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Abstract

To meet the demands of the exponential growth in video, voice, data and mobile de-

vice traffic over the internet, the telecommunication industry has been moving toward

higher speed protocols such as 40-Gb/s and 100-Gb/s [1]. Operations at such high

speeds require detectors with optimized internal gain (leading to high sensitivity)

to reduce cost [2]. Avalanche photodiodes (APDs) are commonly used photodetec-

tors in many high-speed optical receivers due to their internal optoelectronic gain,

which allows the photogenerated current to dominate the thermal noise without the

need for optical pre-amplification of the received optical signal. However, the long

avalanche buildup time associated with APDs, namely the time needed for all the

impact ionizations to settle, has limited their speed and stopped them from meet-

ing the expectations of 40-Gb/s systems. A new approach was proposed recently

for operating APDs employing bit-synchronous and periodic dynamic biasing that is

expected to reduce the buildup time dramatically [3].
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In this dissertation, we present an extensive theoretical modeling and analysis for the

novel approach of dynamically biased APD. We develop the first theory for the joint

buildup-time and gain statistics for avalanche multiplication under dynamic electric

fields. We also develop a theory for filtered shot noise under dynamic biasing, which

addresses rigorously the statistic of the dynamically biased APD photocurrent, such

as the mean, variance, autocorrelation function, etc. This is used, in turn, to de-

rive analytical expressions for the statistics of the output of the integrate-and-dump

optical receiver output. The study is characterized by its ability to predict the per-

formance of a dynamically biased APD-based receiver and to optimize the system

parameters to achieve an optimal receiver performance. The exact expressions for

the receiver bit-error rate and sensitivity in an on-off keying setting will be extracted

using the photocurrent statistics. The sensitivity analysis of the dynamically biased

APD-based receiver will specifically capture intersymbol interference (ISI) and dark

current, as well as Johnson noise from the trans-impedance amplifier used in the

pre-amplification stage of receivers. The results show that operating the APD un-

der dynamic biasing improves the receiver performance beyond its traditional limits

operating under static biasing.
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Chapter 1

Introduction

1.1 Overview and motivation

The exponential growth of the Internet use has increased the demand for highly sen-

sitive optical detectors for high-bit-rate optical fiber communication systems [1]. The

Synchronous Optical Network (SONET) standards, optical carrier (OC) level 48 and

OC-192, specify the data rates in optical networks as 2.5Gb/s [9] and 10Gb/s [10]

respectively, but these are increasing to 40Gb/s and 100Gb/s, such as OC-768. The

intrinsic InGaAs pin photodetectors have been used extensively in optical commu-

nications due to their good electron transport properties and their ability to ab-

sorb radiation in 1.0 − 1.7 µm wavelength region efficiently [11]. Several proposed

structures for pin diodes meet with the requirements of the OC-192 [12,13] and OC-

768 [14,15] standards. The PIN diodes have been the perfected choice for most optical

communication. Presently, the only viable option for direct detection of 40-G/s bit

streams is InGaAs PIN photodiodes since very high bandwidths can be achieved with

them [16]. However, PIN photodiodes have low sensitivity since can they generate

only one electron-hole pair per incident photon. Therefore, a pre-amplifier is needed
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Chapter 1. Introduction

for low power level detection. Erbium doped fiber amplifiers (EDFAs) are used to

pre-amplify the signals optically before their detection by the PIN photodiode [17].

The resulting EDFA-PIN receiver can exhibit very high sensitivity, due to EDFA’s

high optical gain and low noise, as well as high speed, which is due to the high band-

width of the PIN photodiode. However, these receivers can be bulky and expensive.

An EDFA requires the use of meters of fiber (coiled in a fairly sizeable disk), and

more importantly, it requires the use of a pump laser, which provides the optical

amplification. The EDFA-PIN approach is expensive [18,19].

This limitation can be overcome by using avalanche photodiodes (APDs), in

which each detected photon is converted into a cascade moving carrier pairs. This

will offer an internal gain that improves the receivers’ sensitivity as it amplifies the

photocurrent without the need for optical pre-amplification of the received optical

signal. It is well known that the internal gain of APDs provides a higher sensitivity

in optical receivers than PIN photodiodes [20–22]. The APD is a reverse-biased

photodiode in which the electric field inside the depletion region is large enough to

excite new carries; this process is known as impact ionization. The APD reduces the

relative effect of Johnson noise in the preamplifier stage of an optical receiver and

improves the receiver’s sensitivity [2]. In addition to their high sensitivity, APD-

based receivers are highly cost effective compared to EDFA receivers. However,

since the impact ionization is random, the uncertainty in the multiplication factor

or gain, G, produces excess avalanche noise, known by the excess noise factor F .

Nonetheless, at high frequencies the associated noise may still be less than that of a

pre-amplifier. Thus the signal to noise ratio (SNR) of an optimized low noise APD

can outperform receivers that employ a combination of optical pre-amplification and

a pin photodetector.

Moreover, the APD’s avalanche buildup time, which is the stochastic time re-

quired for the cascade of impact ionizations to complete per incident photon, can
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Chapter 1. Introduction

further limit the receiver gain-bandwidth product by causing intersymbol interfer-

ence (ISI) in optical receivers [23,24]. This effect becomes more important when the

transmission speed is very high as in the OC-192 standard, where ISI can limit the

receiver performance. The buildup time has heretofore been the factor that limits

the use of APDs in 40-Gb/s systems. Hayat et al. [3,25] introduced a novel approach

for operating APDs in the linear mode employing bit-synchronous and periodic dy-

namic biasing that reduces the buildup time dramatically. It is predicted that the

new approach projects substantial improvements in the APDs gain-bandwidth prod-

ucts (GBPs).

In this dissertation, we rigorously analyze and theoretically model the APD’s

performance under dynamic biasing APD. We develop the theory for the joint statis-

tics of the stochastic gain and stochastic buildup time in dynamically biased APDs

for the first time, which is a major expansion of the recursive equations developed

in [23] under the assumption of static electric fields. We also develop a theory for

filtered shot noise under dynamic biasing, which addresses rigorously the statistic of

the dynamically biased APD photocurrent, such as the mean, variance, autocorrela-

tion function, etc. We incorporate these statistics in deriving analytical expressions

for the statistics of the photocurrent of dynamically biased APDs. The proposed

study is characterized by its ability to predict the performance of a dynamically

biased APD-based receivers and to optimize the system parameters to achieve an

optimal receiver performance. We also provide an approximation method for cal-

culating the statistics of the impulse-response function of the APD-based receivers

operating under dynamic biasing using the joint statistics of the stochastic gain and

buildup time. The exact expressions for the receiver bit-error rate and sensitivity

in an on-off keying setting will be extracted using the photocurrent statistics. The

sensitivity analysis of the dynamically biased APD-based receiver will incorporate

ISI and dark current as well as trans-impedance amplifier (TIA) noise used in the

pre-amplification stage of receivers. The results show that operating under dynamic
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biasing improves the receiver performance beyond its traditional limits operating un-

der static biasing. Moreover, the analysis show that dynamically biased APD relax

the stringent requirements of the width of the multiplication region, as normally

done thin-APD to enhance its speed.

1.2 Literature review

Figure 1.1: Trend in the gain-bandwidth products of InAlAs, InP and Ge-on-Si APDs
reported in the past three decades [1].

There have been numerous efforts in the past two decades to increase the quantum

efficiency and the avalanche gain or GBP APDs while maintaining a minimum noise

level. The first generation optical-fiber communication systems have been developed

in 1978 using a silicon APD [26]. The developed APD has been optimized for opti-

cal wavelength of 800 to 850 nm and exhibits a quantum efficiency greater than 90

%. To increase quantum efficiency without sacrificing in the avalanche gain perfor-

mance, separate absorption and multiplication (SAM) structure APDs became the

photodiodes of choice [27]. Due to the low loss wavelength of 1550 nm, current com-

mercial SAM APDs with an InP multiplication layer and InGaAs absorption layer,
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have been the perfect chose to use with the 2.5 Gb/s [28–30] and 10 Gb/s [31, 32]

standards. Figure 1.1 shows the general trend in the experimental APD GBPs from

1984 to present. The performance is optimized by properly controlling the thick-

ness of the multiplication layers to achieve a good avalanche gain while keeping the

field low enough to minimize the tunneling. Thin multiplication region have been

demonstrated to be an effective method for reducing multiplication noise, due to the

dead-space effect, and increasing GBPs [33–37].

The SNR of an APD in the presence of Johnson noise and dark current can be

found as follows [16]:

SNR =
(ηΦg)2

2ηΦBg2F + σ2
J + σ2

tunn

, (1.1)

where Φ is the photon incident rate on the APD, η is the APD’s quantum efficiency,

i.e., the probability that a single photon incident on the device generates a photo-

carrier pair that contributes to the detectors currents, B is the 3-dB bandwidth, σ2
J

is the variance of the Johnson noise and σ2
tunn is the variance of the dark current

dominated by tunneling. It is clear from (1.1) how the SNR increases with the aver-

age avalanche gain, g = E[G]. This advantage poses a drawback as the excess noise

factor F increases with the average gain g. However, there exist an optimal operating

gain where the avalanche benefits outweighs the associated noise. Figure 1.2 shows

the excess noise figure versus the avalanche gain for GaAs APDs with multiplication

region width varies from 0.1 to 0.8 µm [4]. For a specific gain, it is clear that the

excess noise decreases significantly with decreasing the width. In 2003, an APD with

a thin multiplication layer of 80 nm was fabricated to achieve the highest value of a

commercial InGaAs/InP APD GBP of 170 GHz [33]. However, such thin multipli-

cation layer is likely to contribute significant band-to-band tunneling current which

causes an increase in dark currents.

One of the InP based APDs limitation is the small (close to unity) electron-to-

hole ionization coefficient ratio, k, reported to be 2.5-4 [8]. Therefore an alternative
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Figure 1.2: Calculated excess noise curves (solid lines) with experimental data of
GaAs homojunction APDs for different multiplication widths [4].

material for the multiplication region was InAlAs which has an ionization coefficient

ratio farther from unity (k between 4 and 6.7 [38]) than that for InP, hence giving it

an edge over InP in terms of noise and GBP. The highest gain bandwidth products

of InAlAs based APDs were reported by a group at University of Texas at Austin

with values of 290 GHz in 2000 [37] and 320 GHz in 2001 [39], as shown in Fig. 1.1.

While InP/InGaAs SAM APDs have achieved excellent receiver sensitivities for

2.5 Gb/s [40] and 10 Gb/s [41], they cannot sustain higher bit rates due to their long

avalanche buildup time. Much of the recent work on APDs has focused on developing

new structures and incorporating alternative materials that will yield lower noise and

higher speed while maintaining optimal gain levels. The first demonstration at 40

Gb/s using the APD receiver was demonstrated in [42]. The minimum received

power is −19.6 dBm at 10−9 bit error rate (BER) and −19.0 dBm at 10−10 BER.

This was achieved by adding a GaAs-based TIA. Due to the TIA boost, the receiver

had a nominal GBP of 270 GHz at a gain of 10, whereas the GBP of the APD chip

alone was 140 GHz at a gain of 3.

Due to the large asymmetry of electron and hole ionization coefficients in silicon
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(Si) (k < 0.1), this material has been studied for several decades. However, Si

is not appropriate to absorb at the telecommunication wavelengths, which require

the use of smaller bandgap materials such as germanium (Ge). As a result, APDs

with a Ge absorption layer and a Si multiplication layer can achieve very good

performance with high quantum efficiency and low noise. In 2009, a monolithically

grown germanium/silicon avalanche photodetector was demonstrated to have a GBP

of 340 GHz and a sensitivity of -28 dBm at 10 Gb/s [43]. Later that year, Zaoui et

al. [44] reported a SAM Ge/Si APD with a GBP of 840 GHz operating at 1310nm.

1.3 Review of the dynamic-biasing approach

In traditional linear-mode setting, an APD is operated under a constant reverse

bias, which is selected to yield the optimal multiplication factor that maximizes the

receiver sensitivity [25] by finding the optimal tradeoff between speed (buildup time),

avalanche gain and the receiver noise (including the excess noise resulting from the

impact ionization uncertainty). At high speed communication, the APD performance

is limited by the avalanche buildup time. It is well know that the APD’s avalanche

amplification is correlated with the buildup time [23, 45]. Moreover, the buildup

time increases at higher realizations of the gain. However if a dynamic biasing is

considered instead of the traditional constant bias, then the buildup time can be

controlled to improve the GBP and achieve higher transmission rates.

We would like to mention that while a sinusoidal-gating approach has been pro-

posed for Geiger-mode APDs in the context of gated photon counting [46–48] its

rationale is totally different from that associated with the novel linear-mode dy-

namic biasing approach presented here. The purpose there is to force quenching

of the avalanche pulse after each detection-gate (high cycle of the sinusoidal bias)

and therefore minimize the total number of multiplications, which, in turn, would
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reduce after-pulsing. Specifically, photon counting with sinusoidal-gating is a binary

detection problem: the APD is responsive to only one photon each gate. In contrast,

in the proposed linear-mode dynamic biasing approach each and every photon in the

optical pulse that is absorbed by the photodetector contributes to the analog pho-

tocurrent. Thus, unlike linear-mode operation, ISI is not a concern in Geiger-mode

operation.

We illustrate the new approach proposed in [3] by exploring a simple, idealis-

tic idea that can eliminate the buildup time problem. Consider an On-Off-Keying

(OOK) optical receiver system with a sinusoidal reversed biased APD synchronized

with the optical bit stream as shown in Fig. 1.3(a). The photoncurrent generated

as a result of such dynamic biasing has the following properties. The photons that

are absorbed early in the optical pulse under dynamic biasing experience a period of

high electric field in the multiplication region of the APD. This phenomenon gener-

ates a strong photocurrent as shown in the schematic plot of Fig. 1.3(c). Next, as a

low electric field follows the high field-phase, the carries in the multiplication region

face a weaker impact ionization process, which causes a sudden drop in the impulse

response and a cutoff in the buildup time. Thus, the impulse response of an early

photon is distinguished by its high avalanche gain and its quenched tail at the end of

the bit period to avoid interference with the next incoming bit. On the other hand,

the late photons (the photons absorbed at the end of the bit period) experience a

low electric field when they first enter the multiplication region. This will make the

parent carrier to travel the multiplication region with a very low probability to ion-

ize. Therefore, the resulting impulse response will have a low avalanche gain and a

very short buildup time duration as shown in Fig. 1.3(c). Unlike the static bias case

shown in Fig. 1.3(b), the impulse response of a photon in a dynamic bias APD re-

ceiver is age-dependent. The statistical properties of the avalanche gain and buildup

time depends on the arrival time of the carrier to the multiplication region in each

optical pulse. Whereas in the constant bias case scenario, all absorbed photon has
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Figure 1.3: Schematic of the proposed dynamic biasing approach (red curves) com-
pared with the traditional static biasing approach (green curves). The periodic
change in the reverse bias within the optical-pulse period causes (1) photons that
arrive early in the pulse window (c- solid line) to trigger high avalanche gains but
limited avalanche duration, and (2) late photons (c- dashed line) to trigger avalanches
with low gains and limited buildup times.

an identical independent distribution regardless of its arrival time.
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1.3.1 Dynamic biasing in digital optical communication

Although the optoelectronic gain offered by the dynamically biased APD is depen-

dent periodically upon the arrival instant of the photon within each information bit,

the total charge accumulated in each bit in an integrate-and-dump receiver is not af-

fected by the time-variant nature of the gain. More precisely, since the photocurrent

is integrated over each bit in the receiver, the total charge is simply proportional

to the product of the average mean gain (averaged over all arrival times) and the

total number of photons in the optical pulse in each bit. In other words, the charge

produced in each bit remains proportional to the energy in the optical pulse in each

bit. Thus, the dynamically biased APD is linear as far as the receiver output is

concerned and hence it is a perfect fit to digital optical communications.

1.3.2 The potential impact of dynamic-biasing on communi-

cation systems

While sinusoidal biasing has been reported by Herbert and Chidley [49] as a way

to reduce excess noise in APDs, to the best of our knowledge, the dynamic-biasing

approach has not been explored for linear-mode APDs operation as a way to improve

bandwidth [25]. It introduces a totally new paradigm for APD design and adds a

new dimension to the traditional material- and structure-based approaches. Another

feature of our approach is that it is essentially APD-agnostic; that is, it can be used

to improve the GBP of any APD that has a poor buildup-time performance. An

added advantage of the dynamically biased APD approach is that with the dynamic

biasing scheme we can actually relax the stringent requirements of the width of the

multiplication region, as normally done to enhance the APD speed. This, in turn,

reduces the electric field in the multiplication region, which reduces tunneling current,

as it is shown in Chapter 7. With such attractive performance and cost effectiveness,
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we anticipate the dynamically biased APD solution to digital receivers to have a huge

immediate impact on next-generation long-haul and metro networks. In addition

to telecom, free-space communication may too benefit from ultrafast APD-based

receivers include free-space communication. As free-space communication moves to

speeds beyond 10 Gb/s and longer ranges (without repeaters), there is a need for

fast detectors with larger areas (larger collection efficiency). To benefit from an

APD receiver, the avalanche multiplication region of the APD must be scaled up to

offset the larger cross section required to achieve high collection efficiency in order to

prevent large junction capacitances. Now a larger multiplication region for the APD

causes the buildup time to increase, rendering the APD approach ineffective at higher

speeds. However, the proposed dynamic biasing approach can be used to shrink the

buildup time back to levels to much shorter multiplication regions without sacrificing

collection efficiency. Another potential arena for the proposed dynamically biased

APD-based receiver is data centers, where systems have a very tight power budget,

requiring high speed detection and high sensitivity.

1.4 Contributions of this dissertation

A key aspect of this dissertation is theoretical model and analysis of the dynamically

biased APD and the rigorous prediction of the sensitivity of a dynamically biased

APD-based receiver. In this dissertation, we characterize, predict and analyze the re-

liability and performance of the proposed dynamically biased APD. Here we develop

the first theory for the joint buildup-time and gain statistics for avalanche multipli-

cation under dynamic electric fields. This is a major expansion of the APD theory

beyond models for static fields [6, 23, 50–58] and the initial work on dynamically bi-

ased impact ionization developed in [25]. We also develop a theory for filtered shot

noise under dynamic biasing, which addresses rigorously the statistics of the dynami-
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cally biased APD photocurrent (mean, variance, autocorrelation function, etc.). This

is used in turn to derive analytical expressions for the statistics of the photocurrent

of dynamically based APDs. The exact expressions for the receiver bit-error rate and

sensitivity in an on-off keying setting is extracted using the photocurrent statistics.

The sensitivity analysis of the dynamically biased APD-based receiver specifically

capture ISI and dark current as well as TIA noise used in the pre-amplification stage

of receivers.

In the following, we summarize the main contributions of this dissertation.

1.4.1 Statistical properties of gain and buildup time in APDs

The APD’s impulse-response function is a stochastic process, with a random duration

(RD), representing the avalanche buildup time, and a random area, representing the

multiplication factor or gain. Moreover, the stochastic gain and stochastic buildup

time are statistically correlated [23]. The exact calculation of the joint probability

distribution function (PDF) of the gain and buildup time is essential to predict the

receiver performance. It is accomplished by developing a novel recursive theory that

generalizes the existing recursive techniques for computing the joint PDFs of the

gain and the buildup time under the assumption of a constant electric field in the

multiplication region [23,45].

To investigate the receiver performance of the APD in dynamic bias, we general-

ized the recursive theory that computes the joint PDF of the gain and the buildup

time, to accommodate the dynamic behavior of the reverse bias. The dynamic-field

scenario brings about a new element to the analysis of impact ionization. This ele-

ment is the age (or time stamp) of a carrier measured from the point in time when

the dynamic bias is launched. The novel recursive theory was modeled while taking

the carrier’s age into account. For a linear-mode operation of the APD, the cascade
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of impact ionizations resulting from a photon arrived at age s, terminate at some

finite random duration, T (s), yielding a net random gain G(s). The recursive theory

determines the joint PDF, fG,T (g, t; s) = P{G(s) = g, T (s) ≤ t}, where g is the

number of electron-hole pairs involved in the avalanche buildup, and t is the time by

which the avalanche buildup is completed [59].

1.4.2 Novel theory for photocurrent generated by dynami-

cally biased APDs

Existing mathematical theory for photocurrent statistics, also termed filtered point

process [60], assumes that the detector’s behavior is statistically stationary. This

assumption was critical in deriving analytical expressions for the mean and the vari-

ance of the photocurrent generated by an APD [11, 61, 62], which are key enablers

of the modeling of APD-based receivers. However, this hypothesis is not valid when

the APD is dynamically biased: a new theory for shot noise must be developed to

accommodate the dynamic nature of the APD’s behavior as the bias is periodically

varied. In our work, we derive the statistical properties of the photocurrent produced

by a dynamically biased APD when illuminated by random bit patterns of arbitrary

pulse shape. Unlike the static case, the statistics of the shot noise of an APD oper-

ating under dynamic reverse bias will vary cyclically with time with a period equal

to the dynamic field period. Such cyclostationary stochastic photocurrent will play

a key role in the analysis of the receiver performance.

The approach for determining the statistical properties of the photocurrent is

based on the mathematical theory for filtered point processes [60, 63]. Specially,

for the underlying point process, which represents the photon stream, we will con-

sider a doubly stochastic Poisson point process, where the stochastic intensity is

proportional to the instantaneous optical power of the received light at the receiver.
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Figure 1.4: Each photoelectron in APD generates random number Gs of electron-
hole pairs following a cyclostarionary random process, each of which produces an
impulse response. The total photocurrent of the receiver output is the superposition
of these impulse responses.

The arrival of each photon produces a stochastic pulse (see Fig. 1.4), which is the

stochastic impulse response of the APD, which is dependent on the arrival time of

the photon with respect to the dynamic electric field (or equivalently with respect to

its position relative to the start of the bit). The photocurrent produced by the APD

is simply the superposition of all such stochastic pulses. This photocurrent is then

integrated over each bit period to produce the stochastic integrated charge per bit,

including the contributions from the present and all the past bits. From the stochas-

tic integrated charge, an optimal decision is made, with some statistical certainty,

whether the present bit has been a one or zero. A key component in determining the

statistical properties of the cyclostationary photocurrent is the determination of the

joint statistics of the gain and buildup time.
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1.4.3 Formulating and computing the evolution of the im-

pulse response

The recurrence theory for the avalanche multiplication, including the statistics of

the gain and impulse-response function, under non-uniform, static electric fields was

originally formulated by Hayat et al. in [50, 52, 54] and later extended to accommo-

date stochastic carrier velocity by Tan et al. [64]. The impulse response statistics

has been generalized for the dynamic electric fields in [25] by considering the age of

the absorbed photon.

To calculate the statics of the photocurrent, such as the mean and the variance,

knowledge of the first and second moment of the impulse-response function is re-

quired. Further, in order to calculate the variance of the receiver output, as required

when assessing the BER, the autocorrelation function of the impulse response is

also necessary. Therefore we determine the asymptotic behavior, and particularly

the decay rate, of the mean and variance of the impulse response function of the

dynamically biased APD.

1.4.4 Gaussian approximation in analyzing the performance

of optical receivers

In many cases, a closed-form expression for the BER is required to understand,

predict and provide analytical insight for the receiver performance. A closed-form

expression for the BER can be found by first conditioning on the past bit pattern;

then the BER is calculated by averaging the conditional BER over all possible past bit

patterns. This approach, denoted here by the bit-pattern–dependent (PD) approach,

was adopted by Ong et al. [58, 65] in which the receiver output, conditional on

the present and all the past bits, is approximated by a Gaussian random variable.
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The Gaussian approximation is known to give a good estimate of the BER [66].

On the other hand, to simplify the analysis, another method has been commonly

used by conditioning on the current bit while considering the average of all possible

bit patterns (in place of the individual realizations of bit patterns) to generate the

Gaussian distribution of the output [23, 67, 68]. Hence, the receiver output in this

approach is bit-pattern–independent (PI), as it depends only on the average past bit

pattern. Due to its simplicity, the PI method has been used to evaluate the APD

performance and to give analytical insight for the system behavior in low speed

applications. However, the benefit from the simplification comes at the expense of

inaccuracy in the BER when ISI is dominant, i.e., when transmission speed is very

high as in the OC-192 standard [69].

We analyze the closed-form expressions of the BER found using the PI and PD

methods and study their accuracy. It is found that at high transmission speeds,

the PD method can give a much more accurate approximation of the BER than

that offered by the PI method. Therefore to estimate the APD performance under

dynamic biasing, we consider the PD method to find a closed-form expression for the

BER.

1.4.5 Performance analysis of a dynamically biased APD

We will use the theoretical model described earlier to analyze the receiver perfor-

mance. Knowing the ionization parameters for the APD with using the joint dis-

tribution function of the gain and buildup time, we are able to compute the BER,

GBP and the pulse response. The analysis conducted in this dissertation includes

well-defined parameters that capture ISI, detector speed relative to the transmis-

sion speed, and the complex correlation between the APD’s gain and buildup time.

These results are optimized by the peak-to-peak voltage, phase offset and DC value
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of the sinusoidal dynamic bias to achieve the optimal receiver sensitivity, defined as

the minimum optical power needed to achieve a BER of 10−12. It is also important

to understand the sensitivity of the GBP enhancement to errors and perturbations

resulting from the implementation of the sinusoidal bias. To this end, we will system-

atically study the effects of non-ideal factors such as fluctuations in the amplitude,

DC and phase of the dynamic bias, clock-synchronization errors.

1.4.6 Generalization of the analysis to include dark current

and realistic Johnson noise for an InP APD

We generalize the BER analysis to include dark current and realistic Johnson noise for

an InP-based APD. The generalized model enable us to identify the optimal dynamic

reverse bias voltage for InP-based APD for use at a prescribed digital transmission

speed. There are three main competing factors that govern the sensitivity of APD-

based optical receivers at high speeds. First, the avalanche noise of the APD which

governs the penalty brought about by the stochastic nature of the impact-ionization

process. Second, the stochastic avalanche duration (or buildup time), which governs

the APD’s speed and ultimately the level of ISI. With the dynamic reverse bias,

this effect is expected to be dramatically reduced and eventually improving the re-

ceiver sensitivity. Last but not least, the APD’s dark current, which is typically

dominated by tunneling in the avalanche region, reduces the benefits of the dynamic

biasing in thin APDs. Our generalized model considers all the three effects in the

calculation. It turns out that with the dynamic biasing scheme we can relax the

stringent requirements of the width of the multiplication region, as normally done

to enhance the APD speed. This, in turn, reduces the electric field in the multi-

plication region, which reduces tunneling current. The sensitivity formulation can

be used as a guide in designing dynamically biased APD-based receivers for specific

system performance requirements well beyond the limits previously known under the
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traditional constant-bias setting.

1.5 Organization of the dissertation

For the convenience of the reader, the chapters provide brief review of related back-

ground information, as well as brief summary and our conclusions at the end of each

chapter.

The remainder of this dissertation is organized as follows.

Chapter 2 introduces the dynamic biasing approach proposed by Hayat et al. [3].

The potential benefits of dynamic biasing in improving the GBP is described quali-

tatively. The effect of the dynamic bias on the APD characteristics is also analyzed.

In Chapter 3, we derive recursive equations that describes the joint distribution of

the stochastic gain and buildup time. The joint PDF shows the correlation between

the gain and buildup time as in the static case. It also shows the dependence of

the carrier age, s, on the buildup time. Chapter 4 analyzes the impulse response

shape and approximates it by a simplified model. These simplifications are used

in deriving closed expressions for the BER. We also show the pulse response of a

dynamically biased APD and compare it to the static case. The expected eye dia-

gram of an InP-APD was found to show the potential benefits of dynamic biasing in

improving the BER. In Chapter 5, analytical comparison between two methods to

approximate the integrate-and-dump receiver output is conducted. In the analysis,

we carefully consider the ISI since it is a crucial factor in the optical receivers at

high speed communications. Numerical calculations were used to compare the two

methods. In Chapter 6, the closed form expressions for the BER of a dynamically bi-

ased APD optical receiver were formulated as function of the receiver statistics. The

BER expressions include the ISI and Johnson noise effect. Numerical calculations

is also presented to show the dynamic biasing enhancements over the conventional
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static bias. In addition to that, we study the effects of non-ideal factors such as

DC and phase of the dynamic bias and clock-synchronization errors on the receiver

performance. In Chapter 7, we have generalized the dynamically biased APD-based

receiver model to include tunneling current and used it for the purpose of opti-

mization by the peak-to-peak voltage, phase offset and DC value of the sinusoidal

dynamic bias for best receiver sensitivity for an arbitrarily prescribed transmission

speed. The model offers compact analytical expressions for the mean and the vari-

ance of the output of the integrate-and-dump APD-based receiver that capture the

dark current, the effects of ISI and the stochastic correlation between the APD’s gain

and bandwidth. Finally, Chapter 8 concludes the dissertation and discusses possible

new research lines for future work.
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Chapter 2

Basics of Avalanche Multiplication

Theory under Dynamic Biasing

For its relevance to the work of this dissertation, we review in this chapter the

dynamic biasing approach proposed by Hayat et al. [3]. In Section 2.1, we review

the APD characteristics and define some important variables. In Section 2.2, we give

a qualitative description of the potential benefits of dynamic biasing in improving

the GBP. Some preliminary results found in [25] for the impact ionization under

dynamic biasing is presented in Section 2.3. These results will make starting points

for receiver performance analysis.

2.1 Conventional avalanche multiplication theory:

Constant biasing

In the traditional linear-mode setting, an APD, which is essentially a strongly reverse-

biased PIN photodiode, is operated under a constant (static) reverse bias, which
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creates a high-field condition that is amenable to impact ionizations in the multipli-

cation region. The ionization process is described in the schematic of Fig. 2.1. A

photon is absorbed at location x2, creating an electron-hole pair. The electron accel-

erates under the effect of the strong electric field and reaches its saturation velocity.

While the electron traveling in the multiplication region and after acquiring enough

energy (> Eg), with a certain probability, it may generate a second electron-hole

pair by impact ionization as shown at location x3. The two electrons then will follow

the same process and each of them may ionize independently. Similarly the holes

generated also accelerate while moving left and by acquiring enough energy they may

be the source for a further impact ionization (as shown at location x1).

2.1.1 Impact ionization coefficient

The ability of electrons and holes to impact ionize is characterized by the ionization

coefficients α and β, respectively. These quantities represent rates of ionization

per unit length. An important parameter for characterizing the performance of an

APD is the ionization coefficient ratio k = β/α. As it is mentioned earlier, it is

always desirable to fabricate APDs from materials that have an ionization ratio far

from unity. In that case, the avalanche process proceeds principally in one direction

(either electron or hole). This will reduce the avalanche noise and the avalanche

buildup time. The dependence of the ionization coefficients on the electric field E

can be modeled from the non-localized model [6] by the equations

α(E) =Ae exp

[
−
(
Be

E

)me
]

(2.1a)

and

β(E) =Ah exp

[
−
(
Bh

E

)mh
]
, (2.1b)

where A, B and m are material-dependent parameters chosen by fitting measured

gain-noise data. Table 2.1 shows the sets of width-independent parameters for several
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Figure 2.1: Schematic representation of the process of the multiplication process
in APDs. The diagram shows the change in the electron energy as it travels the
high electric field in the multiplication region spanning from x = 0 to w. Eg is the
material bandgap energy. x1 and x3 are the location of a hole and an electron impact
ionization, respectively.

III-V semiconductor materials [8, 53,70].

2.1.2 Dead space

The first mathematical model to characterize the mean gain and excess noise factor

of APDs was first introduced by McIntyre [57]. He models the excess noise factor

as function of the mean gain and the ionization coefficients for electrons and holes

ignoring the multiplication region width. It turns out that McIntyre’s original model
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Al0.2Ga0.8As In0.52Al0.48As InP
Ae 5.39× 106 4.17× 106 1.41× 106

Be 2.71× 106 2.09× 106 1.69× 106

me 0.94 1.2 1.23
Ah 1.28× 106 2.65× 106 2.11× 106

Bh 2.06× 106 2.79× 106 1.77× 106

mh 0.95 1.07 1.15

Si GaAs InGaAs
Ae 7.03× 105 6.01× 106 1.8× 107

Be 1.231× 106 2.39× 106 1.95× 106

me 1.0 0.92 1.0
Ah 6.71× 105 3.59× 106 2.56× 107

Bh 1.693× 106 2.26× 106 2.2× 106

mh 1.0 0.92 1.0

Table 2.1: Material-dependent parameters, A, B and m, for different III-V semicon-
ductor materials.

fails in correctly predicting the excess noise factor in thin APDs (e.g., < 400 nm). It

has been demonstrated that the excess noise factor and the avalanche buildup time

are reduced by using thin multiplication layers [4, 6, 50, 52, 71–76]. This reduction

was found to be due to the effect of a carrier’s past-history on its ability to create a

new carrier pair via impact ionization. The newly generated carriers are incapable

of immediately causing impact ionizations. They must first travel a finite distance,

called dead space, in order to acquire sufficient kinetic energy to become capable

of ionization. This means that the ionization probability is negligible for a certain

distance, the dead space. The reduction of the excess noise factor and the avalanche

buildup time is a consequence of the dead space in thin devices.

Models that include the dead space effect have been developed. The effect of

dead space on the gain and excess noise factor has been extensively studied and

multiplication models that take carrier history into account have been developed

and tested against experimental measurements [50, 52, 53, 72, 75, 77, 78]. Hayat et

al. [50,52,72] formulated a dead-space-multiplication theory (DSMT) that permitted
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the gain, excess noise factor in the presence of dead space. According to the DSMT

model, the impact ionization probability density function is equal to zero when the

distance traveled by the carrier is less than the dead space distance. The kinetic

energy gained acquired by the moving carrier is equated to the ionization threshold

energy of the carrier. Thus, the electron, de(x), and holes, dh(x), dead spaces can be

obtained numerically as follows:

q

∫ x+de(x)

x

E(x̃) dx̃ = Ethe (2.2a)

and

q

∫ x

x−dh(x)

E(x̃) dx̃ = Ethh
, (2.2b)

where q is the electron charge and Ethe and Ethh
are the ionization threshold en-

ergy of the electron and the hole, respectively. The values of Eth for several III-V

semiconductor materials are summarized in Table 2.2 [8, 53, 70].

Al0.2Ga0.8As In0.52Al0.48As InP
Ethe 2.04 2.15 2.80
Ethh

2.15 2.30 3.00

Si GaAs InGaAs
Ethe 1.20 1.70 1.20
Ethh

1.00 1.40 1.00

Table 2.2: Ionization threshold energy, Ethe and Ethh
, for different III-V semicon-

ductor materials.

Table 2.3 extracted from [6] shows an example of the relative dead space, defined

as the ratio of the dead-space to the multiplication-region width, w, for four different

GaAs APD devices. The relative dead-space in Table 2.3 is seen to increase as the

multiplication-region width is reduced. This result emphasis the effect of dead space

on thin APD devices.
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Multiplication Electric Field Mean Gain de/w dh/w
Width(nm) (×105 V/cm) (%) (%)

100 6.3 − 6.8 8 − 29 25 − 27 21 − 22
200 4.7 − 5.0 6 − 30 17 − 15 14 − 15
500 3.5 − 3.7 4 − 28 9.2 − 9.8 7.6 − 8.0
800 3.2 − 3.3 5 − 20 6.4 − 6.6 5.3 − 5.8

Table 2.3: An example of the relative dead space, defined as the ratio of the dead-
space to the multiplication-region width, w, for four different GaAs APDs. The lower
and upper limits of the electric field produce the lower and upper limits, respectively,
of the mean gain and the relative dead space [6].

2.1.3 Gain and buildup time

The time response of an APD to an individual photon has a finite width, called the

buildup time. The cascade of impact ionizations and the associated buildup time in a

simple multiplication region is illustrated in Fig. 2.2. A parent carrier is generated in

the absorption layer and injected in the multiplication region. The photo-generated

parent electron starts the ionization process. While drifting in the high-filed intrinsic

layer, the parent electron acquire enough energy to ionize at any location to produce

another electron and hole. The newly generated carries will follow the same process

to produce more electrons and holes. A first wave of impact ionizations takes place

while the photo-generated electron is still in the multiplication region. Next as the

offspring electrons drift together and reach the end of the multiplication region,

the offspring holes, which are still present in the multiplication region, move in the

opposite direction, as shown in the figure, causing a second-wave of impact ionizations

that lasts for one hole-transit time. As the second wave ends, a third wave is launched

lasting for one electron transit time, and so on. This process terminates when all the

carries exit the multiplication layer.

Under a fixed reverse bias, each absorbed photon from the received optical pulse

will trigger an avalanche that takes a finite time, known as the buildup time. More-
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Figure 2.2: Schematic representation of the impact ionization and the associated
buildup time process in a simple multiplication region.

over, the buildup time can be controlled by changing the reverse bias voltage. Due to

the correlation between the gain and the buildup time [23], as we increase the mean

gain of the APD to overcome receiver noise, the tails of the individual responses

from the photons, add up to interfere to the photocurrent of the next bit as shown

in Fig. 1.3(b). This interference, known as the ISI, reduces the APD performance.

The buildup time limited bandwidth of an APD begins to dominate RC effects at

reasonable operation gains (> 10) and ultimately limits the operability of ADPs at

high bit rates [51]. The bias is typically optimized to maximize the receiver sensitiv-

ity [16] by providing just enough gain to overcome Johnson noise while maintaining

a low excess noise factor and acceptably low buildup time.
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2.2 Dynamic biasing approach: minimizing the

buildup time

The use of a practical, bit-synchronous and periodic dynamic biasing of an APD, in

lieu of traditional static bias, to dynamically control the impact ionization process

for linear-mode operation was first introduced by Hayat and et al. [3, 25]. It was

shown theoretically that the scheme can offer substantial reduction in the duration

of the APDs pulse response, thereby minimizing ISI without sacrificing avalanche

gain. Due to the coupling between the buildup time and the reverse bias, we can

reduce the interference to the next bit by abruptly reducing the reverse bias of the

APD near the end of the optical pulse to stop (or reduce) all the impact ionization.

As a result, the pulse response will be quenched at the end of each bit period in

preparation for the next incoming optical pulse. Note that the losses in the gain due

to the quenching effect can be compensated by increasing the reverse voltage at the

beginning of the optical pulse. This idealistic approach can limit the pulse response

to the optical pulse duration without reducing the APD’s gain. As a result, the GBP

can increase indefinitely by simply increasing the gain.

We show theoretically in this dissertation that such novel scheme can achieve sub-

stantial reduction in the duration of the APD’s pulse response, thereby minimizing

ISI without sacrificing avalanche gain while improving the BER.

To achieve a realistic model for such periodic, abrupt transitions in the bias, we

select a sinusoidal biasing scheme that can approximate the active quenching phe-

nomenon described earlier (as shown in Fig. 1.3(a)). The reverse bias is frequency-

matched and synchronized with the optical bit stream. The success of such approach

would rely on our ability to discover the optimized parameters of the sinusoidal dy-

namic bias that yield the lowest receiver sensitivity possible. Meeting these challenges

is at the heart of this dissertation.
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2.3 The impact ionization under dynamic biasing

Consider a typical InP–InGaAs APD with a multiplication region extending from

x = 0 to x = w, as shown in Fig. 2.3. When a photon get absorbed in the InGaAs

absorption layer, a parent photo-generated carrier (a hold in this case) is generated

and sweep out to the multiplication region (InP layer) at x = w due to the relative

low electric field.

Figure 2.3: Schematic of the SAM layer structure of typical InP-nGaAs APD (not to
scale). Also shown is the electric field profile under normal reverse bias operation [5].
Note that, the electric field shown here is at a specific time t.

2.3.1 The ionization coefficient under dynamic biasing

Suppose that a time-varying bias, Vb(t), is applied to an APD. Let E(x, t) denote a

casual and spatially nonuniform dynamic electric field in the multiplication region at

position x and at time t. The electron and hole time-varying non-localized ionization

coefficients associated with caries at location x in the multiplication region at time

t are defined to be α(x, t) and β(x, t), respectively. By replacing the static field in

28



Chapter 2. Basics of Avalanche Multiplication Theory under Dynamic Biasing

non-localized model shown in (2.1), the dynamic coefficients are given by [25]

α(x, t) =Ae exp

[
−
(

Be

E(x, t)

)me
]

(2.3a)

and

β(x, t) =Ah exp

[
−
(

Bh

E(x, t)

)mh
]
, (2.3b)

where the material specific constants A, B and m are listed in Table 2.1 for various

III-V materials. These coefficients are used in turn to derive analytical expressions

for the probability density function of a carrier to ionize in dynamic-field scenario.

2.3.2 The probability density function of the carrier path in

dynamically biased APD

The probability density function of the carrier’s free path before the first impact

ionization in a dynamic-field scenario depends on the starting location of the parent

carrier as well as its age s relative to the launch instant of the dynamic electric

field [25]. Suppose that a parent hole or electron is created at an arbitrary location

x in the multiplication region of the APD and with an age s (i.e., at time t = s),

and assume that the field is sufficiently high so as conduction-band electrons and

valence-band holes travel at their material-specific saturation velocities, ve and vh,

respectively.

letXh andXe be the stochastic free-path distances the holes and electrons, respec-

tively, travel before the impact ionization. As the carrier travels the multiplication

region, it can ionize at stochastic location, denoted by ξ. More precisely, we define

he(ξ; x, s) and he(ξ;x, s) as the dynamic probability density functions of the free-

path-distances, Xe and Xh, of the first ionization position due to an electron and

hole, respectively, portioned in the multiplication region at location x, and of age
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s. The age-dependent probability density function of the free paths, hh(ξ2; ξ1, s) and

he(ξ2; ξ1, s), were defined in [25] according to the dead-space multiplication theory

(DSMT). Under a dynamic electric field, the probability density function of the first

ionization by a parent carrier of age s and at location ξ1 is zero before the dead space

is traveled and exponential with a nonuniform rate after the dead space.

he(ξ;x, s) =

 α
(
ξ, s+ ξ−x

ve

)
e−

∫ ξ
x+de(x,s)

α(σ,s+σ−x
ve

) dσ, ξ ≥ x+ de(x, s)

0, otherwise

(2.4a)

and

hh(ξ;x, s) =

 β
(
ξ, s+ x−ξ

vh

)
e
−

∫ x−dh(x,s)

ξ β
(
σ,s+x−σ

vh

)
dσ
, ξ ≤ x− dh(x, s)

0, otherwise,

(2.4b)

where de(x, s) and dh(x, s) are the aged-dependent dead spaces for an electron and

hole, respectively. From the static electric field model described in (2.2) and by

replacing the static field with its dynamic value, the age-dependent dead space is the

distance d that satisfies the equations

q

∫ x+de(x,s)

x

E(x̃, s+ (x̃− x)/ve) dx̃ = Ethe (2.5a)

and

q

∫ x

x−dh(x,s)

E(x̃, s+ (x− x̃)/vh)) dx̃ = Ethh
, (2.5b)

where Eth is the ionization threshold energy for the materials. In the above, he(ξ;x, s)dξ

approximates the probability that an electron born at location x and of age s impact

ionizes for the first time in the interval [ξ, ξ+dξ]. These probability density functions

will play a critical role in the derivation of the joint PDF of the gain and the buildup

time.
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2.4 Summary and conclusions

In this chapter, we briefly reviewed the impact ionization process in APDs. We

also introduced the dynamic biasing approach for APD-based optical receivers. This

approach is aimed to reduce the buildup time without sacrificing the avalanche gain.

We showed the generalization of the impact ionization coefficients to include the

dynamic nature of the electric field in the multiplication region. The probability

density function for the random paths traveled by the carriers, electrons and holes,

were defined according to the dead-space multiplication theory .
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Chapter 3

Statistical Properties of Gain and

Buildup Time in Dynamically

Biased APDs

In this chapter, we develop the first theory for the joint probability distribution of

the stochastic gain and stochastic buildup time in dynamically biased APDs [79].

This development constitutes a major expansion of (i) the recursive equations devel-

oped in [23] under the traditional assumption of a static bias, and (ii) the recursive

technique characterizing the gain and buildup time individually [25]. As described

earlier, the results will be incorporated in the performance analysis of APD-based

receivers at high transmission speeds. The theory developed here includes the dead-

space effect, which is essential to consider in thin APD’s multiplication layers.

This theory will enable the analytical determination of the statistics of the APDs

impulse response function as well as its autocorrelation function, which, in turn en-

ables the determination of the statistics of the dynamically biased APD photocurrent

as well as the output of the integrate-and-dump receiver that is built around it. Fol-
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lowing [25], the dynamic-field scenario brings about a new element to the analysis of

impact ionization. This element is the age (or time stamp) of a carrier measured from

the point in time when the dynamic bias is launched. The age will play a key role in

the statistical analysis of the avalanche multiplication process. Specifically, carriers

born at different times will experience different dynamical electric fields ahead of

them as they generate their own chains of impact ionizations. To take the age-factor

into account in the analysis of the avalanche multiplication process, the usual ioniza-

tion probability of a carrier is parameterized by the time at which the parent carrier

is injected in the multiplication region. The key enabling idea in modeling the joint

distribution for a dynamic reversed bias APD is to consider the age of the parent

carrier relative to the launch of the dynamic bias as discussed next.

3.1 Definitions

Consider a multiplication region of the APD extending from x = 0 to x = w.

Assume that a dynamic electric field, E(t) = V (t)/w, is present in the multiplication

region, where V (t) is the time-varying applied bias voltage. When a carrier enters the

multiplication region with an age s relative to the launch time of the dynamic bias, an

age-dependent avalanche process will be triggered. For a parent carrier entering the

multiplication region with age s and triggering an avalanche multiplication process,

let Ts be the stochastic time required for the avalanche process to terminate, and

let Gs be the total number of electron-hole pairs generated by this process. Note

that Ts is the stochastic duration of the APD’s impulse-response function induced

by an injected carrier in the multiplication region with age s. Meanwhile, Gs merely

is proportional to the area under the stochastic impulse-response function.

The age-dependent joint probability distribution function (PDF) associated with

Gs and Ts is the probability that a parent carrier entering the multiplication region
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at age s generatesm electron-hole pairs in a time less than or equal to t. Formally, we

define the joint PDF as fGs,Ts(m, t; s) = P{Gs = m,Ts ≤ t}. Following the concept

of the recursive approach [25], let the random variable Z(x, s) be the total number

of electrons and holes (including the parent carrier) initiated by a parent electron

located at location x with age s. Similarly, let Y (x, s) be the total number of electrons

and holes (including the parent carrier) initiated by a parent hole located at location

x with age s. Note that if we assume that the electric field is in the opposite direction

of the x-axis and the multiplication region span the region from x = 0 to x = w,

by convention Z(w, s) = Y (0, s) = 1, s ≥ 0, since an electron (hole) generated at

the right (left) edge of the multiplication region will exit the multiplication region

without ionization.

Let Xh and Xe be the stochastic free-path distances the holes and electrons,

respectively, travel before they effect an impact ionization. The age-dependent prob-

ability density function of the free paths Xh and Xe, denoted by hh(ξ2; ξ1, s) and

he(ξ2; ξ1, s), respectively, were defined in Sec.2.3.2 according to the dead-space mul-

tiplication theory (DSMT) under dynamic electric fields. For convenience they are

reiterated here:

hh(ξ2; ξ1, s) =

 β(ξ2, s+ τh)e
−

∫ ξ1−dh(ξ1,s)

ξ2
β(σ,s+τh) dσ, ξ2 < ξ1 − dh(ξ1, s)

0, otherwise

(3.1)

and

he(ξ2; ξ1, s) =

 α(ξ2, s+ τe)e
−

∫ ξ2
ξ1+de(ξ1,s)

α(σ,s+τe) dσ, ξ2 > ξ1 + de(ξ1, s)

0, otherwise

(3.2)

where β(x, t) and α(x, t) are the position and age-dependent ionization coefficients,

dh(x, s) and de(x, s) represent the age-dependent dead spaces for a hole and electron,

respectively, τe = (ξ − x)/ve and τh = (x − ξ)/vh is the electron and hole transport
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time between x and ξ. Note that he(ξ;x, s)dξ approximates the probability that

an electron born at location x and of age s impact ionizes for the first time in the

interval [ξ, ξ + dξ].

Other intermediate quantities required in this formulation are the buildup times.

As in [25], define Z(x, s) (Y (x, s)) as the totality of electrons and holes due to

avalanche processes triggered by a parent electron (hole) of age s relative to the

launch instant of the electric field. Now let TZ(x, s) be the random time required for

the Z(x, s) electrons and holes to exit the multiplication region; similarly, TY (x, s)

is defined in the same way. It is worth to mention that TZ (or TY ) is always greater

than the electron (or hole) transport time between x and w, which is the time needed

for the parent electron (or hole) to exit the multiplication region. We define the joint

PDFs of the pairs (Z, TZ) and (Y, TY ) as follows:

fe(m, t;x, s) = P{Z(x, s) = m,TZ(x, s) ≤ t}, (3.3a)

and

fh(m, t;x, s) = P{Y (x, s) = m,TY (x, s) ≤ t}. (3.3b)

Note that with this notation, the stochastic buildup time Ts defined earlier be-

comes Ts = TY (w, s), and its corresponding stochastic gain is Gs = 0.5(Y (w, s) +

1). For example, for an InGaAs-InP APD in which photo-generated holes initiate

avalanche processes in the InP multiplication region starting from x = w, we have

fGs,Ts(m, t, s) = fh(2m− 1, t;w, s).

3.2 Recursive equations

The key observation needed in the formulation of a recursion for the PDFs defined

above is that a parent electron born at location x and of age s generates a certain
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number of offspring carriers (Z(x, s) = m, say) within a certain time (TZ(x, s) ≤ t,

say) precisely when its two offspring electrons and offspring hole, born for example

at location ξ, will collectively create the same intended number of carriers (m) albeit

within a reduced time t− τe. The age of the two offspring electrons and hole at birth

is s+ τe.

With this regeneration concept in mind and by using the fact that all carries im-

pact ionize independently of one another other, the conditional PDF of fe(m, t;x, s|ξ)

conditioned on the first ionization location ξ can be written as

fe(m, t;x, s|ξ) = fe (m, t− τe; ξ, s+ τe) ∗ fe (m, t− τe; ξ, s+ τe)

∗ fh (m, t− τe; ξ, s+ τe) , (3.4)

where ∗ denotes discrete convolution in the variable m and τe is the time needed for

an electron to move from x to ξ (i.e., τe =
ξ−x
ve

). Similarly, if we start with a parent

hole, the conditional PDF fh(m, t;x, s|ξ) recursive equation can be written as

fh(m, t;x, s|ξ) = fh (m, t− τh; ξ, s+ τh) ∗ fh (m, t− τh; ξ, s+ τh)

∗ fe (m, t− τh; ξ, s+ τh) , (3.5)

The conditioning on the first impact ionization location can be removed by aver-

aging over all passible locatiuons ξ in the interval [x,w] of the first ionization of the

parent electron (using the probability density function he), we obtain the following

recursive equation:

fe(m, t;x, s) = ge(x, t, s)δm−1 +

∫ w

x

[fe (m, t− τe; ξ, s+ τe) ∗

fe (m, t− τe; ξ, s+ τe) ∗ fh (m, t− τe; ξ, s+ τe)]he(ξ;x, s) dξ, (3.6)

where δi is the Kronecker delta function (δi = 1 when i = 0 and zero otherwise) and

∗ denotes discrete convolution in the variable m. The function ge(x, t, s) represents
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the probability that the parent electron does not ionize within time t (in this case

Z(x, s) = 1 and TZ(x, s) = (w − x)/ve) and it is given as:

ge(x, t, s) = u

(
t− w − x

ve

)∫ ∞

w

he(ξ;x, s) dξ, (3.7)

where u(x) is the unit step function. Similarly, the conditional PDF fh(m, t;x, s|ξ)

recursive equation becomes

fh(m, t;x, s) = gh(x, t, s)δm−1 +

∫ x

0

[fh (m, t− τh; ξ, s+ τh) ∗

fh (m, t− τh; ξ, s+ τh) ∗ fe (m, t− τh; ξ, s+ τh)]hh(ξ; x, s) dξ, (3.8)

where gh(x, t, s) is the probability that the parent hole does not ionize at within time

t, and it is given by

ge(x, t, s) = u

(
t− w − x

ve

)∫ ∞

w

he(ξ;x, s) dξ. (3.9)

The coupled pair of recursive equations in (3.6) and (3.8), which fully charac-

terize the PDFs fe and fh, can be solved numerically to determine the joint PDF

fGs,Ts(m, t, s). However, the discrete convolution under the integrals can be simplified

to multiplication using the z−transform properties. Let Fe(z, t;x, s) and Fh(z, t; x, s)

be the z−transforms of fe(m, t; x, s) and fe(m, t;x, s) with respect to the variable m.

More precisely, if we define

Fe(z, t;x, s) =
∞∑
k=0

fe(k, t; x, s)z
k (3.10a)

and

Fh(z, t;x, s) =
∞∑
k=0

fh(k, t; x, s)z
k, (3.10b)

for all complex |z| ≤ 1, then the discrete recursive equations defined in (3.6) and

(3.8) can be simplified to

Fe(z, t;x, s) = ge(x, t, s)z +

∫ w

x

F 2
e (z, t− τe; ξ, s+ τe)

Fh (z, t− τe; ξ, s+ τe)he(ξ;x, s) dξ, (3.11a)
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and

Fh(z, t;x, s) = gh(x, t, s)z +

∫ x

0

F 2
h (z, t− τh; ξ, s+ τh)

Fe (z, t− τh; ξ, s+ τh)hh(ξ; x, s) dξ. (3.11b)

Let FGs,Ts(z, t; s) be the z−transform of the joint distribution fGs,Ts of the random

variables Gs and Ts with respect to m. After solving the coupled recursive equations

numerically over z = e−jω (−π < ω ≤ π), t ≥ 0, x ∈ [0, w] and s ∈ [0, Tb],

while using the time shifting and scaling properties of the z−transform and since

fGs,Ts(m, t, s) = fh(2m− 1, t;w, s) for an InP APD, we obtain

FGs,Ts(z, t; s) =
√
zFh(

√
z, t;w, s). (3.12)

The joint PDF of the avalanche process initiated by a parent hole from the right, can

then be found by using the inversion formula [80], i.e., by evaluating the z−transform

on the unit circle and find its Fourier series coefficients

fGs,Ts(m, t; s) =
1

2π

∫ π

−π

FGs,Ts(e
jω, t; s)e−jωn dω. (3.13)

Note that, for the case of an avalanche process initiated by an electron at x = 0

instead of a hole, the stochastic buildup time Ts becomes Ts = TZ(0, s), and its

corresponding stochastic gain is Gs = 0.5(Z(0, s)+1). Thus the age-dependent joint

PDF of the stochastic gain and buildup time is fGs,Ts(m, t, s) = fe(2m − 1, t; 0, s)

and its corresponding z−transform with respect to m becomes FGs,Ts(z, t; s) =
√
zFe(

√
z, t; 0, s).

3.3 Numerical analysis

In our calculations, we selected an InGaAs-InP APD receiver with a multiplication

layer of width w = 200 nm. The APD is dynamically biased with a sinusoidal reverse
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voltage of the form

VB(t) = B + C sin(2πfbt+ ψ) (3.14)

where fb is the bit transmission rate, i.e., fb = 1/Tb and Tb is the optical pulse window.

The probability density function of the free path, he(ξ2; ξ1, s) and hh(ξ2; ξ1, s), were

calculated according to the deadspace multiplication theory (DSMT) as described in

Chapter 2. The calculation of the free path’s probability density functions require

the knowledge of the ionization coefficients and ionization-threshold energies for the

InP multiplication region, which can be extracted from Section 2.3. The quantities

B, C and ψ are parameters that control the overall performance of the system. Our

main goal is to optimize these parameters to achieve an optimal receiver performance.

As an example, the peak-to-peak and the DC parameters of the sinusoidal-biasing

parameters were selected as B = 13 V and C = 6 V. The sinusoidal-biasing period

is equal to 5.5 transit times, which is equivalent to a data rate of fb = 60Gb/s. For

simplicity we assume a spatially uniform electric field, E(t) = VB(t)/w. The electron

and hole saturation velocity are approximated as ve = vh = 0.67× 107 cm/s.

We first solve numerically the coupled recursive equations (3.11) using a simple

iterative method. Next, the joint PDF of the random gain and Gs and the random

buildup time Ts were calculated from (3.13). Figure 3.1 shows examples of the age-

dependent joint PDF fGs,Ts(m, t, s) calculated for different values of the age variable,

s (s = 0, s = Tb/4, s = Tb/2 and s = 3Tb/4). The hole transit time is simply

w/vh = 3.0 ps. The correlation between the gain and the buildup time is clear

from the joint PDF plots in agreement with the behavior of the static bias case [23].

The numerical calculations show that the arrival time of the incident photon to the

multiplication region, s, plays a key role in the distribution function, a property that

is heavily exploited in reducing the buildup time for optical receivers by adjusting the

arrival time, s, of the incident photon relative to dynamic-bias cycle. For instance,

by examining the shape of the PDF, the age-dependent joint PDF of an avalanche
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Figure 3.1: Joint PDF fGs,Ts of the stochastic gain Gs and the stochastic buildup
time Ts for an InP APD with a 200-nm multiplication layer. Figures 3.1(a), (b),
(c) and (d) correspond to different initiating parent hole of age s = 0, s = 0.25Tb,
s = 0.5Tb and s = 0.75Tb, respectively. The reverse dynamic voltage bias is of the
form Vb(t) = 13 + 6 sin(2πt/Tb), where Tb is the bit duration with 1/Tb ≈ 60 Gb/s.

triggered by a photon arrived at the beginning of the pulse (s = 0), is expected to

have a higher mean gain (E[Gs]) and longer mean buildup time (E[Ts]) compared to

a photon arrived at a later time (e.g., s = 3Tb/4).

In order to better understand the effect of the incident photon’s arrival age, s, the

probability mass function (PMF) of the stochastic gain Gs can be found by taking the

limit of the joint PDF as t approaches infinity, i.e., fGs(m, s) = limt→∞ fGs,Ts(m, t, s).

The result is shown in Fig. 3.2. Furthermore, the cumulative distribution function

(CDF) of the stochastic buildup time Ts (Fig. 3.3) as a function of the age, s can be

found as follows: FTs(t, s) =
∑∞

m=1 fGs,Ts(m, t, s). Figure 3.2 shows a high mean for

the gain (accompanied by a larger spread) at the beginning of the period (at s = 0)

and decreases to unity when s is around 70% of the bit period Tb. Moreover, the CDF

of the buildup time shows a similar behavior in Fig. 3.3, where the expected buildup

approaches a unit of transit time when the age, s is around 0.7Tb. Recall that the
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Figure 3.2: Marginal probability mass function of the stochastic gain, Gs, as a func-
tion of the initiating hole age (in bit duration, Tb).

minimum possible buildup time is the hole transit time w/vh, i.e., P {Ts ≤ 1} = 0.

This feature is observed in Figs. 3.1 and 3.3.

For this example, the average gain calculated by Hayat and Ramirez [25] for this

particular receiver is 28. The marginal density function of the gain (obtained by

integrating the joint PDF over the buildup time) yields the mean of 26.7, which is

in good agreement with the previous results found in [25].

3.4 Summary and conclusions

In this chapter, we described a recursive method to compute the aged-dependent

joint PDF of the stochastic gain, Gs, and the stochastic buildup time, Ts of an

APD operating under dynamic reverse bias. This result will be used to calculate the

statistical properties of the impulse-response function and investigate the effect of the
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Figure 3.3: Marginal cumulative density function of the stochastic buildup time, Ts,
as a function of the initiating hole age (in bit duration, Tb).

dynamic electric field on the receiver performance. It was clear from the numerical

calculation the dependency of the joint PDF of Gs and Ts on the parent carrier age,

s. In each illuminated transmitted bit, some of the arrived photons with a certain

age have a long expected buildup time with high expected gain and the others have

a short buildup time with a gain close to unity. The results showed that the photons

arrive at 70% of the transmission bit window has a minimum expected buildup time,

E [Ts] and small expected gain E [Gs].
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Chapter 4

Dynamically Biased APD Impulse

Response Statistics

In this chapter, we determine the asymptotic behavior, and particularly the decay

rate, of the mean and variance of the impulse response function of the dynamically

biased APD. These quantities are critical to our understanding and accurate assess-

ment of ISI. To facilitate the calculation of these quantities, a stochastic model for the

impulse-response function is required. Following the approach of [23], the rationale

is to approximate the impulse response function by a specified shape parameterized

by the age-dependent stochastic gain Gs and the age-dependent stochastic buildup

time Ts. An example of such a shape is the rectangular random-duration (RD-R)

with random height qGs/Ts and random duration Ts, where q is the electrons charge.

The randomness in the impulse-response functions area represents the gain uncer-

tainty and the randomness in its duration represents the buildup time. This shape

significantly simplifies the complexity of the impulse-response function while main-

taining the key features that govern the stochastic gain, the excess-noise and speed

properties of the APD.
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4.1 Mean impulse response function

Using the coupled integral equations derived in [25], we numerically calculate the

mean impulse response function and study its asymptotic behavior. We define

Ie(t, x, s), the age-dependent stochastic impulse-response function at time t initi-

ated by an electron injected at location x and with age s. Similarly, Ih(t, x, s) is

the stochastic age-dependent impulse-response function at time t, initiated by a hole

injected at location x with age s. Let ie(t, x, s) and ih(t, x, s) represent the mean

quantities of Ie(t, x, s) and Ih(t, x, s), respectively. Using the same recurrent tech-

nique used in deriving the recurrence equations for the age-dependent joint PDF

shown in Section 3.2, the coupled integral equations for the mean impulse response

are found to be [25]

ie(t, x, s) =
qve
w

[
u(t)− u

(
t− w − x

ve

)]∫ ∞

w

he(ξ;x, s) dξ+∫ w∧x+vet

x

[2ie(t− τe, ξ, s+ τe) + ih(t− τe, ξ, s+ τe)]he(ξ; x, s) dξ

(4.1a)

ih(t, x, s) =
qvh
w

[
u(t)− u

(
t− x

vh

)]∫ 0

−∞
hh(ξ;x, s) dξ+∫ x

0∨x−vht

[2ih(t− τh, ξ, s+ τh) + ie(t− τh, ξ, s+ τh)]hh(ξ;x, s) dξ

(4.1b)

where ∧ and ∨ represents the minimum and the maximum, respectively and the

variables τe and τh are as before the electron and hole transport time from location

x to ξ, respectively, as defined in Section 3.2. The probability density functions

he(ξ; x, s) and hh(ξ; x, s) were defined in Section 2.3.2.

The two coupled integral equations can be solved numerically using a simple

iterative approach. We note that from the definition of the age-dependent stochastic

impulse response, Ih(t, x, s), The stochastic impulse-response function for a hole
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injected to the multiplication region at location x = w with age s (as the case of Inp

APD) is the same as Ih(t, w, s). Thus the mean impulse response function is then

obtained using i(t, s) = E [Ih(t, w, s)] = ih(t, w, s).

4.2 Numerical calculation for the mean impulse

response

As before, we selected an InGaAs-InP APD receiver with a multiplication layer of

width w = 200 nm. The reverse sinusoidal biasing period is set to be equal to 5.5

transit times which is equivalent to 60 GHz transmission speed. The electron and

hole saturation velocity are assumed as ve = vh = 0.67× 107 cm/s. The sinusoidal-

biasing parameters were selected as follows: B = 13 V, C = 6 V, ψ = 0.

The calculation of the age-dependent mean impulse response function for a dy-

namically biased 200-nm InP multiplication layer is shown in Fig. 4.1 for different

values of the age variable s. These curves were obtained by solving the coupled

integral in (4.1). Unlike the static-bias case, we observe that the APD’s impulse

response depends on the arrival time (age) of the parent carrier. For example, when

the photon is absorbed at s = 0.3Tb where Tb is the optical-pulse window (note that,

the optical-pulse window is 5.5 transit time), the mean gain is 85.6 and the corre-

sponding bandwidth is 79.9 GHz. In contrast, for a photon arriving at s = 0.9Tb of

the optical-pulse window, the gain is 1.14 and the bandwidth is 135.2 GHz. This

is due to the rise in the field initially, where a high gain is built up, followed by a

drop in the field causing the shortening of the impulse response as the probability

of the avalanche terminating is high. Figure 4.1 shows that the tail of the impulse

response can be approximated by a decaying exponential function with a constant

average rate. It is clear from the numerical calculations that the average decay rate
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is independent of the carrier age, i.e., regardless of the arriving time of the photon

with respect to the dynamic electric field the impulse response function decays at

the same average rate.

In what follows, we will use the calculated mean impulse response to find the

integrated pulse response and its corresponding eye diagram.

0 5 10 15

10
−5

10
0

Transit times

Im
pu

ls
e 

re
sp

on
se

 I
(t

,s
) 

[n
A

]

Figure 4.1: Calculated age-dependent impulse response functions of a 200-nm InP
APD under 60 GHz sinusoidal dynamic bias. Different curves correspond to different
ages (in transit time) of the initiating hole. The dynamic-biasing parameters used
are: B = 13 V, C = 6 V and ψ = 0.

4.2.1 The calculated mean pulse response

To see the effect of the dynamic biasing scheme on the ISI, we calculated the mean

pulse-response function by integrating the age-dependent impulse responses over the

age variable s in the interval [0, Tb]. Figure 4.2 shows the calculated mean pulse

response of a 200 nm multiplication region InP-based APD, when it is illuminated

by a rectangular non-return-to-zero (NRZ) pulse. For simplicity, in this example

we assume a uniformly distributed random stream of photons. Two cases are con-
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sidered: sinusoidal dynamic bias and a constant reverse bias. In this example the

width of the optical pulse is 16.5 ps (consistent with 60-Gb/s NRZ bit stream). The

reduction in the tail of the pulse response in the dynamic-bias case is clearly evi-

dent compared with that for the constant-bias case. The total mean gain generated

by the pulse under dynamic-biasing is 27 and its bandwidth is 80 GHz, giving rise

to an average GBP (i.e., the GBP averaged over the age variable s in the interval

[0, Tb]) of 2,161 GHz, which is compared to 437 GHz in the constant-bias case as

pointed out in [25]. This shows that a dynamically biased APD can increase the

pulse-response gain-bandwidth product of an APD by a factor of 5. We anticipate

even greater improvement when the dynamic bias characteristics are optimized over

the peak-to-peak AC value and DC value. Note that the GBP for the constant-bias

scheme is larger than that normally reported for a 200-nm InP APD. This is because

only buildup-time limitations are considered here and all RC effects are ignored.
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Figure 4.2: Calculated time response to a 16.5-ps rectangular optical pulse of dy-
namically biased APD, with a sinusoidal-dynamic bias function as shown, and a
conventional InP APD. A five-fold enhancement in the GBP is predicted
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4.2.2 The calculated eye diagram

By overlaying sweeps of different segments of a long data stream, an eye diagram

can be simulated. We consider 213 − 1 NRZ bits with a pulse width of 25 ps as in

a 40-Gb/s NRZ bit stream. Figure 4.3 shows the simulated eye diagram of the 200

nm multiplication region APD, once with the sinusoidal dynamic-field (upper plot)

and once with the static reverse bias (lower plot). We observe that in the presence of

channel noise, the eye opening of the sinusoidal-bias case is wide open compared to

that for the static-bias case. This shows that dynamically biased APD can increase

the receiver performance substantially compared to the same APD operated under

the conventional static biasing scheme. Note that, the shape of the eye diagram for

dynamic bias case is different from that of the conventional OOK NRZ. This result

is expected due the nature of dynamic bias APD-based receivers that provide strong

avalanche current in the early phase of the optical-pulse window followed by a much

weaker impact ionization that terminates the avalanche current with high probability

before the start of next bit. This can also be realized in the logarithmic plot of the

pulse response depicted in 4.2.

4.3 Photocurrent noise

We now examine the statistics of the electric current, C(t), produced by an APD

operating under dynamic reverse bias generated by a random photoelectron flux with

mean ϕ. Note that, the average photon absorption rate can be defined as ϕ = ηΦ,

where η is the quantum efficiency of the APD defined as the probability that a single

photon incident generates an impulse response and Φ is the photon flux incident

on the photodetector. Every photon absorbed that enters the multiplication region

generates an impulse response of electric current of charge qGs and time duration

Ts. Therefore, a photon stream incident on an APD results in a stream of electrical
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Figure 4.3: The eye diagram of a 200 nm InP dynamically biased APD (upper plot)
compared to the traditional biasing APD (lower plot) for an OOK communication
system operating at 40 Gb/s.

impulse responses which add together to generate an electric current C(t). The

randomness of the photon stream is transformed into fluctuating electric current.

These fluctuations are known as shot noise when the incident photons have Poisson

distribution [11]. Moreover, the randomness in the gain generates additional noise

characterized by the excess noise factor.

The mean and the variance of the photocurrent generated by an APD has been

extensively study it in the literature [11, 61, 62]. However, these results are not

applicable when the reverse bias is dynamic. The derivation of the photocurrent

mean and variance must be generalized to account for the variation in the electric

field.

Assume that a photo-event (absorption of a photon and the creation of an

electron-hole pair) generated at time s produces a random impulse response, I(t, s).

If the time axis is divided into incremental time intervals ∆t, the number of photo-

49



Chapter 4. Dynamically Biased APD Impulse Response Statistics

events in one time-interval follows a Poisson distribution with a mean ϕ∆t. Thus, for

a sufficiently small ∆t, the Poisson distribution can be approximated by a Binomial

distribution where the probability p that a photo-event occurs within an interval is

p = ϕ∆t. The electric current is written as

C(t) =
∑
s

XsI(t, s∆t), (4.2)

where Xs has a value 1 with probability p and 0 otherwise, representing the existence

of a photocurrent at the instant s∆t. The random variables, Xs, are independent

with a mean value E [Xs] = p. The mean of the product XsXk is p for s = k and p2

otherwise. The first and second moment of C(t) become

E [C(t)] =
∑
s

pi(t, s) (4.3)

and

E
[
C2(t)

]
=
∑
s

∑
k

E [XsXk]E [I(t, s∆t)I(t, k∆t)]

=
∑∑

s ̸=k

p2E [I(t, s∆t)]E [I(t, k∆t)] +
∑
s

pE
[
I2(t, s∆t)

]
. (4.4)

By substituting p = ϕ∆t and taking the limit ∆t→ 0, the first and second moment

of the photocurrent become

E [C(t)] = ϕ

∫ ∞

−∞
i(t, s)ds = ϕ

∫ t

−∞
i(t, s) ds (4.5)

and

E
[
C2(t)

]
=

(
ϕ

∫ t

−∞
ip(t, s)ds

)2

+ ϕ

∫ t

−∞
i2(t, s) ds, (4.6)

where i(t, s) = E [I(t, s)] and i2(t, s) = E [I2(t, s)]. As a result the variance of C(t)

can be found as follows:

σ2
C(t) = E

[
C2(t)

]
− E

[
C2(t)

]2
= ϕ

∫ t

−∞
i2(t, s) ds. (4.7)
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The calculation of the variance of the photocurrent generated by an APD requires

knowledge of the second moment of the APD’s impulse response i2(t, s). However,

calculation of the second-order statistics of I(t, s) are generally computationally in-

tensive. To overcome this complexity, one approach is to ignore the randomness in

the shape of the impulse response function. For example, the variance of the pho-

tocurrent was found in [11] by assuming a deterministic shape proportional for the

mean impulse response function. Let Î(t, s) be the simplified impulse response with

a deterministic shape such as Î(t, s) = Gsh(t − s), where Gs is the stochastic gain

generated by a photoevent at time s and h(t) is the normalized (with an area q)

function that represents the deterministic shape of the impulse response.

Substituting Î(t, s) in (4.3) and (4.4), the first and second moment of the pho-

tocurrent become

E [C(t)] =
∑
s

pE [Gs]h(t− s∆t) (4.8)

and

E
[
C2(t)

]
=
∑∑

s ̸=k

p2E [Gs]E [Gk]h(t− s∆t)h(t− k∆t) +
∑
s

pE
[
G2

s

]
h2(t− s∆t).

(4.9)

As before by taking the limit ∆t → 0, the simplified variance of the photocurrent

can be written as

σ̂2(t) = ϕE
[
G2(t)

]
∗ h2(t), (4.10)

where ∗ represents the convolution in t.
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4.4 Approximation of the mean impulse response

function

Figure 4.1 suggests that the tail of the impulse response can be approximated by

a decaying exponential function with a constant average rate, b. It is clear from

the numerical calculations that the average decay rate, b, is independent of the

carrier age; i.e., regardless of the arriving time of the photon with respect to the

dynamic electric field the impulse response function decays at the same average rate.

Moreover, the fluctuations in the tail can be ignored because we are interested in the

limit of the impulse response, where the average decay rate exponent b dominates the

bounded sinusoidal fluctuations, i.e., e−bt+δ sin(ωbt) ≈ e−bt when t is large. With this

in mind, we approximate the mean and the second moment of the impulse response

as follows:

i(t, s) ≈ ase
−b(t−s) (4.11)

and

i2(t, s) ≈ cse
−b(t−s), (4.12)

where as and cs are age-dependent coefficients to be determined and b is the average

decaying rate of the impulse response (ignoring the fluctuation).

4.4.1 Exploring the parameters as and cs

In this section, we investigate the physical meaning of the parameters as and cs.

These parameters can be related to the statistics of the stochastic gain and buildup

time. Finding the relation between the impulse response parameters and the age-

dependent joint PDF facilitates the derivation of the BER closed-form expressions.
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To do so, we consider the area under the mean of the impulse response approxima-

tions

∫ ∞

s

i(t, s) dt ≈
∫ ∞

s

ase
−b(t−s) dt =

as
b

(4.13)

On the other hand, due to the linearity of the expectation, one could realize that∫∞
s
i(t, s) dt is equivalent to E

[∫∞
s
I(t, s) dt

]
. To evaluate the latter term, I(t, s)

can be approximated by a specified shape function. The rationale is to approximate

I(t, s) by a function that is parameterized by the age-dependent stochastic gain Gs

and the age-dependent stochastic buildup time Ts. An example of such a function

is the rectangular–random-duration (RD) with random height qGs/Ts and random

duration Ts, where q is the electronic charge. Note that the area under this function

is qGs. The randomness in the impulse-response function’s area represents the gain

uncertainty and the randomness in its duration represents the buildup time. This

shape significantly simplifies the complexity of the impulse-response function while

maintaining the key features that govern the stochastic gain, the excess-noise and

speed properties of the APD. Other shapes function may also be considered such as

triangular-RD [23]. However for simplicity we will use rectangular-RD approxima-

tion. Therefore,

E

[∫ ∞

s

Ip(t, s) dt

]
≈ E

[∫ ∞

s

q
Gs

Ts
(u(t− s)− u(t− s− Ts)) dt

]
(4.14)

= qE [Gs] . (4.15)

From (4.13) and (4.15), we can conclude that as = qbE [Gs]. Similarly, the parameter

cs of the second moment, i2(t, s), can be found as follows:

∫ ∞

s

i2(t, s) dt ≈
∫ ∞

s

cse
−b(t−s) dt =

cs
b
. (4.16)
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Moreover,

E

[∫ ∞

s

I2p (t, s) dt

]
≈ E

[∫ ∞

s

q2
G2

s

T 2
s

(u(t− s)− u(t− s− Ts)) dt

]
(4.17)

= q2E

[
G2

s

Ts

]
. (4.18)

As a result, Eq. (4.16) and (4.18) together imply cs = q2bE [G2
s/Ts]. Note that the

approximation of Ip(t, s) is based on the rectangular parameterized model, which

takes into account the stochastic gain, Gs, and the stochastic buildup time, Ts, and

the parent carrier age, s. In the next section, We proceed to characterize decaying

rate, b, in function of the statistics of the age-dependent joint PDF.

4.4.2 The decaying rate b

We now proceed to characterize the decaying rate factor, b. By comparing the

exact and the simplified expression for the photocurrent variance, we can relate the

decaying rate to the statistics of the impulse response Gs and Ts.

Note that the dynamic field in the APD multiplication layer is periodic with a

period Tb. An initiated carrier with an age s experiences the same electric profile as

a carrier with an age s + kTb. The stochastic photocurrent of the receiver output

follows a cyclostationary process; the statistical properties of the cyclostationary

photocurrent will be periodic in s with a period equal to the dynamic bias period,

Tb, including the first and second moment of the impulse response (i.e., i(t, s) =

i(t+ kTb, s+ kTb) and i2(t, s) = i2(t+ kTb, s+ kTb) for ∀k ∈ N).

Due to the periodicity in the second moment of the impulse response, the exact

photocurrent variance found in (4.7) can be expended as follows:

σ2
C(t) = ϕ

∞∑
0

∫ t

t−Tb

i2(t+ kTb, s) ds. (4.19)

54



Chapter 4. Dynamically Biased APD Impulse Response Statistics

Clearly from (4.7), the photocurrent variance is periodic with the same period as

i2(t, s). Integrating both sides over one period and by flipping the order of integration

on the right side, we obtain∫ Tb

0

σ2
C(t) dt = ϕ

∫ Tb

0

∫ ∞

s

i2(t, s) dt ds. (4.20)

Moreover, a closed-form estimate of the second moment of the APD’s impulse-

response function can be obtained using the rectangular-RD stochastic models for

the impulse-response function introduced in Section 4.4.1. The average photocurrent

variance is estimated as follows:∫ Tb

0

σ2
C(t) dt = ϕq2

∫ Tb

0

E

[
G2

s

Ts

]
ds. (4.21)

Next, we consider the simplified photocurrent variance derived in (4.10). Using

the exponential model approximation for the mean impulse response, we evaluate

the average simplified photocurrent variance while letting h(t) = qe−bt (as we ap-

proximated the shape of the mean impulse response). This leads us to∫ Tb

0

σ̂2(t) dt =
ϕq2b

2

∫ Tb

0

E
[
G2

s

]
ds. (4.22)

Now by comparing the exact and the simplified variance, we relate the decaying rate

of the mean impulse response, b, with the statistics of the gain and buildup time as

follows:

b =
2
∫ Tb

0
E [G2

s/Ts] ds∫ Tb

0
E [G2

s] ds
. (4.23)

4.4.3 The approximation result

For the dynamically biased APD, we were able to approximate the statistics of the

impulse response function using a rectangular parameterized model as follows:

i(t, s) ≈ ase
−b(t−s) and i2(t, s) ≈ cse

−b(t−s), (4.24)
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where

as = qbE [Gs] , (4.25)

cs = q2bE
[
G2

s/Ts
]

(4.26)

and

b =
2
∫ Tb

0
E [G2

s/Ts] ds∫ Tb

0
E [G2

s] ds
. (4.27)

These parameters can be readily evaluated using our knowledge of the age-dependent

joint distribution fGs,Ts obtained in Chapter 3.

We note that for a static-bias case, the dependence on the age variable s will

be absent in Gs and Ts, and the parameters as, cs and b of the approximated im-

pulse response statistics collapse to their static-field counterparts reported in [23]

[Eqs. (11), (26) and (29)]. In the next section, we use the impulse-response-function

approximations described above to determine the receiver performance of an APD

operating with a dynamically reversed bias. We particularly investigate the effect of

the different bias settings (DC level, peak-to-peak value and phase) on the receiver

BER.

4.5 Summary and conclusions

In this chapter, we have determined the asymptotic behavior, and particularly the

decay rate, of the mean and variance of the impulse response function of the dy-

namically biased APD. We approximated the statistics of the impulse response by

a simple exponentially decaying function parameterized by the stochastic gain and

buildup time. This shape significantly simplifies the complexity of the impulse-

response function while maintaining the key features that govern the stochastic gain,

the excess-noise and speed properties of the APD.

56



Chapter 4. Dynamically Biased APD Impulse Response Statistics

We also numerically calculated the mean impulse response, the pulse response of

an OOK NRZ system and its eye diagram. In [25], Hayat and Ramirez calculated the

mean impulse response of a dynamically-biased InP. Their calculations shows that

the asymptotic behavior of the tail saturates at a certain value. In this chapter, we

recalculated the mean impulse response and we showed that the tail keeps decaying

exponentially with an average decaying rate, b, independent of the parent carrier

age, s. In the dynamic bias scenario, the tail of the pulse response was significantly

reduced compared to the results of those for the constant-bias base. The calculated

GBP for dynamically biased APD was found to be 2,161 GHz, which is 5 times

larger than the GBP of 437 GHz for the constant bias case. We anticipate even

greater improvement when the dynamic bias characteristics are optimized over the

peak-to-peak AC value, phase offset and DC value.
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Gaussian Approximation in

Analyzing the Performance of

Optical Receivers

Before assessing the receiver performance, we need to develop a method to calculate

the BER. The analytical calculation of the BER of digital optical receivers that

employ APDs is especially challenging due to the presence of ISI and the stochastic

nature of avalanche gain and its correlation with the stochastic avalanche buildup

time. The BER analysis for a dynamically biased APD have never been reported

before. In this chapter, we offer an effective method to approximate the BER with the

inclusion of ISI, dead space, Johnsom noise, excess noise, receiver speed, transmission

rate for a dynamically biased APD.

58



Chapter 5. Gaussian Approximation in Analyzing the Performance of Optical Receivers

5.1 Literature review and contributions

Numerous methods have been developed to approximate the BER. In [81], a proce-

dure was given to numerically compute system performance which uses the nearly

exact Webb’s approximation of the true Conradi distribution for the APD output.

The measured performance of the system was found to be in excellent agreement

with the performance predicted. In their model, the ISI was not addressed due to

the low transmission speed. However, as it is the case in modern lightwave systems,

the transmission rates are large (upwards of 10 Gb/s) and the ISI cannot be ne-

glected. Sun et al. [82] developed a method to compute the exact BER based on the

moment-generating function (MGF). The effects of ISI as well as the APD’s dead

space are both included in the analysis. The exact BER was computed by adding

the contribution of every photon absorbed by the APD during every bit interval to

the receiver output. However, this exact method is computationally expensive and

provides no closed-form expression for the BER.

In many cases, a closed-form expression for the BER is required to understand,

predict and provide analytical insight for the receiver performance. A closed-form

expression for the BER can be found by first conditioning on the past bit pattern;

then the BER is calculated by averaging the conditional BER over all possible past bit

patterns. This approach, denoted here by the bit-pattern–dependent (PD) approach,

was adopted by Ong et al. [58, 65] in which the receiver output, conditional on

the present and all the past bits, is approximated by a Gaussian random variable.

The Gaussian approximation is known to give a good estimate of the BER [66].

On the other hand, to simplify the analysis, another method has been commonly

used by conditioning on the current bit while considering the average of all possible

bit patterns (in place of the individual realizations of bit patterns) to generate the

Gaussian distribution of the output [23, 67, 68]. Hence, the receiver output in this

approach is bit-pattern–independent (PI), as it depends only on the average past bit
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pattern. Due to its simplicity, the PI method has been used to evaluate the APD

performance and to give analytical insight for the system behavior in low speed

applications. However, the benefit from the simplification comes at the expense of

inaccuracy in the BER when ISI is dominant, i.e., when transmission speed is very

high as in the OC-192 standard.

This chapter analyzes the closed-form expressions of the BER found using the

PI and PD methods and studies their accuracy. To do so, the asymptotic behavior

and the analytical bounds of each method are derived. By comparing the results to

the numerical computed BER [82], it is found that at high transmission speeds, the

PD method can give a much more accurate approximation of the BER than that

offered by the PI method. This inaccuracy is negligible for low-speed applications

in which the ISI does not have a significant impact on the current bit. Therefore

from the asymptotic behavior, we find a photocount threshold that can be used as

a decision rule to determine which approach should be used. When the photocount

is below the threshold, the PI method can be adopted as a simplified approach.

However, after exceeding the photocount threshold, ISI should be properly addressed

by conditioning on the entire bit pattern stream as done by the PD approach. The

PD method will be used in Chapter 6 to derive close-form expressions for the BER

of a dynamically biased APD

5.2 Review of relevant BER models

Consider a typical non-return-to-zero, on-off keying optical communication system

incorporating an APD-based integrate-and-dump receiver. When an information

bit 1 is transmitted, an optical pulse is transmitted in a time interval of duration

Tb; otherwise, no pulse is transmitted. Let Bn denote the input binary sequence

representing the binary information in the nth bit (n = 0 represents current bit).
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Let Γ denote the raw output resulting from the integrate-and-dump receiver (i.e.,

prior to any decision) [23]. The information (0 or 1) can be detected by comparing Γ

to a threshold, θ. Each information bit Bn contributes a term RnBn to the receiver

output, where Rn is the random variable representing the stochastic receiver output

when the nth past bit is a 1 and all other past bits are 0. Thus, the receiver outputs

conditioned on the present bit (B0 = 0 or 1), denoted by Γ0 and Γ1, respectively,

can be expressed as

Γ0 =
∞∑
n=1

RnBn +N (5.1a)

and

Γ1 =
∞∑
n=1

RnBn +R0 +N, (5.1b)

where N is the receiver Johnson noise. Note that only the term R0 conveys informa-

tion from the current bit. The components Rn, n ≥ 1, represent the ISI contributions

in the receiver output from the earlier bits. Due to the analytical complexity of the

exact statistics of Rn, it is customary to model Rn as a Gaussian random variable.

We begin by briefly reviewing the probabilistic model for the conditional receiver

outputs, Γ0 and Γ1, developed using the PI and PDmethods to determine their BERs;

these BERs are termed BERI and BERD, respectively. Both the mean and variance

of Rn, denoted by µn and σ2
n, respectively, are shown in [58] to be proportional to

the average number of photons per bit, n0. Additionally, they are both exponentially

decreasing with the bit order n. More precisely [58],

µ0 = n0βµ, (5.2a)

µn = n0e
−κλnαµ (n = 1, 2, . . .), (5.2b)

σ2
0 = n0βσ (5.2c)

and

σ2
n = n0e

−κλnασ (n = 1, 2, . . .). (5.2d)
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The coefficients αµ, ασ, βµ and βσ are APD-specific system parameters derived in [58]

for constant reverse bias as

βµ =
E [G]

κλ
(κλ− 1 + e−κλ), (5.3)

βσ =
E [G]2 F

κλ
(κλ− 2 + 2e−κλ + κλe−κλ), (5.4)

αµ =
2E [G]

κλ
(cosh(κλ)− 1) (5.5)

and

ασ =
E [G]2 F

κλ
(e−κλ − 1)(1− κλe−κλ − e−κλ), (5.6)

where brackets represent ensemble average and F is the APD’s excess noise fac-

tor, defined as F = E [G2] /E [G]2. Sun et al. [23] defined the so-called shot-noise-

equivalent-bandwidth as Bsneq = E [G2/T ] /2E [G]2 F , the bandwidth correlation fac-

tor as κ = 4Bsneq/2πB3dB and the detector’s relative speed as λ = 2πB3dBTb, where

Tb is the bit duration. The ensemble average quantities can be computed using the

joint PDF associated with the random variables comprising the APD’s stochastic

gain, G, and its stochastic avalanche duration time, T , developed in [23]. Note that,

these parameters were defined for an APD operating with a constant reverse bias.

In the next chapter, we generalize these parameters to include the dynamic biasing

approach.

The PI method used in [23] approximates the conditional receiver outputs, Γ0

and Γ1, by Gaussian random variables. In particular, BERI is computed as [23]

BERI =
1

2
erfc

(
µI|1 − µI|0√
2
(
σI|0 + σI|1

)) , (5.7)

where µI|0 and σ2
I|0 denote the mean and variance of the receiver output conditional

on the present bit being 0 while assuming the average of all possible patterns, i.e.,

Bn = 1/2 for n ≥ 1. Moreover, µI|1 and σ2
I|1 are similar quantities conditional on
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the present bit being 1. The expressions for the parameters µI|0, σ
2
I|0, µI|1 and σ2

I|1

are [23]

µI|0 =
1

2

e−κλ

1− e−κλ
n0αµ, (5.8a)

µI|1 = µI|0 + βµn0, (5.8b)

σ2
I|0 =

1

4

∞∑
n=1

(2σ2
n + µ2

n) + σ2
N (5.8c)

and

σ2
I|1 = σ2

I|0 + n0βσ. (5.8d)

The optimal decision threshold, θ that minimizes BERI is [16]

θ =
µI|1σI|0 + µI|0σI|1

σI|1 + σI|0
. (5.9)

Note that in the PI method, the probability density function of the conditional

receiver output has a unimodal distribution.

We next describe the PD method. Instead of assuming a Gaussian PDF for the

receiver output conditional on the present bit, Ong et al. [58] assume a Gaussian PDF

for the receiver output conditional on the present and the entire past bit stream. This

will lead to a multimodal distribution for the conditional receiver output.

More precisely, for an arbitrary past bit pattern, Ij ∈ {0, 1}∞, the pattern-

dependent means and variances of Γ0 and Γ1 are given by [58]

µD|0(Ij) =
∞∑
k=1

uk(Ij)µk, (5.10a)

µD|1(Ij) = µD|0(Ij) + µ0, (5.10b)

σ2
D|0(Ij) =

∞∑
k=1

uk(Ij)σ
2
k + σ2

N (5.10c)

and

σ2
D|1(Ij) = σ2

D|0(Ij) + σ2
0, (5.10d)
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Figure 5.1: PDF of an InP APD receiver output conditioned on the current bit being
either 0 (blue curves) or 1 (red curves) for the PI and PD approaches. The exact
conditional PDF is also shown for comparison. The average number of photons in a
1 transmitted bit is n0 = 1000.

where uk(Ij) = 0 unless the k-th bit in the pattern Ij is a 1 bit, in which case uk(Ij)

assumes the value 1. To calculate BERD, Ong et al. compute the ensemble average

of the pattern-specific BER over all possible past bit patterns: [58]

BERD = lim
L→∞

1

2L

2L∑
j=1

1

4

[
erfc

(
θ − µD|0(Ij)√

2σD|0(Ij)

)
+ erfc

(
µD|1(Ij)− θ√

2σD|1(Ij)

)]
, (5.11)

where θ is calculated for convenience from (5.9). Note that the optimal threshold,

denoted by θo, does not have a simple analytical expression in this case because

the PDF of the receiver output is a multimodal distribution. However, one can

calculate θo numerically by finding the intersection point of the conditional PDFs

of the receiver output. In the calculations considered in Section 5.4, we evaluate
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BERD, opt using the optimal threshold, θo, and compare it to BERD, which uses the

threshold θ.

Figure 5.1 shows an example of the conditional PDFs calculated for an InP-based

APD with 100-nm multiplication layer. An electric field of 10.5 kV/cm was assumed

in the multiplication layer, corresponding to an average gain of 10.3 and a buildup-

time–limited 3-dB bandwidth of 29 GHz. The PDFs of Γ0 and Γ1 for the PI and PD

approaches are compared to the exact PDFs found in [82]. Figure 5.1 foretells that

the PD method yields a better approximation of the exact PDF compared to the PI

approach. Also, it is clear from the figure that BERD (as well as the exact BER)

outperforms BERI since the PDFs of the PI method are larger than that for the PD

(and the exact) method in the vicinity of the decision threshold, θ.

5.3 Asymptotic analysis of the BER

We now compare BERI and BERD for large n0.

Theorem 1. limn0→∞ BERI is a constant whereas BERD decays exponentially in n0.

Moreover, when n0 exceeds the threshold

nth ≡ − 1

c22
ln

[
√
π erfc

(
βµ

√
1− e−2κλ

√
2e−κλαµ

)]
, (5.12)

where c2 is defined in (5.17), then BERI −BERD > r(n0), where r(n0) is a mono-

tonically increasing positive function converging to limn0→∞ BERI.

Proof. Consider the case for which the current bit is 0; in this case and for large n0,

σ2
I|0 ∼

1

4

e−2κλ

1− e−2κλ
α2
µn

2
0. (5.13)

Similarly, for the case when the current bit is 1, it can be shown that σ2
I|1 ∼ σ2

I|0

when n0 is large. Substituting these results in the error probability found in (5.7),
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we obtain

lim
n0→∞

BERI =
1

2
erfc

(
βµ

√
1− e−2κλ

√
2e−κλαµ

)
. (5.14)

Thus, BERI is asymptotically independent of n0 and it saturates to a predetermined

constant.

Next, we find the upper bound, U(n0), for BERD and describe its asymptotic

behavior. This is done by considering the worst (maximum error) bit-pattern sce-

nario. Consider the first term in (5.11), which represents the probability of falsely

announcing 1 when the current bit is 0. This term is maximized when all the past

bits are 1. Similarly, the second term in (5.11), which represents the probability

of falsely announcing 0 when the current bit is 1, is maximized when all the past

bits are 0. By replacing these worst-case scenarios in (5.11), we obtain the following

upper bound for BERD:

BERD ≤ 1

4

[
erfc

(
θ −

∑∞
n=1 µn√

2
∑∞

n=1 σ
2
n

)
+ erfc

(
µ0 − θ√
2
∑∞

n=0 σ
2
n

)]
. (5.15)

Using the upper bound erfc(x) < 2√
π

e−x2

x+
√

x2+ 4
π

[83], we further obtain

BERD <
1

4
√
π

(
e−c21n0

c1
√
n0

+
e−c22n0

c2
√
n0

)
≡ U(n0), (5.16)

where c1 and c2 are defined as

c1 =

1
2βµ − e−κλ

2(1−e−κλ)
αµ√

2 e−κλ

1−e−κλασ

and c2 =

1
2βµ − e−κλ

2(1−e−κλ)
αµ√

2
(
βσ + e−κλ

1−e−κλασ

) . (5.17)

Similarly, to find a lower bound for BERD, we consider the best (minimum error)

past-bit scenarios (a past-bit stream of all 0s when considering the probability of

falsely announcing 1 and a past-bit stream of all 1s when considering the probability
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of falsely announcing 0). By using these best-case scenarios in conjunction with the

lower bound erfc(x) > 2√
π

e−x2

x+
√
x2+2

[83], it can be shown that

BERD >
1

4
√
π

e−c20n0

c0
√
n0

, (5.18)

where c0 = βµ/2
√
2βσ. Therefore, unlike BERI, BERD decays exponentially with re-

spect to the average photon count n0 since its upper and lower bounds decay expo-

nentially in n0.

Next, consider the intersection point between limn0→∞ BERI and U(n0), which

can be approximated for large n0 using

nth ≡ − 1

c22
ln

[
√
π erfc

(
βµ

√
1− e−2κλ

√
2e−κλαµ

)]
. (5.19)

Note that when n0 > nth, BERI > BERD; furthermore, BERI −BERD > r(n0)

where r(n0) = limn0→∞BERI −U(n0). Clearly, r(n0) is a monotonically increasing

function in n0 with limn0→∞ r(n0) = limn0→∞ BERI.

5.4 Numerical results

In our calculations, we selected an InP-based APD receiver with a 100-nm multipli-

cation layer and an electric field of 10.5 kV/cm. The system parameters, calculated

numerically using the renewal theory approach [23], are αµ = 97.49, ασ = 5.5× 103,

βµ = 7.76 and βσ = 325.4. The behavior of BERI, BERD and BERD, opt, are shown

in Fig. 5.2 and Fig. 5.3 for two transmission rates, 10 GHz and 30 GHz. We com-

pare the results to the exact BER calculated using the MGF approach [82]. The

numerical results suggest that at low transmission rates, the PI method gives a good

estimate of the BER. However, at 30 Gb/s, ISI becomes crucial to the BER and
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Figure 5.2: The BER of an InP-based optical receiver at a transmission rate of 10
Gb/s using the two approximation methods compared to the exact BER. In the PD
method, the optimal threshold, θo, was considered in addition to the suboptimal
threshold, θ.

the PI method deviates from the exact BER and saturates at high optical powers

as the asymptotic analysis predicted. On the other hand, for the PD method, both

BERD and BERD, opt decay exponentially and follow the exact BER. Therefore, we

conclude that the PD method offers a better approximation to the exact BER than

the PI method at high transmission rates.

The asymptotic analysis found in Section 5.3 is included in Fig. 5.3. The in-

tersection point of the asymptotic lines, nth ≈ 1500, which can also be found from

(5.12), guarantees that BERI −BERD > r(n0) when n0 > nth. Figure 5.4 illus-

trates BERI −BERD at different transmission speeds. It is observed that the dis-
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Figure 5.3: The BER of an InP-based optical receiver at a transmission rate of 30
Gb/s using the two approximation methods compared to the exact BER. In the PD
method, the optimal threshold, θo, was considered in addition to the suboptimal
threshold, θ.

crepancy between BERI and BERD widens with the transmission rate. At lower

transmission rates such as 10 Gb/s, where ISI is not severe, the PI and PD methods

are almost equivalent. However, at higher transmission rates, e.g., R = 30 Gb/s,

BERI −BERD = 2.9× 10−7 when n0 = 1000, and BERI −BERD = 6.6× 10−8 when

n0 = 1500.

5.5 Summary and conclusions

This chapter provides a rigorous comparison of two commonly used BER approx-

imations for APD-based optical receivers. The analysis has been supported with
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Figure 5.4: The discrepancy, BERI −BERD, between the PI and PD approximation
methods for different transmission rates.

examples and compared to the numerical BER found using the MGF approach.

When ISI is dominant, the PI method overestimates the BER substantially and the

PD method should be used instead. The BER of the PD method decreases expo-

nentially with the optical energy in each bit while the BER computed using the

simplified PI method saturates to a constant as the optical energy per bit increases.

A closed-form expression was found for a threshold value, nth, for the average num-

ber of photons per 1 bit beyond which the PD method should be used instead of
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the PI method. As an example, the numerical calculations show that the BER of

an optical receiver utilizing InP APD with a 100 nm multiplication layer, cannot be

approximated with the PI method when the system speed exceeds 20 Gb/s.
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Chapter 6

Performance Analysis of a

Dynamically Biased APD Receiver

In this chapter, we develop for the first time closed-form expression for the BER of

an APD-based receiver operating under dynamic biasing. Since we are particularly

interested in the performance at high transmission speeds, it is important to clearly

identify ISI and carefully model it using the tools discussed in Chapter 5. We will

use the PD method where we consider an arbitrary past bit pattern of length L bits

and calculate the mean and the variance of the photocurrent and the receiver output

conditional on the value of the current bit. This is done by adding up the contribu-

tions from each of the ISI terms from the past bits in the pattern. Next, by averaging

over all possible past bit-patterns, we determine the average BER. The BER is then

used to calculate the receiver sensitivity. To enable that, we develop expressions for

the statistics of the integrate-and-dump receiver output. We investigate the effect of

the dynamic reverse bias on the performance of an APD-based receiver in a direct-

detection OOK optical communication system. The analysis developed here offer

a closed form expressions for the mean and variance of the receiver’s output, with

well-defined parameters that capture ISI, Johnson noise, excess noise, detector speed
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and transmission speed. These expressions will be further generalized to include the

band-to-band tunneling effect in Chapter 7.

6.1 Output of an integrate-and-dump receiver

Consider a modulated optical photon stream with a bit duration Tb. The photocur-

rent generated by APD-based receiver operated under dynamic bias is denoted by

C(t). Let the time axis be divided into time intervals ∆t. Consider the scenario for

which the nth past bit is a “1” bit and all other past bits are “0”bits (including the

present bit). More precisely, if we assume that the nth past bit extends from −nTb
to −(n− 1)Tb, then the photocurrent generated by the photons that had arrived in

the nth bit, for n = 1, 2, · · · , is

Cn(t) =
∑

−nTb≤s∆t<−(n−1)Tb

XsI(t, s∆t), (6.1)

where, as before, Xs has a value 1 with probability p = ϕ∆t and 0 otherwise.

The photocurrent is fed into a bit integrator synchronized with the optical stream.

The resultant output is used to detect the information modulated with the incident

optical stream. Let Γn be the integrate-and-dump receiver output when Cn(t) is the

receiver photocurrent. The integral of the nth bit photocurrent over the bit duration

Tb is therefore

Γn =

∫ Tb

0

Cn(t) dt =
∫ Tb

0

∑
−nTb≤s∆t<−(n−1)Tb

XsI(t, s∆t) dt. (6.2)

By taking the limit ∆ → 0, the mean value of the receiver output can be calculated

by

E [Γn] = ϕ

∫ Tb

0

∫ −(n−1)Tb

−nTb

i(t, s) ds dt, (6.3)

where i(t, s) is the mean of the impulse response I(t, s).
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It was shown earlier that the mean impulse response can be approximated by an

exponential decaying function of the form i(t, s) = ase
−b(t−s), where as and b are be

found using the rectangular-RD approach as described in Section 4.4.1. Note that,

as and cs are in function of the statistics of the buildup time and gain buildup time

and gain statistics. Unlike the static case, the statistics of the buildup time and

gain of an APD operating under dynamic reverse bias will vary cyclically with time

with a period equal to the dynamic field period. therefore, as is periodic in s with

a period equal to bit duration and to the dynamic reverse voltage period Tb. Using

the Fourier series expansion, as can be rewritten as follows:

as =
∞∑

k=−∞

Ake
j2πkfbs, (6.4)

where fb is the transmission rate (fb = 1/Tb) and Ak are the fourier series coefficient

defined as Ak = 1/Tb
∫ Tb

0
ase

−j2πkfbs ds. Thus, the mean of the nth bit photocurrent

output becomes

µn = E [Γn] =
ϕe−nbTb

b

(
ebTb + e−bTb − 2

) ∞∑
k=−∞

Ak

j2πkfb + b
for n = 1, 2, · · · . (6.5)

To calculate the variance of Γn, we utilize the cyclostationary stochastic pho-

tocurrent analysis shown in Section 4.3. This yields us to

σ2
n = ϕ

∫ Tb

0

∫ Tb

0

∫ −(n−1)Tb

−nTb

RI(t1, t2, s) ds dt1 dt2 for n = 1, 2, · · · , (6.6)

where RI(t1, t2, s) is the autocorrelation function of the impulse response I(t, s),

defined as RI(t1, t2, s) = E [I(t1, s)I(t2, s)].

Using the rectangular-RD model, we can approximate the autocorrelation func-

tion by

RI(t1, t2, s) = E

[
Gs

Ts
u(t1 − s)u(t1 − s− Ts)×

Gs

Ts
u(t2 − s)u(t2 − s− Ts)

]
, (6.7)

where u(t) is the unit step function. Note that the right hand side is zero unless

Ts ≥ (t1∨ t2)−s, where the notation t1∨ t2 denotes the maximum between t1 and t2.
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Therefore, using the joint probability density function of Gs and Ts we can evaluate

the autocorrelation function as follows:

RI(t1, t2, s) =
∞∑

m=1

∫ ∞

(t1∨t2)−s

m2

τ 2
∂

∂τ
fGs,Ts(m, τ, s) dτ, (6.8)

Moreover when t1 = t2 = t, the autocorrelation function collapses to the second

moment of the impulse response function and becomes

RI(t, t, s) = E
[
I2(t, s)

]
=

∞∑
m=1

∫ ∞

t−s

m2

τ 2
∂

∂τ
fGs,Ts(m, τ, s) dτ. (6.9)

Therefore, using the second moment approximation i2(t, s) = cse
−b(t−s), the autocor-

relation will have a similar behavior and it can be approximated by

RI(t1, t2, s) = cse
−b[(t1∨t2)−s]. (6.10)

As before, due to the periodicity of cs in s, the autocorrelation function can be

decomposed into sum of complex exponentials functions, i.e., cs =
∑∞

k=−∞Cke
j2πkfbs,

and Ck are the Fourier series coefficients with Ck = 1/Tb
∫ Tb

0
cse

−j2πkfbs ds. Finally,

we substitute the autocorrelation function approximation in σ2
n to get

σ2
n =

2ϕ

b2
e−nbTb

(
ebTb − 1

) (
1− e−bTb − bTbe

−bTb
) ∞∑
k=−∞

Ck

b+ j2πkfb
for n = 1, 2, · · · .

(6.11)

In what follow, we consider the PD method described in Chapter 5, which dictates

that the receiver output, conditional on the state of the present bit and the entire past

bit stream, Ij, is a Gaussian random variable. We then compute the BER conditional

on the entire past bit stream, and then average the resulting pattern-specific BERs

over all possible past bit patterns and obtain the overall average BER.

Consider an arbitrary past bit-pattern, Ij, of length L representing the transmit-

ted information. It is known that the avalanche duration, Ts, is finite almost surely
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as long as the electric field is below the avalanche breakdown condition (as in our

case). Therefore, the bit-length parameter, L , can be chosen to be sufficiently large

to capture all the previous bits that has significant impacts on the current output.

An appropriate value of L can be determined by trial and error. To calculate the

mean of the receiver output for the bit pattern Ij when the present bit is zero, we

add up the contributions from each non-zero past bits in the pattern, this yields the

expression

µΓ|0(Ij) =
2L∑
n=1

un(Ij)µn, (6.12)

where un(Ij) is 1 when the nth bit in the pattern Ij is a “1” bit and 0 otherwise.

Similarly, one can calculate the variance of the receiver output associated with

the pattern Ij while conditioning on the first bit being 0 bit by adding up the contri-

butions from the non-zero past bits as well as contribution from Johnson noise and

obtain

σ2
Γ|0(Ij) =

2L∑
n=1

un(Ij)σ
2
n + σ2

J . (6.13)

The statistics of the receiver output when the present bit is 1 is found by adding to

µΓ|0 and σ
2
Γ|0 the contributions from the photons in the present bit. The contribution

to the mean of the receiver output from the photons available in the present bit (for

n = 0) is

µ0 = ϕ

∫ Tb

0

∫ t

0

i(t, s) ds dt

= ϕ
A0

b2
(
bTb − 1 + e−bTb

)
+ ϕ

∞∑
k=−∞
k ̸=0

Ak

b (j2πkfb + b)

(
ebTb − 1

)
. (6.14)

The contribution to the variance of the receiver output from the photons available
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in the present bit is

σ2
0 = ϕ

∫ Tb

0

∫ Tb

0

∫ t1∧t2

0

RI(t1, t2, s) ds dt1 dt2

= ϕ
2C0

b3
[
bTb + bTbe

−bTb + 2e−bTb − 2
]
+

ϕ

∞∑
k=−∞
k ̸=0

Ck

b+ j2πfbk

[
2e−bTb − 2

b(b+ j2πfbk)
+ 2

bTbe
−bTb + e−bTb − 1

b2

]
. (6.15)

When we combine these components (µ0 and σ2
0) with the contribution from the

previous bits (µn and σ2
n for n = 1, 2, · · · ), we obtain the mean and the variance of

the receiver output associated with the pattern Ij conditioning on the present bit

being 1, i.e.,

µΓ|1(Ij) = µΓ|0(Ij) + µ0 (6.16)

and

σ2
Γ|1(Ij) = σ2

Γ|0(Ij) + σ2
0. (6.17)

A common approximation for the receiver output is the Gaussian distribution.

By conditioning on the transmitted bit, the conditional probability for a specific

pattern Ij, is therefore

f0(x, Ij) =
1

σΓ|0(Ij)
√
2π

exp

{
−
(x− µΓ|0(Ij))

2

2σ2
Γ|0(Ij)

}
(6.18)

and

f1(x, Ij) =
1

σΓ|1(Ij)
√
2π

exp

{
−
(x− µΓ|1(Ij))

2

2σ2
Γ|1(Ij)

}
. (6.19)

Next, for every pattern, Ij, we calculate the pattern-specific BER as follows:

BER(Ij) =
1

4

[
erfc

(
θ − µΓ|0(Ij)

σΓ|0
√
2

)
+ erfc

(
µΓ|1(Ij)− θ

σΓ|1
√
2

)]
, (6.20)
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where θ is the decision threshold. In practice, θ is optimized to minimize the overall

BER. In the next section, we show an efficient method to determine θ.

By assuming an equiprobable distribution on the bits priors, the overall BER is

calculated by averaging over all possible bit patterns. More precisely,

BER =
1

2L

2L∑
j=1

BER(Ij). (6.21)

6.2 The decision threshold, θ

The derivation of the BER expressions involves the computation of the decision

threshold, θ, i.e., the optimized threshold that minimizes the overall BER. To the best

of our knowledge, there is no analytical expression for the optimal decision threshold

when the BER is of the form defined in (6.21), since it is impossible to obtain

analytically. However, the optimal decision threshold can be obtained numerically

by finding the maximum likelihood based on the conditional PDFs of the receiver

output obtained as follows:

f0(x) =
2L∑
j=1

f0(x, Ij) =
2L∑
j=1

1

σΓ|0(Ij)
√
2π

exp

{
−
(x− µΓ|0(Ij))

2

2σ2
Γ|0(Ij)

}
(6.22a)

and

f1(x) =
2L∑
j=1

f1(x, Ij) =
2L∑
j=1

1

σΓ|1(Ij)
√
2π

exp

{
−
(x− µΓ|1(Ij))

2

2σ2
Γ|1(Ij)

}
. (6.22b)

The optimal decision threshold can be approximated by considering the average

past bit patter, Î = {1/2, · · · , 1/2} instead of the actual past bit-pattern Ij [24,58].

As a result, the PDFs of the receiver output conditioned on the present bit defined in

(6.22) is simplified to a Gaussian distribution with mean µΓ|i(Î) and variance σΓ|i(Î)

where i ∈ {0, 1}. However, this method oversimplifies the conditional PDFs and

deviates from the optimal decision threshold when the ISI is dominant.
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A better approximation for the optimal decision threshold is found by investigat-

ing the first derivative of the BER. The derivative of the BER with respect to the

decision threshold follows immediately from the definition of the error function. To

find the minimum BER, we set dBER
dθ

= 0. As a result,

2L∑
j=1

e
−
(µΓ|1(Ij)−θ)

2

2σ2
Γ|1(Ij) /σΓ|1(Ij) =

2L∑
j=1

e
−
(θ−µΓ|0(Ij))

2

2σ2
Γ|0(Ij) /σΓ|0(Ij). (6.23)

However, the obtained result cannot be solved analytically. Let I = argmaxIj µΓ|0(Ij)

and I = argminIj
µΓ|1(Ij). It is clear that, the left hand side of (6.23) is dominated

by the exponent
(
µΓ|1(I)− θ

)2
/2σ2

Γ|1(I) and the right hand side is dominated by(
θ − µΓ|0(I)

)2
/2σ2

Γ|0(I). Thus by equating the dominant terms, the decision thresh-

old θ̂ can be approximated as follows:

θ̂ =
σΓ|0(I)µΓ|1(I) + σΓ|1(I)µΓ|0(I)

σΓ|0(I) + σΓ|1(I)
. (6.24)

6.3 The algorithm to compute the BER

In this section, we describe the algorithm to calculate the overall BER. We first

select a sufficiently large bit length parameter, L. We then compute the nth bit

statistics in the receiver output as described in (6.5) and (6.11) for n = 1, 2, · · · , L.

Next, we consider all the 2L possible bit pattern Ij. For each Ij, we calculate the

pattern specific mean, µΓ|0(Ij), and variance, σΓ|0(Ij), of the integrate-and-dump

receiver output when the present bit is “0” using (6.12) and (6.13), respectively. To

find the receiver output statistics when the present bit is “1,” we add the mean µ0

[Eq. (6.14)] and the variance σ0 [Eq. (6.15)] to µΓ|0(Ij) and σΓ|0(Ij) found earlier.

The pattern-specific BER can be then calculated using the decision threshold, θ and

the statistics of the receiver output µΓ|0, µΓ|1, σΓ|0 and σΓ|1 following (6.20). Finally,

the overall BER is computed by averaging over all possible bit patters. A flowchart

is presented in Fig. 6.1 to describe the model to compute the overall BER.
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Figure 6.1: A flowchart describing the steps to calculate the BER of a dynamically
biased APD using the PD method.

6.4 BER and receiver-sensitivity results under dy-

namic biasing

We will use the algorithm described above to derive the sinusoidal dynamic-biasing

parameters comprising the peak-to-peak voltage, time-delay offset and DC value for

optimal BER and receiver sensitivity. Of particular interest is for us to understand

the behavior of the receiver sensitivity when the peak-to-peak voltage and DC value

(assuming that the frequency is set at the bit-stream frequency) of the dynamic

bias are near the boundary of the breakdown condition. Recall that the essence

of dynamic biasing is to promote very strong impact ionization in the early phase

of an optical information bit while suppressing the ionizations near the end of the

bit. We hypothesize that this can be best achieved by setting the DC level of the
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dynamic bias just below breakdown, so that the high cycle of a suitably leveled AC

component results in very strong ionization for a limited time, followed by a low field

cycle during which the ionization is very weak.

As before, we consider an InP-based APD with 200 nm multiplication layer. The

transmission rate is 60 Gb/s. From the statistical analysis of the gain and buildup

time derived in Chapter 3, we calculate all the parameters of the model, which are

summarized in Table 6.1. Note that the statistics of the stochastic gain, Gs, and

buildup time, Ts, are averaged over all possible arrival ages of the incident photon, s.

The field-dependent nonlocalized ionization coefficients and the ionization threshold

energies for InP are obtained from Table 2.1 and 2.2, respectively. As holes impact

ionize more readily than electrons in InP, the calculations used avalanche statistics

due to pure hole injection into the InP avalanche region, as realized in practice by

separate absorption multiplication InGaAs/InP APDs.

Table 6.1: Avalanche Process Statistics of an InP APD

E [Gs] 27.46 E [G2
s] 3.689× 103

E
[
G2

s

Ts

]
2.915× 1014 b 1.580× 1011

A0 4.402× 10−18 C0 7.482× 10−24

As for the benefits of dynamic biasing on the BER, our numerical calculation

predicts an improvement by a factor of 106. For example, as shown in Fig. 6.2,

assuming an average of 600 photons per pulse, our calculations show that the BER is

0.2 when using the traditional static biasing scheme at a transmission speed 60 Gb/s,

which is way beyond the speed of this APD. On the other hand, if we use a dynamic

biasing (DC level=13V, 12V peak-to-peak AC component with the sinusoids lagging

the bit by 0.73 bit period), then the BER associated with the same APD operated

at 60 Gb/s can be reduced astonishingly to 10−6. These parameters were chosen, in

part, so that the static and dynamic biasing schemes are equivalent from the average
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multiplication gain perspective. The average gain in our example is approximately

26 for all the peak-to-peak reverse bias voltages in Fig. 6.2. With that said, it is

important to note that the benefit of sinusoidal basing is dependent upon the time

offset between the optical pulse and the dynamic bias, as Fig. 6.2 shows. On the

other hand, note that the optimal performance is robust with respect to errors in the

offset if such errors occur in the implementation stage of the dynamic biasing. For

example, an error of ±13% from the optimal phase lagging (between 0.6 and 0.86

bit period) guarantees a BER less than 10−5 for InP-based receiver operating under

dynamic bias with 12V peak-to-peak at 60 Gb/s. With that said, it is important to

note that the benefit of sinusoidal basing is dependent upon the time offset between

the optical pulse and the dynamic bias, as Fig. 6.2 shows. Fortunately, the optimal

performance appears to be robust with respect to errors in the offset if such errors

occur in the implementation stage of the dynamic biasing. For example, an error of

±13% from the optimal phase lagging (between 0.6 and 0.86 bit period) guarantees

a BER less than 10−5 for the receiver operating under dynamic bias with a 12V

peak-to-peak bias swing.

The BER calculated in Fig. 6.2 uses the approximated threshold θ̂ described

earlier. However, the optimal BER can be found numerically using the conditional

PDFs of the receiver output. Figure 6.3 compares the approximated decision thresh-

old θ̂ with the numerical optimized BER. The results show that the BER found

using the approximated decision threshold, θ̂, has almost the same performance as

the optimized BER in the region of interest (when the phase is optimized). The

bottom plot of Fig. 6.3 shows the percentage error between the BER found using

the approximated threshold θ̂ with the optimal BER found numerically. It turns out

that the approximated threshold, θ̂, overestimates the BER by an error less than 1%

when operating within ±13% from the optimal phase lagging as compared to the

numerical threshold, θ.
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Figure 6.2: The error probability of an InP-based APD with 200nm multiplication
width investigated for different reverse bias peak-to-peak. The average gain in all
cases is around 26.

We also examined the receiver sensitivity, defined as the minimum optical power

(or average number of photons per bit) needed to achieve a BER of 10−12. Sensitivity-

versus-gain curves were calculated for different peak-to-peak bias swings. The results

are shown in Fig. 6.4 for a transmission speed of 60 Gb/s. The key observation

is that by increasing the peak-to-peak voltage, the optimum sensitivity is reduced

dramatically. Indeed, our calculations predict a reverse dynamic biasing can improve

the receiver sensitivity -20 dBm at an optimal gain of approximately 47 for a 60 Gb/s

system when the peak-to-peak voltage is 12V.

Note that, as the peak-to-peak voltage increases, the optimal gain increases while

providing a lower sensitivity due to the reduced avalanched buildup time caused by

the dynamic nature of the reverse bias. In addition, we observe that by increasing

the peak-to-peak voltage, the sensitivity to the optimal-gain values decreases. For

instance, at 6 V peak-to-peak, the optimal gain region is around 12. However, as we

increase the peak-to-peak voltage to 12, the receiver sensitivity becomes resilient to
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Figure 6.3: The BER for an InP-InGaAs APD with a 200-nm multiplication region
and assuming an average of 500 photons per pulse. The reverse bias is set to be V =
13+6 sin(2πfbt)V . The average gain is 26. The top plot compares the approximated
BER found using the approximated decision threshold θ̂ with the optimal BER that
uses the optimal detection rule that maximize the likelihood ratio. The bottom plot
illustrates the percentage error between the two BERs.

the optimal gain. For example, the receiver sensitivity is less than -20 dBm when

the average gain is between 30 and 70. This too is a benefit of the dynamic-biasing

scheme, which offers substantial increase in the avalanche gain while maintaining

a short avalanche buildup time. It is worth to mention that this device cannot

operate with the conventional (static) reverse bias with such transmission speeds.

The calculated BER for the static reverse bias at 60 Gb/s was in the range of 10−1

even for large input power (sensitivity > 0 dBm).

The analysis in this chapter ignores the tunneling current caused by the high

electric field in the multiplication region. However, generalizing the receiver output

statistics to include the tunneling effects can be carried out in a straightforward fash-

ion. Of course, in practice, the benefits of the dynamic biased will be reduced when
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Figure 6.4: Receiver sensitivity versus gain for the dynamically biased InP APDs
investigated for a 60 Gb/s transmission system and for different peak-to-peak reverse
bias voltage.

the tunneling current becomes dominant. In the following chapter, we generalize the

model to include the tunneling effect and realistic values of Johnson noise

6.5 Summary and conclusions

In this chapter, we have developed a method to predict the performance of APD-

based receivers operating under dynamic biasing that is synchronized with the incom-

ing bit stream. To do this, we used the statistical correlation between the stochastic

gain the stochastic avalanche buildup time in dynamically biased APDs derived in

Chapter 3. We incorporated these results with modified point-process analysis that

accommodate the dynamic nature of the APD’s bias to derive compact expressions

for the output of an integrate-and-dump receiver in an OOK direct-detection system.

The results drawn here are based on the PD method described in Chapter 5 and in-
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clude the effects of ISI, dead-space, Johnson noise, receiver speed and transmission

data rate. The closed-form expressions for APD receiver output operating under

dynamic reverse biased can be used to properly select the DC level, peak-to-peak

value and phase of a dynamic reverse bias to yield the optimal receiver sensitivity.

We also proposed an efficient method to approximate a closed form expression for

decision threshold of OOK direct detection system. The approximated threshold was

in a perfect agreement with the exact decision threshold found numerically.

The calculations have shown that dynamic biasing operating at the optimal set-

tings improves the receiver performance beyond its traditional limits inherited from

the notoriously long buildup times of InP APD under conventional static biasing.

Indeed, our calculations predicted a reverse dynamic biasing can improve the receiver

sensitivity for InP APDs with 200 nm multiplication region from 0 dBm to -20 dBm

at an optimal gain of approximately 47 for a 60 Gb/s system when the peak-to-peak

voltage is set to 12V compared to the conventional static reverse bias.
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Chapter 7

Optimization of InP APDs

Operating Under Dynamic

Reverse Bias

In this Chapter, we use the results presented in Chapter 6 to rigorously solve the

optimization problem over the sinusoidal dynamic-biasing parameters (peak-to-peak

voltage, time-delay offset and DC value) for an InP-based APD. The model uses the

compact expressions for the mean and variance of the receiver’s output that include

the effect of ISI, detector speed relative to the transmission speed, and the complex

correlation between the APD’s gain and buildup time and generalize it to capture

the effect of the dark current and realistic Johnson noise. The results conducted here

enable us to identify the optimal dynamic reverse bias voltage for InP-based APD for

use at a prescribed digital transmission speed. Our generalized model, consider the

three factors that govern the sensitivity of APD optical receivers: Avalanche noise,

stochastic avalanche buildup time and dark current.

The sensitivity formulation developed here can be used as a guide in designing dy-
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namically biased APD-based receivers for specific system performance requirements

well beyond the limits previously known under the traditional constant-bias setting.

7.1 Generalization of the model to include multi-

plied tunneling current

The tunneling dominates the dark current at high voltages. The un-multiplied band-

to-band tunneling current, Itun, is given for direct gap semiconductors by [58,84–86]

Itun = γA exp

(
−
2πΘ

√
m0ϵ3g

q~E(t)

)
, (7.1)

where m0 is the free electron mass, q is the electron charge, E(t) is the dynamic

electric field, A is the device area, ϵg is the direct energy band gap, and ~ is Planck’s

constant. The parameter Θ is dimensionless quantity given by Θ = σT
√
m∗/m0

wherem∗ is the effective mass of the electron and σT is the tunneling fitting parameter

that depends on the detailed shape of the tunneling barrier. For an InP APD, a good

fits to the tunneling current densities were obtained with values of σT between 1.16

and 1.20 [8]. The prefactor γ depends on the initial and final states of the tunneling

carrier, and for band-to-band tunneling γ = (2m∗)0.5q3E(t)V/~ϵ0g.5 where V is the

applied reverse voltage. The parameters used to find the InP-APD dark current,

Itun, are extracted from [7] and they are listed for convenience in Table 7.1.

m0 9.109× 10−31 Kg ~ 6.626× 10−34 J.s
m∗ 0.08m0 Kg ϵg 1.35 eV
q 1.602× 10−19 C σT 1.16

Table 7.1: Parameters used to find the InP-APD dark current, Itun [7].

The dark carriers generation rate is given by ϕtun = Itun/q and has Poisson

statistics. Therefore, the effect of dark carriers on the integrate-and-dump receiver
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output can be treated as photo-generated carriers. However, the dark carriers exist

independently of the status of the optical signal, whereas the photocarrier generation

is modulated by a random stream of binary random variables. Therefore, we model

the dark current as a constant photon stream incident on the APD with a photon

flux ϕtun photons per second.

We begin by deriving the effect of the dark carrier on the mean of the integrate-

and-dump receiver output. The mean of the integrated dark current output can be

calculated by

µtunn = ϕ

∫ Tb

0

∫ t

−∞
ip(t, s) ds dt. (7.2)

By substituting the mean impulse response, ip(t, s), by its decaying exponential

approximation, we can obtain the effect of the dark-current on the mean of the

receiver output as follows:

µtunn = ϕA0Tb/b. (7.3)

Adding the effect of the dark-current on the mean receiver output, we obtain the

new expression for µΓ|0(Ij)

µΓ|0(Ij) =
2L∑
n=1

un(Ij)µn + µtunn. (7.4)

The expression for µΓ|1(Ij) is identical in form to that shown in (6.16) with the

proviso that µΓ|0(Ij) is now represented by (7.4) and not by (6.12).

The derivation of a new expression for σ2
Γ|0(Ij) requires to obtain the variance of

the receiver output assuming a constant optical power that extends from the infinitive

past to the end of the present bit

σ2
tunn =

∫ Tb

0

∫ Tb

0

∫ t1∧t2

−∞
RIp(t1, t2, s)ϕ(s) ds dt1 dt2. (7.5)

As before, by approximating the autocorrelation function using the second moment

of the impulse response function, we calculate the variance of the photocurrent as

89



Chapter 7. Optimization of InP APDs Operating Under Dynamic Reverse Bias

follows:

σ2
tunn = ϕ

2C0

b2

(
Tb −

1

b
(1− e−γTb)

)
− ϕ

∞∑
k=−∞
k ̸=0

2Ck

b(b+ j2πkf0)2
(
1− e−bTb

)
. (7.6)

After adding the effect of the dark current, we obtain the new expression for σ2
Γ|0(Ij)

σ2
Γ|0(Ij) =

2L∑
n=1

un(Ij)σ
2
n + σ2

tunn + σ2
J . (7.7)

The expression for σΓ|1(Ij) is identical in form to that shown in (6.17) with the

proviso that σΓ|0(Ij) is now represented by (7.7) and not by (6.13).

7.2 Estimating the Johnson noise in InP APD

In order to obtain the Johnson noise level, we investigated TIAs for 2.5-100 Gb/s

operation. The input noise current density, in, and 3-dB bandwidth, BTIA, of TIAs

as a function of transmission speed was roughly approximated by Ong and et al.

in [58]. The average functions of in and BTIA were found by fitting linearly several

TIAs modules fabricated and published for different transmission speed. The fit

yielded the equation

in = 4.81× 10−10Rb + 5.87 pA/
√
Hz. (7.8)

The average BTIA against transmission speed is given by

BTIA = 0.91Rb. (7.9)

To verify these results, we compared the averaged in and BTIA functions with prior

published TIA [87–91]. These parameters were also compared to commercial TIA

modules manufactured by Applied Micro Circuit, Maxim Integrated Products, Sum-

itomo Electric, Analog Devices, TriQuint Semiconductor and Texas Instruments.
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Figure 7.1: A survey on prior TIA modules input current noise, in, (diamonds) and
3-dB bandwidth high cut-off frequency, BTIA, (circles) compared with the averaged
fitted lines as a function of the transmission speed Rb. it is clear that the linearly
fitted functions described in (7.8) and (7.9) match closely all the prior TIA modules.

The input noise current density, in, and 3-dB bandwidth, BTIA, of each TIA ob-

tained is depicted in Fig. 7.1. As the result shows, the linearly fitted functions of in

and BTIA roughly approximate all the prior TIA modules. Using these fitted in and

BTIA values, we can obtain the average Johnson noise levels, σJ , as a function of

transmission speed using the formula

σJ = in
√
BTIATb. (7.10)

All the results to follow are generated using the generalized model that includes

both dark current and realistic Johnson noise for InP-based APD receivers. For con-

venience, the procedure to calculate the overall BER is summarized in Algorithm 1.
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Algorithm 1 Procedure to calculate the generalized BER

σJ = in
√
BTIATb

µtunn = ϕA0Tb/b

σ2
tunn = ϕ2C0

b2

(
Tb − 1

b
(1− e−γTb)

)
− ϕ

∑∞
k=−∞
k ̸=0

2Ck

b(b+j2πkf0)2

(
1− e−bTb

)
for n = 1 to L do

µn = ϕe−nbTb

b

(
ebTb + e−bTb − 2

)∑∞
k=−∞

Ak

j2πkfb+b

σ2
n = 2ϕ

b2
e−nbTb

(
ebTb − 1

) (
1− e−bTb − bTbe

−bTb
)∑∞

k=−∞
Ck

b+j2πkfb

end for

for j = 1 to 2L do

µΓ|0(Ij) =
∑2L

n=1 un(Ij)µn + µtunn

σ2
Γ|0(Ij) =

∑2L

n=1 un(Ij)σ
2
n + σ2

tunn + σ2
J

µΓ|1(Ij) = µΓ|0(Ij) + µ0

σ2
Γ|1(Ij) = σ2

Γ|0(Ij) + σ2
0

BER(Ij) =
1
4

[
erfc

(
θ−µΓ|0(Ij)

σΓ|0
√
2

)
+ erfc

(
µΓ|1(Ij)−θ

σΓ|1
√
2

)]
end forBER = 1

2L

∑2L

j=1 BER(Ij)

7.3 Numerical calculations

To optimize the dynamic biasing of an InP APD, the joint PDF of the gain and

avalanche duration is obtained from the model described in 3. The field-dependent

nonlocalized ionization coefficients and the ionization threshold energies for InP are

obtained from [8] and they are reiterated for convenience Table 7.2. The electron

and hole saturation velocities are assumed as 6.7× 106 cm/s. With the joint PDF at

hand, we calculate all the parameters of the model, which are a(s), c(s) and b and

the Fourier series coefficients Ak and Ck.
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A [cm−1] B [V/cm] m Eth [eV]

Electron 1.41× 106 1.69× 106 1.23 2.80
Hole 2.11× 106 1.77× 106 1.15 3.00

Table 7.2: Ionization parameters for InP [8]

7.3.1 Optimum dynamic reverse bias for a given transmis-

sion speed
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Figure 7.2: Receiver sensitivity versus gain for the dynamically biased InP APDs
investigated for a 60 Gb/s transmission system and for different peak-to-peak reverse
bias voltage with the inclusion of dark currents and a realistic Johnson noise.

The theoretical investigation was conducted on a 25µm-radius InP p-i-n diodes,

with avalanche-region widths, w = 200 nm and a quantum efficiency η = 0.85 [92].

Dynamic reverse bias voltage was applied with different peak-to-peak voltages and

different DC voltages.

We examine the receiver sensitivity versus gain curves for the InP APD with the

inclusion of dark currents and realistic Johnson noise. The results are compared in
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Fig. 7.2 at a transmission speed of 60 Gb/s. The results in Fig. 7.2 are optimized

over the delay, ψ, between the dynamic reverse voltage and bit stream. For each

peak-to-peak voltage, there is an optimal average gain that offers minimum receiver

sensitivity. The key observation is with the inclusion of the dark current, the calcula-

tions predict higher sensitivity values with lower average gain than those calculated

in Chapter 6 when the dark current was excluded. This result is expected since the

dark current exponentially increases with the reverse bias voltage. Therefore, by in-

creasing the peak-to-peak voltage, the average dark current increases exponentially

and dominates the enhancement caused by the dynamic reverse bias on ISI, or more

precisely on the buildup time. Indeed, our calculations show that the receiver sensi-

tivity for InP APDs increases from -20 dBm at an optimal gain of approximately 47

to a sensitivity of -15 dBm at an optimal gain of 8 when the peak-to-peak voltage is

set to 12V.

We can also realize that the optimum receiver sensitivity decreases while increas-

ing peak-to-peak voltage. With this expected result, we are able to predict the

optimal operation gain for a specific peak-to-peak voltage. This plot allows us to

realistically identify an InP-APD optimum dynamic reverse bias for a given trans-

mission speed, thereby yielding the optimized sensitivity for a given transmission

speed.

7.3.2 Optimum avalanche width for a given dynamic reverse

bias

To optimize over the avalanche width, we investigate a series of 25 µm-radius InP

APD operating under reverse dynamic bias with avalanche-region widths, w, ranging

from 0.16 to 0.5 µm. Sensitivity versus gain curves were calculated for the diodes

and the results are compared in Fig. 7.4 at a transmission speed of 60 Gb/s. For
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each diode, there exists an optimum mean gain that achieves the lowest sensitivity.

With the inclusion of both ISI and dark current, this result enables us to make a

correct prediction of the optimal operation gain for each multiplication width. As

the device width decreases, the electric field increases, resulting in increased dark

current, as shown in Fig. 7.4 for w = 160 for instance. On the other hand, for a thick

multiplication region with the conventional static reverse bias, the APD’s bandwidth

decreases, which causes an increase in the ISI. Thereby causing an elevation in the

sensitivity. However, due to the dynamic reverse bias, the ISI is reduced which enable

us to increase the avalanche width to avoid dark current without affecting the device

speed.
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Figure 7.3: Receiver sensitivity versus gain for the dynamically biased InP APDs
investigated for a 60 Gb/s transmission system and a peak-to-peak reverse voltage
of 12 V. The calculations conducted here include the dark currents and Johnson noise

For clarity, in Fig. 7.3 we plot the lowest sensitivity for each device and corre-

sponding optimal mean gain both as functions of the avalanche-region width; this

plot allows us to identify the optimum avalanche width for a given transmission

speed operating under dynamic reverse bias. Our calculations predict an optimum
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avalanche width of 400 nm for InP APDs, yielding a lowest sensitivity of -19 dBm at

an optimal gain of approximately 36 for a 60 Gb/s system operating with a dynamic

reverse bias with peak-to-peak voltage of 12 V. It is clear for this result that the

dynamic reverse voltage reduce the effect of ISI in slow APDs (thick multiplication

region) making the difference between the optimal diode (w = 400 nm) and the

“slow” diodes (w = 500 nm, for instance) negligible. We end this section by making

important observations when tunneling current is included in the analysis. We point

out that in the presence of the dynamic reverse voltage the restriction on the multi-

plication layer width is relaxed, as normally done to increase the APD speed, which

causes a substantial reduction in the tunneling current.
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Figure 7.4: Lowest sensitivity (solid line, left axis) and its corresponding optimal
mean gain (dashed line, right axis) versus InP APD avalanche width for a 60 Gb/s
transmission system operating under dynamic reverse bias with a peak-to-peak volt-
age fo 12V.
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7.4 Summary and conclusions

We have generalized the APD-based receiver model to include tunneling current and

used it for the purpose of optimization of the dynamic reverse voltage for best receiver

sensitivity for an arbitrarily prescribed transmission speed. The model offers compact

analytical expressions for the mean and the variance of the output of the integrate-

and-dump APD-based receiver that capture dark current and Johnson noise. It turns

out that with the dynamic biasing scheme we can relax the stringent requirements of

the width of the multiplication region, as normally done to enhance the APD speed.

This, in turn, reduces the electric field in the multiplication region, which reduces

tunneling current.

Optimizing the dynamic reverse bias of InP receivers showed that for a 60 Gb/s

system, an optimal width of 400 nm is predicted, yielding a minimum sensitivity

of -19 dBm at an optimal gain of approximately 35. As device width decreases

below its optimum value, increased tunneling current results in increasing receiver

sensitivity. On the other hand, as device width increases above its optimum, the

device bandwidth slightly decreases due to the dynamic reverse bias nature that

aims to suppress the buildup time.
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Future Work

In this dissertation, we tackled multiple challenging problems regarding modeling

and analyzing a dynamically biased APD and the rigorous predicting the sensitivity

including tunneling current and realistic Johnson noise of an InP-based APD re-

ceiver. We developed the first theory for the joint buildup-time and gain statistics

for avalanche multiplication under dynamic reverse bias. We also developed a theory

for filtered shot noise under dynamic biasing, which addresses rigorously the statis-

tics of the APD photocurrent (mean, variance, autocorrelation function, etc.). This

is used in turn to derive analytical expressions for the statistics of the photocurrent

of dynamically based APDs. Moreover, we extract exact expressions for the receiver

bit-error rate and receiver sensitivity in an OOK setting. The sensitivity analysis of

the dynamically biased APD-based receiver include the effect of ISI and dark current,

receiver speed relative to the transmission rate as well as trans-impedance amplifier

noise used in the pre-amplification stage of receivers. In addition to the multiple

problems addressed in this dissertation, a number of interesting problems remain for

future work. In this chapter, we present an overview of future research problem in

this area.
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Demonstration of the dynamically biased APD technology

One of the key feature of dynamically biased APD technology is that it is essentially

APD-agnostic; that is, it can be used to improve the GBP of any APD that has a

poor buildup-time performance. Hence, the performance of any APD system can be

remarkably improved with modest cost. The next step is to implement a complete

dynamically APD optical transceiver (transmitter and receiver) system including

high-speed measurement equipment, a high-speed dynamic bias generator, feedback

clock/data recovery, transmitter, and receiver circuitry. A proof of concept of the

dynamically biased APD technology using an off-the-shelf APD can be demonstrated.

One of the challenges in implementing dynamically biased APD is that the applied

dynamic bias signal may contaminate the photocurrent resulting from the incoming

optical pulse because of the APD’s parasitic capacitance. The harmonics frequency

of the dynamic bias can be eliminated using a bandpass filters. Hence further work

should be done to implement the dynamic biasing APD. Dynamic Photonics Inc. is

currently pursuing the demonstration and commercialization of the dynamic biased

APD technology [93].

Spatial and temporal coupling of impact ionization

The coupling between spatial (via spatial doping and material engineering) and tem-

poral modulation of impact ionization may open the door to a totally new research

area where impact ionization can be tuned to (or away from) certain optical signals.

In other words, the spatial and temporal coupling of impact ionization could re-

sults in optical (bandpass or notch) filters just as photonic bandgaps and filtering by

means of photonic crystals are the result of the coupling between periodic structures

(a spatial property) and waves.
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The reverse bias waveform shape

The theory developed in this dissertation can be applied to any dynamically biased

reverse voltage. In the numerical analysis, we considered the sinusoidal dynamic

reverse voltage as a proof the concept. Further analysis on different waveform shape

are interesting problems to be investigates. Several waveform can be considered such

as rectangular waveform, sawtooth, or trapezoid. In addition to the previous opti-

mization parameters, the receiver performance can be optimized further by adjusting

the duty cycle, for instance.

Characterization of breakdown conditions under dynamic fields

The dynamic bias scheme radically changes the way we characterize breakdown con-

dition in devices. Traditionally, breakdown in APDs is characterized by a single

quantity, namely the reverse bias for which the avalanche pulse (resulting from a

parent carrier triggering the avalanche process) is self-sustained. This simplistic

characterization is not adequate when the electric field is allowed to be dynamic.

For dynamic biasing, breakdown condition amounts to regions in the three dimen-

sional parameter space comprising the DC level, AC level, and frequency of the

sinusoid. The joint PDF of the stochastic gain and buildup time, fGs,Ts(m, t; s),

developed in Chapter 3, can be utilized to identify regions of the three-dimensional

space comprising the three biasing parameters (the DC level, the peak-to-peak value,

and the frequency of the dynamic bias), for which breakdown occurs.

100



References

[1] C. H. Tan, J. S. Ng, S. Xie, and J. P. R. David, “Potential materials for avalanche
photodiodes operating above 10 Gb/s,” in 4th International Conference on Com-
puters and Devices for Communication (CODEC2009), 2009, pp. 1–6.

[2] B. L. Kasper and J. C. Campbell, “Multigigabit-per-second avalanche photodi-
ode lightwave receivers,” Journal of Lightwave Technology, vol. 5, no. 10, pp.
1351–1364, 1987.

[3] M. M. Hayat, J. P. David, S. Krishna, L. F. Lester, D. A. Ramirez, and
P. Zarkesh-Ha, “Impact ionization devices under dynamic electric fields,” U.S.
Patent Provisional Application 61/456,455, November 04, 2011, attorney docket
No. 1863.098US1.

[4] X. Li, X. Zheng, S. Wang, F. Ma, and J. C. Campbell, “Calculation of gain and
noise with dead space for gaas and AlxGa1−xAs avalanche photodiode,” IEEE
Transactions on Electron Devices, vol. 49, no. 7, pp. 1112–1117, 2002.

[5] J. P. R. David and C. H. Tan, “Material considerations for avalanche photodi-
odes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 4,
pp. 998–1009, 2008.

[6] M. A. Saleh, M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Dead-space-
based theory correctly predicts excess noise factor for thin GaAs and AlGaAs
avalanche photodiodes,” IEEE Transactions on Electron Devices, vol. 47, no. 3,
pp. 625–633, 2000.

[7] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. Hoboken,
NJ: Wiley-Interscience, 2006.

[8] L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche noise char-
acteristics in submicron InP diodes,” IEEE Journal of Quantum Electronics,
vol. 44, no. 4, pp. 378–382, 2008.

101



References

[9] A. Momtaz, J. Cao, M. Caresosa, A. Hairapetian, D. Chung, K. Vakilian,
M. Green, W.-G. Tan, K.-C. Jen, I. Fujimori, and Y. Cai, “A fully integrated
SONET OC-48 transceiver in standard CMOS,” IEEE Journal of Solid-State
Circuits, vol. 36, no. 12, pp. 1964–1973, 2001.

[10] J. Cao, M. Green, A. Momtaz, K. Vakilian, D. Chung, K.-C. Jen, M. Caresosa,
X. Wang, W.-G. Tan, Y. Cai, I. Fujimori, and A. Hairapetian, “OC-192 trans-
mitter and receiver in standard 0.18-µm CMOS,” IEEE Journal of Solid-State
Circuits, vol. 37, no. 12, pp. 1768–1780, 2002.

[11] B. E. A. Saleh and M. C. Teich, “Semiconductor photon detectors,” in Funda-
mentals of Photonics. New York: John Wiley & Sons, Inc., 1991, ch. 17, pp.
644–695.

[12] Y. S. Wang, S.-J. Chang, C. L. Tsai, M.-C. Wu, Y. Chiou, S. P. Chang, and
W. Lin, “10-Gb/s planar InGaAs P-I-N photodetectors,” IEEE Sensors Journal,
vol. 10, no. 10, pp. 1559–1563, 2010.

[13] S. H. Hsu, Y. J. Chen, and H. Z. You, “10 GHz high-speed optical interconnec-
tion,” Electronics Letters, vol. 46, no. 2, pp. 149–150, 2010.

[14] M. Bitter, R. Bauknecht, W. Hunziker, and H. Melchior, “Monolithic InGaAs-
InP p-i-n/HBT 40-Gb/s optical receiver module,” IEEE Photonics Technology
Letters, vol. 12, no. 1, pp. 74–76, Jan. 2000.

[15] D. Huber, R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf,
A. Neiger, M. Rohner, I. Schnyder, V. Schwarz, and A. Jackel, “InP-InGaAs sin-
gle HBT technology for photoreceiver OEIC’s at 40 Gb/s and beyond,” Journal
of Lightwave Technology, vol. 18, no. 7, pp. 992–1000, July 2000.

[16] G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. New York: Wiley-
Interscience, 2002.

[17] J. C. Livas, E. A. Swanson, S. R. Chinn, E. S. Kintzer, R. S. Bondurant, and
D. J. DiGiovanni, “A one-watt, 10-Gb/s high-sensitivity optical communication
system,” IEEE Photonics Technology Letters, vol. 7, no. 5, pp. 579–581, 1995.

[18] Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105-nm ultrawide-band
gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel
configuration,” IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1640–
1642, July 2004.

[19] C. Bornholdt, J. Slovak, and B. Sartorius, “Semiconductor-based all-optical 3r
regenerator demonstrated at 40 Gbit/s,” Electronics Letters, vol. 40, no. 3, pp.
192–194, Feb. 2004.

102



References

[20] S. D. Personick, “Receiver design for digital fiber-optic communication systems,
parts I and II,” The Bell System Technical Journal, vol. 52, no. 6, pp. 843–886,
Jul./Aug. 1973.

[21] R. G. Smith and S. D. Personick, “Receiver design for optical fiber communi-
cations systems,” in Semiconductor Devices for Optical Communication. New
York: Springer-Verlag, 1980, ch. 4.

[22] S. R. Forrest, “Sensitivity of avalanche photodector receivers for high-bit-
rate long-wavelength optical communication systems,” in Semiconductor and
Semimetals. Orlando, FL: Academic, 1985, vol. 22, ch. 4.

[23] P. Sun, M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Statistical correlation of
gain and buildup time in APDs and its effects on receiver performance,” Journal
of Lightwave Technology, vol. 24, no. 2, pp. 755–768, Feb. 2006.

[24] D. S. G. Ong, J. S. Ng, J. P. R. David, M. M. Hayat, and P. Sun, “Optimization
of InP APDs for high-speed lightwave systems,” in 20th International Con-
ference on Indium Phosphide and Related Materials, (IPRM 2008), Versailles,
France, May 2008.

[25] M. M. Hayat and D. A. Ramirez, “Multiplication theory for dynamically
biased avalanche photodiodes: new limits for gain bandwidth product,”
Opt. Express, vol. 20, no. 7, pp. 8024–8040, Mar 2012. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-7-8024

[26] H. Melchior, A. R. Hartman, D. P. Schinke, and T. E. Seidel, “Atlanta fiber
system experiment: Planar epitaxial silicon avalanche photodiode,” Bell System
Technical Journal, vol. 57, no. 6, pp. 1791–1807, 1978. [Online]. Available:
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02127.x

[27] J. C. Campbell, “Recent advances in telecommunications avalanche photodi-
odes,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 109–121, 2007.

[28] K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, and H. Ishihara, “Planar-
structure InP,” Journal of Lightwave Technology.

[29] G. Hasnain, W. Bi, S. Song, J. Anderson, N. Moll, C.-Y. Su, J. N. Hollenhorst,
N. Baynes, I. Athroll, S. Amos, and R. Ash, “Buried-mesa avalanche photodi-
odes,” IEEE Journal of Quantum Electronics, vol. 34, no. 12, pp. 2321–2326,
Dec. 1998.

[30] J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, “High-speed
InP/InGaAsP/InGaAs avalanche photodiodes,” in International Electron De-
vices Meeting, vol. 29, 1983, pp. 464–467.

103



References

[31] E. Ishimura, S. Funaba, Y. Tanaka, T. Aoyagi, T. Nishimura, and E. Omura,
“High efficiency 10 Gb/s InP/InGaAs avalanche photodiodes with distributed
bragg reflector,” in 27th European Conference on Optical Communication
(ECOC2001)., vol. 4, Amsterdam, Netherlands, Oct. 2001, pp. 554–555 vol.4.

[32] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther,
and J. H. Meier, “A new planar InGaAs-InAlAs avalanche photodiode,” IEEE
Photonics Technology Letters, vol. 18, no. 18, pp. 1898–1900, Sep. 2006.

[33] N. Yasuoka, H. Kuwatsuka, M. Makiuchi, T. Uchida, and A. Yasaki, “Large
multiplication-bandwidth products in APDs with a thin inp multiplication
layer,” in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics So-
ciety. (LEOS 2003), vol. 2, 2003, pp. 999–1000.

[34] G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photo-
diode operating at 1.55 µm with a gain-bandwidth product of 320 GHz,” IEEE
Photonics Technology Letters, vol. 13, no. 8, pp. 842–844, 2001.

[35] H. Nie, K. A. Anselm, C. Hu, S. S. Murtaza, B. G. Streetman, and J. C.
Campbell, “High-speed resonant-cavity separate absorption and multiplication
avalanche photodiodes with 130 GHz gain-bandwidth product,” Applied Physics
Letters, vol. 70, no. 2, pp. 161–163, 1997.

[36] Y. L. Goh, D. J. Massey, A. R. J. Marshall, J. S. Ng, C. H. Tan, M. Hopkinson,
and J. P. R. David, “Excess noise and avalanche multiplication in InAlAs,” in
19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, (LEOS
2006), 2006, pp. 787–788.

[37] J. C. Campbell, H. Nie, C. Lenox, G. Kinsey, P. Yuan, J. Holmes, A. L., and
B. G. Streetman, “High-speed, low-noise avalanche photodiodes,” in Optical
Fiber Communication Conference, vol. 4, 2000, pp. 114–116 vol.4.

[38] Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson,
J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche
noise in In0.52Al0.48As,” IEEE Journal of Quantum Electronics, vol. 43, no. 6,
pp. 503–507, 2007.

[39] G. S. Kinsey, R. Sidhu, J. Holmes, A. L., J. C. Campbell, and A. G. Dentai,
“High-speed waveguide avalanche photodetectors,” in Device Research Confer-
ence, 2001, pp. 149–150.

[40] C. Y. Park, K. S. Hyun, S. K. Kang, M. K. Song, T. Y. Yoon, H. M. Kim,
H. M. Park, S.-C. Park, Y. H. Lee, C. Lee, and J. B. Yoo, “High-performance
InGaAs/Inp avalanche photodiode for a 2.5 gb/s optical receiver,” Optical and

104



References

Quantum Electronics, vol. 27, no. 5, pp. 553–559, 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF00563597

[41] M. A. Itzler, C. S. Wang, S. McCoy, N. Codd, and N. Komaba, “Planar bulk
InP avalanche photodiode design for 2.5 and 10 Gb/s applications,” in 24th
European Conference on Optical Communication, vol. 1, 1998, pp. 59–60 vol.1.

[42] T. Torikai and K. Makita, “40-Gbps high-sensitive waveguide photodetectors,”
Proc. SPIE, vol. 6020, pp. 602 024–1–602 024–8, 2005.

[43] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid,
A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling,
D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon
avalanche photodiodes with 340 GHz gain-bandwidth product,” Nature Photon-
ics, vol. 3, pp. 59–63, Jan. 2009.

[44] W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J.
Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and
bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz
gain-bandwidth-product,” Opt. Express, vol. 17, no. 15, pp. 12 641–12 649, Jul
2009. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-
17-15-12641

[45] P. Sun, M. M. Hayat, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Cor-
relation between gain and buildup-time fluctuations in ultrafast avalanche pho-
todiodes and its effect on receiver sensitivity,” in Optical Fiber Communication
Conference. Technical Digest. OFC/NFOEC, vol. 1, Mar. 2005.

[46] N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at
telecommunication wavelengths using sinusoidally gated ingaas/inp avalanche
photodiode,” Opt. Express, vol. 17, no. 8, pp. 6275–6282, Apr 2009.

[47] J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23
GHz gating InGaAs/InP single-photon avalanche diode for quantum key distri-
bution,” Proc. SPIE, vol. 7681, pp. 76 810Z1–76 810Z8, Feb. 2010.

[48] Z. Lu, W. Sun, J. Campbell, X. Jiang, and M. A. Itzler, “Single photon detec-
tion with sine gated dual InGaAs/InP avalanche diodes,” in IEEE Photonics
Conference (IPC2012), Burlingame, CA, Sep. 2012, pp. 98–99.

[49] D. C. Herbert and E. T. R. Chidley, “Very low noise avalanche detection,” IEEE
Transactions on Electron Devices, vol. 48, no. 7, pp. 1475–1477, Jul 2001.

105



References

[50] M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Effect of dead space on gain
and noise of double-carrier-multiplication avalanche photodiodes,” IEEE Trans-
actions on Electron Devices, vol. 39, no. 3, pp. 546–552, 1992.

[51] M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh,
and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodi-
odes,” IEEE Transactions on Electron Devices, vol. 49, no. 5, pp. 770–781,
2002.

[52] M. M. Hayat, W. L. Sargeant, and B. E. A. Saleh, “Effect of dead space on gain
and noise in Si and GaAs avalanche photodiodes,” IEEE Journal of Quantum
Electronics, vol. 28, no. 5, pp. 1360–1365, 1992.

[53] M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A.
Saleh, and M. C. Teich, “Impact-ionization and noise characteristics of thin III-V
avalanche photodiodes,” IEEE Transactions on Electron Devices, vol. 48, no. 12,
pp. 2722–2731, 2001.

[54] M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response
function of double-carrier multiplication avalanche photodiodes including the
effect of dead space,” Journal of Lightwave Technology, vol. 10, no. 10, pp.
1415–1425, 1992.

[55] M. M. Hayat and G. Dong, “A new approach for computing the bandwidth
statistics of avalanche photodiodes,” IEEE Transactions on Electron Devices,
vol. 47, no. 6, pp. 1273–1279, 2000.

[56] M. M. Hayat, O.-H. Kwon, S. Wang, J. C. Campbell, B. E. A. Saleh, and
M. C. Teich, “Boundary effects on multiplication noise in thin heterostructure
avalanche photodiodes: theory and experiment [Al0.6Ga0.4As/GaAs],” IEEE
Transactions on Electron Devices, vol. 49, no. 12, pp. 2114–2123, Dec. 2002.

[57] R. J. Mcintyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans-
actions on Electron Devices, vol. 13, no. 1, pp. 164–168, 1966.

[58] D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. P. R. David, “Opti-
mization of InP APDs for high-speed lightwave systems,” Journal of Lightwave
Technology, vol. 27, no. 15, pp. 3294–3302, Aug. 2009.

[59] G. El-Howayek and M. M. Hayat, “Error probabilities for optical receivers that
employ dynamically biased avalanche photodiodes,” IEEE Transactions on Con-
mmunications, Dec. 2014, [In review].

106



References

[60] D. Snyder and M. Miller, Random Point Processes in Time and Space. New
York, NY: Springer-Verlag, 1991.

[61] N. Sorensen and R. M. Gagliardi, “Performance of optical receivers with
avalanche photodetection,” IEEE Transactions on Communications,, vol. 27,
no. 9, pp. 1315–1321, 1979.

[62] E. Gramsch, “Noise characteristics of avalanche photodiode arrays of the bevel-
edge type,” IEEE Transactions on Electron Devices, vol. 45, no. 7, pp. 1587–
1594, 1998.

[63] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes,
2nd ed., J. Gani, C. C. Heyde, and T. G. Kurtz, Eds. New York, NY: Springer,
2003.

[64] C. H. Tan, P. J. Hambleton, J. P. R. David, R. C. Tozer, and G. J. Rees, “Cal-
culation of APD impulse response using a space- and time-dependent ionization
probability distribution function,” Journal of Lightwave Technology, vol. 21,
no. 1, pp. 155–159, 2003.

[65] D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-
speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE
Photonics Technology Letters, vol. 23, no. 4, pp. 233–235, 2011.

[66] S. D. Personick, P. Balaban, J. Bobsin, and P. Kumar, “A detailed comparison
of four approaches to the calculation of the sensitivity of optical fiber system
receivers,” IEEE Transactions on Communications, vol. 25, no. 5, pp. 541–548,
May 1977.

[67] J. B. Abshire, “Performance of OOK and low-order PPM modulations in opti-
cal communications when using APD-based receivers,” IEEE Transactions on
Communications, vol. 32, no. 10, pp. 1140–1143, Oct. 1984.

[68] H. M. H. Shalaby, “Effect of thermal noise and APD noise on the performance
of OPPM-CDMA receivers,” Journal of Lightwave Technology, vol. 18, no. 7,
pp. 905–914, July 2000.

[69] G. El-Howayek, C. Zhang, Y. Li, J. S. Ng, J. P. R. David, and M. M. Hayat,
“On the use of gaussian approximation in analyzing the performance of optical
receivers,” IEEE Photonics Journal, vol. 6, no. 1, pp. 1–8, 2014.

[70] R. Van Overstraeten and H. De Man, “Measurement of the ionization rates in
diffused silicon p-n junctions,” Solid-State Electronics, vol. 13, no. 5, pp. 583 –
608, 1970.

107



References

[71] J. C. Campbell, W. S. Holden, G. J. Qua, and A. G. Dentai, “Frequency re-
sponse of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorp-
tion “grading” and multiplication regions,” IEEE Journal of Quantum Electron-
ics, vol. 21, no. 11, pp. 1743–1746, Nov. 1985.

[72] B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess
noise factor and time response of avalanche photodiodes,” IEEE Transactions
on Electron Devices, vol. 37, no. 9, pp. 1976–1984, Sep. 1990.

[73] C. Hu, K. A. Anselm, B. G. Streetman, and J. C. Campbell, “Noise characteris-
tics of thin multiplication region GaAs avalanche photodiodes,” Applied Physics
Letters, vol. 69, no. 24, pp. 3734–3736, Dec. 1996.

[74] K. A. Anselm, P. Yuan, C. Hu, C. Lenox, H. Nie, G. Kinsey, J. C. Campbell, and
B. G. Streetman, “Characteristics of GaAs and AlGaAs homojunction avalanche
photodiodes with thin multiplication regions,” Applied Physics Letters, vol. 71,
no. 26, pp. 3883–3885, Dec. 1997.

[75] D. S. Ong, K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, and P. N.
Robson, “A monte carlo investigation of multiplication noise in thin p+ -i-n+
gaas avalanche photodiodes,” IEEE Transactions on Electron Devices, vol. 45,
no. 8, pp. 1804–1810, Aug. 1998.

[76] K. Li, D. Ong, J. David, G. Rees, R. Tozer, P. Robson, and R. Grey, “Avalanche
multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans-
actions on Electron Devices, vol. 45, no. 10, pp. 2102–2107, Oct. 1998.

[77] P. Yuan, K. A. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. G. Streetman,
J. C. Campbell, and R. J. McIntyre, “A new look at impact ionization-part II:
Gain and noise in short avalanche photodiodes,” IEEE Transactions on Electron
Devices, vol. 46, no. 8, pp. 1632–1639, Aug. 1999.

[78] P. Yuan, C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, J. Holmes, A. L.,
B. G. Streetman, and J. C. Campbell, “Impact ionization characteristics of III-
V semiconductors for a wide range of multiplication region thicknesses,” IEEE
Journal of Quantum Electronics, vol. 36, no. 2, pp. 198–204, Feb. 2000.

[79] G. El-Howayek and M. M. Hayat, “Method for performance analysis and op-
timization of APD optical receivers operating under dynamic reverse bias,” in
IEEE Photonics Conference, Bellevue, WA, Sep. 2013.

[80] R. M. Gray and J. W. Goodman, Fourier Transforms: An Introduction for
Engineers. New York: Kluwer Academic Press, 1995.

108



References

[81] F. Davidson and X. Sun, “Gaussian approximation versus nearly exact per-
formance analysis of optical communication systems with PPM signaling and
APD receivers,” IEEE Transactions on Communications, vol. 36, no. 11, pp.
1185–1192, 1988.

[82] P. Sun, M. M. Hayat, and A. K. Das, “Bit error rates for ultrafast APD based
optical receivers: exact and large deviation based asymptotic approaches,” IEEE
Transactions on Communications, vol. 57, no. 9, pp. 2763–2770, Sep. 2009.

[83] L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed., ser.
SPIE Press monograph. SPIE Optical Engineerin Press, 1992.

[84] S. R. Forrest, “Performance of InxGa1−xAsyP1−y photodiodes with dark current
limited by diffusion, generation recombination, and tunneling,” IEEE Journal
of Quantum Electronics, vol. 17, no. 2, pp. 217–226, Feb. 1981.

[85] S. R. Forrest, R. F. Leheny, R. E. Nahory, and M. A. Pollack, “In0.53Ga0.47As
photodiodes with dark current limited by generation-recombination and tunnel-
ing,” Applied Physics Letters, vol. 37, no. 3, pp. 322–325, Aug. 1980.

[86] J. L. Moll, Physics of semiconductors. New York: McGraw-Hill, 1964.

[87] J. Kim and J. F. Buckwalter, “Bandwidth enhancement with low group-delay
variation for a 40-Gb/s transimpedance amplifier,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1964–1972, Aug. 2010.

[88] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR
circuit for broadband data receivers in 90 nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008.

[89] J.-D. Jin and S. Hsu, “A 40-Gb/s transimpedance amplifier in 0.18-µm CMOS
technology,” IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1449–1457,
June 2008.

[90] M. N. Ahmed, J. Chong, and D. S. Ha, “A 100 Gb/s transimpedance amplifier
in 65 nm CMOS technology for optical communications,” in IEEE International
Symposium on Circuits and Systems (ISCAS), June 2014, pp. 1885–1888.

[91] T. Takemoto, F. Yuki, H. Yamashita, S. Tsuji, T. Saito, and S. Nishimura, “A
25 Gb/s × 4-channel 74 mW/ch transimpedance amplifier in 65 nm CMOS,” in
IEEE Custom Integrated Circuits Conference (CICC 2010), Sep. 2010, pp. 1–4.

[92] W. R. Clark, K. Vaccaro, W. D. Waters, C. L. Gribbon, and B. D. Krejca, “De-
termination of quantum efficiency in In0.53 Ga0.47As-InP-based APDs,” Journal
of Lightwave Technology, vol. 32, no. 24, pp. 4178–4182, Dec. 2014.

109



References

[93] M. M. Hayat, P. Zarkesh-Ha, X. Zheng, G. El-Howayek, and R. Efroymson,
“First demonstration of dynamically biased APDs for improved high-speed
direct-detection communication,” in Optical Fiber Communication Conference
and Exhibit, Los Angeles, CA, March 2015.

110


