
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-1-2016

Design and Development of a High-Performance
Quadrotor Control Architecture Based on
Feedback Linearization
William Neeley

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Neeley, William. "Design and Development of a High-Performance Quadrotor Control Architecture Based on Feedback
Linearization." (2016). https://digitalrepository.unm.edu/ece_etds/190

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/190?utm_source=digitalrepository.unm.edu%2Fece_etds%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 , Chairperson

William Neeley

Electrical and Computer Engineering

Dr. Rafael Fierro

Dr. Chaouki Abdallah

Dr. Svetlana Poroseva

Design and Development of a
High-Performance Quadrotor Control

Architecture Based on Feedback
Linearization

by

William Neeley

B.S., Electrical Engineer, University of Alaska Fairbanks, 2013

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

December 2015

©2015, William Neeley

iii

Dedication

I would like to dedicate my thesis to my wonderful parents, who have always been

there for me and helped me when I needed it.

I would also like to dedicate my thesis to my wonderful girlfriend, Chio. Her love

and support has been an invaluable aid to my studies.

iv

Acknowledgments

I would like to thank my advisor, Dr. Rafael Fierro, for enabling me to work on such
a challenging problem.

I would also like to thank my friends in the Marhes lab (Rafael Figueroa, Paul
Groves, Corbin Wilhelmi, and Patricio Cruz) for contributing to my understanding
of the project, helping me work through places where I got stuck, and for providing
moral support. I would like to extend a special thank you to Paul for configuring
the vast majority of the settings on the Autopilot’s high level processor.

I would also like to thank my friends from University of Alaska Fairbanks, espe-
cially Robert Barnett and Benjamin Montz, for acting as sounding boards throughout
my thesis.

I would also like to thank my high school Physics teacher, Mr. Bill Ennis. His
excellent teaching style encouraged me to pursue a degree and a career in electrical
engineering, for which I am eternally grateful.

v

Design and Development of a
High-Performance Quadrotor Control

Architecture Based on Feedback
Linearization

by

William Neeley

B.S., Electrical Engineer, University of Alaska Fairbanks, 2013

M.S., Electrical Engineering, University of New Mexico, 2015

Abstract

The purpose of this thesis is to outline the development of a high-performance

quadrotor control system for an AscTec Hummingbird quadrotor using direct mo-

tor speed control within a Vicon motion capture system environment. A Ground

Control Station (GCS) acts as a user interface for selecting flight patterns and dis-

playing sensor values. An on-board Intel Edison embedded Linux computer acts as

the quadrotor’s controller. The Vicon system measures the quadrotor’s position and

orientation, while the Hummingbird’s stock AscTec Autopilot board provides inertial

measurements and receives motor speed commands.

Based on the flight pattern set by the GCS, smooth and differentiable trajectories

are generated. A control program was written for the Edison to obtain measurements,

receive flight pattern commands, perform state estimation, calculate control laws,

send motor speed commands to the Autopilot board, and log values. The program

was written as a multithreaded C++ program for increased performance.

vi

A feedback linearization of the quadrotor’s dynamics was performed to account

for its nonlinearities. A controller structure designed to ensure exponential Lyapunov

stability was applied to the input-output linearized dynamics. The simplex method

was used to aid the controller in pushing the Hummingbird’s actuators for aggressive

maneuvers within set input limitations.

The Edison’s Wi-Fi capabilities enable it to contact the Vicon server directly

for position and orientation measurements. Accelerations and angular velocities are

measured by the Autopilot’s inertial measurement unit (IMU). A quick state esti-

mation process was implemented to filter the measured states, and state prediction

was used to compensate for latency in the system.

A custom circuit board and communication framework was designed and assem-

bled for interfacing the Edison with the Autopilot. The custom communication

framework allowed for a 16 times speed improvement over the default settings while

bypassing the stock wireless communication’s inherently unreliable timing.

The Hummingbird’s physical properties, such as propeller performance and ro-

tational inertias, were characterized via static and step response experiments. The

control system’s flight performance was evaluated through simulation and experi-

mental tests.

vii

Contents

List of Figures xiv

List of Tables xvii

Glossary xix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Related Work . 4

1.4 Thesis Organization . 5

2 The System 6

2.1 System Overview . 6

2.2 AscTec Hummingbird Quadrotor . 9

2.3 AscTec Autopilot . 11

viii

Contents

2.3.1 Low Level Processor (LLP) 11

2.3.2 High Level Processor (HLP) 14

2.4 Vicon MX Motion Capture System 16

2.5 Ground Control Station (GCS) . 19

2.6 Intel Edison System on a Chip (SOC) 21

3 Intel Edison Quadrotor Block 25

3.1 UART Circuitry Design . 26

3.2 Power and Serial Console Design . 27

3.3 Final Board Schematic and Layout 29

3.4 Areas for Improvement . 29

4 Edison and Autopilot UART Link 34

4.1 UART Configuration . 35

4.2 UART Frame Structures . 36

4.3 Reliability Analysis . 40

4.4 Timing Analysis . 44

4.5 Edison UART Port Configuration Commands 46

5 Representations of Orientation 47

5.1 Frames of Reference . 47

5.2 Euler Angles . 49

ix

Contents

5.3 Quaternions . 53

5.4 Euler Angle/Quaternion Conversions 57

5.5 Comparison of Euler Angles and Quaternions 57

5.5.1 Euler Angles . 58

5.5.2 Unit Quaternions . 59

5.6 Heading Frame and The Split Quaternion 60

6 The Quadrotor Model 63

6.1 Position Representation . 63

6.2 Orientation Representation . 64

6.3 Input Transformation . 65

6.4 Quadrotor Model . 68

7 Quadrotor Feedback Linearization and Controller Design 71

7.1 Feedback Linearization . 72

7.2 Feedback Linearization Output Definitions 74

7.3 Input Redefinition . 74

7.4 Altitude Linearization . 77

7.5 Horizontal Position Linearization . 79

7.6 Heading Linearization . 83

7.7 Linearization Feasibility . 84

x

Contents

7.8 Trajectory Generation . 85

7.9 Exponential Lyapunov Controller . 86

7.10 Altitude Controller . 87

7.11 Horizontal Position Controller . 87

7.12 Heading Controller . 88

8 Input Constraints 89

8.1 Input Feasibility . 90

8.2 Input Limitation Hierarchy . 92

8.3 Thrust Limitation . 92

8.4 Yaw Torque Limitation . 93

8.5 Roll/Pitch Torque Limitation . 95

9 Filtering 97

9.1 Kalman Filter . 97

9.2 Extended Kalman Filter . 99

9.3 Quick Filter . 100

9.4 Velocity Estimation . 101

9.5 Latency Compensation . 103

10 Control Program Implementation 105

10.1 Source Code . 105

xi

Contents

10.2 Flight Modes . 106

10.3 Program Structure . 108

10.4 Autopilot Communication . 109

10.5 Vicon Communication . 110

10.6 GCS Communication . 111

10.7 Filter Calculation . 113

10.8 Control Law Calculation . 114

10.9 Input Limitation . 114

10.9.1 GNU Linear Programming Kit 114

10.9.2 Execution Time . 115

10.10Trajectory Generation . 117

10.11Logging Thread . 118

11 AscTec Hummingbird Physical Model Evaluation 119

11.1 Motor Commands vs. Motor Speeds 120

11.2 Motor Step Response Plots . 123

11.3 Propeller Coefficient Evaluation . 124

11.3.1 Propeller Thrust Coefficients 125

11.3.2 Propeller Drag Coefficients . 126

11.4 Quadrotor Rotational Inertia . 127

xii

Contents

12 Results 131

12.1 Controller Simulation Results . 131

12.2 Takeoff and Hover Results . 134

12.3 Trajectory Tracking Results . 137

13 Conclusions and Future Work 143

13.1 Conclusions . 143

13.2 Contributions . 144

13.3 Areas for Improvement . 145

References 147

xiii

List of Figures

2.1 System Block Diagram . 7

2.2 Communication Diagram for the Full System 8

2.3 AscTec Hummingbird quadrotor with Propeller Protection Frame . . 9

2.4 AscTec Autopilot Picture and Pinout 11

2.5 AscTec Autopilot Block Diagram . 12

2.6 Vicon System Configuration . 16

2.7 Vicon Tracker . 18

2.8 Ground Control Station GUI . 19

2.9 Intel Edison and Quadrotor Block 22

3.1 Edison Quadrotor Block . 26

3.2 UART Connection and Level Shifting 27

3.3 Intel Edison Quadrotor Block Schematic 31

3.4 Intel Edison Quadrotor Block Layout 32

4.1 UART Frame Structures to the Autopilot 38

xiv

List of Figures

4.2 UART Frame Structures from the Autopilot 39

4.3 Echo Test Character Mismatch Locations for Multiple Trials 43

4.4 Echo Test Error Streak Histograms 43

4.5 UART Timing Plot . 45

4.6 UART Timing Histogram . 45

5.1 Coordinate System Rotations . 61

6.1 Quadrotor Model with Labeled Axes and Motors 65

8.1 Input Feasibility Polytopes . 91

9.1 Derivative Estimation Methods . 102

10.1 Block Diagram of Control Program 108

10.2 Edison Yaw Optimization Times . 116

10.3 Edison Yaw Optimization Times . 116

11.1 Measured Motor Speeds Mean and Standard Deviation 121

11.2 Average Measured Motor Speeds vs Expected Motor Speeds 122

11.3 Motor Speed Step Responses . 123

11.4 Thrust and Drag Coefficient Tests 124

11.5 Thrust Coefficient Results . 126

11.6 Pitch Inertia Test . 128

xv

List of Figures

11.7 Rotational Inertia Test Results . 129

12.1 Simulation 3-D Trajectory Tracking 132

12.2 Simulation Trajectory Tracking . 133

12.3 Takeoff and Hover Results . 135

12.4 Takeoff and Hover Error . 136

12.5 Takeoff and Hover 3-D Plot . 139

12.6 Trajectory 3-D Plot . 139

12.7 Trajectory Follow Results . 140

12.8 Trajectory Error Results . 141

12.9 Trajectory Error Lagged . 142

xvi

List of Tables

2.1 AscTec Hummingbird Specifications 10

2.2 Flexible Propeller Default Specifications 10

2.3 Autopilot High Level Processor Specifications 14

2.4 Vicon T10 Camera Specifications . 17

2.5 Intel Edison Specifications . 21

2.6 Intel Edison I/O Ports . 21

3.1 Parts List for the Intel Edison Quadrotor Block 33

4.1 Supported UART Baud Rates for the Edison and Autopilot 36

4.2 Data to Send To Autopilot . 37

4.3 Data to Send From Autopilot . 37

4.4 UART Echo Test Frame Loss Results 41

7.1 List of Trajectory Values to Generate for Desired Flight Path 85

10.1 Flight Mode Table . 107

xvii

List of Tables

10.2 Quadrotor to GCS Frame Contents 112

10.3 GCS to Quadrotor Frame Contents 112

11.1 Drag Coefficient Test Results . 127

xviii

Glossary

Math Notation

A A sample matrix.

AT Transpose of matrix A.

Ri(θ) Rotation matrix around axis i = x, y, z in {W} by an angle θ.

~x A sample vector.

x̂ Estimate of vector ~x.

x̃ Measurement of vector ~x.

q̊ A sample quaternion.

q̊−1 Quaternion inverse of quaternion q̊.

ẋ Derivative of state x.

x(n) nth derivative of state x.

{A} Reference frame A.

~x A Vector in reference frame A.

2R1 Rotation matrix that rotates an object from frame {1} to frame {2}.

xix

Glossary

Reference Frames

{W} World frame; origin is fixed to a calibrated point within the Vicon

system.

{B} Body frame; origin is fixed to the quadrotor’s center of mass.

{H} Heading frame; has the same origin and Z axis as {B}, but is one

rotation around an axis defined in the XY plane of {W} from be-

ing aligned with {W}. Using Euler XYZ terminology to convert

from {B} to {W}, {H} would be the frame between the XY and Z

rotation matrices.

Matrix Variables

A ∈ Rn×n Linear state matrix for state space equations with n states.

B ∈ Rn×p Linear input matrix for state space equations with n states and p

inputs.

F ∈ Rm×1 Lie derivative matrix used for MIMO feedback linearization; com-

prised of Lρfh terms for m outputs.

G ∈ Rm×m Lie derivative matrix used for MIMO feedback linearization; com-

prised of LgL
ρ−1
f h terms for m outputs.

H ∈ Rm×n Kalman filtering matrix used to map n states to m measurements.

I ∈ Rn×n Identity matrix of dimension n.

J ∈ R3×3 Rotational inertia matrix of the quadrotor (assumed diagonal).

xx

Glossary

K Quick filter: Meshing matrix ∈ Rn×n for n states.

Kalman filters: Kalman gain matrix ∈ Rn×m for n states and m

measurements.

M ∈ R4×4 Conversion matrix between squared motor speeds and resulting out-

puts of thrust and torques.

P ∈ Rn×n Positive definite matrix for generating the Lyapunov function for n

states.

Pi|j ∈ Rn×n Kalman filter estimate covariance matrix for n states. For i = j+1,

represents a predicted estimate covariance; for i = j, represents an

updated estimate covariance.

Q ∈ Rn×n Kalman filter prediction covariance matrix for n states.

R ∈ Rm×m Kalman filter measurement covariance matrix for m measurements.

S ∈ Rm×m Kalman filter innovation/residual covariance matrix for m measure-

ments.

W ∈ R3×3 Converts Euler angle rates to angular velocities.

Vector Variables

~x ∈ R13 State vector comprised of ~r, ~̇r, q̊, and ~ω.

~u ∈ R4 Input vector comprised of T and ~Γ.

~r ∈ R Position vector comprised of x, y, and z (m).

~̇r ∈ R3 Velocity vector comprised of ẋ, ẏ, and ż (m/s).

q̊ ∈ R4 Quaternion vector comprised of q0, qi, qj, and qk.

xxi

Glossary

~Θ Euler angle vector comprised of φ, θ, and ψ (rad).

~ω ∈ R3 Angular velocity vector comprised of ωx, ωy, and ωz (rad/s).

~Γ ∈ R3 Torque vector comprised of τx, τy, and τz (N m).

State Variables

x, y, z ∈ R Quadrotor position along XW , YW , and ZW , respectively (m).

ẋ, ẏ, ż ∈ R Quadrotor velocity along XW , YW , and ZW , respectively (m/s).

q0, qi, qj, qk ∈ R Unit quaternion values representing the quadrotor’s orientation

in {W}.

φ, θ, ψ ∈ R Roll (X rotation), pitch (Y rotation), and Yaw/Heading (Z rota-

tion) angles in an Euler XYZ representation (rad). The angles are

restricted between ±π.

ωx, ωy, ωz ∈ R Angular velocity around X, Y, and Z axes, respectively (rad/s).

Input Variables

T ∈ R Net thrust generated by the propellers (N).

τx, τy, τz ∈ R Net torque generated by the propellers around XB, YB, and ZB,

respectively (N m).

Ωn ∈ R Angular velocity of motor/propeller n = 1, 2, 3, 4 (rad/s).

xxii

Glossary

Model Variables

M ∈ R+ Mass of the quadrotor, protective frame, and Edison board.

J ∈ R3×3 Rotational inertia matrix for the quadrotor (kg m2).

Jxx,Jyy,Jzz ∈ R+ Diagonal entries of J associated with rotations around the XB,

YB, and ZB axes, respectively (kg m2).

b ∈ R+ Thrust coefficient for a set of propellers (N/rpm2 or N/(rad/s)2).

k ∈ R+ Drag coefficient for a set of propellers (N m/rpm2 or N m/(rad/s)2).

l ∈ R+ Length of quadrotor arm (m).

xxiii

Chapter 1

Introduction

This chapter provides an introduction to the quadrotor control system developed

within this thesis. Section 1.1 discusses the motivation behind developing the control

system. Section 1.2 provides a problem statement for declaring the scope of work.

Section 1.3 examines related works and discusses their applicability to the system

design. Section 1.4 lays out the organization of the thesis.

1.1 Motivation

The University of New Mexico’s Multi-Agent, Robotics, Hybrid, and Embedded Sys-

tems (Marhes) Laboratory has three AscTec Hummingbird quadrotors. Previous

work in the Marhes Lab [1, 2] examined treating the quadrotor’s default Autopilot

controller as a black-box model, characterizing its behavior, and developing a means

of generating paths such that the quadrotor flew in a desired pattern. The closed

source and unchangeable default controller constricted maneuverability, limited the

control scheme to waypoint navigation, and fixed the response time.

1

Chapter 1. Introduction

Aggressive maneuvarability is key when performing tasks where the quadrotor

must react quickly. The Marhes Lab has been researching control of quadrotors

with suspended loads [3, 4, 5, 6], which alters the dynamics of the quadrotor. For such

applications, being able to react quickly with aggressive, yet small, compensations

prevents the need to use slower and large compensations later on. While current

results for these tests are quite positive, having a capacity for quicker responses can

only help.

Some preliminary research went into examining a means of swinging up a single-

axis rigid pendulum cantilevered from the side of a quadrotor. While changes in

position could be used to perform the swing-up operation, initial work looked at

doing so using yaw operations as in [7]. The waypoint control framework does not

offer sufficient freedom to perform abrupt changes in yaw torque, so a new quadrotor

control scheme is needed.

The current quadrotor control scheme handles all of the path generation on a

Ground Control Station computer. The path commands are sent to the quadrotor

serially over a wireless link, which opens up the command communication link to

issues such as packet collisions and spectrum interference. In the event of high

wireless interference, communication with the quadrotor could be broken and control

of its flight behavior could be lost.

To overcome the default controller’s limitations, this thesis designs a system that

takes direct control of the quadrotor’s motor speeds. Rather than relying on an un-

known and unchangeable control algorithm, the quadrotor’s performance will only be

limited by the motor controllers’ responsiveness. While the primary control scheme

developed in this thesis will focus on following position and heading trajectories, the

direct motor control framework enables the development of any number of desired

controllers, such as a pendulum swing-up controller.

2

Chapter 1. Introduction

The architecture developed for this thesis has all control and state estimation

performed on the quadrotor by an embedded Linux computer. This allows for hard-

wired access to the Inertial Measurement Unit (IMU) data and motor command

procedures, which is both faster and more reliable. The fast sample and control rate

will allow the controller to react quickly, and the direct motor control permits rapid

convergence to a desired trajectory. With the controller mounted in the quadrotor,

mechanisms can be developed to fly the quadrotor safely using the on-board IMU

even in the event of a failure or severe delay in external communications.

1.2 Problem Statement

This thesis develops a control framework capable of safely exercising the Humming-

bird’s full range of inputs by using direct motor speed control for aggressive ma-

neuvers. A control structure using feedback linearization and exponential Lyapunov

stability formulations accounts for the system’s nonlinearities and converges to de-

sired trajectories. Linear programming methods keep the inputs within the realm of

feasibility. State estimation and latency compensation algorithms process incoming

measurements and refine the quadrotor’s state to improve controller performance.

A new on-board hardware configuration is developed using an embedded Linux

computer for increased performance. Custom circuitry for the computer was designed

and fabricated for providing power and interfacing with the quadrotor. Parameters

related to the quadrotor’s model, such as propeller performance coefficients and the

quadrotor’s rotational inertias, are characterized through experiments to improve

model accuracy.

3

Chapter 1. Introduction

1.3 Related Work

Both linear and nonlinear methods for controlling quadrotors have been examined.

Bouabdallah, Noth, and Siegwart examined the use of PID and LQ controllers on a

quadrotor’s attitude [8]. Nonlinear methods such as feedback linearization [9, 10] and

backstepping [11, 12, 13] have been successfully applied to the quadrotor’s postion

and attitude. Different papers have used Euler angles [12, 14] and quaternions [9, 10,

13] for expressing the quadrotor’s orientation. The Euler angle representations allow

for more intuitive understandings of the quadrotor’s orientation, while quaternions

offer a computationally efficient, singularity-free alternative.

Fritsch, De Monte, Buhl, and Lohmann propose a feedback linearization of the

quadrotor’s dynamics using quaternions and apply a controller designed for exponen-

tial Lyapunov stability to the linearized system [9, 15]. The exponential Lyapunov

controller enabled the quadrotor’s performance to be tuned using one parameter,

and the feedback linearization process accounted for the quadrotor’s nonlinear dy-

namics. Their simplified controller tuning and computationally efficient nonlinear

control scheme served as the foundation for the controller used in this thesis.

Quadrotor control facilities using the AscTec Hummingbird and motion capture

system feedback, such as the Flying Machine Arena at ETH Zurich [16] and the

quadrotor testbed at University of Pennsylvania [17], demonstrate that high degrees

of performance can be achieved when implementing custom control procedures. A

paper published on the Flying Machine Arena [16] proposes many fast and efficient

algorithms for performing state estimation and latency compensation for improved

flight performance.

4

Chapter 1. Introduction

1.4 Thesis Organization

This section provides an overview of the thesis’ organization structure. Chapter

2 provides an overview of the overall quadrotor control system and describes each

of the important components. Chapter 3 contains schematics, board layouts, and

design decisions for the Intel Edison’s custom Quadrotor Block, which is essential

for getting the Edison to communicate with the AscTec Autopilot. Chapter 4 covers

the UART link between the Edison and the Autopilot, particularly the baud rate

configurations and data frames for passing information back and forth.

Chapter 5 provides an overview of using Euler angles and quaternions to rep-

resent an object’s orientation in 3D space and lists equations that are referenced

throughout the thesis. Chapter 6 begins discussing the mathematical model for a

quadrotor’s flight dynamics. Chapter 7 steps through the process of linearizing the

flight dynamics via feedback linearization and places a linear controller on the lin-

earized dynamics. Chapter 8 discusses methods for constraining the inputs to the

realm of feasibility, which allows control laws to push the limits of the quadrotor’s

performance.

Chapter 9 discusses filtering methods used to estimate the state of the quadro-

tor and the difficulties in their real-time execution. Chapter 10 discusses the Intel

Edison’s full control program and how it ties into everything. Chapter 11 evaluates

the physical model of the AscTec Hummingbird to provide reliable parameters in

the main control program. Chapter 12 analyzes the flight performance results, and

Chapter 13 provides a conclusion and mentions future work.

5

Chapter 2

The System

Clearly defined descriptions of a system’s components are essential before in-depth

analysis of component configurations can begin. Section 2.1 provides an overview of

the quadrotor control system and describes how the components fit together. Section

2.2 covers the AscTec Hummingbird quadrotor and its physical parameters. Section

2.3 talks about the AscTec Autopilot board that comes on the Hummingbird, its

high and low level processors, and their respective responsibilities. Section 2.4 talks

about the Vicon motion capture system that gives position and orientation feedback.

Section 2.5 discusses the Ground Control Station (GCS) and its role in sending flight

pattern commands to the quadrotor. Section 2.6 examines the Intel Edison System

on a Chip (SoC), its various capabilities, and its role as the system’s main controller.

2.1 System Overview

Figure 2.1 shows a simplified block diagram of the system. The AscTec Autopilot

board, which is directly incorporated into the AscTec Hummingbird quadrotor, is

responsible for measuring various parameters at upwards of 1 kHz [18] and for relay-

6

Chapter 2. The System

Figure 2.1: A simplified block diagram of the system, complete with a representation
of the information passing between each component.

ing the quadrotor’s motor speeds from the Intel Edison on-board computer to the

proprietary motor controllers. The Vicon motion capture system uses cameras and

reflective markers to track the quadrotor’s position and orientation at upwards of 250

Hz [19]. The Ground Control Station (GCS) provides several flight mode controls

and displays parameters for the person controlling the quadrotor. All three devices

interact with the on-board Edison, which is tasked with receiving various measure-

ments, communicating with the GCS, and generating the desired motor speeds.

Figure 2.2 shows a detailed block diagram of the communication links within

the system. Many communication links, especially those related to Vicon and the

Autopilot, are proprietary and were not changed. While many communication links

are hard-wired and highly reliable from a signal strength and timing perspective,

the weak link comes in the form of the Wi-Fi connection between the Edison and

the wireless router. Due to issues like spectrum interference and packet collision, the

Edison’s communication with the Vicon server and the GCS are not guaranteed from

a timing perspective. Special state estimation procedures were necessary to mitigate

measurement delay/loss issues.

7

Chapter 2. The System

F
ig

u
re

2.
2:

A
d
ia

gr
am

of
ev

er
y

co
m

m
u
n
ic

at
io

n
li
n
k

u
se

d
in

th
e

fu
ll

sy
st

em
.

8

Chapter 2. The System

Figure 2.3: AscTec Hummingbird quadrotor with a large protection frame, Intel
Edison control board, and Wi-Fi antenna. The orange tape indicates the “front”
quadrotor arm.

Figure 2.3 shows a picture of the AscTec Hummingbird quadrotor with a protec-

tive frame, reflective markers for use with the Vicon system, a custom Intel Edison-

based control board (described in detail in Chapter 3), and a Wi-Fi antenna for the

Edison.

2.2 AscTec Hummingbird Quadrotor

The Hummingbird is a high-performance quadrotor designed by Ascending Tech-

nologies, GmbH (AscTec) [20]. The Hummingbird can be used straight out of the

box as a remotely piloted UAV through a radio controller. Its Autopilot board (dis-

cussed in Section 2.3) was customized to allow direct motor control for this thesis.

The Hummingbird’s arms are composed of balsa wood sandwiched between carbon

fiber sheets, which provide strength, rigidity, and robustness while staying light. The

9

Chapter 2. The System

central core of the quadrotor uses magnesium struts to hold the top and bottom car-

bon fiber panels, the AscTec Autopilot board, and the battery. Plastic screws and

nuts hold everything together, which have the advantages of being light and, in the

unfortunate event of a crash, providing failure points that absorb the crash energy

to reduce the chances of breaking the arms. Proprietary brushless DC motors and

their I2C-based motor controller boards are attached to each of the quadrotor’s four

arms. Table 2.1 lists various properties for the Hummingbird.

The Hummingbird quadrotor can be configured with multiple propeller options.

By default, AscTec supplies flexible propellers for durability at the cost of a lower

thrust coefficient. The Marhes lab has acquired aftermarket propellers with higher

thrust and drag coefficients, but they are brittle and sharp. As the flexible propellers

provide adequate flight performance and are safer to operate, they were used for this

thesis. Chapter 11 examines the measured thrust and drag coefficients for a set of

flexible propellers. Table 2.2 lists the flexible propellers’ default specifications.

Table 2.1: Specifications for the AscTec Hummingbird1 [20]

Parameter Value
Mass (M) 0.500 kg

Arm length (l) 0.17 m
Jxx 0.00365 kg m2

Jyy 0.00368 kg m2

Jzz 0.00703 kg m2

Battery Type 2100 mAh 3 cell LiPo

Table 2.2: Default Specifications for the AscTec Hummingbird’s Flexible Propellers

Parameter Value
Propeller Radius [20] 10 cm

Thrust Coefficient (b) [21] 6.11× 10−8 N/(rpm)2

Drag Coefficient (k)[21] 1.5× 10−9 N m/(rpm)2

1Mass/inertia specifications include the battery, but not the protective frame the Edison.
See Chapter 11 for measured values.

10

Chapter 2. The System

2.3 AscTec Autopilot

The AscTec Autopilot comes installed as the default control board for the AscTec

Hummingbird quadrotor [18]. Figure 2.4 shows the top and bottom of the Autopilot

board with labeled parts, ports, and pins. The two main components of the Autopilot

board are the High Level Processor (HLP, or HL in Figure 2.4a) and the Low Level

Processor (LLP, or LL in Figure 2.4a). Figure 2.5 shows a block diagram of the two

on-board processors, the sensors, and optional attachments such as an external GPS

sensor and possible XBee or cable-based UART connections.

(a) Top (b) Bottom

Figure 2.4: The labeled pinout of the AscTec Autopilot board. Source: [22]

2.3.1 Low Level Processor (LLP)

The Autopilot’s LLP is responsible for obtaining measurements from the Inertial

Measurement Unit (IMU), battery voltage, and motor speeds on the Autopilot board.

The IMU measures the quadrotor’s accelerations and angular velocities at a rate of

1 kHz. The LLP is capable of performing data fusion on these values, performing

11

Chapter 2. The System

Figure 2.5: Block Diagram for the AscTec Autopilot and Possible Configurations.
Source: [18]

attitude and position control algorithms, and sending motor speed commands to the

motor controllers. As the purpose of this thesis is to develop a high-performance

controller free of unchangeable response times and maneuverability restrictions, the

LLP’s default controllers and data fusion will not be used. The HLP can be used to

augment and/or override the LLP’s controllers, which will be discussed in Section

2.3.2.

An RC controller serves as the default method of interacting with the quadrotor.

It handles turning on and off the motors, selecting the flight mode (Manual Mode,

Height Mode, or GPS Mode), sending input commands (based on the selected flight

mode), and enabling/disabling control via serial interfaces (whether through the

LLP’s serial port or from the HLP). Even though the HLP can override all these

features, the RC controller acts as a safety mechanism for turning the motors on and

off, so it is left in the system for this sole purpose.

12

Chapter 2. The System

The LLP’s IMU is configured to follow an X-forward, Y-right, Z-down coordinate

system in compliance with the DIN 9300 air norm [23]. The Euler ZYX convention

is used on-board to represent the quadrotor’s orientation in roll, pitch, and yaw. The

LLP has the following sets of raw/calibrated measurements at it disposal [23] [24], all

of which are measured within its frame of reference. Of the measurements available,

the angular velocities, linear accelerations, motor speeds, and battery voltage will be

used.

• Angular Velocities (~ω)

– Quantized at 0.0154 ◦/s, or 2.69 ×10−4 rad/s

– Empirically observed to saturate at ∼ ± 7.25 rad/s, or ∼ ±415.4 ◦/s

• Linear Accelerations (~̈rB)

– Calibrated around gravitational acceleration

– Quantized at G/10, 000

– Stored as signed 16 bit integer, so theoretically saturated at ∼ ±3.27 Gs

• Motor Speeds (Ω1 through Ω4)

– Quantized at 64 rpm

• Battery Voltage

– Reported with 1 mV precision; ADC accuracy unknown

• Magnetometer Readings

• Temperature

• Air Pressure

13

Chapter 2. The System

With input values from a GPS system, the LLP can perform data fusion to

obtain orientation angles, linear velocities, altitude, and magnetic heading. As the

Marhes lab’s location blocks GPS signals, the GPS data would need to be spoofed,

so the data fusion utilities are not applicable.

The AscTec Communication Interface (ACI) allows for communicating with the

LLP directly over its serial port (labeled “LL Serial 0” in Figure 2.4a) at 57,600

bps. The HLP UART configuration (Chapter 4) was 16 times faster with reduced

communication overhead, so the ACI utility is neglected.

2.3.2 High Level Processor (HLP)

The AscTec Autopilot’s High Level Processor (HLP) allows researchers to customize

the quadrotor’s behavior and leverage the on-board sensors for their own needs.

Table 2.3 lists the processor’s specifications. While the HLP is disabled by default,

AscTec provides a Software Development Kit (SDK) for writing custom C code onto

the HLP while providing a framework for obtaining data from/sending data to the

LLP. All of the source code is provided, so any aspect of the processor’s programming

can be customized, from the program loop rate (set to 1,000 Hz by default) to the

individual GPIO pins. This is in stark contrast with the LLP, for which the only

reprogramming options consist of firmware updates and calibration procedures.

Table 2.3: Specifications for the AscTec Autopilot’s High Level Processor

Parameter Value
Manufacturer Philips (now NXP Semiconductors)

Model LPC2146
Architecture 32-bit ARM7

Crystal Oscillator 14.7456 MHz
Clock Speed 58.9824 MHz

On-chip SRAM 32 kB + 8 kB
On-chip FLASH 256 kB

14

Chapter 2. The System

The HLP can send commands to the LLP in four different ways:

• GPS Waypoint Navigation: the LLP takes care of all flight control and flies to

commanded waypoints.

• Attitude/Thrust Control: the LLP’s attitude controller receives commands as

if they were coming from the remote control sticks. These values translate into

a desired pitch angle, a desired roll angle, a desired yaw rate, and net thrust.

• Standard Output Control: the LLP’s attitude controller is disabled, and com-

manded values for thrust (0 to 200 → 0% to 100%) and pitch, roll, and yaw

torques (0 to 200 → -100% to +100%) are executed.

• Direct Motor Control (abbreviated as DMC): the LLP’s attitude controller is

disabled, and the motor speeds can be set directly via motor command values

(0 = off, 1 to 200 → Ωmin to Ωmax).

The first three options are undesirable, as the GPS and Attitude/Thrust meth-

ods use the on-board controller and the Standard Output method doesn’t provide

units for its thrust/torque commands. As the DMC method has a specific equation

for relating motor commands and motor speeds (See Chapter 11) and it provides

complete control freedom, this method is used to control the quadrotor.

The HLP is programmed to communicate with the Intel Edison via a high-speed

serial UART connection. The HLP reports IMU frames (acceleration and angular

velocity measurements) at 200 Hz and Status frames (battery voltage, HLP load,

LLP status, and measured motor speeds) at 100 Hz. The Edison will attempt to

send direct motor speed commands at approximately 200 Hz. Chapter 3 addresses

the physical circuitry necessary for the UART link, while Chapter 4 covers the various

settings, the fixed-size frame structures used to pass data back and forth, and the

performance of the link.

15

Chapter 2. The System

2.4 Vicon MX Motion Capture System

The Vicon motion capture system provides a means of capturing an object’s position

and orientation at a rate of up to 250 Hz using cameras in tandem with reflective

markers [25]. Figure 2.6 shows a diagram of the Vicon system configuration in the

Marhes lab. Eight Vicon T10 cameras are positioned around a capture volume of

16 feet wide, 22 feet long, and 9 feet tall. The cameras are oriented such that they

cover as much of the volume as possible while providing sufficient overlap for accurate

triangulation of any reflective markers they see. The T10 cameras are attached to

a Vicon MX Giganet Ethernet switch via proprietary cables that provide Gigabit

Ethernet, power, and camera synchronization and identification. The Vicon MX

Giganet is attached via Gigabit Ethernet to a host computer with a Vicon Ethernet

card, a generic Ethernet port, and the Vicon Tracker v1.3 application installed.

Figure 2.6: Configuration of the Vicon motion capture system in the Marhes lab.
The image was edited from its original source to reflect the updated hardware. Orig-
inal source: [25].

16

Chapter 2. The System

Table 2.4: Vicon T10 Camera Specifications [19]

Resolution (pixels) 1120 × 896 (1 MP)
Sensor Size (mm) 7.84 H x 6.27 V
Full Resolution Max Frame Rate 250 fps
Strobe Wavelength 623nm (Visible Red)

The motion capture process starts with the Vicon T10 cameras [19]. Table 2.4

lists the specifications for the T10 cameras used in the Marhes lab. At any given

moment, one camera is selected by the host computer to capture data. The selected

camera illuminates its LEDs with a configurable intensity to shine a particular wave-

length of light into the capture volume. Any reflective markers within the capture

volume will efficiently reflect the light back to the camera. An optical filter in front

of the camera filters out all but the desired wavelength of light. The grayscale sensor

within the camera then calculates the size and centroid of groupings of light that

pass a brightness threshold (configurable via Vicon Tracker). When properly con-

figured, the threshold will only permit reflective markers to be detected. Once the

camera has calculated the centroid and radius of any reflective markers it detects,

this information is relayed through the MX Giganet switch to the host computer.

Once all eight cameras have relayed their information at a configurable frequency,

the host computer will use calibrated settings to triangulate the position of various

markers relative to a calibrated origin. The Vicon Tracker software allows particular

configurations of markers to be defined as a single rigid body object, so once all

the markers have been detected and positioned, Tracker can determine where a pre-

specified object (such as a quadrotor) is located and how it is oriented. Figure

2.7 shows a screenshot of the Vicon Tracker software generating several quadrotor

models based on marker locations. Using the the Vicon Datastream SDK v1.2,

multiple client computers can access the position/orientation information generated

by the host computer. The Vicon Datastream SDK is available for use in C++,

MATLAB, and .NET programming environments on x86 and x64 devices [26].

17

Chapter 2. The System

Figure 2.7: Screenshot of Vicon Tracker v1.3 capturing the locations of four quadro-
tors.

When properly calibrated, the Vicon system is capable of calculating an object’s

position within fractions of a millimeter [16]. The orientation of the object is also

fairly precise, assuming the markers are configured in a sufficiently asymmetrical

pattern. Symmetric patterns can periodically cause the calculated orientation to

jump by large amounts within the span of a few measurements. Via the Vicon

Datastream SDK, positions are reported in millimeters from the calibrated origin,

and orientations can be returned in helical coordinates, as a rotation matrix, as a unit

quaternion, or as a set of Euler XYZ angles [26]. A comparison of Euler angles and

quaternions, as well as an explanation of how they work, is examined in Chapter 5.

For the actual quadrotor control program, quaternions are the orientation expression

of choice.

18

Chapter 2. The System

2.5 Ground Control Station (GCS)

The Ground Control Station (GCS) is a computer with a custom program in-

stalled to allow a quadrotor operator/pilot to control the flight behaviors of the

AscTec Hummingbird with the full control system in place. Figure 2.8 shows a

screenshot of the GCS program running on a Linux computer. The program allows

the user to easily choose a desired flight pattern (Off, Idle, Takeoff, Land, etc.) or

testing mode (Direct Motor Control, Cycle Motors, etc.). The program also displays

Figure 2.8: the Graphical User Interface (GUI) for the Ground Control Station
(GCS) program.

19

Chapter 2. The System

status information (communication link health, battery voltage, and Autopilot sta-

tus values) and quadrotor state values (position, velocity, orientation, and angular

velocities) in real time. Chapter 10, Section 10.2 discusses the particulars of flight

pattern selection, while Section 10.6 discusses the information coordinated between

the GCS and the quadrotor.

The GCS program makes use of a combination of Qt 5.4.0 and C++ to handle

everything. Qt Creator 3.3.0 was used to simplify creation and development of the Qt

components. C++ classes handle the IP socket communication with the on-board

Intel Edison (discussed in Section 2.6), while all of the Graphical User Interface

(GUI) elements use Qt Quick for simplified development. While the program was

primarily developed for use in Ubuntu Linux (and only tested on Ubuntu 14.04), the

C++ classes should only need minimal modifications to make them cross-platform

compatible with Windows, and Qt advertises that it makes cross-platform develop-

ment incredibly simple [27]. Due to time constraints and lack of experience with

cross-platform development, compatibility with Windows will be left to the efforts

of any future, ambitious Marhes students.

Below is a list of features whose development was started but not finished:

• GUI-based waypoint placement.

• Live 3-D plots of various state/status information.

• Sending trajectory information to the quadrotor, whether generated by the

GCS or generated by another computer and passing through the GCS.

• Velocity control so the quadrotor could fly remotely from the GCS. The ar-

row keys/WASD could control flight direction, while other keys could control

altitude and heading.

20

Chapter 2. The System

2.6 Intel Edison System on a Chip (SOC)

The Intel Edison System on a Chip (SoC) is an embedded x86-architecture computer

capable of running compact, GUI-less distributions of Linux [28]. Figure 2.9a shows

a picture of the Edison next to a quarter for scale, and Figure 2.9b shows the Edison

mounted on a custom Quadrotor Block 2 board specifically designed for interfacing

the Edison with the AscTec Autopilot (described in depth in Chapter 3). Table 2.5

lists the Edison’s specifications, while Table 2.6 lists the Edison’s available I/O ports.

Table 2.5: Specifications for the Intel Edison System on a Chip (SOC) [28]

Component Description
Size 35.5 × 25.0 × 3.9 mm

Weight 5 g
Power input 3.15 V to 4.5 V

Processor 22 nm Intel SoC with a dual-core, dual-threaded Intel Atom
CPU at 500 MHz and a 32-bit Intel Quark microcontroller at
100 MHz

Architecture 32-bit x86
RAM 1 GB LPDDR3 POP memory

Internal Storage 4 GB eMMC (v4.51 spec)
Wireless Dual-band (2.4 and 5 GHz) IEEE 802.11 a/b/g/n

Bluetooth BT 4.0 + 2.1 EDR
Antenna Dual-band onboard chip antenna or u.FL for external antenna

Table 2.6: Available I/O Ports on the Intel Edison [28]

Port Type Description
SD card 1 interface
UART 2 controllers (one configured as a serial console by default)

I2C 2 controllers
SPI 1 controller with 2 chip selects
I2S 1 controller

GPIO 14 pins (4 with PWM capabilities)
USB 2.0 1 OTG controller

21

Chapter 2. The System

(a) Intel Edison next to a quarter.

(b) Edison on custom Quadrotor Block

Figure 2.9: The Intel Edison

22

Chapter 2. The System

The Edison has several distributions of Linux available for it, with the two most

prominent options being Yocto Linux and Ubilinux. Yocto Linux focuses on being

able to heavily customize the Linux kernel and image to keep useful components,

remove dead weight, and add in any desired features [29]. While this is useful for

creating an efficient operating system, it has a high learning curve. The lackluster

performance of the “opkg” package manager and periodic crashes of the DNS lookup

routine prompted the examination of Ubilinux, which is a pared-down version of

Debian [30, 31]. The better package manager and highly similar behavior to Ubuntu

(also Debian-based) led to Ubilinux being used on the Edison.

The Edison is tasked with performing the following operations:

• Interfacing directly with the Vicon system over Wi-Fi to obtain the quadrotor’s

position and orientation.

• Communicating with the AscTec Autopilot’s HLP over a high-speed UART

link to obtain the quadrotor’s angular velocities, linear accelerations, measured

motor speeds, and status parameters.

• Speaking with the GCS using C++-based IP socketing over Wi-Fi to receive

flight mode information and to relay information to the user.

• Filtering the various measurement parameters and compensating for latency

to generate an adequate estimate of the quadrotor’s current state.

• Executing control laws to find the desired quadrotor inputs to follow a desired

trajectory.

• Calculating the motor speeds required for executing the desired inputs and

relaying the appropriate motor commands to the Autopilot’s HLP.

• Logging data pertaining to each step of the quadrotor control program.

23

Chapter 2. The System

All of these responsibilities are tied together and handled by one custom C++

program. Chapter 10 covers the full extent of the program and discusses each of its

individual components.

The Edison is unique in that it is one of the few, if not the only, embedded Linux

computer with an x86 architecture. The Vicon Datastream SDK only offers libraries

for x86 and x64 architecture machines; there currently are no libraries for ARM pro-

cessors [26]. Many other compact embedded computers, such as the Raspberry Pi

compute module [32], the Gumstix line [33], and the Odroid line [34] operate under

Linux operating systems, but they all use ARM architecture processors. Until Vicon

generates an ARM library for the Datastream SDK, the ARM-based computers can-

not get information directly from the Vicon server. Fortunately, the Edison bypasses

this pitfall.

24

Chapter 3

Intel Edison Quadrotor Block

A custom circuit board called the Intel Edison Quadrotor Block was designed for in-

tegrating the Intel Edison with the existing AscTec Hummingbird’s Autopilot board.

While the first revision was fraught with issues, the second revision (Quadrotor Block

2) fixed all of the previous problems and added a serial console. Figure 3.1 shows top

and bottom pictures of the final Quadrotor Block 2. The design and construction of a

custom board was necessary for several reasons: the serial UART link to the Autopi-

lot’s High Level Processor (HLP) required level-shifting circuitry, battery power was

needed, everything had to pass through the Edison’s tiny 70-pin Hirose DF40 connec-

tor, and no boards were commercially available that offered these features. Section

3.1 details the design process for the UART link. Section 3.2 covers the power and

serial console design for the board. Section 3.3 provides the final schematic, layout,

and parts list for the board. Section 3.4 provides a list of potential revisions to the

board.

25

Chapter 3. Intel Edison Quadrotor Block

(a) Top (b) Bottom

Figure 3.1: Pictures of the custom made Quadrotor Block 2 for the Intel Edison

3.1 UART Circuitry Design

Both the Edison and the HLP have UART ports operate on CMOS TTL logic levels.

The Edison’s two UART ports, UART1 and UART2, operate at 1.8V levels and are

only tolerant of 1.8V signals [28]. By default, Linux distributions for the Edison

make use of UART2 as a serial console port, so this leaves UART1 open for use. The

HLP’s available UART port, HL Serial 0 (labeled on the Autopilot board in Section

2.3, Figure 2.4a), outputs 3.3V signals and is tolerant of 5V inputs [22]. The HLP’s

UART port was designed to work with a Digi XBee [35] for wirelessly transmitting

serial data to/from a ground station, so in addition to the standard Tx, Rx, and

Ground lines for basic UART communication, the port also has 5V and 3.3V power

outputs and a CTS (Clear To Send) line.

Figure 3.2 shows a schematic of the level shifting circuitry used between the

Edison and the HLP. The voltage divider safely drops the Autopilot’s 3.3V signal

down to 1.8V, and the NMOS/resistor combination leverages both the Edison’s 1.8V

reference output and the Autopilot’s 5V output to boost the Edison’s 0−1.8V signal

to 0− 5V. For further details about the UART’s configuration and performance, see

Chapter 4.

26

Chapter 3. Intel Edison Quadrotor Block

Figure 3.2: Schematic of the UART link and its level shifting circuitry.

3.2 Power and Serial Console Design

The Intel Edison can be powered by an input voltage between 3.15V and 4.5V [28].

The selected voltage range is ideally geared towards powering the Edison with a

single cell lithium battery. Depending on CPU and WiFi load, the Edison’s average

current needs range between 50mA and 200mA with periodic spikes up to 300mA

[36]. A single cell 3.7V 2,000mAh lithium polymer battery was selected to provide

power to the Edison. Assuming an unrealistic worst-case scenario where the system

is perpetually drawing 300mA, the Edison will stay on for six hours and 40 minutes,

which is long enough to provide power through almost a full work day’s worth of

flights without recharging. By using its own battery instead of drawing power from

the Hummingbird, the Edison can be continuously powered on even when swapping

quadrotor batteries or the quadrotor is off.

A Microchip MCP73831 Li-Polymer Charge Management IC [37] was incorpo-

rated to charge the battery when the Edison was powered down without having to

remove the battery. The MCP73831 receives its power from a micro-B USB connec-

tor. As computer USB 2.0 ports typically have a limited current output of 500 mA,

27

Chapter 3. Intel Edison Quadrotor Block

the MCP73831’s maximum charging current was selected to be 370mA1 to be well

under this threshold while still allowing for moderately quick charging. To prevent

complications where the charger is trying to supply constant current to the battery

while the Edison is powered on, the power switch was implemented such that the

battery is either connected to the Edison (powered on) or connected to the charger

(powered off/charging). The power switch was selected for its small footprint and

its 12V, 500mA rating.2

As mentioned in Section 3.1, Linux distributions are configured by default to use

the Edison’s UART2 port as a serial console. While other, custom distributions may

use different settings, Yocto Linux and Ubilinux both use a UART configuration of

115,200 Bd, 8 bits, no parity, one stop bit, and no flow control. An FTDI FT232RL

[38] was used to convert the serial console’s UART signal to USB. The USB signal uses

the same micro-B connector used by the charging circuit. The FT232RL supports

a diverse range of baud rates and configurations, so it should work with the Edison

regardless of the Linux distribution used. The UART ↔ USB conversion allows a

computer to connect to the micro-B USB port, see the serial port (after installing

the appropriate FTDI drivers), and open it to communicate with the Edison. The

FTDI IC is powered by the 5V supply coming from the USB port, so it does not

consume battery power.

1The charging current is programmed through the selection of a “programming” resistor.
The regulated current is programmed via the equation IREG = 1000V/RPROG, where IREG
is in milliamperes and RPROG is in kΩs. By selecting a 2.7 kΩ resistor to minimize the
number of unique parts used, the charging current works out to be around 370mA.

2When the board was created, documentation was incredibly sparse. A few posts in
the Intel Support Forum suggested the Edison’s current draw spiked upwards of 500mA.
A cheaper switch with a smaller current rating could be used in future iterations.

28

Chapter 3. Intel Edison Quadrotor Block

3.3 Final Board Schematic and Layout

The Quadrotor Block 2 circuit board was designed using a template board provided

by Sparkfun [39] using EagleCAD 7.0.0 Light (the free version). Figure 3.3 shows

the schematic of the final board. Figure 3.4 shows the physical board layout of the

circuitry specified in the schematic. Table 3.1 provides a parts list of the components

necessary to build the custom Quadrotor Block 2 board.

Board assembly can potentially be problematic. While the first group of boards

were soldered by hand, soldering the Hirose DF40 connector requires moderate skill

and practice. Applying lots of rosin flux to the pins, blanketing the pins in solder, and

removing the excess (including solder bridges) with solder wick works fairly well. An

economic alternative would involve creating a stencil for the board, applying solder

paste, placing the components, and simulating reflow soldering through use of a

toaster oven or an electric skillet.

3.4 Areas for Improvement

Below is a list of ways in which the current circuit board can be improved.

• Currently, there is no circuitry in place to protect the battery from over-

discharging. A protection circuit would be beneficial.

• Currently, there is no way to measure the voltage of the battery to check its

charge level. Some means of measuring battery voltage on the Edison would

be helpful.

• Now that the Edison’s current consumption behaviors have been better charac-

terized [36], the power switch can be dropped from a 500mA rating to around

a 300mA rating.

29

Chapter 3. Intel Edison Quadrotor Block

• A means of charging the LiPo battery while the Edison is powered up would

be helpful, although it isn’t critical.

• The FT232RL IC has the functionality to drive transmit and receive LEDs

to indicate when data is on the UART link. While it would be helpful for

troubleshooting purposes, it isn’t necessary under typical operation.

• The micro-B USB connectors were very tricky to solder properly by hand.

Over-exposure to the soldering iron seemed to warp the connectors and made

it difficult to get a good electrical connection when plugging in a cable. Either

special care should be taken when attaching the micro-B USB connectors, or

they should be changed out for mini-B USB connectors. The added size and

thermal mass should reduce over-exposure problems.

• The board design was started with little to no experience designing printed

circuit boards (PCBs). As such, the layout could easily be improved.

30

Chapter 3. Intel Edison Quadrotor Block

F
ig

u
re

3.
3:

S
ch

em
at

ic
fo

r
th

e
In

te
l

E
d
is

on
Q

u
ad

ro
to

r
B

lo
ck

31

Chapter 3. Intel Edison Quadrotor Block

(a) Top

(b) Bottom

Figure 3.4: Layout for the Intel Edison Quadrotor Block. The ground planes on both
sides are not shown.

32

Chapter 3. Intel Edison Quadrotor Block

T
ab

le
3.

1:
P

ar
ts

L
is

t
fo

r
th

e
In

te
l

E
d
is

on
Q

u
ad

ro
to

r
B

lo
ck

P
ar

t
Q

ty
.

S
ou

rc
e

S
ou

rc
e

P
ar

t
N

u
m

b
er

Q
u
ad

ro
to

r
B

lo
ck

2
b

oa
rd

1
O

S
H

P
ar

k
N

/A
(c

u
st

om
sc

h
em

at
ic

)

S
li
d
e

S
w

it
ch

,
S
P

D
T

,
12

V
50

0
m

A
1

D
ig

ik
ey

56
3-

13
86

-N
D

J
S
T

R
ig

h
t

A
n
gl

e
C

on
n
ec

to
r

1
S
p
ar

k
fu

n
P

R
T

-0
86

12

M
ic

ro
U

S
B

S
M

D
C

on
n
ec

to
r

1
S
p
ar

k
fu

n
P

R
T

-0
85

33

H
ir

os
e

D
F

13
-6

P
-1

.2
5H

(2
0)

R
ig

h
t

A
n
gl

e
C

on
n
ec

to
r

1
M

ou
se

r
79

8-
D

F
13

6P
12

5H
20

H
ir

os
e

D
F

40
H

C
(3

.0
)-

70
D

S
-0

.4
V

(5
1)

M
ez

za
n
in

e
C

on
n
ec

to
r

1
M

ou
se

r
79

8-
D

F
40

H
C

30
70

D
S
4V

51

F
T

D
I

F
T

23
2R

L
U

S
B

to
S
er

ia
l

U
A

R
T

IC
,

S
S
O

P
-2

8
S
M

D
1

M
ou

se
r

89
5-

F
T

23
2R

L

M
ic

ro
ch

ip
M

C
P

73
83

1
B

at
te

ry
M

an
ag

em
en

t
C

h
ar

ge
r

IC
1

M
ou

se
r

57
9-

M
C

P
73

83
1T

-2
A

T
IO

T

N
M

O
S

T
ra

n
si

st
or

,
S
O

T
-2

3-
3

S
M

D
,
V
G
S

(t
h

)
≈

0.
6V

1
M

ou
se

r
78

1-
S
I2

30
2C

D
S
-E

3

G
re

en
L

E
D

,
06

03
S
M

D
,

1.
9V

2
M

ou
se

r
85

9-
L
T

S
T

C
19

3K
G

K
T

5A

R
ed

L
E

D
,

06
03

S
M

D
,

2.
3V

1
M

ou
se

r
85

9-
L
T

S
T

C
19

3K
R

K
T

5A

47
0

Ω
R

es
is

to
r,

06
03

S
M

D
5

M
ou

se
r

71
-C

R
C

W
06

03
J
-4

70
-E

3

2.
7

k
Ω

R
es

is
to

r,
06

03
S
M

D
2

M
ou

se
r

71
-C

R
C

W
06

03
2K

70
J
N

E
B

3.
3

k
Ω

R
es

is
to

r,
06

03
S
M

D
2

M
ou

se
r

71
-C

R
C

W
06

03
3K

30
J
N

E
B

4.
7
µ

F
C

ap
ac

it
or

,
06

03
S
M

D
,

6.
3V

2
M

ou
se

r
96

3-
J
M

K
10

7B
J
47

5K
A

-T

0.
1
µ

F
C

ap
ac

it
or

,
06

03
S
M

D
,

16
V

2
M

ou
se

r
77

-V
J
06

03
Y

10
4J

X
J
P

B
C

33

Chapter 4

Edison and Autopilot UART Link

The reliability and consistency of information sent over the Autopilot/Edison UART

link is critical to the Edison’s effectiveness in performing state observation and ex-

ecuting control laws. Without a robust link between the Edison and the Autopilot,

IMU information will be worthless, and the Edison will have little to no true control

over the quadrotor. Fully characterizing the UART link’s latency and data loss is

essential to developing algorithms capable of mitigating any delays or irregularities.

In this chapter, the UART connection between the Intel Edison and the AscTec

Autopilot’s High Level Processor (HLP) will be covered. For a discussion of the

UART’s physical layer, see Chapter 3, Section 3.1. Section 4.1 discusses the UART

configuration, as well as constraints and limitations associated with baud rates and

buffer sizes. Section 4.2 details the frame structures used to reliably relay informa-

tion back and forth over the UART link. Section 4.3 discusses the method used to

evaluate the communication link’s reliability and the results. Section 4.4 looks into

the regularity with which the program running on the Edison receives IMU data from

the Autopilot. Section 4.5 discusses the process for setting up the Edison’s UART

port each time before being used.

34

Chapter 4. Edison and Autopilot UART Link

4.1 UART Configuration

This section looks at the configurations and limitations of each device’s UART port.

As the configuration of the communication link can have effects on transmission time,

data throughput, and reliability, configuration options need to be discussed.

Buffer sizes dictate how much data can be sent at once, so understanding the

UART’s buffer limitations is essential to formulating frames to send data back and

forth. Both the Edison and the HLP possess 16550 compliant UART ports, enabling

both devices to have hardware FIFO (First In First Out) buffers to reduce interrupt

loads on the processors and to prevent overflow issues. The Edison has 64-byte

buffers on the receive and transmit lines [28], while the HLP has 16-byte buffers

[40]. While the various Linux distributions for the Edison effectively handle any

interrupt routines required to read data from the UART, the HLP can be configured

for interrupts when 1, 4, 8, or 14 bytes have been received. The 14 byte interrupt

configuration was used, and information frames were scaled to avoid triggering the

interrupt routine. In doing so, the HLP can read the UART port at a predictable

time, and potential complications from interrupt routines are avoided.

Maximizing the data transmission rate is key to minimizing transmission delays,

so the viable baud rates on each system need to be discussed. The HLP has a serial

UART port that can be configured for baud rates up to 1/16th of the processor’s clock

rate [40]. As the processor’s clock rate is set at 58.9824 MHz (based on examining

the source code from the AscTec SDK [23]), the HLP’s UART port can be set to a

maximum baud rate of 3.6864 MBd; as the UART operates on binary logic levels,

this translates to a maximum transmission speed of 3.6864 Mbps. While the HLP

can be configured for nonstandard baud rates (non-integer fractions of the maximum

clock rate), this is not necessary, as the standard baud rates match perfectly with

the Edison.

35

Chapter 4. Edison and Autopilot UART Link

Table 4.1: Relevant Baud Rates Supported in Hardware for the Intel Edison and
the AscTec Autopilot’s High Level Processor (LPC2146)

Baud Rate 57.6 K 115.2 K 230.4 K 921.6 K 1.8432 M 3.6864 M
Edison Yes Yes Yes Yes No Yes
HLP Yes Yes Yes Yes Yes Yes

Table 4.1 lists some of the Edison’s and the HLP’s baud rates that are supported

in hardware. On both of the Edison’s tested Linux installations (Yocto Linux and

Ubilinux), the stty command for configuring serial ports would not accept baud rates

faster than 921,600 bps. Alternative methods of configuring serial ports may poten-

tially allow for higher baud rates. However, as 921,600 bps is more than sufficiently

fast for transmitting small data frames, and as both devices support this speed, no

extra effort was put into speeding up the baud rate. As for the remaining settings,

the UART link was configured for 8 bits, no parity, one stop bit, and no flow control.

4.2 UART Frame Structures

Once the Edison and the HLP have been configured to talk to each other, an ap-

propriate means of reliably sending data from one device to another needed to be

developed. Both devices need to know what kind of data they are receiving (e.g. IMU

vs. status information), where the data starts, where the data ends, and whether or

not they received an entire block of data. A custom frame structure was developed

to handle this kind of information coordination.

Fundamental to any data transmission framework is knowing the kind of data

that will be sent back and forth. Table 4.2 gives a list of the types of values to be

sent to the Autopilot’s HLP from the Intel Edison. The primary values needed by

the quadrotor are the motor commands for the motor speeds the Autopilot should

execute, each of which ranges between 0 (off) and 200 (full speed). For UART

36

Chapter 4. Edison and Autopilot UART Link

Table 4.2: Data Values and Types to be Sent to the Autopilot’s High Level
Processor

Data Description C Data Type Byte Size # Values
Motor Commands unsigned char 1 4

Echo Text char 1 5
GPIO Pin On/Off char 1 1

Table 4.3: Data Values and Types to be Sent to the Intel Edison

Data Description C Data Type Byte Size # Values
Angular Velocities signed short 2 3

Linear Accelerations signed short 2 3
HLP Status unsigned short 2 1

Battery Voltage unsigned short 2 1
CPU Load unsigned short 2 1

Motor Speeds unsigned char 1 4
Echo Text char 1 5

HLP Version Text char 1 12

integrity evaluation purposes, an echo command was developed to send five bytes

of text at a time to the HLP and have it echo the text back. The link quality was

evaluated based on the number of lost or incorrect characters. As an additional

diagnostic tool, a command was created for setting the high/low state of one of the

Autopilot’s GPIO pins (general purpose input-output). One byte conveyed enough

information to turn the pin on or off.

Table 4.3 gives a list of the parameters to be sent from the HLP to the Edison.

The angular velocities and the linear accelerations are needed for state estimation

purposes. The HLP status, battery voltage, and CPU load values provide valuable

information about the present state of the quadrotor, while the measured motor

speeds are useful for post-flight data analysis. The version text allows a user to

verify the HLP’s programming is up to date, and the echo text sends back the five

characters received from the echo command sent from the Edison.

37

Chapter 4. Edison and Autopilot UART Link

(a) Generic Frame (b) Direct Motor Control Frame

(c) Echo Frame (d) GPIO Pin On/Off Frame

(e) Message Frame

Figure 4.1: Diagrams of custom frame structures sent over the UART link from the
Intel Edison to the AscTec Autopilot’s High Level Processor.

The HLP’s transmit and receive buffers are the largest limiting factor for passing

data over the UART link. Only 16 bytes can be queued in the transmit buffer at any

given moment. At 14 bytes, the receive buffer will trigger an undesirable interrupt.

The frames should be as small as possible to minimize communication delays as

much as possible. To simplify frame processing techniques, all of the frames going

in a particular direction over the UART link should be the same size.

For sending data from the Edison to the HLP, an eight-byte frame structure was

selected. Figure 4.1 shows the byte organization for each frame type. Looking at the

generic frame structure (Figure 4.1a), each frame has one start of frame (SOF) byte,

one control (CTRL) byte to indicate the frame type, five bytes of data, and one end of

the frame (EOF) byte. The five bytes of data are more than enough for sending direct

motor control data (Figure 4.1b), echo text (Fig. 4.1c), GPIO state information (Fig.

4.1d), and message/request frames (Fig. 4.1e). The message/request frame allows for

requesting the HLP program version or toggling the GPIO pin. With a transmission

speed of 921, 600 bps and the UART configuration given in Section 4.1, it takes 86.81

µs to transmit one frame of data from the Edison to the HLP.

38

Chapter 4. Edison and Autopilot UART Link

(a) Generic Frame

(b) IMU Data Frame

(c) Status Data Frame

(d) Echo Frame

(e) HLP Program Version Frame

Figure 4.2: Diagrams of custom frame structures sent over the UART link from the
AscTec Autopilot’s High Level Processor to the Intel Edison.

For sending data from the HLP to the Edison, a sixteen-byte frame structure

was selected. Figure 4.2 shows each frame type’s byte organization. Looking at

the generic frame (Figure 4.2a), each frame has a start of frame (SOF) byte, an

incrementing/overflowing (TIME) byte for the HLP loop in which the frame was

sent, twelve bytes of data, one frame type (CTRL) byte, and one end of frame

(EOF) byte. The twelve bytes of data allows all the IMU’s accelerations and angular

velocities to be sent at once (Fig. 4.2b) while leaving room for status information

(Fig. 4.2c), returning echo text (Fig. 4.2d), or reporting the HLP’s program version

(Fig. 4.2e). With a transmission speed of 921, 600 bps and the UART configuration

given in Section 4.1, it takes 173.61 µs to transmit one sixteen-byte frame.

39

Chapter 4. Edison and Autopilot UART Link

Both frame structures have a means of checking for character loss with the SOF

and EOF bytes, but they lack a proper means of error detection (like a parity check or

a cyclic redundancy check) or error correction (such as using Hamming distances).

Since the UART link was shown to be highly reliable and character loss was the

only real concern (see Section 4.3), error detection and correction were unnecessary.

Character loss was handled by dumping any partial frames and starting over with

the next whole frame. As IMU information is leaving the HLP at a rate of 200 Hz

and motor commands are leaving the Edison at a rate of 100 Hz, minor setbacks due

to occasional frame loss are not a significant problem.

NOTE: For the two frame structures involving motors (Figures 4.1b and 4.2c),

the motor number labels follow the convention established in Chapter 6, Section 6.3

(1 = front, 2 = left, 3 = back, 4 = right). However, to match the Autopilot’s motor

labeling convention (1 = front, 2 = back, 3 = left, 4 = right), information for motors

2 and 3 need to be swapped before being transmitted and after being received.

4.3 Reliability Analysis

The reliability of the UART link was tested by sending a stream of known text from

the Edison to the Autopilot’s HLP via echo commands, recording the time required

to receive an echo response, saving the text echoed back, tallying the number of

received and dropped echoes, and post-processing the results. See Algorithm 1 for a

pseudocode representation of the test.

A Plain Text UFT-8 version of “War of the Worlds” by H. G. Wells was obtained

from Project Gutenberg [41] and used as the test file. The “War of the Worlds”

text file had two main advantages: it was in the public domain, and it had 365, 445

characters, which evenly divided into 73, 089 five-byte frames. 73, 089 frames provide

a statistically significant number of tests for verifying the UART link’s integrity.

40

Chapter 4. Edison and Autopilot UART Link

Algorithm 1 UART Echo Test Algorithm

Open Test File, Result File, and Timing File;

received = 0; dropped = 0;

Initialize response timer;

while Test File ! = empty do

Read five characters from Test File;

Send characters to HLP via echo command;

while !response & time ≤ 10 ms do

Check for response;

if reponse then

Save time since last response to Timing File;

Save response to Result File;

received += 1;

else

dropped += 1;

Reset response timer;

return received and dropped;

Table 4.4: UART Echo Test Frame Loss Results

Trial Frames Sent Frames Received Frames Dropped Percent Dropped
1 73,090 73,078 12 0.0164%
2 73,090 73,081 9 0.0123%
3 73,090 73,085 5 0.0068%
4 73,090 73,081 9 0.0123%
5 73,090 73,081 9 0.0123%
6 73,090 73,083 7 0.0096%
7 73,090 73,084 6 0.0082%
8 73,090 73,080 10 0.0137%
9 73,090 73,083 7 0.0096%
10 73,090 73,077 13 0.0178%

41

Chapter 4. Edison and Autopilot UART Link

Ten different trials were run using Algorithm 1. Table 4.4 lists the results reported

at run time. The C++ program responsible for running the algorithm generated

one extra frame (73, 090 instead of 73, 089) due to a bug in checking whether or

not characters were actually received when reading from the file. Regardless, the

number of dropped frames across all ten trials was very small. At less than 0.02%,

the percentage of frames dropped, whether at the transmission or reception end, is

sufficiently low that data loss is not an important concern.

The result files were later post-processed in MATLAB. A script was written to

compare the test file to the result file; in the event that a particular result file

character didn’t match the test file, the test file character was flagged as an error

and the next test file character was compared with the same result file character.

The program will keep scanning through the test file and flagging characters as

errors until it finds a match to the result file. This simple algorithm made it easy to

check for character loss in the result file, but it produces absurdly large numbers of

incorrect characters in the event a character’s value gets changed. The algorithm will

continue scanning the test file and marking errors until it stumbles upon a match to

the changed character, at which point the two files are completely out of sync, which

will cause many more errors.

Figure 4.3 shows the results of this algorithm for all ten trials, as well as a

sample case where one character was changed from “H” to “h” partway through the

document. The sample case registered the majority of characters after the change as

being incorrect, whereas the other cases only have isolated groups of errors. Figure

4.4a shows a histogram of the number of error streaks seen for the sample case. An

error streak as long as 16,079 characters was seen. In a UART echo test where the

UART is assumed to be error-free yet capable of dropping data, a single character

error could imply that 3,215 frames in a row, plus most of another frame, were not

successfully echoed back. The UART link would be completely unusable.

42

Chapter 4. Edison and Autopilot UART Link

Figure 4.3: Plot of UART Echo Test Character Mismatches for Each Trial

Error Streak Length (chars) #104
0 0.5 1 1.5 2

#
S
tr

ea
k
s
+

1
(l
og

ar
it
h
m

ic
)

100

101

102

103

104

(a)

Error Streak Length (chars)
0 1 2 3 4 5 6

#
S
tr

ea
k
s

0

10

20

30

40

50

60

70

80

7: 4.3684
<: 1.2637

(b)

Figure 4.4: Histograms of Error Streaks for a Single Character Change (4.4a) and
for the Ten Trials (4.4b).

43

Chapter 4. Edison and Autopilot UART Link

By comparison, Figure 4.4b shows a histogram of the number of error streaks for

all ten trials. No error streaks exceeded five characters, the majority had exactly

five characters, and some were seen with less characters. The one-error streaks were

always adjacent to four-error streaks, and the two-error streaks were always adjacent

to three-error streaks. After visually comparing the test and result files side by side,

characters were seen to always be lost in groups of five; the non-five error streaks

were caused by one of the lost characters appearing right after the lost frame. The

character loss occurring in groups of five is explained by dropped frames.

While the echo test provides no answers as to what exactly caused the frames to

be lost, it shows three important things: data is occasionally lost but never changed,

data is lost in frame-sized chunks, and the losses occur sparingly. Given the results of

this test, error checking schemes are not necessary, as frames will never be corrupted.

Rarely dropped frames are not a problem, as frame transmissions happen frequently

enough that a replacement will come along shortly.

4.4 Timing Analysis

A test was constructed to verify both the HLP’s timing and the Edison’s timing

were correct for IMU frames. The HLP was configured to report IMU frames once

every five HLP loops, which corresponds to frames being transmitted at 200 Hz. A

program was written for the Edison to receive IMU frame timestamps, calculate the

program time since the last frame, and record both values. Figure 4.5 shows both the

timestamp differences and the program time differences on one plot, while Figure 4.6

shows a histogram of the program’s recorded times. The HLP consistently reported

frames 5 ms apart. The Edison’s program timing had a mean of 4.9999 ms and a

standard deviation of 0.048 ms, which is really good. The Edison’s non-real time OS

resulted in some fluctuations, but the variations were not significantly bad.

44

Chapter 4. Edison and Autopilot UART Link

Figure 4.5: Plot of time between program log times and time between IMU times-
tamps

Time Di,erence (ms)
0 2 4 6 8 10

#
P
oi

n
ts

(l
og

ar
it
h
m

ic
)

100

101

102

103

104

105

7: 4.9999
<: 0.047997

Figure 4.6: Histogram of program time between received IMU messages

45

Chapter 4. Edison and Autopilot UART Link

4.5 Edison UART Port Configuration Commands

Documentation for configuring the Edison’s UART port was incredibly sparse when

the UART configuration process began, so this section explains the process for setting

up communication on UART1 within Linux. The information provided here applies

to both Yocto Linux and Ubilinux.

Linux offers several commands to configure serial/UART ports, such as setserial

and stty. For this project, the stty command was used, as it was shown to work

on both Yocto Linux and Ubilinux. Within the Linux operating system, UART1

shows up as file labeled /dev/ttyMFD1.1 To configure UART1 to have a data rate

of 921,600 bps and a standard raw configuration (8 bits, no parity, one stop bit, no

flow control), the following command should be entered into the Linux terminal or

used as a system call within a given program:

s t t y −F /dev/ttyMFD1 921600 raw

While this works properly on most system, the Edison’s UART1 port was found to

be configured by default to echo received characters. This caused numerous bugs that

were quite difficult to track down. To remove the echo problems, several additional

flags need to be set. With the new flags in place, the command becomes the following:

s t t y −F /dev/ttyMFD1 921600 raw −i e x t en −echo

−echoe −echok −e c h o c t l −echoke

1It took many hours of browsing through forums to find this.

46

Chapter 5

Representations of Orientation

Multiple methods can be used to represent an object’s orientation in three dimen-

sions, such as rotation matrices, Euler angles, quaternions. While this chapter as-

sumes that the concept of rotation matrices is understood, Euler angles and quater-

nions are explained in detail. Section 5.1 talks about the two main frames of refer-

ence (World frame and Body frame) for representing values. Section 5.2 discusses

the use of Euler angles, while Section 5.3 discusses the use of quaternions. Section

5.4 discusses methods for converting between quaternions and Euler angles. Sec-

tion 5.5 compares Euler angles and quaternions to understand their strengths and

weaknesses. Section 5.6 introduces the Heading frame, its motivation, and the split

quaternion used to create it.

5.1 Frames of Reference

Before discussing converting orientations from one reference frame to another, it

is important to establish a set of reference frames. There are two main references

frames used to represent an object: a static World frame and moving Body frame.

47

Chapter 5. Representations of Orientation

The World frame, represented by {W} and occasionally referred to as Earth

frame, Inertial frame, or Land frame, intuitively remains static relative to a fixed

point on planet Earth [42]. The Vicon motion capture system is static relative

to Earth and retains a fixed coordinate system, so its measurements are in {W}.

The Vicon system measures in right-handed coordinate systems with configurable

axis directions [26]. For the sake of intuition, a standard X-right, Y-forward, Z-up

coordinate system was selected. The origin of {W} is calibrated to be in the center

of the Vicon capture volume at ground level. Coordinates in {W} are denoted (when

necessary) with a W superscript, such as ~xW .

The Body frame, represented by {B}, intuitively remains static relative to the

body of the quadrotor [42]. While the AscTec Autopilot defines its internal co-

ordinate system as X-forward, Y-right, Z-down relative to the “forward” arm (as

indicated with orange tape) and measures accordingly [23], {B} is defined as having

an X-forward, Y-left, Z-up orientation to better match {W}. To change the linear

accelerations and angular velocities measured by the Autopilot’s inertial measure-

ment unit (IMU) to match {B}, the Y and Z values (for both linear accelerations and

angular velocities) need to have their signs changed. The origin of {B} is centered

between the quadrotor arms. Coordinates in {B} are denoted with a B superscript,

such as ~xB.

To transition from one frame of reference to another, two actions need to take

place: a translation and a rotation [42]. If {B}’s origin is defined at a particular

orientation (WRB) and position (W~rB) from {W}’s origin, transitioning an object ~rB

from {B} to {W} starts by rotating the object using WRB, followed by translating

the object using W~rB. Equation 5.1 represents this in equation form. This chapter

emphasizes the rotation transition and the various methods for representing WRB.

~rW = WRB~r
B + W~rB. (5.1)

48

Chapter 5. Representations of Orientation

5.2 Euler Angles

Euler angles operate by defining an object’s orientation as a series of three rotations

around non-consecutive axes of a coordinate frame [43]. Euler angle sequences are

named after the axes around which the rotations are performed, such as XYZ or

XZX. The non-consecutive axes requirement means that sequences like XYZ, ZYX,

ZXY, ZXZ, and YXY are all valid Euler angle combinations, but YYZ is not1, nor

is YZZ or XXX. There are a total of 12 possible Euler angle combinations, it is very

easy to mix them up, and they produce radically different equations, so it is always

important to specify and understand which set of Euler angles is being used in any

given context. For the rest of this chapter, the Euler XYZ system will be used unless

noted otherwise. While Euler ZYX is the typical standard used for discussing aircraft

[44], Euler XYZ helps with explaining the Heading frame introduced in Section 5.6.

Ultimately, the name for an Euler angle combination (ZXZ, XYZ, ZYX, etc.)

stems from the order in which various axial rotation matrices need to be put together

to execute the desired rotation [42]. The Euler XYZ’s rotation matrix for going from

Body frame {B} to World frame {W} is represented as in Equation 5.2

WRB = Rx(φ)Ry(θ)Rz(ψ), (5.2)

where

φ ∈ R is the object’s roll (X rotation) angle,

θ ∈ R is the object’s pitch (Y rotation) angle,

ψ ∈ R is the object’s yaw (Z rotation) angle, and

~Θ =


φ

θ

ψ

 ∈ R3 is the Euler angle vector that groups these terms together.

1Sorry, Neil Peart.

49

Chapter 5. Representations of Orientation

Before determining the rotation matrix order for a given rotation order (first

around the Z axis, then around the Y axis, and finally around the X axis), the

question must be asked: around which set of X/Y/Z axes are the rotations being

performed? Those in a fixed frame of reference (extrinsic), or those in the frame

of reference being rotated (intrinsic)? If performing intrinsic rotations, a Z → Y

→ X axis rotation order yields the Euler ZYX rotation matrix order. If performing

extrinsic rotations, a Z → Y → X axis rotation order yields the Euler XYZ rotation

matrix order. An intrinsic X → Y → Z rotation order yields the same result as an

extrinsic Z→ Y→ X rotation order with the same angles. Adding in the appropriate

rotation matrices for X, Y, and Z axis rotations [43], Equation 5.2 becomes

WRB =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)




cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)




cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



=


cθcψ −cθsψ sθ

cφsψ + sφsθcψ cφcψ − sφsθsψ −sφcθ

sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ

 , c = cos(), s = sin().

(5.3)

The operation can be reversed by inverting the rotation matrix (BRW = (WRB)−1).

If an object has been rotated and its rotation matrix is known, its corresponding

Euler angles can be calculated from the rotation matrix’s entries via Equations 5.4

as shown by their derivations.

φ = tan−1

(
−R23

R33

)
= tan−1

(
sin(φ) cos(θ)

cos(φ) cos(θ)

)
= tan−1 (tan(φ)) ,

θ = tan−1

(
−R13√
1−R2

13

)
= tan−1

(
sin(θ)√

1− sin(θ)2

)
= tan−1

(
sin(θ)

cos(θ)

)
,

ψ = tan−1

(
−R12

R11

)
= tan−1

(
cos(θ) sin(ψ)

cos(θ) cos(ψ)

)
= tan−1 (tan(ψ)) .

(5.4)

50

Chapter 5. Representations of Orientation

Of note is the dependence on several terms involving cos(θ). When θ = ±π
2

radians, these terms become zero, so the calculations become singular and a unique

set of solutions no longer exists. For an airplane, this is associated with it pitching

up/down to the point where it becomes perfectly vertical, and roll and yaw become

the same thing.

It’s important to discuss the relationship between changes in Euler angles and

the angular velocities of the object being represented with Euler angles. As such, let

there be an angular velocity vector

~ω =
[
ωx ωy ωz

]T
, (5.5)

where

ωx ∈ R is the angular velocity around the XB axis,

ωy ∈ R is the angular velocity around the YB axis, and

ωz ∈ R is the angular velocity around the ZB axis.

The Euler angle most closely associated with the object in question (for Euler XYZ,

the Z rotation angle, or ψ) is changing directly in line with the object’s Body frame,

so its rate of change ψ̇ directly coincides with the object’s ZB angular velocity ωz [44].

Now, a change in the next Euler angle (the Y rotation angle, or θ) is not in line with

Body frame; to find the set of angular velocities associated with θ̇, the 1RB = Rz(ψ)

rotation must be undone, leading to θ̇ being rotated by R−1
z (ψ) = Rz(−ψ). The last

Euler angle (the X rotation angle, or φ) is even further from Body frame, so φ̇ must

undergo even more rotations to find the corresponding angular velocities. Putting

everything together, the net equation for finding angular velocities from changes in

Euler XYZ angles becomes

51

Chapter 5. Representations of Orientation


ωx

ωy

ωz

 = I3


0

0

ψ̇

+ Rz(−ψ)


0

θ̇

0

+ Rz(−ψ)Ry(−θ)


φ̇

0

0

 ;

=


cos(θ) cos(ψ) − sin(ψ) 0

cos(θ) sin(ψ) cos(ψ) 0

− sin(θ) 0 1



φ̇

θ̇

ψ̇

 = W ~̇Θ.

(5.6)

Inverting this process, the changes in Euler ZYX angles can be found from a set

of angular velocities via


φ̇

θ̇

ψ̇

 = W−1


ωx

ωy

ωz

 =


sec(θ) cos(ψ) sec(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

tan(ψ) cos(ψ) cos(ψ) sin(ψ) 1

 ~ω

~̇Θ =
1

cos(θ)


cos(ψ) sin(ψ) 0

− cos(θ) sin(ψ) cos(θ) cos(ψ) 0

sin(θ) cos(ψ) sin(θ) sin(ψ) cos(θ)

 ~ω.
(5.7)

Interestingly enough, a division by zero problem occurs at θ = ±π
2

radians. This

is linked with the singularity involved with the Euler XYZ coordinate system at

θ = ±π
2

radians.

52

Chapter 5. Representations of Orientation

5.3 Quaternions

Unit quaternions are an alternative way of expressing an object’s orientation in 3-

D space by using hyper-complex numbers [45]. While at first glance this sounds

intimidating, it isn’t too bad after stepping through it appropriately. To get a feel

for how unit quaternions ultimately work: while Euler angles involve using three

rotations around pre-defined axes to encode orientation, the unit quaternion involves

defining an axis in 3-D space, then executing a single rotation around said axis.

This section attempts to step through how unit quaternions achieve that goal. For

additional resources, [45] offers an excellent explanation, while [42] and [46] offer

supplementary information.

Invented by William Hamilton in 1843, the quaternion consists of four elements:

one real element and three hypercomplex elements i, j, and k. The hypercomplex

elements are usually grouped together as a vector; as such, referring to the “scalar”

part of a quaternion means the real component, while referring to the “vector” part

of a quaternion means the hypercomplex component. Equation 5.8 shows typical

representations of the quaternion. Equation 5.9 shows how each of the hypercomplex

values interacts multiplicitavely with each other. It is important to note that i, j, and

k are not commutative; that is, ij = −ji 6= ji. All of the other relationships between

the hypercomplex values can be derived by manipulating Equation 5.9. Source [45]

notes that the hypercomplex multiplications are similar to the cross products of unit

vectors î, ĵ, and k̂ with each other, except that multiplying an element by itself yields

-1, not 0.

q̊ = q0 + qii+ qjj + qkk =
[
q0 qi qj qk

]T
=
[
q0 ~qT

]T
, (5.8)

i2 = j2 = k2 = ijk = −1. (5.9)

53

Chapter 5. Representations of Orientation

Quaternions have three main mathematical operations: quaternion addition,

scalar multiplication, and quaternion multiplication. Using example scalar a and

example quaternions p̊ and q̊, Equations 5.10, 5.11, and 5.12 show quaternion ad-

dition, scalar multiplication, and quaternion multiplication, respectively [46]. Since

the hypercomplex elements within quaternions are not commutative, neither are

quaternions in quaternion multiplication.

p̊+ q̊ = (p0 + pii+ pjj + pkk) + (q0 + qii+ qjj + qkk)

=

p0

~p

+

q0

~q

 =

p0 + q0

~p+ ~q

 , (5.10)

aq̊ = aq0 + aqii+ aqjj + aqkk =

aq0

a~q

 , (5.11)

p̊ ∗ q̊ = (p0 + pii+ pjj + pkk)(q0 + qii+ qjj + qkk)

= p0q0 + p0qii+ p0qjj + p0qkk + piq0i+ piqii
2 + piqjij + . . .

=


p0 −pi −pj −pk
pi p0 −pk pj

pj pk p0 −pi
pk −pj pi p0




q0

qi

qj

qk

 =

 p0q0 − ~p · ~q

p0~q + q0~p+ ~p× ~q

 .
(5.12)

Two important additional properties of quaternions are the quaternion norm and

the quaternion inverse. Equations 5.13 and 5.14 show the process for calculating the

norm and the inverse of a given quaternion, respectively [46]. A quaternion with a

norm of 1 is said to be a unit quaternion. Calculating the inverse of a unit quaternion

is easy, as the fraction is canceled out.

‖q̊‖ = q2
0 + q2

i + q2
j + q2

k, (5.13)

q̊−1 =

q0

~q

−1

=
1

‖q̊‖

 q0

−~q

 . (5.14)

54

Chapter 5. Representations of Orientation

While complex numbers of unit magnitude can be used to express a rotation

of angle θ in a 2-D plane around an axis perpendicular to the plane (as in Euler’s

formula, shown in Equation 5.15) [45], unit quaternions can be used to express a

rotation of angle θ in a 3-D space around an axis specified by a unit vector n̂ [46].

Equation 5.16 specifies the unit vector n̂ in terms of direction angles given by α, β,

and γ, each of which describes the unit vector’s angle with the X, Y, and Z axes,

respectively. Equation 5.17 shows how the quaternion is composed of the rotation

angle and unit vector/direction angles for the desired rotation.

eiθ = cos(θ) + i sin(θ), (5.15)

n̂ =
[
cos(α) cos(β) cos(γ)

]T
, (5.16)

q̊ =

 cos(θ/2)

sin(θ/2)n̂

 (5.17)

= cos(θ/2) + sin(θ/2) cos(α)i+ sin(θ/2) cos(β)j + sin(θ/2) cos(γ).

To rotate a 3-D Euclidean position vector (such as ~rB) using a given quaternion

q̊, a new quaternion (for example, v̊) is created with a scalar component equal to

0 and a vector component equal to the vector to be rotated. The new quaternion

is pre-multiplied by q̊ and post-multiplied by q̊−1 to give a newer quaternion ů.

The vector component of ů holds the rotated position vector (such as ~rW), while the

scalar component will be 0. Equation 5.18 illustrates this process, while [46] provides

additional explanation. Performing this process with q̊−1 replacing q̊ and vice versa

undoes the rotation.

ů =

 0

~rW

 = q̊ ∗ v̊ ∗ q̊−1 = q̊ ∗

 0

~rB

 ∗ q̊−1. (5.18)

Applying Equation 5.18 to a generic vector, a generalized rotation matrix can be

generated from the unit quaternion’s values as in Equation 5.19.

55

Chapter 5. Representations of Orientation

WRB =


q2

0 + q2
i − q2

j − q2
k 2(qiqj − q0qk) 2(qiqk + q0qj)

2(qiqj + q0qk) q2
0 − q2

i + q2
j − q2

k 2(qjqk − q0qi)

2(qiqk − q0qj) 2(qjqk + q0qi) q2
0 − q2

i − q2
j + q2

k

 . (5.19)

Due to the nature of two quaternion terms always being multiplied together at a time,

a quaternion q̊ and its negative −q̊ will both execute the same rotation. Conversely,

for any given rotation, there are only two possible, real quaternion entry solutions:

a particular quaternion and its negative. By constraining the quaternion’s scalar

component to be ≥ 0, only one solution becomes possible, except when q0 = 0.

Fortunately, this means quaternions do not suffer the singularity problems faced by

Euler angles.

As with Euler angles, it is important to discuss the relationship between quater-

nion rates of change and the angular velocities of the object whose orientation is

represented by the quaternion. Using the same angular velocity information as in

Section 5.2, Equation 5.20 gives the full change in the quaternion values based on

angular velocities [46].
q̇0

q̇i

q̇j

q̇k

 = ˙̊q =
1

2
q̊ ∗

0

~ω

 =
1

2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0




q0

qi

qj

qk

 . (5.20)

The quaternion rate calculations do not suffer any singularity problems, which is

quite nice. In practice, however, updating the quaternion based on quaternion rates

causes it to slightly use its norm of 1. Over time, if left unchecked, the unit quater-

nion will blow up and become a non-unit quaternion and wreak havoc on rotation

calculations. To prevent this problem after updates, the quaternion needs to be re-

normalized back to a norm of 1. This can be done by dividing the quaternion by the

square root of its quaternion norm.

56

Chapter 5. Representations of Orientation

5.4 Euler Angle/Quaternion Conversions

Should the need arise to move from one orientation coordinate system to the other,

methods exist to convert between Euler angles and quaternions [43]. Equation 5.21

shows the process for converting Euler ZYX angles to a unit quaternion, while Equa-

tion 5.22 shows the process for converting a unit quaternion into Euler ZYX angles.

q0 = − sin(φ/2) sin(θ/2) sin(ψ/2) + cos(φ/2) cos(θ/2) cos(ψ/2),

qi = + sin(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) cos(ψ/2),

qj = − sin(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) cos(ψ/2),

qk = + sin(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) cos(ψ/2).

(5.21)

φ = tan−1

(
2(q0qi − qjqk)

1− 2(q2
i + qj2)

)
,

θ = tan−1

(
−2(q0qj + qiqk)√

1− (2(q0qj + qiqk))2

)
,

ψ = tan−1

(
2(q0qk − qiqj)
1− 2(q2

j + q2
k)

)
.

(5.22)

5.5 Comparison of Euler Angles and Quaternions

While Euler angles and quaternions each have their benefits, they also have their

drawbacks. Section 5.5.1 discusses the strengths and weaknesses of Euler angles,

while Section 5.5.2 discusses the strengths and weaknesses of quaternions.

57

Chapter 5. Representations of Orientation

5.5.1 Euler Angles

Euler angles have the benefit of being intuitive to understand and relatively easy to

visualize, especially when expressed in degrees. While it may take someone a little

bit of thinking to figure out what an Euler ZYX roll of 10◦, pitch of 15◦, and yaw of

73◦ looks like, it can be done. It’s also possible to visually estimate an object’s Euler

angles based on visual inspection. Making decisions about unsafe orientations is also

easier, such as choosing to turn off the quadrotor’s motors when the pitch and/or

roll angle exceeds 60◦. When dealing with robotic arms and manipulators with one

or two degrees of rotational freedom, Euler angles make a lot of sense, as they easily

tie directly to the joint angles of the device.

Unfortunately, these benefits come with several downsides. Singularity issues

occur when the middle Euler axis is rotated by 90◦/
π

2
radians, which makes it im-

possible to uniquely identify a set of angles for a given rotation. The singularity

problem also causes the Euler angle rates to blow up near 90◦/
π

2
radians, which does

bad things.

When working with Euler angles, trigonometric functions become a necessity.

Calculating a rotation matrix for a given set of angles requires at least six trigono-

metric function evaluations (cosine and sine for each angle), each of which is rela-

tively computationally expensive. While modern processors perform these calcula-

tions quickly, they add up over time and slow down the program. The trig-based

functions also tend to gradually grow in size when differentiated, which causes prob-

lems when performing operations like feedback linearization.

From a practicality standpoint, Euler angles are quite easy to confuse. Intrinsic

vs. extrinsic rotations is a large source of confusion when determining the rotation

matrix ordering. When writing Euler angle equations, the large number of sines and

cosines with three different angle values makes it easy to write an equation wrong

58

Chapter 5. Representations of Orientation

and makes it difficult to find errors. When referencing various academic papers that

use Euler angles, different papers use different Euler angle combinations like XYZ,

ZYX, and ZXY while still using similar/the same variables, which can quickly kill

any direct applicability to a project without realizing it.

5.5.2 Unit Quaternions

When performing computations or theoretical derivations related to orientation, unit

quaternions have many benefits. They have no inherent singularities, so a given orien-

tation only has one unit quaternion associated with it (it’s assumed that the negative

unit quaternion will be disregarded). There’s only one way to use unit quaternions

to represent orientation (not twelve), so there are never any issues associated with

confusing one set of unit quaternions with another set.

When differentiated, the unit quaternion terms seem to either start vanishing or

remain constant in number. They don’t get progressively larger over time, except in

complicated equations. For computations, unit quaternions largely only depend on

multiplications and additions with the occasional division, all of which are compu-

tationally cheaper than trigonometric functions.

As for the downsides, unit quaternions are not very intuitive to work with. While

rotations around single axes produces somewhat intuitive results (qi steadily gets

larger and approaches 1 as the object is rotated to +180◦ around the X axis, and so

on for other values and axes), a quaternion of
[
0.9745 0.1024 −0.1990 0.0167

]T
has no intuitive meaning, other than it’s rotated a little bit positively around the X

axis, a little more negatively around the Y axis, and hardly at all around the Z axis.

The lack of intuitiveness makes it a poor coordinate system for choosing problematic

orientations. Fortunately, the unit quaternion can be converted to a set of Euler

angles for such decisions.

59

Chapter 5. Representations of Orientation

When updating unit quaternion values from angular velocities, numerical errors

and calculation errors will steadily compound over time and cause the norm to deviate

away from 1. To prevent this from being a problem, the quaternion periodically needs

to be renormalized to 1. Fortunately, this process is more efficient than trying to

renormalize something like a rotation matrix, as a rotation matrix has 9 entries that

need normalization while the quaternion has 4 entries.

5.6 Heading Frame and The Split Quaternion

While on the topic of reference frames and rotations, it is time to introduce a new

frame of reference. The Heading frame, represented by {H} and introduced as the

Auxiliary frame in [9], comes into existence as part of the feedback linearization

process covered in Chapter 7. Effectively, it s a frame used to help re-express the

quadrotor’s heading/yaw angle (briefly mentioned in Section 5.2) in a manner that

has no effect on the thrust vector (discussed in Chapter 6). As the quadrotor’s thrust

vector lies along the ZB axis, performing a rotation around the ZB axis first has no

effect on its orientation.

Coordinates in {H} are denoted with an H superscript, such as ~xH . Frame {H}

has the same origin and Z axis as {B}, except it has undergone a rotation around

the ZB axis such that a single rotation around a XYW axis will bring it in line with

{W}. Using Euler XYZ angles as an analogy, {H} is the frame that exists between

the XY and Z matrices. Figure 5.1 shows the rotational coordinate system change

from {W} through {H} to {B}.

Using unit quaternions, as is done in the feedback linearization process, the {B}

to {W} quaternion is broken into two parts: q̊xy and q̊z, as shown in Equation 5.23.

Equation 5.24 shows the resulting quaternion rotation. {H} exists between the two

new quaternions.

60

Chapter 5. Representations of Orientation

Figure 5.1: Depiction of relative orientations of World frame {W} , Heading frame
{H}, and Body frame {B}. Original image source: [9]

q̊ = q̊xy ∗ q̊z, (5.23) 0

~rW

 = q̊xy ∗ q̊z ∗

 0

~rB

 ∗ q̊−1
z ∗ q̊−1

xy , (5.24)

q̊xy =
[
qp qx qy 0

]T
, (5.25)

q̊z =
[
qw 0 0 qz

]T
, (5.26)

1 = q2
p + q2

x + q2
y, (5.27)

1 = q2
w + q2

z , (5.28)
q0

qi

qj

qk

 =


qp

qx

qy

0

 ∗

qw

0

0

qz

 =


qpqw

qwqx + qzqy

−qzqx + qwqy

qpqz

 . (5.29)

61

Chapter 5. Representations of Orientation

Equations 5.30 through 5.33 demonstrate how to decompose a normal quaternion

q̊ into q̊xy and q̊z based on Equation 5.29. As a note, the decomposition process only

holds if qp 6= 0. As qp = 0 would correspond to a full 180◦ rotation around an XY

axis (looking at Equation 5.17), this only happens when the quadrotor is perfectly

upside down. As the position controller will largely keep the quadrotor upright so

the thrust can counteract gravity, this potential singularity issue is largely negligible.

qp =
√
q2

0 + q2
k, (5.30)

qw =
q0

qp
, (5.31)

qz =
qk
qp
, (5.32)qx

qy

 =

qw −qz
qz qw

qi
qj

 . (5.33)

Even though q̊xy has three variables (qp, qx, and qy), its unit norm requirement

(Equation 5.27) effectively restricts qp based on qx and qy, leaving two degrees of

freedom (DOF). A similar process with q̊z and Equation 5.28 shows that q̊z only

has one DOF. While Euler XYZ could be used to represent this process, the use of

quaternions simplifies the derivation for the feedback linearization process and cuts

down on calculation times.

62

Chapter 6

The Quadrotor Model

The focus of this chapter is a relationship between motor speeds and physical phe-

nomena like thrust and torques, the development of state and input definitions, and

a working model of the quadrotor. Section 6.1 talks about the position coordinate

system, while Section 6.2 talks about the orientation coordinate system. Section 6.3

examines the conversion from motor speeds to a net thrust and torques applied to the

quadrotor. Section 6.4 presents the formal definition of the quadrotor’s states and

inputs and develops a working model from translational and rotational mechanics.

6.1 Position Representation

As the Vicon system measures object position relative to {W}, any expression of the

quadrotor’s position is stated relative to {W} ’s origin. As mentioned in Section 5.1,

the Vicon system is set to have an X-right, Y-forward, Z-up coordinate system. The

position vector, shown in Equation 6.1, is comprised of x, y, and z. The velocity

vector, shown in Equation 6.2, is simply the time derivative of the position vector.

While the Vicon system can measure the quadrotor’s position, there are no means

63

Chapter 6. The Quadrotor Model

to directly measure the quadrotor’s velocities.

~r =
[
x y z

]T
, (6.1)

~̇r =
[
ẋ ẏ ż

]T
. (6.2)

6.2 Orientation Representation

Chapter 5 thoroughly examines the use of Euler angles and quaternions in represent-

ing an object’s orientation. Quaternions were selected for modeling the quadrotor’s

orientation due to their lack of trigonometric function evaluations, their simplified

algebra, and the nonlinear controller’s inherently quaternion-based derivation (dis-

cussed in Chapter 7). Euler angles do have a place, however, in creating intuitive

orientation decisions, such as for setting unsafe flight condition thresholds. The

quaternion can be converted to a set of Euler angles for any particular application

that requires them (see Chapter 5, Section 5.4), so using quaternions as the main

coordinate system does not eliminate the benefits of using Euler angles.

The quaternion for representing the quadrotor’s orientation in {W} is expressed

in Equation 6.3. Equation 6.4 gives the angular velocity vector used to express the

rotation speeds of the quadrotor in {B}. The Vicon system measures the quaternion,

while the Autopilot’s IMU measures the angular velocities.As mentioned in Chapter

5, Section 5.6, the quaternion can be broken apart into q̊xy and q̊z components at

any time, provided the quadrotor is not upside down.

q̊ =
[
q0 qi qj qk

]T
, (6.3)

~ω =
[
ωx ωy ωz

]T
. (6.4)

64

Chapter 6. The Quadrotor Model

Figure 6.1: AscTec Hummingbird quadrotor model with labeled axes and motors.
Source: [16]

6.3 Input Transformation

While a quadrotor’s motor speeds are ultimately what controls its movement,

their effects on the quadrotor’s dynamics aren’t as direct as parameters like thrust

and torques. This section establishes a relationship between motor/propeller speeds

and the net thrust/torques applied to the quadrotor, which simplifies future physical

modeling.

Before discussing the physics associated with various propellers rotating at dif-

ferent speeds, it is important to establish a motor/propeller labeling convention to

avoid confusion. Figure 6.1 shows a picture of the AscTec Hummingbird model with

its axes and motors labeled. The motor labeling convention shown here is the one

used throughout the thesis and in the flight control program. As an important note,

the AscTec Autopilot uses a motor labeling convention where motors 2 and 3 are

switched from Figure 6.1 [24]. To compensate for this discrepancy, motor commands

sent to the Autopilot are switched before being sent, and measured motor speeds are

swapped once received from the Autopilot. Chapter 4, Section 4.2 touches on this.

65

Chapter 6. The Quadrotor Model

When working with the physics associated with the quadrotor’s propellers, the

three most important parameters are

b ∈ R the propeller’s thrust coefficient,

k ∈ R the propeller’s drag coefficient, and

l ∈ R the length of the quadrotor’s arm.

For a given propeller, the thrust f produced when spinning spinning at an angular

velocity Ω is f = bΩ2 [21]. As the propellers have a fixed pitch, the thrust coefficient

b cannot be changed at will to generate more or less thrust, so it remains more or

less constant. The motors are fixed to spin around the quadrotor’s ZB axis and to

push air downwards, so each propeller’s thrust creates a force on the quadrotor along

the positive ZB axis. Adding up the thrusts from all four propellers, the net upward

force felt by the quadrotor becomes

T = f1 + f2 + f3 + f4 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4). (6.5)

All of the propellers create a thrust at a distance l from the quadrotor’s center of

mass, which generates a torque on the system. Looking back to the coordinate system

and motor labeling convention shown in Figure 6.1, propeller 2’s thrust creates a

positive torque around XB, while propeller 4’s thrust creates a negative torque around

XB. Examining the torques around YB, propeller 3’s thrust creates a positive torque,

while propeller 1’s thrust creates a negative torque. Expressing this in equation form,

τx = f2l − f4l = bl(Ω2
2 − Ω2

4), (6.6)

τy = f3l − f1l = bl(Ω2
3 − Ω2

1). (6.7)

As the quadrotor’s motors are imparting torque on the propellers to counteract

the air drag created by propelling air, the propellers are imparting a torque in the

opposite direction on the body of the quadrotor. The drag torque τ generated by an

individual propeller is related to its rotational speed Ω by τ = kΩ2 [21].

66

Chapter 6. The Quadrotor Model

Re-examining Figure 6.1 and recalling the Right-Hand Rule for rotations, motors

1 and 3 are spinning in the negative direction relative to ZB and motors 2 and 4 are

spinning in the positive direction. Bearing in mind the change in direction due to

the reactionary forces on the propellers, propellers 1 and 3 are generating a positive

torque around ZB, while propellers 2 and 4 are generating a negative torque. Putting

this in equation form,

τz = τ1 + τ2 + τ3 + τ4 = k(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4). (6.8)

Combining Equations 6.5 through 6.8, the thrust and torques generated by a given

set of motor speeds can be found via Equation 6.9.
T

τx

τy

τz

 =


b b b b

0 bl 0 −bl

−bl 0 bl 0

k −k k −k




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 = M


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 . (6.9)

As b, l, and k will all be greater than zero for any real quadrotor, M is full rank; as

it’s a square matrix, M is invertible, so a unique set of squared motor speeds can be

found for a given set of inputs as in Equation 6.10. As the motors can only spin one

direction, only one solution will exist for each motor speed.
Ω2

1

Ω2
2

Ω2
3

Ω2
4

 = M−1


T

τx

τy

τz

 . (6.10)

While the Autopilot’s HLP is configured to send Direct Motor Commands to the

LLP (Section 2.3.2), models and control laws can be designed around the more

intuitive inputs of thrust and torques. When it’s time to generate a given input, the

conversion found in Equation 6.10 can be used to get the right motor speeds. From

there, Equation 11.2 can be used to get the right motor command values for the

HLP/LLP system.

67

Chapter 6. The Quadrotor Model

The motors have upper and lower bounds on their rotation speeds. While this cre-

ates a rather simple set of motor speed constraints shown as Ωmin ≤ Ω1, Ω2, Ω3, Ω4 ≤

Ωmax, the constraints on the thrust and torques are not so obvious. Chapter 8 ad-

dresses the heuristics and linear programming methods used to ensure the control

laws do not violate these constraints.

6.4 Quadrotor Model

Combining the coordinate system definitions from Sections 6.1 and 6.2, the states

for the quadrotor become those seen in Equation 6.11. While 13 states are listed,

the norm requirement for unit quaternions effectively restricts q0 in terms of qi, qj,

and qk, leaving 12 free states. To simplify calculations and prevent errors resulting

from sign changes as the states evolve, q0 is kept in the state vector.

~x =
[
~rT ~̇rT q̊T ~ωT

]T
=
[
x y z ẋ ẏ ż q0 qi qj qk ωx ωy ωz

]T
.

(6.11)

Using the mapping established in Section 6.3, the inputs to the quadrotor change

from the motor speeds to the net thrust and torques as seen in Equation 6.12.

~u =
[
T τx τy τz

]T
. (6.12)

For the translational dynamics, only two forces are deemed to be working on the

quadrotor: gravity and the net thrust coming from the propellers. While drag is

technically affecting the quadrotor, it is deemed to be negligible for the purposes

of controller generation and state estimation. Gravity provides a constant accelera-

tion downwards, while the quadrotor’s net thrust provides an acceleration inversely

proportional to the quadrotor’s mass in a direction determined by the quadrotor’s

orientation. These linear dynamics are represented by Equation 6.13 [21].

68

Chapter 6. The Quadrotor Model

~̈r = WRB


0

0

T/M

+


0

0

−g

 . (6.13)

Using the split quaternion mentioned in Section 5.6, the translational dynamics of

the quadrotor collapses to those seen in Equation 6.14 through judicious application

of Equations 5.27, 5.28, and 5.29. This removes the heading angle q̊z from the

dynamics, which helps in the feedback linearization process discussed in Chapter 7.

For state prediction purposes, Equation 6.13 is used instead.
ẍ

ÿ

z̈

 =


0

0

−g

+
T

M


2((qpqw)(qwqy − qzqx) + (qwqx + qzqy)(qpqz))

2((qwqy − qzqx)(qpqz)− (qwqx + qzqy)(qpqw))

(qpqw)2 − (qwqx + qzqy)
2 − (qwqy − qzqx)2 + (qpqz)

2



=


0

0

−g

+
T

M


2(qpqy(q

2
w + q2

z))

2(−qpqx(q2
w + q2

z))

(q2
w + q2

z)(q
2
p − q2

x − q2
y)

 =


0

0

−g

+
T

M


2qpqy

−2qpqx

q2
p − q2

x − q2
y

 .
(6.14)

As for the rotational dynamics of the quadrotor, Equation 5.20 already provides

the relationship between the quaternion rates and the quadrotor’s angular velocities.

Euler’s equation of motion [42] gives the angular accelerations for a system experi-

encing net torques, as shown in Equation 6.15. While several effects are left out of

Equation 6.15 (gyroscopic effects due to the spinning propellers, torques caused by

accelerating/decelerating motors/propellers, and rotational drag), they are deemed

to be negligible for the purposes of control law generation.

J~̇ω = ~Γ− ~ω × J~ω, (6.15)

where

69

Chapter 6. The Quadrotor Model

J ∈ R3x3 is the quadrotor’s rotational inertia matrix (assumed to

be diagonal) and

~Γ =
[
τx τy τz

]T
represents the roll, pitch, and yaw torque inputs.

Combining Equations 6.13, 5.20, and 6.15, the dynamics of the system become

ẍ =
2T

M
(q0qj + qiqk),

ÿ =
2T

M
(qjqk − qiq0),

z̈ =
T

M
(q2

0 − q2
i − q2

j + q2
k)− g,

q̇0 = −1

2
(qiωx + qjωy + qkωz),

q̇i =
1

2
(q0ωx + qjωz − qkωy),

q̇j =
1

2
(q0ωy − qiωz + qkωx),

q̇k =
1

2
(q0ωz + qiωy − qjωx),

ω̇x = (τx + ωyωz(Jyy − Jzz))/Jxx,

ω̇y = (τy + ωxωz(Jzz − Jxx))/Jyy,

ω̇z = (τz + ωxωy(Jxx − Jyy))/Jzz.

(6.16)

70

Chapter 7

Quadrotor Feedback Linearization

and Controller Design

This chapter steps through the lengthy process of performing feedback linearization

on the dynamics of the quadrotor using the methods described in [9]. Once the inputs

have been formulated such that they linearize the outputs with respect to artificial

inputs, an appropriate controller can be applied to the artificial inputs. Section

7.1 explains how feedback linearization works to provide context for some derivation

decisions. Section 7.2 discusses the outputs used for the linearization process. Section

7.3 discusses a remapping of the system’s inputs such that they more readily appear

in the system’s dynamics during the linearization process. Section 7.4 examines

the linearization process on the quadrotor’s altitude, while Section 7.5 examines

the linearization process on the quadrotor’s XW/YW position. Section 7.6 discusses

the leftover heading dynamics. Section 7.7 examines the feasibility of the feedback

linearization process. Section 7.8 briefly discusses requirements for flight trajectories.

Sections 7.9 through 7.12 apply controllers to the linearized dynamics for exponential

Lyapunov stability. Forewarning: this chapter is quite dense.

71

Chapter 7. Quadrotor Feedback Linearization and Controller Design

7.1 Feedback Linearization

This section provides a quick summary of feedback linearization and how it applies

to developing nonlinear controllers. For a more rigorous explanation of the whole

process, consult [47], [48], and [49]. For a single input, single output (SISO) example

system, feedback linearization works by taking a nonlinear system of the form

~̇x = f(~x) + g(~x)u,

y = h(~x),

and steadily differentiating the output y ∈ R with Lie derivatives [47] with respect

to the states ~x ∈ Rn until the input u ∈ R appears in the form shown in Equation

7.1.

y(ρ) = Lρfh+ LgL
ρ−1
f hu. (7.1)

The system is said to have a relative degree ρ equal to the number of derivatives taken

as long as LgL
ρ−1
f h 6= 0 and LgL

i
fh = 0 for i = 0, 1, . . . , ρ − 2. If ρ = n, the system

will not have uncontrollable internal dynamics [47]. If there are uncontrolled internal

dynamics and they’re stable, the system can still be controlled to some extent. if

they aren’t stable, the system cannot be controlled.

Once the inputs appear, equations for the inputs are generated such that they

cancel out the dynamics and add an artificial input v ∈ R as in Equation 7.2

u =
(
LgL

ρ−1
f h

)−1 (−Lρfh+ v
)
, (7.2)

which holds as long as LgL
ρ−1
f h is invertible.

With the input equation established in Equation 7.2, Equation 7.1 simplifies to

y(ρ) = v, which is completely linear with respect to y. A choice for v in the form of

v = y
(ρ)
d + aρ−1(y

(ρ−1)
d − y(ρ−1)) + . . .+ a1(ẏd − ẏ) + a0(yd − y) (7.3)

72

Chapter 7. Quadrotor Feedback Linearization and Controller Design

will cause the system to track a trajectory [47], where ai, i = 0, . . . , ρ − 1 are

adjustable gains for setting the eigenvalues/poles of the now-linear system, and

yd, ẏd, . . . , y
(ρ)
d represents the desired trajectory and its derivatives.

From there, any kind of linear control law can be used to set ai, i = 0, 1, . . . , ρ−1

in Equation 7.3, such as PID-based controllers [50], LQR-based controllers [51], or

controllers based on exponentially decaying Lyapunov functions [15]. Once v has

been generated, it can be substituted back into Equation 7.2 to get the input.

To expand the feedback linearization process to a multiple input, multiple output

(MIMO) system, the same effective process is performed on all of the outputs: keep

taking Lie derivatives until an input appears, then formulate inputs such that they

invert the system’s nonlinearities and add artificial inputs [48]. For an example

two-input, two-output system of the form

~̇x = f(~x) + g1(~x)u1 + g2(~x)u2, y1 = h1(~x), y2 = h2(~x),

the derivative process yields

yρ11 = Lρ1f h1 + Lg1L
ρ1−1
f h1 u1 + Lg2L

ρ1−1
f h1 u2,

yρ22 = Lρ2f h2 + Lg1L
ρ2−1
f h2 u1 + Lg2L

ρ2−1
f h2 u2,

which, after collecting terms, becomesyρ11

yρ22

 =

Lρ1f h1

Lρ2f h2

+

Lg1Lρ1−1
f h1 Lg2L

ρ1−1
f h1

Lg1L
ρ2−1
f h2 Lg2L

ρ2−1
f h2

u1

u2


= F(~x) + G(~x).~u

(7.4)

Provided the cumulative relative degree
∑2

i=1 ρi = n, internal dynamics will not be

a problem. The input can then be constructed with the form

~u = G−1(~x)

−F(~x) +

v1

v2

 ,
 (7.5)

73

Chapter 7. Quadrotor Feedback Linearization and Controller Design

which works as long as G(~x) is invertible. As G(~x)’s invertibility necessitates a square

matrix, this implies via Equation 7.4 that y and u must have the same dimensionality

for the feedback linearization process to work.

The feedback linearization process allows the system’s full nonlinearities to be

properly taken into account without making linear approximations. However, this

process is only feasible as long as there are no unstable internal dynamics and

LgL
ρ−1
f h or G(~x) is invertible. As the derivation process is highly model-dependent,

this method is potentially highly sensitive to minor variations in the system’s param-

eters (e.g. mass and rotational inertias). An accurate estimate of system parameters

can make all the difference in the controller’s performance.

7.2 Feedback Linearization Output Definitions

When attempting to control the quadrotor’s position output for states x, y, and z,

the number of outputs to be linearized is 3. However, as established in Chapter 6,

Section 6.3, the total number of inputs is 4. As mentioned in the previous section,

the number of outputs must match the number of inputs. Fortunately, Chapter 5,

Section 5.6 managed to create a fourth output in the form of the heading/yaw as

represented by q̊z. This output falls out of the dynamics associated with x, y, and z

as demonstrated by Equation 6.14 in Chapter 6, Section 6.4.

7.3 Input Redefinition

The torques will never appear in the position feedback linearization, so this section

seeks to remap the input vector ~u to values that will appear. As the position feedback

linearization will be working with the dynamics using {W} and {H}, the quadro-

74

Chapter 7. Quadrotor Feedback Linearization and Controller Design

tor’s states and inputs in {B} need to be mapped to {H}. the word “auxiliary”[9]

will be used to denote new states/inputs in {H} to distinguish them from original

states/inputs in {B}. The angular velocities ~ω in {B} map to the auxiliary angular

velocities ~̃ω in {H} via Equation 7.6. As {B} and {H} share the same Z axis, ωz

and ω̃z end up being the same.

0

~̃ω

 = q̊z ∗

0

~ω

 ∗ q̊−1
z ⇒


ω̃x

ω̃y

ω̃z

 =


q2
w − q2

z −2qwqz 0

2qwqz q2
w − q2

z 0

0 0 1



ωx

ωy

ωz

 . (7.6)

Applying Equation 5.20 to q̊xy and {H}, q̊xy updates via Equation 7.7.


q̇p

q̇x

q̇y

0

 =
1

2


0 −ω̃x −ω̃y −ω̃z

ω̃x 0 ω̃z −ω̃y

ω̃y −ω̃z 0 ω̃x

ω̃z ω̃y −ω̃x 0




qp

qx

qy

0

 =
1

2


−qx −qy 0

qp 0 qy

0 qp −qx
−qy qx qp



ω̃x

ω̃y

ω̃z

 . (7.7)

As q̊xy’s qk = q̇k = 0, the lowest line of 7.7 can be used to remove ω̃z via the

equality expressed in Equation 7.8.

ω̃z =
qyω̃x − qxω̃y

qp
. (7.8)

After combining Equations 7.7 and 7.8 and removing q̇p (as qp and its derivatives are

effectively defined by qx and qy via Equation 5.27), the update process for q̊xy reduces

to Equation 7.9. Equation 7.10 defines a matrix Z that can be used to simplify the

representation of Equation 7.9. As Equation 7.11 indicates, Z can be inverted as

long as qp 6= 0.

75

Chapter 7. Quadrotor Feedback Linearization and Controller Design

q̇x
q̇y

 =
1

2qp

 q2
pω̃x + qy (qyω̃x − qxω̃y)

q2
pω̃y + qx (−qyω̃x + qxω̃y)

 =
1

2qp

1− q2
x −qxqy

−qxqy 1− q2
y

ω̃x

ω̃y

 , (7.9)

Z =
1

2

1− q2
x −qxqy

−qxqy 1− q2
y

 , (7.10)

Z−1 =
2

q2
p

1− q2
y qxqy

qxqy 1− q2
x

 , (7.11)

Ż =
1

2

 −2qxq̇x −qy q̇x − qxq̇y
−qy q̇x − qxq̇y −2qy q̇y

 (7.12)

=
1

4qp

 2qx(q
2
x − 1)ω̃x + 2q2

xqyω̃y qy(2q
2
x − 1)ω̃x + qx(2q

2
y − 1)ω̃y

qy(2q
2
x − 1)ω̃x + qx(2q

2
y − 1)ω̃y 2qxq

2
yω̃x + 2qy(q

2
y − 1)ω̃y

 .
By deriving Equation 7.9 with respect to time while using Equation 7.10’s definition

of Z, a relationship between the q̊xy quaternion’s acceleration and auxiliary angular

accelerations can be found in Equation 7.13. Equation 7.14, the time derivative of

Equation 7.6 determines the relationship between auxiliary angular accelerations,

angular accelerations, angular velocities, and q̊z.q̈x
q̈y

 =
1

qp
Z

 ˙̃ωx

˙̃ωy

+
1

qp
Ż

ω̃x

ω̃y

− q̇p
q2
p

Z

ω̃x

ω̃y

 , (7.13)

 ˙̃ωx

˙̃ωy

 = ωz

−2qwqz q2
z − q2

w

q2
w − q2

z −2qwqz

ωx

ωy

+

q2
w − q2

z −2qwqz

2qwqz q2
w − q2

z

ω̇x

ω̇y

 . (7.14)

When Equation 7.13 is combined with Equation 7.14, q̈x and q̈y can be translated

to ω̇x and ω̇y. Euler’s equation of motion (Equation 6.15) establishes a relationship

between ~̇ω and the current torque inputs ~Γ based on the system’s current angular

velocities. By choosing to use Equation 6.15 to remap the inputs to

~utemp =
[
T ω̇x ω̇y ω̇z

]T
.

76

Chapter 7. Quadrotor Feedback Linearization and Controller Design

The inputs can then be remapped again via Equations 7.14 and Equation 7.13, at

which point the new inputs to the system become

~unew =
[
T q̈x q̈y ω̇z

]T
.

Section 7.4 will linearize the z state dynamics by developing an equation for thrust

(T). Section 7.5 will linearize the x and y state dynamics by developing equations

for q̊xy’s accelerations (q̈x and q̈y). Section 7.6 will linearize the quadrotor’s heading

(q̊z) through a simple coordinate system change, and the new coordinate system can

easily be controlled through ω̇z.

7.4 Altitude Linearization

This section truly starts the feedback linearization process of the quadrotor’s dynam-

ics, encounters a snag, and develops an equation for the quadrotor’s thrust to proceed

with the linearization process. After splitting the quaternion in two (Section 5.6),

remapping the angular velocities to quaternion rates (Equations 7.6 and 7.9), and

ejecting the q̊z quaternion and its associated terms from the translational dynam-

ics in Equation 6.14, the effective state space for the position feedback linearization

collapses down to 10 degrees of freedom (DOF), as qp and q̇p are restricted by the

other terms of q̊xy through Equation 5.27. Below is a list of the effective degrees of

freedom for the feedback linearization process.

~z =
[
x y z ẋ ẏ ż qx qy q̇x q̇y

]T
. (7.15)

When starting the feedback linearization process on h(x) =
[
x y z

]T
, no inputs

appear until each state’s second derivative, as seen in Equation 6.14. Referencing

this equation, ẍ is affected by T as long as qpqy 6= 0, or as long as the quadrotor

is partially rotated around YW . A similar relationship exists between ÿ and T for

77

Chapter 7. Quadrotor Feedback Linearization and Controller Design

XW . z̈ is affected by T as long as q2
x + q2

y 6=
1

2
, which means the quadrotor cannot be

horizontal for vertical thrust. This results in up to six states (~r and ~̇r) being directly

affected by one input, which sets the current relative degree ρ = 6 and leaves four

states as internal dynamics. Applying Equation 7.4 and 7.5 here won’t work, as there

are three outputs (ẍ, ÿ, z̈) and one input (T).

To circumvent this issue, [9] proposes performing an input-output linearization

for z and T , which converts T from an input to an expression comprised of states

and desired trajectory values. Analyzing purely the altitude dynamics of the system,

the reduced system has states, input, and output as defined in Equation 7.16.

~zz =
[
z ż qx qy

]T
=
[
zz1 zz2 zz3 zz4

]T
,

uz = T,

yz = zz1.

(7.16)

Relating this to the feedback linearization process discussed in Section 7.1, per-

forming the derivatives on the system’s output generates the system equations found

in Equation 7.17 and Lie derivatives found in Equation 7.18. The relative degree for

the the altitude linearization, provided LgLfh(zz) 6= 0 (i.e. the quadrotor doesn’t

become perfectly horizontal), is ρz = 2.

ẏz = ˙zz1 = zz2,

ÿz = ˙zz2 = −g +
1− 2z2

z3 − 2z2
z4

M
uz,

(7.17)

Lfh(~zz) = zz2, Lgh(~zz) = 0,

L2
fh(~zz) = −g, LgLfh(~zz) =

1− 2z2
z3 − 2z2

z4

M
.

(7.18)

78

Chapter 7. Quadrotor Feedback Linearization and Controller Design

Using Equations 7.2 and 7.18, Equation 7.20 gives the resulting value for T , where

γ represents q̊xy’s effect on thrust along ZW . Notably, T → ∞ as γ → 0, which

happens as q2
x + q2

y →
1

2
, or as the quadrotor approaches a horizontal orientation.

Equation 7.22 shows the appropriate solution for the artificial input vz based on

Equation 7.3 with the single addition of an integral term.

uz =
1

LgLfh(~zz)

(
−L2

fh(~zz) + vz
)
, (7.19)

T =
M

γ
(g + vz) , (7.20)

γ = 1− 2q2
x − 2q2

y, (7.21)

vz = z̈d + a2z(żd − ż) + a1z(zd − z) + a0z

∫ t

0

(zd − z)dt. (7.22)

Equation 7.20 collapses the ZW dynamics down to z̈ = vz, rendering the altitude

control completely linear from vz to z. With the knowledge that T is now completely

in terms of state variables and desired trajectory values, it can be treated as though

it’s not an input when performing input-output linearization for x and y. Section

7.10 will cover the method used to generate appropriate values for aiz, i = 0, 1, 2.

7.5 Horizontal Position Linearization

Now that Section 7.4 has defined the thrust input T in terms of states and desired tra-

jectory terms, it can be differentiated for the purposes of input-output linearization.

Performing input-output linearization for x and y requires taking more derivatives

on Equation 6.14 to make the inputs q̈x and q̈y appear. Equations 7.23 and 7.24 show

the third and fourth derivatives of the outputs, respectively. The inputs appear after

the fourth derivative.

79

Chapter 7. Quadrotor Feedback Linearization and Controller Design

x(3)

y(3)

 =
Ṫ

M

 2qpqy

−2qpqx

+
T

M

 2qy 0 2qp

−2qx −2qp 0



q̇p

q̇x

q̇y

 , (7.23)

x(4)

y(4)

 =
T̈

M

 2qpqy

−2qpqx

+

2
Ṫ

M

 2qy 0 2qp

−2qx −2qp 0

 · · ·

+
T

M

 2q̇y 0 2q̇p

−2q̇x −2q̇p 0



q̇p

q̇x

q̇y

+
T

M

 2qy 0 2qp

−2qx −2qp 0



q̈p

q̈x

q̈y

 .
(7.24)

Equations 7.25 through 7.28 provide the first and second derivatives of T and qp,

as they appear throughout Equations 7.23 and 7.24. Derivatives of qp come from

the definition established in Equation 5.27. To make things more difficult, q̈x and q̈y

appear in T̈ and q̈p.

Ṫ =
Mv̇z + 4T (qxq̇x + qy q̇y)

γ
, (7.25)

T̈ =
1

γ

Mv̈z + 8Ṫ (qxq̇x + qy q̇y) + 4T (q̇x
2 + q̇y

2) + 4T
[
qx q̇y

]q̈x
q̈y

 , (7.26)

q̇p = −qxq̇x + qy q̇y
qp

, (7.27)

q̈p = − 1

qp

q̇p2 + q̇x
2 + q̇y

2 +
[
qx qy

]q̇x
q̇y

 . (7.28)

For the MIMO input-output linearization to work, the equation to be linearized

must have the affine form found in Equation 7.4. This unfortunately means having

to substitute Equations 7.25 through 7.28 into 7.24 and refactoring everything until

the inputs are shown to be affine with the states.

80

Chapter 7. Quadrotor Feedback Linearization and Controller Design

After a very large amount of tedious refactoring, combining Equations 7.24, 7.26,

and 7.28 collapses down to the result below, which is grouped to match Equation 7.4

in an attempt to make the monstrous equation more palatable. While this solution is

almost exactly the same as the one presented in [9], their use of a Z-down coordinate

system differs with this thesis’s Z-up coordinate system, so the whole derivation

process had to be repeated to find the small sign changes.x(4)

y(4)

 = F + G

q̈x
q̈y

 , (7.29)

F =
v̈z
γ

 2qpqy

−2qpqx

+

(
4Ṫ

M
N1 +

2T

M
N2

)
q̇p

q̇y

q̇y

 , (7.30)

G =
2T

m
N3, (7.31)

N1 =

 qy
4qpqxqy

γ
qp

(
4q2
y

γ
+ 1

)
−qx −qp

(
4q2
x

γ
+ 1

)
−4qpqxqy

γ

 ,

N2 =

 q̇y −
qy q̇p
qp

qy q̇x(4q2
p − γ)

qpγ

qy q̇y(4q
2
p − γ)

qpγ
+ q̇p

−q̇x +
qxq̇p
qp

qxq̇x(γ − 4q2
p)

qpγ
− q̇p

qxq̇y(γ − 4q2
p)

qpγ

 ,

N3 =


4qpqxqy

γ
− qxqy

qp

4qpq
2
y

γ
+ qp −

q2
y

qp

−4qpq
2
x

γ
− qp +

q2
x

qp
−4qpqxqy

γ
+
qxqy
qp

 .
After arriving at the fourth derivatives of x and y, the relative degrees for each

output are ρx = ρy = 4 as long as γ 6= 0 and qp 6= 0. When added together,

ρx + ρy + ρz = 10, which matches the total degrees of freedom in the position control

system. As far as position control is concerned, the system is therefore completely

input-output linearizable. Section 7.6 will wrap up linearizing the heading portion

of the dynamics.

81

Chapter 7. Quadrotor Feedback Linearization and Controller Design

The system is linearized by choosing q̈x and q̈y based on Equations 7.30 and 7.31

to be equal toq̈x
q̈y

 = (G)−1

−F +

vx
vy

 , (7.32)

G−1 =
1

2qp(g + vz)

 γqxqy(−4q2
p + γ) γ(γq2

y − 4q2
pq

2
y − γq2

p)

γ(4q2
pq

2
x + γq2

p − γq2
x) γqxqy(4qp − γ)

 , (7.33)

which, according to Equation 7.33, is viable as long as qp 6= 0 (not perfectly upside

down) and vz 6= −g . By setting vx and vy based on the formats presented in

Equations 7.3 and 7.22, the system will track desired trajectories for states x and y.

Section 7.11 will cover the method used to generate appropriate values for aix and

aiy, i = 0, 1, 2, 3, 4.

vx = x
(4)
d + a4x(x

(3)
d − x

(3)) + a3x(ẍd − ẍ) + a2x(ẋd − ẋ) . . .

+ a1x(xd − x) + a0x

∫ t

0

(xd − x)dt, (7.34)

vy = y
(4)
d + a4y(y

(3)
d − y

(3)) + a3y(ÿd − ÿ) + a2y(ẏd − ẏ) . . .

+ a1y(yd − y) + a0y

∫ t

0

(yd − y)dt. (7.35)

As a final note, v̇z and v̈z both appear in the x and y input-output linearizations.

While they are simply straightforward derivatives of Equation 7.22, they are included

below in Equations 7.36 and 7.37 for the sake of being thorough.

v̇z = z
(3)
d + a2z(z̈d − z̈) + a1z(żd − ż) + a0z(zd − z), (7.36)

v̈z = z
(4)
d + a2z(z

(3)
d − z

(3)) + a1z(z̈d − z̈) + a0z(żd − ż). (7.37)

82

Chapter 7. Quadrotor Feedback Linearization and Controller Design

7.6 Heading Linearization

This section handles the quadrotor’s heading “linearization”. As the position lin-

earization processes handled 10 free states (~r, ~̇r, qx, q̇x, qy, and q̇y) and the quadrotor

possesses 12 in total (~r, ~̇r, q̊, and ~ω), two remain (qz and q̇z, or qz and ωz).

While quaternions are convenient for modeling and control derivations, they are

unintuitive when trying to create reference trajectories. As such, q̊z is converted to

an Euler angle ψ to represent a heading/yaw rotation angle. As q̊z is associated with

an immediate rotation from {B} around ZW , an Euler XYZ or Euler YXZ convention

is comparable. Using [43] and Equation 5.19, Equation 7.38 arises for both Euler

XYZ and YXZ conventions.

ψ = tan−1

(
2qwqz
q2
w − q2

z

)
. (7.38)

As the Z axes for both {B} and {H} are aligned, ψ and ωz are also aligned, meaning

ψ̇ = ωz (Chapter 5, Section 5.2). Differentiating ψ one more time, ψ̈ = ω̇z, which

is the remaining input. By simply changing coordinate systems for q̊z, it becomes

linear with the input ω̇z. The two differentiations to make the final input appear

sets the relative degree ρψ = 2, bringing the system’s relative degree up to 12. The

system is therefore shown to be fully input-output linearizable.

A controller of the form shown in Equation 7.39 will cause the quadrotor to track

a given heading trajectory and, due to the integral term, overcome any steady state

errors. To prevent bizarre behaviors, the difference between ψd and ψ should always

be restricted between ±π. Section 7.12 covers the calculation of aiψ, i = 0, 1, 2.

83

Chapter 7. Quadrotor Feedback Linearization and Controller Design

ω̇z = ω̇z d + a2ψ(ωz d − ωz) + a1ψ(ψd − ψ) + a0ψ

∫ t

0

(ψd − ψ)dt

= ω̇z d + a2ψ(ωz d − ωz) + a1ψ(ψd − tan−1

(
2qwqz
q2
w − q2

z

)
)

+ a0ψ

∫ t

0

(ψd − tan−1

(
2qwqz
q2
w − q2

z

)
)dt.

(7.39)

7.7 Linearization Feasibility

The linearization technique is susceptible to two issues: qp = 0 and γ = 0. qp is

extracted from q̊ by manipulating Equations 5.28 and 5.29 to get

qp =
√
q2
p (q2

w + q2
z)) =

√
q2

0 + q2
k. (7.40)

The value qp can only be 0 if q0 = qk = 0, which is associated with a full 180◦

revolution around an XYW axis (i.e. when it’s fully upside down). As the position

controller practically requires the quadrotor to be upright to counteract gravity, this

isn’t a concern.

Re-examining Equations 6.14 and 7.21, γ = 0 is associated with the thrust vec-

tor being rotated into the XYW plane where it has no ZW component (in other

words, when the quadrotor’s horizontal). This presents a far more real concern, as

the quadrotor could potentially attempt to execute an overly aggressive maneuver

and approach becoming horizontal, which would cause the thrust (and several other

terms) to blow up. As such, special care is required to ensure the controller isn’t

overly aggressive in its tracking of reference trajectories. At the cost of proper lin-

earization, additional safety measures can be added to keep the thrust value within

safe ranges. Chapter 8 addresses this concern.

84

Chapter 7. Quadrotor Feedback Linearization and Controller Design

Addressing the feasibility of inverting G, a singularity only occurs when qp = 0

(addressed above) and vz = −g. As long as the quadrotor is not upside down and

is not commanding a large negative acceleration along ZW , the inversion process

remains feasible.

7.8 Trajectory Generation

This section briefly covers the types of trajectory values the feedback linearization

process requires to be effective. Equations 7.22, 7.34, 7.35, 7.36, 7.37, and 7.39 all

reference setting artificial input values based on the quadrotor’s current state and a

desired trajectory. Accumulating all trajectory terms in one place, each term and its

derivatives really start adding up, with Table 7.1 providing a full list.

Table 7.1: List of Trajectory Values to Generate for Desired Flight Path

x states: xd ẋd ẍd x
(3)
d x

(4)
d

y states: yd ẏd ÿd y
(3)
d y

(4)
d

z states: zd żd z̈d z
(3)
d z

(4)
d

ψ states: ψd ωz d ω̇z d

Totaling at 18 different values for effectively four different trajectories, the list

is not insubstantial for a system attempting to run quickly in real time. All three

position terms require not only position references, but velocity, acceleration, jerk,

and snap. Depending on the aggressiveness of the designed controller, discontinu-

ities in given trajectories can lead to violent responses. Sinusoid-based trajectories

have the benefit of being smooth and continuously differentiable down to an infinite

number of derivatives, though that only works well for continuous flight patterns.

The problem of creating a gradual transition into the sinusoidal trajectory still ex-

ists. As the focus of this thesis is more on controller/estimator design and hardware

configuration, optimal trajectory generation is a problem left for others to solve.

85

Chapter 7. Quadrotor Feedback Linearization and Controller Design

7.9 Exponential Lyapunov Controller

Now that the system’s dynamics have effectively been linearized, it’s time to apply

a controller to the linearized dynamics. For a linear set of system dynamics of the

form

~̇x = A~x+ B~u, (7.41)

paper [15] discusses the design of controllers that guarantee exponential Lyapunov

stability [52]. The controller starts with a desired Lyapunov solution of the form

V̇ = −αV, (7.42)

where α is a single tunable convergence parameter. Through the selection of a

quadratic Lyapunov function V = ~x TP~x , Equation 7.42 works out to be

V̇ = 2~xP (A~x+ B~u)

= ~xT
(
ATP + PA

)
~x+ 2~xTPB~u = −α~xTP~x.

(7.43)

By choosing

~u = −BTP~x, (7.44)

the equation reduces to

~xT
(
ATP + PA

)
~x− 2~xTPBBTP~x = −α~xTP~x, (7.45)

for which the Algebraic Ricatti Equation below can be solved [51] for P(
A +

α

2
I
)T

P + P
(
A +

α

2
I
)
− 2PBBTP = 0. (7.46)

After solving Equation 7.46 for P, substituting P into Equation 7.44 generates an

expression for the input based on the states that ensures exponential stability. In

essence, [15] creates a linear controller capable of being tuned with only one param-

eter α.

86

Chapter 7. Quadrotor Feedback Linearization and Controller Design

7.10 Altitude Controller

The linearized altitude dynamics possess a total of two states: z and ż. Generating

the linear equation for the system with an added integral term,
z

ż

z̈

 =


0 1 0

0 0 1

0 0 0



∫
z

z

ż

+


0

0

1

 vz = A~zz + Bvz. (7.47)

Applying the exponential Lyapunov controller to Equation 7.47 with α = 3, the

input vz becomes

vz = −
[
27 27 9

]
~zz. (7.48)

Putting this into the form found in Equation 7.22, the expression with the added

integral term becomes

vz = z̈d + 9(żd − ż) + 27(zd − z)− 27

∫ t

0

(zd − z)dt. (7.49)

7.11 Horizontal Position Controller

Applying the method shown in Section 7.10, the A and B matrices for both the x

and y linearized dynamics (with integral terms) collapse down to Equation 7.41 with

A and B being

A =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0


, B =



0

0

0

0

1


.

87

Chapter 7. Quadrotor Feedback Linearization and Controller Design

Running through the same calculation process with α = 4, vx and vy from Equa-

tions 7.34 and 7.35 become

vx = x
(4)
d + 20(x

(3)
d − x

(3)) + 160(ẍd − ẍ) + 640(ẋd − ẋ) · · ·

+ 1280(xd − x) + 1024

∫ t

0

(xd − x)dt, (7.50)

vy = y
(4)
d + 20(y

(3)
d − y

(3)) + 160(ÿd − ÿ) + 640(ẏd − ẏ) · · ·

+ 1280(yd − y) + 1024

∫ t

0

(yd − y)dt. (7.51)

The gains seem high at first glance, but for appropriately generated trajectories, they

should not create a problem.

7.12 Heading Controller

For the heading controller, the process from Section 7.10 was repeated with α = 3

and

A =


0 1 0

0 0 1

0 0 0

 , B =


0

0

1

 ,
to modify Equation 7.39 and generate the control input

ω̇z = ω̇z d + 9(ωz d − ωz) + 27(ψd − tan−1

(
2qwqz
q2
w − q2

z

)
)

+ 27

∫ t

0

(ψd − tan−1

(
2qwqz
q2
w − q2

z

)
)dt.

(7.52)

88

Chapter 8

Input Constraints

This chapter analyzes the feasibility of various inputs and the methods used to ensure

commanded inputs remain feasible. Section 8.1 explores the range of feasible outputs

given the quadrotor’s upper and lower motor speed limits. Section 8.2 examines the

hierarchy for determining how inputs are limited in the event of an infeasible set of

inputs. Section 8.3 quickly discusses the heuristic decision used to limit the thrust

in safe ranges. Section 8.4 examines the optimization-based method for limiting the

yaw torque in the event that thrust limitation did not produce a feasible set of inputs.

Section 8.5 discusses the method for limiting the pitch and roll torques in the event

that the inputs still remain infeasible.

89

Chapter 8. Input Constraints

8.1 Input Feasibility

Repeated from Chapter 6, the relationship between the quadrotor’s commanded

motor speeds and its resulting net thrust and torques is shown in Equation 8.1.
T

τx

τy

τz

 =


b b b b

0 bl 0 −bl

−bl 0 bl 0

k −k k −k




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 = M


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 . (8.1)

The Hummingbird quadrotor’s motor speeds have upper and lower limits that are

characterized in Chapter 11. Putting them into equation form,

Ωmin ≈ 1,100 rpm ≤ Ω1, Ω2, Ω3, Ω4 ≤ Ωmax = 8,600 rpm. (8.2)

While the motor speed limitations are fairly clear, the limitations on the thrust and

torques are not as clear. Figure 8.1 shows several polytopes that encompass ranges

of feasible inputs satisfying Equation 8.2 for varying yaw torques (τz) and propeller

coefficients.

Figures 8.1a and 8.1b show the difference between the flexible and higher per-

formance propellers. The higher performance propellers offer a larger thrust and

pitch/roll torque feasible set, which would allow the quadrotor to be more agile. The

transition from Figure 8.1a to Figure 8.1c to Figure 8.1d shows the progressive con-

striction of the feasible set as the yaw torque’s magnitude increases. Similar effects

can be seen when fixing a different input (like thrust).

90

Chapter 8. Input Constraints

(a) Flexible Propellers, τz = 0 (b) High Performance Propellers, τz = 0

(c) Slightly positive τz (d) Larger negative τz

Figure 8.1: Polytopes of feasible input combinations for a set τz value.

91

Chapter 8. Input Constraints

8.2 Input Limitation Hierarchy

If any of the controller’s commanded inputs falls outside the feasible set, Equation

6.10 will calculate motor speeds that the motor controllers cannot perform. For

example, if a large positive yaw torque is commanded, it can potentially send all

four calculated motor speeds outside of the feasible range. Simply moving the motor

speeds to their nearest feasible value causes problems, as motors 1 and 3 will be at

full speed while motors 2 and 4 will be at the minimum speed. Examining Equation

8.1, this results in zero pitch/roll torques and a constant, unchangeable thrust. A

process needs to be in place to rein in problematic inputs.

Algorithm 2 shows the process for limiting the inputs in the event the control law

generates infeasible inputs. the first parameter to be checked is the thrust, which is

heuristically pulled a set distance in from its upper and lower bounds as mentioned

in Section 8.3. If the inputs are still infeasible, the yaw torque is set to zero and its

feasibility is checked. If the inputs are now feasible, an optimal yaw torque of the

same sign is found as described in Section 8.4. If setting the yaw torque to zero didn’t

fix the problem, the pitch and roll torques are adjusted as mentioned in Section 8.5

until a feasible solution is achieved.

8.3 Thrust Limitation

The thrust plays a large role in controlling altitude and changing position, so it

is left with a fairly strong command authority. However, in the event the control

law requests infeasibly high or low thrusts, the value is heuristically cut back to

be between approximately 150% of the minimum thrust and 85% of the maximum

thrust, which is enough to leave room for torque commands. If the input combination

is still infeasible, the yaw torque is the next input to be scaled.

92

Chapter 8. Input Constraints

Algorithm 2 Input Limitation Process

if ~u ! = feasible then

if T > 0.85Tmax then

T = 0.85Tmax

if T < 1.5Tmin then

T = 1.5Tmin

if ~u ! = feasible then

min/max τz based on sign while preserving other inputs

if min/max process != feasible then

Calculate τx:τy ratio

min/max τx while preserving T and τx:τy ratio
return ~u;

8.4 Yaw Torque Limitation

The yaw torque has no particular role in the quadrotor’s position control, so it

can potentially be scaled back to 0 in an emergency situation. This becomes an

optimization problem of minimizing or maximizing (depending on its original sign)

the yaw torque τz while preserving the other inputs (T , τx, τy) subject to constraints

on the squares of the motor speeds (represented by ~Ωsq). Putting this into a non-

standard optimization form,

max
Ω

or min
Ω

τz = ~c ~Ωsq = ~c
[
Ω2

1 Ω2
2 Ω2

3 Ω2
4

]T
,

subject to

C~Ωsq = ~d, Ω2
min ≤ Ω2

n ≤ Ω2
max, n = 1, 2, 3, 4,

where

93

Chapter 8. Input Constraints

~c =
[
k −k k −k

]
,

C =


b b b b

0 bl 0 −bl

−bl 0 bl 0

 ,
~d =

[
T τx τy

]T
,

Manipulating this into standard form with slack variables ~v ∈ R4 and ~w ∈ R4,

the problem becomes one of two optimization problems of the form

min
Ω

τz =
[
~c 01x4 01x4

] [
~ΩT
sq ~vT ~wT

]T
, (8.3)

min
Ω
−τz =

[
−~c 01x4 01x4

] [
~ΩT
sq ~vT ~wT

]T
, (8.4)

with both problems subject to
C 03x4 03x4

I4x4 −I4x4 04x4

I4x4 04x4 I4x4



~Ωsq

~v

~w

 =


~d

Ω2
min14x1

Ω2
max14x1

 , (8.5)

~Ωsq ≥ 0, ~v ≥ 0, ~w ≥ 0.

This creates a set of 12 variables with 11 constraints. The low number of free

variables makes it well suited for using the simplex method [53], which optimizes

a problem in standard form by creating a feasibility polytope, starting at a vertex

(corner), and moving along the edges until the optimal solution is found. While this

process is normally computationally cumbersome, the high number of vertices allows

the simplex method to effectively converge to the optimal solution in one iteration.

If the optimization algorithm of choice cannot find a feasible solution after the thrust

has already been limited, the pitch and roll torques need to be limited. Chapter 10,

Section 10.9 discusses the C library used to perform the simplex method calculations.

94

Chapter 8. Input Constraints

8.5 Roll/Pitch Torque Limitation

In the event the input limitation procedure has reached this state, one or both

of the remaining torques (τx and τy) is the culprit for generating infeasible motor

commands. If both torques are nonzero, rather than scale back the larger of the

two, the idea is to attempt to preserve the intent of the controller’s torque values

(e.g., generate a larger, positive τx and a smaller, negative τy) by establishing a ratio

between them and maximizing/minimizing one of the two. The thrust retains its

equality constraint, while the yaw torque has no constraint. Using βx and βy to

represent the inverses of the original τx and τy, respectively, one of the constraints

for the optimization problem becomes

βxτx = βyτy ⇒ βxτx − βyτy = 0. (8.6)

From there, τx is optimized in the direction associated with its initial sign. Putting

this into nonstandard form, the optimization problem becomes

max
Ω

or min
Ω

τx = ~c ~Ωsq,

subject to

C~Ωsq = ~d, Ω2
min ≤ Ω2

n ≤ Ω2
max, n = 1, 2, 3, 4,

where

~c =
[
0 bl 0 −bl

]
,

C =

 b b b b

βybl βxbl −βybl −βxbl

 ,
~d =

[
T 0

]T
.

95

Chapter 8. Input Constraints

In the event that one of the two torques is already set to 0, the problem devolves

into minimizing/maximizing the other torque while preserving the first torque’s

equality with 0. Putting this in nonstandard form,

max
Ω

or min
Ω

τ1 = ~c ~Ωsq,

subject to

C~Ωsq = ~d, Ω2
min ≤ Ω2

n ≤ Ω2
max, n = 1, 2, 3, 4,

where

condition: τx = 0, τy = 0,

τ1 = τy, τx,

~c =
[
−bl 0 bl 0

]
,
[
0 bl 0 −bl

]
,

C =

[
b b b b
0 bl 0 −bl

]
,

[
b b b b
−bl 0 bl 0

]
,

~d =
[
T 0

]T
,

[
T 0

]T
,

Expanding these problems into standard form as in Section 8.4 yields 12 vari-

ables and 10 constraints. The system is sufficiently well constrained that the simplex

method converges within one or two iterations and outperforms interior point meth-

ods.

96

Chapter 9

Filtering

This chapter covers the filtering techniques used to process the incoming measure-

ments before using them in the control law. Section 9.1 discusses the principles of the

Kalman filter and how it applies to linear systems. Section 9.2 covers the Extended

Kalman Filter, how it applies to nonlinear systems, and difficulties with its imple-

mentation. Section 9.3 covers the quick filter used in the Extended Kalman Filter’s

place to bypass its issues with run time. Section 9.4 talks about velocity estimation

methods and ultimately settles on a compromise between numerical differentiation

and numerical integration. Section 9.5 talks about the state prediction method used

to overcome latency within the system.

9.1 Kalman Filter

The Kalman filter is a linear, optimization-based filter that meshes together state

predictions and state measurements using their respective covariance values [54].

The prediction covariance matrix Q and the measurement covariance matrix R ap-

proximate the covariances of the system’s predictions and sensor noise statistics,

97

Chapter 9. Filtering

respectively. Their values govern the behavior of the Kalman filter over time. The

estimate covariance matrix Pk keeps track of filter’s confidence in the current states

at discrete time step k. The larger the values in Pk, the more the filter relies on

measurements; the smaller the values in Pk, the more the filter relies on estimates.

The Kalman filter has two phases: Predict and Update [54]. The Predict phase

starts by predicting how the system will evolve using the discrete linear equation

found in Equation 9.1, followed by a prediction of how the system’s estimate covari-

ance evolves using Equation 9.2. The vector x̂k−1|k−1 is the previous state estimate,

x̂k|k−1 is the predicted state estimate, and ~uk−1 is the previous inputs sent to the sys-

tem. Pk−1|k−1 denotes the estimate covariance matrix from the previous iteration,

while Pk|k−1 denotes the predicted evolution of the estimate covariance.

x̂k|k−1 = Adx̂k−1|k−1 + Bd~uk−1, (9.1)

Pk|k−1 = AdPk−1|k−1Ad + Q. (9.2)

During the Update phase, the difference is found between the current measured state

z̃k and the current predicted state estimate x̂k|k−1. Note that z̃k can have less states

than ~x. The matrix H handles relating the states in ~x to the states in z̃k. The

difference between the two is stored in the residual vector ~v. A residual covariance

matrix Sk is calculated, followed by a Kalman gain matrix Kk. The current predicted

state x̂k|k is updated using the Kalman gain matrix and the residual vector, while the

estimate covariance Pk|k is updated through application of the Kalman gain matrix.

Equations 9.3 through 9.7 show this process in equation form [54].

~v = z̃k −Hx̂k|k−1, (9.3)

Sk = HPk|k−1H
T + R, (9.4)

Kk = Pk|k−1H
TS−1

k , (9.5)

x̂k|k = x̂k|k−1 + Kk~v, (9.6)

Pk|k = (I−KkH)Pk|k−1. (9.7)

98

Chapter 9. Filtering

As the Kalman filtering process relies on knowing the linear Ad matrix for the

system, and as nonlinear systems don’t have set Ad matrices through their very

nature, the Kalman filter doesn’t really work. While a linear estimate could be

generated around a fixed point, deviations in the system’s dynamics from this point

would cause horrible problems and potentially cause the filter to become unstable.

9.2 Extended Kalman Filter

To circumvent the Kalman filter’s dependence on linear systems, the Extended

Kalman Filter makes two modifications to the Prediction phase [54]: the state pre-

diction is relaxed to be a nonlinear discrete time equation as in Equation 9.8, and a

new Ad matrix is generated at each time step by linearizing the system [52], followed

by discretizing it [51]. The Update phase is not changed in any way.

The discrete nonlinear prediction can quickly be performed via Euler approxima-

tion: calculate the state derivatives using the system’s continuous time dynamics,

multiply them by the discrete time step size, and add them to the state values. The

linearization process involves taking the continuous time dynamics of the system

and calculating their Jacobian around the previous estimated states as in Equation

9.9. With the continuous time Ac matrix, the discrete time equivalent Ad can be

calculated via a matrix exponential operation shown in Equation 9.10.

x̂k|k−1 = fd(x̂k−1|k−1, ~uk−1), (9.8)

Ac = J (fc(~x, ~u))|x̂k−1|k−1 , ~uk−1
, (9.9)

Ad = eTsAc =
∞∑
i=0

1

i!
(TsAc)

i, (9.10)

99

Chapter 9. Filtering

Unfortunately, the matrix exponential calculation process was found to take too

long in practice. MATLAB was used to generate a C library for performing matrix

exponential calculations using its C Coder utility. While it gave the right answer,

it couldn’t run fast enough on the Edison. As a workaround, an approximation of

Equation 9.10 using only 30 iterations and OpenCV was attempted as in Equation

9.12, but it still ran way too slow. The Extended Kalman Filter was eventually

deemed impractical, and alternative solutions were examined.

fd(x̂k−1|k−1, ~uk−1) ≈ x̂k−1|k−1 + Tsfc(x̂k−1|k−1, ~uk−1), (9.11)

eTsAc ≈
30∑
i=0

1

i!
(TsAc)

i. (9.12)

9.3 Quick Filter

Members from ETH Zurich proposed a quick, Kalman-esque filter for meshing to-

gether measurements and estimates [16]. The proposed filter used a fixed, diagonal

tuning factor matrix K with entries between 0 and 1 to mesh the values together as

in Equation 9.13. The entries effectively choose the fraction of the predicted state

to use, while the remaining fraction uses the measured state.

x̂k|k−1 = fd(x̂k−1|k−1, ~uk−1),

x̂k|k = Kx̂k|k−1 + (I−K)x̃k.
(9.13)

This algorithm has the benefit of not calculating estimate covariance matrices, matrix

inverses, needing to perform matrix exponential calculations, or needing to know

statistical information about the quadrotor’s behaviors. On the downside, the only

practical way to adjust the tuning factor matrix is through trial and error. As another

downside, the meshing process requires a measured velocity, and there are no means

within the system to directly measure the quadrotor’s translational velocity. A means

of estimating the quadrotor’s velocity will need to be developed.

100

Chapter 9. Filtering

9.4 Velocity Estimation

Multiple methods exist for numerically calculating a derivative, such as:

Two-Point Derivative: ˙̃rk =
r̃k − r̃k−1

TS
.

Three-Point Derivative: ˙̃rk =
r̃k+1 − r̃k−1

2TS
.

Al-Alaoui Derivative [1, 55]: ˙̃rk = −1

7
˙̃rk−1 +

8(r̃k − r̃k−1)

7TS
.

The two-point derivative works with a present and past value, but any noise in

the position values gets amplified in the velocity. The noise amplification becomes

especially problematic as the time step size gets smaller. The three-point derivative

isn’t as sensitive to immediate changes between points, but it relies upon knowing

a future measurement value, which isn’t feasible in real time applications. The Al-

Alaoui derivative appears to be a modified version of the two-point derivative, but

it only exacerbates the noise problem from the two-point derivative.

Keeping the idea in mind of meshing measurements together, not only are the

quadrotor’s position values available, but as are the measured accelerations. While

numerical differentiation is noisy, numerical integration steadily accumulates mea-

surement errors and drifts over time. By using the two together, a solution can be

found with less noise and drift than either method alone.

Equation 9.14 presents an original method for numerically calculating an object’s

velocity using position and acceleration measurements. The first part of the equation

takes the measured acceleration, integrates it over a time step, and adds it to the

previous velocity estimate. The second part of the equation performs a two-point

derivative using the past and present position measurements. A tune-able meshing

parameter α combines the two together.

101

Chapter 9. Filtering

˙̃rk = α(˙̂rk−1 + TS ¨̃rk) + (1− α)
r̃k − r̃k−1

TS
. (9.14)

Figure 9.1 shows a plot of the various derivative algorithms applied to raw IMU

and Vicon measurements. The two-point derivative and Al-Alaoui derivative were

very noisy and spiked very rapidly, with the Al-Alaoui derivative creating slightly

larger spikes. The three-point derivative resulted in smoother derivatives, though

it still makes use of future, non-causal points for its calculation scheme. The cus-

tom derivative estimation algorithm presented in Equation 9.14 remained causal and

wasn’t anywhere near as susceptible to quick spikes when using α = 0.65. As a trade-

off, it appeared to have a mild amount of latency at some points. Still, the smoother

velocity profiles result in less input fluctuation, so it is a worthwhile tradeoff.

Time (s)
14.15 14.2 14.25 14.3 14.35 14.4 14.45 14.5 14.55

X
ve

lo
ci
ty

(m
/s

)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Two Point

Three Point

Al-Alaoui

Custom (, = 0.65)

Figure 9.1: Plot of the various velocity estimation algorithms applied to raw IMU/Vi-
con sensor data.

102

Chapter 9. Filtering

In practice, the measurements from Vicon would occasionally drop out for a short

period of time. This resulted in the same position measurement appearing at both

the current and the last time step, resulting in a numerical differentiation value of

0 m/s. Over several iterations, this kills the quadrotor’s velocity estimate. To avoid

this problem, α was set to 1 for cases where the Vicon measurement has not changed

from the previous iteration.

The Vicon dropouts also caused problems when the measurements came back.

After holding the same measurement value for several hundred milliseconds, the

quadrotor’s estimation process works as well as it can, but it drifts over time. As such,

the quadrotor drifts as well. When the measurements resume, a large discontinuity

in position is created. If the differentiation process immediately starts using this new

value with the old one, a large spike in velocity is created. To prevent this from being

an issue, α is left at 1 for the first three position measurements after undergoing a

lengthy Vicon dropout period.

9.5 Latency Compensation

The Flying Machine Arena paper [16] also proposes a method for compensating for

latency. After characterizing a system and finding a latency of N discrete time

steps between measurements and input execution, state-based prediction of the form

presented in Equation 9.8 is used to predict where the quadrotor will be. Once the

measured values have been filtered to provide x̂k, the prediction process is run for

N iterations to generate a “future” set of states x̂k+N . The control law is applied

to the “future” states, and the inputs are sent to the quadrotor. After the system

latency, the inputs will arrive and be ready for execution when the quadrotor is at

the “future” state x̂k+N . Algorithm 3 shows the process used to perform the latency

compensation process.

103

Chapter 9. Filtering

Algorithm 3 Latency Compensation

Use filter to obtain lagged state x̂k.

Predict evolution of system as below:

for i = 1 to N do

x̂k+i = fd(x̂k+i−1, ~uk+i−1);

Perform control law on x̂k+N .

104

Chapter 10

Control Program Implementation

This chapter discusses the program designed to run on the Intel Edison for executing

all of the desired operations. Section 10.1 provides information about obtaining

the source code used in this thesis. Section 10.2 covers the various flight modes

used to set trajectories, control laws, and state estimation parameters. Section 10.3

discusses the general program structure. Sections 10.4, 10.5, and 10.6 cover the

program implementations used to communicate with the Autopilot, the GCS, and the

Vicon server, respectively. Section 10.7 talks about the state estimation procedures.

Section 10.8 talks about the control law implementation. Section 10.9 discusses the

optimization library used for finding optimal feasible inputs. Section 10.10 quickly

talks about the simple trajectory generation scheme. Section 10.11 discusses the

multithreaded class used for logging data.

10.1 Source Code

The source code for the GCS, the Edison control program, and the Autopilot’s HLP

are all available on GitHub. The GCS and Edison source code is currently in pri-

105

Chapter 10. Control Program Implementation

vate repositories, but it will be migrated to the Marhes GitHub account. In the

meantime, send an email to wjneeley@unm.edu to request access to the code or to

receive the updated code location. The HLP code is in a public repository run by

Paul Groves. The code can be found at https://github.com/PaulGrovesAtUNM/

QuadrotorHLCode.

10.2 Flight Modes

The logic behind the quadrotor control program is largely structured around the

quadrotor’s discrete flight mode. Before discussing how flight modes affect each

aspect of the program, a general overview of the different modes should be provided.

Table 10.1 provides a comprehensive list of the available flight modes and their

purposes. Additional flight modes can be added as needed.

The flight modes can largely be grouped into three sets: General, In-Air, and

Test. The General modes are used for implementing general logic related to motor

speeds, such as shutting them off or setting them to idle. The In-Air modes are

focused on the quadrotor actually flying in the air. What makes one mode different

from another is largely the method used to generate each mode’s trajectory. The

Test modes are used for evaluating various parameters of the quadrotor, whether

for checking motor controller configuration/health, trying simple control loops, or

sending direct motor commands to the motor controllers.

Most of the flight modes are designed to be selected by the GCS through the

custom program, though logic is implemented to prevent unsafe transitions (i.e.,

trying to hover before taking off, or trying to take off before the propellers have been

turned on). See the source code for a thorough breakdown of how the mode logic

is implemented. An Excel spreadsheet (included with the source code) details the

transitions allowed by the GCS.

106

wjneeley@unm.edu
https://github.com/PaulGrovesAtUNM/QuadrotorHLCode
https://github.com/PaulGrovesAtUNM/QuadrotorHLCode

Chapter 10. Control Program Implementation

Table 10.1: Table of Flight Modes

Name Type Description

Off General Shuts the quadrotor’s motors off. Can be set to this state
regardless of the current flight mode.

Idle General Idles the motors at the minimum speed possible. Used prior
to entering a takeoff procedure or performing a test mode.

Ramp Up General Ramps up the motors from idle speed to approximately half
speed. Used prior to takeoff.

Takeoff Flight Commands the quadrotor to ascend straight up from its loca-
tion on the ground.

Hover Flight Commands the quadrotor to hover in one location.

Waypoint Flight Commands the quadrotor to fly to a waypoint. Designed to
work in tandem with the GCS for flying to custom waypoints;
currently only flies to a hard-coded waypoint.

Velocity Flight Intended for doing velocity-based control. Never imple-
mented, but left in the code.

Figure 8 Flight Commands the quadrotor to fly in a diagonal figure 8 pattern.
See Chapter 12 for an example.

Special Flight Used to implement special flight patterns for application-
specific purposes.

Reference Flight Intended to allow the GCS to send reference trajectories to
the quadrotor. Not implemented.

Head Home Flight Commands the quadrotor to hover above the point where it
first took off.

Land Flight Commands the quadrotor to land directly below where it is.

Unsafe Flight Triggers when an unsafe flight condition occurs (goes past a
hard-coded boundary or exceeds a hard-coded Euler angle).

Cycle Motors Test Cycles each of the motors in turn from idle to a medium speed,
then cycles them in turn down to idle. Good for ensuring
motors are working correctly. Quadrotor should be secured.

Latency Test Test Used for evaluating the latency of the system. Motors will be
off. Not implemented.

DMC Test Test Allows direct motor control via motor command values.
Quadrotor should be secured.

Attitude Control Test Activates a prototype attitude/orientation control loop.
Quadrotor should be suspended for this test.

Position Control Test Adds a prototype position controller to the Attitude Control
test. Quadrotor should be suspended for this test.

Height Control Test Adds a prototype altitude controller to the Position Control
test. Quadrotor should be suspended for this test.

107

Chapter 10. Control Program Implementation

10.3 Program Structure

As the Vicon Datastream SDK provided a library for use in C++, the program run on

the Edison was programmed using C++. Libraries like the Robot Operating System

(ROS) [56] were not used due to conflicting library versions when using the Vicon

Datastream SDK (discussed later). Classes were created to handle specific tasks

whenever possible for clarity. When necessary, tasks were pushed to separate threads,

and classes were created to handle interacting with the threads. Multithreading was

performed using POSIX threads [57]. A single set of files, called “defs.cpp” and

“defs.h”, were largely used to define all of the necessary constants (port names, IP

addresses, array sizes, latency compensation time steps, etc.) used across all aspects

of the program. Figure 10.1 shows a block diagram of the general program structure.

Figure 10.1: Block diagram of the control program’s structure.

108

Chapter 10. Control Program Implementation

A Quadrotor class object was created to contain all of the necessary data struc-

tures, classes, and function calls to perform various operations (such as obtaining

measurements, filtering data, generating control laws, handling flight mode control,

sending motor commands, and communicating with the GCS). The Quadrotor class

was also designed to load the parameters for a given quadrotor (found in “parame-

ters.cpp”) based on an index number passed into the class when the class is created.

A main program was written to create the Quadrotor class, pass in an appropriate

index number, and handle the timing associated with calling each of the Quadrotor

class’s functions. The main program was designed to try to run the filter and control

loop at 200 Hz, send GCS updates at 10 Hz, and process measurements as they are

received. The following sections describe each of the classes within the Quadrotor

class, any applicable subclasses, and any applicable threads they managed.

10.4 Autopilot Communication

The Autopilot Thread class was programmed to handle communication with the

Autopilot’s HLP. This involved configuring the serial port for transmitting and re-

ceiving at the same time, sending structured data frames to the HLP, and creating

a dedicated thread for processing incoming data frames from the HLP. The separate

thread prevents read operations on the serial port from blocking (stopping) the whole

program until data is read from the port. See Chapter 4 for detailed information

about the configurations and data frames used in this class.

A second thread was created as a sort of watchdog thread. The watchdog thread

periodically checks to see if the first thread has read anything recently from the serial

port. If a certain amount of time passes without receiving anything, the watchdog

thread sets a Boolean variable indicating the port is inactive. Once new data is

received, the variable is cleared and the watchdog’s timer is reset.

109

Chapter 10. Control Program Implementation

10.5 Vicon Communication

The Vicon Thread class was programmed to handle connecting to the Vicon server

at its static IP address over Wi-Fi, receiving frames of data when available, and

extracting measurement information out of each frame. The class makes use of the

Vicon Datastream SDK and its associated C++ Linux x86 library for these opera-

tions. The task of checking for measurement updates was placed onto a dedicated

thread so the read operations didn’t block the main program. A secondary watchdog

thread was created to warn whenever measurements had not been received recently,

just like in the Autopilot Thread class.

As a note, the Vicon Datastream SDK is available in three main programming lan-

guages: C++, MATLAB (great for troubleshooting and visualizing measurements),

and .NET (meant for use with LabVIEW). For the C++ libraries, four versions are

available: Windows x86, Windows x64, Linux x86, and Linux x64 (added in v1.2).

The addition of Linux x64 libraries in v1.2 made program development and testing

on 64-bit computers a lot easier (32-bit compilation on 64-bit machines is a pain),

so versions older than v1.2 were excluded from use.

The C++ Datastream SDK makes use of Boost libraries for its operations. The

Boost libraries in v1.2 and older were found to conflict with ROS Groovy, as the

Datastream SDK’s libraries were out of date. These older versions are compati-

ble with Vicon Tracker v1.0 through v1.3. In Datastream SDK v1.3 and onward,

Vicon changed their library implementation. As the current Vicon server in the

Marhes lab makes use of Vicon Tracker v1.3, and as the Datastream SDK’s back-

wards compatibility was not verified for v1.3 onward, the C++ Datastream SDK

v1.2 was used for this thesis. As making ROS work with the outdated Datastream

SDK would have required extensive workarounds, ROS was effectively infeasible.

110

Chapter 10. Control Program Implementation

10.6 GCS Communication

The Quad Client Thread class was created to handle communicating with the GCS

program at a static IP address over an IP socket [58]. A matching class, called

GCS Server Thread, was created in C++ for incorporation into the Qt-based GCS

program to handle communicating with the Quad Client Thread class. The GCS

Server Thread class created a dedicated thread for waiting for connections, receiving

incoming data, and sending information to the quadrotor. The Quad Client Thread

class was designed to connect to the server, push operations for receiving data onto

a separate thread, and periodically send information to the server.

Predefined C-based structs were created for structuring data being sent in each

direction. One struct was created for sending information from the quadrotor to

the GCS, while another struct was created for sending information from the GCS

to the quadrotor. The structs were designed to hold fixed point, fixed byte integer

numbers. Integers longer than one byte were converted from host ordering to network

ordering [58] before being transmitted and were converted back after being received.

This avoided issues with byte ordering used in different architectures (Big Endian

vs. Little Endian).

At transmit time, the appropriate struct was populated and passed to the trans-

mission function as raw binary using a pointer. When receiving, a pointer to the

receiving struct was given to the receiving function, the data was received as raw

binary, and information was unpackaged from the struct. By using the TCP protocol

instead of UDP, data was guaranteed to be delivered and in order, so this method of

transmitting data back and forth had no issues with potential data loss. Table 10.2

lists the data sent from the quadrotor the GCS, while Table 10.3 lists the data sent

from the GCS to the quadrotor.

111

Chapter 10. Control Program Implementation

Table 10.2: Quadrotor to GCS Frame Contents

Parameter Bytes/ea Values Description

States 4 13 Current quadrotor states × 106.

Reference 4 13 Reference quadrotor state × 106.

Inputs 4 4 Quadrotor thrust/torque inputs × 106.

Vicon 4 7 Raw measurements from Vicon × 106.

IMU 4 6 Raw measurements from the Autopilot’s
IMU × 106.

Motors 1 4 Motor speed commands sent to the quadro-
tor.

AP Status 2 1 Raw binary representation of the Autopilot’s
LLP status variable [23].

Battery 4 1 Autopilot’s measured battery voltage ×
1,000.

CPU 4 1 HLP CPU load percentage × 1,000.

UART 1 1 Status of UART connection.

Vic Status 1 1 Status of Vicon connection.

Mode 1 1 Current flight mode on the quadrotor.

Total 189

Table 10.3: GCS to Quadrotor Frame Contents

Parameter Bytes/ea Values Description

Trajectory 4 18 Desired flight trajectory values × 106.

Reference 4 13 Desired reference quadrotor state × 106.

Motors 1 4 Desired motor speed commands.

Mode 1 1 Desired flight mode on the quadrotor.

Total 129

112

Chapter 10. Control Program Implementation

10.7 Filter Calculation

A dedicated Filter class was created for processing the incoming measurements.

Legacy code related to implementing the Extended Kalman Filter remains in the

class, which creates a dependence on using OpenCV [59] for matrix calculations.

Still, the Filter class’s main utility in the Quadrotor class is for implementing the

quick filter described in Section 9.3. This includes performing the derivative calcu-

lations discussed in Section 9.4. The latency compensation process was largely left

as a separate function call in the Quadrotor class, though it makes use of the Filter

class’s nonlinear state prediction function. The latency compensation functionality

could easily be shifted into the Filter class.

The Filter class’s state prediction method works differently depending on the

quadrotor’s selected flight mode. If the quadrotor is in a flight mode where it is

expected to be on the ground (Off, Idle, or Ramp Up), the prediction algorithm

assumes the quadrotor won’t move, which means predicting the position/orienta-

tion values won’t change and the velocities/angular velocities will be equal to 0.

Otherwise, the state prediction uses the dynamics covered in Chapter 6 and Euler

approximation to predict the quadrotor’s flight evolution over time. As mentioned in

Section 9.4, special methods are also used to defend against discontinuities in Vicon

measurements.

The quick filter’s tuning matrix K was configured such that the diagonal entries

associated with position and quaternion states had values of 0.25, while those as-

sociated with velocities and angular velocities had values of 0.50. As for latency

compensation, N = 4 time steps of latency compensation were used. These values

were selected through trial and error. Further testing may yield values that provide

better results.

113

Chapter 10. Control Program Implementation

10.8 Control Law Calculation

A generic Controller class was created for implementing various control law schemes.

Legacy functions associated with performing PD-based cascading position and atti-

tude control loops are left in the class. The nonlinear feedback linearization controller

was tied into the class as well. The feedback linearization-related function calls were

coded as a separate set of files using as much C-based syntax as possible. The heavy

C syntax should make the code easier to move to the Autopilot’s HLP should future

control architecture iterations choose to do so.

Depending on the flight mode, the Controller class calculates inputs based on the

system’s filtered states. All of the In-Air flight modes use the nonlinear controller,

while some Test modes make use of the PD-based cascading controllers. For flight

modes that don’t use controls, the Controller class is not called.

10.9 Input Limitation

Two classes were created for performing optimization problems: Yaw Optimizer

for performing the yaw optimization calculation, and Pitch Roll Limit for limiting

the pitch and roll. Section 10.9.1 discusses the library used for the optimization

algorithms, and Section 10.9.2 shows the run times for each of the optimization

problems.

10.9.1 GNU Linear Programming Kit

The GNU Linear Programming Kit (GLPK) is an open source, ANSI C-based library

for performing linear programming and mixed integer programming algorithms [60].

The two main linear programming methods at its disposal are the simplex method

114

Chapter 10. Control Program Implementation

and an interior point method. More information on these methods and how they

work can be found at [53, 60]. Of note is that both algorithms have configurable

parameters for attempting to speed up the optimization process. The simplex method

can be calculated in either its primal or dual form, while the interior point method

provides several ordering techniques. Problems can be generated using nonstandard

formulations as well as standard formulations.

10.9.2 Execution Time

A test procedure was created to determine which optimization process ran fastest for

each problem. Algorithm 4 lists the test procedure for a given optimization process.

Both the simplex method and the interior point method were evaluated. Standard

and nonstandard problem formulations were evaluated. For the simplex method,

both primal and dual methods were evaluated. For the interior points method, all

of the ordering methods were tested. All timing tests were done on the Intel Edison.

Algorithm 4 Optimization Algorithm Timing Test

Create optimization model

for T = 0; T ≤ 22; T += 1 do

for τx = -1.5; τx ≤ 1.5; τx += 0.1 do

for τy = -1.5; τy ≤ 1.5; τy += 0.1 do

Update the problem with new objective values

Run method for maximization

Record iterations, run time, and solution

Run method for minimization

Record iterations, run time, and solution

Analyze results

115

Chapter 10. Control Program Implementation

Primal Dual No Order QMD AMD SYMAMD

T
im

e
(7

s)

0

200

400

600

800

1000

1200

Nonstandard

Standard

Figure 10.2: Mean yaw optimization algorithm run times on the Intel Edison for
various optimization algorithms in both standard and nonstandard form. Only sim-
ulations that resulted in feasible solutions are represented.

Nonstd. Primal Nonstd. Dual Std. Primal Std. Dual

T
im

e
(7

s)

0

20

40

60

80

100

120

140

160

180

200

7

<

Figure 10.3: Mean and standard deviations of pitch/roll optimization run times on
the Intel Edison for various simplex algorithm implementations in both standard
and nonstandard form. Only simulations that resulted in feasible solutions are rep-
resented.

116

Chapter 10. Control Program Implementation

Figure 10.2 shows a bar graph of the Yaw Optimizer’s mean run times for each

algorithm when there was a feasible solution. The interior point method took signifi-

cantly longer than the simplex method, regardless of being in standard/nonstandard

form or the ordering method used. For the simplex method, nonstandard problem

formulations took less time. While Figure 10.2 doesn’t show it very well, the non-

standard primal simplex method converged to a solution in an average of 106 µs.

The nonstandard dual simplex method converged to a solution in 116 µs on average.

While the difference is not substantial, the primal simplex performed slightly better.

The simplex method always converged in one iteration.

Figure 10.3 shows a bar graph of the Pitch Roll Limiter’s mean run times for

the simplex method when there was a feasible solution. The standar deviations are

included as well. The interior point methods kept crashing at run time, so data is

not available for their performance. The dual simplex ended up outperforming the

primal simplex, regardless of the standard/nonstandard problem formulation. Both

the standard and nonstandard dual simplex methods converged in an average time

of 145 µs. The simplex method always converged within one iteration.

10.10 Trajectory Generation

The Trajectory Maker class was created to handle generating trajectories based on

the currently selected flight mode. All of the trajectories were formulated based

on either maintaining a constant position/heading or using a sinusoidal sweep from

one point to another. This generated computationally simple trajectories that were

easily differentiable down to their fourth derivative. The figure 8 trajectory is the

only exception, as it continuously kept executing a sinusoidal trajectory. While the

sinusoids were constructed to provide continuous position reference, no effort was

made for velocity, acceleration, jerk, or snap continuity.

117

Chapter 10. Control Program Implementation

10.11 Logging Thread

The Logger Thread class was programmed to handle writing lines of log information

to a Comma Separated Value (CSV) file. Data was accumulated in a string until a

full line was obtained, at which point the string was passed to a thread. The thread

handled grabbing the string from the main process and saving it to a log file. The

multithreaded nature of this process stemmed from the OS timing issues caused by

file writes. Before the multithreaded version was implemented, the control program

would periodically see loop times jump from 5 ms to 50 ms. The delays sometimes

rose as high as 200 ms, which caused problems for the control loop. By implementing

the logging with multithreading, the problem vanished.

118

Chapter 11

AscTec Hummingbird Physical

Model Evaluation

As the feedback linearization process effectively involves inverting the mechanics of

the quadrotor to create artificial linear inputs, mismatches between the expected

quadrotor model and the actual quadrotor model can produce poor linearization

performance, which leads to poor controller performance. This chapter looks into

measuring the physical parameters of the quadrotor rather than relying upon ideal

specifications. Section 11.1 examines the expected motor speeds for various com-

mands and compares them to the measured motor speeds. Section 11.2 examines

the step response of the motor’s speed when rapidly increasing and decreasing the

motor command value. Section 11.3 looks into measuring the propellers’ thrust and

drag coefficients to obtain a more accurate average number. Section 11.4 uses the

results from the previous three sections to attempt to measure the rotational iner-

tias of the quadrotor with the attached protective frame and Intel Edison Quadrotor

Block.

119

Chapter 11. AscTec Hummingbird Physical Model Evaluation

11.1 Motor Commands vs. Motor Speeds

This section examines the process for generating desired motor speeds using motor

command values. The AscTec Autopilot’s motor speed command system consists of

sending a direct motor command value between 0 and 200 to each motor. 0 turns

a motor off, and 1 through 200 scale linearly from the lowest speed to the highest

speed. This is the extent of the documentation presented on the AscTec Wiki [24],

so other sources are needed for more information.

Examining the source code [61] provided in the AscTec SDK, the file “sdk.h” pro-

vides the relationship between a direct motor command value DMCi and a motor’s

rotation speed ωi (rpm) as in Equation 11.1. Equation 11.2 provides the corre-

sponding conversion factor from a given motor speed ωi (rpm) to the desired motor

command character DMCi. Extrapolating from Equation 11.1, the minimum motor

speed is ∼1,100 rpm, while the maximum motor speed is 8,600 rpm.

ωi = (25 + (DMCi ∗ 175/200)) ∗ 43, (11.1)

DMCi = ((ωi/43)− 25) ∗ 200/175. (11.2)

To evaluate the accuracy of Equation 11.1, a set of data where the quadrotor’s motors

were set to constant DMC values for an extended period of time (i.e. data collected

for the thrust test done in Section 11.3.1) was analyzed and the measured motor

speeds were processed. Data for each motor was processed as follows:

1. Separate the data into portions where the DMC was held at a constant value.

2. Remove the first 0.8 seconds of data from each portion to eliminate any tran-

sient effects in motor speed after a DMC change. If the portion of data is

shorter than 0.8 seconds, eliminate it from the data set.

3. Calculate the mean and standard deviation of the measured motor speed for

each portion and plot the results.

120

Chapter 11. AscTec Hummingbird Physical Model Evaluation

DMC (#)
0 50 100 150

A
ve

ra
ge

M
ot

or
S
p
ee

d
(r

p
m

)

0

2000

4000

6000

8000
Motor 1

<

7

DMC (#)
0 50 100 150

A
ve

ra
ge

M
ot

or
S
p
ee

d
(r

p
m

)

0

2000

4000

6000

8000
Motor 2

<

7

DMC (#)
0 50 100 150

A
ve

ra
ge

M
ot

or
S
p
ee

d
(r

p
m

)

0

2000

4000

6000

8000
Motor 3

<

7

DMC (#)
0 50 100 150

A
ve

ra
ge

M
ot

or
S
p
ee

d
(r

p
m

)

0

2000

4000

6000

8000
Motor 4

<

7

Figure 11.1: Plots of mean measured motor speeds with standard deviation brackets
for each motor.

Figure 11.1 shows plots for each motor of the mean and standard deviation in

the measured motor speeds for a given DMC value. Examining the reults for each

motor, all four motors appear to be predominantly linear. A minor nonlinearity

appears near a DMC value of 25, though it largely remains linear on either side

of this area. Some minor deviations appear near the lower DMC values, but these

outlying points are residual transient effects from the process used to set the DMCs

(through the GCS software) and aren’t a problem. The standard deviation gradually

increased as the motor speeds increased with periodic spikes in size (likely from a

low amount of data for that value).

121

Chapter 11. AscTec Hummingbird Physical Model Evaluation

DMC (#)
0 50 100 150

A
ve

ra
ge

M
ot

or
S
p
ee

d
(r

p
m

)

0

1000

2000

3000

4000

5000

6000

7000
Motor 1
Motor 2
Motor 3
Motor 4
Expected

Figure 11.2: Plot of average measured motor speed vs. expected motor speed for
DMC values.

Figure 11.2 groups the means for all four motors into one plot and plots Equation

11.1 on top. Once the DMC values is higher than the nonlinearity point at ∼25, the

means for all of the measured motor speeds perfectly follow the expected equation

line. The measured motor speeds for DMC < 25 were slightly higher than expected,

but they were still largely clustered around the expected equation line. Based on

the close match-up seen in Figure 11.2, Equation 11.1 is deemed to be sufficiently

accurate for flying the quadrotor, and Equation 11.2 will be used to convert a desired

motor speed to a direct motor command value.

122

Chapter 11. AscTec Hummingbird Physical Model Evaluation

11.2 Motor Step Response Plots

This section quickly examines the motor’s response time to a commanded motor

speed value. Figure 11.3a shows the motor speed response time for a sudden DMC

jump from 1 to 200, while Figure 11.3b shows the motor speed response time for a

sudden DMC jump from 150 to 1. When increasing the commanded motor speed,

the settling time is quite short (∼ 200 ms), even when transitioning from the lowest

possible value to the highest possible value. When decreasing the commanded motor

speed, the settling time is much longer (∼ 1 s). The results in Figure 11.3 seem

to indicate that commands involving motor speed increases don’t cause any latency

issues, but commands involving slowing the motors may take a while, so aggressive

maneuvers downwards may be difficult to execute. Otherwise, given the relatively

short response time from such large speed command changes, the rotational inertia

effects of having to accelerate the propellers will largely be considered insignificant

for state estimation and controls purposes.

Time (s)
162.5 163 163.5 164 164.5

co
m

m
an

d
ed

/m
ea

su
re

d
m

ot
or

sp
ee

d
(r

p
m

)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Commanded
Measured

(a) Rise

Time (s)
141.5 142 142.5 143 143.5

co
m

m
an

d
ed

/m
ea

su
re

d
m

ot
or

sp
ee

d
(r

p
m

)

1000

2000

3000

4000

5000

6000

7000

8000

Commanded
Measured

(b) Fall

Figure 11.3: Plots of the motor speed step response for rising and falling step com-
mands. The blue lines represent the commanded values, while the orange lines
represent the measured values.

123

Chapter 11. AscTec Hummingbird Physical Model Evaluation

11.3 Propeller Coefficient Evaluation

To test the performance of the Hummingbird quadrotor’s flexible propellers, two tests

were performed: a static thrust test, and a static drag test. Figure 11.4 shows the

setups of the thrust and drag tests. Both tests involved weighing the quadrotor down

and suspending it using a harness composed of rope. The static thrust test involved

suspending the quadrotor harness from a hanging electronic scale and measuring the

weight as motor speeds were varied. The drag test added a rigid arm with a point

at a set radius, setting it to push against an electric scale, setting the motors such

that it executed a strong yaw torque, and measuring the “weight” generated at the

set radius.

(a) Thrust Coefficient Test (b) Drag Coefficient Test

Figure 11.4: Pictures of the quadrotor while performing the thrust and drag coef-
ficient tests. An aluminum mounting block can be seen under the bottom of the
quadrotor.

124

Chapter 11. AscTec Hummingbird Physical Model Evaluation

11.3.1 Propeller Thrust Coefficients

To evaluate the thrust coefficient of the flexible propellers, the quadrotor was weighed

down and suspended from a hanging electric scale. The scale’s weight reading was

recorded with the motors off. The motors were all set with a DMC value of 1 for

a period of time, and the scale’s weight reading was recorded. This process was

repeated for incrementing DMC values from 1 to 128, at which point the quadrotor

started to become unstable within the harness shown in Figure 11.4a. The quadro-

tor’s measured motor speeds as reported by the Autopilot were recorded during the

entire process.

The methods described in Section 11.1 was used to generate average motor speeds

for each DMC. These averages were grouped together to form one big set, visible

outliers were removed, and an average motor speed for each DMC was generated.

The scale readings were subtracted from the initial scale reading to give the net

thrust contribution in kg, which was converted to Newtons. The net thrust value

was divided by 4 to give the average thrust generated by each propeller.

Figure 11.5a shows a plot of the average motor speeds compared to the calculated

average thrust for one propeller. As the average motor speeds were generated from

noisy measurements, some jagged lines appear in the plot. A quadratic regression was

applied to the set to match the relationship between propeller speed and generated

thrust. A quadratic coefficient of 4.9782 × 10−8 N/rpm2 resulted from the data set.

This would imply a thrust coefficient of ≈ 5.0 × 10−8 N/rpm2.

Calculating the thrust coefficient on a per-DMC basis, however, presented a

different potential coefficient. Figure 11.5b shows a plot of the calculated thrust

coefficient versus average propeller speed. The thrust coefficient appears to be lower

at low propeller speeds and slowly levels out as the motor speed passes 3,000 rpm. A

trend line in Figure 11.5b shows that the calculated thrust coefficient values center

125

Chapter 11. AscTec Hummingbird Physical Model Evaluation

!avg (rpm)
1000 2000 3000 4000 5000 6000

T
h
ru

st
(N

)

0

0.5

1

1.5

2

Quadratic Line
Data

y = ax2 + bx + c
a: 4.9782e-08
b: 7.7151e-07
c: -0.020064

(a) Thrust vs. Motor Speed Squared

!avg (rpm)
1000 2000 3000 4000 5000 6000

T
h
ru

st
co

e/
ci
en

t
b

(N
/r

p
m

2
)

#10-8

3

3.5

4

4.5

5

5.5

b = 4.9 # 10!8

(b) Thrust Coefficient vs. Motor Speed

Figure 11.5: Plots from thrust coefficient test. 11.5a: Trend of thrust vs. the average
motor speed squared. 11.5b: Plot of the thrust coefficient vs the average motor speed.

around 4.9 × 10−8 N/rpm2 past the 3,000 rpm mark. As the propellers will primarily

be operating within the middle of their speed range, a thrust coefficient value of

b = 4.9 × 10−8 N/rpm2 will be used. This value is approximately 80% of the value

specified in [20].

11.3.2 Propeller Drag Coefficients

To evaluate the drag coefficient of the flexible propellers, the quadrotor was weighed

down and suspended by a rope. A metal bar was fixed to the quadrotor frame, and

a bolt was attached to the bar’s end such that it stuck out perpendicular to the

bar. The quadrotor was suspended in such a way that the bolt was aligned to press

on an electric scale secured to a vertical surface. Motors 2 and 4 were both set to

DMC values of 50 while Motors 1 and 3 were left off, which generated a net negative

torque. The bolt pressed against the scale and generated a force/“weight” reading

at a given radius, which was a measurable torque. This process was repeated for

DMC values of 100, 150, and 200 as well.

126

Chapter 11. AscTec Hummingbird Physical Model Evaluation

Table 11.1: Test Results for the Drag Coefficient Test

DMC Ωavg (rpm) Fscale (kg) τz (N m) k (N m/rpm2)

50 2,922 0.003 0.013 7.6 × 10−10

100 4,817 0.008 0.035 7.5 × 10−10

150 6,518 0.017 0.074 8.7 × 10−10

200 7,988 0.024 0.104 8.1 × 10−10

The radius at which the bolt was fixed was measured to be r = 17
3

8
inches, which

corresponds to r = 44.1325 cm. Table 11.1 lists the measured average motor speeds

for the test, the measured scale readings, the resulting torque, and the effective drag

coefficient calculated using Equation 11.3.

k =
rFscale
2Ω2

avg

=
τz

2Ω2
avg

. (11.3)

The low precision of the electric scale (0.001 kg) made it difficult to gather any

conclusive data on the flexible propellers’ drag coefficient. Still, the general mean

of the drag coefficients was loosely grouped around 8 × 10−10 N m/rpm2, which is

∼53% of the specified value from [20].

11.4 Quadrotor Rotational Inertia

With properly characterized propellers, it becomes possible to evaluate the rotational

inertia of the quadrotor. The on-board gyroscopes can quickly measure any changes

in angular velocity, while specific motor commands can be sent to generate steady

torques. For a single axis of rotation, an object’s rotational inertia J , the net torque

it experiences, and its angular acceleration are related through Equation 11.4. This

equation stems from Euler’s equation of motion (Equation 6.15) collapsing when only

one angular velocity is nonzero. Using this relationship, the rotational inertia of the

quadrotor around its ZB and YB axes were evaluated. As the quadrotor is largely

127

Chapter 11. AscTec Hummingbird Physical Model Evaluation

Figure 11.6: Picture of the suspended quadrotor while testing its pitch rotational
inertia.

symmetrical around its XB and YB axes, the rotational inertias around both axes

were assumed to be the same.

τ = Jω̇. (11.4)

Figure 11.6 shows a configuration used to evaluate the pitch (YB) rotational inertia.

A similar configuration was used for the yaw (ZB) rotational inertia. The quadrotor

was suspended using fishing line such that it hung vertically in a balanced manner.

The fishing line was loosely attached to a fixed metal bar using a zip tie. The zip

tie prevented the quadrotor from swinging, but it allowed the fishing line to freely

rotate.

128

Chapter 11. AscTec Hummingbird Physical Model Evaluation

Time (s)
7 7.5 8 8.5 9

!
y

(r
ad

/s
)

-2

0

2

4

6

8

A (7.4854, -0.31985)

(8.2092, 6.9195) !

_!y : 10.0014 rad/s2

(a) Pitch Inertia Test

Time (s)
27.8 28 28.2 28.4 28.6 28.8

!
z
(r

ad
/s

)

-1

0

1

2

3

4

5

A (27.9812, 1.0197)

(28.6163, 3.8035) !

_!z : 4.3833 rad/s2

(b) Yaw Inertia Test

Figure 11.7: Plots of the angular accelerations over time for the pitch and yaw
rotational inertia tests.

For the pitch inertia test, Motor 3 was commanded to execute a constant DMC

value of 50 while the rest of the motors were off. Figure 11.7a shows the resulting

progression of ωy over time. The average angular acceleration over the course of 0.7

seconds was 10.0014 rad/s2. Past this point, the gyroscope saturated and continued

to report a constant angular velocity. Equation 11.5 calculates the torque applied

using the average motor speed for a DMC of 50, while Equation 11.6 calculates the

quadrotor’s pitch rotational inertia. The resulting value of 7.1 × 10−4kg m2 shows

that the added Edison block and protective frame effectively doubled the quadrotor’s

Jyy value.

τy = blΩ2 = (4.9× 10−8 N/rpm2)(0.17 m)(2, 922 rpm)2 = 0.0071 N m,

(11.5)

Jyy =
τy
ω̇y

=
0.0071 N m

10.0014 rad/s2 = 7.1× 10−4 kg m2. (11.6)

For the yaw inertia test, Motors 1 and 3 were set to DMC values of 150 while

Motors 2 and 4 remained off. Figure 11.7b shows the resulting progression of ωz over

time. The average angular acceleration ofver the course of 0.6 seconds was 4.3833

129

Chapter 11. AscTec Hummingbird Physical Model Evaluation

rad/s2. The measurements became fairly noisy, so points near the middle of the

vibrations were selected. The torque for DMC values of 150 was already measured

in Table 11.1. Equation 11.7 calculates the quadrotor’s yaw rotational inertia. The

resulting value of 0.017 kg m2 shows that the Edison block and protective frame

more than doubled the quadrotor’s Jzz value.

Jzz =
τz
ω̇z

=
0.074 N m

4.3833 rad/s2 = 0.017 kg m2. (11.7)

130

Chapter 12

Results

This chapter examines the flight performance of the quadrotor. Section 12.1 shows

a simulation of the nonlinear controller’s performance on an ideal quadrotor model.

Section 12.2 examines the flight performance where the quadrotor was commanded

to take off from the ground and hover. Section 12.3 examines the flight performance

for a test case where the quadrotor was commanded to fly in a tilted figure eight

pattern. The tracking error in all three cases is examined.

12.1 Controller Simulation Results

The feedback linearization-based controller was created in MATLAB and simulated

with an ideal, frictionless, damping-free quadrotor model. To evaluate its perfor-

mance in tracking a trajectory, a trajectory pattern in the form of a figure eight with

varying altitude was constructed. The figure eight had a width (XW) of 1.5 meters,

a length (YW) of 2 m, and an altitude variation of 0.50 m. The figure eight had a

period of 12 seconds. By using sinusoids for the trajectory signals, determining their

derivatives for the feedback linearization’s artificial inputs was simplified.

131

Chapter 12. Results

1

0.5

X position (m)

0

-0.5

-1-1.5
-1

-0.5

Y position (m)

0
0.5

1

1.2

0.8

0.6

0.2

0.4

1

1.5

Z
p
os

it
io

n
(m

)
State
Trajectory

Figure 12.1: 3-D plot of the test trajectory and the simulated quadrotor’s attempt
to follow it.

Figure 12.1 shows a 3-D plot of the generated trajectory and the quadrotor’s

states as it tracks the trajectory. Figure 12.2 shows the evolution of each trajectory

value and output state. The simulated controller manages to quickly converge to

the target trajectory and lock on for the duration of the flight. As the feedback

linearization process used the same model that was generated for performing state

evolution calculations, the feedback linearization manages to perfectly invert the

quadrotor’s dynamics and control the quadrotor’s position in a linear manner. Some

initial oscillations in the various position states can be seen, but the oscillations

quickly decay away until the system converges to the reference trajectory.

132

Chapter 12. Results

Time (s)
0 2 4 6 8 10 12

X
P
o
si
ti
o
n

(m
)

-1

-0.5

0

0.5

1

State
Trajectory

Time (s)
0 2 4 6 8 10 12

Y
P
o
si
ti
o
n

(m
)

-2

-1

0

1

2

State
Trajectory

Time (s)
0 2 4 6 8 10 12

Z
P
o
si
ti
o
n

(m
)

0.4

0.6

0.8

1

1.2

State
Trajectory

Time (s)
0 2 4 6 8 10 12

H
ea

d
in

g
A

n
g
le
?

(/
)

-0.2

-0.1

0

0.1

0.2

0.3

State
Trajectory

Figure 12.2: Plot of the test trajectory values and the simulated quadrotor’s states
as it attempt to follow.

133

Chapter 12. Results

12.2 Takeoff and Hover Results

For the takeoff procedure, the reference altitude was swept upwards in a sinusoidal

manner from ground level to an altitude of 0.75 m. The x and y positions were

commanded to hold constant from their starting positions at ground level, while the

heading angle was commanded to sweep to 0◦/0 radians. Generating the sinusoidal

sweeps in heading and altitude involved also generating the appropriate trajectory

derivatives to serve as references for the feedback linearization’s artificial input. After

coming within 5 cm of the target altitude, the quadrotor was told to hover where it

was until it received another command.

Figure 12.5 shows a 3-D plot of the quadrotor’s position trajectory and states,

while Figure 12.3 shows the individual states and trajectories. The takeoff procedure

started around the 87 second mark and finished around the 89 second mark. The

quadrotor’s x and y states initially varied by a large margin, though this was caused

by the quadrotor sitting at a slight angle on takeoff. Once the hover mode was

reached, the x and y values fluctuated around the reference signal. The altitude and

heading followed their reference signals with minor fluctuations, but there were no

apparent unexpected behaviors.

Figure 12.4 shows the error associated with each state and trajectory signal.

After the takeoff procedure and some brief fluctuations in the transition to hovering,

the x and y errors never went above ∼ 2.5 cm/1 inch. While hovering, the altitude

remained within 1 cm of the reference signal. After leaving the ground, the heading

angle stayed within ∼ 1◦/0.018 radians of the given trajectory.

134

Chapter 12. Results

Time (s)
85 90 95 100 105 110

X
P
os

it
io

n
(m

)

-0.04

-0.02

0

0.02

0.04

0.06

State
Trajectory

Time (s)
85 90 95 100 105 110

Y
P
os

it
io

n
(m

)

0.08

0.1

0.12

0.14

State
Trajectory

Time (s)
85 90 95 100 105 110

Z
P
os

it
io

n
(m

)

0

0.2

0.4

0.6

0.8

State
Trajectory

Time (s)
85 90 95 100 105 110

H
ea

d
in

g
A

n
gl

e
A

(/
)

-2

-1

0

1

2

State
Trajectory

Figure 12.3: Plots of the position and heading trajectories vs. the quadrotor’s states
as the quadrotor takes off and hovers.

135

Chapter 12. Results

Time (s)
85 90 95 100 105 110

X
E
rr

or
(m

)

-0.06

-0.04

-0.02

0

0.02

0.04

Time (s)
85 90 95 100 105 110

Y
E
rr

or
(m

)

-0.04

-0.02

0

0.02

0.04

Time (s)
85 90 95 100 105 110

Z
E
rr

or
(m

)

-0.05

0

0.05

0.1

Time (s)
85 90 95 100 105 110

H
ea

d
in

g
E
rr

or
(/

)

-2

-1

0

1

2

Figure 12.4: Plots of the error between the trajectory and the quadrotor’s state while
taking off and hovering.

136

Chapter 12. Results

12.3 Trajectory Tracking Results

To evaluate the quadrotor’s hardware performance in tracking a trajectory, the same

trajectory defined in Section 12.1 was used. Figure 12.6 shows a 3-D plot of the

quadrotor’s position trajectory and states during the figure eight pattern, while Fig-

ure 12.7 shows the individual states and trajectories. After a discontinuity in the

trajectory and a resulting jump in the states, the quadrotor eventually converged

and tracked the desired trajectory. A discontinuity in the quadrotor’s state occurs

around the 23.5 second mark. Examining the data set, the discontinuity resulted

from the control program not receiving Vicon measurements for a period of ∼300

ms. In that time frame, the IMU and state prediction filtering took over and the

quadrotor slowly drifted over time.

While Figure 12.6 shows that the quadrotor largely followed the desired pattern,

Figure 12.7 shows that it did so with a delay. The delay worked out to be ∼200 ms.

Curiously, this 200 ms delay looks similar to the one seen in the motor speed step

response plots found in Chapter 11. This seems to imply that the assumption made

in Section 11.2 about the motor acceleration dynamics being insignificant may not

be valid. Still, other sources of error may be causing the problem, such as unmodeled

dynamics (drag, gyroscopic effects, and motor accelerations) that are left out of the

feedback linearization’s inversion process.

Figure 12.8 shows the error between the reference trajectories and the quadrotor’s

states. The error for all three position states varies sinusoidally at a frequency

approximately equal to that of its reference trajectory. While the altitude stayed

within 5 cm of the trajectory, the y state varied by almost 10 cm, and the x state

varied by almost 20 cm. These values largely stemmed from the lag seen between

the trajectory and the states.

137

Chapter 12. Results

To account for the delay seen in Figure 12.7, the trajectory was artificially lagged

and the quadrotor’s error was recalculated. Figure 12.9 shows the resulting error

with ∼175 ms of simulated delay. The error drops down substantially, with both

the x and y errors dropping to within 5 cm. The effect on altitude error was not as

drastic; it dropped to be within ∼3 cm. Still, the results of Figure 12.9 indicate that

a latency of ∼175 ms exists somewhere within the system. The consistency of the

latency is cause for concern.

138

Chapter 12. Results

0.2
0.1

X position (m)

0
-0.1

-0.20

0.1

0.2

Y position (m)

0.3

0.4

0.8

0.6

0.4

0

0.2

0.5

Z
p
os

it
io

n
(m

)

State
Trajectory

Figure 12.5: 3-D Plots of the position trajectories as the quadrotor takes off and
hovers.

1

0.5

X position (m)

0

-0.5

-1-1.5
-1

-0.5

Y position (m)

0
0.5

1

1

1.2

0.2

0.4

0.6

0.8

1.5

Z
p
os

it
io

n
(m

)

State
Trajectory

Figure 12.6: 3-D plot of the test trajectory and the quadrotor’s attempt to follow it.

139

Chapter 12. Results

Time (s)
14 16 18 20 22 24 26

X
P
os

it
io

n
(m

)

-1

-0.5

0

0.5

1

State
Trajectory

Time (s)
14 16 18 20 22 24 26

Y
P
os

it
io

n
(m

)

-2

-1

0

1

2

State
Trajectory

Time (s)
14 16 18 20 22 24 26

Z
P
os

it
io

n
(m

)

0.4

0.6

0.8

1

1.2

State
Trajectory

Time (s)
14 16 18 20 22 24 26

H
ea

d
in

g
A

n
gl

e
A

(/
)

-1

-0.5

0

0.5

1

State
Trajectory

Figure 12.7: Plots of the position and heading trajectories and the quadrotor’s at-
tempt to follow them.

140

Chapter 12. Results

Time (s)
14 16 18 20 22 24 26

X
E
rr

or
(m

)

-0.4

-0.2

0

0.2

0.4

Time (s)
14 16 18 20 22 24 26

Y
E
rr

or
(m

)

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)
14 16 18 20 22 24 26

Z
E
rr

or
(m

)

-0.1

-0.05

0

0.05

0.1

Time (s)
14 16 18 20 22 24 26

H
ea

d
in

g
E
rr

or
(/

)

-1

-0.5

0

0.5

1

Figure 12.8: Plots of the error between the trajectory and the quadrotor’s state.

141

Chapter 12. Results

Time (s)
14 16 18 20 22 24 26

X
E
rr

or
(m

)

-0.2

-0.1

0

0.1

0.2

Time (s)
14 16 18 20 22 24 26

Y
E
rr

or
(m

)

-0.1

-0.05

0

0.05

0.1

Time (s)
14 16 18 20 22 24 26

Z
E
rr

or
(m

)

-0.05

0

0.05

0.1

Time (s)
14 16 18 20 22 24 26

H
ea

d
in

g
E
rr

or
(/

)

-1

-0.5

0

0.5

1

Figure 12.9: A reproduction of Figure 12.8 where the trajectory has been artificially
lagged by 175 ms.

142

Chapter 13

Conclusions and Future Work

13.1 Conclusions

In this thesis, a high-performance quadrotor control system was developed for an As-

cTec Hummingbird quadrotor using direct motor speed control within a Vicon motion

capture system environment. A custom circuit board was designed for interfacing

the Hummingbird’s Autopilot with an Intel Edison computer. A communication

framework was developed between the Intel Edison and the Autopilot’s HLP such

that the Edison could receive IMU measurements and send motor speed commands

to the motor controllers.

An explanation of Euler angles and quaternions is provided, and a split quater-

nion frame is described. A mathematical model for the quadrotor’s dynamics was

developed. Feedback linearization was applied to the quadrotor’s dynamics with the

split quaternion system to render the system input-output linear relative to artificial

inputs. A controller based on developing an exponentially stable Lypaunov function

was applied to the quadrotor’s linearized dynamics. Design heuristics and the simplex

method ensured the quadrotor could safely restrict infeasible input combinations.

143

Chapter 13. Conclusions and Future Work

the Vicon system was configured to transmit the quadrotor’s position and orien-

tation to the Edison over Wi-Fi. The Vicon measurements and the Autopilot’s IMU

measurements are meshed together on the Edison using a quick, Kalman-like filter

that bypasses the lengthy Kalman filter and Extended Kalman filter calculations us-

ing a heuristic-based approach. A method for generating the quadrotor’s velocities

from noisy position measurements and inaccurate acceleration measurements was

proposed and implemented.

A multithreaded C++ program was written to handle obtaining measurements,

performing state estimation, calculating control inputs, limiting invalid inputs, send-

ing motor commands to the quadrotor, and logging the program’s variables. The

Hummingbird quadrotor’s propellers and physical model were evaluated.

The control system was applied to the quadrotor, flight patterns were performed,

and the results were analyzed. Hovering control was found to work well within 2.5

cm of a desired hover point. Trajectory tracking came within 5 cm of the desired

reference, albeit with ∼175 ms of latency.

13.2 Contributions

Below is a list of this thesis’ main contributions:

• Circuit Board Design: This thesis developed a custom circuit board designed

specifically to interface the Intel Edison with the AscTec Hummingbird’s Au-

topilot while providing power, battery charging, and USB serial console func-

tionalities.

• Communication Framework: A custom communication framework was imple-

mented between the Edison and the Autopilot’s HLP for passing data back

and forth over UART in a fast, reliable, and organized manner.

144

Chapter 13. Conclusions and Future Work

• Feedback Linearization Rederivation: Extensive work was put into rederiving

the feedback linearization process developed in [9] for a Z-up coordinate system.

• Input Limitation: A custom input restriction method was developed using

optimization methods and some design choices to ensure only feasible input

combinations were attempted.

• Velocity Estimation: A custom method for quickly estimating an object’s ve-

locity from position and acceleration data was developed and tested.

• Control Program: A modular multithreaded C++ program was designed for

implementing the control process on the Edison. the modularity of the design

facilitates replacing individual components as needed for future design itera-

tions.

• Hummingbird Model Evaluation: unique sets of propeller coefficients and ro-

tational inertias were found for the AscTec Hummingbird with an attached

protective frame, attached Edison and circuit board, and the stock flexible

propellers. The measured propeller coefficients provide conflicting numbers for

the values provided by AscTec and other sources.

13.3 Areas for Improvement

Multiple areas exist for improving the current system. The most notable is a con-

troller that incorporates the dynamics of the individual motors and propellers to

increase the system responsiveness. Other parameters to be included in the mod-

eling would be translational and rotational damping, the gyroscopic effects of the

propellers, and the effects of accelerating the propellers. The increased model and

controller accuracy would hopefully mitigate the ∼175 ms delay seen between a de-

sired trajectory and the quadrotor’s state.

145

Chapter 13. Conclusions and Future Work

Another improvement would involve shifting the control algorithm to the Autopi-

lot’s HLP to take advantage of the 1 kHz default loop rate and direct access to the

IMU measurements. However, such an implementation would likely have to operate

only on attitude control, while some type of attitude reference values are passed from

a position controller. Using fixed point representations of numbers would keep the

control algorithm efficient and tractable on the Autopilot’s HLP, though developing

a robust framework for fixed point notation would take a lot of work.

Sticking with the current control scheme, research into smooth trajectory gener-

ation that avoids discontinuities in the position states and their derivatives would

help the nonlinear controller perform better. The discontinuities create rapid and

sometimes violent responses as the system attempts to quickly correct the problem.

The custom Quadrotor Block circuit board for attaching the Edison to the Au-

topilot could use several improvements. Battery protection circuitry could prevent

overly discharging the Edison’s battery. Voltage measurement methods would pro-

vide insight into the power left within be battery. Additional sensors, such as gyro-

scopes that don’t saturate when the Autopilot’s gyroscopes saturate, could be added

to the board to provide even more sets of measurements. Minor component changes

in future iterations could help keep the cost down and simplify the board assembly.

To increase the amount of feasible maneuvers, the Vicon motion capture volume

could be increased in size. The current size restricts the ability to perform large

and/or fast maneuvers. More cameras would also provide a higher degree of accuracy

and reduce the number of blind spots within the volume.

146

References

[1] P. J. C. Davalos, “Real-time control architecture for a multi uav test
bed,” Master’s thesis, University of New Mexico Dept. of Electrical
and Computer Engineering, December 2012. [Online]. Available: http:
//repository.unm.edu/handle/1928/21995

[2] (2014, May) Quadrotor’s real-time controller using labview. The University of
New Mexico - Marhes Laboratory. [Online]. Available: http://marhes.ece.
unm.edu/index.php/LabView Quadrotor

[3] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-free ma-
neuvers of a quadrotor with suspended payload: A dynamic programming ap-
proach,” in Robotics and Automation (ICRA), 2012 IEEE International Con-
ference on. IEEE, 2012, pp. 2691–2697.

[4] I. Palunko, P. Cruz, and R. Fierro, “Agile load transportation: Safe and efficient
load manipulation with aerial robots,” Robotics & Automation Magazine, IEEE,
vol. 19, no. 3, pp. 69–79, 2012.

[5] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learning swing-free tra-
jectories for uavs with a suspended load,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE, 2013, pp. 4902–4909.

[6] P. Cruz and R. Fierro, “Autonomous lift of a cable-suspended load by an un-
manned aerial robot,” in Control Applications (CCA), 2014 IEEE Conference
on. IEEE, 2014, pp. 802–807.

[7] K. Åström and K. Furuta, “Swinging up a pendulum by energy control,”
Automatica, vol. 36, no. 2, pp. 287 – 295, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109899001405

[8] S. Bouabdallah, A. Noth, and R. Siegwart, “Pid vs lq control techniques applied
to an indoor micro quadrotor,” in Intelligent Robots and Systems, 2004. (IROS

147

http://repository.unm.edu/handle/1928/21995
http://repository.unm.edu/handle/1928/21995
http://marhes.ece.unm.edu/index.php/LabView_Quadrotor
http://marhes.ece.unm.edu/index.php/LabView_Quadrotor
http://www.sciencedirect.com/science/article/pii/S0005109899001405

References

2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol. 3, Sept
2004, pp. 2451–2456 vol.3.

[9] O. Fritsch, P. De Monte, M. Buhl, and B. Lohmann, “Quasi-static feedback lin-
earization for the translational dynamics of a quadrotor helicopter,” in American
Control Conference (ACC), 2012, June 2012, pp. 125–130.

[10] Z. Shulong, A. Honglei, Z. Daibing, and S. Lincheng, “A new feedback lin-
earization lqr control for attitude of quadrotor,” in Control Automation Robotics
Vision (ICARCV), 2014 13th International Conference on, Dec 2014, pp. 1593–
1597.

[11] Y. Al-Younes, M. Al-Jarrah, and A. Jhemi, “Linear vs. nonlinear control tech-
niques for a quadrotor vehicle,” in Mechatronics and its Applications (ISMA),
2010 7th International Symposium on, April 2010, pp. 1–10.

[12] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, Oct 2007, pp. 153–158.

[13] P. De Monte and B. Lohmann, “Trajectory tracking control for a quadrotor he-
licopter based on backstepping using a decoupling quaternion parametrization,”
in Control Automation (MED), 2013 21st Mediterranean Conference on, June
2013, pp. 507–512.

[14] H. Voos, “Nonlinear control of a quadrotor micro-uav using feedback-
linearization,” in Mechatronics, 2009. ICM 2009. IEEE International Confer-
ence on, April 2009, pp. 1–6.

[15] M. Buhl and B. Lohmann, “Control with exponentially decaying lyapunov func-
tions and its use for systems with input saturation,” in Control Conference
(ECC), 2009 European, Aug 2009, pp. 3148–3153.

[16] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and
R. D’Andrea, “A platform for aerial robotics research and demonstration:
The flying machine arena,” Mechatronics, vol. 24, no. 1, pp. 41 – 54,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0957415813002262

[17] D. Mellinger, “Trajectory generation and control for quadrotors,” Ph.D.
dissertation, University of Pennsylvania, January 2012, dissertations available
from ProQuest. Paper AAI3509215. [Online]. Available: http://repository.
upenn.edu/dissertations/AAI3509215

148

http://www.sciencedirect.com/science/article/pii/S0957415813002262
http://www.sciencedirect.com/science/article/pii/S0957415813002262
http://repository.upenn.edu/dissertations/AAI3509215
http://repository.upenn.edu/dissertations/AAI3509215

References

[18] A. Maksymiw, AscTec Autopilot, Ascending Technologies GmbH, January 2015.
[Online]. Available: http://wiki.asctec.de/display/AR/AscTec+AutoPilot

[19] Go Further with Vicon MX T-Series, Revisioin 1.3, Vicon Motion Systems Ltd.,
January 2011.

[20] A. Ryll, AscTec Hummingbird, Ascending Technologies GmbH, April 2015.
[Online]. Available: http://wiki.asctec.de/display/AR/AscTec+Hummingbird

[21] K. P. Valavanis and G. J. Vachtsevanos, Handbook of Unmanned Aerial Vehicles.
Springer Science+Business Media, 2015.

[22] A. Ryll, Pinout and Connections, Ascending Technologies GmbH, January
2015. [Online]. Available: http://wiki.asctec.de/display/AR/Pinout+and+
Connections

[23] A. Maksymiw, AscTec SDK, Ascending Technologies GmbH, April 2014.
[Online]. Available: http://wiki.asctec.de/display/AR/SDK+Manual

[24] ——, AscTec Communication Interface: List of all predefined variables,
commands and parameters, Ascending Technologies GmbH, April 2015. [On-
line]. Available: http://wiki.asctec.de/display/AR/List+of+all+predefined+
variables%2C+commands+and+parameters

[25] VICON MX Hardware System Reference, Revision 1.7, Vicon Motion Systems
Ltd., November 2007.

[26] Vicon Datastream SDK Manual, Revision 1.2.0, Vicon Motion Systems Ltd.,
March 2011.

[27] (2015, July) Community supported platforms. The Qt Company. [Online].
Available: https://doc.qt.io/qt-5/supported-platforms.html

[28] Intel Edison Module Hardware Guide, Revision 4, Intel Corporation,
January 2015, document Number 331189-004. [Online]. Available: http:
//download.intel.com/support/edison/sb/edisonmodule hg 331189004.pdf

[29] (2015, July) Yocto project homepage. The Yocto Project. [Online]. Available:
http://www.yoctoproject.org

[30] (2015, July) Ubilinux. Emutex Ltd. [Online]. Available: http://emutexlabs.
com/ubilinux

[31] S. Hymel. (2014, December) Loading debian (ubilinux) on the edison. Spark-
fun Electronics. [Online]. Available: https://learn.sparkfun.com/tutorials/
loading-debian-ubilinux-on-the-edison

149

http://wiki.asctec.de/display/AR/AscTec+AutoPilot
http://wiki.asctec.de/display/AR/AscTec+Hummingbird
http://wiki.asctec.de/display/AR/Pinout+and+Connections
http://wiki.asctec.de/display/AR/Pinout+and+Connections
http://wiki.asctec.de/display/AR/SDK+Manual
http://wiki.asctec.de/display/AR/List+of+all+predefined+variables%2C+commands+and+parameters
http://wiki.asctec.de/display/AR/List+of+all+predefined+variables%2C+commands+and+parameters
https://doc.qt.io/qt-5/supported-platforms.html
http://download.intel.com/support/edison/sb/edisonmodule_hg_331189004.pdf
http://download.intel.com/support/edison/sb/edisonmodule_hg_331189004.pdf
http://www.yoctoproject.org
http://emutexlabs.com/ubilinux
http://emutexlabs.com/ubilinux
https://learn.sparkfun.com/tutorials/loading-debian-ubilinux-on-the-edison
https://learn.sparkfun.com/tutorials/loading-debian-ubilinux-on-the-edison

References

[32] (2015, July) Compute module. Raspberry Pi Foundation. [Online]. Available:
https://www.raspberrypi.org/products/compute-module/

[33] (2015, July) Gumstix homepage. Gumstix, Inc. [Online]. Available: https:
//www.gumstix.com/

[34] (2015, July) Odroid homepage. Hardkernel Co., Ltd. [Online]. Available:
http://www.hardkernel.com/main/main.php

[35] XBee® Multipoint RF Modules, Digi International, 2011. [Online]. Available:
http://www.digi.com/pdf/ds xbeemultipointmodules.pdf

[36] (2015, March) Intel edison how-to guide v1.0. HELIOS Software
GmbH. [Online]. Available: http://www.helios.de/heliosapp/edison/index.
html#Power consumption

[37] MCP73831/2: Miniature Single-Cell, Fully Integrated Li-ion, Li-Polymer
Charge Management Controllers, Revision G, Microchip Technology Inc., July
2014, document DS20001984G. [Online]. Available: http://ww1.microchip.
com/downloads/en/DeviceDoc/20001984g.pdf

[38] FT232R USB UART IC, Version 2.10, Future Technology Devices International
Ltd., March 2012, document Number FT 000053. [Online]. Available: http:
//www.ftdichip.com/Support/Documents/DataSheets/ICs/DS FT232R.pdf

[39] (2014, October) Sparkfun blocks template. Sparkfun Electronics. [Online].
Available: https://github.com/sparkfun/Sparkfun Blocks Template

[40] UM10139: LPC214x User Manual, Revision 4, NXP Semiconductors, April
2012. [Online]. Available: http://www.nxp.com/documents/user manual/
UM10139.pdf

[41] H. G. Wells, War of the Worlds. Project Gutenberg, October 2004. [Online].
Available: http://www.gutenberg.org/cache/epub/36/pg36.txt

[42] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB,
ser. Springer Tracts in Advanced Robotics. Springer, 2011.

[43] D. M. Henderson, “Euler angles, quaternions, and transformation matrices
- working relationships,” NASA, Lyndon B. Johnson Space Center, Tech.
Rep., July 1977, mission Planning and Analysis Division. [Online]. Available:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf

[44] R. F. Stengel, Flight Dynamics. Princeton University Press, 2004.

150

https://www.raspberrypi.org/products/compute-module/
https://www.gumstix.com/
https://www.gumstix.com/
http://www.hardkernel.com/main/main.php
http://www.digi.com/pdf/ds_xbeemultipointmodules.pdf
http://www.helios.de/heliosapp/edison/index.html#Power_consumption
http://www.helios.de/heliosapp/edison/index.html#Power_consumption
http://ww1.microchip.com/downloads/en/DeviceDoc/20001984g.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20001984g.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
https://github.com/sparkfun/Sparkfun_Blocks_Template
http://www.nxp.com/documents/user_manual/UM10139.pdf
http://www.nxp.com/documents/user_manual/UM10139.pdf
http://www.gutenberg.org/cache/epub/36/pg36.txt
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf

References

[45] J. Huerta. (2015, April) Introducing the quaternions. UC Riverside
Department of Mathematics. [Online]. Available: http://math.ucr.edu/
∼huerta/introquaternions.pdf

[46] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. John Wiley
& Sons, Inc., 2003.

[47] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2001.

[48] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. Springer, 1999.

[49] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.

[50] N. S. Nise, Control Systems Engineering, 6th ed. John Wiley & Sons, Inc.,
2011.

[51] P. Dorato, C. Abdallah, and V. Cerone, Linear Quadratic Control: An Intro-
duction. Krieger Pub Co, 2000.

[52] J. Hespanha, Linear Systems Theory. Princeton University Press, 2009.

[53] J. Nocedal and S. Wright, Numerical Optimization, ser. Springer Series in
Operations Research and Financial Engineering. Springer New York, 2006.
[Online]. Available: http://books.google.com/books?id=eNlPAAAAMAAJ

[54] G. Welch and G. Bishop. (2006, July) An introduction to the kalman filter.
University of North Carolina at Chapel Hill Department of Computer Science.
[Online]. Available: https://www.cs.unc.edu/∼welch/media/pdf/kalman intro.
pdf

[55] M. Al-Alaoui, “Al-alaoui operator and the new transformation polynomials
for discretization of analogue systems,” Electrical Engineering, vol. 90,
no. 6, pp. 455–467, 2008. [Online]. Available: http://dx.doi.org/10.1007/
s00202-007-0092-0

[56] (2015, July) About ros. The Open Source Robotics Foundation. [Online].
Available: http://www.ros.org/about-ros/

[57] B. Barney. (2015, January) Posix threads programming. Lawrence Livermore
National Laboratory. [Online]. Available: https://computing.llnl.gov/tutorials/
pthreads/

[58] B. Hall. (2012, July) Beej’s guide to network programming. [Online]. Available:
http://beej.us/guide/bgnet/output/print/bgnet USLetter.pdf

151

http://math.ucr.edu/~huerta/introquaternions.pdf
http://math.ucr.edu/~huerta/introquaternions.pdf
http://books.google.com/books?id=eNlPAAAAMAAJ
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://dx.doi.org/10.1007/s00202-007-0092-0
http://dx.doi.org/10.1007/s00202-007-0092-0
http://www.ros.org/about-ros/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf

References

[59] (2015, July) About opencv. Itseez. [Online]. Available: http://opencv.org/
about.html

[60] A. Makhorin, GNU Linear Programming Kit Reference Manual for Version 4.55,
GNU Project, August 2014.

[61] A. Ryll. (2015, January) Asctec sdk download. Ascending Technologies GmbH.
[Online]. Available: http://wiki.asctec.de/display/AR/SDK+Downloads

152

http://opencv.org/about.html
http://opencv.org/about.html
http://wiki.asctec.de/display/AR/SDK+Downloads

