.57) 
- - - - - 

 

55-64 years - - - - - - 
-0.48 

(-2.64) 
- 

65-74 years - - - - 
0.28 

(2.33) 
- 

-0.62 

(-3.78) 
- 

>= 75 years - - - - 0.24 

(2.11) 
- -1.00 

(5.99) 
- 

Race (Black and others are base)                 

White - - - - - 
0.27 

(1.73) 
- - 

Driver  (Non-Driver is  base) 
 

Driver 
 

-  

 
 

0.44  

(2.36) - 

 

- 

 

- 
 

-  

 

- 

 

- 

Education(H. school/ lower is base)                 

Some college 
 

Bachelor to higher 

- 
 

 

- 

 

0.35 

(3.10) 
 

0.50 

(4.76) 

- 
 

 

- 

- 
 

 

0.20 

(5.67) 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

Born in US (others are base) - - 0.17 

(1.77) 
- - 0.49 

(4.18) 
- - 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

- 
-0.29 

(-1.68) 
- - - - 

0.26 

(1.81) 
- 

- - - - - - 

 

0.48  

(5.09) 
- 
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Table A3 (Contd.) 
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Total Number of Workers 

 

-0.14 

(-2.26) 
- - 

 

- 

 
- - - - 

 

Income (< 25 K is base) 
 

25 – 50K 
 

51-75K 

 

>75K 

 
- 

 
 

-  

 
-  

 

- 

 
 

- 
 

 

 
 

-  

 

- 
 

 

-  

 
-  

 

- 
 

0.29 

(2.03) 
 

0.55 

(4.59) 

 

- 

 

 

- 

 

 

- 

 

0.29 

(2.08) 
 

0.30  

(1.86) 
 

0.82  

(5.98) 

 

         - 

 

 

         - 

 

 

         - 

 

- 

 

 
- 

 

 

- 

Land –Use Variables ( Rural is Base) 

      
 

 
No. of Recreation Sites  

  (within 1 mile buffer) 
 

No. of  Cul-de-sacs  

  (within 0.25 mile buffer) 

- 

 

 

- 

- 

 

 

- 

0.005 

(3.55) 

 

- 

- 

 
0.01 

(0.96) 

- 

 
- 

- 

 

- 

- 

 
- 

- 

 

 

- 

 

Survey Day (Tue. –Thur. is base)  

- 

       

 Monday - 
-0.17 

(-2.93) 
- - 

-0.24 

(-3.76) 
- - 

Satiation Parameters  

 

Constants  
2.82 

(34.00) 

3.17 

(46.65) 

4.31 

(49.46) 

1.64 

(8.56) 

3.38 

(42.48) 

3.02 

(34.73) 

1.44 

(15.93) 

2.41 

(16.38) 

Gender (Male is base) 
 

Female 

 

0.34 

(3.13) 

 

- 

 

- 

 

-0.25 

(-1.30) 

 

- 

 

- 

 

- 

 

- 

 

Age (18-29 years & ≥ 55 years 

base) 
 
 

30-54 years 

 
 

 

- 

 
 

 

- 

 
 

 

-0.32  

(-1.77) 

 
 
 

 

- 

 
 

 

- 

 
 
 

 

- 

 
 

 

- 

 
 

 

- 
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Education(H. school/ lower is base) 
 

Some college 
 

Bachelor to higher 

 

 

- 
 

 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 

0.36 

(1.49) 
 

0.94 

(4.28) 

 
 

- 
 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 

Survey Day (Tue.-Thur. is base) 
 

 

 

Friday 

 

 

 

- 

 
 

 

- 

 
 

0.31 

(1.83) 

 

 
 

- 

 
 

- 

 
 
 

0.26 

(1.41) 

 

 

 

- 

 
 

 

- 

Number of Cases 2088 

Log likelihood value at constants -29681.30 

Log likelihood value at convergence 
 

 

-29397.20 
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Table A4 MDCEV Model Results for Central Florida Region 
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Baseline Utility Parameters 

Constants 
-7.55 

(-53.30) 

-8.54 

(-53.07) 

-8.68 

(-53.06) 

-9.33 

(-44.29) 

-8.78 

(-45.52) 

-9.65 

(-29.19) 

-9.85 

(-18.27) 

-10.26 

(-61.80) 

Gender (Male is base) 

        
Female 

0.13 

(1.56) 
- - - - - - - 

Age (< 55 years is base) 
 

- 

       
 

55-64years - - - 
0.15  

(0.77) 

0.39 

(2.01 

-0.38 

(-1.65) 
- 

 

65-74 years - - - - 
0.16 

(0.93) 

0.43 

(2.44) 

-0.43 

(-1.96) 
- 

>= 75 years - - - - 
0.28 

(2.33) 

0.39 

(2.16) 

-0.65 

(-2.82) 
- 

Race (Black and others are base)                 

White - - - - - 
0.44 

(1.72) 
- - 

Driver  (Non-Driver is  base) 
 

Driver 
 

-  

 
 

- - 

 

- 

 

- 

 

1.06 

(2.07) 

 

- 

 

- 

Education (Some col./ lower is base)                 

Bachelor to higher 

 
 

 

- 

 

 

0.22 

(1.94) 

 

 

- 

 

 

0.39 

(2.96) 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

Born in US (others are base) - - - - - 
0.14 

(0.67) 
- - 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

-0.50  

(-2.55) 

-0.26 

(-1.38) 
- - - - 

0.58 

(3.90) 
- 

- - - - - - 

 

0.46  

(2.95) 
- 
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Table A4 (Contd.) 
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Total Number of Workers 

 

-0.10 

(-1.20) 
- - 

 

- 

 

- - 
0.14  

(1.21) 
- 

 

Income (< 25 K is base) 
 

25 – 50K 
 

51-75K 

 

>75K 

 
          -  

 
 

-  

 
-  

 

0.34 

(2.43) 
 

0.28 

(1.62) 
 

0.37 

(2.26) 

 

0.29 

(2.12) 
 

0.27 

(1.61) 
 

0.38 

(2.48) 

 

0.39 

(2.34) 
 

0.43 

(1.61) 
 

0.38 

(2.48) 

 

- 

 

 

- 

 

 

- 

 

0.29 

(2.08) 
 

0.30  

(1.86) 
 

0.82  

(5.98) 

 

- 

 

 

         - 

 

 

         - 

 

- 

 

 
- 

 

 

- 

Land –Use Variables ( Rural is Base) 

    
 

   No. of Recreation Sites  

  (within 1 mile buffer) 
 

No. of  Cul-de-sacs  

  (within 0.25 mile buffer) 

- 

 

 

- 

- 

 

 

- 

0.07 

(2.02) 

 

- 

- 

 
0.006 

(1.25) 

- 

 

 

- 

- 

 
- 

- 

 
- 

- 

 

 

- 

 

Survey Day (Tue. –Thur. is base) 

- 
 

              

 Monday - - - - 
-0.16 

(-1.10) 
- - 

 Friday 
- 

 
- 

0.22 

(1.80) 
- - 

0.29 

(2.29) 
- - 

Satiation Parameters  

 

Constants  
3.04 

(47.0) 

2.94 

(37.04) 

4.19 

(49.04) 

1.57 

(9.02) 

3.11 

(32.69) 
3.15 (36.18) 

1.41 

(12.98) 

1.97 

(11.90) 
 

Education(H. school/ lower is 

base) 
 

Some college 
 

Bachelor to higher 

 

 

- 
 

 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 

0.31 

(1.10) 
 

0.76  

(2.93) 

 
 

- 
 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 

 
 

- 
 

- 
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Table A4 (Contd.) 
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Number of Cases 1458 

Log likelihood value at constants -20518.7 

Log likelihood value at convergence 
 
 

-20386.6 
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Table A5 MDCEV Model Results for Tampa Bay Region 
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Baseline Utility Parameters 

Constants 
-6.69 

(-89.77) 

-7.41 

(-83.86) 

-8.18 

(-34.51) 

-8.69 

(-30.04) 

-7.99 

(-45.27) 

-8.07 

(-31.25) 

-9.00 

(-26.47) 

-9.04 

(-84.49) 

Gender (Male is base) 

        
Female 

0.16 

(1.82) 
- - - - - - - 

Age (< 55 years is base) 
 

- 

       
 

55-64years - - - 
0.39 

(1.80) 
- - - 

 

65-74 years - - - - 
0.30 

(1.47) 
- - - 

>= 75 years - - 
-0.31 

(-2.52) 

-0.16 

(-1.21) 

0.36 

(2.04) 
- 

-0.59 

(-3.21) 
- 

Race (Black and others are base)                 

White - - - - - 
0.28 

(1.08) 
- - 

Driver  (Non-Driver is  base) 
 

Driver 
 

-  

 
 

- 

0.68 

(2.97) 

 

0.60 

(2.29) 

 

- 

 

0.72 

(2.26) 

 

- 

 

- 

Education (Some col./ lower is base)                 

Some college 
 

 

Bachelor to higher  

- 
 

 
- 

 

0.33  

(2.64) 
 

0.32 

 (2.52) 

- 

 
 

- 

- 
 

0.21 

(1.51) 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 

 

- 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

-0.14  

(-0.85) 

- 
- - - - 

0.23 

(1.30) 
- 

- 
- 

- - - - 

 

0.58  

(3.95) 
- 

Total Number of Workers 
 

- - - 
 

- 
- - 

0.38  

(3.24) 
- 
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Table A5 (Contd.) 
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Income (< 25 K is base) 
 

51-75K 
 

>75K 

 
           

-  

 
-  

 

 

- 
 

 

 

-  

 
 

 

          - 

 

-  

 
 

0.19 

(1.02) 
 

0.67 

(4.36) 

 

 

- 

 

- 

 
 

0.31 

(1.87) 
 

0.51  

(3.63) 

 

 

- 

 

-  

 

 

- 

 

- 

Land –Use Variables ( Rural is Base) 

        No. of Recreation Sites  

  (within 1 mile buffer) 
 

No. of Employments 

  (within 1 mile buffer) 
 

Total Number of Intersections  

  (within 0.25 mile buffer) 

-  

 

 

-  

 

 

-  

 

- 

 
-  

 
 

-  

0.004 

(2.42) 

 
0.002 

(1.39) 

 

- 

- 

 

 

- 

 
 

0.006 

(1.59) 

- 

 

 

 

- 

 

 
 

- 

- 

 

 

 

- 

 

 
 

- 

- 

 

 

 

- 

 

 
 

- 

- 

 

 

 

- 

 

 
 

- 
 

Survey Day (Mon. –Thur. is base)  
- 

 
 

     
 

Friday 
         - 0.19 

(1.33) 

- - 0.18 

(1.23) 

- - 

Satiation Parameters  

 

Constants  
3.01 

(44.73) 

2.71 

(21.76) 

4.44 

(46.92) 

2.04 

(16.81) 

3.19 

(31.79) 

3.05 

(28.65) 

1.59 

(13.58) 

2.09 

(12.84) 

Gender (Male is base) 
 

Female 

 

- 

 

0.34 

(2.12) 

 

- 
 

- 

 

- 

 

- 

 

- 

 

- 
 

Survey Day (Mon. –Thur. is base) 
 

Friday 

 
 

- 

 
 

- 

 

-0.32 

(-1.77) 

 
 
 

 

- 

 
 
 

- 

 
 
 

 

- 

 
 

- 

 
 

- 

Number of Cases 1334 

Log likelihood value at constants -18390.8 

Log likelihood value at convergence 
 

 

-18302.0 
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Table A6 MDCEV Model Results for D1Urban Region 
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Baseline Utility Parameters 

Constants 
-6.99 

(-33.88) 

-7.62 

(-29.53) 

-7.36 

(-80.03) 

-7.61 

(-28.02) 

-7.69 

(-84.54) 

-8.51 

(-30.69) 

-8.21 

(-40.91) 

-9.39 

(-64.71) 

Gender (Male is base) 

        
Female 

0.14 

(1.35) 
- - 

-0.19 

(-1.40) 
- - 

0.15 

(0.89) 
- 

Age (< 55 years is base) 
 

- 

       
 

55-64years - - - - 
0.70 

(2.45) 
- - 

 

65-74 years - - - - - 
0.89 

(3.35) 

-0.17 

(-0.79) 
- 

>= 75 years - - - - 
0.14 

(1.02) 

0.69 

(2.60) 

-0.13 

(-0.63) 
- 

Driver  (Non-Driver is  base) 
 

 

Driver 

    

      

      0.39 

     (1.92) 

     

       0.41 

(1.55) 

 

- 

 

-        - 

 

- 

 

- 

 

- 

Education (Some col./ lower is base)                 

Some college 
 

 

Bachelor to higher  

- 
 

 

- 

 

0.37 

(2.10) 
 

0.54 

 (3.01) 

- 

 
 

- 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 

 

- 

Born in US (others are base) 
- - 

-0.39 

(-1.52) 

 

- 
- 

 

- 

 

- 

 

- 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

          - 
-0.43 

(-1.35) - - - - 
0.26 

(1.17) 
- 

- 
- 

- - - - 
0.81 

(4.61) 
- 

Total Number of Workers 
 

- - - 
 

- 
- - 

0.38  

(3.24) 
- 
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Table A6 (Contd.) 
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Income (< 25 K is base) 
 

25K-50K 
 

51-75K 
 

>75K 

 
-  

 

 - 

 
-  

 
-  

 

- 

 
-  

 
 

-  

 

-  

 

-  

 

 
 

            - 

 

0.41 

(2.20) 
 

0.40 

(2.35) 

 

        

        - 

 

-  

 

-  

 
0.40 

(2.16) 

0.57 

(2.60) 

0.61 

(3.07) 

 

- 

 

- 

 

- 

- 

 

- 

 

- 

Land –Use Variables ( Rural is Base) 

  
 

     No. of Recreation Sites  

  (within 1 mile buffer) 
 

No. of Employments 

  (within 1 mile buffer) 

-  

 

 

-  

 

 

- 

 
-  

 

         

      0.004 

(2.42) 
 

0.002 

(1.39) 

- 

 

 

- 

 

- 

 

 

- 

 

- 

 

 

- 

 

- 

 

 

- 

- 

 

 

- 

 

Survey Day (Mon. –Thur. is base) 

         - 

              

Monday - 
-0.50 

(-2.94) 
- - 

-0.19 

 (1.08) 
- - 

Satiation Parameters  

 

Constants  
3.06 

(39.6) 

3.02 

(31.60) 

4.29 

(40.46) 

1.15 

(5.97) 

3.20 

(27.99) 

3.20 

(30.68) 

1.28 

(9.74) 

2.27 

(10.40) 
 

Age (18-29 years, >= 55 years 

base) 
 

30-54 years 

 

 

- 

 

      
-  

          
 

- 

 

 

 

-0.46  

(-1.39) 

 
 

 

 

         - 

 

- 

 

- 

Education(H. school/ lower is 

base) 
 

Some college 

 

Bachelor to higher  

        - 

 
 

- 

        - 

 

        - 

         - 

 

- 

     

1.37 

(4.29) 
 

1.68 

(5.73) 

 

-  

 

 

- 

 

- 

 

-  

 

- 

 

 

-  

 

- 
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Table A6 (Contd.) 
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Number of Cases 995 

Log likelihood value at constants -14506.10 

Log likelihood value at 

convergence 

 
 

-14425.41 
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Table A7 MDCEV Model Results for Rural Region 
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Baseline Utility Parameters 

Constants 
-7.20 

(-30.73) 

-8.32 

(-26.86) 

-7.42 

(-93.09) 

-9.83 

(-17.91) 

-8.03 

(-52.51) 

-7.90 

(-22.28) 

-9.42 

(-14.27) 

-8.97 

(-65.07) 

Gender (Male is base) 

        
Female 

0.04 

(0.57) 
- - - - - 

0.26 

(1.14) 
- 

Age (<55 years is base) 
 

 
       

 

55-64 years - - - - - - 
-0.61 

(-1.72) 
- 

65-74 years - - - - 
0.23 

(1.12) 
- 

-0.41 

(-1.33) 
- 

>= 75 years - - - - 
0.20 

(0.93) 
- 

-0.59 

(-1.76) 
- 

Race (Black and others are base)                 

White - - - - - 
0.58 

(1.64) 
- - 

Driver  (Non-Driver is  base) 
 

Driver 
0.65  

     (2.86) 

 
 

1.00  

(3.21) - 

 

1.38 

(2.62) 

 

- 
 

-  

 

-1.35 

(2.25) 

 

- 

Education(H. school/ lower is 

base)                 

Some college 
 

Bachelor to higher 

- 
 

 

- 

 

0.30 

(1.79) 
 

0.30 

(1.60) 

- 
 

 

- 

- 
 

 

0.64 

(2.91) 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

- 
 

 

- 

Total No. of Children                 

Children aged 0-5years 

 

Children aged 6-15 years 

- 
-0.20 

(-1.06) 
- - - - 

0.71 

(3.43) 
- 

- - - - - - 

 

0.19  

(1.30) 
- 
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Table A7 (Contd.) 
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Income (> 25 K is base) 
 

< 25k  

 

- - - 

 

-0.32 

(-1.44) 

 

- 
-0.52 

(-2.94) 
- - 

Land –Use Variables ( Rural is 

Base) 

        
No. of Intersections  

  (within 0.25 mile buffer) 

 

- 

 

 

 

-  

 

 

- 

 

 

0.02 

(3.14) 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

 
 

Survey Day (Tue. –Thur. is 

base) 
 

 
 

- 

    
      

 Monday - - - - 
 -0.87 

 (-3.31) 
- - 

         
Satiation Parameters  

 

Constants  
2.92 

(32.07) 

2.63 

(15.90) 

4.39 

(36.37) 

1.29 

(8.07) 

3.27 

(22.30) 

3.22 

(25.23) 

1.44 

(8.53) 

2.20 

(10.7) 

Gender (Male is base) 
 

Female 

 

- 

 

0.32 

(1.46) 

 

- 
 

- 
 

- 

 

- 

 

- 

 

- 

Number of Cases 757 

Log likelihood value at constants -9719.88 

Log likelihood value at 

convergence 

 

 

-9658.71 
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       Table A8 MNL Model Results for Four Counties (using application-based approach) 

Variables 
Alameda Santa Clara 

San  

Francisco 
San Mateo 

Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

Start Time Function 

Sin(2πTs/24) 

  

-1.95(-0.38) 10.16(2.51) 

  

-15.30(-0.70) 

  

15.04(0.92) 

Sin(4πTs/24) 7.40(3.60)   3.51(2.36)   9.57(1.86) 13.46(3.30) 

Sin(6πTs/24) 1.94(1.90)   -1.17(-1.55)   4.61(1.33)   2.15(1.25) 

Sin(8πTs/24) -0.89(-2.78)   -1.48(-6.20)   -0.08(-0.11)   -1.30(-2.65) 

Cos(2πTs/24) -17.65(-2.51) 2.66(0.53) -34.80(-1.27) -16.44(-1.02) 

Cos(4πTs/24) -3.51(-1.26) 4.22(1.99) -11.64(-1.05)    1.04(0.16) 

Cos(6πTs/24) 2.17(2.18) 2.50(3.23)   0.92(0.40)    4.56(2.35) 

Cos(8πTs/24) 0.78(2.73) 0.20(0.90)   1.40(2.15)    0.92(2.29) 

End Time Function   

 

    

Sin(2πTe/24) 13.94(1.80) -7.79(-1.31) 31.48(1.07) -2.58(-0.15) 

Sin(4πTe/24)   3.57(1.62) -2.46(-1.31) 7.69(1.19) -3.62(-0.98) 

Sin(6πTe/24)   0.06(0.08) -0.71(-1.21) 1.24(0.62) -1.59(-1.06) 

Sin(8πTe/24) -0.26(-1.15) 0.02(0.09) 0.44(0.76) -0.37(-1.05) 

Cos(2πTe/24)  -8.59(-2.23) 1.77(0.71) -18.01(-0.94) -6.43(-0.43) 

Cos(4πTe/24)  -5.39(-2.17) 2.16(1.24) -9.76(-0.92) -1.02(-0.15) 

Cos(6πTe/24)  -3.02(-2.69) 0.77(0.90) -3.78(-1.03) -0.14(-0.07) 

Cos(8πTe/24)  -0.94(-3.12) -0.07(-0.29) -1.24(-1.7) -0.60(-1.47) 

Duration Function   

 

    

Duration 47.76(2.31) -9.06(-0.59) 93.65(1.09) 20.12(0.36) 

Duration
2 

-13.71(-1.86) -10.80(-1.63) -5.32(-0.28) -12.40(-0.84) 

Duration
3 

4.00(0.77) 1.33(0.30) -0.03(-0.01) -1.59(-0.16) 

Level-of-Service   

 

    

Home to Work travel time -0.18(-4.32) -0.27(-6.28) 0.01(0.03) -0.18(-2.73) 

Work to Home travel time 0.03(0.68) -0.07(-1.48) 0.11(1.45) -0.02(-0.22) 

Travel Cost -0.13(-1.08) -0.16(-1.06) -0.13(-1.33) -0.24(-1.79) 

Size of intervals   

 

    

     Ln(# of half hour in tour start time) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 

     Ln(# of half hour in tour end time) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 

Female with Kids   

 

    

Start Time   

 

    

Sin(2πTs/24)*Female with kids -0.34(-0.72) 1.65(2.76) 3.17(1.46) 2.52(1.94) 

Sin(4πTs/24)*Female with kids 0.52(1.90) 1.22(3.99) 2.49(2.05) 2.12(3.32) 

Cos(2πTs/24)*Female with kids -0.76(-2.19) -1.56(-3.75) -3.29(-2.00) -2.59(-2.89) 

Cos(4πTs/24)*Female with kids -0.37(-1.70) 0.37(1.57) 0.25(0.34) 0.13(0.29) 
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Variables 
Alameda Santa Clara 

San 

Francisco 
San Mateo 

Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

End Time   

 

    

Sin(2πTe/24)*Female with kids 0.18(0.43) -0.02(-0.05) 0.89(0.97) -0.90(-1.21) 

Sin(4πTe/24)*Female with kids 0.05(0.19) 0.09(0.38) 0.46(0.70) -0.66(-1.57) 

Cos(2πTe/24)*Female with kids -0.61(-1.43) -0.05(-0.12) 0.39(0.43) -1.10(-1.68) 

Cos(4πTe/24)*Female with kids 0.09(0.46) 0.36(2.41) -0.16(-0.42) 0.28(1.05) 

Full-Time Workers   

 

    

Start Time   

 

    

Sin(2πTs/24)*Full-time workers -4.65(-1.24) 1.72(0.7) -1.78(-0.12) -15.18(-1.00) 

Sin(4πTs/24)*Full-time workers 0.71(0.62) -0.02(-0.02) -3.65(-0.97) -2.97(-1.13) 

Sin(6πTs/24)*Full-time workers 0.74(1.47) 0.35(0.98) 0.03(0.02) 0.07(0.07) 

Cos(2πTs/24)*Full-time workers -5.11(-1.01) 2.77(0.87) 7.04(0.38) -5.61(-0.43) 

Cos(4πTs/24)*Full-time workers -2.19(-1.20) 0.17(0.14) 0.24(0.04) -4.13(-0.73) 

Cos(6πTs/24)*Full-time workers -0.46(-1.08) -0.33(-0.89) -1.50(-1.09) -1.38(-1.19) 

End Time   

 

    

Sin(2πTe/24)*Full-time workers 5.67(1.04) -4.01(-1.08) -3.77(-0.19) 17.27(1.17) 

Sin(4πTe/24)*Full-time workers 1.02(0.81) -1.03(-0.96) -0.55(-0.16) 5.51(2.37) 

Sin(6πTe/24)*Full-time workers -0.07(-0.2) -0.26(-0.93) 0.18(0.17) 0.43(0.48) 

Cos(2πTe/24)*Full-time workers -3.8(-1.15) 0.97(0.55) 2.60(0.19) -6.37(-0.46) 

Cos(4πTe/24)*Full-time workers -1.48(-0.8) 1.00(0.88) 1.85(0.26) -5.60(-0.96) 

Cos(6πTe/24)*Full-time workers 0.06(0.1) 0.75(1.73) 0.69(0.37) -1.92(-1.54) 

Flexibility   

 

    

Start Time   

 

    

Sin(2πTs/24)*Flexibility -2.11(-0.74) -2.74(-1.41) 8.78(1.40) -0.34(-0.11) 

Sin(4πTs/24)*Flexibility -0.97(-0.43) -2.74(-1.61) 6.23(1.28) -0.28(-0.10) 

Sin(6πTs/24)*Flexibility 1.01(1.94) -0.31(-0.65) 0.37(0.34) -0.08(-0.10) 

Sin(8πTs/24)*Flexibility 0.62(1.53) 0.65(2.21) -1.02(-1.20) 0.34(0.70) 

Cos(2πTs/24)*Flexibility 0.14(0.07) 1.85(1.28) -5.98(-1.46) -0.50(-0.21) 

Cos(4πTs/24)*Flexibility -1.83(-1.61) -0.97(-1.46) 2.78(1.16) -0.23(-0.19) 

Cos(6πTs/24)*Flexibility -0.71(-0.54) -1.13(-1.17) 4.24(1.50) 0.05(0.03) 

Cos(8πTs/24)*Flexibility 0.51(1.46) -0.17(-0.56) 0.38(0.54) 0.04(0.07) 

End Time   

 

    

Sin(2πTe/24)*Flexibility 2.25(2.27) 0.86(1.60) -4.56(-0.90) 4.05(1.97) 

Sin(4πTe/24)*Flexibility 2.85(2.19) 0.98(1.32) -5.82(-1.02) 5.10(2.01) 

Sin(6πTe/24)*Flexibility 2.54(2.69) 0.84(1.39) -3.99(-1.30) 3.47(2.20) 

Sin(8πTe/24)*Flexibility 0.98(2.86) 0.18(0.70) -1.18(-1.58) 0.83(1.77) 

Cos(2πTe/24)*Flexibility 3.09(1.93) 0.81(0.85) -7.75(-1.23) 5.67(1.94) 
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Variables 
Alameda Santa Clara San Francisco San Mateo 

Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

Cos(4πTe/24)*Flexibility 1.58(1.85) 0.35(0.57) -3.53(-1.87) 2.13(1.83) 

Cos(6πTe/24)*Flexibility 0.44(1.11) 0.27(0.92) 0.05(0.04) -0.19(-0.32) 

Cos(8πTe/24)*Flexibility -0.34(-1.49) -0.08(-0.52) 0.94(1.12) -0.54(-1.38) 

High Income (>75K)   

 

    

Start Time   

 

    

Sin(2πTs/24)*High income 0.23(0.62) -0.21(-0.56) 1.33(1.67) 0.66(1.08) 

Sin(4πTs/24)*High income 0.34(1.79) 0.07(0.38) 0.62(1.46) -0.14(-0.46) 

Cos(2πTs/24)*High income -0.36(-1.53) -0.33(-1.32) -0.27(-0.49) 0.17(0.41) 

Cos(4πTs/24)*High income 0.14(0.78) -0.29(-1.74) 0.24(0.66) 0.30(1.14) 

End Time   

 

    

Sin(2πTe/24)*High income -0.23(-0.78) 0.01(0.03) -0.19(-0.30) 0.11(0.27) 

Sin(4πTe/24)*High income -0.04(-0.17) -0.03(-0.15) 0.21(0.51) 0.18(0.71) 

Cos(2πTe/24)*High income -0.63(-2.13) -0.37(-1.42) -0.33(-0.55) 0.25(0.66) 

Cos(4πTe/24)*High income -0.46(-3.62) -0.54(-4.85) -0.49(-2.06) -0.07(-0.40) 

Government Employees   

 

    

Start Time   

 

    

Sin(2πTs/24)*Govt. employees 3.78(0.60) -1.23(-0.34) 3.78(0.42) -14.33(-2.79) 

Sin(4πTs/24)*Govt. employees 1.56(0.37) -1.03(-0.34) 2.37(0.36) -10.55(-2.53) 

Sin(6πTs/24)*Govt. employees -0.87(-0.92) -0.40(-0.49) -0.39(-0.26)   0.25(0.22) 

Sin(8πTs/24)*Govt. employees -0.69(-0.87) 0.01(0.02) -0.19(-0.15) 1.60(2.01) 

Cos(2πTs/24)*Govt. employees -1.41(-0.41) 0.58(0.23) -1.41(-0.26) 8.84(2.56) 

Cos(4πTs/24)*Govt. employees 2.04(0.69) -0.34(-0.26) 1.80(0.46) -6.15(-3.05) 

Cos(6πTs/24)*Govt. employees 1.03(0.40) -0.80(-0.46) 1.25(0.31) -6.04(-2.40) 

Cos(8πTs/24)*Govt. employees -0.42(-0.89) -0.80(-1.56) -0.45(-0.50) -1.21(-1.73) 

End Time   

 

    

Sin(2πTe/24)*Govt. employees -0.05(-0.11) -0.94(-1.68) 0.76(0.93) -1.55(-1.62) 

Sin(4πTe/24)*Govt. employees 0.07(0.23) -0.83(-2.47) 0.22(0.40) -0.66(-1.36) 

Cos(2πTe/24)*Govt. employees -0.43(-1.00) -1.58(-2.70) 0.81(1.18) -0.80(-1.18) 

Cos(4πTe/24)*Govt. employees 0.23(1.28) 0.29(1.41) 0.64(2.22) 0.86(2.87) 

 Interaction Variables   

 

    

Full-time workers*duration 6.39(0.41) -19.80(-1.94) -19.53(-0.32) 22.45(0.44) 

Full-time workers*duration
2 

35.81(4.31) 33.25(4.44) 27.07(1.34) 37.81(2.42) 

Full-time workers*duration
3 

-23.00(-4.01) -21.22(-4.21) -17.02(-1.22) -19.42(-1.86) 

Home to Work traveltime*Flex. 0.03(0.40) 0.24(3.10) -0.01(-0.02) 0.18(1.61) 

Observations 1940 3001 538 1209 

Log-likelihood at constants -10245.3 -15414.9 -2800.4 -6232.3 

Log-likelihood at convergence -9843.4 -14809.2 -2682.61 -5958.9 
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 Table A9 MNL Model Results for Four Counties (using estimation-based approach) 
 

 

Alameda Santa Clara San Francisco San Mateo 

Variables Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

Start Time Function 

    Sin(2πTs/24) -3.08(-1.42) 3.38(1.57) 3.58(1.67) 3.61(1.68) 

Sin(4πTs/24) 2.29(3.08) 2.66(3.70) 2.66(3.70) 2.69(3.74) 

Sin(6πTs/24) -0.33(-0.84) -0.29(-0.75) -0.32(-0.82) -0.31(-0.79) 

Sin(8πTs/24) -0.81(-6.50) -0.88(-7.32) -0.88(-7.38) -0.88(-7.37) 

Cos(2πTs/24) -1.99(-0.75) -2.42(-0.91) -2.18(-0.82) -2.22(-0.83) 

Cos(4πTs/24) 0.45(0.40) 0.60(0.53) 0.71(0.63) 0.71(0.63) 

Cos(6πTs/24) 0.80(2.02) 1.03(2.73) 1.05(2.78) 1.06(2.82) 

Cos(8πTs/24) 0.15(1.25) 0.20(1.79) 0.20(1.77) 0.20(1.81) 

End Time Function 

    Sin(2πTe/24) -0.79(-0.25) -0.59(-0.20) -0.89(-0.28) -0.88(-0.28) 

Sin(4πTe/24) -0.10(-0.09) -0.02(-0.02) -0.12(-0.13) -0.12(-0.12) 

Sin(6πTe/24) 0.03(0.09) 0.06(0.19) 0.02(0.08) 0.026(0.09) 

Sin(8πTe/24) 0.12(1.42) 0.12(1.45) 0.12(1.42) 0.12(1.43) 

Cos(2πTe/24) -0.94(-0.69) -1.02(-0.75) -0.90(-0.66) -0.91(-0.67) 

Cos(4πTe/24) 0.20(0.21) 0.16(0.17) 0.23(0.24) 0.22(0.24) 

Cos(6πTe/24) -0.33(-0.74) -0.35(-0.79) -0.31(-0.70) -0.31(-0.70) 

Cos(8πTe/24) -0.45(-3.69) -0.46(-3.78) -0.45(-3.66) -0.45(-3.67) 

Tour Duration Function 

    Duration 6.65(0.811) 7.20(0.89) 6.40(0.78) 6.44(0.79) 

Duration2 -6.49(-1.81) -6.45(-1.80) -6.47(-1.81) -6.47(-1.81) 

Duration3 -1.42(-0.56) -1.47(-0.57) -1.44(-0.57) -1.45(-0.57) 

Level-of-Service 

    Home to Work travel time -0.17(-10.17) -0.15(-8.36) -0.17(-10.21) -0.17(-10.35) 

Work to Home travel time -0.04(-2.04) -0.03(-1.64) -0.03(-1.75) -0.03(-1.77) 

Travel Cost -0.15(-3.07) -0.15(-3.17) -0.14(-2.96) -0.14(-2.97) 

Size of intervals 

    Ln(# of half hour in tour start 

time) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 

Ln(# of half hour in tour end 

time) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 

Female with Kids 

    Start Time 

    Sin(2πTs/24)*Female with kids 0.39(1.66) 0.39(1.65) 0.40(1.67) 0.25(1.05) 

Sin(4πTs/24)*Female with kids 0.74(5.41) 0.74(5.39) 0.74(5.44) 0.65(4.69) 

Cos(2πTs/24)*Female with kids -1.05(-5.83) -1.04(-5.82) -1.05(-5.85) -0.97(-5.31) 

Cos(4πTs/24)*Female with kids -0.15(-1.48) -0.16(-1.55) -0.15(-1.5) -0.16(-1.57) 
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 Alameda Santa Clara San Francisco San Mateo 

Variables Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (tstat) 

End Time 

    Sin(2πTe/24)*Female with kids -0.07(-0.39) -0.07(-0.39) -0.07(-0.39) 0.02(0.08) 

Sin(4πTe/24)*Female with kids -0.08(-0.70) -0.08(-0.70) -0.08(-0.69) -0.04(-0.29) 

Cos(2πTe/24)*Female with kids -0.43(-2.32) -0.43(-2.33) -0.43(-2.32) -0.41(-2.15) 

Cos(4πTe/24)*Female with kids 0.21(2.74) 0.21(2.72) 0.21(2.75) 0.19(2.36) 

Full-Time Workers 

    Start Time 
    Sin(2πTs/24)*Full-time workers 0.14(0.10) 0.18(0.13) 0.15(0.11) 0.14(0.10) 

Sin(4πTs/24)*Full-time workers 0.32(0.74) 0.39(0.86) 0.31(0.70) 0.30(0.69) 

Sin(6πTs/24)*Full-time workers 0.45(2.38) 0.43(2.28) 0.45(2.38) 0.45(2.38) 

Cos(2πTs/24)*Full-time workers 0.54(0.32) 0.49(0.29) 0.59(0.35) 0.58(0.34) 

Cos(4πTs/24)*Full-time workers -0.19(-0.28) -0.10(-0.14) -0.18(-0.28) -0.19(-0.29) 

Cos(6πTs/24)*Full-time workers -0.17(-0.91) -0.11(-0.58) -0.17(-0.93) -0.18(-0.97) 
End Time 

    Sin(2πTe/24)*Full-time workers -0.73(-0.37) -0.63(-0.32) -0.78(-0.39) -0.76(-0.39) 

Sin(4πTe/24)*Full-time workers 
-0.13(-0.23) -0.13(-0.24) -0.14(-0.25) -0.13(-0.24) 

Sin(6πTe/24)*Full-time workers -0.18(-1.32) -0.23(-1.59) -0.18(-1.32) -0.18(-1.31) 

Cos(2πTe/24)*Full-time workers -0.17(-0.17) -0.20(-0.20) -0.15(-0.15) -0.15(-0.16) 

Cos(4πTe/24)*Full-time workers 0.18(0.29) 0.08(0.14) 0.19(0.31) 0.19(0.31) 

Cos(6πTe/24)*Full-time workers 0.42(1.86) 0.37(1.63) 0.42(1.88) 0.42(1.87) 

Flexibility 

    Start Time 

    Sin(2πTs/24)*Flexibility 0.81(0.77) 0.82(0.78) 0.79(0.75) 0.77(0.74) 

Sin(4πTs/24)*Flexibility 0.71(0.79) 0.72(0.81) 0.70(0.78) 0.69(0.77) 

Sin(6πTs/24)*Flexibility 0.35(1.48) 0.35(1.46) 0.35(1.47) 0.35(1.47) 

Sin(8πTs/24)*Flexibility 0.14(0.90) 0.14(0.92) 0.15(0.94) 0.15(0.94) 

Cos(2πTs/24)*Flexibility -1.12(-1.48) -1.13(-1.48) -1.13(-1.48) -1.12(-1.47) 

Cos(4πTs/24)*Flexibility -0.25(-0.68) -0.22(-0.60) -0.27(-0.74) -0.28(-0.74) 

Cos(6πTs/24)*Flexibility 0.56(1.09) 0.56(1.10) 0.54(1.05) 0.53(1.04) 

Cos(8πTs/24)*Flexibility 0.34(2.17) 0.33(2.15) 0.33(2.14) 0.33(2.13) 

End Time 

    Sin(2πTe/24)*Flexibility 0.68(2.28) 0.70(2.34) 0.68(2.28) 0.68(2.29) 

Sin(4πTe/24)*Flexibility 0.56(1.37) 0.56(1.37) 0.56(1.37) 0.56(1.37) 

Sin(6πTe/24)*Flexibility 0.46(1.40) 0.45(1.37) 0.46(1.39) 0.46(1.39) 

Sin(8πTe/24)*Flexibility 0.041(0.31) 0.04(0.32) 0.04(0.30) 0.04(0.30) 

Cos(2πTe/24)*Flexibility 0.21(0.39) 0.21(0.39) 0.20(0.38) 0.20(0.39) 
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 Alameda Santa Clara San Francisco San Mateo 

Variables 
Coef. (t- 

stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

Cos(4πTe/24)*Flexibility 

Cos(6πTe/24)*Flexibility 

-0.11(-0.33) 

0.07(0.44) 

-0.12(-0.38) 

0.05(0.35) 

-0.11(-0.34) 

0.07(0.44) 

-0.11(-0.34) 

0.07(0.44) 

Cos(8πTe/24)*Flexibility 0.002(0.02) 0.0005(0.06) 0.003(0.03) 0.002(0.03) 

High Income (>75K) 

    Start Time 

    Sin(2πTs/24)*High income 0.31(1.89) 0.45(2.36) 0.31(1.91) 0.31(1.88) 

Sin(4πTs/24)*High income 0.086(1.01) 0.14(1.48) 0.09(1.02) 0.08(0.91) 

Cos(2πTs/24)*High income -0.06(-0.57) -0.04(-0.30) -0.06(-0.58) -0.05(-0.49) 

Cos(4πTs/24)*High income 0.02(0.30) 0.14(1.58) 0.02(0.26) 0.02(0.29) 

End Time 

    Sin(2πTe/24)*High income -0.08(-0.60) -0.13(-0.91) -0.08(-0.60) -0.08(-0.60) 

Sin(4πTe/24)*High income 0.04(0.44) 0.03(0.34) 0.04(0.46) 0.04(0.45) 

Cos(2πTe/24)*High income -0.14(-1.11) -0.11(-0.74) -0.14(-1.10) -0.14(-1.10) 

Cos(4πTe/24)*High income -0.35(-6.34) -0.28(-4.43) -0.35(-6.32) -0.35(-6.32) 

Government Employees 

    Start Time 

    Sin(2πTs/24)*Govt. employees -2.60(-1.85) -2.57(-1.82) -2.49(-1.76) -2.49(-1.76) 

Sin(4πTs/24)*Govt. employees -2.45(-2.03) -2.43(-2.00) -2.35(-1.94) -2.36(-1.95) 

Sin(6πTs/24)*Govt. employees -0.65(-1.99) -0.65(-1.98) -0.64(-1.97) -0.65(-1.98) 

Sin(8πTs/24)*Govt. employees 0.03(0.13) 0.02(0.07) 0.01(0.05) 0.012(0.06) 

Cos(2πTs/24)*Govt. employees 2.07(2.06) 2.04(2.03) 1.20(1.98) 1.20(1.98) 

Cos(4πTs/24)*Govt. employees -0.54(-1.08) -0.54(-1.09) -0.49(-0.98) -0.49(-0.98) 

Cos(6πTs/24)*Govt. employees -1.36(-1.94) -1.34(-1.90) -1.31(-1.85) -1.31(-1.86) 

Cos(8πTs/24)*Govt. employees -0.83(-3.83) -0.82(-3.80) -0.82(-3.78) -0.82(-3.78) 

End Time 

    Sin(2πTe/24)*Govt. employees 0.011(0.06) 0.0001(0.07) 0.01(0.05) 0.01(0.05) 

Sin(4πTe/24)*Govt. employees -0.11(-0.90) -0.11(-0.92) -0.11(-0.92) -0.11(-0.91) 

Cos(2πTe/24)*Govt. employees -0.22(-1.20) -0.23(-1.26) -0.22(-1.21) -0.22(-1.21) 

Cos(4πTe/24)*Govt. employees 0.29(3.69) 0.27(3.49) 0.28(3.68) 0.29(3.68) 

Interaction Variables 

    Full-time workers*duration -10.66(-1.96) -10.63(-1.95) -10.77(-1.98) -10.72(-1.97) 

Full-time workers*duration2 27.98(7.07) 27.75(7.01) 27.95(7.06) 27.95(7.06) 

Full-time workers*duration3 -16.92(-6.16) -16.74(-6.09) -16.90(-6.14) -16.89(-6.14) 

Home to Work travel time*Flex. 0.06(1.85) 0.06(1.94) 0.05(1.58) 0.05(1.62) 
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Alameda Santa Clara San Francisco San Mateo 

Variables Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

Interactions with Counties 

    Starting Time Function     

Sin(2πTs/24) 2.61(1.94) - - - 

Sin(4πTs/24) 2.14(1.99) - - - 

Sin(6πTs/24) 0.14(0.52) - - - 

Sin(8πTs/24) -0.36(-1.83) - - - 

Cos(2πTs/24) -1.62(-1.82) - - - 

Cos(4πTs/24) 1.18(2.25) - - - 

Cos(6πTs/24) 1.34(2.10) - - - 

Cos(8πTs/24) 0.27(1.55) - - - 

Level-of-Service 

    Home to Work travel time - -0.08(-2.22) 0.09(2.54) 0.07(2.68) 

Work to Home travel time 0.04(1.59) - - - 

Full-Time Workers 

    Start Time 

    Sin(2πTs/24)*Full-time workers - -0.13(-0.26) - - 

Sin(4πTs/24)*Full-time workers - -0.24(-0.64) - - 

Sin(6πTs/24)*Full-time workers - 0.11(1.10) - - 

Cos(2πTs/24)*Full-time workers - 0.22(0.59) - - 

Cos(4πTs/24)*Full-time workers - -0.43(-1.80) - - 

Cos(6πTs/24)*Full-time workers - -0.24(-1.45) - - 

End Time 

    Sin(2πTe/24)*Full-time workers - -0.46(-1.36) - - 

Sin(4πTe/24)*Full-time workers - -0.06(-0.18) - - 

Sin(6πTe/24)*Full-time workers - 0.12(1.01) - - 

Cos(2πTe/24)*Full-time workers - 0.04(0.12) - - 

Cos(4πTe/24)*Full-time workers - 0.33(2.02) - - 

Cos(6πTe/24)*Full-time workers - 0.18(2.16) - - 

High Income (>75K) 

    Start Time 

    Sin(2πTs/24)*High income - -0.39(-1.16) - - 

Sin(4πTs/24)*High income - -0.10(-0.52) - - 

Cos(2πTs/24)*High income - -0.20(-0.83) - - 

Cos(4πTs/24)*High income - -0.33(-2.14) - - 
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      Appendix A (Contd.) 

 

Table A9 (Contd.) 

 
Alameda Santa Clara San Francisco San Mateo 

Variables Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

End Time 

    Sin(2πTe/24)*High income - 0.27(1.10) - - 

Sin(4πTe/24)*High income - 0.04(0.23) - - 

Cos(2πTe/24)*High income - -0.06(-0.25) - - 

Cos(4πTe/24)*High income - -0.22(-1.91) - - 

Female with Kids     

Start Time     

Sin(2πTs/24)*Female with kids - - - 2.29(2.02) 

Sin(4πTs/24)*Female with kids - - - 1.31(2.22) 

Cos(2πTs/24)*Female with kids - - - -1.43(-1.77) 

Cos(4πTs/24)*Female with kids - - - 0.30(0.75) 

End Time 

    Sin(2πTe/24)*Female with kids - - - -0.94(-1.41) 

Sin(4πTe/24)*Female with kids - - - -0.47(-1.23) 

Cos(2πTe/24)*Female with kids - - - -0.22(-0.36) 

Cos(4πTe/24)*Female with kids - - - 0.25(1.05) 

Observations 1,940 3,001 538 1,209 

Log-likelihood at constants -10,245.33 -15,414.87 -2,800.38 -6,232.34 

Log-likelihood at convergence -9,884.57 -14,840.26 -2,723.84 -6,002.82 
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Appendix B: Permissions 

 Permission to incorporate the TRB papers into dissertation.  

From: Awan, Javy [mailto:JAWAN@nas.edu]  

Sent: Monday, July 01, 2013 5:31 PM 
To: Burke, Merilyn 

Cc: Kisiner, Andrea; Barber, Phyllis 
Subject: RE: FW: A General Questions from the Contact Us portion of the website 
  

To: Merilyn Burke 

Sujan Sikder has permission to incorporate the TRB papers into his dissertation. If possible, 
please ask him to note that 
  

-          Spatial Transferability of Travel Forecasting Models: A Review and Synthesis was 
presented at the 4th Transportation Research Board Conference on Innovations in Travel 
Modeling, April 2012, and 

-          Spatial Transferability of Person-Level Daily Activity Generation and Time-Use Models: An 
Empirical Assessment was presented at the Transportation Research Board 93rd Annual 
Meeting, Washington, D.C., January 2013,  and was accepted for publication in the 2013 series 
of the Transportation Research Record: Journal of the Transportation Research Board (in 
progress). The volume, page numbers, and publication release schedule should be available by 
early September. 

  
Thanks! 
--Javy Awan 

Director of Publications 

Transportation Research Board of the National Academies 

500 Fifth Street, NW 

Washington, DC 20001 
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